Skip to content
printicon
Show report in:

UMINF 20.03

Autonomous Resource Management for High Performance Datacenters

Over the last decade, new applications such as data intensive workflows have hit an inflection point in wide spread use and influenced the compute paradigm of most scientific and industrial endeavours. Data intensive workflows are highly dynamic and adaptable to resource changes, system faults, and by also allowing approximate solutions into their models. On the one hand, these dynamic characteristics require processing power and capabilities originated in cloud computing environments, and are not well supported by large High Performance Computing (HPC) infrastructures. On the other hand, cloud computing datacenters favor low latency over throughput, deeply contrasting with HPC, which enforces a centralized environment and prioritizes total computation accomplished over-time, ignoring latency entirely. Although data handling needs are predicted to increase by as much as a thousand times over the next decade, future datacenters processing power will not increase as much.

To tackle these long-term developments, this thesis proposes autonomic methods combined with novel scheduling strategies to optimize datacenter utilization while guaranteeing user defined constraints and seamlessly supporting a wide range of applications under various real operational scenarios. Leveraging upon data intensive characteristics, a library is developed to dynamically adjust the amount of resources used throughout the lifespan of a workflow, enabling elasticity for such applications in HPC datacenters. For mission critical environments where services must run even in the event of system failures, we define an adaptive controller to dynamically select the best method to perform runtime state synchronizations. We develop different hybrid extensible architectures and reinforcement learning scheduling algorithms that smoothly enable dynamic applications into HPC environments. An overall theme in this thesis is extensive experimentation in real datacenters environments. Our results show improvements in datacenter utilization and performance, achieving higher overall efficiency. Our methods also simplify operations and allow the onboarding of novel types of applications previously not supported.

Keywords

Datacenter, cloud computing, high performance computing, machine learning, reinforcement learning, resource management, scheduling

Authors

Abel Souza

Back Edit this report
Entry responsible: Abel Souza

Page Responsible: Frank Drewes
2022-09-30