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”All mysteries are simple once you know what they are doing.”





Abstract

Over the last decade, new applications such as data intensive workflows have
hit an inflection point in wide spread use and influenced the compute paradigm
of most scientific and industrial endeavours. Data intensive workflows are
highly dynamic and adaptable to resource changes, system faults, and also
allow approximate solutions to their models. On the one hand, these dynamic
characteristics require processing power and capabilities originated in cloud
computing environments, and are not well supported by large High Perfor-
mance Computing (HPC) infrastructures. On the other hand, cloud computing
datacenters favor low latency over throughput, deeply contrasting with HPC,
which enforces a centralized environment and prioritizes total computation
accomplished over-time, ignoring latency entirely. Although data handling
needs are predicted to increase by as much as a thousand times over the next
decade, future datacenters processing power will not increase as much.

To tackle these long-term developments, this thesis proposes autonomic
methods combined with novel scheduling strategies to optimize datacenter uti-
lization while guaranteeing user defined constraints and seamlessly supporting a
wide range of applications under various real operational scenarios. Leveraging
upon data intensive characteristics, a library is developed to dynamically adjust
the amount of resources used throughout the lifespan of a workflow, enabling
elasticity for such applications in HPC datacenters. For mission critical en-
vironments where services must run even in the event of system failures, we
define an adaptive controller to dynamically select the best method to per-
form runtime state synchronizations. We develop di↵erent hybrid extensible
architectures and reinforcement learning scheduling algorithms that smoothly
enable dynamic applications into HPC environments. An overall theme in
this thesis is extensive experimentation in real datacenters environments. Our
results show improvements in datacenter utilization and performance, achieving
higher overall e�ciency. Our methods also simplify operations and allow the
onboarding of novel types of applications previously not supported.
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Sammanfattning

Dataintensiva workflows är en ny klass av applikationer som blivit alltmer
vanliga under senaste årtiondet och har stor p̊averkan p̊a hur beräkningar
utförs inom flertalet forskningsomr̊aden och i industrin. Dessa dataintensiva
workflows kan dynamiskt anpassa sig till ändringar i resursallokering, systemfel
och kan ibland även approximera lösningar vid resursbrist. De kräver hög
beräkningskraft och därtill funktionalitet som endast återfinns i datormoln och
de passar därmed d̊aligt i dagens högpresterande datorsystem (HPC-system).
Datacenter i molnet prioriterar att snabbt starta nyinkomna applikationer,
vilket drastiskt skiljer sig fr̊an HPC-miljöer där hög genomströmning över tid
är det främsta målet. Trots att behovet av datahantering uppskattas öka mer
än tusenfallt under kommande årtioende kommer framtidens datacenter inte
att ha motsvarande utveckling av beräkningskapacitet.

Denna avhandling möter dessa utmaningar genom en kombination av au-
tonoma system och nya strategier för schedulering för att optimera utnytt-
jandegraden i datacenter. Detta sker utan att göra avkall p̊a användares pre-
standakrav och därtill med m̊alet att stödja ett brett spektrum av applikationer
och scenarios. Ett bibliotek utvecklas för att dynamiskt anpassa resursallokering
för workflows under körning, vilket innebär att även HPC-system kan stödja
elastiska applikationer som tidigare bara kunde exekveras i datormoln. För
miljöer med höga krav p̊a tillgänglighet defineras en regulator för att dynamiskt
anpassa hur applikationer synkroniserar tillst̊and, för mer resurse↵ektiv aktiv
replikering. Avhandlingen utvecklar även flera resurshanteringssystem baserat
p̊a schedulering med förstärkningsinlärning i syftet att förbättra stödet för
dynamiska applikationer i HPC-system. Ett övergripande tema i avhandlingen
är omfattande utvärderingar av de framtagna metoderna och systemen genom
storskaliga experiment i verkliga datacenter. Resultaten visar förbättringar
överlag av resursutnyttjande och prestanda i datacenter. De utvecklade syste-
men förenklar även drift och möjliggör nya typer av applikationer som tidigare
ej kunnat exekveras i HPC-miljöer.
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Chapter 1

Introduction

Datacenters are the main computing infrastructure enabling Internet services,
as well as scientific endeavours addressing pressing challenges in e.g., medicine,
chemistry, biology, materials design, and climate change. These infrastructures
allow biological, weather, and other natural science models to be tested and
evaluated, and are thus key enablers for high performance (HPC) and cloud
computing [Ste+20]. However, to provide acceptable levels of performance,
datacenter infrastructures consumed roughly 2% of electricity worldwide just
in 2018, with projections rising it to 10% by 2030 [CP15; Jon18]. In fact,
in this decade we will see datacenters handling yottabyte data amounts (= 1
trillion-terabytes), although today’s data processing capacities will not increase
as much. These figures show demand is soon outpacing supply, triggering
serious datacenter e�ciency concerns, slowing society digitization advances
down [Mit16], with no clear path delineating software system solutions to
handle such enormous scales in data.

Moreover, over the last decade, Artificial Intelligence (AI) has become a new
paradigm in most scientific endeavours, hitting an inflection point in adoption
and specially in its possibilities. Nonetheless, the easier to run state-of-the-art
Machine Learning (ML) models, mostly triggered from sensors in small Internet-
of-Things (IoT) devices requesting processing power from larger datacenters, the
higher demand these infrastructures face. Recent software developments such
as approximate computing leverages on the idea where applications progress
depend on data estimates, and not on exact data inputs/outputs (I/O). This
conceptual idea can likewise be applied to other metrics such as time to re-
sults, whereas estimates are set to produce data products rather than exact
deadlines. Unfortunately, most of today’s datacenter software systems do not
embed applications internal dynamics into their decision-making, restricting
opportunities to various types of optimizations, and resulting in low ratios of
datacenter processing power engaged in actual work. From tiny sensor devices
connected to mobile edge datacenters to larger cloud datacenters, if correctly
integrated into datacenter management, such dynamic application features own
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high potential to enable the high performance e�ciency required for future
datacenter realizations [Ste+20].

Thus, it is important that resource management happens in a way that
satisfies datacenter end-users (also called users) and operators. Users are the
ones using or developing and coding applications, and ultimately depend on the
datacenter to run their applications, often making use of modules, libraries and
runtime systems to facilitate and automate infrastructural operations. Operators
maintain and provide fair means to support end-users with the access to the
datacenter infrastructure through a resource management system, following a
multi-tenancy policy, which describes how resources can be used and shared. At
datacenter’s scale, resource managers have the role of an Operating System (OS)
because these are the layers of software that transparently abstracts and manages
the infrastructure’s resources to users and their applications. Understanding
the various tradeo↵s while allocating and serving resources, besides adapting
applications runtime mechanisms and capacities according to the workload’s
variations lead to operational e�ciency gains because it tailors the infrastructure
to the application dynamic needs, instead of the other way around, which is
having applications change to infrastructures. Finally, a timely allocation of
resources to applications ensures e�ciency, operational cost reductions, and
shorter time to solutions.

1.1 Research Problem and Objectives

The purpose of this thesis is to propose and evaluate autonomic solutions
combined with novel scheduling strategies and software architectures to increase
datacenter performance and utilization, while seamlessly supporting a diverse set
of applications under various and real infrastructure and operational scenarios.
These scenarios may include behaviors considered anomalous, such as resource
failures, resource transiency, shortened deadlines, and resource performance
variability. Our aim is to minimize negative impacts on applications constraints
and expected Quality-of-Service (QoS) while also improving overall datacenter
e�ciency and utilization. Combined with that, the main research objectives of
this thesis are:

RO1 To allow users to specify application requirements to enable and improve
datacenter e�ciency and utilization of applications.

RO2 To develop theoretical control techniques for adapting and choosing best
fault-tolerant mechanisms according to workload variations and application
characteristics.

RO3 To evaluate and develop machine and reinforcement learning methods
and resources capacity controllers to continuously improve datacenter
throughput application performance and accuracy.
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RO4 To develop adaptive scheduling techniques that choose the best perfor-
mance tradeo↵s according to application workload variations and time
characteristics.

1.2 Methodology

The methodology used in this thesis is a combination of formal deduction with
scientific experimentation, in concert with the scientific paradigm, where a
priori and a posteriori knowledge about the proposed methods are sought
[Ede07]. To model RO1 and RO2, we set up testbeds consisting of multiple
servers in use in real clusters. To generate load on the testbed we run known
benchmarks tailored to harness selected computational resources, and real
workflows modeling scientific experiments. When the servers are exposed to
the load, we dynamically (at workloads’ runtime) modify various configurations
and measure the performance of running applications.

To address RO1, RO2 and RO3, we analyze the measurements using
control theory and various statistical methods in order to remove outliers, sum-
marize multiple measurements, and evaluate hypothesis. To evaluate RO3

and address RO4, we apply and design predictive methods, from machine
and reinforcement learning, to process and model vast amounts of data to
understand the quantities and types of resources to allocate applications with,
and when and where to deploy them within a datacenter. Furthermore, we use
statistical methods to correlate dependencies between application performance
metrics and compute resource metrics, such as CPU and memory utilization to
latency and/or throughput. We evaluate our methods through implementation
and integration with real datacenter resource management software. We further
conduct extensive experiments in real datacenters, often directly in HPC pro-
duction systems under a variation of applications and loads, as well as tuning
parameters for our methods.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 provides an
overview of Cloud and High Performance Computing datacenters, describes the
role of resource management in both infrastructures, their execution models,
and a research overview. Chapter 3 explains how application performance can
be supported in di↵erent situations, describing how trade-o↵s are achieved.
Chapter 4 introduces why the autonomic management of datacenters is needed,
illustrating statistical methods that can be used to support it, and its challenges.
Finally, Chapter 5 concludes by discussing the research contributions presented
in this thesis, discusses its limitations, and future directions.
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Chapter 2

Datacenters and Resource
Management

In this chapter we describe what a datacenter is, and the role of the software
managing these large infrastructures, the resource manager. We also explain the
various mechanisms that allow the control of a datacenter and that enable it to
extend its functionality to provide new features to users. We give an overview
of concepts such as collocation, isolation, resource control and scheduling, link
the approaches to enabling technologies and datacenter actuators, and overview
the research performed in each area.

Datacenters

Datacenters have become ubiquitous and important to nearly all aspects of
communication, business, academic, and governmental information systems
[WSI05; And+18]. These infrastructures are designed to respond in real time
to user applications scattered around the world, using cell phones, tablets,
or personal computers. Figure 2.1 outlines a high level view of a datacenter,
composed of di↵erent resources such as computer servers and storage devices.
These are the hardware equipment that allows a datacenter to execute computer
software (application), such as data processing, storage, and communication,
inside (intra network) and outside (Internet) its premises.

Resource Manager

As a central entity controlling a datacenter [JS15], the resource manager (RM)
is the main system a user has to interact with in order to use resources and
run services or other computations. The RM is designed to follow di↵erent
organizational policies that describe how datacenters can be used. For instance,
in Figure 2.1 the datacenter is grouped in three clusters with di↵erent compute
capacities (Small, Medium, and High Performance Compute clusters), and
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Figure 2.1: Datacenter overview: Applications (coloured boxes) are submitted
by users, and requested resources allocated in cluster compute nodes by the
resource manager. Operators profile and monitor applications and datacenter
utilization in real time. The network connects all cluster nodes internally, to
databases, and remote storage.

according to user requirements the RM schedules applications to di↵erent
clusters. Current datacenters installations require RMs to be very flexible
to support behaviors considered anomalous and commonly transparent to
applications, such as power failure, server faults, and compute processing
shortages. The RM also supports distributed applications, which is software
that is able to run on multiple computers connected in a network, where
instances interact through this network to accomplish a specific task. Conversely,
traditional applications run on a single system only. These applications (also
referred to as jobs) are usually encapsulated and orchestrated through virtual
machines or containers, or classic Operating System (OS) processes [Bur+16].

From a system’s perspective, in addition to handling the actual execution
of jobs (coloured boxes in Figure 2.1), the RM is responsible for e�cient job
management such as maintaining high utilization and throughput (performance),
as well as handling software and system faults gracefully (i.e. without the user
noticing). In addition, from a user perspective, the RM should improve execution
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times and fairness among di↵erent workloads, users, and projects [FR96]. The
queue makespan, a metric which is defined as the total amount of time a given
set of jobs takes to finish execution, is one important example of a metric users
and operators want to reduce.

2.1 Applications

There are commonly two types of applications: interactive and batch [Reu+18;
BCH13; Jha+14]. Interactive applications are commonly web requests such as
ride-sharing mobile applications asking for directions, or tasks in a data analysis
pipeline, which runs in datacenters hosted by providers, such as Amazon Web
Services (AWS) or Google Compute Engine (GCE). Interactive applications
are commonly described because of their low latency characteristics, i.e. the
response to a request has to be answered very quickly, otherwise the service
being o↵ered may be considered unusable. For instance, a query in a search
engine should be responded in less than 1s or users may go to the competitor.

The second type are batch applications, or background computations, i.e. a
sequence of commands in a file (also known as batch file, command file, or shell
script) executed by an Operating System (OS) and submitted for execution as
a single unit, or process. Batch workloads are common in scientific computing,
historically running in High Performance Computing (HPC) environments to
enable large scale experiments. As an instance, installing an application in a
workstation is considered a batch workload because many sequence of commands
should be completed to successfully setup the application for use.

Scientific Workflows

Large scale experiments rely on datacenters and big computing infrastructures.
Because these scientific experiments are very large and time consuming, scientists
split the overall problem in independent parts, which are later combined to pro-
duce final data products [Dee+18]. Figure 2.2 illustrate two workflow pipelines,
where each (coloured) stage describes a specific set of models and computational
tasks organized in batch calculations (the small rectangles passing through).
At a high level, these interconnected pipelines resemble the MapReduce model
[DG08], where the directed acyclic graph (DAG) composition of independent
stages is the actual scientific workflow. Moreover, scientific workflows are not
only common in HPC centres, but also in virtually every sector in industry
and academia. Common applications analyze and correlate data for predictions
and decision support, where users can customize/sweep parameters in a model
without viewing or altering any code, making them vastly flexible and reusable.

Intrinsically, a workflow pipeline structure describes the number of resources
required to perform a batch (computation) task in each stage of a scientific
workflow. Such a pipeline is managed by a workflow management system
(WMS). The purpose of a WMS is to aid in the automation of execution of
tasks and the information exchanged between these tasks, with a special focus
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(a) Traditional Workflow (b) Streaming Workflow

Figure 2.2: Scientific Workflow: (a) Traditional, and (b) Streaming pipeline
structures for Montage Workflow, an image mosaic software [Ber+04]. Each
color in the graph describes a set tasks within a stage. Each stage produces
outputs used as inputs at subsequent stages that produce the data product at
the end.

on reliability. The task of ensuring acceptable performance is delegated to
developers. Workflows are traditional (Figure 2.2(a)), or streaming (Figure
2.2(b)). Traditional workflows process tasks in each stage sequentially, one stage
at a time. Conversely, in streaming workflows, often used for in-situ processing,
tasks in a stage are processed and followed to subsequent stages as they are
generated, with low latency characteristics similar to interactive applications.
Finally, with increased use of workflows to process great amounts of data, closer
integration between the WMS and the datacenter RM is of vital importance for
improving scientific application performance [Dee+18; Com+16; Asc+18].

2.2 High Performance Computing

High Performance Computing (HPC) organizes independent compute resources
in clusters that can deliver more performance and solve bigger problems than
could be solved from a single personal computer or workstation [And+18]. HPC
clusters solve and steer complex problems in scientific experiments, engineering,
and business, and are key for innovation [She+16]. As mentioned, distributed
applications use multiple nodes to accomplish a goal, usually performed through
the network by means of standardized libraries such as the Message Passing
Interface (MPI) [WD96]. The use of one type of network over another usually
depend on the bottlenecks most workloads experience in an HPC centre. HPC
clusters require users to provide a walltime (i.e. time limit) for executing
jobs [Reu+16]. However, jobs not only finish execution earlier than specified
walltimes, they often use less resource capacity than what is provided at job
launch. Usually users cannot use more resources than what is allocated, which is
commonly determined by which project or organization they belong to, to which
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compute time is distributed by an allocation committee. Some tools allow users
to more e�ciently utilize their allocations [Ber17] by o↵ering mechanisms for
bundling jobs together in optimal ways, and mechanisms for migrating jobs to
other resources without loosing completed work. However, there are still some
drawbacks as important features such as state management and monitoring are
not fully integrated into HPC schedulers.

2.3 Cloud Computing

Cloud computing is a model of computing where applications run on shared
computing and storage infrastructure in large-scale datacenters instead of the
user’s own computers [JS15]. It must address many of similar issues faced in
OSes in terms of resource sharing, abstraction, and common services. This
happens because of the diversity of applications that clouds can accommodate:
basically any type of application can run alongside with one another, which
compete for and influence how resources are used. Cloud RMs such as Mesos
[Hin+11], Kubernetes [Bur+16], and Yarn [Vav+13] provide APIs enabling jobs
to control resource assignment, conduct state management and perform resource
profiling and monitoring. Cloud RMs are developed as flexible frameworks of
execution engines, which can be ported to di↵erent infrastructural contexts
[JS15]. As their main objective is to maximize utilization, most cloud RMs
allow application collocation with di↵erent policies support (including for HPC
workloads). Although some HPC RMs supports finer grain allocations, they
come with no support to enforce resource isolation when sharing resources (see
Section 2.4).

Characteristics

The main di↵erence between cloud computing and HPC lies in the model of
delivery or access to computing resources as well as associated costs [Fos+08].
In traditional HPC, the institution (i.e. the operator) typically creates poli-
cies and organizes the infrastructural management following users’ workload
characteristics and priorities. By owning the infrastructure, the operator incurs
large capital expenditures (also known as capex costs) e.g. cost of servers,
hiring software engineers, warehouse rent, and etc. Additionally, there are
recurrent operational expenditure (known as opex cost), e.g. power and cooling,
wages, and system upgrades. This cost is constant independently of whether the
infrastructure is utilized. Cloud Computing, on the other hand, is an economical
model where all capex and opex costs are passed to a third party, known as
cloud provider such as Amazon Web Services, Microsoft, and Google. In this
model, cloud providers buys, maintains, shares, and utilizes the computer in-
frastructures. Users have access to a virtualized infrastructure accessed through
the Internet, with a pay-per use billing scheme. Users personalize this virtual
infrastructure by using various runtimes and application environments such
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as containers, virtual machines, and orchestration tools such as Mesos and
Kubernetes, which help them managing this complex environment.

2.4 Resource Manager Components

A RM provides four main functionalities that support job management, as
illustrated in Figure 2.3: job life-cycle, resource monitoring, scheduling, and job
execution [Reu+18]. Job’s life-cycle management is responsible for receiving
user’s jobs through a user interface such as the command line or a web interface.
Users provide the job’s requirement (or geometry) such as specific resources (i.e.
CPU cores, memory, network bandwidth, and other resources), the amount of
each, and/or time constraints, such as total execution time and/or deadlines.
Also, users can specify jobs requiring elastic execution such that they change
their resource geometry in the middle of execution without halting execution.
Job’s lifecycle management thus places jobs into the appropriate queue for
execution. RMs makes cluster resources (such as compute nodes and CPUs)
accessible for use by jobs, while the scheduler allocates the resources to execute
the job, and assigns these resources based on datacenter policies and availability.
Job execution is a process in which jobs start executing on each node, after
which they can be manipulated by the job lifecycle management, which in turn
also allows the application to communicate directly with the scheduler (and
vice-versa) in order to help it take appropriate management decisions in case of
failures or workload variations. Job monitoring and profiling provides interfaces
accessing application and system Key Performance Indicators (KPI), allowing
techniques to statistically estimate and analyze resource demands and needs,
possibly in real-time. For instance, it can enable flexible options for users to
manage and use their own resource allocations, allowing users to co-schedule
multiple of their jobs’ tasks in varied ways not currently possible by static
libraries. In this context, KPIs are user monitored metrics, specific to the
service or application in question and describe its performance.

Job Characteristics

Jobs are classified by four runtime characteristics: rigid, moldable, malleable,
and evolving [FR96]. Specifically, these classes di↵er in what can happen to
the resources allocated throughout jobs’ lifespan. Whereas a moldable job may
have its resources changed before being launched, a rigid job cannot. From a
RM’s point of view, these jobs are considered the same and called rigid jobs.
Malleable and evolving jobs are also considered the same and simply called
malleable, because they can change resource at runtime. With AI jobs and large
data processing needs becoming a norm a novel fifth class has emerged: adaptive
jobs. Such jobs are highly dynamic and adaptable to changes and system faults.
Because they need to process unprecedented amounts of data, they are known
as data intensive (DI) applications. In relation to resource needs, adaptive jobs
combine characteristics of malleable and evolving jobs [Pra+15].
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Figure 2.3: Components of a typical Resource Manager: job lifecycle, scheduling
and resource management in datacenters. Users submit jobs through an interface.
Jobs are queued and scheduled for execution. Each one of these steps is profiled
and monitored according to the policies set in the management component.
Adapted from [Reu+18].

Resource Allocation

In this context, resource allocation refers to assigning datacenter’s resources to
user requests (specified through jobs) according to its goals and objectives. As
an example of a policy is the maximization of datacenter resource utilization.
That is, the focus is on measuring how well, or how e�ciently, resources in a
datacenter are being utilized by applications. From the applications context, it is
defined as how e�ciently a given resource capacity is available to the application
following its needs. Operators aim at maximizing the use resources, and such
policies contradicts each other and may negatively impact users KPIs. In either
context, utilization is often used as the main metric of comparison among
di↵erent techniques in RM systems because it clearly relates the application
performance of a given workload to the resource capacity available to the
application.

Resource Sharing

Each RM uses di↵erent sharing schemes and policies for multiplexing managed
resources, depending on the context applications are deployed, e.g. containers.
Runtime systems and orchestrators are the software that supports the execution
of containers, and they have to handle, measure, and evaluate the di↵erent
organizational policies and their e↵ect to users’ KPIs. Common runtime systems
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in large clusters may rely on frameworks such as Mesos [Hin+11], Slurm [YJG03],
Torque [Sta06], or Kuberentes [Bur+16], to allocate and share resources to their
jobs and tasks. When sharing resources such as CPU, memory, network, and
file systems (I/O), resource isolation is a requirement since applications may
end up competing for a common resource. Isolation specifies that minimum
capacity levels are available when needed, allowing controllable behavior given
to most applications. However, not all of these aspects are fully integrated
into modern datacenter operations, and therefore cannot enable the extreme
e�ciency required by future installations.

2.5 Other Characteristics

Other characteristics like scheduling and reliability influence how resource
managers and policies are combined and used. In addition, new OS capabilities
also enabled the development of the new specialized resource managers, known
as orchestrators.

Orchestrators

With advents of lightweight in-kernel virtualization and isolation tools such
as cgroups [Men07], Linux containers (LXC) [Men07], and Docker [Mer14],
resource orchestrators such as Kubernetes [Bur+16] and Docker Swarm [Rou16]
have also been used in large infrastructures because of the new levels of resource
management o↵ered by these tools. By leveraging upon such tools, some
RMs allow tasks within a job to also specify/request their resource geometries,
enabling new features and challenges in datacenter resource management. For
instance, Mesos and Kubernetes, RMs commonly used in cloud datacenters,
support Docker containers and Linux namespaces [Men07], but are mainly
designed to improve fine-grain resource utilization (within servers, i.e., ratio of
CPU and/or memory capacities used). These RMs use finer grained resource
allocation by taking into consideration fractions of resources needed to run a
job.

Scheduler Objectives

In HPC most jobs are batch scripts which run for long times and occupy high
parts of a cluster [Reu+18]. As such, common RMs used in HPC centres
are designed mainly to achieve high resource allocation at coarse-granularity
levels, such as compute nodes. In this context, resource utilization refers to
the infrastructure ratio that is occupied by multiple jobs (space-sharing) at a
time, and not to how e�ciently allocations are utilized within these resource
capacities (time-sharing), which is the case in the cloud model.

Moreover, scheduling algorithms such as Completely Fair Scheduler (CFS)
and Dominant-Resource Fair Scheduling (DRF) allows for fair resource alloca-
tions in time-sharing contexts such as OSes and in clouds. CFS keeps track
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of the fair share of resources (e.g., CPU) that would have been available to
each process in a system [Pab09]. In modern OSs, CFS is configured by using
mechanisms such as namespaces and cgroups [Men07], o↵ering extended capa-
bilities for isolation enforcement. DRF proposes a notion of fairness across jobs
where the jobs have multi-resource (e.g., number of CPU, amount of memory
and network bandwidth) requirements [Gho+11]. In HPC, Backfilling is one of
the most used schedule algorithms in space-sharing contexts [Sri+02]. Its main
advantages is increased utilization at the cluster level, lowering queue waiting
time.

Reliability and Availability

Given their importance, mission critical applications such as banking, hospital,
and airline services must be highly available for use. Availability is the per-
centage of time an infrastructure or a service is running in an operable state.
Outages severely impact services reputation and overall users’ satisfaction,
and thus most datacenters typically aim for at least 99.99% uptime, which is
approximately one hour of downtime over a year period.

Leased resources in a datacenter are subject to Service Level Agreements
(SLA) that specify what a service provider general complies with. On the other
hand, some users are often more concerned about Service Level Objectives
(SLOs) for alloted resources, which are performance indicator levels such as
”latency < X(units) or throughput > Y (units)”, and that make up the SLA.
The SLA is the overall contract, where the SLO are the performant terms the
provider aims to deliver. Thus, the SLO can be either uptime, or throughput,
or something else.

Reaching high availability or zero fault operations on large systems is hard
and even more di�cult at extreme scales. It is possible to prevent failures in
a collection of thousands of servers at costs of deploying hardware resource
replicas, that is duplicating the execution of a system of interest. Common
high availability software techniques use checkpoint and restart mechanisms
and/or user request duplication, where one request is executed two or more
times, and in case of failures, a secondary replica takes the execution over the
failed component. Consequently, workloads and runtime systems are designed
to gracefully tolerate and adapt to component faults with negligible impacts to
SLAs and SLOs.

13





Chapter 3

Resource Management
Trade-o↵s

In this chapter we talk about trade-o↵s and approaches to improve the perfor-
mance e�ciency of datacenter resources. By now we have been looking e how
di↵erent systems behave when working in isolation. In reality, though, these
resource subsystems do not work independently (i.e. in isolation), they rather
depend on each other. We give an overview on concepts such as consolidation,
throttling and scheduling, link the approaches to enabling technologies and
datacenter actuators, review the research performed in each area, and present
the associated challenges and limitations.

3.1 Performance Trade-o↵s

Resource assignment can be a challenging problem, specially in clusters with
heterogeneous resources, where compute nodes with di↵erent configurations
and architectures are combined. For heterogeneous environments, dynamic
RMs are commonly used since they are able to cope with variations and faults
within the infrastructure [Reu+18; Ahn+14; Jha+14]. In traditional HPC RMs,
allocation is the exclusive assignment of resources to execute a job [Jha+14],
which means that the resource request describes the exact amount of resources
the RM allocates to the job, which is the common SLO that most HPC clusters
support.

For di↵erent goals and objectives (i.e. policies), the way resources are
shared are very important. Time-sharing and space-sharing refer to the way
resources of a machine or a cluster are shared among jobs. In time-sharing,
several processes typically take turns in accessing the resource (e.g., a compute
server or a CPU). On the contrary, when resources are assigned exclusively to
individual processes, di↵erent processes share the infrastructure spaces (the
resources). A time-sharing RM such as Slurm [YJG03] with a space-shared
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(a) Isolation run

(b) Collocated run

Figure 3.1: Resource utilization in two allocation strategies: isolated and
collocated. The soft limit sets resource limits which eventually might be crossed.
Hard limits are physical, and if ’crossed’ may result in applications performance
degradation.

policy assures predictable resource performance to jobs at the cost of higher
queue-makespan [Amv+18].

Resource Utilization

Utilization is often used as the main metric of comparison among di↵erent
techniques in distributed computing systems, and even di↵erent research areas.
It is defined as how e�ciently a given resource capacity is used by a workload,
where operators often try to maximize the benefits for those who scheduled its
needs to specifics resources. When a resource is shared with any given constraint,
such as maximum number of users per second, researchers go towards on ways
to optimize its use. Even though it is very intuitive, utilization hides many
aspects of what is happening under the hoods in a system. Figure 3.1 generically
illustrates the utilization of a processing unit (PU) in two di↵erent scenarios:
isolated (Figure 4.1(a) and collocated (Figure 4.1(b)). Although in the collocated
scenario the utilization is higher, this metric per-se does not indicate how the
performance experienced by the application in the isolated run is a↵ected.
Systems often depend on other systems with di↵erent utilization ratios and
would then answer to similar requests quite di↵erently, depending on time and
on the workload. A common PU metric is the CPU utilization (CPU %), which
measures the time a processor is waiting for memory I/O, and results in the
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processor not making forward progress with instructions. By using fine grain
monitoring, modern OSes can observe this metric on a per-process basis.

3.2 Strategies and Mechanisms

In order to enable the performance tradeo↵s, strategies such as consolidation
and mechanisms such as isolation should be combined in a way that do not
disrupt the developer’s workflow, nor users QoS experience.

Consolidation

Consolidation (also known as co-scheduling) is a common technique in cloud
datacenters, though operators tend to use it with care due to the performance
interference caused by node sharing. However, with finer granularity in resource
allocations, one can expect higher resource utilization [Zha+13; Reu+18], and
in large clusters this can have high impacts due to the lower fragmentation of
unused resources per node. Additionally, because of resource sharing, a method
for enforcing resource isolation among jobs is essential [Zha+13; Bur+16].

Isolation

Isolation mechanisms need to be combined with interference detection techniques
[DK13] that use, e.g., classification to weight the impact of di↵erent resources
for each job, and use this knowledge to select candidates for collocating jobs.
In such scenarios, on-line models can also be used to detect, control, and avoid
performance interference [NKG10; Yan+13], or to take actions such as throttling
low-priority jobs to mend the interference [Zha+13].

Most traditional HPC RMs do not let jobs to dynamically change their
placement at the level of nodes inside a cluster, let alone to throttle or to per-
form low-level resource control in order to enable di↵erent isolation mechanisms
among multiple jobs and tasks. Although RMs like Slurm can also allocate
resources with finer granularity (e.g., CPU-cores), they do not provide the
necessary application programming interface (API) and capabilities for applica-
tion elasticity at runtime (change on the resource geometry), nor mechanisms
for enforcing isolation between jobs [Hin+09]. For instance, these capabilities
are essential for doing load-balacing in streaming workflows, which demand
capabilities such as task migration, or changing resource allocations at runtime
[Hin+09; Asc+18].

There are various ways to enforce isolation between co-located tasks (pro-
cesses) within a node:

• Operating System Schedulers : An OS scheduler can be used to dynamically
control the prioritization given to jobs while also monitoring application
performance. Unfortunately this may not provide enough guarantees for
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memory operations because of Last Level Cache (LLC) evictions that
could cause severe interference problems [Zha+13].

• Using a monitoring Agent on the nodes: This could be implemented by
having an exclusive hardware profiler. Though a very promising approach
[Sch+13], it needs a specific system architecture for communicating with
the RM and it can be hardware dependant [KTC01], limiting its adoption.

• Linux Cgroup: Cgroup [Men07] is a set of mechanisms to enforce isolation
between containers where processes share resources such as CPU, memory,
I/O and network bandwidth. Cgroups also control the way the Linux
CSF scheduler calculates weights in container execution. Linux’s cgroup
resource isolation mechanisms is one of the most available and robust
ways to make sure processes, encapsulated as containers (namespaces) do
not consume more of the resource capacity than what has been assigned
to them.

• Resource pinning : This mechanism enables the binding and unbinding of
a container, a process, or a thread to a specific resource location, such as
CPU, or to a range of CPUs. In this way, the container and its spawned
applications execute only on the designated resources (e.g. CPU(s)). Its
main use is for load-balacing, which is a strategy to divide the workload
equally among available resources, so no one resource has more load than
any other resource.

Throttling

Throttling aims at controlling the computational performance ratios an individ-
ual process or container receives from a resource, such as CPU or Graphical
Processing Units (GPUs). This technique is a combination of the consolidation
and isolation techniques, and together they create the computational controlling
e↵ect experienced by the target application. For instance, a RM can simultane-
ously use resource pinning together with cgroups to prioritize CPU intensive
processes over I/O intensive processes. It is often used when resources are not
fully utilized by hosted processes, i.e. when the resource has a low utilization
level.

The challenges concerning throttling approach, that still need to be inves-
tigated, are connected with the power-performance tradeo↵s. There is still a
lack of models of the relationship between server configurations and application
performance, to be used for optimisation of multiple co-located applications.
Moreover, Mann points out that it is important to investigate how server throt-
tling techniques interact with virtual machine placement algorithms [Man15].
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3.3 Multi-Level Scheduling

Modular RMs with multi-level scheduling objectives are proposed to support a
diverse set of jobs in a datacenter while also enforcing space sharing to ensure
fair-share usage and to meet constraint requirements [Inc16; Sch+13; Hin+11].
In multi-level schedulers, the process of deciding how to schedule and share
available resources are given to applications instead of following an unique policy.
Static schedulers found in Mesos [Hin+11], Torque, or Omega [Sch+13] expect
users to specify resource reservations, for instance how many CPU-cores and
memory the application needs. For example, Mesos, processes resource requests
and, based on availability and fairness, makes resource o↵ers to individual
application frameworks (e.g. Hadoop), which can accept or reject these o↵ers
depending on application requirements [Hin+11]. Mesos handles heterogeneity
by acting as a meta-scheduler for a whole cluster, with conceptual resource
abstractions for CPU, memory, I/O and other infrastructure resources being
used and exposed in the same way an OS does in a single computer. This
enables a set of new capabilities like elasticity and fault-tolerance to distributed
applications [Reu+18], a concept now known as Datacenter Operating System
(DC/OS) [Zah+11; Hin+11].

In principle, the idea of allowing multiple distributed applications, which
were all developed independently and have their own scheduling policies and
requirements, to share resources is very complex. In particular, having a single
monolithic scheduler that has to encompass the scheduling decisions from many
applications would be particularly complex and not scalable. Mesos simplifies
the problem by using an abstraction to separate the allocation of resources and
the scheduling of tasks. Similarly, Flux [Ahn+14] proposes an unified layer
where applications can decide from what is available within an hierarchical
model. Ultimately, the operating system (OS) is the layer and channel providing
the real management from which RMs can profile applications to trace dynamic
control flow and identify hot-spots for optimizations. By utilizing specific
resource controllers to understand and adapt capacity according jobs needs,
multi-level schedulers can be harnessed to improve overall resource utilization
while also meeting most job contraints.

Thus, to be e�ciently managed by a HPC RM, adaptive jobs often combine
multiple scheduling policies in a same job and thus require higher degrees
of integration with schedulers than what monolithic managers o↵er. These
dynamicity and adaptability are often not fully supported in HPC centers,
which demand full resource control to keep-up with Service Level Objectives
(SLOs), for e.g. deadlines.

3.4 End Goals

The resource manager is responsible for making important decisions regarding
a datacenter’s internal operations. Therefore, such decisions a↵ect the perfor-
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mance, functionality, and maintenance costs of a datacenter. Softwares such
as auto-scalers, elasticity engines, and schedulers provide some solutions to
research challenges such as understanding how much and what type of resources
to allocate, and when and where to deploy them inside datacenter infrastructures
[JS15; Jha+14]. These systems are designed to follow models of application
and performance based on few KPIs such as response time and throughput (for
applications) and utilization of servers, CPU, memory, bandwidth as well as
energy expenditure and heat (for servers) [FR96; Sta06]. However, all these soft-
ware have limitations because they usually aim for only few aspects of resource
management and do not holistically correlate di↵erent organizational policies
to applications’ KPIs [Kat+11; Jha+14]. Integrated to resource management,
KPIs present a varied number of interesting and important problems that are
being studied in this thesis and elsewhere as well [Kat+11].

As it can be seen, e�cient and improved resource management in a datacenter
can happen at di↵erent layers: application, runtime, and lower-level systems.
Public and private datacenters are growing in size, and even though the dynamic
and ”virtual” nature of cloud computing infrastructures in its inception is more
focused towards dynamic applications, recent providers are also supporting
HPC applications, therefore illustrating an infrastructural convergence to how
such jobs are deployed [Asc+18]. Irrespectively of a strategy steering datacenter
e�ciency, substantial resource allocation control entails performance degradation
of running applications. However, providing a high and expected performance
to applications is one of the most important goals in datacenter operations.

Therefore, one of the main focus of this thesis is to understand and control
the performance tradeo↵s in datacenter servers. To this end, performance
trade-o↵ strategies are methods that may degrade application performance in
exchange of higher e�ciency in another end, for instance to the overall number
of running applications with the same amount of datacenter resources.
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Chapter 4

Autonomous Systems for
Resource Management

In this chapter we explain the high complexities involved in resource management
and how they can be systematically studied to ease the development and
evaluation of policies that support and enable the deployment of new and
current types of applications. The rapid growth and wide spread use of dynamic
applications demands important developments in the intelligence and heuristics
coded in the software managing these datacenters. With great amounts of
operational data available, the use of statistical techniques such as Machine
Learning (ML) and Reinforcement Learning (RL) help to achieve insights on
how to improve datacenter operations and e�ciency. In fact, the combination of
large amounts of data together with statistical learning techniques and feedback-
loop to manage datacenters form the basis of autonomic systems for resource
management [KC03].

4.1 E�ciency in Resource Management

There are multiple ways to improve datacenter e�ciency in datacenters. For
instance, assessing resources and their utilization rates often reveal resources
that are performing single, not frequent, or small tasks, which suggest there is
space for consolidation. Figure 4.1 illustrates a case where consolidation can
be applied. Figure 4.1(a) shows space-sharing jobs do not fully utilize the PU
capacity. By consolidating at earlier times (Figure 4.1(b), we see increases in
the PU utilization. Jobs might end up competing for PU capacity at times, and
monitoring this behavior may be useful to adjust the soft limits imposed to less
prioritized collocated jobs. Consolidation potentially reduces total number of
resources by collocating more applications on fewer machines, resulting in less
spare resources, energy, and operational costs.
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(a) Isolated allocations

(b) Consolidated allocations

Figure 4.1: Resource utilization assessment with two consolidation strategies.
In (a) isolated (space-sharing) allocations, PU capacity has no interference.
However, when consolidating (b) and due to time-sharing, some jobs (3, 4, and
5) face performance interference, and may need larger PU capacity and longer
to finish execution.

In addition to supporting high-level policies and e�cient execution, RMs also
o↵er applications with communication interfaces for handling states, workload,
and resource transiency variations [Sch+13; Dee+18]. Due to high dynamicity
in a datacenter environment, and applications using such features, RMs have
to be able to quickly adapt to workload variations at which current and new
applications operate [Bur+16]. For instance, if a legacy application is latency
sensitive and reliability is important, then simultaneously running two replicas
of the same, synchronized application may be important as well. However, to
keep these replicas consistent, the state synchronization of the two replicas
may only happen when they do not seem to be producing similar outputs
given similar inputs. Since latency correlates to applications workloads, the
fault-tolerance synchronization mechanism used can be controlled over time to
adapt the runtime system to such variations. This allows the runtime system to
e�ciently use available resources according to application workloads, improving
overall use of datacenter resources. Likewise, if a scientific workflow describes
the amount of resources needed, a management system can interact with the
RM, which can then schedule appropriate number of resources to each workflow
stage when needed, dynamically at runtime.

22



4.2 Analytics for Resource Management

Although users understand fundamental resource job requirements such as
amounts of CPUs and memory, internal infrastructural utilization data and
system dynamics are often visible only to cluster operators. When combined
with utilization traces, operation logs, and reliability, observations can be
analyzed jointly to discover patterns not easily derived without using autonomic
techniques [Ste+20]. However, due to increased complexity and configurations,
heuristically tweaking a RM is still today a very challenge task.

Generally, datacenter infrastructures utilize the latest performance optimized
equipment. However, data often show jobs do not fully utilize allocated resource
capacities [CB16; Eti+10]. In addition, a very common observation in HPC
centres is that users tend to make poor estimates about parameters like total
execution time and total number of resources needed [FR96]. Log traces can
also be used to understand the state of a cluster as a whole and give better
informed decisions for resource management or usage reporting [Sit18]. Once
derived, these relationships can be used to increase cluster resource utilization
by allocating spare resources to additional jobs. Predicting system utilization of
parallel jobs have been studied extensively [NKG10; Mar+11; DK14; Yan+13],
but adding certainty (or confidence intervals) to these predictions have not
been prevalent. One main focus of a RM design is to enable decisions with
confidence and to reduce false positives when detecting performance interference
(while sharing resources), which is essential in HPC infrastructures. Autonomic
techniques such as control theory and reinforcement learning may indicate a
way to tackle such problems.

Machine Learning

Machine learning (ML) is an application of artificial intelligence (AI) enabling
systems to automatically learn and improve from observed data without being
explicitly programmed. ML systems focuses on the development of intelligent
software that can access information extracted from data and use it to predict
future behaviors of a managed system.

Reiforcement Learning

Reinforcement learning is defined as a problem with states, actions, and rewards,
with state transitions that are a↵ected by the current measured state, chosen
actions, and environment’s rewards. These are embedded in RL’s definition,
which is formulated as a Markov Decision Process [Mon82]. Generally there
are no stateless variants, but some related stateless problems such as bandit
optimization. Solutions for bandit optimizations allow for learning of reward
based on actions, and can be optimised by selecting the best action. Main
optimization problems are knowing the best action, and what total reward
can be accumulated whilst still testing for which is the best action. Another
common example might be advert selection online for anonymous visitors to a
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website. Although there is often plenty of data available, a practical approach
is to treat the probability of a click through as only depending on the choice of
content, which is then the site’s action.

In resource management terms, we basically have a set of resources onto
which jobs needs to be assigned according to an object function. This function
can be any anything that can be optimized, such as an strategy to minimize the
expected queue waiting time for a given job geometry (i.e. number of resources
and total runtime). The scheduler’s (learner’s) task is to model the behavior
of each available resource and/or application by interacting (exploring) with a
system and observing its reactions.

Control Theory

Highly dynamic environments and unpredictable workload variations demand
new techniques to adapt resource capacity in ways to applications needs, without
under or over utilizing them [Fil+15]. Runtime adaptation mechanisms are
thus required to deploy robust software that operates correctly despite a lack of
design-time knowledge. Control theory was initially designed to deal with the
handling of continuously operating dynamical systems in engineered processes
and machines. The objective is to design a model for controlling such systems
using a control action in an optimum manner without delay or overshoot and
ensuring control stability after a reasonable amount of time. With feedback, a
system’s signal outputs are used as inputs in part of a chain of cause-and-e↵ect
that forms a circuit or loop. One of these, a proportional–integral–derivative
controller (PID controller) is a feedback mechanism technique widely used for
cloud control systems. A PID controller continuously calculates an error value
e(t) as the di↵erence between a desired setpoint and a measured process variable
and applies a correction based on proportional, integral, and derivative terms.

4.3 Challenges

Due to large demand, datacenters have been facing unprecedented challenges in
its management. It is not only a problem about hardware capacity, but mainly
at allowing applications to harness the infrastructure in the most optimal way.

Reliability

In clouds and HPC, datacenter system reliability directly relates to KPIs
because applications and services may not run properly when failures and
other anomalous behaviors occur. If a system does not support any fault
tolerant mechanism, applications may need to be restarted from scratch, possibly
a↵ecting user web requests or scientific experiments results. Even if a system
does support fault tolerant mechanisms, there is still a chance that application
performance degrades, mainly due to re-computing times, and also the time
taken to restart the failed system and ensure that the failed application is
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consistent again. Therefore, it is important to accurately estimate the reliability
of a datacenter system in order to better mitigate faults and thus e↵ectively
utilize its resources to improve application KPIs and achieve the SLAs agreed
with cloud users.

Data Intensive Applications

There are many ways performance can be evaluated and measured, specially
when comparing di↵erent infrastructures with di↵erent goals and policies. In
order to evaluate a RM, one needs to understand its design goals and history,
how it communicates with its users, how its resources are managed, and what
tradeo↵s were made to achieve its goals. Di↵erently from most OSs that are
designed to run on a certain category of processor, or to be used by a specific
group of users, datacenter RMs evolved over time to operate on multiple systems
and support di↵erent goals. New classes of adaptive DI jobs [HTT+09] and the
convergence of many di↵erent workloads, jobs, and infrastructure management
systems, combined with needs for fast and e�cient resource assignment, are
key challenges for modern datacenters [Asc+18]. This is particularly true for
clusters with heterogeneous resources or with applications that have varying
SLOs and diverse workloads with unknown variations.

However, today’s HPC platforms are primarily designed to support mono-
lithic MPI applications and to provide a static allocation model i.e., the resource
allocation is fixed for the duration of the entire job [Jha+14; Reu+18; Sch+13;
Com+16]. Current methods result in loss of e�ciency, and the problems are
likely to be exacerbated with next-generation dynamic workflows. Thus dynamic
resource management models that allow workflows to dynamically increase and
decrease the amount of resources used at runtime is key not only to current
workflows, but also future streaming workflows.

Probabilistic Scheduling

Traditional RMs have been unable to properly manage highly dynamic and
adaptive jobs because most of them are expected to execute immediately (low
latency scheduling) as they often have shorter duration in comparison to more
traditional batch jobs that runs for longer. Dynamic jobs are also complex to
manage as they more easily adapt to di↵erent resource geometries, such as those
caused by resource revocations and faults. Monolithic schedulers traditionally
used by HPC clusters were designed to centrally maintain the complete state of
the jobs and cluster infrastructure, while also performing workload placement
logic. These design choices limits scalability and make it hard to introduce the
new features and capabilities today’s workloads need, and furthermore results
in poor resource utilization (capacity-wise). On the other hand, characteristics
from dynamic, non-monolithic schedulers (e.g. Mesos, or Kuberentes) such as
resource state management, data locality and low-latency scheduling, as well
as easier extensibility, are yet to be fully supported in HPC centres [Asc+18].
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To illustrate with a simple arithmetic example, the di↵erence in result between
(1/3.0) ⇤ 3 = 1.0 (estimate, faster) and 0.3333 ⇤ 3 = 0.9999 (accurate, slower)
seems small and may not impact the progress of two applications, though each
fraction is calculated di↵erently and does a↵ect their compute time and energy
expenditure. Using similar approaches allow a diverse and intelligent exploitation
of the space between the accuracy required by users (1.0 or 0.9999?) and the
compute power available in datacenters. Such techniques rely on applications
allowing selective approximations to be used during various computing phases,
while still behaving correctly and generating consistent results. However, are
not well integrated into modern datacenters, and

Data Analytics for Resource Management

Use cases for applying data analytics into RM come from best e↵ort jobs that can
use spare resources to progress computations. Given their needs of low-latency
scheduling and other characteristics as fault tolerance support. The growth in
the size of data sets and complexity of tasks has caused DI jobs to evolve to
a point that their resource requirements are similar to traditional HPC jobs
[Asc+18; Man15]. However, DI applications have di↵erent performance goals
compared to traditional HPC applications. SLOs guaranteed by HPC RMs are
di↵erent from what cloud providers guarantee. Whereas cloud providers are
concerned with o↵ering high levels of availability, HPC centres want applications
to have minimal to non-existent interference among di↵erent users and jobs.
Furthermore, there are types of resource requests typical in HPC that cannot
be supported by cloud providers under their existing SLOs. For instance, it is
unfeasible to allocate whole partitions of resources inside a cloud datacenter
for exclusive use, which is a critical demand for running large scale scientific
experiments. Similarly, it is very challenging to e�ciently run HPC jobs in
cloud infrastructures where RMs multiplex datacenter resources unwarily of
what type of jobs that are sharing the resources.

These contrasts create opportunities that if properly explored will create
means for the infrastructural convergence needed for advancing RMs in HPC and
cloud computing [Asc+18; Jha+14]. First, utilizing existing HPC infrastructures
shared by many users by the dynamic DI and elastic jobs is a great opportunity.
Second, a solution should not interfere with already deployed infrastructures,
nor it should alter the job submission workflow of current HPC infrastructures.
Third, in HPC, scalability and predictability of resources are as important
as utilization because they simplify application performance portability and
debugging, respectively.

However, scalability and predictability can at times be contradictory to
utilization. In the one hand, increases in utilization can cause severe application
performance interference. On the other hand, if scalability in an application is
not linear and performance does not improve linearly with additional resources,
these extra resources will be underutilized [PZK16; Eti+10]. These three should
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be considered when proposing new approaches for resource management because
they relate to the stability and e�ciency of a system.

As such, in order to allow such diverse SLOs in a same cluster to co-exist,
two of the main components in a RM (see Figure 2.3) needs to be addressed:
resource scheduling and performance control [Com+16]. Although there is a
proliferation of new libraries, tools and scripts workarounds [Ber17], all targeting
dynamicity in HPC, few e↵orts integrate such ideas and mechanisms directly
into the RM [Dee+18]. Furthermore, any combination of static and dynamic
RMs must be simple and scalable, and must detect and gracefully deal with job
interference. Integrating and bridging the di↵erent constraints and requirements
within the High Performance and Data Analysis (HPDA) and HPC communities
is one of the aims of this thesis.
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Chapter 5

Summary of Contributions

In this thesis, we present various tools and mechanisms that directly or indirectly
improve resource utilization from either the user or the system perspective.
For users, applications can spend less resources overall by using information
extracted from, for instance, scientific workflow descriptors. In this way, a larger
job can be composed of many multiple intermediary jobs of various sizes following
resource requirements (geometry) for each specific task to be performed. From
a system perspective, where the same amount of work (workload) is submitted
to the job queue, utilization is improved if the workload is completed earlier
with negligible delays in job runtimes.

The papers in this thesis are ordered following a top-down approach, that
also follows the order of the specific research objectives in Section 1.1. In Paper I
[Fox+17], we design a library that communicates with the resource manager and
allow users to specify the resource requirements following the specific workflow
stages. In Paper II [Sou+18], we focused on extending a hypervisor system
(the software emulator that performs hardware virtualization in datacenters)
to dynamically adjust the fault-tolerant mechanism to use according to the
workload faced by the application. In Paper III [Sou+19], we investigate the
monitoring of processor counters to enable finer grained resource allocation on
HPC infrastructures via a two-level scheduling architectural approach. Finally,
in Papers IV [Sou+20] and V [SPT20] we design two reinforcement learning
algorithms to enable autonomic schedule of applications, resulting in extensive
resource utilization improvements.
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5.1 Paper I

W. Fox, D. Ghoshal, A. Souza, G. P. Rodrigo, and L. Ramakrishnan. E-HPC:
A Library for Elastic Resource Management in HPC Environments. Proceedings
of the 12th Workshop on Workflows in Support of Large-Scale Science (WORKS,
2017), ACM, pp. 1-11, 2017.

Paper Contributions

Next-generation data-intensive scientific workflows need to support streaming
and real-time applications with dynamic resource needs on HPC platforms. The
static resource allocation model of current HPC systems that was designed
for monolithic MPI applications is insu�cient to support the elastic resource
needs of current and future workflows. In this paper, we discuss the design,
implementation, and evaluation of Elastic-HPC (E-HPC), an elastic framework
for managing resources for scientific workflows on current HPC systems. E-
HPC considers a resource slot for a workflow as an elastic window that might
map to di↵erent physical resources over the duration of a workflow. Our
framework uses checkpoint-restart as the underlying mechanism to migrate
workflow execution across the dynamic window of resources. E-HPC provides
the foundation necessary to enable dynamic resource allocation of HPC resources
that are needed for streaming and real-time workflows. E-HPC has negligible
overhead beyond the cost of checkpointing, and can minimize turnaround time
of workflows core-hour utilization for common workflow resource use patterns.
It thus provides an e↵ective framework for elastic expansion of resources for
applications with dynamic resource needs.

Authors Contributions

In this paper, I entered on an ongoing project in connection with exchange
studies at the Lawrence Berkeley National Lab. (LBNL). I have implemented
parts of the library enabling its use with any job scheduler and multiple queue
submission, as well as designed and performed all experiments (with the in-depth
implementation work). I have also written the parts of the paper concerning the
experiments evaluation and discussion, and introductory schematics. The first
two authors are data scientist respective postdoc who worked on the project
before I came, Gonzalo P Rodrigo was a postdoc at LBNL and contributed to
some parts related to his previous research at Ume̊a University, and Lavanya
Ramakrishnan leads the group at LNBL and acted as supervisor.
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5.2 Paper II

A. Souza, A. V. Papadopoulos, L. Tomás, D. Gilbert, and J. Tordsson. Hybrid
Adaptive Checkpointing for Virtual Machine Fault Tolerance. Proceedings of
the 2018 IEEE International Conference on Cloud Engineering (IC2E, 2018),
pp. 12-22, 2018.

Paper Contributions

Active VM replication is an application independent and cost-e�cient mecha-
nism for high availability and fault tolerance, with several recently proposed
implementations based on checkpointing. However, these methods may su↵er
from large impacts on application latency, excessive resource usage overhead,
and/or unpredictable behavior for varying workloads. To address these problems,
in Paper II we propose a hybrid approach through a Proportional-Integral (PI)
controller to dynamically switch between periodic and on-demand checkpoint-
ing. The mechanism proposed automatically selects the method that minimizes
application downtime by adapting itself to changes in workload characteristics.
The implementation is based on modifications to QEMU, LibVirt, and Open-
Stack, to seamlessly provide fault tolerant VM provisioning and to enable the
controller to dynamically select the best checkpointing mode. Our evaluation
is based on experiments with a video streaming application, an e-commerce
benchmark, and a software development tool. The experiments demonstrate
that our adaptive hybrid approach improves both application availability and
resource usage compared to static selection of a checkpointing method, with
improved application performance of up to 10% and neglectable overheads.

Authors Contributions

This project is a result of work in the ORBIT project [ORB], from which the idea
also came. The first author (Abel Souza) did the bulk of the implementation
(especially in regards to integration), all experiments and wrote all the text in
the article. The second author (Alessandro Papadopoulos, Mälarden University)
helped designing the software controller. The third author (Luis Tomás, RedHat
Inc) was the project leader and helped with some technical issues. The fourth
author (David Gilbert, RedHat Inc) did the COLO implementation in the Linux
kernel and gave many advises about the experiments. And the fifth author
(Johan Tordsson, Ume̊a University - supervisor) gave feedback on experiments,
presentation of data, and the article at large. This article became ”best paper
runner up” at IEEE International Conference on Cloud Engineering 2018.
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5.3 Paper III

A. Souza, M. Rezaei, E. Laure, and J. Tordsson. Hybrid Resource Manage-
ment for HPC and Data Intensive Workloads. Proceedings of the 2019 19th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID 2019), pp. 399-409, 2019

Paper Contributions

Traditionally, High Performance Computing (HPC) and Data Intensive (DI)
workloads have been executed on separate hardware using di↵erent tools for
resource and application management. With increasing convergence of these
paradigms, where modern applications are composed of both types of jobs
in complex workflows, this separation becomes a growing overhead and the
need for a common computation platform for both application areas increases.
Executing both application classes on the same hardware not only enables
hybrid workflows, but can also increase the usage e�ciency of the system, as
often not all available hardware is fully utilized by an application. While HPC
systems are typically managed in a coarse grained fashion, allocating a fixed set
of resources exclusively to an application, DI systems employ a finer grained
regime, enabling dynamic resource allocation and control based on application
needs. On the path to full convergence, a useful and less intrusive step is a
hybrid resource management system that allows the execution of DI applications
on top of standard HPC scheduling systems.

In this paper we present the architecture of a hybrid system enabling dual-
level scheduling for DI jobs in HPC infrastructures. Our system takes advantage
of real-time resource utilization monitoring to e�ciently co-schedule HPC and
DI applications. The architecture is easily adaptable and extensible to current
and new types of distributed workloads, allowing e�cient combination of hybrid
workloads on HPC resources with increased job throughput and higher overall
resource utilization. The architecture is implemented based on the Slurm and
Mesos resource managers for HPC and DI jobs. Our experimental evaluation
in a real cluster based on a set of representative HPC and DI applications
demonstrate that our hybrid architecture improves resource utilization by 20%,
with 12% decrease on queue makespan while still meeting all deadlines for HPC
jobs.

Authors Contributions

I and the second author (Mohammad Rezaei, KTH Royal Institute of Technol-
ogy) defined the problem together. First author did the bulk of the implemen-
tation (all integration with scheduler and subsystems, etc., and Mohammad
contributed with some code to the analytics bits). Abel conducted the experi-
ments and wrote the article. Erwin Laure (KTH Royal Institute of Technology)
contributed with feedback and advises on HPC perspectives as well as related
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work and the text overall. Johan Tordsson gave feedback on the article writing
as a whole as well as the experiments.

33



5.4 Paper IV

A. Souza, K. Pelckmans, D. Ghoshal,L. Ramakrishnan, and J. Tordsson.
ASA – The Adaptive Scheduling Architecture. This report is an extended
version of a paper under the same title to appear at the 29th International
Symposium on High-Performance Parallel and Distributed Computing (HPDC,
2020).

Paper Contributions

In HPC infrastructures, resources are controlled by batch systems and may not
be readily available, which can negatively impact applications with deadlines
and long queue waiting times. In particular, this is noticeable for data intensive
and low latency workflows where resource planning and timely allocation are
key characteristics for e�cient processing. On the one hand, allocating the
maximum capacity expected for a scientific workflow guarantees the fastest
possible execution time, at the cost of spare and idle infrastructural resources,
as well as extended queue waiting times and costly resource usage. On the
other hand, dynamically allocating resources according to specific workflow
stage requirements optimizes resource usage, although it may also negatively
impact the total workflow makespan. With the aim of enabling new scheduling
strategies and features for scientific workflows, we propose ASA: the Adaptive
Scheduling Architecture, a novel and convergence proven scheduling method to
reduce perceived queue waiting times as well as to optimize resource usage and
planning in scientific workflows. The algorithm uses reinforcement learning to
estimate queue waiting times, and based on these estimates pro-actively submits
resource change requests, with the goal of minimizing total workflow inter-
stage waiting times, idle resources, and makespan. The algorithm takes into
consideration both learning (the waiting times), and acts on what is learnt thus
far, and thus handles the exploration-exploitation trade-o↵. Experiments with
real scientific workflows in two real supercomputers show that ASA combines
the best of the two aforementioned approaches for resource allocation, with
average workflows’ queue waiting time and makespan reductions of up to 10%
and 2% respectively, with up to 100% prediction accuracy, while obtaining near
optimal resource utilization.

Authors Contributions

In this paper I defined the problem, and created the main algorithm together
the second author (Kristiaan Pelckmans, Uppsala University). I did the whole
of the implementation – integration with scheduler and subsystems, etc. –,
besides designing and conducting all experiments, and article writing. Kristiaan
Pelckmans proofed the algorithm convergence. Lavanya Ramakrishan and
Devarshi Ghoshal helped at reviewing, scoping, and suggesting some related
work. Johan Tordsson followed all the paper development and gave feedback on
the article writing as a whole as well as the experiments.

34



5.5 Paper V

A. Souza, K. Pelckmans, and J. Tordsson. A HPC Co-Scheduler with Rein-
forcement Learning. Submitted, 2020.

Paper Contributions

HPC datacenters process thousands of diverse applications, supporting many
scientific and business endeavours. Although users understand fundamental
resource job requirements such as amounts of CPUs and memory, internal
infrastructural utilization data and system dynamics are often visible only
to cluster operators. Besides that, due to increased complexity, heuristically
tweaking a batch system is even today a very challenge task. When combined
with applications profiling, infrastructure data enables improvements to job
scheduling, and also better support for QoS metrics such as queue waiting
time and total execution time. Targeting improvements in utilization and
throughput, in this paper we evaluate and propose a novel reinforcement learning
co-scheduling algorithm that combines capacity utilization with application
performance profiling. We first profile a running application by assessing its
resource utilization and progress by means of a forest of decision trees, enabling
our algorithm to understand the application’s resource capacity usage. We then
use this information to estimate how much capacity from the current allocation
can be used for co-scheduling additional applications. Our algorithm learns
from incorrect estimations and evaluates when co-scheduling decisions results in
QoS degradation, such as application slowdown. For our implementation, our
co-scheduling architecture use a handful metrics to help minimizing performance
degradation, enabling improvements on utilization of up to 25% even when
the cluster is experiencing high demands, with 10% average queue makespan
reductions when experiencing low loads.

Authors Contributions

In this paper I defined the problem, and created the main algorithm together
the second author (Kristiaan Pelckmans, Uppsala University). I did the whole
of the implementation – integration with scheduler and subsystems, etc. –,
besides designing and conducting all experiments, and article writing. Kristiaan
Pelckmans proofed the algorithm convergence. Johan Tordsson followed all the
paper development and gave feedback on the article writing as a whole as well
as the experiments.
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5.6 Limitations

Relentless demand for greater computing capabilities makes cost e�ciency the
main metric of interest in the design of datacenters. Thus, datacenter operators’
primary objective concerns minimizing operational costs by maximizing utiliza-
tion while simultaneously minimizing applications performance degradation due
to resource sharing.

As noted in the summary of papers, performance is not measured as a single
quantity because it can be obtained in di↵erent ways. One metric is overhead,
the extra resource cost of implementing an abstraction presented to, or used
by applications. A related metric is e�ciency, the low overheads cause by
an abstraction. RMs need to allocate resources among applications, and this
a↵ects the system performance as perceived by the end user. Focusing on a
small number of metrics may bring fairness issues among multiple applications
running on the same cluster or machine. Questions regarding equal divisions or
prioritized access to resources among di↵erent users and applications are often
raised.

Predictability, a related performance metric is whether the system’s response
time (or other metric) is consistent over time. Predictability is most of time
more important than average performance, because it accurately estimates
confidence intervals for how long repeated application experiments take in a
system. As job constraints are compounded, the predictability of some our
methods may be hurt, although we tackle some of these on Paper IV and V.
Other areas for improvement relate to doing a deeper mathematical analysis of
the consequences of using one method over another.

5.7 Future Work

Research in resource management for large scale clusters has always had a
duality between increasing resource utilization, and guaranteeing predictability
of allocated resources. For HPC workloads, the focus is on the later, though
recent challenges on converged infrastructures are demanding new solutions
because in Cloud datacenters, the focus in on utilization with e�ciency. To mix
job classes with di↵erent SLOs is a main challenge in such infrastructures, and
any solution has to provide mechanisms for intra-node isolation of collocated
jobs, outlier and interference detection, and a mechanism to handle interference,
which could be specified as a set of general rules and datacenter specific.

In these directions, Paper III targets dynamic execution in HPC clusters, and
as mentioned, one of resource management’s main goals is to have predictable
resource assignment of jobs. Thus our goal is to extend on Paper IV and V
approaches by considering ways to minimize performance interference and/or
false positives in our co-locations while making use of job prioritization as
it happens in traditional HPC environments. One can also combine the two
algorithms proposed in both papers and create a new level of probabilistic
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scheduling with reinforcement learning. In doing so, the architecture unifying
the last three papers would be able to support an unrestricted range of workflows.
Resources would now be viewed as statistical entities, where its capacities would
be guaranteed to be within an acceptable range. Applications could then extend
on this architecture to schedule its tasks transparently with no changes in
its workflow, and the side e↵ect would be datacenter higher throughput and
utilization.

Finally, the varied and new combined ways for achieving extreme-e�ciency
at scale is influencing all layers of a datacenter system stack [Jha+14]. One
way towards this direction regards the use of compute specialization, where
specialized hardware is used to compute specific types of operations. This
has been replacing the computer industry economies of scale dependency on
Moore’s law [TW17], with new computing paradigms being proposed. For
instance, recent developments such as approximate computing leverages on
the idea where applications’ progress depend on data estimates, and not on
exact data inputs/outputs. Using such approaches allow a more diverse and
intelligent exploitation of the space between the accuracy required by users and
the compute power available in datacenters. As this could be done in di↵erent
ways, we can also extend on the combined ideas of Paper V for improving
the e�ciency of future datacenter realizations by integrating and supporting
approximate applications together with resource management. Potential use
cases for this can impact scientific and industrial real-time applications, such as
the ones found in aviation and autonomous vehicles. A possible outcome would
be aimed at future datacenter realizations, which would be able to support new
power performance tradeo↵s by using autonomic tools and methods to enable
approximate applications to achieve the high e�ciency and performance needed
in such infrastructures.
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