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Abstract

This thesis studies adversarial robustness, privacy, and reproducibility in safety-
critical machine learning systems, with particular emphasis on computer vision,
anomaly detection, and evasion attacks through a series of papers. The work
begins by analysing the practical costs and benefits of defence strategies against
adversarial attacks, revealing that common robustness metrics are poor indi-
cators of real-world adversarial performance (Paper I). Through large-scale
experiments, it further demonstrates that adversarial examples can often be
generated in linear time, granting attackers a computational advantage over
defenders (Paper II). To address this, a novel metric—the Training Rate and
Survival Heuristic (TRASH)—was developed to predict model failure under at-
tack and facilitate early rejection of vulnerable architectures (Paper III). This
metric was then extended to real-world cost, showing that adversarial robust-
ness can be improved using low-cost, low-precision hardware without sacrificing
accuracy (Paper IV).

Beyond robustness, the thesis tackles privacy by designing a lightweight,
client-side spam detection model that preserves user data and resists several
classes of attacks without requiring server-side computation (Paper V). Rec-
ognizing the need for reproducible and auditable experiments in safety-critical
contexts, the thesis also presents deckard, a declarative software framework
for distributed and robust machine learning experimentation (Paper VI).

Together, these contributions offer empirical techniques for evaluating and
improving model robustness, propose a privacy-preserving classification strat-
egy, and deliver practical tooling for reproducible experimentation. Ultimately,
this thesis advances the goal of building machine learning systems that are not
only accurate, but also robust, reproducible, and trustworthy.
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Sammanfattning

Denna avhandling studerar robusthet, integritet och reproducerbarhet i séker-
hetskritisk maskininlarning, med sarskild tonvikt pa datorseende, avvikelse-
detektering och undvikande attacker.

Arbetet inleds med att analysera de praktiska kostnaderna och férdelarna
med forsvarsstrategier mot attacker, vilket visar att vanliga matt pa robus-
thet &r daliga indikatorer pa verklig prestanda i attacker (Artikel I). Genom
storskaliga experiment visar arbetet vidare att exempel pa attacker ofta kan
genereras i linjar tid, vilket ger angripare en berdkningsfordel gentemot férsvar-
are (Artikel IT). For att hantera detta presenterar avhandlingen ett nytt matt —
Training Rate and Survival Heuristic (TRASH) — {or att forutsdga modellfel un-
der attack och underlétta tidigt avvisande av sarbara arkitekturer (Artikel IIT).
Detta matt utvidgades sedan till verkliga kostnader, vilket visar att robusthet
i attacker kan forbattras med hjilp av billig hardvara med lag precision utan
att offra noggrannheten (Artikel IV).

Utover robusthet behandlar avhandlingen integritet genom att utforma en
lattviktig klientbaserad modell fér spamdetektering som bevarar anvindardata
och star emot flera klasser av attacker utan att kréva att berdkningar gors pa
serversidan (Artikel V). Som svar pa behovet av reproducerbara och gransk-
ningsbara experiment i sakerhetskritiska sammanhang presenterar avhandlin-
gen dven deckard, ett deklarativt programvaruramverk for distribuerade och
robusta maskininlarningsexperiment (Artikel VI).

Tillsammans erbjuder dessa bidrag empiriska tekniker for att utvardera
och férbéttra modellers robusthet, foreslar en integritetsbevarande klassificer-
ingsstrategi och levererar praktiska verktyg for reproducerbara experiment.
Sammantaget framjar avhandlingen malet att bygga maskininldrningssystem
som inte bara ar korrekta, utan ocksa robusta, reproducerbara och palitliga.
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Glossary

Sample A single data point or observation, typically consisting of one or more
features and, in supervised learning, a label (think: rows in a spread-
sheet).

Feature An individual measurable property or characteristic of the data used
by a model to make predictions (think: columns in a spreadsheet).

Training set A collection of data used to teach a machine learning model how
to make predictions.

Validation set A subset of the data used to tune hyper-parameters and mon-
itor the model’s performance during training without affecting the final
evaluation.

Testing set A separate set of data used to evaluate how well the model per-
forms on new, unseen inputs.

Label Either the predicted or ground truth for a given sample. For classifica-
tion problems, this is a category like “cat” or “dog”, often represented as
a binary list with each class having one entry in said list. For regression
problems, this is one or more numerical values.

Model Model: A machine learning model consists of two main parts: a func-
tion that maps inputs to outputs (called a hypothesis function), and a
way to measure how well it performs (called a loss function). Together,
these components allow the model to learn patterns from data and make
predictions or decisions on new inputs.

Classifier A type of model that assigns input data to one of several predefined
categories or classes.

Regressor A type of model that assigns one or more numeric output values
to a set of input data.

Model Parameter An internal value adjusted during training that helps the
model improve its predictions.

xi



Hyper-parameter A predefined setting that controls how the model behaves
during training or evaluations, such as the learning rate or the number
of layers.

Optimisation The process of adjusting the model’s internal parameters in
order to minimize error and improve performance based on a chosen loss
function.

Training The process of teaching a machine learning model by providing it
with data (a training set) and adjusting its parameters through optimiza-
tion to minimize errors in predictions.

Accuracy The fraction of correct predictions made by the model out of all
predictions.

Failure Rate The number of expected number of failures over time.

Time to Failure The duration a system operates before a critical error oc-
curs.

Survival time The length of time a system continues to function correctly
before experiencing a failure.

Cross-Validation A method for evaluating model performance by repeatedly
dividing the dataset into parts, training the model on some parts and
testing it on the remaining parts to ensure generalisation.

Distance A numerical measure of how different or similar two pieces of data
are from each other, interpreted geometrically as the space between points.

Metric Space A set in which distances between any two points can be con-
sistently measured.

Linear A relationship between variables that can be described using a straight
line.

Linearly Separable A condition where a straight line (or hyperplane in higher
dimensions) lie on different sides of this plane.

Kernel A mathematical function that allows computing the inner products in
a higher-dimensional space without explicitly determining the coordinates
in that space, often used in kernel machines.

Gradient A vector that points in the direction of the steepest increase of a
function and is used to guide model parameter updates during training.

Robustness The ability of a model to maintain performance when facing
unusual, noisy, or slightly changed inputs.

Reliability The consistency with which a model or system performs its in-
tended function correctly.
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Safety-Critical Refers to applications where incorrect model behaviour could
lead to harm or serious consequences.

Security The protection of a model or system from unauthorized access, ma-
nipulation, or attacks.

Privacy The principle that individuals’ personal information—-such as their
identity, behaviour, or sensitive attributes—-should be protected and not
revealed by the model, either directly or indirectly, through its predictions
or outputs.

Generalisation Gap The difference in performance between the training data
and real-world data, which indicates how well the model can generalise.

Fairness The degree to which a model’s decisions are free of unjust discrimi-
nation across different groups or individuals.

Attack A deliberate strategy used to induce undesired behaviour in a piece of
software (e.g., a machine learning model).

Defence A method or mechanism designed to protect a model from attacks
or to reduce the harm caused by attacks.

Adversarial Input Describes inputs specifically designed to deceive or con-
fuse a machine learning model.

Benign Input Describes inputs that are natural, expected, and not intended
to deceive the model.
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Chapter 1

Introduction

Despite widespread adoption |29} 128} [136],/193),|10] and investor exuberance [146]
regarding artificial intelligence (AI), there are myriad hurdles between the cur-
rent state-of-the-art and systems that can be legally declared “safe”. Al in
general is an ill-defined concept [165], in the words of the human-computer-
action pioneer, Larry Tesler, “Intelligence is whatever machines haven’t done
yet” [84]. Therefore, throughout the text, the term machine learning (ML)
will be used instead, which is a well defined statistical concept [179]. While
the terms are used rather interchangeably in the wider literature, even the
most advanced large language models (LLMs) “cannot perform genuine logical
reasoning” [142] and calling these models “intelligent” overstates their abilities
enormously. While machine learning models hold immense promise—such as
lowering healthcare costs [58], improving translation across languages [144], and
reducing car-related fatalities |129]—their widespread deployment also raises
serious concerns. These include unintentional bias [34], misuse for mass surveil-
lance [5], high energy consumption [2], and the potential to exacerbate global
inequality [25]. Therefore, a systematic analysis of the “trustworthiness” of
these ML systems is required. This project is a systematic approach to mea-
suring the trustworthiness of these systems.

In particular, the following work seeks to categorise and quantify the effect
of inputs that causes errors at run-time (attacks) and methods designed to
mitigate their effect (defences), primarily in Paper T and Paper III. In addition,
methods for measuring and predicting the cost-efficacy of these attacks and
defences are also examined in Papers II, III, & IV. A simple and efficient
method for minimising the attack surface of a classification model is presented
in Paper V. Finally, a framework and software tooling for safety-critical ML
verification and validation is outlined in Paper VL.



1.1 Motivations

The primary motivation for this work is the “social nature of software” [213]
and a desire to ensure that deployed models are inherently safe not only for
their benefactors, but for the wider public. Given the environmental costs
associated with modern machine learning models [2], their known tendency
to systematise human bias, and the proposed safety-critical applications like
medical imaging, industrial control, and driving, it is critical that these models
respect the same laws that govern all other electro-mechanical systems. That
is to say—ML models should be as safe as one’s toaster, car braking system,
or aircraft guidance system and should be around safety [90], quality assur-
ance [89], bias [191], security [4}, |163], and the ability to be explained, audited,
and reproduced (89, [88] 90, [119} [118]. This works first quantifies the risk as-
sociated with trusting these systems, formalises the cost benefit relationship
between a given attack and defence, presents a model that categorically avoids
many of these risks, and provides a safety-critical framework for not only repro-
ducing the experiments in this text, but for any model built using any number
of popular frameworks. The goal, then, is to not only demonstrate why this
safety-critical mindset is necessary, but to also provide methods and tooling
that allow anyone to replicate the process across any domain to ensure that
preventable failures are caught before a model is deployed in the real world.

1.1.1 The Trolley Problem

The trolley problem is a classic ethical thought experiment intended to raise
questions about decision making and morality. The problems describes a trol-
ley that is heading towards a group of five people who are tied to the tracks.
However, the problem presents a hypothetical conductor with a choice to di-
vert the train to another track in which only one person is doomed. While
this question is clearly designed to be abhorrent, the conductor, in reality, is
not hypothetical. The conductor is already-existing software |78} |62} [L00] that
is designed to drive autonomous personal vehicles [29], long-distance freight
trucks [125], or autonomous drones [35]. If we abstract the problem a bit,
then the applications of ML to medical imaging [58], industrial control [106],
bureaucratic decision-making systems [193], and law enforcement [10] raise sim-
ilar questions. Furthermore, it has been shown that there’s an inherent tension
between the model that performs best on average and the one that is most
accurate for a given (marginalised) subset of the population. ML Models will,
at best, obscure biased data behind opaque or hard-to-interpret decisions [34].

The inherent risks to user privacy [5] and questionable ability of ML mod-
els to be safely deployed in the real-world [138] 50, [57) |141} |138] pose ongoing
problems that have yet to be solved. In 1966, the “Summer Vision Project”
was designed to solve the problem of computer image-based classification at the
Massachusetts Institute of Technology |159]; however, as recently as 2023, it
was clear that ML systems “consistently fail to meet established safety-critical



standards by a wide margin” [138], suggesting that the horison of artificial in-
telligence is forever in the future. However, the intent of this text is not to be
overly pessimistic. Automated systems capable of learning have tremendous
positive potential as well—from real-time translation and office-task automa-
tion to data-driven agriculture and reduced healthcare costs. To put it simply,
models deployed safely have the potential to improve or save human lives. The
trolley problem then becomes a useful analogy for discussing the trade-offs be-
tween performance, risk, and cost of ML systems and will frame the rest of the
text.

1.1.2 Turing Test

Like the trolley problem, the Turing test is a classic thought experiment that
is fundamental to the question of machine trust. Devised by famed computer
scientist, Alan Turing, in his 1950 text, “Computing Machinery and Intelli-
gence” [195], in which he describes a simple game involving three people, here
referred to as Alice, Bob, and Corey (player A, B, C, respectively). Turing
imagined Player A to be a woman and Player B to be a man while Player C
is tasked with deducing the gender of the other players using only a series of
written questions and answers. Turing then poses the question:

“What will happen when a machine takes the part of A in this
game? Will the interrogator decide wrongly as often when the game
is played like this as he does when the game is played between a
man and a woman?”’ These questions replace our original, “Can
machines think?”

He goes on to refine this question in the same paper, imagining that in addition
to player A, player C is also replaced with a computer program:

Let us fix our attention on one particular digital computer C. “Is it
true that by modifying this computer to have an adequate storage,
suitably increasing its speed of action, and providing it with an
appropriate programme, C can be made to play satisfactorily the
part of A in the imitation game, the part of B being taken by a
man?”

While this standard has been of little interest to Al researchers in practice [166]
and has many theoretical detractors |81, [166, 65|, it functions as philosophical
concept more than a qualitative metric [70]. Nevertheless, researchers have
noted the market- and research-based incentives to imitate humans rather than
augment their existing abilities, calling this false goal of imitation a “Turing
Trap” [32]. Modern models can often outperform humans on specific tasks
in which large amounts of data is available and annotated, but as this thesis
demonstrates, this is merely statistical imitation that often fails.



1.1.3 Data Feminism

Feminism in the words of famous scholar and feminist, Bell Hooks, is “for
all people, female and male, liberation from sexist role patterns, domination,
and oppression” [85] and other authors highlight the need to focus on the
intersection of categories like gender, class, sex, and race. Intersectionality
is “the means for dealing with other marginalisations as well.” [49]. “Data
feminism”, is a book by Catherine D’Ignazio and Lauren F. Klein [53], but the
framework it provides for thinking about the power relationships with data in
the modern world can also be called data feminism. The central conceit of the
book is something that is widely forgotten in the world of data science—that
power and data are distributed unequally. This is highlighted famously in a
pair of studies by Joy Buolamwini et al. [34} [167].

Buolamwini’s first study (2018) [34] highlighted the fact that commercially
available facial detection products had discrepancies in performance across race
and gender dynamics with models performing best on white men and worst on
women of colour. This study was so impactful that by 2019, these discrepancies
had largely been solved, but not erased entirely [167]. However, even in 2023,
neither Google’s nor Apple’s photo app would even attempt to identify gorillas
using their respective object detection methods due to a 2015 incident that
confused black humans for gorillas, perpetuating a racist stereotype [74]. The
power dynamics inherent to modern ML techniques not only have the potential
to perpetuate racist and sexist biases, but also rely on extracting data from
users often using dubious amounts of consent [5], process it using low-wage
workers [39], and consume massive amounts of power [2] to the exclusive benefit
of people in the developed world [25].

While this thesis does not focus the disparities in performance between de-
mographic groups, it does examine the effect of changing a sample by a small
amount. While many of the techniques and metrics discussed throughout the
thesis can be applied to examine the effect of gender or race on model perfor-
mance, the describes methods can be used in any domain that seeks to verify
the performance of a model. As is demonstrated throughout this text, mod-
ern ML models fail to meet any legal requirements for safety, regardless of
demographic. Therefore, a framework for critically evaluating any ML pipeline
through the lens of machine trustworthiness is necessary. This thesis first at-
tempts to quantify the problem before using the measured data to suggest some
fundamental solutions.



1.2 Research questions and problem

In this thesis, we attempt to address the following research questions, each of
which has a corresponding paper, listed in order.

R1 To what degree can we trust modern ML models?
R2 Can we overcome an adversary by generating or using more data?

R3 How can we formalise the cost benefit relationship between robustness and
particular choice of model?

R4 Can we extend the analysis in R3 to examine the relationship between cost
and robustness?

R5 Is it possible to build a classifier that circumvents the inherent weaknesses
of centralised training paradigms?

R6 How can we build auditable and reproducible tests to meet regulatory
standards for safety critical systems?

1.3 Methodology

The generic template for a machine learning project is quite routine. After
the data has been collected and labelled, it is often split into “training” and
“testing” sets. The training set is used to learn characteristics of the data
that can be used to make a decision on unseen (or testing) data using some
(simplified) mathematical approximation of the real world (called a model).
The central assumption is that performance on this test data will generalise to
all unseen data. As such, test set accuracy is often used as a way to compare
and benchmark models [52, |204]. However, it has been shown many times
that small changes in model input can result in drastic changes to the model
output |42} 71} |24} [36] [145] [42]. If these perturbations are added intentionally,
they are referred to as attacks. Techniques to mitigate the effect of these
perturbations are called defences [209, (71}, 214] [117]. By using attacks as a
way to simulate worst-case scenarios, a model’s robustness to these attacks can
be measured. By comparing the relative success rate of an attack in response
to various model defences, we can determine the relative efficacy of a defence
or attack. To evaluate these attacks and defences in practice, a variety of
benchmark datasets were employed throughout this work in this thesis, each
chosen to highlight specific challenges or characteristics relevant to adversarial
robustness.

1.3.1 Data

In this thesis, two types of datasets were examined—broadly classed into im-
ages and tabular data. The image datasets include Modified National Institute



of Standards and Technology (MNIST) database [55] that includes 60 thousand
images of low-resolution, hand-written digits as well as the Canadian Institute
for Advanced Research 10 category and 100 category databases [111] (CIFAR10
and CIFAR100 respectively) that contain tens of thousands of higher resolu-
tion colour images that depict objects like airplanes and cats. These image
databases have become a de-facto standard for measuring model performance
and they have existed for decades |55, [111]. MNIST in particular is considered
relatively easy because it uses low-resolution black and white images and only
a small number of distinct classes (one for each digit). In addition, CIFARI10 is
known to be easier than CIFAR100 [179, 57| despite the two databases having
images of the same resolution and colour depth as the difficulty of a classifica-
tion increases with the number of distinct categories. Several standard anomaly
detection datasets were also evaluated. The oldest such dataset is Knowledge
Discovery and Data-mining (KDD) database that was cleaned and dubbed the
network security laboratory (thus KDD-NSL) [189]. It captures system-level
data that tries to capture the behaviour of both normal (benign) users and
malicious software (viruses, malware, etc.). Similarly, the distributed denial
of service dataset (DDoS) provided by the University of Toronto was also of
interest [151] as it captured network-level data that tries to capture the be-
haviour of both normal users and a variety of attack types. Both of these
datasets distribute the data with several class labels to distinguish between
different types of attacks; however, for the purposes of this thesis all attacks
were collapsed into a single adversarial category. However, KDD-NSL has a
only a few thousand examples and DDoS has 10s of thousands as the origins of
these datasets are separated by decades. This is the natural division of the next
two datasets—the short message system spam (SMS spam) database [8] and a
database of tweets, metadata, and “bot-scores” collected from the platform for-
mally known as Twitter [102] (dubbed Truthseeker). These two datasets both
contain benign and adversarial user data and are widely used for the problem
of anomaly detection that attempts to broadly classify data into “normal” and
“abnormal” categories. In Paper II, in an effort to use the best-case dataset,
myriad datasets were generated using normally distributed, arbitrary data and
the exact details are described in that paper.

1.3.2 Model

ML pipelines are often long-running and complex software tool-chains, often
with many parameters that must be adjusted according to the dataset and
model type. The set of all knobs, levers, and dials that a model-builder can
tweak is said to be the model hyper-parameters, where the hyper- prefix is used
to distinguish these tuned values from values that are learned—often called
model parameters or weights. The training set is used to teach the model
patterns in the data, which involves finding optimal values for these parameters
given a specified set of model hyper-parameters. This score is always calculated
using the test set that was withheld during model training in order to test the



Figure 1.1: Modern models typically have many hyper-parameters that must
be configured by a model builder and internal parameters that are configured
during model training through a chosen optimisation process and criterion. A
dataset is split is split into “train”, “test”, and sets, which are used to allow the
model to learn patterns and evaluate model performance, respectively. Models
are repeatedly scored according to the chosen criterion, with the goal of finding
the best model for a particular dataset. Another partition of the data, called
the “validation” set (not pictured), is used to verify that this “best-fit” model
will generalise to unseen data.



ability of a model to generalise to unseen data. If a model performs much better
on the training data than the test data, it is said to be over-fit. While this
modelling process aims to optimise performance on unseen data, it typically
assumes that inputs are crafted by users without malice—in practice, however,
these models are vulnerable to targeted manipulations known as adversarial
attacks.

1.3.3 Attacks

In the context of machine learning, an adversarial attack refers to deliberate
and malicious attempts to manipulate or exploit machine learning models. Ad-
versarial attacks are designed to deceive or mislead the model’s behaviour by
introducing carefully crafted input data that can cause the model to make in-
correct predictions or produce undesired outputs. The goal of an adversarial
attack is often to exploit vulnerabilities in the model’s decision-making process
or to probe its weaknesses. These attacks can occur during various stages of the
machine learning pipeline, including during training, inference, or deployment.
Figure[L.2]show how each class of attacks targets a different stage of the pipeline
depicted in Figure Evasion attacks aim to manipulate input data during
the inference phase to deceive the model into misclassifying or ignoring certain
inputs. Attackers carefully craft perturbations or modify the input features to
mislead the model while still appearing similar to the original input [24} |36}
31, /110, |42]. In poisoning attacks, the attacker intentionally injects malicious
or manipulated training samples into the training dataset where the goal is
to influence the model’s behaviour during training so that it learns to make
incorrect predictions or exhibit unwanted behaviours when presented with spe-
cific inputs 22, |176]. Inference attacks exploit the model’s output or responses
to obtain sensitive information about the training data or other confidential
details. By observing the model’s predictions or confidence scores for carefully
crafted inputs, attackers can extract information that was meant to be kept
private [38], [156]. Model inversion attacks (also called extraction attacks) aim
to infer sensitive information about the training data or proprietary model by
exploiting the model’s outputs. Attackers utilise the model’s responses to it-
eratively reconstruct or approximate training examples that are similar to the
ones used during training [38, 44, [123].

1.3.4 Defences

Defences are techniques that are applied to models to mitigate the effects of
attacks. They come in several varieties, classed according to the model pipeline
stage the effect. Figure[I.3|depicts how each stage interacts with the typical ma-
chine learning pipeline, described in Figure[L.1] This might include adding some
Gaussian noise to the data (pre-processing) or model output (post-processing)
with the expectation that the model will be less sensitive to adversaries. If the
model-builder changes the input data (e.g., by adding or removing noise), then



Figure 1.2: A typical machine learning threat model can be attacked in many
ways. An attacker might use an inference attack to discover the training data
or properties of it. An attacker can use an extraction attack to reverse engineer
model parameters and use an inversion attack to reverse engineer the decision
boundary with an entirely different model. Any of these attacks can then
be used to generate malicious samples that target the model training process
(poisoned) or malicious samples that attempt to fool the model during the
inference stage (evasion samples), though techniques exist that can exploit
particular model APIs (white-box attacks) or only the model output (black-
box attacks). The dotted line holds no special meaning and is merely intended
to distinguish the arrows that overlap.



Figure 1.3: A typical machine learning model can be defended against an at-
tacker in several ways. While these techniques are not always applied during
the hyper-parameter tuning stage, their effect on the end user must nonetheless
be considered. A retraining defence might include any of these strategies in
addition to using attacks to generate samples. One can thing of Figure [I.2] as
the pipeline needed to conduct a retraining defence, assuming one labels and
scores the attacked samples appropriately.
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this is called a preprocessing defence. If the modeller changes a trained model
with the expectation of more robust inference, then that is called a transforma-
tion defence. A post-processing defence is when raw output of model inference
is changed before being presented to a user. Alternatively, known adversarial
examples can simply be labelled appropriately and incorporated into a new
generation of training data. Another technique, primarily discussed in the con-
text of large-scale machine learning methods is model transformation defences
that seek to reduce model’s sensitivity to input noise |158| |66} [202]. The pri-
mary downside of these transformation defences is cost as it scales with both
the size of the model and the number of training samples. Other techniques
try to detect malicious samples at run-time by examining the inner-workings
of the model [41] or by rejecting samples by examining subsets of the training
data |130L [150]. The final category is adversarial retraining which uses attacks
to create synthetic data before retraining the model on a dataset that includes
the generated attacks. Paper II is focused on this technique and explains why
it is not a feasible solution for models that are themselves expensive to train.
Several of these statistical defences are explored in Papers I-IV, while Paper V
discusses a categorically different approach to reducing adversarial risk.

1.3.5 Metrics
Adversarial vs. Benign Performance

Models are often evaluated under both benign and adversarial scenarios. The
benign scenario is the typical ML process wherein test set accuracy is intended
to reflect the probability of real-world success. The adversarial scenario occurs
when an attacker changes the test or train samples to influence the performance
of a model. A model is said to be robust if the gap between the adversarial
accuracy and the benign accuracy is small [37]. The focus in this work was eva-
sion attacks as they simulate what happens when noise is added to a sample.
This noise is intentionally designed to reduce the accuracy of a model by craft-
ing small changes in the model input (generally assumed to be imperceptible
to humans) that nevertheless induce large changes in the model output. That
is, the benign and adversarial scenarios define the best- and worst-case scenar-
ios for real-world usage. In addition to the benign and adversarial accuracy
discussed here, several other metrics were also collected.

Measures of Success and Failure

The primary metric of concern throughout this thesis is the probability that a
model correctly predicts an output. In the case of classification systems, the
standard metric is accuracy. It is defined as ratio of correct predictions to the
total number of predictions, such that

A Correct Predictions Incorrect Predictions
ccuracy = =1—
Y Total Predictions Total Predictions
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Accuracy is used throughout the text as a measure of reliability as it a
standard used in the literature to compare the efficacy of published models on
benchmark datasets [50]. However, even the weakest of safety-critical regula-
tions [88] would require millions of samples to verify a model using accuracy
as a measure of failure probability. For life-and-death applications like medical
imaging and self-driving cars, these verification procedures would require many
many billions of samples [88]. It is simply infeasible to use such large datasets to
verify every software change in complex ML pipelines, as required by regulatory
risk management standards [88]. Instead, Paper III formalises the relationship
between the probability of failure and time-referred to throughout the text as
failure rate:

Incorrect Predictions Correct Predictions

Fail Rate = —1_
anure fage Time Interval Time Interval

Like accuracy, this can be thought of in both the adversarial and benign cir-
cumstances, but first some time intervals must be defined. The training time
is the time it takes to fit a model with a given set of parameters to a particular
dataset and is calculated using the training set. The prediction time is the time
it takes to receive output from a model given a set of samples and is calculated
using the test set. The attack time is the time is takes to generate adversarial
examples and is calculated using the test set throughout this text. The benign
failure rate can be thought of as:

Incorrect Predictions on Benign Data

Benign Failure Rate =
crign Faltie fate Prediction Time

and the adversarial failure rate can be expressed as:

Incorrect Predictions on Adversarial Data
Attack Time '

The specific notation used for this concept varies throughout the thesis, but the
concept is the same—the benign and adversarial failure rates are used to define
an upper and lower bound of model performance that considers both efficacy
and cost. The point of collecting these time-based metrics is to consider the cost
for both the model-builder and the attacker. In Papers I1I & IV, an additional
metric is considered, called time to failure. It can be defined as:

Adversarial Failure Rate =

Total Time
Number of Failures’

Time-to-Failure =

We can also discuss this under specifically adversarial constraints, where

Total Attack Time

Time-to-Fail =
tme-to-tarure Number of Failures

quantifies both the number of failures and the time required of an attacker.
While these metrics provide a practical lens on model performance under real-
world constraints, they do not account for the underlying computational com-
plexity that governs how these systems work in real-world deployments. To
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understand the feasibility of training, attacking, or defending machine learning
models at scale, it is necessary to introduce a formal framework for measuring
computational cost.

When computer scientists discuss the notion of cost, it is common to use
“big-O” notation where, for two functions f(z) and g(x):

f(z) =0O(g(x)) as ¢ — o0
if for some positive constant multiple M and a real number xg
|f(2)] < M|g(x)| for all z > xq.

The notation describes how f(x) and g(x) behave similarly as x grows large.
Iterating over a list of length n is said to have complexity O(n). Likewise,
pairwise operations over two lists of lengths m,n yield complexity O(mn). In
modern cloud deployments, computational time is billed by usage and better
hardware costs more per unit time, making cost analysis critical to feasibility.

Cost is an essential consideration of this thesis. Paper I examines the ef-
ficacy of various model defences in relation to their cost by quantifying the
benign and adversarial failure rate of many attacks and defences. Paper II
illustrates an attacker’s time-cost advantage under certain constraints by com-
paring the benign and adversarial failure rate when adversarial retraining is
employed as a defence. Paper III demonstrates the triviality of attacking a
particular and popular ML model by introducing a novel metric that quan-
tifies the relative cost of model-building compared to the cost of a successful
attack. Paper IV demonstrates efficacy of using certain low-cost hardware to
not only reduce the computational footprint, but to also induce more robust
models. Paper V introduces a distance measure that is motivated by the need
to develop client-side models that do not rely on widespread data surveillance.

While cost considerations determine the practicality of deploying and main-
taining machine learning systems, legal and regulatory requirements must also
be considered—especially against the backdrop of adversarial attacks. The next
chapter addresses the regulatory standards that govern safety, privacy, and se-
curity, outlining the constraints under which trustworthy and responsible Al
must operate.

13



14



Chapter 2

Regulatory Concerns for
Trustworthy ML

Safety critical systems are not new. We have been successfully conducting
trans-oceanic flights for more than a century and successfully visited the moon.
Even though billion of flights happen every year, passengers expect to arrive
at their destination safely. Potentially dangerous devices like lithium batter-
ies, nuclear power plants, and toasters power billions of devices, homes, and
people without incident on a daily basis. This is not due to random chance or
some invisible hand of profit motive, but decades of regulations and engineer-
ing. For example, even though car crashes cause more than one million deaths
around the world every every year [157], less than 1 in 10~% fatal accidents
occur per kilometre driven (assuming estimates from the United States [154]
hold globally). The National Highway and Transportation Administration in
the United States estimates that only 7% of all crashes in the United States
are due to deficiency in the car and 70% of that is attributed to degraded
tires [185]. Road design is only considered a factor in 1.6% of cases [185].
That is to say, the standards that govern the engineers behind car braking sys-
tems and road design are clearly working. In the United States, many of these
standards are defined by the National Institute of Standards and Technology
(NIST), which is a US federal government agency [1]. The International Stan-
dards Organisation (ISO) and the International Electrotechnical Commission
(IEC) are non-governmental organisations, headquarted in Switzerland, that
develops standards globally with the latter obviously focused on electronics
and software. These three organisations govern safety-critical products across
many domains— medical devices, industrial equipment, and consumer products
designed for all manner of tasks.

These regulations are discussed in the context of safety, security, privacy,
and reliability before examining the specific requirements to verify and validate
these properties. In the broader context of this thesis, which aims to advance
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the trustworthiness of machine learning systems, it is essential to recognise that
ML models—particularly those deployed in safety-critical domains—must be
held to at least the same rigorous standards that govern traditional technologies
such as kitchen appliances, mobile phones, and auto-mobiles. Without such
standards, the deployment of ML systems in safety-critical areas will cause
catastrophes. Below, the already-existing regulations around safety, security,
privacy, and reliability are the discussed in the context of trustworthy machine
learning.

2.1 Safety

Safety is a well-defined regulatory concept, particularly for electronic hard-
ware and software, where it is governed by the IEC 61508 standard [88]. It
is the de facto global framework for safety-critical design of electromechani-
cal systems [147], though domain-specific equivalents (e.g., healthcare [119] or
anti-virus software [163]) exist as well.

To understand how regulatory limits are set, [EC 61508 first defines failure
rate categories (Table . These numbers may appear extreme, but they are
appropriate when designing products with millions or billions of users. For
instance, the bare minimum standard could be one preventable death per year
per 10 million users. In the context of billions of drivers or commercial airline
passengers, 1 failure in 10 million still means thousands of foreseeable and
preventable and potentially fatal accidents.

The standard defines “frequent” failures as those occurring more than 1073
times per year—meaning multiple times within an individual’s lifetime. Cru-
cially, the severity of the failure also matters. Terms like “catastrophic,”
“marginal,” and “negligible” are precisely defined (Table. IEC 61508 then
introduces Safety Integrity Levels (SILs)—four classes based on risk, combining
failure rates and consequence severity (see Tables and . Together, they
establish a risk matrix that balances the likelihood of a failure with its impact.

Table 2.1: Failure Rate Categories according to IEC61508.

Category Definition Range (failures per year)
Frequent Many times in lifetime > 1073
Probable Several times in lifetime 1073 to 10~*
Occasional Once in lifetime 10~* to 1075
Remote Unlikely in lifetime 1075 to 1076
Improbable Very unlikely to occur 1076 to 1077
Incredible  Cannot believe that it could occur <1077

The IEC standards [88] define the Safety Inegrity Level (SIL) in failures per
year, which is reproduced here in Table Since safety-critical systems (e.g.,
autonomous vehicles, medical imaging software, malware detection systems,
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Table 2.2: Consequence Categories according to IEC61508.

Category Definition

Catastrophic Multiple loss of life

Critical Loss of a single life

Marginal Major injuries to one or more persons
Negligible Minor injuries at worst

Table 2.3: Risk Classes according to IEC61508.

Class Range (failures per year) Definition Failure Rate Category

I [1076,107°) Unacceptable Occasional
II [1077,1079) Undesirable Remote
III [1078,1077) Tolerable Improbable
v [1079,1078) Acceptable Incredible

etc.) have the potential to cause major injuries (or worse), validating the failure
rate using a test set would require at least 10s of thousands of samples and
highly confident measures would require substantially more. Furthermore, if
we assume that accidental errors are possible in real-world systems due to
things like dust, lens flare, component failure, packet loss, etc., it naturally
follows that the failure rate is an over-estimate of the model’s performance at
the edge or other “worst-case scenarios”. That is, the test-case failure rate is
an optimistic overestimate of the real-world failure rate [12].

2.2 Security

Like safety, security is subject to well-defined standards. These address both
organisational practices and technical mechanisms. For example, the ISO/IEC
27000-series focuses on information security management systems, helping or-
ganisations ensure secure development and operations by setting the best prac-
tices for threat modelling, which is the process of outlining risks and specifying
mitigation techniques (e.g., attacks and defences respectively). NIST Special
Publication 800-53 [147] provides a catalogue of security and privacy controls,
similar to the ISO27000 series of regulations. IEC 18003 defines standards for
cryptographic techniques, encryption algorithms, key management, and hash-
ing. Notably, ML models are generally not considered cryptographically se-
cure [5], which raises profound concerns about data and model privacy [147] as
these models are known to leak not only information about themselves [147]
but also information about the data used to train models [147].

Both the ISO and NIST frameworks aim to secure safety-critical systems
from malicious actors, ranging from lone attackers to nation-state-level threats.
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Table 2.4: Consequence vs. Risk Matrix according to IEC61508.

Likelihood  Catastrophic Critical Marginal Negligible

Frequent I I I 11
Probable I I II 111
Occasional I II 111 111
Remote 1I 111 111 v
Improbable 11T 111 v v
Incredible 1A 1A 1A v

Just as we analyse system failure rates for safety, we must assess threat models
and attack surfaces for security. Proper cryptographic implementation, access
control, secure coding practices, and real-time anomaly detection all play vital
roles. Notably, both ISO and NIST standards discuss malware as software that
exfiltrates or destroys user data without the consent of the user. Without a
proper understanding of the risks of deploying a model, it is simply not possible
to give informed consent. As such, ML systems that rely on consent from
ill-informed users about their safety and efficacy can rightfully be considered
privacy-invading malware.

2.3 Privacy

Privacy standards vary significantly throughout the world; however, some com-
monalities remain.

In the United States, privacy regulations are dominated by the Children’s
Online Privacy Protection Act (COPPA) and the Health Insurance Portability
and Accountability Act (HIPAA) govern the data privacy rights of children
and healthcare recipients respectively. COPPA clearly defines mechanisms for
consent in which privacy policies must enumerate collected data, the usage of
the data, and to whom the data is shared. Under COPPA, parents must be
able to review, delete, and revoke consent for continued use of their child’s
data. Under both COPPA and HIPPA, data security (governed by ISO-27000
or NIST-800) is a requirement and breaches are the liability of the entity that
holds the data. This security requirement is upheld under HIPA A for healthcare
providers. In addition, HIPAA mandates the de-identification of patient data,
the use of encryption, audit trails and access logging, and a formal method for
risk assessment and breach notification [119]. As with COPPA, the relevant
users retain the right to access, amend, and receive a copy of their data [118|
119|.

In the European Union, data privacy is governed by the General Data Pro-
tection Regulation (GDPR) and ML models in particular must comply with the
European Union’s AT Act if they intend to act within that market. These laws
are particularly relevant in safety-critical domains where personal data—such
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as identity, health records, location, or behaviour is recorded or indirectly in-
ferred. The GDPR grants additional user rights including the right of users to
have granular and consensual control of their data and extends these rights to
all residents of the Furopean Union, regardless of age or illness. For ML-specific
tasks the AI Act applies, which additionally regulates commercial models in
various domains, by banning domains that present an unacceptable risk (e.g.,
social scoring, predictive policing, or real-time biometric surveillance in pub-
lic) and setting legal standards for other categories of activity. The AI Act
designates high-risk activities as thing like medical devices, hiring systems,
and critical infrastructure and how they must comply with existing regulations
(e.g., the IEC or ISO standards outlined above). The act designates limited
risk applications include things like biometric models, Al generated, and sen-
timent analysis and must disclose the use of AI, must minimise the effects on
vulnerable groups, and must make the content accessible to those with disabil-
ities.

While privacy regulations such as GDPR and sector-specific laws like HIPAA
or COPPA define how personal data must be collected, stored, and processed,
they are largely silent on the reliability of the systems that process that data—
particularly when those systems involve ML. However, as Al models increas-
ingly influence decisions in domains such as healthcare [58], security [10], trans-
portation [29| [128], and criminal justice [193]. A system that preserves privacy
but produces unpredictable or erroneous outputs can still cause significant
harm.

2.4 Reliability

As ML systems continue to be integrated into safety-critical domains, their
reliability has become a central engineering concern even if the aforementioned
legal regulations lag behind. Unlike traditional software systems, ML models
are inherently statistical in nature and their behaviour is shaped not just by
the complied code but the data set, sampling method, training procedure,
architectural choice, and underlying hardware. This seeming lack of reliability
creates an essential challenge—even if a model performs well on average, we do
not know how it will perform outside of the laboratory-based data-sets (e.g.,
degraded sensors, lens flare, dust, or statistically marginal subsets of people).
Since the number of possible failure cases is often innumerable, it is essential
to define the threat model and failure conditions for an ML model. In the
literature, these failure conditions are often considered under various worst-
case scenarios that are designed to be adversarial. A model is said to be robust
if it resists these adversarial failures.

For example, we could see how different Al-pipelines influence the accuracy
of a given model architecture and dataset against various adversarial condi-
tions or train a model to optimise for loss in the presence of adversaries |50,
122|. Even within adversarial machien learning publications, research has con-
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sistently been shown to be optimistic and unreliable at best [52].

Paper I presents a comprehensive survey of various model attack and de-
fence techniques, demonstrating that, despite their widespread use in the lit-
erature [138|, commonly reported robustness metrics do not reliably predict
performance against a generalised adversary. Paper II investigates the impact
of minor hyper-parameter variations and shows that naive adversarial retrain-
ing tends to degrade model performance under different attack scenarios, while
also introducing significant (polynomial-time) computational overhead. In the
broader context of complex electro-mechanical systems, modelling and mitigat-
ing failures or unforeseen edge cases is typically addressed through systematic
verification and validation processes [90]. Then the cost-robustness trade-offs
are examined in the context model complexity (Paper IIT) and hardware choice
(Paper 1V), before attempting to design a model that is safer-by-design (Pa-
per V). Finally, a safety-critical framework for ML verification and validation
is presented in Paper VI.
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Chapter 3

Machine Learning

Machine learning is a branch of mathematics and computer science that at-
tempts to build models that can learn from data and/or generalise to unseen
data to perform a task without explicit instructions. For a full treatment of
statistical learning theory, see “Understanding Machine Learning” [179]; here,
a subset of models is introduced to illustrate key considerations and limita-
tions. Figure provides a visualisation of the models discussed below and
their efficacy on different types of data.

3.1 Linear Regression

Linear regression is one of the simplest and most widely used models for super-
vised learning tasks that outputs a continuous value (called regression). While
the other models in Figure are classifiers, the “classes” shown in that figure
designate samples with an output > .5 as red and others as blue to allow for
the comparison of this basic model with the others specified below. It models
the relationship between a scalar dependent variable and one or more indepen-
dent variables by fitting a linear model to the observed data. However, there
are certain disadvantages to this approach. Linear regression assumes that the
relationship between the features and the target variable is, in fact, separable
by a line, which does not hold in many real-world scenarios. Despite its lim-
itations, linear regression serves as a foundational model in machine learning,
providing a solid basis for understanding more complex techniques.

3.2 Logistic Regression
Logistic regression is a widely used classification method for binary outcomes,
modelling the probability that a given input belongs to one of two classes.

Rather than producing an output that corresponds to a value in the range of
(—00,+00) (as in the case of linear regression), it produces an output in the
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Figure 3.1: Each row depicts a different dataset where the values are classified
into one of two classes, depicted by purple or orange dots and each column
depicts a single dataset. The model’s decision boundary is depicted using the
purple and orange gradients with darker colours corresponding to a more con-
fident decision. The first row depicts the raw input data and the true labels.
Each other row depicts the prediction using colour. The first 4 columns used
generated two-dimensional data and the last row depicts a two-dimensional pro-
jection of the MNIST image dataset discussed in Section [L.3.1] (since it would
be impossible to plot the data in the 784 dimensions MNIST provides in the

form of black and white pixels).
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range (0, 1), which can be interpreted as a probability. Logistic regression uses
a sigmoid (logistic) function to map the model output to the range , making it
ideal for likelihood estimation.

In short, a logistic regression model produces an output that answers the
question: “what is the probability of a belonging to a class when we assume a
linear decision boundary?”

3.3 KNN

Another model used for classification is k-nearest neighbours (k-NN), which
is a type of instance-based learning where a data point is classified based on
the consensus of its k£ closest neighbours according to some relevant notion
of distance (e.g., the “edit distance” for strings or some number of pixels for
images). For classification tasks, that might me mean finding the class that
belongs to the most neighbours and for regression task that might mean a
simple average. This model is widely used for classification and regression
tasks, and in Paper V, it was specifically employed to cluster spam and non-
spam internet traffic and content, for instance.

3.4 SVM

Support Vector Machines (SVM) are a powerful class of supervised learning
models used for classification and regression tasks. The core idea of SVM is
to find a surface (decision boundary) that separates data points of different
classes in a high-dimensional space in such a way that the distance between
the classes is maximised. While the linear SVM relies assumptions about the
linearity of the data, versions using kernel functions allow it to capture complex
or high-dimensional relationships in the data. Through kernel functions, SVMs
can create complex, non-linear decision boundaries. The decision boundary
generated by SVMs, particularly with non-linear kernels, can be difficult to
interpret [179]. These kernel SVM models are used in Papers II and V.

3.5 Neural Networks

Neural networks are another class of ML models that can be both paramet-
ric [198] and non-parametric [164]. A neural network can be viewed as a com-
putational graph composed of layers of interconnected nodes. It learns rep-
resentations of the input data in multiple stages: each hidden layer extracts
features from the output of the previous layer, progressively building more ab-
stract or complex representations. The final layer typically maps this learned
feature representation to an output using a standard machine learning model,
such as a linear classifier or regression function. They often return a vector of
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probabilities or likelihoods (called a soft label), or a series of binary classifica-
tions (called a hard label). Figure depicts a simple neural network using
circles to represent nodes, black lines to represent edges, and colour is used to
identify input, hidden, and output layers.

@

Input Layer Hidden Layer Output Layer

Figure 3.2: A simple neural network with three layers. The input (blue), hidden
(orange), and output (green) layers are colour-coded for clarity. The arrows
indicate the flow of data.

Typically, state-of-the-art models are significantly more complex than the
one pictured in Figure [3.2] and often rely on large numbers of hidden layers,
complex structures (also called architectures) that, for example, provide mech-
anisms to reinforce a certain behvaiour [101] or enable time-dependent model
configuration [83]. Model architectures are sometimes chosen in an effort to
model a particular biological [17] or physical process [14], though model archi-
tectures are often determined by brute-force trial and error |21].

3.6 Loss

Regardless of the model, training it requires the definition of a loss function—a
quantitative measure of how far the model’s output deviates from the expected
result. The choice of loss function is often dictated by the task at hand: for
example, the cross-entropy loss is widely used for classification problems [179)
because it naturally penalises confident but incorrect predictions; whereas mean
squared error (MSE) [115] is commonly applied in regression tasks where the
goal is to minimise the average squared difference between predicted and actual
values. More sophisticated loss functions can encode domain-specific require-
ments, such as robustness to outliers [217], uncertainty visualisation [21§], or
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fairness constraints [132], and can be custom-designed to reflect complex trade-
offs or safety margins.

Furthermore, in domains such as healthcare, aviation, or autonomous sys-
tems, loss functions and optimisation criteria may be carefully designed to re-
flect asymmetric costs of error [139]. For instance, this might mean penalising
false negatives more heavily than false positives when a missed detection could
result in harm than a false positive. In other cases, this might mean providing
mechanisms to notifying a user when a given classification is uncertain [218§].
Nevertheless, even an excellent score on well chosen metric does not guarantee
legally compliant performance in the presence of an adversary [139} 137, (140}
141], which are characterised further in Chapter 4} In addition to a well-chosen
loss function, the optimisation algorithm must also be robust.

3.7 Optimisation

The optimisation process involves adjusting the model’s internal parameters—-
typically numbered in the millions or even billions—-to minimise the chosen
loss function across a given dataset. This is most often done using stochastic
gradient descent (SGD) or one of its many variants (e.g., Adam [105], RM-
SProp [222], or Adadelta [215]) which iteratively updates model parameters
in the direction that minimises the chosen loss function by comparing model
predictions to the ground truth.

The optimisation landscape of many ML models is highly non-convex—it
often contains numerous local minima, saddle points, and flat regions. In prac-
tice, modern optimisation algorithms, combined with techniques like learning
rate scheduling [109], regularisation [208}, 93, 173, momentum [188], and batch
normalisation [177], enable effective navigation of this complex terrain. How-
ever, convergence to a low loss value does not necessarily imply generalisation
to new data. As a result, the optimisation process is closely tied to the choice
in validation metric [37] and techniques for measuring generalisation error like
cross-validation scoring [179] are used to ensure that the model not only per-
forms well on training data but also works well in general.

3.8 The Ethics of ML

The problems with the typical approach to ML are numerous. Recently, marginal
gains in accuracy have relied on increasingly larger models and datasets [56].
These models rely on massive datasets [56| [200} 28], from an ever-shrinking
number of institutions [107], leading to gender-biased models [126], race-biased
models [34], and critical design errors [16]. This trend goes back decades 48]
168, 134]. Despite this, it has been suggested that large scale ML methods be
used to detect (potentially) illegal material [5].

Since client-side monitoring with neural networks was recently the subject
of a proposal by the EU parliament to stop the spread of offensive and harm-
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ful online contact [59], it can be used as a simple case study in how obviously
“good” models have inherent risks. First, these models are not nearly reliable
enough to be deployed in situations that can negatively effect a human, which
is detailed in the previous chapter. Second, these models can reveal the private
data used to train the model [92] or used to generate novel content that is
similar to restricted images [220]. Third, these models are inherently biased—
relying on statistical assumptions that harm already marginalised groups [34].
Fourth, the existence of the model comes with unforeseen environmental and
societal costs—potentially chilling dissent or speech [5], using immense compu-
tational resources [2], and outsourcing of the data labelling to low wage workers
who have to view the offensive content [25]. Finally, modern ML systems in
general have questionable reliability on edge cases, but nevertheless induce real
experts to misjudge the quality of the model output [134} 78} |62} 100, [162} [172].
In short, there are many ethical questions to consider when deploying an ML
model which have been clustered in this Chapter into reliability, reproducibility,
fairness, bias, deferred expertise, and the environment.

3.8.1 Reliability

Fundamentally, ML systems are just maximum likelihood models that are prone
to over-fitting. ML models have shown themselves capable of performing ex-
ceptionally well on a wide variety of tasks. However, much research has also
noted the fragility of these models to small changes in the input space |71}
306, [127), 145 |42} 1145, |110]. One particular concerning example is the inability
of state-of-the-art image classification systems to handle data that comes un-
der real-world conditions that vary from training set |33} [12]. One proposed
source of this error is “hidden stratification”—the unknown subsets of the data
that are unaccounted for in the model [155]. Another often-discussed source
of unreliability is the “long-tail problem” that describes the problem of the
wide distribution of real-world cases outside of the distribution learned from
the training set [219]. A 2021 survey [108] of wildlife identification models
examined methods for mitigating the effect of these out-of-distribution new
samples and their best attempt still confidently returned an incorrect answer
nearly 30% of the time. Another author notes that many medical models do
not convey uncertainty to users, thus leading users to overestimate the models’
reliability [7].

3.8.2 Reproducibility

Unlike the experiments detailed in the included papers, many published ML
papers are not reproducible [76, [87) (46} |77, [143]. Firstly, there is a problem
of scale as ML research has increasingly shifted to industry due to the mas-
sive costs associated with training state-of-the-art models and employing the
people capable of doing so [6], 99]. This is in no small part due to the scale of
both modern models and their associated datasets [56} [2] which have grown in
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size [56]. For example, commercially deployed image recognition systems and
large-language models can cost millions of dollars of compute time to train [148],
making the reproduction of state-of-the-art research feasible for only a small
number of organisations.

Even when model architectures are fully released, critical components can
be omitted or under-specified—including details about training schedules, hyper-
parameter selection, hardware or network configuration, and random seed ini-
tialisation [87) 46, |77}, 143, |76]. Furthermore, many proprietary models are
never released at all and the training data remains entirely private or protected
by copyright, creating a performance gap between academic benchmarks and
real-world implementations [6 [12]. Without verifiable and consistent perfor-
mance it is impossible to determine efficacy or establish accountability [76]. Re-
producibility is a prerequisite for trustworthy, reliable ML systems and dataset
and pipeline transparency have recently become the subject of regulatory con-
cern 190}, [191].

3.8.3 Bias

Some authors [26] recommend a set of ethics that centres machine learning
research on groups mostly likely to be adversely effected. However, since these
groups tend to be marginalised or statistical outliers compared to dominant
groups, since these groups may represent only a small proportion of the train-
ing data, standard machine learning optimisations that minimise average loss
naturally focus on the dominant majority, exacerbating disparities in safety
and service [34].

ML systems can inherit and amplify biases present in their training data or
in the design decisions made by human creators [33], [167]. These biases may
manifest as systematic errors or unfair outcomes, such as unequal treatment
across demographic groups, because the models optimise for patterns present
in the data without an understanding of fairness or ethics [153} [153] 47]. For
example, crash safety models historically based on the 50th percentile male
body standard have resulted in vehicle designs that provide significantly less
protection for female-bodied individuals, contributing to higher rates of injury
and fatality for female-bodied people in car accidents [60]. In ML, researchers
found neural networks that unintentionally detect self-reported racial informa-
tion through methods they were unable to explain “either by spatial location, in
the frequency domain, or that were caused by common anatomic and phenotype
confounders associated with racial identity” [69]. Nevertheless, the problems
of bias are not intractable. After raising awareness about the racial and gender
discrepancies in commercially available facial recognition systems [34], subse-
quent research found that the discrepancies substantially reduced by the next
year [167], perhaps with nothing more than changing the sampling method [175]
(though we can’t be sure because the models in question were closed source
and then largely removed in the wake of “Black Lives Matter” protesters in the
United States [79]. However, computer science as a whole has struggled with
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racial and gender imbalances during the hiring process [169, [211] and other
research critiques the field’s focus on algorithmic solutions to larger societal
problems [26]. While this thesis did not examine the role of adversarial attacks
and defences in bias mitigation, other researchers have discussed this [40, 216,
210].

3.8.4 Deferred Expertise

It is not uncommon for users to trust modern ML systems more than they
should [78] 62} 100, [134) |172]. There are no shortage of examples of drivers
falling asleep while operating Tesla cars in “full self-driving” mode, sometimes
leading to fatal driving accidents [78] [62, [100]. Lawyers have faced penalties
for inappropriate usage of chatbots wherein case law was invented wholesale by
models not designed to produce accurate text [134]. One study showed that in-
dividuals who use ML-based code assistance not only trusted their code more,
but were also more likely to produce code with security flaws [162]. Another
study showed that the accuracy of medical diagnoses is expected to decrease
between 5-30% with the introduction of ML-based assistance for medical doc-
tors due to false confirmation errors, where doctors falsely confirm a diagnosis
using ML [172].

These issues of misplaced trust and over-reliance on machine learning sys-
tems underscore a broader point: ML models, while powerful, are not au-
tonomous experts. Their perceived authority often exceeds their actual capa-
bility, introducing new risks and compounding existing ones [134l 162, [172].
However, the implications of widespread machine learning adoption extend be-
yond human trust and safety. Even when models make their users fully aware
of their limitations, the models come with substantial environmental costs [199}
2, [75].

3.8.5 Environmental Concerns

The development, training, and deployment of modern machine learning models
demand enormous computational and data resources, which in turn translate
to high energy consumption [2], hardware waste |199], and broader sustainabil-
ity challenges [68] [75]. Furthermore, data collection can be very costly [171],
increases development time [114], and makes it harder to verify a product [221].
As machine learning systems continue to scale in complexity and deployment,
their environmental impact has become a growing concern among researchers |2}
3], policymakers |75], and practitioners [121]. While the societal benefits of ML
are allegedly significant, they come at a substantial ecological cost that is often
under-reported and poorly accounted for in system evaluations.

These training runs can span days [182], weeks [80], or even months [61]
across thousands of high-performance GPUs, consuming megawatt-hours of
electricity and contributing significantly to carbon emissions [187]. For exam-
ple, the training of a single large language model has been estimated to emit
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as much carbon as five average American cars over their entire lifetimes [187].
As models become larger and more capable, their environmental footprint con-
tinues to grow unless mitigated by advances in hardware efficiency, algorithmic
optimisation, or the adoption of green energy sources.

Beyond training and inference, environmental costs accrue throughout the
ML lifecycle. Data collection is not only time-consuming and labour-intensive [171],
but also energy-intensive—particularly when involving data-intensive processes
like web scraping, sensor networks, or other real-time data pipelines [2]. Prepro-
cessing and cleaning this data can further increase compute overhead, extend-
ing development cycles [114] and complicating verification procedures [221].
Moreover, the continual deployment and fine-tuning of models in production
environments adds to long-term infrastructure demands, especially in cases
where retraining is frequent or large models are frequently synchronised across
a network.

Hardware production for ML also presents a growing sustainability issue.
The demand for GPUs and specialised accelerators has led to increased extrac-
tion of rare earth metals and non-renewable materials [199]. This contributes to
electronic waste and accelerates hardware obsolescence as newer, more powerful
chips are released to support ever-larger models [56].

These challenges have prompted early efforts to promote sustainable ma-
chine learning. Some proposals include carbon-aware scheduling of training
jobs [9], algorithmic innovations like sparse training and pruning [91], and bet-
ter reporting standards that include metrics like energy usage and emissions
alongside traditional performance scores [9].

In the context of this thesis, environmental considerations directly influence
choices such as model architecture, dataset size, and training strategies. As
such, all research was conducted on a single graphics card (Papers I and III)
or on a single processor (Papers II, and V), with the exception of Paper IV,
which focused specifically on power optimisation and adversarial robustness
in a cloud environment. Additionally, understanding the resource constraints
that organisations face when defending their models is critical when evaluating
the practicality of proposed adversarial defences. Thus, environmental impact
is not just an abstract concern but a practical constraint that shapes both the
feasibility and ethical responsibility of machine learning research.

As machine learning continues to be deployed in safety-critical domains, it
is vital that environmental sustainability becomes a core consideration—just as
safety, security, privacy, and reliability are. Ignoring these costs risks creating
systems that may be technically impressive but environmentally unsustainable
at scale and further exacerbate global inequities around who benefits from the
deployment of these models.

While Chapter 2 outlined the regulatory and safety challenges surround-
ing machine learning, and this chapter has explored the structural and ethical
dimensions of model development, it is crucial to recognise that even well-
intentioned, well-designed, and well-regulated systems can be actively subverted—
an increasingly urgent concern addressed in next chapter.
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Chapter 4

Adversaries

In security research, it is commonplace to discuss a system’s safety in terms of a
worst-case scenario that assumes that attackers are maximally knowledgable,
well-resourced, and highly motivated [163]. While these assumptions might
seem extreme, for complex and opaque systems like ML models, this worst-case
evaluation is useful for understanding weaknesses and flaws in ML pipelines and
critical for highlighting edge-case failures that would otherwise be unforeseen.
However, in the context of ML, those unforeseen edge cases can be simulated
using the aforementioned adversarial attacks—where a malicious user induces
unintended behaviour of an ML model.

4.1 Computer Security

Before examining adversarial attacks in the ML context, it is useful to discuss
the more mature landscape of computer and data security more broadly. The
canonical worst-case scenario is remote code execution, wherein a malicious
user located elsewhere is able to induce their desired behaviour on a victim’s
machine [163]. However, before code is executed, the adversary must gain
access, via an intrusion attack, which might involve circumventing a network
control mechanism [194] or exploiting a vulnerability in an application [149].
One goal of an intrusion might be to ezfiltrate data, moving it from the user’s
control to the attacker’s control. In some cases, the attacker is not concerned
with stealing data or executing code; instead attackers can flood the application
with spam or otherwise participate in a distributed, denial of service (DDoS)
campaign. These classical attack types also have parallels in ML systems. Just
as traditional applications can be intruded upon or disrupted, ML models can
be manipulated, subverted, or overloaded through analogous adversarial at-
tacks. Papers IT and V use popular malware detection datasets to demonstrate
the ease of subverting ML models even when those models can detect classical
security breaches with great accuracy.
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4.2 Adversarial Attacks for Machine Learning

ML has proven to be useful in safety-critical applications like system intrusion
detection |104], network anomaly detection [131], image recognition [197], avi-
ation [128], policing |193], security checkpoints [10], and medical imaging [58].
However, many such attacks threaten the real-world operation of these sys-
tems and can be grouped into several categories [152] inference attacks can be
used to glean information about the training data [123| [181] |44], extraction at-
tacks reveal private information about the model [92], poisoning attacks change
model behaviour by targeting the training data [178, 23] 22], and evasion at-
tacks change the model behaviour by targeting the model at run-time [36, [37,
145 42| 110, 43]. The work in this theses focuses on the last category, eva-
sion attacks, because of the ability of that class of attacks to induce failures at
run-time, thus allowing for the failure rate analyses discussed in Chapter [1.3.5
and While much work has gone into evaluating the robustness for machine
learning models [145, [24} |36} |54], these models exist in the real-world, despite
the extreme ease of breaking them [139] [24] 36, [140].

4.2.1 Threat Model

In adversarial ML, a threat model characterises the attacker’s knowledge, ca-
pabilities, and objectives. Understanding these aspects is essential for assessing
system vulnerabilities and designing robust defences.

We begin by defining key terms related to attacker knowledge. In a white-
box setting, the attacker is assumed to have full access to the model, including
its architecture, parameters, and possibly the training data. This level of ac-
cess enables the most powerful attacks, as the adversary can exploit detailed
knowledge of the model’s internals to craft highly effective attacks. In contrast,
a black-box attacker is restricted to observing the model’s outputs, such as class
labels or confidence scores, without access to its internal structure or weights.
Between these extremes, gray-bozr attackers may have partial information, such
as knowledge of the model architecture or general characteristics of the training
data.

The threat model also defines the attacker’s goals, e.g., targeted or untar-
geted attacks. Targeted attacks attempt to cause a specific behaviour, steering
the model towards a particular incorrect output. Untargeted attacks aim to
induce any incorrect prediction, regardless of the output target. Confidence
reduction attacks seek to undermine the model’s certainty without necessarily
changing its top prediction, degrading overall trust in the system. There are
many more classes of attacks, and those are outlined in the subsections below.

An important aspect of adversarial ML is that attacks can escalate a threat
model from black-box assumptions toward white-box capabilities. Even if an
adversary initially has limited access to a model, techniques such as model
extraction, inference, and membership attacks can allow them to progressively
increase their knowledge.
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For example, Tramer et al. |[192] demonstrated that querying a ML API
with p + 1 random p-dimensional inputs could reveal enough information to
reconstruct a model’s decision boundary, thereby enabling model extraction
from mere prediction outputs. Similarly, Fredrikson et al. [63] showed that
attackers can infer sensitive attributes or reverse-engineer category mappings
using limited model outputs. Shokri et al. [181] proposed membership inference
attacks that identify whether a particular sample was part of the training set
by analysing model responses across multiple low-cost proxy models for the
targeted original. Moreover, adversarial examples crafted against surrogate
models often exhibit transferability, meaning they remain effective against the
original target model even without direct access [220} |192].

These attacks, initially exploiting only hard labels or soft confidence scores,
progressively reveal private information about the model or training set, tran-
sitioning a black-box attacker towards more informed, gray-box or white-box
capabilities. Thus, in practice, the strict separation between black-box and
white-box threat models is porous. Attackers may start with minimal assump-
tions but, through strategic queries and statistical analysis, gain detailed in-
sight into the model, expanding their capabilities and increasing the severity
of potential attacks. In short, ML does not make the training data or model
parameters secure [5].

Finally, attacks can be categorised based on the phase of the ML pipeline
they target. Training-time attacks such as poisoning introduce malicious data
during model development. Inference-time attacks, such as evasion attacks,
manipulate model inputs after deployment to induce misclassifications or large
changes in a regression output. Post-deployment attacks, including model ex-
traction and membership inference attacks, aim to recover sensitive information
or replicate the model through external interactions alone. Given this fluid es-
calation of attacker knowledge and capabilities, it is crucial that threat models
are explicitly stated and considered throughout the design, evaluation, and
deployment of ML systems.

Furthermore, by designing systems that are robust to attacks, we can ensure
models that are safer, more private, and more reliable across all use cases and
diverse users and bystanders. Papers I and II develop this thinking. Papers
IIT and IV formalise risk analysis for adversarial attacks. Paper V proposes a
model that is safer-by-design and Paper VI presents a software framework for
incorporating these evaluations into all ML pipelines.

4.2.2 Extraction Attacks

While the white-box threat model assumes the adversary has access to the
model parameters, the model’s decision boundary or model parameters can
be approximated through statistical techniques or via other attacks [203} 92|
20]. In many cases, perfect knowledge of a modelling process is provided by
scientific research publications and publicly available source code. However,
most commercial models are proprietary and can only be accessed through
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an API that returns only the classification (e.g., as confidence score or the
classification labels) [192], 92]. In either case, creating a functionally identical
copy of a publicly available model can be substantially cheaper than training
one— a large model can be copied (with 90% of the original performance) in
only 100k queries [116]. In the case of continuous ML functions (e.g., logistic
regression), a straight-forward approximation method is known to quickly find
counter-examples [71]. In the case of discontinuous ML functions (e.g., decision
trees), a continuous auxiliary function can still be used [192} [103]. In all cases,
the decision boundary or regression function can be approximated by using
relatively small models |18, 42].

4.2.3 Inference Attacks

Attacks that target private aspects of the training data are called inference
attacks [123} |96, [181]. These attacks leverage access to a trained model’s pre-
dictions to infer sensitive characteristics of the data it was trained on, such
as membership, class distributions, or even specific attribute values. Inference
attacks are of particular concern in regulated domains such as healthcare or
law enforcement (or, really, any service that wishes to serve EU residents. See
Chapter , where models trained on sensitive personal data may inadver-
tently leak private information.

One of the most well-known examples is the membership inference attack,
where an adversary determines whether a particular data point was used in
training the model [181} |123]. By exploiting differences in confidence scores
or output behaviour between seen (training) and unseen (non-training) inputs,
an attacker can classify whether a sample was part of the original training set.
Other forms of inference attacks aim at more detailed information. For in-
stance, attribute inference attacks aim to predict sensitive or hidden attributes
of training samples, given partial access to input features and the corresponding
model outputs |63} [11]. These attacks are especially potent in healthcare, rec-
ommendation systems, and finance, where partial demographic or behavioural
features may be accessible, and the goal is to uncover private attributes like
medical conditions or credit status. More recently, label-only inference at-
tacks have emerged, where adversaries do not have access to confidence scores
or model internals, but rely solely on the predicted class labels [44]. These
black-box attacks use repeated querying and statistical analysis to infer sen-
sitive properties of training data, even when access to output probabilities is
restricted.

The severity of such attacks depends on model architecture, training proce-
dures, and deployment conditions, making it imperative to assess and mitigate
risks during model development and deployment.
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4.2.4 Poisoning Attacks

Poisoning attacks target the model during its training phase by introducing
carefully crafted malicious inputs into the training dataset. The goal of poi-
soning is to subvert the learning process so that the trained model exhibits
attacker-controlled behaviours, such as misclassifying specific inputs, degrad-
ing overall performance, or embedding hidden backdoors that can be used by
an attacker to trigger specific behaviour at run-time.

There are two primary types of poisoning attacks: availability attacks and
integrity attacks |97]. Availability attacks aim to cause general model failure,
degrading performance across a broad range of inputs and rendering the system
unusable or unreliable [97]. These attacks are particularly concerning for safety-
critical domains like autonomous driving or medical diagnosis, where general
failure can have catastrophic consequences. Integrity attacks, by contrast, are
more subtle: they seek to degrade model performance on specific instances or
tasks while maintaining overall accuracy elsewhere, thereby evading detection.
A well-known example is backdoor or Trojan attacks, where an attacker intro-
duces a specific pattern into the training data that, when present at inference
time, causes misclassification into an attacker-chosen target class [176] (196}
180, (1701 {184} |41].

A key challenge for poisoning attacks is stealth. If poisoned examples dif-
fer too much from clean examples, simple outlier detection methods [160] or
robust training procedures might eliminate them [45]. Successful poisoning at-
tacks therefore craft inputs that are both adversarial and statistically similar
to genuine data.

Beyond individual samples, poisoning can also operate at the feature or la-
bel level—feature poisoning modifies the input features of training data without
altering labels, nudging the decision boundary [212]; attacks that submit mis-
labelled data to reduce accuracy [95]; and attacks that scale efficiently against
large models [67]. The threat of poisoning is exacerbated in distributed learn-
ing settings, such as federated learning, where training data is aggregated from
many sources. In these scenarios, malicious clients can upload poisoned updates
without direct oversight, creating significant vulnerabilities [13].

Given the serious risks posed by poisoning attacks, research into robust
training procedures—such as differential privacy, robust optimisation, and cer-
tified defences—has grown rapidly in recent years [186) 205]. However, achiev-
ing strong resilience against poisoning attacks without sacrificing model per-
formance remains an open problem.

4.2.5 FEvasion Attacks

Evasion attacks aim to manipulate input data during the inference phase to
deceive the model into misclassifying certain inputs or otherwise change the
behaviour of a model (36, [31} [110} 42]. Evasion attacks vary largely by the
optimisation criteria used to generate the adversarial examples.
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Some of the most prominent techniques involve crafting small, often im-
perceptible perturbations to the input data that cause the model to make
incorrect predictions while leaving the data visually or semantically unchanged
to a human observer. Methods like the Fast Gradient Method (FGM) [71]
and Projected Gradient Descent (PGD) [|127] craft perturbations by following
the gradient of the loss function with respect to the input data, maximising
the model’s prediction error. Other attacks, like DeepFool [145], seek minimal
perturbations that move an input across the decision boundary.

Beyond small perturbations, more conspicuous forms of evasion have also
been studied, such as adversarial patches [31], where localised and visible pat-
terns placed on an object or image can reliably cause misclassification, regard-
less of the image they are applied to.

The feasibility of evasion attacks across a range of domains, including com-
puter vision, cybersecurity, and natural language processing, highlights the
pressing need for robust evaluation frameworks and defence mechanisms, such
as adversarial training [127] and certified defences |73].
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Chapter 5

Verification and Validation

The previous chapters introduced the ML pipeline, outlined the regulations
that govern safety and privacy, examined some particular ML models, and
described a very real threat model against them in the form of attacks. In
contrast, this chapter discusses the ways in which this thesis adheres to and
promotes best practices for reproducibility and auditability. Verification and
validation (V&V) broadly refers to the processes used to ensure that a system
meets its requirements and behaves safely and reliably under expected— and
unexpected— conditions. V&V methods can broadly be classified into several
categories: formal verification, simulation, empirical modelling, and static or
dynamic analysis. Fields like aviation, automotive, and medicine use some
combination of these to mitigate and control risks on a daily basis.

5.1 Formal Verification

Formal verification is a method of mathematically proving the correctness of a
system with respect to a formal specification. Unlike simulation, which tests
a system under selected scenarios, formal verification attempts to exhaustively
prove that certain properties (e.g., safety, robustness, or correctness) always
hold, regardless of the input or system state. This makes it especially attractive
in systems where failure is catastrophic and exhaustive testing is infeasible.

The strength of formal verification lies in its guarantees: if a property is
proven, it holds for all cases within the bounds of the assumptions made. How-
ever, this rigour comes with significant costs and complexity. Creating formal
specifications requires a precise and often abstract understanding of the system,
and the proofs themselves can be highly non-trivial, requiring expert knowledge
and substantial computational resources 133} |64].

An important example of formal verification is the CompCert C compiler,
which has been formally verified to produce assembly code that is functionally
equivalent to its source code [120]. In contrast to conventional compilers, which
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may contain bugs in optimisation or code generation, CompCert offers math-
ematical guarantees of correctness, making it appealing for critical systems
such as avionics and medical devices. In medical devices, formal verification
has been applied to implantable cardiac pacemakers, which must maintain life-
critical timing constraints to not accidentally kill the person they are meant
to help. Research efforts, such as those of Jiang et al. [98|, have demonstrated
how formal models of pacemaker logic can be verified to ensure that the de-
vice will never enter dangerous states, even under extreme timing conditions
or unexpected cardiac rhythms.

In the domain of machine learning, formal verification is becoming increas-
ingly relevant, as ML models are being deployed in safety-critical applications
such as autonomous vehicles, medical diagnostics, and security systems. Ver-
ifying the correctness of ML models with respect to a formal specification
presents unique challenges compared to traditional software systems. Unlike
conventional software, ML models are typically data-driven and may exhibit
unpredictable behaviour due to the complex nature of their learned representa-
tions. Despite these challenges, researchers have developed techniques for for-
mal verification of certain aspects of ML models, such as ensuring robustness
to adversarial attacks or proving the correctness of a model’s decision-making
process in specific environments. While the field is still in its infancy, work has
been done in verifying neural networks’ robustness to adversarial perturbations
and ensuring that certain fairness constraints are met during the learning pro-
cess [133]. However, these formal methods can be computationally infeasible
or altogether useless during model selection [86].

As ML models continue to play a larger role in critical applications, the
need for formal verification to guarantee their reliability and safety will only
grow. While formal verification guarantees the correctness of a system through
mathematical proofs, simulation provides a way to find how common error
states and other extreme conditions are.

5.2 Simulation

Simulation is a powerful verification technique in which complex systems are
modelled and tested under a variety of conditions before real-world deploy-
ment. These techniques are especially prominent in high-stakes domains such
as aerospace, automotive safety, and medical science, where real-world testing
is expensive, dangerous, or ethically challenging.

In the aerospace industry, simulation is integral to the development and
certification of an aircraft. One well-known example is the Boeing 777, which
was the first commercial aircraft to be entirely designed using computer-aided
design (CAD) and simulation tools, minimising the need for physical proto-
types [207). It is also famous for being the first “fly-by-wire” system where
manual pilot input was replaced with electrical signals and onboard comput-
ers which forced the industry to simulate physical interactions in software to
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ensure safety [207].

In automotive engineering, crash simulations are widely used to complement
physical crash testing. However, these simulations often rely on models based
on the median male body, leading to safety designs that disproportionately
protect average-sised men. Research has shown that women are significantly
more likely to suffer injury in car crashes due to this bias in crash test dummies
and the resulting simulations [174].

Similarly, in medical science, simulations of drug interactions or disease pro-
gression are often built from datasets that over-represent male physiology [135].
This has led to a “male body problem” in medical research, where treatments
may be less effective or riskier for women. Additionally, statistical analyses
in clinical trials often rely heavily on p-values, which can misrepresent the
reliability of results when not properly contextualised—known as the p-value
problem [72].

Unlike physical systems that are governed by well-known physical laws,
many ML models can be hard to explain or interpret [124]. By harnessing
adversarial attacks to simulate worst-case samples, model builders can test
the robustness and reliability of machine learning systems under extreme or
intentionally challenging conditions. Adversarial simulation involves creating
perturbed inputs that are specifically designed to cause model failures, revealing
vulnerabilities that may not appear under standard testing conditions [71].
This approach enables practitioners to stress-test models systematically before
they are deployed in the real-world. However, there is a data-driven approach
that relies on real-world experimentation call.

5.3 Empirical Modelling

Empirical models can take various forms, such as statistical models, ML mod-
els (Chapter 3), or system dynamics models (e.g. structural or mechanical
engineering [82]). For example, a simple statistical model is the exponential
distribution, which is often applied in reliability engineering to model the time
between events in systems that experience a constant failure rate over time.
A classic example from reliability engineering is the exponential distribution,
which models the time between failures in systems that exhibit a constant
failure rate. This distribution is defined by a single parameter, A, the rate
of failure (or the inverse of the mean time between failures). Its probability
density function (PDF) is:

f(t)=Xe ™ fort >0,

where f(t) denotes the likelihood of failure at time ¢. While analytically
simple, this model assumes a constant hazard rate, which is often unrealistic
for complex systems.

More flexible are survival models, which do not assume a constant failure
rate and are therefore better suited for modelling the complex relationship
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between times, cost, and robustness. These models are explored in detail in
Paper III, where survival time is used as a proxy for model robustness, and
in Paper IV, which employs accelerated failure time (AFT) models to analyse
adversarial robustness across neural networks trained on different hardware
architectures.

In an AFT model, the log of survival time is modelled as a linear function
of covariates:

log(T') = Bo + prx1 + Bawa + - -+ + Brap + €,

where T is the survival time, z; are covariates (e.g., model depth, learning
rate, hardware type), §; are model coefficients, and ¢ is a random error term.
This allows interpretation of covariates as multiplicative effects on the survival
time, offering a more intuitive understanding of robustness under adversarial
pressure.

Survival models play a critical role across a range of domains where under-
standing time-to-event behaviour is essential. In medicine, survival analysis is
extensively used in epidemiological studies to model patient survival times, time
until disease recurrence, or time to recovery [30]. In medicine, covariates such
as age, treatment type, genetic markers, and co-morbidities are incorporated to
estimate patient-specific risks and guide personalised treatment strategies [30].
In the automotive domain, survival models help assess the reliability and dura-
bility of components, such as engines, brake systems, and electrical subsystems.
By analysing failure times under different usage conditions and environments,
manufacturers can improve design, schedule preventive maintenance, and op-
timise warranty policies [112]. In aircraft design, survival analysis informs the
estimation of failure probabilities for critical components under stress, load,
and fatigue over time [206]. These models support decisions in structural en-
gineering, maintenance scheduling, and certification by regulatory authorities
to ensure high standards of safety and reliability throughout the aircraft’s op-
erational lifecycle [206].

5.4 Static and Dynamic Analysis

When building a bridge, static analyses are used to estimate the forces acting
on a component when a part is not moving and dynamic analyses are used to
estimate forces when acceleration is experienced [82]. This same metaphor can
be applied to software development—where static analysis examines code for
errors, vulnerabilities, and compliance issues without executing it [19], while
dynamic analysis tests and monitors the software during runtime to uncover
defects that only appear during execution [15]. These two approaches were
applied throughout this thesis to ensure the correctness, reliability, and repro-
ducibility of the developed software and experimental results.

In automotive or aviation, physical components such as engines, control
surfaces, or braking systems are subjected to both static and dynamic analyses
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to verify their integrity under both constant and changing loads. Similarly,
embedded software controlling these components undergoes static analysis to
catch coding errors early and dynamic analysis to validate behaviour under
real-world operational conditions [207]. In medical or banking software, static
analysis is critical to ensure compliance with regulatory standards like HIPAA
or GDPR by identifying security vulnerabilities and logical errors before de-
ployment, while dynamic analysis is employed to validate the correctness, re-
liability, and security of live systems handling sensitive patient or financial
data [94} 113].

Throughout this thesis, static analyses in the form of pre-commit scripts [183]
and unit tests [161] were used to ensure code quality, consistency, and the early
detection of potential errors before code was used for experimentation as well
as in the generation of the included papers. Pre-commit hooks are automated
scripts that run a set of checks—such as linting, formatting enforcement, or
static code analysis—each time a developer attempts to make a change to the
source code, effectively acting as a gatekeeper to prevent problematic code from
entering the codebase [183]. All papers were formatted for consistency in this
way and all source code was evaluated for things like unreachable code, unde-
clared variables, and un-tested functions. In addition, functional and integra-
tion tests were used to conduct dynamic analyses of the software components
developed. Functional tests verify that individual functions or features perform
as expected when executed and integration tests, on the other hand, validate
that different modules or services interact correctly and robustly when com-
bined, ensuring that defects that only emerge from complex system interactions
are detected and addressed during runtime [201]. Furthermore, each paper and
the source code for the experiments has been made available as part of the
software package described in Paper VI thus ensuring that anyone can verify
and validate the findings presented in this thesis.

5.5 Accuracy is Not Enough

As we move from modelling individual components to reasoning about system-
level reliability, a more fundamental question arises: “how can we trust com-
plex systems whose behaviours are shaped by large-scale, opaque, and data-
dependent models?”

Historically, marginal gains in model performance have come at the cost
of exponentially larger models [56]. Large models require increasingly vast
datasets [56}, [200 [28], which are collected, catalogued, distributed by narrowing
number of elite and well-funded institutions |107]. By amplifying systematic
biases, this concentration introduces critical risks, including gender bias [126],
racial discrimination [34], and fatal design flaws [16]. These concerns are not
new (48,168} [34]; they echo through decades of evidence showing higher fatality
rates for female-bodied individuals in car accidents [60], or neural networks that
inadvertently encode racial information from medical images [69].
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Beyond social and ethical implications, data collection and labelling for ma-
chine learning itself introduces a host of practical concerns. It is expensive [171],
raises significant privacy issues [27], extends time-to-market [114], slows inno-
vation [221], and relies on vast numbers of outsourced workers [25]. Worse
still, performance metrics in machine learning often paint an overly optimistic
picture [127, 51]. As researchers have noted [127, [36, |50, [138], traditional
test/train evaluation only uncovers failures within the training distribution
which leaves models vulnerable to catastrophic failures when deployed in the
real world.

To build truly trustworthy systems, model builders must go beyond con-
ventional benchmarks and provide strong, actionable guarantees. These guar-
antees must address the practical, social, and technical limitations outlined
above—and they must do so efficiently. In particular, we need rigorous, cost-
effective methods for verifying model behaviour under diverse and challenging
conditions, ideally fast enough to be integrated into development feedback loops
and used in simulation, rather than relying on deployment in real-world systems
like autonomous vehicles, delivery drones, or manufacturing robots.

Papers I and II examines the run-time and efficacy of several adversarial
attacks and model defences in an effort to find which defences are trustworthy.
Paper III presents a metric for quantifying the trust of a model against a given
set of attacks and Paper IV uses this to build models that are not only more
trustworthy, but also more power and cost efficient. Paper V then outlines a
model that aims to keep user data private and thus be more trustworthy by
default. Finally, Paper VI outlines a safety-critical framework for ML verifi-
cation and validation and presents the software tooling required to not only
reproduce the work included in this thesis, but to conduct the same type of
massive and rigorous evaluations of any ML model trained on any dataset.
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Chapter 6

Summary of Contributions
and Future Work

The papers below first quantify the problem of adversarial attacks, explore
the efficacy and cost of different defences, and presents a novel framework for
approaching and certifying the trustworthiness of a system.

6.1 Paperl

Safety-critical computer vision: an empirical survey of adversarial evasion
attacks and defenses on computer vision systems. Charles Meyers, Tommy
Lofstedt, and Erik Elmroth. Artificial Intelligence Review, Volume 56, 2023.

In this paper, five years of attacks and defences were surveyed and a novel
run-time analysis was included. In this way, the marginal cost and benefit for
a given defence with respect to the performance on perturbed (adversarial) and
unperturbed data was quantified. This paper first noted the adversarial failure
rate as an upper-bound to the real-world failure rate and concluded that no
known model is safe according to international standards.

6.2 Paper II

Massively parallel evasion attacks and the pitfalls of adversarial retraining.
Charles Meyers, Tommy Lofstedt, and Erik Elmroth. EAI Endorsed Trans-
actions on Internet of Things, Volume 10, 2024.

This paper shows that, in practice, an attacker can find adversarial examples
in linear time, giving them a distinct advantage over polynomial-time model
builders. The effect of noise distance, model run-time, and adversarial retrain-
ing on adversarial robustness was examined across several anomaly detection
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benchmark datasets. This paper raises questions about the cost of robustness
in terms of both compute time and benign accuracy.

6.3 Paper III

Training Rate and Survival Heuristic for Inference and Robustness Evalua-
tion (Trashfire). Charles Meyers, Mohammad Reza Saleh Sedghpour, Tommy
Lofstedt, and Erik Elmroth. IEEE International Conference on Machine Learn-
ing and Cybernetics (ICMLC), Volume 1, 2024.

This paper formalises a survival analysis method for machine learning appli-
cations that quantifies model robustness in terms of survival time. By compar-
ing this robustness measure to training time, a metric is introduced to quickly
reject model architectures where the attacker has the advantage. This ratio
is presented and dubbed the training rate and survival heuristic, or TRASH
score. The effect of training epochs and model depth on the ResNet model was
examined across several benchmark image datasets to show that deeper models
are not more robust.

6.4 Paper IV

A Cost-Aware Approach to Adversarial Robustness in Neural Networks. Charles
Meyers, Mohammad Reza Saleh Sedghpour, Erik Elmroth, and Tommy Lofstedt.
Submitted for publication September 2024.

Building on the previously developed tooling, the training rate and survival
heuristic from Paper III was applied to model the robustness of machine learn-
ing models as a function of various parameters. Rather than focusing on model
depth and training epochs as in Paper III, this study investigated the impact
of learning rate optimisation and hardware architecture on model robustness,
using the survival models and parallel experimentation software developed ear-
lier. A cost-aware, hardware-agnostic approach to model tuning was verified,
demonstrating that models costing several dollars to train can be compromised
for mere pennies. Additionally, low-cost 8-bit GPUs were shown to outperform
commonly used 32-bit GPUs—not only in terms of cost-efficiency but also in
adversarial robustness. The survival analysis technique from Paper III was
further validated by evaluating the model in this new context.

6.5 Paper V

A Tiny, Client-Side Classifier. Charles Meyers, Aaron P. MacSween, Erik
Elmroth, and Tommy Lofstedt. Manuscript, Umea University, Sweden, 2024.

Prior research has consistently shown that more accurate models tend to be
less robust, that subverting arbitrary model architectures is often trivial, and
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that models are, at best, compressed representations of data intended to remain
private. I n response to these limitations, a lightweight classifier was developed
that performs well across diverse data types and with very small sample sizes.
Additionally, the notion of compression distance was extended to kernel meth-
ods, resulting in improved run-time performance compared to state-of-the-art
approaches. In addition, we offer improvements in run-time compared to the
state-of-the-art.

6.6 Paper VI

Deckard: A tool for robust, declarative, and reproducible AI. Charles Meyers.
Manuscript, Umea University, Sweden, 2025.

To meet the legal requirements mentioned throughout the other works, it
is necessary to build reproducible, audit-able, and explainable software. Due
to the large number of hyper-parameters, specialised hardware requirements,
huge amounts of data, and long run-times associated with modern ML models
(e.g., neural networks), managing and tracking a large number of experiments
can be a headache. Furthermore, as robustness is discussed, it must always
be framed in the context of a particular attack (or a set of attacks) since
the dataset, model, and attack surface will vary in practice. While there are
software solutions around optimising a model within a certain framework, they
are not natively built for adversarial analysis.

Instead of committing to a particular framework (e.g., Keras, Pytorch, or
Tensorflow) and implementing new attacks from scratch in the chosen frame-
work, one can use the proposed flexible software framework for expressing entire
ML pipelines as declarative and human-readable files, which has been named
deckard. Additionally, deckard allows one to run experiments across hetero-
geneous and distributed hardware and allows the experimenter to divide the
pipeline arbitrarily across the available resources. By building a way to reli-
ably reproduce ML experiments on arbitrary hardware platforms with arbitrary
entry-points, using arbitrary software functions, rather than building around a
particular ML framework, the software remains flexible and useful for a wide
variety of existing tool-chains.

Finally, to account for traditional metrics and various robustness criteria,
the software can be used with a variety of multi-objective optimisation algo-
rithms, attack classes, and scoring functions. In this paper, the software is
outlined as a step towards explainable and robust Al
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6.7 Future Work

This thesis contributes to the nascent field of trustworthy machine learning by
introducing empirical techniques for quantifying model robustness, proposing
a privacy-preserving classification model, and providing a platform for repro-
ducible experimentation. Building on this foundation of safety and privacy,
fairness and equity remain obvious next steps. One promising (but otherwise
unexplored) direction is the detection and mitigation of demographic bias in
both training and inference stages of ML systems. Time-to-failure (as outlined
in Papers III & IV) can be used to find under-represented subsets in a test set,
and poisoning attacks could be used to generate synthetic data and mitigate the
effects of this under-representation. By shifting from training-time interven-
tions like poisoning attacks to run-time interventions like evasion, extraction, or
inference attacks, this approach could potentially detect and mitigate sampling
bias, sensor failure, or any other scenario that can be simulated at run-time.

A second important direction is the development of certified robustness
bounds that are grounded not only in adversarial threat models but also in
fairness, privacy, and environmental metrics. Current robustness certification
schemes often assume perfect knowledge of the model, its training procedure,
and its deployment context—assumptions that are rarely met in practice. Fu-
ture research could investigate certification frameworks that are probabilistic,
scenario-dependent, or dynamically updated as systems interact with real-world
environments. Papers III and IV provide examples of this data-driven approach
to model certification.

Third, the work begun in deckard could be extended into a compliance layer
for ML systems, where model deployments are automatically benchmarked
against international standards for safety-critical software. Embedding adver-
sarial robustness, fairness diagnostics, and energy efficiency directly into the
ML development pipeline could help bridge the gap between academic research
and industrial and regulatory needs.

Additionally, environmental sustainability must move from a passive re-
porting practice to an active optimisation target. This thesis outlined pre-
liminary considerations for model cost-awareness, but future systems should
incorporate carbon footprint, hardware lifespan, and resource consumption as
first-class optimisation objectives alongside traditional metrics like accuracy
and throughput. Techniques like carbon-aware scheduling, model quantisation,
and lifetime-aware hardware selection present ripe opportunities for empirical
study and real-world deployment.

Finally, a broader philosophical shift is required. While this thesis falls
short of solving the problem of adversaries in ML systems, it is a step toward
the deployment of ML systems that are not just accurate, but also responsi-
ble, private, reliable, secure, safe, and, above all, trustworthy. Future work
must explicitly reject the culture of chasing benchmark accuracy scores with-
out regard for ethical, societal, and ecological impact. To put it bluntly, at the
time of publication, no truly trustworthy ML systems exist and it is therefore
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incumbent on this author, and the community at large, to make that widely
known and to continue on the path to making such systems a reality.

Ultimately, trustworthiness must become a measurable, actionable, and
legally enforceable property of machine learning systems, rather than a vague
aspiration or footnote in a publication next to the funding statement. This
thesis has laid part of the groundwork for that future, but much remains to be
built.
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Abstract—Considering the growing prominence of production-
level AI and the threat of adversarial attacks that can poison a
machine learning model against a certain label, evade classifi-
cation, or reveal sensitive data about the model and training
data to an attacker, adversaries pose fundamental problems
to machine learning systems. Furthermore, much research has
focused on the inverse relationship between robustness and ac-
curacy, raising problems for real-time and safety-critical systems
particularly since they are governed by legal constraints in which
software changes must be explainable and every change must
be thoroughly tested. While many defenses have been proposed,
they are often comp ionally expensive and tend to reduce
model accuracy. We have therefore conducted a large survey
of attacks and defenses and present a simple and practical
framework for analyzing any machine-learning system from a
safety-critical perspective using adversarial noise to find the
upper bound of the failure rate. Using this method, we conclude
that all tested configurations of the ResNet architecture fail to
meet any reasonable definition of ‘safety-critical’ when tested on
even small-scale benchmark data. We examine state of the art
defenses and attacks against computer vision systems with a focus
on safety-critical applications in autonomous driving, industrial
control, and healthcare. By testing a combination of attacks
and defenses, their efficacy, and their run-time requirements,
we provide substantial empirical evidence that modern neural
networks consistently fail to meet established safety-critical
standards by a wide margin.

Index Terms—Adversarial Machine Learning, Computer Vi-
sion, Autonomous Vehicles, Safety-Critical

I. INTRODUCTION

Vehicular accidents, medical mistakes, and industrial safety
failures are among the leading causes of preventable death
around the world [35], [56], [45]. Technologies like image
classification systems have shown to be more accurate than
their human counterparts under strict laboratory conditions in
these domains [36], [62], [8]. However, prior research has
shown that machine learning systems often fail to correctly
classify images after small perturbations to the original image.
While these “adversarial attacks” [18], [9], define a worst-case
scenario for a given data pipeline, imperfect data is a natural
result of any sufficiently complex system [65]. In this work,
we focus on intentional perturbations to the input space where
the goal is to evade a classifier, but similar perturbations are
a natural consequence of modern neural network architectures

Email: cmeyers@cs.umu.se
Email: tommy@cs.umu.se
Email: elmroth@cs.umu.se

and hardware setups (see Section II-A). Prior research has
shown that proper data sanitation, anomaly detection, and
model retraining are effective ways to combat adversarial
attacks [18], [41], [53], [80]. However, even state of the art
defenses decrease the accuracy when compared to the un-
defended (control) model, suggesting that the actual ability to
generalize beyond laboratory test cases has been overestimated
in the literature. This has been noted before [10], [16], [80],
[53] and we confirm it below (see Section VII). Furthermore,
recent research [29] has shown that most defenses have worse
performance against adversaries not tested at the time of
publishing, arising from the tendency to only publish the ‘best’
results or better methods and hardware that become available
to subsequent researchers.

Further questions about the feasibility of truly ‘safe’ artifi-
cial intelligence (AI) have been raised. For instance, it has
been proven that no matter where we draw our boundary
conditions, there exists an attack that will confuse any (non-
perfect) discriminator or shift its boundary conditions [32].
Additionally, while attacks are always possible on paper, a
cost-aware analysis can reveal the feasibility of such attacks
in practice. It is necessary for any safety-critical system
to be robust to these attacks because, as we demonstrate,
many classes of attacks are reliable even when we restrict
perturbations to a single byte (see Figure 11).

While we are unable to demonstrate safety-critical computer
vision models, there is some remaining optimism due to
techniques like network pruning [72], [28], [47], regulariza-
tion [69], [46], genetically evolved neural network architec-
tures [74], and FIRENETS [24]. However, the efficacy of these
models is reported only with test-set accuracy numbers (see
Eq. 1) that do not reflect the marginal computational cost of
the techniques—which is consistently significant. In practical,
real-time, and/or embedded systems, this is could make the
technique unusable. Therefore, for a practical analysis, we
need a metric that encodes both the change in accuracy and the
computational cost of that change. Furthermore, the already-
existing regulatory requirements for safety-critical electro-
mechanical systems (see: Section II-E and Section V) require
such a high degree of precision that traditional error estimation
techniques (e.g. traditional test-train split methodology) would
be impractical to evaluate for every software change, despite
that evaluation being a legal necessity (see Section II-E and
Section V). Furthermore, in order to estimate the confidence
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region, one must evaluate the techniques across the set of
feasible hyperparameters—an often neglected practice in the
literature which is frequently centered around marginal gains
on benchmark data [31]. This should also include any signal
pre-processing techniques (see Section IV-D), any output post-
processing techniques (see Section IV-D6), and any attacks
(see Section VI), as well as the traditional model hyperparam-
eter optimization.

As such, we evaluated a large suite of proposed attacks
and defenses in the contexts of accuracy, worst-case failure
rate, and computation time. We show that every model defense
configuration reduces the accuracy on benign (unperturbed)
data. We show that, even when a particular defense decreases
the failure rate against a given attack, that that behavior is
inconsistent across distance measures and attack types. Most
importantly, by using adversarial attacks to estimate the upper
bound of the failure rate (see Section 14), we conclude that
each and every tested configuration fails to meet safety-critical
standards by a wide margin.

A. Contributions

o We show that even state-of-the-art defenses fail to make
models that meet safety critical standards even if they
tend to marginally improve the failure rate.

« We apply time and cost analysis for both the attacks and
the defenses, something rarely done in the literature.

« We provide new insight into the robustness versus accu-
racy problem.

e We establish a standards-based framework for testing
safety-critical computer vision systems in a way that
meets regulatory standards without needing an infeasible
number of test images.

e We survey a large suite of attacks and defenses to
examine how each defense fares against each attack,
measuring accuracy, worst-case failure rate, and run-time
requirements in the context of safety-critical systems.

II. BACKGROUND

Machine learning, artificial intelligence, and automated data
collection are increasingly used in safety-critical applications
like autonomous vehicles [41], [3], medical imaging [22],
[71], and industrial control [38], [58]. Convolutional neural
networks (CNNs) have demonstrated unparalleled accuracy in
image classification tasks; however, CNNs have been shown
to be very fragile to adversarial attacks [57], [34]. Research
points to societal trust in fully automated banking thanks
to, among other things, verifiable transactions and guarantees
from the issuing institution [1]. However, when it comes
to real-time, safety-critical deep learning, models are rarely
reproducible or verifiable [77], [16]. Despite the drawbacks of
deep-learning, modern aviation relies on an array of sensors
to make largely automated decisions, relying on a framework
of component testing and simulation [67]. While similar test
suites for adversarial robustness have been proposed [16], [18],
they rely on de facto accuracy goals rather than a solid theoret-
ical and legal framework. The problems with this are plentiful.
Historically, marginal gains have relied on exponentially larger
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models to produce increasingly marginal gains [31]. These
models rely on increasingly larger datasets [31], [79], [13],
which increasingly come from fewer sources [48], leading
to gender-biased models [54], racism [15], and fatal design
errors [6] This is a trend that goes back decades [27], [66],
[15], leading to, for example, significantly higher fatality in car
accidents for female-bodied people [33] or neural networks
that unintentionally encode racial information from medical
imaging data alone [39]. Furthermore, data collection can be
expensive [68], raises serious privacy concerns [12], increases
time to market [50], and impedes development speed [86].
Furthermore, research is focused on metrics that tend to be
optimistic at best [55].

A. Image Classification Systems

In general, an image classification system, K, attempts
to parse some image input signal, x, and output one of k
class labels, § = K(x), with § € {1,...,k}. Each image
is represented as a multi-dimensional array of n x m pixels,
with bit depth b and color depth ¢, such that they are of size
%Lb” bytes. When the model is a neural network, the images
are passed into a composition of ‘layers’, each layer typically
performing an affine transformation followed by a non-linear
element-wise transformation (called an activation function).
The free parameters of such a composition of layers (called
an ‘architecture’) are found by minimizing a loss function,
L(y, K(z)), that penalises differences between a true label,
y, and an estimate, §. When the problem is a multi-class
classification, the loss function could, for instance, be the
categorical cross-entropy loss [10], [77], [29], [16].

a) Adversarial vs. Benign: The accuracy is measured
as either benign or adversarial accuracy. The former refers
to the model performance on the original dataset (de-
noted unperturbed/benign/ben.) and the latter refers to a
dataset generated by an attacker crafted to fool the model
(denoted perturbed/accelerated/adversarial/adv.). In general,
electro-industrial safety systems are governed by the Inter-
national Electrotechnical Commission, IEC 61508 [26], and
medical software in particular requires continuous failure
rate testing adding a massive computational burden to the
development phase as governed by IEC 62034 [25]. In general,
acceptable risk is expressed as a matrix (see Table I) where
these classes are known in the standard as the safety integrity
level (SIL), which then corresponds to different failure modes
for components that act on-demand (e.g., medical imaging)
or ones that act continuously (e.g., object detection in au-
tonomous cars). In general, for safety-critical systems, we aim
for SIL levels III or IV, corresponding to failures that lead to
injury or death respectively. Additionally, SIL levels I or II
are generally considered to be unacceptable. In the context of
safety-critical systems, whether the component be hardware
or software, each component must meet the requirement in
isolation, raising questions of legal compliance for any system
that relies on proxy models, attack detection, or any other type
of out-of-band component to ensure safety.



B. Adversaries

In general, an attacker seeks to maximize the loss against a
given model rather than to minimize it. This is accomplished
by perturbing samples from one class so that they fall within
the highly confident region of another, incorrect class. That
is, attacks, by definition, are the worst-case perturbations
of a given sample for a given model. While the literature
focuses mainly on intentional adversaries, we posit that small
perturbations of the input space are inevitable given the nature
of real-world systems and that adversarial attacks simulate
these failures. That is, things like calculation error, lens flare,
lens aberration, dust, sensor failure, low-light conditions, and
precipitation will all create noise that could inadvertently
become adversarial. So, in an effort to measure and minimize
these failures, we evaluate models against several possible
attacks that attempt to induce different types of failures (see
Section IIT), each of which is subject to its own optimization
criteria.

i

Fig. 1. A ‘7" perturbed with adversarial noise such that the model perceives
it to be a ‘2.

a) Attack Distance: Figure 2 depicts a radial basis func-
tion support vector machine, classifying the points into orange
(class 0) or blue (class 1). However, the red points indicate
successfully generated adversarial examples. Figure 1 shows
an example of a ‘7’ that has added adversarial noise such
that the classifier sees it to be a ‘9’. In related surveys [32],
[9]1, [7], [18], [16], [29], a model’s adversarial robustness is
defined as its performance accuracy against a given adversary.
A thorough examination of such attacks are explored in
Section IIT below, but, in general, an attacker perturbs an image
such that the perturbation distance, d, is less than or equal to a
threshold value, ¢, specified by the experimenter, under some
conception of distance. The evaluations in this study examine
both the (., and /3 norms for the gradient-based attacks and
{1 in other contexts, which consider perturbations no larger
than e, where ¢, and ¢y allow for perturbations across the
entire feature space, and ¢ restricts the number of perturbed
features. In our study, we restrict this perturbation distance to
be 1 byte, as is typical in the literature [55], [57], [10], [11].

b) Attack Strength: Since adversarial perturbations, by
definition, are the perturbations that maximizes the model loss
through various methods, each approximates a different worst-
case scenario. The ‘strength’ of an attack is generally related to
the magnitude of these perturbations [16], and is measured by
retrospective evaluations of model accuracy in which a ‘strong’
attack induces more loss. It is necessary to evaluate against

the strongest possible attack for a given model and data set,
but the strength of an attack is always contextual, since the
magnitude of a perturbation must be measured with respect to
some normed vector space, is specified in advance, and subject
to real-world constraints. Additionally, we know that models
optimized to prevent one attack do not necessarily generalize
to other attacks [16], especially across distance metrics.

C. Defenses

The attacks outlined above are capable of breaking state
of the art image recognition models. However a variety of
defenses have been proposed that act on the dataset or the
model output. Those broadly fall into categories that seek to
identify an attacker and isolate them from the model API, ones
that seek to isolate tainted examples from the database, or ones
that attempt to mitigate all potential attacks during run-time.
Below, we outline a wide variety of defenses proposed over the
last several years and measure their effect on the failure rate
of various models. We have excluded model transformation
defenses and secondary detection models since those sidestep
the problem of making a given model more robust and do
nothing for the IEC requirement that each electro-mechanical
component meets the regulatory standard in isolation from
each other component (see Section V).

D. Attacker’s Knowledge

While the general assumption is that an attacker has
whitebox access to an entire pipeline (including data, model
weights, and output), that does not necessarily need to be
the case [20], [18]. While some attacks do need whitebox
access, prior research [20], [60] has shown that a surrogate
model and data-set can be used to approximate K using
a proxy model K, built using the class labels provided by
the model at test-time, that is sufficient for creating strong
adversarial examples. Tramer er al. [76] examined popular
machine learning as a service platforms that return confidence
values as well as class labels, showing that an attacker can
build a proxy model by querying p+ 1 random p—dimensional
inputs for unknown p+1 parameters. Further research [37] was
able to reverse engineer the training data-set through black-box
attacks against a model that returns confidence levels, with
the caveat that the inferred data might be a meta-prototypical
example that does not appear in the original dataset.

Fortunately for our attacker, such examples are still useful
for determining the underlying data distribution, even if they
manage to preserve some of the privacy of the original dataset.
Shokri et al. [73] presented a membership inference attack that
determines whether a given data point belongs to the same
distribution as the original training data using a set of proxy
models. Below, we examine the efficacy of several attacks
from the perspective of loss as well as the functional query
bandwidth.

E. Metrics

[Note: This subsection has been moved. It was previously
before the adversary and defence sections.]
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Fig. 2. Orange (class 0) points, blue (class 1) points, and red (adversarial) points in a contour map for a radial basis function support vector classifier. The
contours reflect the confidence levels for a given sample and class. The bright yellow regions indicate areas of strong positive confidence and the purple areas
indicate strong negative classification, and grey represents an uncertain classification. As we can see, it is rather trivial to shift the classification of a given

sample towards the ambiguous regions (teal colored).

The ISO standards [61] define the Safety Inegrity Level
(SIL) in failures/per hour, which we have converted to failures
per second in Table I. If assume that accidental adversarial
errors are possible in real-world systems due to things like
dust, lens flare, component failure, packet loss, etc., it naturally
follows that the adversarial failure rate is an estimate of the
models behavior at the edge or in the ‘worst-case scenario’.
That is, the adversarial failure rate is an estimate of the upper
bound of the real-world failure rate in adverse but otherwise
mundane circumstances.

a) Accuracy: The accuracy is defined as

False Classifications
Total

where Total is the number of tested samples, False Classifi-
cations refers to the number of objects that were incorrectly
categorized by a given model[, and 7 is the generalized error
rate. In practice, 7 is generally assumed to be the accuracy on
a ‘test set’, with samples from a distribution assumed to be
identical to the training set. Elsewhere, we refer to this ‘test
set’ accuracy as the ’benign’ accuracy or with the subscript
‘ben.” such that the test accuracy is 7pen.. In addition to this
metric, we include metrics for a variety of signal processing
techniques (see: Section IV) where the unaltered signal is
designated as ‘control’. Finally, we include many sets of test
sets specifically crafted to be ‘adversarial’ (see: Section III),
which are denoted with the subscript ‘adv.’.

However, due to the large number of samples required by
regulatory standards and the strenuous testing requirements
of safety-critical software (see Section V), these evaluations
become an infeasible way to verify that a model only fails once
across the required number of samples (see Table I), especially
if we would like to be highly confident of that estimation.

Accuracy =1 — =1-7n, ({1
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TABLE 1
ACCEPTABLE FAILURE RATES FOR DIFFERENT SIL LEVELS IN WHICH A
SINGLE DEATH IS POSSIBLE, MEASURED IN FAILURES PER SECOND.

SIL On-demand Operation ~ Continuous Operation
1 [10-6,107?) [10710,1079)
Il [1077,1079) [10711,10710)
il [10-8,1077) [10712,10711)
v [1072,108) [10~13,10-12)

b) Failure Rate: Instead of evaluating every software
change in our pipeline against the legally required [107,10'2)
number of samples, we can measure the precise failure rate
(elsewhere \) with a much smaller number of samples if we
measure it with

Failure Rate — False Classifications _ ,

Total Time (s) @

where False Classifications is the number of misclassified
samples, and Total time refers to the total time it takes to
classify all the samples.

FE. Robustness

Robustness, then, is a measure of how well a model resists
these induced failures. In this survey, we examine how several
different model and data transformations (see Section 1V)
influence this property for a given model architecture and
dataset. We measure the efficacy of a given model change,
using the Percent Change in Accuracy (NAACC):

Acc. — Control Acc

AAACC = Control Acc

100 3)



where Acc refers to the accuracy as defined in Eq. 1 and
Control refers to the performance of the unchanged model
on the benign (Ben.) dataset. This measures the marginal
risk of failure for a particular model change (defense) in the
adversarial case when compared to the benign case. We also
defined the the metric Relative Change in Failure Rate (A\):

)\control - A

AN = 3

“
where \ refers to the failure rate, Control refers to the
unchanged model. Taken together, these two metrics allow
us to measure the marginal risk of a given defense in both
the benign and adversarial circumstances. In both cases, a
positive number indicates an improvement in relative risk and
a negative number indicates a worsening of relative risk, Eq. 3
in the context of accuracy and Eq. 4 in the context of failure
rate.

G. Hyperparameter selection

For many attacks, hyper-parameters such as the targeted
false confidence threshold, step size, batch size, number of
iterations, and distortion norm must be specified in advance
by the attacker [16]. Furthermore, because many of these are
drawn from a continuous (and therefore infinite) space, finding
a strong attack is computationally expensive and finding the
strongest possible attack is at least NP-Hard [16], with the
problem exacerbated by the extreme non-linearity of CNNs.
Even more concerning, there is not yet a mathematical foun-
dation for what constitutes a ‘good’ attack, relying only on
after-the-fact evaluations of model accuracy. By examining
a large hyper-parameter space, we demonstrate how each
defense generalizes across the feasible attack spectrum rather
than relying on a single canonical evaluation metric.

H. Attack and Defense Cost Analysis

Like in cryptography, the fundamental limit for an adversary
has to do with computational cost [44]. For example, model
inversion attacks become pointless if it is computationally
more expensive to steal a model than it is to train one.
Likewise, model defenses are only as useful insofar as they
have the ability to be deployed in existing real-time systems.
As such, we examine the cost of various defenses as well as
the number of queries and query rate of various attacks. The
best modern methods are limited to computationally expensive
techniques like reject on negative impact [60], Bayesian sub-
set analysis [7], and model post-processing techniques that
degrade accuracy with added computational cost [5], [75],
[53], making them unsuited for the task of improving our
ability to reliably generalize. For most attacks, we tested the
perfect knowledge scenario, but we have also included the
‘HopSkipJump’ attack [20] to model the worst case for an
attacker that only has access to a standard machine learning
application programming interfaces (APIs) which only exposes
hard class labels.

III. ATTACKS

The following section outlines a variety of attacks, broken
into three categories: gradient-based attacks, gradient approx-
imating attacks, and universal attacks. For the sake of the
reader, a collection of generated adversarial samples follows
the mathematical descriptions in the subsection following the
aforementioned trio (see: Sec. III-D).

A. Gradient-Based Attacks

The seminal work on adversarial attacks in the context of
modern neural networks was written by Madry et al. [55] and
an important follow up work was written by Carlini and Wag-
ner [16]. Both operate under the condition that the attacked
model has a gradient that is known to the attacker. Each of
these can be considered white-box attacks because they are
given access to the model output and the model gradient.

1) FGM: The fast gradient sign method (FGM) [40] is the
most basic and fastest such attack. It is defined by the step,

T=x+e¢- sgn(VmL(y.,K(x))>,

where L is the loss function, as described above, VL is the
gradient of L with respect to the input z, the € is the maximum
perturbation distance, sgn is the element-wise signum function,
and 7 denotes a generated adversarial sample. It is called ‘fast’
because it does not check the feasibility of the perturbation (if
it is within a maximum distance, ¢, as is done in other methods,
see e.g. PGD below).

As such, it may not be as successful as other methods, but
operates very quickly. We tested several different step sizes
and norms for this method, enumerated in Figures 11 and 18.

2) PGD: Projected gradient descent (PGD) [16] takes a
gradient step to increase the loss, but also includes a projection
step, Proj., that enforces the constraint of a perturbation
distance q of at most € with respect to some norm by projecting
onto the feasible set (defined by the perturbation distance, ¢).
The iteration scheme of PGD is

2D = Proj, (+9) + 7 V0 L(y, K(29)) ),

where r is a step size, s is a sequence index, and z(%) denotes
a generated adversarial sample after S steps. This iteration is
repeated until a specified number of iterations, .S, have been
reached. The number of iterations is specified by the attacker,
which ultimately determines the processing-time against a
given model, scaling linearly with the number of iterations. We
tested several different step sizes and norms for this method,
enumerated in Figures 11 & 18.

3) Carlini-Wagner: Carlini and Wagner (CW) [16] devised
an attack that minimizes the perturbation distance subject to
a distance constraint while maximizing the false confidence.
The iteration scheme is for some constant, C,

£0+) = arg min || 2*) —z || 3+ C max (Injx g;(z)—gi(x)+C,0)
x J#t

where the g;,g; are discriminant functions and the goal is

to minimize the perturbance with a penalty for not changing

it to the target class. It also generalizes beyond the squared
{5 norm. This method attempts to enforce attack quality by
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penalizing examples with low confidence and continuing to
iterate on them until either a maximum number of iterations
or the specified false confidence is reached. For our tests, we
used the £, norm and a confidence threshold of 99%.

B. Gradient-Approximating Attacks

Further work sought to find attacks that did not rely on
explicit gradient information. The Deepfool attack [59] uses a
quadratic approximation of the boundary condition to generate
a separating hyperplane, while Few-Pixel and Threshold [49]
use a search algorithm known as differential evolution rather
than relying on explicit gradient information. Each of these
attacks can be considered grey-box attacks because they rely
on un-categorized model output but use that output to approx-
imate the gradient, rather than rely on explicit access to the
model weights.

1) DeepFool: The DeepFool attack [59] seeks to find the
smallest perturbation that causes a misclassification using a
first-order Taylor approximation of the classifier. In essence,
it seeks to find the minimal separating hyperplane between the
target sample’s true class and another. It assumes that it has
access to the entirety of the model, including the confidence
level (expressed as a logit) of all labels, the true label of a
sample (z) and the model gradient. The iteration scheme is

26D = argmin [|2(®) — x|,
x
subject to

F@9) + Voo f() (@) —2) =0,

with || - ||2 is the £o norm, and where f outputs the logits of
K, such that K (x) = ¢(f(z)), with output activation, ¢. Run-
time is determined largely by the number of iterations, S, and
the number of gradients w.r.t. L(x) used to estimate f(z),
which we set to 10 such that the gradient was calculated for
each class. The existence of any such attacks with a distance
than or equal to some some specified robustness threshold
(€ < €criticar) Should immediately cause concern.

2) Few-Pixel: The few-pixel attack [49] (Pixel) attempts to
maximize the loss by iteratively finding the least robust pixel
set and perturbing it by less than some specified threshold,
e. That is, this attack seeks to maximize false confidence
while minimizing the number of perturbed pixels. The iteration
scheme is

26+ = argmax L(y, K (2 + 7)) subject to [|r]lo < e,

where 7 is the perturbation and e is the perturbation distance in
pixels, typically of just one pixel. This attack uses differential
evolution to simultaneously optimize for both loss and the
number of perturbations. In our case, we limited this to a single
perturbation, but did not restrict epsilon beyond the normal
[0,255] range. Since perturbation distance for a single pixel
is not restricted, we restricted the number of distorted pixels
to one of these: [1,2,4,8,16]. Unlike the aforementioned
gradient-based attacks, this method generalizes to classifica-
tion systems that lack gradients (e.g., decision trees). This
differs from the the Threshold and Adversarial Patch attack
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below by optimizing for the fewest number of changed pixels
(€p norm) rather than the perturbation distance (¢5 or {).

3) Threshold: The threshold attack [49] is similar to the
few-pixel attack (in that it uses differential evolution as the
optimization algorithm), but uses the {,, norm rather than
the ¢y distance. This method, like the Carlini Wagner (CW)
method, attempts to generate examples that are both false and
highly confident. However, it uses a complicated algorithm
(differential evolution) rather than simple, linearized methods
(as in CW). The iteration scheme is

26D = argmax L(y, K(z*) +r)) subjectto [r]le <€
T

where € is the targeted perturbation threshold of .03. Unlike the
aforementioned gradient-based attacks, this method general-
izes to classification systems that lack gradients (e.g., decision
trees). This differs from the the Few-Pixel and Adversarial
Patch attack below by optimizing for largest change in loss
(¢; norm) rather than fewest number of pixels (¢, norm) or
the perturbation distance ({2 or {).

C. Universal Attacks

Even further work has sought to go beyond computationally-
intensive approximations for each attacked sample or model
query. The Adversarial Patch technique [14] uses the afore-
mentioned differential evolution algorithm to generate an
additive noise sample that maximizes the loss for all sam-
ples and is considered a grey-box attack because it relies
on un-categorized model outputs but not explicit access to
the model weights. However, we include it here because
the nominal image patches generated by this technique are
meant to generalize to unseen data as the number of API
queries increases, meaning that this can be trained using data
wholly disconnected from the model-builder’s dataset. The
HopSkipJump attack [20] has been shown to minimize the
number of API queries required to break any model. As such,
it is considered a black-box attack.

1) Adversarial Patch: The Adversarial Patch attack [14]
(Patch) uses the same differential evolution algorithm as
the Threshold Attack. However, instead of optimizing for a
threshold or confidence level, it seeks to change each class
into any other by applying an image patch that is not unique
to a given image, but is universal for a given dataset. This
single generated image patch is added to each image and
is intended to cause a generic misclassification, regardless
of the original class. We know that these attacks are quite
general for a given dataset and not specific to a given model
[14], [82], raising serious concerns about an attacker’s ability
to generate universal and offline attacks for a given set of
data. Like with the Pixel attack, the per-pixel distortion is
not restricted, so we restricted perturbation to a percentage
of the benign image, using the hyper-parameters [.03, .1, .25,
.5, 1.0]. Unlike the aforementioned gradient-based attacks, this
method generalizes to classification systems that lack gradients
(e.g., decision trees). This differs from the the Threshold
and Adversarial Patch attack below by optimizing a single
perturbation that works for every image rather than minimizing
the geometric perturbation distance (f2 or {,, norm) while



minimizing the number of pixels required for said universal
patch (¢p).

2) HopSkipJump: The HopSkipJump attack [20] (HSJ) is
a query-cost-aware model that acts on hard class labels rather
than confidence levels (i.e., a blackbox attack). It finds a
point on the boundary (using binary search between the initial
attacked point and a point on the other side of the decision
boundary), and approximates the gradient at the boundary
using Monte Carlo sampling in an offline manner. Then, a step
is taken in the approximated gradient direction, the model is
queried again with the new points, and the process is repeated.
The procedure iterates the step,

4?,(5)62(1(5)) >
||va:(5)Q(z(S))||2 7

where z(5) is an adversarial sample, s a sequence index,
Proj, . is an £3 projection of a point onto a sphere of radius

26 = Proj,_ o (x(”) + ()

¢, centered at the initial point #(%), and V,Q(x) is the Monte
Carlo estimate of the gradient of ) at x, and

Qz) = {1;‘?}51(((1) — K- (),

where K. is the model output for class ¢, and ¢* is the class
of the initial point, #(®). This attack’s run-time is controlled
by the number of (offline) gradient estimations, the number
of random samples per (online) query, and the number of
iterations of both parts of the algorithm. This attack finds
an adversarial example that is close (¢ < €cpiticar) to the
original sample, but still causes a misclassification. This model
is query efficient as it uses a small number of API queries
to approximate the gradient and then uses this information to
approximate the gradient near the class boundary and optimize
the perturbation distance of the attacked sample. Also, because
this attack approximates the gradient rather than relying on
explicit whitebox access to it, it can be used to attack non-
differentiable models (e.g. random forests). That is, this is one
of the most universal black box attacks.

D. Attack Samples

To aid the reader, we have visualized a single attack sample
for each attack on the undefended (control) model, depicted
in Figures 3- 10. Additionally, we have provided the failure
rate, 7, defined in Eq. 2, and tested on 100 samples from
the MNIST dataset. For each attack, we also vary a distance
parameter, determined by the optimization criteria for each
attack outlined above. For the sake of clarity different distance
metrics are denoted with a distance of epsilon subject to some
norm, | - |, such that 5 norm of € is |e|2

IV. DEFENSES
A. Attacker Identification

We must assume that at least some of the user inputs will
‘adversarial’, even if that adversary is sensor failure and not an
intentional attack. Identifying and isolating this adverse input
may not require a perfect anomaly detection system, but could
draw from graph theoretical representations to identify and
isolate networks of distributed attackers, allowing the model

API provider to revoke access or otherwise isolate the attack
effects from the models. While this has been done in the
context of social networks [30], these techniques can easily
be fooled with intermittent attacks [63], distributed attacks [4],
or something as simple as a quadratic approximation of the
model [20]. For web services more generally, legitimate users
are often identified by using CAPTCHA [2], but that it not a
solution for an API meant to be accessed by software. Fur-
thermore, outsourcing this to a secondary component would
run afoul of the IEC requirement that each component meet
regulatory standards in isolation from all other components
(see Section V). However, even if we assume all samples are
generated by legitimate users with guaranteed data integrity,
we still cannot be confident that ‘adversarial’ noise will not
be generated inadvertently by routine phenomena like sensor
failure, dust, low-light conditions, lens aberration, precipita-
tion, or another mundane cause. One possible approach is to
eliminate ‘bad’ samples at run-time.

B. Subset Analysis

Subset analysis [64] examines how a particular sample
changes the model’s performance [64]. By exhaustively com-
paring the model accuracy on various subsets of data, it
attempts to isolate adversarial samples by removing ones that
lead to worse-performing models (i.e. the sample is ‘bad’).
If the database is large, this becomes an incredibly expensive
task. This method also assumes that all ‘bad’ data is, in fact,
adversarial and not a legitimate measurement of real world
circumstances. Another method, called ‘Subset Scanning’ [23],
examines the hidden layers of a neural network to ensure that
a particular sample looks ‘typical’ as it passes through the
models layers rather than just at the final layer. This comes
with the added cost of tracking the model through each of these
layers for each of these samples, which becomes infeasible in
real-time systems due to the size and complexity of neural
networks and their associated datasets.

C. Attack Mitigation

Rather than relying on a generic framework for detecting
and preventing all attacks, as discussed above, there are
mathematical foundations for avoiding the impacts of adver-
sarial attacks during model creation. These are either ‘pre-
processing’ defenses or ‘post-processing’ ones in which alter
either the data (pre-processing) or the model output (post-
processing) to mitigate the risk of an attack. In general, the
goal of these defenses is to reduce the noise in the input, or
to reduce the precision in the output, corresponding to the
pre- and post- techniques. In this way, we seek to examine
how modern neural architectures perform on the generalized
1-byte spherical perturbation that surrounds a true example
of a given class, rather than rely on external components to
identify and mitigate the attacker.

D. Pre-processing

There are a variety of ways to change the data before train-
ing so that the resultant model is more robust to adversarial
perturbations.

I0)



Fast Gradient Method
|€]2=0.001

0.01 0.1 0.3
n=0.0 0.0 0.09 0.6

Fig. 3. The Fast Gradient Method (FGM) doesn’t enforce any kind of feasibility criteria, resulting in salt-and-pepper noise as the £2 approaches the standard
deviation of the normally distributed dataset.

0.91

Projected Gradient Descent
|€]2 =0.001

0.01 0.1 0.3
n=0.0 0.0 0.45 1.0

Fig. 4. The Projected Gradient Descent Attack (PGD) projects the adversarial example back onto a sphere of a fixed radius, yielding noise that more closely
approximates handwritten digits.

Carlini £, Method
C=38 16 32 64 128 255
n=0.1 0.1 0.1 0.1 0.1 0.1
Fig. 5. The Carlini-Wagner {oc method includes an added confidence constraint that only returns an adversarial example <= L(z*t!) — L(z) > C.

Depicted here is the unperturbed 7 because this method was unable to find an adversarial example for these constraints. Despite this, we can see that for 10%
of the samples are consistently misclassified with a high degree of false confidence.

DeepFool

|€]2 = 0.001 ) 0.1

n=0.6l 0.61

Fig. 6. The DeepFool Method, rather than constraining perturbations to an e-sphere around the sample, finds perturbations that extend beyond the approximated
boundary by a distance of at least e. Regardless of the distance constraint, DeepFool is very effective.
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Pixel Attack

|€]lo=0% 0% 1% 1% 2% 4%
n=0.02

Fig. 7. The Pixel Attack (Pixel) seeks to maximize the loss while minimizing the number of perturbed pixels. Here we see that even a small perturbation
in original image can lead nevertheless consistently induce failures. Here, €y denotes the ratio of perturbed pixels to the total.

Threshold Attack
|€]ew =3% 6% 13% 25% 50% 100%

n=0.0l

Fig. 8. Rather than minimizing the number of pixels, the Threshold Attack (Thresh) optimizes for the smallest perturbation possible. Here, € denotes the
ratio of the applied to noise to the maximum possible value (255).

Adversarial Patch

|€lo=10% 30% 50% 70% 90% 100%
0 66 0.9

Fig. 9.  This is one of the two most dangerous attacks as it can consistently find image patches (the noisy circle depicted above) from only a small number
of samples (n = 100) that can often fool the classifier, regardless of original image or class. Obviously, as we replace all of the pixels with adversarial
noise, the classifier becomes mostly useless, but this attack is still concerningly effective when only a fraction of the image has the adversarial noise. Here,
€0 denotes the ratio of perturbed pixels to the total.

Hop Skip Jump

1000

71717171717

n=0.98

Fig. 10. The Hop Skip Jump Attack (HSJ) uses a second-order approximation of the classification boundary in an offline manner to find adversarial examples
that first maximize loss then minimize for perturbation distance. This attack is uniquely concerning because it 1) works on any model and 2) is surprisingly
effective even when our attacker is restricted to a small number of queries per batch (here, denoted as Q).
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1) Gaussian Augmentation: The most straight-forward de-
fense (Gauss-In) is where random Gaussian noise is added to
the input data and the model trained without modifying the
class labels [84]. If we replace real samples with noisy ones,
the processing time and space are marginal. We tested noise
with standard deviations of .9, .99, and .999 on data that was
zero-centered and normalized.

2) Label Smoothing: The label smoothing (denoted Label)
defense [81] sets a cap on the confidence level for a given
model output. If the output layer outputs a number higher
than this cap, it uniformly distributes the difference across all
classes. In this way, it obscures the model output, reducing the
effective query rate for the attacker. In our experiments, we
set this threshold to be 99%, 99.9%, or 99.99% which itself
is far below the regulatory standards outlined in Section V.

3) Feature Squeezing: The feature squeezing (FSQ)
method [83] reduces the bit depth of the input image to a
specified value, treated as tunable parameter, which hopefully
increases the signal to noise ratio. The initial processing
time merely requires setting some bits to zero which can
be vectorized and parallelized, and scales with image size.
However, the resulting model can use smaller data-types and
potentially operate faster and require less memory. We tested
bit-depths of 32 and 16 (the control is 64 bit and the images
are 8 bit).

4) Total Variance Minimization: Total variation minimiza-
tion (TVM) is an image de-noising techniques that dates
back decades [70]. It exploits the fact that images with
spurious details have high total variation. This defence is
effective at preserving edges within an image, and encourages
spatial homogeneity such that large jumps in intensity between
neighboring pixels are penalized, leading to a smoother image,
determined by some specified noise level. This minimization
problem is non-trivial, and there are several specific and
tailored algorithms for it [19], [42]. Thus, we tested several
combinations of the noise level (denoted ‘prob), enumerated
in Figures 11 and 18.

5) Adversarial Re-training: Adversarial retraining (Re-
train) is a method proposed by Croce et al. [77], that ap-
pends adversarial examples to the training set, labels them
‘adversarial’ and trains a classifier on the new (larger) dataset.
The first problem with this method is that the training time
increases linearly with the number of re-training epochs,
with twenty retraining cycles being recommended in the
original paper. Furthermore, ‘adversarial re-training’ must be
conducted against each type of attack individually since the
topological characteristics of attacks vary widely. An extension
seeks to encode ambiguity between an adversarial example
and both the original and target class, called ‘confidence-
calibration’ [29] by changing the class label from an integer to
a float that decays with distance from the ’true’ image. While
it offers improved results over other types of adversarial re-
training, it optimizes against a particular type of failure which
inherently degrades performance against others [16].

6) Post-processing: There are a variety of ways to change
the the model outputs so that the user-exposed API reveals
less information to the attacker.
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a) Gaussian Noise: This post-processing defense
(Gauss-Out), like its pre-processing counterpart adds
Gaussian noise, but in this case, it applies it to the model
outputs [51]. Since it acts on a discrete output vector, the
marginal cost is negligible in comparison to image processing.
However, it’s efficacy is tied to reducing the accuracy of the
API by an amount proportional to the variance of the added
noise. That is, it reduces the number of useful output bits
available to an attacker (as well as legitimate users).

b) High Confidence Thresholding: Rather than decrease
the precision of the output as in other techniques, this method
(Confident) only returns model output if the confidence level
exceeds some threshold specified by the model builder [21].
While this does make it harder for an attacker to calculate
a gradient step, the attacker can circumvent it by taking
a step large enough to overcome the thresholding (i.e., by
changing the model output by more than twice the cut-
off value, ensuring that the classification ‘jumps over’ the
obscured boundary) HopSkipJump is a query efficient model
for doing exactly this [20], but any other method could be
effective by simply increasing the perturbation threshold such
that perturbation extends beyond the ‘fuzzy’ class boundary.
In our experiments, we set this to be equal to 50%, casting
the normal one vs. one problem into one vs. the sum of
the rest, ensuring that the transformed model returns no
classification if the confidence of the label does not exceed
the total confidence of the other labels. To simulate scenarios
in which low-confidence classifications are merely ignored
(which, in practice, could mitigate an attacker as they generate
their attack), we exclude all such samples from the accuracy
calculations for this defence.

¢) Rounded: Instead of obscuring the output data with
noise or only reporting highly confident answers, this method
(Rounded) merely reduces the bit depth of all the reported
confidence levels [85]. Instead of a 64-bit output vector, this
might be reduced to an 8-bit vector reducing the effective
attack query rate by a factor of four. However, this harms the
legitimate user by the same degree by reducing the precision
of their queries as well. For our study, we used several
different numbers of decimals, reflecting the number of base
10 digits in the set [0, 1] revealed by the API. enumerated in
Figures 11 and 18.

d) Reverse Sigmoid: The Reverse Sigmoid (denoted Sig-
moid) defense [52] changes the activation function from the
rectified linear unit (ReLU) or the Weiserstrass o-function to
a function that retains the approximately linear behavior when
the confidence is near 0 but instead of asymptotic convergence,
model confidence eventually decreases rather than converging
to one. The Reverse Sigmoid activation function, A, is defined
as,

Alyi) = o' (yi — Blo(vo ™ (yi) — 1/2))),

where «, 3, are scaling parameters, specified as hyperpa-
rameters, y; is the class label of sample ¢, and o is the
logistic sigmoid function. Run-time requirements are basically
identical to other activation functions as the goal of the model
builder is to remain more-or-less along the linear section of
the function. This has the effect of preserving y = f(z) while



ensuring that the class label, §, # K (x). In essence, this traps
an attacker in a local minimum that is in the opposite gradient
direction of the global minimum. Even if this defense is
known to an attacker, the non-bijective nature of this function
makes the model non-invertible (beyond specified thresholds)
to gradient descent methods. Alpha is a scaling parameter that
is determined by /3 and -y, both of which must be positive. Both
3 and y were evaluated in a grid search of the set [.01, 1, 100]
for each variable, yielding 9 combinations.

V. SAFETY CRITICAL COMPUTER VISION: A FRAMEWORK
FOR ROBUSTNESS GUARANTEES

A. Safety Critical Computer Vision

Since the bulk of the literature focuses on image classifica-
tion systems [32], [9], [7], [18], [16], [29], we chose to stress
test them in the contexts of autonomous vehicles, medical
imaging, and industrial control which are each governed by
pre-existing standards across the different domains. Safety-
critical software is already widely deployed in other electro-
mechanical systems like vehicular braking systems [17], avi-
ation [67], and medical implants (e.g., pacemakers) [78].
The International Standards Organization provides a safety-
threshold of 10~ failures per second for any life-threatening
situation [61] and 107% [61] for any risk of harm, re-
quired of any automotive or aviation system governed by
ISO 26262 [61]. For an autonomous vehicle trying to classify
objects on the road, a false negative classification of, for
example, a cyclist could lead to death; whereas, a false positive
detection of a cyclist would be more likely to cause braking-
related injuries that are less severe. For medical imaging, a
false negative classification could mean loss of life; whereas,
a false positive is less likely to cause grievous harm (but
likely to be lead to expensive and unnecessary additional
testing). Understandably, these correspond to the differing
legal and technical requirements outlined in these international
standards.

B. A Framework for Robustness Guarantees

Since adversarial failure rate provides a worst-case estimate
of the failure rate for a given context (see Section II-E), we
propose a safety critical testing framework that (1) evaluates
the benign and adversarial failure rate across several attack
metrics (as dicated by the safety-requirements of the system)
(2) repeats those evaluations across a feasible hyper-parameter
space to estimate a confidence interval for the values in (1),
and then (3) rejects any model that does not consistently meet
the standards outlined in Table I as unsuitable for safety-
critical systems. The limitations of this approach are discussed
below in Section VIIL

a) Advantages: Because of the relatively small run-time
requirements of this approach (when compared to testing
against massive in-distribution test sets), this method could,
for example, act as a unit test in machine learning applications
rather than relying on full-system integration tests to evaluate
changes to a single model, signal processing technique, data
storage format, or API access mechanism. It could also be
used to highlight error-prone classes or other subsets of data

to reduce error or create synthetic samples. Furthermore, by
isolating changes and testing them as quickly as possible,
it’s much easier to parse cause and effect when compared to
full-system integration tests that could include many changes
from many different development teams and require live and
potentially dangerous systems (like cars or MRI machines) to
effectively test. To further increase development velocity, we
propose metrics Eq. 3 and Eq. 4 as standards for evaluating
not only the efficacy of a given change, but as tools to quantify
the marginal risk associated with each change, as dictated by
the ISO 26262 standard [61].

VI. EXPERIMENTAL METHODS

In this study, we evaluated the accuracy (see: Sec. 1) and the
failure rate (see: Eq. 2) for a variety of attacks (see: Sec. III)
and defenses (see: Sec. IV) using the methods discussed in
detail in the previous section. In our experiments, we go
beyond the in-distribution train/test split typical in machine
learning research (Eq.1), which only highlights how a model
will perform on the data we have already collected, rather
than providing guarantees about future performance for the
infinite and continuous space that is the real-world. For the
latter, we measured the worst-case failure rate for a variety of
different model defenses (see Section IV), using several attacks
that define the ‘worst-case’ according to different contexts (see
Section IIT). We trained one model for each dataset using the
ResNet [43] architecture provided by Madry et al. as part of
the “MNIST”! and “CIFAR-10? challenges for each defense
across several different hyperparameter combinations.

To generate confidence intervals, we varied both defense
and attack parameters in an iterative grid search. Results across
all tests are reported in Figures 4 and 8. Initial model weights
and model architecture were taken from the survey by Madry
et al [55]. Like in that paper (and commonly throughout the
literature), we used the MNIST and CIFAR-10 datasets so that
our survey can be directly compared to the wider literature. For
each experiment, we trained the model for 20 epochs on the
entire training set, as defined by the Tensorflow version of the
datasets. Attacks were given a small computational budget of
10 iterations (100 samples, 10 iterations). For pre-processing
defenses (see: Section ), this included data transformations
that were distinct from the original training process and
for post-processing defenses, the model output varied (see:
Section V-B2) relative to the survey by Madry et al. [55].
The MNIST dataset was classified using a simple toy model
and the CIFAR-10 dataset was classified using a modified
version of ResNet, both taken from the survey of Madry et al.
[55]. Model prediction and attack times were measured using
Python’s ‘process-time’ due to the timing jitter associated with
shared systems and operating system variability. The timing
resolution was in milliseconds, far below the scale of training
times and total attack times, making any noise negligible.
After training, models were evaluated against the ten thousand
unperturbed (benign) images available in the dataset according
to both Equation 1 (accuracy) and Equation 2 (failure rate)

Uhttps://github.com/MadryLab/mnist_challenge
Zhttps:/github.com/MadryLab/cifar10_challenge
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Percent Change in Adversarial Accuracy, compared to the Control Model
cw
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Fig. 11. The percent change in adversarial accuracy of each attack against each defense for CIFAR-10. As we can plainly see, no defense was able to improve
the failure rate across all tested attacks. Red indicates that defense made a model worse. Blue indicates an improvement. White indicates no change.

in both the benign context. Each model was attacked using
the same subset of 100 (disjoint) samples, randomly drawn
from this set in an attempt to isolate model performance from
coincidences associated with sampling. Model accuracy on this
set of perturbed data is denoted as the ‘adversarial accuracy’
below, with ‘benign accuracy’ referring to the model accuracy
on the unperturbed data. All experiments were run on an Intel
Xeon 4210 with 32GB of memory and with an Nvidia V100
GPU in a shared-kernel environment. We evaluated hundreds
of combinations of attacks and defenses as illustrated and
enumerated in Figure 11.

VII. RESULTS AND DISCUSSIONS

a) Benign vs Adversarial Accuracy: Figure 12 (left sub-
plot) depicts the 95% confidence region of adversarial and
benign accuracy, computed using Equation 1. The blue bars
represent the accuracy on unperturbed (benign) data and the
red bars represent the accuracy on perturbed (adversarial)
data. From this rather large region (see Figure 12), we see
that both attack and defense hyper-parameter tuning have
significant effects on the accuracy of a given method, since
a small change in hyperparameters can drastically change the
efficacy of a given attack or defense. Figure 11 shows the
percent change in accuracy between the adversarial and benign
circumstances for each defense and attack. We can plainly
see that some techniques fool every model nearly every time
while some attacks are weak and not likely to succeed under
any conditions. Since no tested configuration reliably exceeded
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the benign accuracy, this metric seems to only indicate a
lower bound of the generalization error while the adversarial
failure rate estimates the upper bound (see Section II-E).
That is, we can confidently claim that our true generalization
error (1)) falls somewhere between 10~* failures per second
(roughly indicated by the 99.96 % test-set, benign accuracy
for MNIST or 99.83% accuracy for CIFAR10) and the worst-
case adversarial failure rate (roughly 10~! for MNIST and 102
for CIFAR-10), which obviously falls below the safety-critical
standards (see Table I) by huge margins, indicating that neither
architecture is safety-critical (see: Section V).

b) Defenses: In Figure 12 we see that, for every defense
(left subplot), that adversarial accuracy is lower than benign
accuracy, adding more empirical evidence the accuracy vs. ro-
bustness trade-off discussed widely in the literature (e.g. there
robustness and accuracy are at odds with each other). The
tested defenses each attempt to strategically destroy, smooth,
or average data in the original dataset or the output of the
model, which results in a loss of precision that makes the
benign accuracy worse than the Control (see: Figure 12).
Furthermore, when we examine the attacks in the right subplot
of Figure 12, we see that Deep, HSJ, CW, Pixel, Patch, and
Thresh are all able to confuse the model more that half of the
time. Furthermore, variations in the defense performance (right
side of Figures 20 and 14) raise questions about the ability
of these architectures to generalize since things like bit-depth
(FSQ), training-noise (Gausss-In), label-noise (Gauss-out), and
image resolution (SPS) greatly vary the failure rate. In the real-
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Fig. 12. The 95% confidence interval of adversarial (red) and benign (blue) accuracies for each defense (left) and each attack (right) for CIFAR-10. One trial
was conducted for each hyper-parameter combination, and the confidence interval spans these trials.

world, effective resolution will change between individuals
(e.g. a medical scan) or while moving (e.g. an autonomous
vehicle). Even random noise drawn from approximately the
same distribution as the training set (Gauss) increases the
benign failure rate by an order of magnitude or two (compare
the gap between Gauss and Control in both Fig. 20 and
Fig. 14).

¢) Attacks: Figure 12 (right subplot) depicts the same
confidence region as above, but broken down by attack rather
than defense. It is obvious that the Deep, HSJ, and Patch
reduce the accuracy the most often. PGD, FGM, and CW
are less effective, but still able to successfully perturb a
significant portion of the samples. However, the Threshold
and Pixel attacks are less consistent.Figure 11 demonstrates
how each attack fares against each defense by depicting the
percent change in accuracy. The color gradient is centered at
the benign failure rate, becoming a more intense red as the
accuracy decreases, with a dark red indicating substantially
worse performance than with the undefended model and
unperturbed data. Since no column is blue in Figure 11, no
single defense is able to consistently subvert a generalized
attacker, while modest gains against a particular attack are
possible. Techniques like Adversarial Patch, DeepFool, and
HopSkipJump consistently break models (see: Figure 11).
While some defenses do provide limited protection against
more advanced techniques (indicated by the color blue in
Figure 11), their performance on unperturbed data tends to be
reduced relative to the control (see: Figure 12, left subplot)
substantial empirical evidence that the normally discussed
accuracy, from Equation 1, is consistently more optimistic than
what the adversarial analysis implies.

d) Computational Cost: In order to estimate computa-
tional cost, we measured each time as a process time, reducing
the jitter due to operating system operations and shared kernel
constraints. We see that defenses require between 1 and 100
seconds of training per success, broken down by defense in the
left subplot of Figure 13. However, attacks (see right subplot
of Figure 13) require as few as several milliseconds per sample
in the worst case and 10 seconds in the best case, with the
average attack time falling after around a half second per
sample. Furthermore, we see that the Figure 14, we see how
various defenses manage the trade-off between computational
complexity and efficacy by measuring the failure rate as in

Equation 2. The Confident model had the best accuracy (see:
Figure 12) since it merely ignores queries below a certain
confidence threshold, but even if we treat that as a null event
(instead of a false classification), this increases the failure rate
(see: Figure 14) relative to the control since objects were not
detected.

e) Failure Rate: When we combine the information
from the accuracy and time graphs in Equation 2, we obtain
Figure 15, displaying the failure rate across attacks and
defenses as well as their individualized performance. When
we examine the average performance of a given defense (see:
Figure 15), we see that most defenses fail to meet safety
critical standards (see: Table I), even if the surveyed defenses
tend to improve adversarial accuracy (see: Figure 16). Total
Variance Minimization produced particularly inaccurate mod-
els which led to particularly inaccurate attacks. While some
defenses do provide relief against some attacks, that behavior
is inconsistent across different attacks, particularly in the case
of the Patch and Pixel attacks which seem to be universally
strong, even with mild perturbation constraints. Furthermore,
those gains are marginal compared to the efficacy of the
average attack (see: Figure 16) and the order of magnitude
required by regulations (see: Figure I).

f) Attack Budget and Attacker Knowledge: When we
examine the general performance characteristics of attacks, we
see that the average attack takes a few seconds to induce a
failure (see Figures 20 and 14). This appears to be consistent
across attacks and is remarkably effective with only a small
computational budget of 100 iterations and a query budget of
1000 with a perturbation distance no greater than 1 byte. This
is true for both whitebox attacks (everything but HSJ) and
blackbox (HSJ) attacks. Most attacks take a few seconds per
sample; however, the one exception to this is the Adversarial
Patch attack which takes only a few milliseconds to induce
a failure (on average). Due to the universality of this attack
against an entire dataset (see Section III) this failure rate would
go to infinity as the sample size goes to infinity. In practice,
a quadratic approximation of the boundary (HSJ) is roughly
as effective as whitebox models, especially as the number of
features scale (compare Figure 18 and Figure 11). However,
there is a clear advantage when the attacker optimizes across
a large sample of the test set (see Patch in Section III),
with the failure rate tending towards O as this sample size
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samples were found. This result is rather pessimistic, suggesting that all configurations fail to meet industrial standards.
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increases. Furthermore, by simulating a black-box attack (HSJ
attack), regularizing generated examples for false confidence
(CW attack), finding minimal separating planes (Deep attack),
and using advanced optimization techniques to generate highly
confident false examples (Thresh attack), we were able to con-
sistently fool the models in mere milliseconds per sample. The
simplest attacks, which Madry et al. proposed in 2017, remain
effective (PGD, FGM). Furthermore, proper step-size tuning
seems to compensate for this simplicity. This is evidenced by
right side of Figures 20 and 14, suggesting that the gradient
ascent attacks might be a ‘good enough’ estimator of the
generalized failure rate, especially given the astronomical gap
between current test-set accuracy and regulatory requirements.

g) Percent Change in Accuracy: Figure 11 demonstrates
how each attack fares against each defense. The color gradient
starts at white, indicating the undefended model’s performance
against unperturbed data, becoming a more intense red as
the accuracy decreases, with blue indicating an increase in
accuracy compared to the control model. As we can plainly
see, no single defense is able to consistently subvert an
attacker. While some defenses do provide limited protection
against more advanced techniques, their performance against
gradient descent techniques is inconsistent at best. Further-
more, for DeepFool and HopSkipJump, we know that they
could lead to even worse results for the defender, given a larger
computational budget. While there is limited efficacy against
gradient-based attacks for some defenses, advanced techniques
like Adversarial Patch, DeepFool, and HopSkipJump consis-
tently break models. That is, we provide substantial empirical
evidence that the normally discussed accuracy from Equation 1
is, at best, an optimistic estimate of the real-world failure rate.

h) Percent Change in Failure Rate: Figure 16 depicts
how each defense fares against each attack by comparing
the change in failure rate when compared to the adversarial
case on the undefended model. When we compare this plot
to the one in Figure 11, we see that, in many cases, the
defenses were able to decrease the adversarial failure rate
when compared to the undefended model, which is what these
defenses intended to do. However, increased safety (depicted
as blue in Figure 16) is marginal at best—on the order of a
few percent (see: Figure 4) when measured rates are many
orders of magnitude from regulatory standards (see: Table I).
Additionally, the potential downsides of a given defense are
much larger (see: Figure 11). This marginal improvement in
the failure rate is driven largely by the marginal time cost (see:
Figure 13) rather than the accuracy (see: Figure 12). That is,
the defenses increase the adversarial accuracy, but also take
significantly longer (see: Figure 13).

i) MNIST vs. CIFAR-10: In addition to running these
experiments on the CIFAR-10 dataset, we also ran them
on the MNIST dataset using a simpler model provided by
Madry et al. [55]. Figure 17 broadly verifies the behavior
observed above on the CIFAR-10, wherein defenses tend
to reduce model accuracy on the benign set, gradient-based
attack efficacy is largely determined by hyperparameter tuning,
and non-gradient-based attacks are still very effective. As
with CIFAR-10, no defense was able to improve the benign
(unperturbed) accuracy of the undefended model for every

attack (see: Figure 18). Despite a smaller model and lower run-
time requirements (compare Figure 19 to Figure 13), we see
that training time is more-or-less the same. When we compare
Figure 15 with Figure 21, we see that some of the defenses
were much more effective at preventing gradient-descent at-
tacks. However, they failed against the more computational
expensive techniques of Patch, HSJ, and Deep. Then, when
we examine failure rate (Figure 20), we see that despite being
a different dataset and model architecture, we are still able
to induce failures in only a few seconds, as with CIFAR-10.
However, when we break this rate down into each attack and
defense combination and measure a change in the failure rate
(see: Figure 22), there seems to be a fairly consistent and
marginal improvement driven by time (see: Figure 19) rather
than accuracy (see: Figure 17), as with CIFAR-10. When we
applied defenses to the simpler MNIST model and dataset
(when compared to CIFAR-10), we found largely consistent
results. However, we did find that there were more cases of
failed adversarial attacks against MNIST, likely due to the
significantly smaller dimensionality of both the dataset and
model [32]. However, we would expect real-world data to be
significantly higher resolution and full-color, unlike the black
and white low-resolution images typical of MNIST, so those
results probably underestimate the severity of the problem in
real-world systems that use multiple multi-pixel RGB cameras
to classify objects in real-time.

VIII. LIMITATIONS
A. True Failure Rate Estimation

While it is true that real-world noise can inadvertently
become adversarial, it is obvious that not every possible noise
vector will increase the loss for a given sample. We can,
however, confidently say that the true generalization error
lies between the test-set accuracy (Eq. 1) and the adversarial
failure rate. Further work remains regarding the gap between
these two estimates, but falls outside the scope of this paper.
However, as we show in the results (Section VII) this fact
hardly matters in the context of modern computer vision
models, because both of these measures fail to meet safety-
critical standards (see Table I) by many orders of magnitude
(see Fig. 20 and Fig. 14.)

B. On optimal attacks

Additionally, while these attacks are quite efficient, none
are provably the fastest possible attack. So, at best, they
underestimate the failure rate. In the case of our safety-
critical analysis, this amplifies and does not diminish our
claims, raising serious concerns about using in-distribution
test data as an indicator of real-world performance. Therefore,
because these attacks are not provably optimal, this failure
rate should not be taken as an absolute measure of the
true failure rate. However, it is still a reliable metric for
comparing the efficacy of two models as evidenced by the
relatively consistent failure rates across various defenses and
hyperparameter configurations for a given attack (right side of
Figures 20 and 14).
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Note that the scale is logarithmic so that marginal gains and substantial losses can be seen clearly.
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C. Model Selection

In general, we did not choose the model architecture, but
relied on two reference models provided by Madry et al.
They have been tested and cited numerous times [55]. The
point of this work is not to chase state-of-the-art results, but
to evaluate robustness-maximizing techniques in a controlled
manner while highlighting useful metrics and techniques for
doing so. At the time of publishing, the authors are not aware
of any architecture that meets safety critical standards when
measured test-set accuracy sense (see Eq.1) and there’s no
demonstrated technique (to the knowledge of the authors)
to reduce this in the adversarial sense without sacrificing
accuracy or computational time in the benign case (see Eq.2,
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Fig. 20 and Fig. 14). So the general conclusion about the real-
time safety-critical nature of modern neural networks would
remain the same for any other architecture known to the
authors.

D. On Attacker’s Knowledge

In this paper, we have tested white-box attacks (FGM, PGD,
CW), attacks that need access to the model probability outputs
(Deep, Pixel, Thresh, Patch), and a single black-box method
(HSJ), outlined in Sec. III. On one hand, it would seemingly be
unfair to compare these methods under the same constraints.
However, as we show in the results (Sec. VII), the apparent
advantage of attackers with more knowledge of the model
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tends to disappear under the added computational burden. That
is, the HSJ attack (Sec. III and Fig. 10), which only relies on
hard class-labels and an offline model approximation, is con-
sistently effective at fooling models while also outperforming
attacks that have access to more information (see: Figs 3- 9).
The interesting question, then, isn’t necessarily how good of
an adversarial sample one can generate, but the rate at which
any misclassification can be induced. This worst-case failure
rate will define the feasible upper bound on a target hardware
architecture. Since these attacks vary substantially in run-
time and information requirements, current methods relying
on accuracy measures do not distill the efficacy of a given
attack or defence from the perspective of any model-builder
or attacker with a fixed computational budget. However, by
controlling for the number of queries and normalizing by
CPU-time (see: Section VI), we are able to isolate the effect
of defence techniques against a wide-variety of idealized
attackers that optimize for different distance metrics and are
subject to very different constraints. By no means do we
want to minimize the offline possibilities (see: Section III-C)
of attacks like “Adversarial Patch” and “Hop Skip Jump”.
Instead, we seek to highlight the computational triviality of
these attacks and raise sincere questions about the safety of
these models in general.

IX. CONCLUSIONS

Neural networks are being deployed in a wide variety of
industrial applications with real-world safety considerations,
that despite high accuracy scores, fail against a wide variety
of attacks that overwhelmingly require fewer computational re-
sources than building the original model. While ‘weak’ attacks
are fast, they require hyper-parameter tuning and retrospective
evaluations that make them less effective, but nonetheless
cheap-enough to execute, requiring only a few seconds of CPU
time. The efficacy of even single-byte or single-pixel attacks
against otherwise very accurate models raises questions not
only about the intentional adversary, but also how a system
will handle real-world, ‘legitimate’ anomalies like dust, lens
aberration, and sensor failure.

When we consider the attack that finds the minimal class-
separating distance, DeepFool, we see that 80% of all samples
are corruptible under our meager one-byte distance constraint.
When we remove this distance constraint, we find that nearly
every sample can be fooled with the addition of an adversarial
‘patch’ on the original image (Figure 11) even when we
constrain an attack to a small number of iterations (< 10).
That is, if we assume that our attacker has an unlimited
budget, we cannot even hope to defend against these attacks.
However, the relative ease of finding such adversarial examples
suggests that these attacks provide an empirical estimate of a
‘worst case’ failure rate (see Equation 2) in their respective
contexts. Therefore, adversarial model analysis provides a
computationally cheap way to analyze the worst case failure
rate of a system without having to collect, label, perturb, and
predict many thousands of test images.

Furthermore, since this failure rate is based on process
time, it is obvious that more powerful hardware, without

underlying changes to the model architecture, would result
in a larger failure rate since we merely fail on more samples
in the same amount of time. That is to say, these problems
are inherent to the model and not something that we can
solve with more processor cycles. Furthermore, even when
we obscure everything from the user except model output,
we can consistently break models in as few as ten queries
to a hard class-label API (e.g., by using the HopSkipJump
attack). We found that adding Gaussian noise to the model
outputs or training images, reducing the bit-depth of the
numerical calculations to match the precision of the image,
and setting a confidence threshold were marginally effective
defenses when compared to the control model. However, none
of these defenses reach the regulatory standards required for
safety-critical systems—in fact, they fail by several orders of
magnitude. Furthermore, any gains seen in the failure rate
(Figure 16) are inconsistent while universally reducing the
accuracy on the original (unperturbed/benign) data (Figure 11).
Improvements due to the defenses are rare and marginal,
and they consistently make benign performance worse (see
Figures 11 and 18). We find this to be true across both datasets
and model architectures. Since we know that model accuracy
scales with O(1/4/n) [79] and attacks seem to run in constant
time (see Figures 13 and 19) for a fixed computational and
query budgets of a few seconds and 1000 queries respectively.

Finally, due to the rate at which we can generate feasible
misclassifications, we must question the real-world efficacy of
any system that relies on these models to make predictions
that meet the legal standards that define ‘safe’. Despite this
pessimism, adversarial model analysis proves to be a com-
putationally efficient way to analyze and compare the out-of-
distribution robustness of model architectures without the need
to generate massive test sets from real world data.
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1. Introduction Researchers cite concerns about evaluating against
weak attacks [8, 9], the hard problem of step-
size optimization [10], the weakness of defense
generalization [11], and the transferability of attacks
[12], which contributes to a body of work that
consistently fails to be reproducible [3] while relying
on increasingly massive computational resources for
increasingly marginal gains [13]. In short, there is
a strong need for generalized testing against strong
adversaries [9].

There are several types of attacks that target machine
learning models or data at different phases. Below
we examine attacks where an attacker seeks to evade
a classifier by confusing the model at run-time (e.g.
a penetrated network or a malicious application
being detected as benign). Robustness—the ability to
withstand attacks—is usually measured by the accuracy
gap before and after being attacked (benign and
adversarial accuracy, respectively). While much work

has gone into evaluating the robustness for neural
networks [1-3] and regression algorithms [4], Machine
learning using support vector machines have proven
to be useful in compute constrained applications
like system intrusion detection [5], network anomaly
detection [6], and image recognition [7].

*Corresponding author. Email: cmeyers@cs.umu.se

Since a theory of robust generalization remains
evasive, it is necessary to evaluate the robustness
of defenses across the broadest-possible number of
hyperparameters with the understanding that they are
drawn from a continuous and infinite space. Without a
strong theory of generalization, currently, the only way
to evaluate attacks is through brute force. Because this
process is computationally expensive for large hyper-
parameter sets, we propose a scalable framework for
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attack generation, useful both for defense evaluation
and distributed adversarial attacks.

1.1. Contributions

We present a novel parallel attack generation frame-
work allows for massively generating adversarial exam-
ples across multiple cores or multiple machines, of
particular use in scenarios that demand exploring a
large hyperparameter space.

We provide an extensible and scalable code base
for finding optimal attack configurations for a
variety of attacks and defences.

We provide a method for faster attack generation
for both benign (re-training) and adversarial
circumstances, with easy extensibility to a variety
of algorithms with large hyperparameter spaces
including models, defences, and attacks.

We show that attack efficacy is uncorrelated with
attack time and more dependent on the total
perturbation distance and the step size at each
iteration.

We show that, the relationship between step size,
perturbation size, and false confidence is highly
complex, has a large hyperparameter space, and
a product of both the model and the data set and
that characterizing the feasible space is critical to
generalized robustness.

Using a strong adversary as determined by
massively parallel tests, we found that adversarial
retraining was impractical in terms of both
compute time and benign model accuracy against
a strong adversary on a variety of binary datasets.

2. Related Work

Prior research has shown the inverse relationship
between model robustness and model accuracy empiri-
cally [10, 14]. Tsipras et al. [14] highlighted this trade-
off while examining neural nets on several image data-
sets. Other experiments have shown a strong inverse
relationship between model robustness and model
accuracy for a large number of samples and accurate
models [15] more generally. Raghunathan et al. [15]
offer a theoretical explanation, suggesting that this
trade-off is an artifact of imperfect sampling. Even
after explicitly minimizing the gap between benign
and adversarial accuracy, the adversarial model had a
nearly 6 times increase in adversarial error relative to
the benign case. In addition, it was recently proven
that all classifiers are vulnerable to attacks from an
adversary [16], which raises issues for safety-critical
and real-time systems. Since all classifiers are doomed
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to fail against such attacks, then, at the very least, it is
critical to quantify classification robustness.

Current research suggests adopting only strong
attacks in these evaluations [9], but the strength of an
attack is unknown prior to evaluation, and is context-
dependent. Furthermore, Croce et al. [3] showed fifty
cases where modern, published research failed to have
reproducible robustness. Other research has shown
that randomized smoothing, obfuscated gradients, and
even non-differentiable models fail to produce strong
defenses against the proposed attacker [8, 17, 18]. This
is intuitive—creating a boundary condition sensitive to
a particular attack does not remove the existence of a
new gradient to be exploited.

3. Background

In this section, we briefly discuss our choice in models,
attacks, and defences.

3.1. Support Vector Machines

Support vector machines [19] can be used for both
classification and regression. The kernelized versions
include arbitrary data transformations (through ker-
nels) that casts a data-set into a higher-dimensional
space, where the classes are linearly separable. The
resulting models are determined by solving convex
optimization problems, as detailed below. Trafalis et
al. [20] show that under benign perturbations, these
models are robust and numerically stable, but little is
known about their robustness against an adversarial
attacker.

A support vector machine is trained by solving the
Lagrange dual problem [19],

n

1 n n
maxc, ... ZC:‘ -3 ZZ?iCi(xi,XjoCj (1)

io1 i=1 j=1

n
subject to ;ciyi =0 and 0<g¢ < ﬁ,\!i,

where xi,...,x, is the set of training examples,
Y1,...,V, are the training labels for the n samples,
the ¢; are the dual variables found during training,
and A is a regularization parameter that controls the
complexity of the decision boundary by penalizing
wrong classifications. Solving this quadratic problem
requires at least O(n?) dot products, making it
computationally expensive for large data-sets.

In addition to the non-kernelized linear model above,
we also evaluated the kernelized version of this model
for transformed features, ¢(x;). Inner products of the
transformed features can be computed using the kernel
trick [19],

K(x %) = (b(xi), b(x))),



which gives a closed form expression of the inner
product of the transformed features. New data points,
x, are predicted using

n
V= ZCiViK(th)l
ioT

where the c;, for i = 1,...,n are obtained by solving the
maximization problem in Equation 1, but using a kernel
function,

n n n

i=1 i=1 j=1

The nominative support vectors are denoted

S:{c,-|0<cz- ,i:l,...,n}.

1
< 2nA
Computing the values of ¢; in this set is equivalent
to inverting a matrix naively, which has complexity
O(|S]®) [21], where |S| is the number of support vectors
for which 0<¢; < ﬁ However, the actual run-time
varies wildly between kernel choice, data-set, and
parameter choice. Merely verifying that a vector c;
is a solution to the quadratic programming problem
requires computations that scale with the number of
support vectors, |S|, and the number of samples, n,
giving a complexity of O(n|S|) [6]. Furthermore, with a
non-zero error rate, E, it has been shown [22] that |S] is
asymptotically equivalent to 2nE, giving a complexity
of

O(pn’E).

The kernelized version has a complexity associated
with the cost, «, that varies significantly with the kernel
and has the same as the non-kernelized version such
that

O(pn’E) + O(x).

This kernelization step can itself be quite costly in
terms of compute time and it’s complexity is examined
below.

Radial Basis Function Kernel. Kernel functions can be
used to cast a problem from a feature space of p
dimensions into an infinite-dimensional space using the
kernel function as a similarity measure between each
pair of samples. The radial basis function kernel is
given by

K(x;, xj) = e 74057%),

where y =(20%)7!, and d is any suitable distance
metric. The gradient is given by

VK(x;, x;) = —ye 74 (i, x;),

with a distance metric that scales with p (e.g., an inner
product), and with n? such computations, the total
complexity becomes O(pn?).

Polynomial Kernel.

The polynomial kernel is given by
D
K(x, xj) = ((x,-,xj) + r) ,

where r is a tune-able parameter and D describes the
degree of the polynomial (also tune-able). Its gradient
is given by

VK (x;,xj) = AD((x;, x;) + )P,

where A is a diagonal matrix with the inputs,
Xi1r+-r Xip, Xj1,--+,Xjp, On the diagonal. Computing
the gradient means an inner product that scales with
p (the dimension of x;), D multiplications of the inner
product value, and #? such computations, giving a total
complexity of O(pDn?).

The lower bound of complexity is given by
the number of dot products in the Lagrangian in
Equation 1, which has an overall complexity of O(pn?),
showing that the attack time will be dominated by the
number of attacked samples rather than kernel choice.

SVMs: cost-effective attack and defence analysis. We
demonstrate the experiments using kernelized SVMs,
but note that the metrics and analyses generalize to
more elaborate models. Firstly, we focus on the training-
time complexity of these models, which is already
known to be significantly smaller than popular neural
network architectures [23]. Secondly, our goal is not
to chase state-of-the-art results, but to unequivocally
demonstrate that retraining methods (dictated by NIST
[24]) increase the accuracy against a given set of
adversarial attacks at the cost of confidence in the
unperturbed case will be unlikely to meet the risk-
reduction standards outlined in ISO 26262 [25]. By
using SVMs instead of more costly models, we were able
to evaluate a larger number of hyperparameters on a
fixed computational budget, a necessity for large and
complex hyperparameters spaces. Furthermore, since
the generated data was defined to be linearly separable
in a p-dimensional space, any and all of these models
should work quite well.

3.2. Projected Gradient Descent Attacks

Projected gradient descent (PGD) has become a
standard measure for model robustness. Carlini and
Wagner [17] proved that any boundary condition can
be shifted by a relatively small number of points by
optimizing under two constraints—one that maximizes
the classification error, and one that minimizes the
adversarial perturbation. This ‘fast-gradient” attack was
extended with PGD, a ‘universal’ first-order white-box
attack and numerical optimization algorithm [2]. It has
since become the standard way to measure robustness
of a particular model or defense due to its universality.
The iteration scheme is

D = p(x0) 4+ OV £ (),
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where x) is the adversarial example at iteration k =
1,...,N, the N is the number of iterations, P(x) is a
projection of x onto a convex set (e.g., a norm ball
in the feature space) with radius d,,,;, (chosen by the
experimenter), #%) is the step size in each iteration,
and f(x®) is the original model function at iteration
k. An attack thus takes ascent steps in the direction of
the loss gradient, attempting to maximize the loss of
the attacked model, with the projection step used as a
means to adhere to any other constraints.

3.3. On Attack Choice

Most importantly, we note that any attacks that rely
on this kind of secondary optimization of a large
hyperparameter space (see Figure 3 and references [3,
17, 26-34]) will necessarily run no faster than a naive
implementation in parallel, particularly if we tune the
batch-size, step-size, and iterations to minimize the
run-time and maximize the loss for some ideal by
using a hyperband [35] or multi-objective search [36,
37]. While those methods are outside the scope of
this paper, the source code we provide, allows for
such searches on many different frameworks, defences,
and attacks by merely changing the contents of a
single configuration file!, meaning that finding an
optimal attack for any model using frameworks such as
Scikitlearn, Tensorflow, Pytorch, and MXNET would be
trivial.

3.4. Adversarial Retraining

Adversarial retraining inherits the time complexity of
both the model and the attack above such that the
complexity is

O(n’p),

before actually creating the retrained model, which has
2n samples, giving us the complexity

O(n’p) + O((2n)?) = O(n*p)

which will add significant training time to the
model (already measured in hours or days) with the
unintended side effect of reducing benign accuracy [11].

Adversarial retraining has been proposed as a general
solution to this problem [10, 11]. In the naive version,
the final iterate from the PGD, x*, is appended to the
training set, labelled as malicious, and the training and
attack cycle is repeated until accuracy converges or no
novel samples can be generated [10].

!https://hydra.cc/docs/plugins/optuna_sweeper
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4. Massively Parallel Evasion Attacks

Generating parallel attacks allows for a larger robust-
ness evaluation while simultaneously allowing for a
faster generation of adversarial examples for adversar-
ial re-training. The massively parallel attack generation
framework is shown in Figure 1.

Given that model attack parameters are drawn from
an infinite space and that published model robustness
tends to be over-reported [3], we propose a massively
parallel attack generation framework that reliably
evaluates a much larger set of attacks than is common
practice. Furthermore, attacks should be examined
not only in the context of raw accuracy numbers,
but also their ability to prevent highly-confident false
classifications as well as the time needed to break a
model.

Attacker’s Goal: We consider a classification algo-
rithm f : X — Y for samples in some feature space x €
X to a label in the set of classes y € Y = {-1, 1} where
1 represents the malicious class. Since the estimator
returns a probability in [0,1] for each one-hot label
[38], we assign the label with the highest probability for
evaluation purposes. Our attacker’s goal is to shift the
classification of at least one input example such that
the confidence of a false classification is > 99%. The
feasibility of such attacks is examined below.

Attacker’s Capability: In the case of evasion attacks,
the adversary can only modify data at test time. Prior
attacks have allowed arbitrary and significant change to
the original feature space. However, this is not feasible
in many real-world scenarios [39]. We also assume that
the attacker is relatively resource-constrained, ruling
out attacks that require specialized hardware (like
deep-learning). A more likely massive attack scenario
involves a malicious advertisement [40] or an insecure
network-connected, low-power device [41]. We also
assume a single model input/output stream shared
among all attacks which reduces the detection surface
relative to attacks probing the model separately. To
meet this goal, we supplied 100 samples to the attacker,
but, as we show below (Figure 5c), attacks can be
successful when supplied with only a single example.
Despite this constraint, the attacker can still reliably
generate false classifications.

4.1. Attacker’'s Knowledge

In order to measure robustness of a given model, it is
assumed that the attacker knows most things about the
model, including the distribution, shape, and feature
space of the training set; the type of model used and
it’s parameter space; the gradients with respect to the
optimization criteria; and feedback from the model in
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Figure 1. Massively Parallel Attack and Re-training Framework. This depicts our experimental pipeline wherein we build KSVMs with
various kernels, run several attacks in parallel, and then evaluate the attacked samples on the models. Optionally, we collect highly

confident false examples for adversarial retraining.

the form of model probability output. While it may
seem like a prohibitively large set of assumptions, we
outline possible attack vectors below. In our case, the
attacker queries the model with an adversarial sample
and is given the ¢,, norm which returns the largest
deviation of a single feature for a given sample rather
than the more granular information provided by other
standard distance metrics, like the ¢, or ¢; norms. It
also ensures that no single feature is perturbed by more
than d,,. As an added benefit, it marginally reduces
run-time and memory requirements, with the savings
scaling with the number of features. Below we examine
both the ideal and realistic scenarios for these attacks.

Perfect Knowledge: While assumed the adversary has
access to the model gradients with respect to the loss
function, it can be approximated through Monte Carlo
methods or via other attacks [42, 43]. It is not necessary
to know all of the model parameters, just the weights
and biases that compose the fitted model. Although
even this constraint is broken by other attacks [42,
43]. The adversary can transform sample data, but
must remain within a maximum distance d,,,, for each
feature. For our purposes, we chose this distance to be
one standard deviation for a given feature, ensuring
transformed data does not stray too far from the benign
data and decrease the separability for the retrained

classifier. Other works [10, 11, 44] try to minimize
the requisite perturbation distance, but because we
are dealing with numeric data and not image data,
data that falls within the the first standard deviation
would likely not look adversarial to a human observer.
The same cannot necessarily be said for image data in
which it is natural to have highly variant data and a
large contrast between different regions. In many cases,
perfect knowledge is provided normally by the peer-
review process and published model weights. However,
many models are proprietary and can only be accessed
through an API that returns only the classification,
either as a probability distribution or the argmax of that
distribution [45].

Limited Knowledge: Even though our attack scenario
only includes perfect knowledge, prior research [39,
42, 43, 46, 47] has shown that a surrogate model and
data-set can be used to approximate f(x) by f(x) and
build a model using the class labels provided by the
attacked model at test-time. Tramér et al. [45] examined
popular machine learning as a service platforms that
return confidence values as well as class labels, showing
that an attacker can build a proxy model by querying
p +1 random p-dimensional inputs for unknown p +
1 parameters. Further researchers [46] were able to
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reverse engineer the training data-set through black-
box attacks against a model that returns confidence
levels, with the caveat that the inferred data might be
a meta-prototypical example that does not appear in
the original data-set. Fortunately for our attacker, such
examples are still useful for determining the underlying
data distributions even if they manage to preserve
some of the privacy of the original data-set. Shokri et
al. [48] presented a membership inference attack that
determines whether a given data point belongs to the
same distribution as the original training data using
a set of proxy models. Although we tested only the
perfect knowledge scenario, there are myriad ways for
an attacker to get access to otherwise private data using
nothing but standard machine learning APIs.

4.2. Attack Generation Algorithm

Under the above assumptions, the optimal attack
strategy seeks to find a set of feature values for a sample,
x9), such that x* = arg min, f(x) and d(x*, x) < d, 0y =
1 since we centered and scaled the data to ensure each
feature had the same variance (02 = 1). The algorithm
is outlined in Algorithm 1.

Algorithm 1: Parallel PGD

Input: A set of step sizes {1}; {d;;0x > 0}, a set of
maximum perturbation constants; a set of
batch sizes, {m}; a trained model f(x);
X = {(%9, 7)} a set of unperturbed samples
and their corresponding labels; {I}, a set of
maximum iterations; and a projection
operator

Py, (X)= {argminx*,d(x*,x)gd,,m”"* - xll}
xeX
Output: x*, a sample with perturbation no
greater than d,,,;,

Generate a grid to search over from the supplied
parameters:

G= AllCombinations({r]}, (i A1), {d,m})

foreach (14,m,I,d,;,) =g€G
i—0
whilei <1 do
foreach XS,I,) C X do
Xt e By (X84 V()
end
Pe—i+1
end
end

in parallel do

98

4.3. Attack Complexity

If we assume perfect parallelism in the outermost
while loop (in Algorithm 1) under the possible attack
scenarios outlined above, then our attack complexity
scales with the number of iterations, I, the number of
batches, b, and the number of samples per batch, np,cp-
With m = ny,, - b, this gives us a complexity of

oI - m).

Our own experiments (Figure 3) show that iterations
do little to change attack efficacy in themselves. So,
if we assume that N < m, this model scales linearly
with the number of perturbed samples, giving a
fundamental advantage over the model which is trained
in polynomial time. Furthermore, this m can be several
orders of magnitude smaller than the training database
size n, with successful attacks occurring even when a
single data point is supplied to the attack at a time
(see Figure 5c¢). So, it’s possible that a ‘good” attack can
operate in linear time. Figures 2a and 5c confirm the
existence of such attacks. If we assume that the API can
correctly identify and mitigate some adversarial queries
with some error rate, E € [0, 1), then the actual number
of real-world API queries, Q, needed by an attacker
would be
Q=1Im(1-E).

That is to say, as the error rate increases, an attack
becomes easier in real world circumstances. This is a
particular detriment to the model builder who relies on
adversarial retraining (see: Fig. 5d).

5. Evaluations

Our experimental methods are outlined in detail below.

5.1. Data-set

To show that these problems hold for ‘nice’ data,
we generated many numeric datasets. We sampled
n Gaussian distributed points near opposing corners
of a hybercube in p dimensions, separated by an ¢,
distance of ten. We generated twenty unique datasets
with the combinations of p € [10, 102,103, 104] and n €
[102,103,104, 105,10°]. We also ran the framework
on the the intrusion-detection KDD-NSL dataset[49],
selected in such a way as to avoid duplicate rows,
a common critique of the original [50] as well as
the Truthseeker dataset[51] that divides malicious and
benign twitter users based on a variety of usage data
(see: Appendices A and B). For adversarial retraining,
the positive label was used for new data, classifying it as
‘malicious’ and of the same class as a variety of network-
based attacks included in the original data set. For our
evaluations, we used 100,000 training samples, and one
hundred consistent samples in the test set.



5.2. Experimental Setup

In our parallel implementation, we dedicated one
core to each attack and tested a large number of
hyperparameters at the same time using ‘oblib2.
We used the optuna [52] framework for handling
scheduling?, hydra* for hyperaparamater configuration
management, and dvc® to track results and guarantee
reproducibility. We also provide source code®, designed
to be extensible to other machine learning frameworks
(e.g., Keras, Tensorflow, Pytorch, MXnet, etc.), defences,
and attacks while scaling to diverse and distributed
systems. In addition to running the model selection
in parallel, we split the attack parameter space to run
in parallel, each attack operating on the same set of
test data. For our experiments, we used a 2.15Ghz
AMD EPYC 7702P processor with 128 cores. We used
scikit-learn’ and libsvm [53] to build the models
and IBM’s Adversarial Robustness Toolbox (art)?® to
generate attacks. Although we restricted our tests to a
single machine to make the time-complexity analysis
more straight-forward, optuna is capable of scaling to
multiple machines in a cluster. The scheduler spends
around a hundred microseconds on every task, but
this is negligible compared to the training times on a
reasonably sized database and comparable to a well-
chosen attack (Figure 2a). Although we parallelized
model fitting and attack creation in the same way,
our parallel attack paradigm means that each attack
time was measured individually while model building
times were measured as a whole and normalized by the
number of tested models since increasing the model
hyper-parameter search space will obviously increase
the run-time requirements. In this way, we attempt to
compare the average model building time for a given
set of parameters with a single attack.

For model building purposes, we evaluated every
order of magnitude in [1075,10%] for both ¢ and A
(Equation 1) for each of the linear, polynomial, and RBF
kernels. We also tested balanced class weight and naive
class weight as well as one vs. one and one vs. rest
classifiers for each kernel. For the polynomial kernel,
we evaluated degrees D € {1,2,3,4,5} in addition to
the parameters above. Because SVMs require a large
hyper-parameter search, we parallelized the search and
normalized the reported time for each kernel by the
cardinality of the grid search. Reported times are the
average model fitting wall time on a single core. Attack

2https://joblib.readthedocs.io
3https://optuna.readthedocs.io

4https://hydra.cc

Shttps://dvc.org

6Qur repository

7https://scikit-learn.org
8https://adversarial-robustness-toolbox.readthedocs.io

times are reported as wall time per attack. We examined
the attack efficacy in the case of perfect knowledge as
outlined above.

When controlling for the training set size, we
evaluated the number of samples for several multiples
of ten in [10,10°], with the largest model being
used for all subsequent experiments. In addition to
tracking the attack time for the entire attack space.
For the attack phase, we tested maximum perturbations
in {0.001,0.01,0.1,0.2,0.3,0.5,0.7,1.0} but varied the
step size for each power of ten in [107%1]. We
tested iterations in {1,10,102,10%} and batch sizes in
{1,10,102,103)}. For all tests but AT, we withheld 1000
benign samples to test the models and to generate the
attacks. For AT, we reduced the size of the training
database to ten-thousand (from one-hundred thousand)
and evaluated the adversarial and benign accuracies on
1000 samples to make the AT process computationally
feasible. We also examined the efficacy of AT and its
ability to defend against a new set of attacks when
applied to all three kernels.

6. Results and Discussion

In the section below, we examine the performance,
the robustness, the attack time, the efficacy of attack
hyperparameter tuning, and the pitfalls of adversarial
retraining.

6.1. Performance:

By using a massively parallel optuna [52] implemen-
tation, we were able to generate tens of thousands of
strong examples from one-thousand input-output pairs
in a way that extends to other attacks, frameworks
(e.g. MXNet, Pytorch, Keras, Tensorflow), and defences
(e.g. ART). Our implementation® allocates one core
per process and runs them in series if there are more
processes queued than available cores. All generated
models, data, and results are stored to disk, as well as in
an sqlite database, all specified in a single configuration
file, allowing for arbitrary divisions of the evaluation
pipeline across any number of diverse and distributed
machines. As we see from the experiment (Figure 2c),
the lower bound of these calculations is a few hundred
milliseconds, given that is how long they take when
executed on a single core in series, so the scheduler over-
head appears to be minor even though it’s statistically
significant.

6.2. Accuracy and Robustness:

Much research has been devoted to the apparent
trade-off between robustness and benign accuracy (see

90ur Github Repository
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(a) Model Performance vs Database Size: This depicts the benign
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(c) Training and Attack Times vs Database Size: This shows the time
requirements to build models and attacks on databases of different
sizes.
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(b) Model Performance vs Feature Space: This depicts the benign
performance of a model (e.g. accuracy on unperturbed data) when
trained on a differing number of features. In addition, marginal
features are less correlated with the label than earlier features,
simulating the addition of a large number of noisy features, leading
to increasingly inaccurate models.
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(d) Training and Attack Times vs Feature Space Size: This shows
the time requirements to build models and attacks on feature space
of different sizes.

Figure 2. This depicts the benign accuracy (top) and training times (bottom) across all three kernels, varying the number of samples
(left) and the number of features (right). The bars reflect the 95% confidence interval for all tested configurations.

Related Work) and we see signs of it across all of
our experiments. The second experiment (Figure 2a)
confirmed an inverse relationship between robustness
and model accuracy. Even when AT is able to perfectly
classify adversarial examples in the new training set
(Figure 5d), average error in the benign circumstance
increased from 0.02% to roughly 50%. The adversarial
accuracy against strong attacks increased, but at a
substantial cost to adversarial accuracy. This would be
catastrophic in safety- or security-critical settings. In
Figure 2a we can see that model accuracy converges
to a perfect level with a sufficient number of samples,
around 103 across kernels for this data. However, it
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is more complicated with the adversarial loss, varying
greatly by kernel and number of samples, even when
the attack size is fixed at one standard deviation of a
given feature. Regardless of the number of samples, we
see divergent time scales around 10° samples across all
kernels.

6.3. Attack Time and Efficacy

Since PGD is iterative, we examined how increasing
the raw compute time changes attack efficacy (Figure 4,
Figure 3). It shows that there is no general relationship
between attack time and induced error when we
examine the entire attack space. The attacks that
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Figure 3. Attack Parameters vs Accuracy: This depicts how various attack hyperparameters change the accuracy.

Kernel
— rbf

---- poly
........... linear

N w
o o

H
(e}
Attack Time

Attack Time

1072 100 1072 100
Perturbation Distance Perturbation Step
40

N w
o O

20

—_
o

Attack Time

Attack Time

0
101 103 100 10! 102
Maximum Iterations Batch Size

[«)

Figure 4. Attack Parameters vs Time: This depicts how various attack hyperparametrs change the run-time. The bars reflect the 95%
confidence interval for all tested configurations.

101



produce the largest errors are more dependent on
hyper-parameter choice than raw processing time
(measured in iterations). This is highlighted further
in (Figure 3), where we controlled for both step size
and perturbation size, showing many examples where
attack error was maximized with a small number of
iterations. That is, a ‘good” attack converges on strong
adversarial examples quickly. Both plots illustrate that
the polynomial kernel has a maximum error near
0.9, we see 0.95 for the RBF kernel, and perfect loss
against the linear kernel. In general, we can verify that
iterations have little to no effect (Figure 3) and that
increasing batch size increases loss (Figure 3) to the
detriment of false confidence (Figure 5c).

6.4. Critical Space:

To reliably evaluate a model, we must look at how it
performs across many attacks, so we measured both
error (Figure 3) and false confidence (Figure 5c) for
the entire attack space. We see that increasing either
step size or perturbations tends to increase loss with a
minimal perturbation size required by a given model
and data-set. In addition, we found that there is
a minimum perturbation value for effective attacks
(around 0.1 for linear and polynomial kernels, and 0.5
for RBF), dependent on model and data (Figure 3). The
effect of step size is much more variant, presumably
dependent on the the other parameters. We also see
that the RBF kernel is consistently the most robust
against error (Figure 3), but this does little to stop false
confidence (Figure 5c).

Attack time and error had a correlation of 0.18
suggesting that a clever choice of attack parameter
is far more effective than adding raw processor time.
This is further supported by the fact that step size
has a correlation of 0.54 and perturbation distance
has a correlation of 0.34. Even low-resolution, fast
attacks can lead to maximized loss (Figure 3) raising
further questions about the possibility of a truly reliable
defense. The individual confidence for an example is
inversely related to the size of the batch provided
to the attacker, but only marginally (Figure 5c). Step
size and total perturbation change confidence levels in
complex ways beyond some critical point for either, but
tend to converge. However, we can see that maximum
confidence occurs when both step size and total
perturbation are very small, creating a tension between
highly confident attacks and attacks that produce
maximum loss. This is intuitive—the loss is maximized
by ensuring every sample crosses the decision boundary
(even if only slightly) whereas confidence is maximized
when perturbations put a sample in the center of the
opposite class, usually far from the decision boundary.
Adversarial retraining is an attempt defend against
such perturbations.
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6.5. Adversarial Retraining

Adversarial ~ Retraining. Adversarial retraining is a
defense proposed by Li et al. [10], that appends
adversarial examples to the training set, labels them
‘malicious’ and trains a classifier on a new set. This can
be conducted iteratively, in ‘epochs’. Figures 5a, and
5b depict this method conducted over 20 epochs on
the RBF, polynomial, and linear kernels respectively.
We can see that this process increases training time
linearly, even when we exclude the attack generation
time. The RBF and polynomial kernels do become
more robust with successive epochs; however, this
comes at the cost of benign accuracy. The linear kernel
retains its benign accuracy with marginally improved
robustness, but would still not reliably prevent
false classifications. Unfortunately, as adversarial
attacks blur the boundary between the ‘benign’ and
‘malicious’ sets, the number of support vectors tends
to increase, leading to growth in time complexity
beyond the time required by the larger number of
samples while doing little to make reliable models.
A related method, confidence calibrated retraining,
attempts to solve this problem [3] but requires an
additional iterative calculation that is guaranteed to
increase run-time anyway. However, using the naive
version, we found that the new classifier is susceptible
to old attacks (compare the results Figure 5c¢ and
Figure 5d) despite reducing the efficacy of a given
attack over many retraining cycles (see Figure 5a).
In addition, we found that the models have nearly
identical false confidence Figure 5d) on the attacks
generated on the un-defended models (see Figure 5c),
suggesting that the transferability of attacks has been
under-estimated. This figure (Figure 5d) depicts all
attacks that induce false classifications below the 99%
true, benign detection threshold dictated by AT, even
when this threshold is minimized. While the defended
model (Figure 5d) has a better response against the
strongest attack than the undefended models (Figure
3), this defense leads to a generalized failure on attacks
(Figure 5d) relative to the benign model (Figure 3).
Furthermore, strong attacks are possible across the
entire attack space and work on nearly half of all
examples. Even after the increased training time of AT,
a strong attack (Figure 5d) was found in milliseconds.

Furthermore, theoretical analysis shows that strong
attacks will only cost more than model building for
very large numbers of adversarial examples, which
we’ve shown to be unnecessary when controlling for
batch size. Since every model query has the potential
to expose the attacker, a small number of queries is
preferable anyway. Assuming the benign accuracy of
85% reflects the real-world behavior of the model, more
40% of queries will evade the classifier, suggesting that
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Figure 5. This figure depicts the benign and adversarial accuracy (a), the training and attack times (b) and the false confidence across
all attacks before (c) and after (d) adversarial retraining. The bars reflect the 95% confidence interval for all tested configurations.

an attacker armed with a large database of attacks will
easily circumvent AT counter measures.

6.6. Limitations

Modern databases are measured in the millions and our
evaluations fall below that by an order of magnitude.
However, as we found that increasing the database size
has an inconsistent effect on both benign or adversarial
accuracy (Figure 2a) while substantially increasing run-
time (Figure 2c). In order to conduct the wide number
of experiments presented in a reasonable time, we used
the smaller database size.

Section 3.1 demonstrates how this analysis extends
to more complex models. Other machine learning
methods could of course also be used (e.g. neural
networks), but the main goal here was to examine
the relative speed of attacks against polynomial time
models more generally. Because our support vector

machines require access to the entire data-set and create
a set of support vectors that must be stored together
in memory, we limited our tests to a single machine
in order to minimize the complexities of network
overhead.

While our analysis focuses on support vector
machines, the increased run-time complexity of neural
networks suggests that the cost-gap issue is even worse
with modern models though other research [3, 54]
has already noted this. While there is some remaining
evidence for more effective model defences, for instance
by using different forms of regularization [55, 56] or
by modifying a neural network [57], both methods add
run-time cost and do not necessarily offset the efficacy
of an attacker, particularly if the step-size, batch-size,
and number of iterations are well-tuned.

The parallel methodology could be extended to
more sophisticated attacks without loss of generality.
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Additionally, since ‘good’ attacks tend to work on
most samples, further search optimizations that quickly
eliminate bad attack candidates are possible. In
addition, running the attack on multiple machines
would reduce the load on the operating system relative
to our single-machine scenario, but still favoring a
relatively simple attacker over a large, complex, and
centralized model generation process.

Despite any experimental limitations, both optuna
and our code base support scaling across multiple
machines and can easily be made to be ‘massive’ in a
more traditional sense. However, it is clear that proper
robustness evaluations require not only quantifying
accuracy, but also require measuring feasible attack
times and the confidence level of false classifications.
In addition, models should be tested across the widest
possible number of attack parameters since a given
defense and data-set will change the efficacy of a given
attack.

7. Conclusion

In this work, we propose a naive parallel implementa-
tion for evading classifiers in which the model gradients
of SVMs and training data distributions are known to
the attacker. While this level of information is hard
to obtain in real-world scenarios, we highlight other
research that proposes methods for obtaining this infor-
mation from an otherwise obscured model or data-
set. We demonstrated that a well-chosen step size will
add more strength to an attack than raw processing
time. We confirmed earlier observations that accuracy
and robustness are inversely related. We also show
that model-building is computationally more expensive
than attacks, especially in the context of adversarial
retraining. Despite the optimistic results in published
work, we find that perturbing a sample’s features by
only a single standard deviation is sufficient to reliably
break classifiers while adversarial retraining as dictated
by NIST standards[24]. While this degree of pertur-
bation may create obvious adversaries to humans, our
best attempts to automatically detect them still resulted
in decreased benign accuracy, higher training times,
and a failure to prevent false classifications. Finally,
we provide an easily extensible code-base for manag-
ing massive, parallel, and distributed experiments on
various attacks and defences. Thus, we find adversarial
retraining to be unsuitable for real-time, safety-critical,
or security-sensitive applications of KSVMs. Simultane-
ously, through a run-time analysis of low-cost model
(KSVMs), we raise serious concerns about the hope of
any polynomial-time model builder to defend against
an adversary that consistently succeeds in more-or-
less constant time, despite many rounds of adversarial
retraining. Furthermore, we show this to be true on
generated data, system process data [49], and social
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media data [51] (see: Section 6 and Appendices A & B
for each dataset, respectively) .
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Appendix A. KDD-NSL Dataset
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Figure A.1. Efficacy of Adversarial Retraining on KDD-NSL Dataset. The top left depicts the adversarial and benign accuracy over
a number of retraining epochs. The top right depicts the per epoch training time as the number of training epochs increases. The
bottom row depicts the false confidence before retraining (left) on strong adversarial examples and after (right). The bars reflect the
95% confidence interval for all tested configurations.
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Appendix B. Truthseeker Dataset
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Figure B.2. Efficacy of Adversarial Retraining on Truthseeker Dataset. The top left depicts the adversarial and benign accuracy over
a number of retraining epochs. The top right depicts the per epoch training time as the number of training epochs increases. The
bottom row depicts the false confidence before retraining (left) on strong adversarial examples and after (right). The bars reflect the
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Abstract:

Machine learning models—deep neural networks in
particular—have performed remarkably well on benchmark
datasets across a wide variety of domains. However, the ease
of finding adversarial counter-examples remains a persistent
problem when training times are measured in hours or days
and the time needed to find a successful adversarial counter-
example is measured in seconds. Much work has gone into
generating and defending against these adversarial counter-
examples, however the relative costs of attacks and defences
are rarely discussed. Additionally, machine learning research
is almost entirely guided by test/train metrics, but these would
require billions of samples to meet industry standards. The
present work addresses the problem of understanding and
predicting how particular model hyper-parameters influence the
performance of a model in the presence of an adversary. The
proposed approach uses survival models, worst-case examples,
and a cost-aware analysis to precisely and accurately reject a
particular model change during routine model training proce-
dures rather than relying on real-world deployment, expensive
formal verification methods, or accurate simulations of very
complicated systems (e.g., digitally recreating every part of a
car or a plane). Through an evaluation of many pre-processing
techniques, adversarial counter-examples, and neural network
configurations, the conclusion is that deeper models do offer
marginal gains in survival times compared to more shallow
counterparts. However, we show that those gains are driven more
by the model inference time than inherent robustness properties.
Using the proposed methodology, we show that ResNet is hope-
lessly insecure against even the simplest of white box attacks.

Keywords:

Machine Learning; Computer Vision; Neural Networks; Ad-
versarial AI; Trustworthy AL

1 Introduction

Machine Learning (ML) has become widely popular for
solving complex prediction problems across many disciplines,
such as medical imaging [20], computer security [2], avia-
tion [36], and security [41]. Despite this, adversarial attacks
exploit ML models by introducing subtle modifications to data
which leads to misclassification or otherwise erroneous out-
puts [11]. To ensure the robustness of ML models against ad-
versaries has become a critical concern [8, 10, 12, 44, 42].

The purpose of this work was to evaluate if survival analy-
sis can predict the success of a particular set of model hyper-
parameters. In addition, we explored the relationship between
computational cost and prediction accuracy in both benign and
adversarial contexts. By using samples crafted specifically to
be challenging and applying survival models (see Section 3) we
provide a framework to predict the expected failure time across
the adversarial space. Using survival models, we demonstrate
that larger machine learning models, while offering marginal
gains over smaller models, do so at the expense of training
times that far outpace the expected survival time and that it is
simply not feasible to defend against certain attacks using the
examined models and defences.
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1.1 Motivations

It is routine to consider an adversarial context in safety—or
security—critical applications [20, 2, 41] where we assume the
attacker is operating in their own best-case scenario [32, 25,
35, 28, 43]. Cryptography often defines ‘broken’ in the context
of time to quantify the feasibility of an attack [32]—‘broken’
algorithms are usually defined as those for which attacks can be
conducted in a (relatively) small amount of time. For example,
one recent study [25] distilled the process of password-cracking
into a cloud-based service that can break common password
schemes in a number of days. However, someone attacking
a machine learning model might have a variety of competing
goals (e.g., minimising the perturbation distance or maximising
the false confidence) [35, 12, 28, 22, 43], so time analyses are
less straightforward. What is missing, however, is a method to
directly model the effect of attack criteria on the survival time.

Much work has gone into mitigating adversarial attacks, for
example by adding noise in the training process [55, 9], reject-
ing low-confidence results [13], or by reducing the bit-depth
of the data and model weights [53]. However, these analyses
focus on ad-hoc posterior evaluations on benchmark datasets
(e.g., CIFAR-10 or MNIST) to determine whether or not a
given technique is more or less effective than another. That
is, the relationship between marginal benefit and marginal cost
is unclear. Furthermore, the community has trended towards
larger models [18] and larger datasets [18, 4]. For example, au-
tonomous vehicles still largely rely on system integration tests
to verify safety [24], assuming that human-like accident met-
rics will guarantee safety. While there are simulation tech-
niques [21] that highlight problematic scenarios by testing a
component in a simulated world in which all components are
modelled digitally, implementing them requires building an en-
tire digital world that can nevertheless miss real-world edge
cases. Furthermore, while formal methods for neural network
verification do exist, they are generally too costly to be feasi-
ble for tuning and verifying large scale machine learning mod-
els [40]. To reach safety-critical standards that are routine in
other industries [39, 37, 38], the machine learning field must
move beyond the limited test/train split paradigm that would
require many, many billions of test samples for every change
of a model to meet industry standards [42]. The proposed
method models the complex relationship between model hyper-
parameters and the resulting robustness of the model, using
nothing more than routine metrics collected in the model tuning
stage.
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1.2 Contributions

The contributions of this work are:

* Survival analysis models for analysing ML models under
adversarial perturbations with substantial empirical evi-
dence that survival analysis is both effective and dataset-
agnostic, allowing for the expected failure rate to be pre-
dicted more precisely and accurately.

Survival analysis models to measure model robustness
across a wide variety of signal pre-processing techniques,
exploring the relationships between latency, accuracy, and
model depth.

A novel metric: The training rate and survival heuristic
(TRASH) for inference and robustness evaluation (FIRE)
to evaluate whether or not a model is robust to adversarial
attacks in a time- and compute-constrained context.

Substantial empirical evidence that larger neural networks
increase training and prediction time while adding little-
to-no benefit in the presence of an adversary.

2 Background

Much work has gone into explaining the dangers of adver-
sarial attacks on ML pipelines [10, 28, 22, 6], though studies
on adversarial robustness have generally been limited to ad-
hoc and posterior evaluations against limited sets of attack and
defence parameters, leading to results that are, at best, opti-
mistic [42]. Previous work on neural network verification have
relied on expensive integration tests [24], elaborate simulation
environments [21], or methods that are too computationally ex-
pensive to be useful for model selection [40]. However, the
present work formalises methods to model the effect of attacks
and defences on a given ML model and reveals a simple cost-
to-performance metric to quickly discard ineffective strategies.

2.1 Adversarial Attacks

In the context of ML, an adversarial attack refers to delib-
erate and malicious attempts to manipulate the behaviour of a
model. The presented work focused on evasion attacks that at-
tempt to induce misclassifications at run-time [10, 6], but note
that the proposed methodology (Section 3) and cost analysis
(Section 4) extends to other types of attacks, such as database
poisoning [5, 46], model inversion [14, 33], data stealing [45],
or denial of service [47]. In all sections below, metrics were



collected on the benign (unperturbed) data and adversarial (per-
turbed) data. The abbreviations ben and adv are used through-
out, respectively. The strength of an attack is often measured
in terms of a perturbation distance [11, 28]. The perturbation
distance, denoted by ¢ > 0, quantifies the magnitude of the
perturbation applied to a sample, x, when generating a new ad-
versarial sample, ’. The definition is,

€=z’ —z| <&, e))
where || - || denotes a norm or pseudo-norm (e.g., the Euclidean
{5 norm or the ¢y pseudo-norm). We denote by * the maxi-
mum allowed perturbation of the original input. For example,
this might be one bit, one pixel, or one byte, depending on the
test conditions. For more information on different criteria, see
Section 5.4.

2.1.1 Accuracy and Failure Rate

The accuracy refers to the percentage or proportion of exam-
ples that are correctly classified. A lower accuracy indicates a
higher rate of misclassifications or incorrect predictions. The
accuracy, Acc, is defined as

False Classifications

Acc=1—- ————————|

N 2

where NV is the total number of samples. The accuracy on a
given test set, presumed to be drawn from the same distribu-
tion as the training set, is called the benign accuracy, Accpen.
The adversarial accuracy, Accaqy, is a measure of correct
classifications in the presence of noise intended to be adver-
sarial. However, accuracy is known to vary according to the
model hyper-parameters [49] and various run-time considera-
tions. Therefore, it is useful to think in terms of failure rate,
. False Classifications 3
AL ) 3
where At is a time interval. By parameterizing the measure of
misclassification by time, it is possible to model the chance of
failure as a function of various attributes and parameters of a
model.
Let h be a function that describes the rate of failure at time
t. This is a way to express the failure rate in terms of a hazard
function, which is defined as

Failure Rate :=

PE<T <t+At|T>1)
At ’

h(t) : @

lim
At—0
where P is a probability and 7" is the time until a false clas-
sification occurs, also referred to as survival time [26]. To be

able to compare the computational efficacy of different model
and attack configurations, we modelled the probability of not
observing a failure before a given time, ¢, using the cumulative
hazard function,

H(t) ::/0 h(r)dr. 5)

Then, the cumulative survival function is

it
/ fu)du
0

6
where F(t) is the lifetime distribution function which describes
the cumulative probability of failure before time ¢, or F(t) =
P(T < t). The probability density of observing a failure at
time, t, is [26, 15],

S(t) := P(T > t) = exp(—H(t)) = 1-F(t) = 1—

F(t) == h(£)S(2).

In practice, the h(t), S(t), and/or f(t) can be determined when-
ever one of them is known [26].

Survival analysis models have been widely used to investi-
gate the likelihood of failures across fields where safety is a pri-
mary concern (e.g., in medicine, aviation, or auto-mobiles) [34,
31]. These models allow us to examine the effect of the spec-
ified covariates on the failure rate of the classifier. For manu-
facturing, this is done by simulating normal wear and tear on
a particular hardware component (e.g., a motor or aircraft sen-
sor) [34] by exposing the component to vibration, temperatures,
or impacts. For the study of diseases in humans, these models
are often build on demographic data and used to examine the
effect of things like age, gender, and/or treatment on the ex-
pected survival time of a patient. Likewise, survival analysis
can be used to estimate the time until a successful adversarial
attack of an ML pipeline or component using metrics that are
routinely collected as part of normal model training procedures.
The covariates, for example, might be things like perturbation
distance, model depth, number of training epochs, a signal pro-
cessing technique, efc.

2.2 Cost

Assume that the cost of training a model, C;ain, is a function
of the total training time, T}yain, the number of training sam-
ples, Nirain, and the training time per sample, tirain = %,
such that the cost of training on hardware with a fixed time-cost
is

Ctrain = Ch, * Thrain = Ch * ttrain * Ntraina (7)

113



where Cj, is the cost per time unit of a particular piece of
hardware. Hence, the cost is assumed to scale linearly with
per-sample training time and sample size, Nipain. Analo-
gously, tpredict is used elsewhere in this text to refer to the
prediction time for a set of samples, divided by the number
of samples. Assuming the attacker and model builder are us-
ing similar hardware, then the cost to an attacker, Cattack, 1S
Cattack = Ch “Tattack = Ch “tattack " Nattack» where Nattack is
the number of attacked samples. Furthermore, a fast attack will
be lower-bounded by the model inference time, ¢ cdict, Which
is generally much smaller than the training time, tyain. Of
course, the long-term costs of deploying a model will be related
to the inference cost, but a model is clearly broken if the cost
of improving a model (< tiyain) is larger than the cost of find-
ing a counterexample (X fagtack) Within the bounds outlined
in Equation 1. The training cost per sample does not consider
how well the model performs, and a good model is one that
both generalises and is reasonably cheap to train. Therefore, a
cost-normalised failure rate metric is introduced in Equation 9
in Section 4. Before comparing this cost to the failure rate, the
attack time per sample—or the expected survival time—must
be estimated. For that, survival models can be used.

3 Survival Analysis for ML

Failure time analysis has been widely explored in other
fields [7], from medicine to industrial quality control [20, 27,
41], but there is very little published research in the context
of ML. However, as noted by many researchers [35, 10, 42],
these models are fragile to attackers that intend to subvert the
model, steal the database, or evade detection. In this work, we
leverage evasion attacks to examine the parameterised time-to-
failure—or survival time—denoted Sy(t), where 6 is a set of
parameters that describe the joint effect of the covariates on the
survival time, usually found through maximum likelihood esti-
mation on observed survival data [15]. All survival models can
be expressed in terms of this parameterised survival function,
Se(t), hazard function, Hy(t), and lifetime probability distri-
bution, Fy(t), such that

t

So(t) :=exp{ — Hp(t)} :=1—Fy(t):=1— / fo(uw)du,
Jo

and the expected survival time is thus

i
ESO [T] = /0 S(?(“)du =2 Lattack,

where t,¢tack 1S an estimate of the time it takes for the average
attacker to induce a failure subject to the condition in Equa-
tion 1 and ¢* is the latest observed time (regardless of failure or
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success). The parameters, 6, are estimated from model evalua-
tion data such that: hy(t = tattack) = 1 — AcCady.

Survival analysis models have been widely used to investi-
gate the likelihood of failures across fields where safety is a pri-
mary concern (e.g., in medicine, aviation, or auto-mobiles) [34,
31]. These models allow us to examine the effect of the spec-
ified covariates on the failure rate of the classifier. These sur-
vival analysis models can broadly be separated into two cate-
gories: proportional hazard models and accelerated failure time
models, each of which is outlined in the subsections below.
Furthermore, by parameterizing the performance by time, it is
possible to do a cost-value analysis, as outlined in Section 4.
3.1 The Cox Proportional Hazard Model

The Cox proportional hazard model tries to find model pa-
rameters, 6, corresponding to covariates, x, to predict the haz-
ard function on unseen configurations of the covariates, such
that

he(t) = ho(t)ge(z) = ho(t) exp(B1x1 + 222 + - - - + Opxp),

where 6; is the i-th model parameter and z; is the measurement
of the i-th covariate. One downside of the Cox model com-
pared to the accelerated failure time models discussed below
is that there are few distributions that fit the proportional haz-
ards assumption. A common choice is therefore to use a non-
parametric approximation of the baseline hazards function [15].
Additionally, unlike the accelerated failure time models dis-
cussed below, the coefficients in the Cox model, 6, are inter-
dependent (they are said to be adjusted for each other) and, as
such, their interpretation is not straightforward [15].

3.2 Accelerated Failure Time Models

While Cox models assume that there is a multiplicative effect
on the baseline hazard function, hg, due to the effect of a co-
variate, accelerated failure time (AFT) models instead assume
that the effect of a covariate is to accelerate or decelerate the
time in a baseline survival function, Sy (¢). Accelerated failure
time models have the form

S(t) = So (qﬁ%(w)) 4

Unlike the proportional hazard model discussed above, the co-
efficients of AFT models have a straightforward interpreta-
tion where a value of # represents an #-fold increase in fail-
ure risk [15] and a negative value indicates a correspond-
ing decrease in failure risk. The survival function is com-
monly derived using e.g., the exponential, Weibull, log-normal,
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log-logistic, or generalised gamma distributions [15]—each of
which was tested in this work.

3.3 Survival Model Validation

To compare the efficacy of different parametric AFT mod-
els, we use the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC) [51], where the preferred
model will be the one with the smallest value. We provide the
concordance score, which gives a value between 0 and 1 that
quantifies the degree to which the survival time is explained by
the model, where a 1 reflects a perfect explanation [52] and 0.5
reflects random chance. We also include two measures of error
between the fitted model (predictions) and a model fit to the
data using a cubic spline (observations) as proposed by Austin
et al. [3]. The first such measure of error is the mean difference
between the predicted and observed failure probabilities, called
the integrated calibration index (ICI). The second metric is the
error between these curves at the 50 percentile (E50) [3]. Ex-
cept for AIC and BIC, we have provided these metrics for both
the training and test sets, the latter of which was 20% of the
total number of samples.

4 Failure Rates and Cost Normalisation

With an estimate for the expected survival time, the cost-
normalised failure rate, or training time to attack time ratio,
can be quantified. Under the assumption that the cost scales
linearly with ¢;4in (as in Equation 7), one can divide this cost
by the expected survival time to get a rough estimate of the
relative costs for the model builder (Ciain X train) and the
attacker (Cadv. X tattack =~ Eg,[T]). Recalling the definition
of € in Equation 1, the cost of failure in adversarial terms can
be expressed as,

Cadv. =

5 ttram —. (9)
o[T]0 < e <e*

If Chgv. > 1 then the model is broken since it is cheaper to
attack the model than it is to train it. The numerator can be
thought as the approximate training time per sample, or train-
ing rate, and the denominator is the expected survival heuristic.
The ratio of these allows one to quantify the comparative cost
of the model builder and the attacker and the coefficients of the
survival model provide a way to estimate the effects of the co-
variates. We call this metric the TRASH score since it quickly
indicates whether more training is likely to improve the adver-
sarial robustness and any score > 1 indicates that a given model
is, in fact, irredeemable.

5 Methodology

Below we outline the experiments performed and the hyper-
parameter configurations of the models, attacks, and defences
across the various model architectures, model defences, and
attacks. All experiments were conducted on Ubuntu 18.04 in
a virtual machine running in a shared-host environment with
one NVIDIA V100 GPU using Python 3.8.8. All configura-
tions were tested in a grid search using hydra [54] to man-
age the parameters, dvc [19] to ensure reproducibility, and
optuna [1] to manage the scheduling. For each attack and
model configuration, the metrics outlined in Equations 2-9
were collected, as well as the inference time, training time,
and attack generation time. A grid search was conducted over
datasets, models, defences, and attacks across ten permuta-
tions of the data. For visualisation, the fpe,. and faqy. were
approximated for each attack and defence combination using
Equation 3, and C' was approximated in the adversarial case as
per Equation 9. Additionally, we provide links to the source
code repository', as well as the source for this document and
archived data®
5.1 Dataset

Experiments were performed on both the CIFAR100, CI-
FARI10 [29], and MNIST [17] datasets. The adversarial and
benign accuracies were measured together with the attack gen-
eration time and the prediction time. Equations 3 and 9 were
used to calculate the adversarial failure rate and the cost. For
accuracy, see Equation 2. For training, 80% of the samples
were used for all datasets. Of the remaining 20%, one-hundred
class-balanced samples were selected to evaluate each attack.
In addition, all data were shuffled to provide ten training and
test sets for each hyper-parameter combination. Then, the data
were centred and scaled (using statistics computed from the
training set to avoid data leakage). This provides a straight
forward interpretation of €, where ¢ = 1 implies one standard-
deviation of noise.

5.2 Tested Models

The Residual Neural Network (ResNet) [23] is a popular
classification model® because of its ability to train neural net-
works with many layers efficiently by using residual connec-
tions. The residual connections allow models to have hun-
dreds of layers rather than tens of layers [23, 50]. Despite

'Our Source Code
2 IATEX source and data for this document.
3More than 180 thousand citations: ResNet citations on Google Scholar.
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the prevalence of the reference architecture, several modifica-
tions have been proposed that trade off, for instance, robust-
ness and computational cost by varying the number of con-
volutional layers in the model. We tested the ResNet-18, -
34, -51, -101, and -152 reference architectures, that get their
names from their respective number of layers. We used the
the pytorch framework and the Stochastic Gradient Descent
minimiser with a momentum parameter of 0.9 and learning
rates € {10,1,0.1,0.01,0.001,0.0001, .00001,0.000001} for
epochs € {10, 20, 30, 50, 100}.

5.3 Tested Defences

In order to simulate various conditions affecting the model’s
efficacy, we have also tested several defences that modify the
model’s inputs or predictions in an attempt to reduce its suscep-
tibility to adversarial perturbations. Just like with the attacks,
we used the Adversarial Robustness Toolbox [44] for their con-
venient implementations. The evaluated defences follow.

Gauss-in (¢2): The ‘Gaussian Augmentation’ defence adds
Gaussian noise to some proportion of the training samples.
Here, we set this proportion to 50%, allowing to simulate the
effect of noise on the resulting model [55]. Noise levels in
{.001, .01, .1, .3, .5, 1} were tested.

Conf ({~): The ‘High Confidence Thresholding’ defence
only returns a classification when the specified confidence
threshold is reached, resulting in a failed query if a classifica-
tion is less certain. This allows to simulate the effects of reject-
ing ‘adversarial’ or otherwise ‘confusing’ queries [13] that fall
outside the given confidence range by ignoring ambiguous re-
sults without penalty. Confidence levelsin {.1,.5,.9,.99,.999}
were tested.

Gauss-out ({2): The ‘Gaussian Noise’ defence, rather than
adding noise to the input data, adds noise during inference [9],
allowing to reduce precision to grey- and black-box attacks
without going through costly training iterations. Noise levels
in {.001,.01,.1,.3,.5, 1} were tested.

FSQ: The ‘Feature Squeezing’ defence changes the bit-depth
of the input data to minimise the noise induced by floating-
point operations. It was included here to simulate the effects
of various GPU or CPU architectures, which may also vary in
bit-depth [53]. Bit-depths in {2, 4, 8,16, 32,64} were tested.

5.4 Tested Attacks

Several attacks using the Adversarial Robustness Tool-
box [44] were evaluated in order to simulate attacks that vary in
information and run-time requirements across distance metrics.
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Other researchers have noted the importance of testing against
multiple types of attacks [10]. For the purposes here, attack
strength refers to the degree to which an input is modified by
an attacker, as described in Section 1. Below is a brief descrip-
tion of the attacks that were evaluated. One or more norms or
pseudo-norms were used in each attack, as given in the paren-
theses next to the attack name.

FGM (L4, {2, 0~): The ‘Fast Gradient Method’ quickly gen-
erates a noisy sample, with no feasibility conditions beyond a
specified step size and number of iterations [22]. It generates
adversarial samples by using the model gradient and taking a
step of length ¢ in the direction that maximises the loss with
e €{.001,.01,.03,.1,.2,.3,.5,.8,1}.

PGD (41,05, 0): The ‘Projected Gradient Method’ extends
the FGM attack to include a projection on the e-sphere, ensur-
ing that generated samples do not fall outside of the feasible
space [35]. This method is iterative, and was restricted here to
ten such iterations. The imposed feasibility conditions on the
FGM attack were in € € {.001,.01,.03,.1, .2,.3, .5, .8,1}.

Deep ({5): the ‘Deepfool Attack’ [43] finds the minimal sep-
arating hyperplane between two classes and then adds a speci-
fied amount of perturbation to ensure it crosses the boundary by
using an approximation of the model gradient by approximat-
ing the n most likely class gradients where n € {1,3,5,10},
speeding up computation by ignoring unlikely classes [43].
This method is iterative and was restricted here to ten such it-
erations.

Pixel ({p): the ‘PixelAttack’ uses a well-known multi-
objective search algorithm [28], but tries to maximise false con-
fidence while minimising the number of perturbed pixels. This
method is iterative and was restricted here to ten such iterations.
For ¢, we tested {1, 4, 16, 64, 256} pixels.

Thresh ({«): the ‘Threshold’ attack also uses the same
multi-objective search algorithm as Pixel to optimise the at-
tack, but tries to maximise false confidence using a penalty
term on the loss function while minimising the {5 perturbation
distance. This method is iterative and was restricted here to
ten such iterations. We tested penalty terms corresponding to
{1,4,16,64, 256}

HSJ ({2, queries): the ‘HopSkipJump’ attack, in contrast to
the attacks above, does not need access to model gradients nor
soft class labels, instead relying on an offline approximation
of the gradient using the model’s decision boundaries. In this
case, the strength is denoted by the number of queries neces-
sary to find an adversarial counterexample [12]. This method
is iterative and was restricted here to ten such iterations.



5.5 Survival Models

The exponential, Weibull, log-normal, log-logistic, and gen-
eralised gamma AFT models were tested as well as the Cox
proportional hazards model using the 1ifelines [16] pack-
age in Python. For each attack, the attack-specific distance met-
ric (or pseudo-metric) outlined in Section 5.4 was identified. To
compare the effect of this measure against other attacks, the val-
ues were min-max scaled so that all values fell on the interval
[0,1]. The same scaling was done for the defences. Because
this strength parameter isn’t directly comparable across attacks
or defences, a dummy variable was introduced for each attack
and defence, allowing an estimate of their effect relative to the
baseline hazard. The number of epochs and the number of lay-
ers were tracked for the models, as well as the training and
inference times. The metrics outlined in Section 3.3 were used
for choosing the best-fit AFT model, as is best practice [7].

6 Results and Discussion

Through tens of thousands experiments across many signal-
processing techniques (i.e., defences), random states, learn-
ing rates, model architectures, and attack configurations, we
show that model defences generally fail to outperform the un-
defended model in either the benign or adversarial contexts—
regardless of configuration. Also, that the adversarial failure
rate gains of larger ResNet configurations are driven by re-
sponse time rather than true robustness; that these gains are
dwarfed by the increase in training time; and that AFT mod-
els are a powerful tool for comparing model architectures and
examining the effects of covariates. In the section below, we
display and discuss the results for the CIFAR100, CIFARI10,
and MNIST datasets for all attacks and defences.

6.1 AFT Models

Table 1 contains the performance of each of these models on
the CIFAR10 dataset. For all datasets, the results are roughly
comparable with regards to Concordance, but the log-logistic
and exponential models marginally outperforms the other mod-
els when measured with AIC/BIC. Concordance is identical for
both the test and train sets, with gamma and exponential falling
behind the others. However, the ICI and ES0 across the test
train sets is superior for the Weibull, so that model was used to
calculate the expected survival time in Figure 2, which is dis-
cussed below. Figure 1 clearly shows that more hidden layers
do increase the survival time. However, that seems to be driven
more by the model query time (see ?predict in Figure 1) than
inherent robustness (see Layers in Figure 1).

6.2 Effect of Covariates

Figure 1 depicts the effect of all attacks, defences, and model
configurations on the survival time and Figure 1 depicts the
effect of the covariates. Figure 1 clearly demonstrates that
increasing the depth of the model architecture does little for
adversarial robustness while universally increasing the train-
ing time. Furthermore, it reveals something surprising—that
increasing the number of epochs tends to increase the failure
rate—even across model architectures and all defences. Cer-
tain defences can outperform the control model—at the cost
of expensive tuning—evidenced by the large variance in per-
formance (see Figure 2). Additionally, we see that an in-
crease in accuracy tends to correspond to a decrease in sur-
vival time, confirming the inverse relationship noted by many
researchers [10, 6, 42]. As the training time increases, how-
ever, the variance of attack times decreases, likely due to the
corresponding increase in inference time (see Figure 1, covari-
ate tpredict) rather than inherent robustness (see covariate ‘Lay-
ers’). We formalise this analysis in the next subsection.

6.3 Failures and Cost

Figure 2 depicts the cost-failure ratio (see Equation 9) in both
the benign (left) figure and adversarial cases (middle and right
figures), using the Weibull model to calculate E[T]. Counter-
intuitively, we see that the smallest model (ResNet18) tends
to outperform both larger models (ResNet50 and ResNet152).
Furthermore, we see that defence tuning is about as important
as choosing the right type of defence (see left side of Figure 2),
with all defences falling within the normal ranges of each other.
However, adding noise to the model output (Gauss-out) tends to
underperform relative to the control for all models (see left side
of Figure 2). Likewise, the efficacy of a defence depends as
much on model architecture as it does on hyperparameter tun-
ing as demonstrated by the large variance in Figure 2. Further-
more, performance across all attacks is remarkably consistent
with intra-class variation being smaller than inter-class varia-
tion almost universally across defences and model configura-
tions. Finally—and most importantly—we see that every single
tested configuration performs incredibly poorly against FGM
and PGD.

7 Considerations

The proposed survival and cost analysis has some limitations
that we have taken all efforts to minimise and/or mitigate. In
order to minimise timing jitter, we measured the process time
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AIC BIC Concordance Test Concordance  ICI  TestICI E50 Test ESO
Cox - - 0.92 0.92 0.07 - 0.05 -
Gamma - - 0.51 0.52 0.26 0.17 0.17 0.24
Weibull 9.05e+04  9.05e+04 0.92 0.92 0.02 0.02 0 0.01
Exponential ~ 7.93e+04 7.93e+04 0.86 0.86 0.04 0.19 0.01 0.02
Log Logistic  9.79e+04  9.79e+04 0.92 092 0.07 0.08 0.01 0.01
Log Normal  1.14e+05 1.14e+05 0.91 091 0.15 0.26 0.08 0.19

TABLE 1. This table depicts the performance metrics (see Section 3.3) for various survival analysis models (see Section 3) according to the methodology
described in Section 5. The concordance measures the agreement between a cubic spline fit to the observed data (see: Section 3.3) and the fitted AFT model,
with a value of one indicating perfect performance. The ICI score measures the total error between the calibration curve and the fitted model and the E50
refers to the difference between the cubic spline and fitted model at the median of the cubic spline. AIC/BIC respectively refer to the Akaike and Bayesian
information criteria which favour smaller scores. Columns including the word test indicate the scores on test data, otherwise it is scored on the training set.
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FIGURE 1. The coefficients represent the log scale effect of the dummy variables for dataset (Data), attack (Atk), and defence (Def) on the survival time,
with a positive value indicating an increase in the survival time. The right plot depicts the covariates and the left plot depicts the dummy variables for the

different attacks, defences, and datasets.
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FIGURE 2. This figure depicts the TRASH metric that reflects the ratio of training-to-attack times, where a value >> 1 indicates an essential advantage for

the attacker. The violin plots reflect the 95% confidence intervals for each tuned hyperparameter combination. Outliers are indicated with a circle.
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for a batch of samples and then assumed that the time per sam-
ple was the measured processor time divided by the number of
samples. In order to examine a variety of different optimisa-
tion criteria for adversarial perturbations, we included several
different attacks (see Section 5.4)—though the choice of attack
is highly contextual. We must also note that none of these at-
tacks are run-time optimal and are, at best, an underestimate
of the true adversarial failure rate [42]. Likewise, testing all
known defences would be computationally infeasible. As such,
we focused only on the pre- and post-processing technique.
While every configuration of ResNet met the bare minimum
requirement outlined in Equation 9, real training processes re-
quire many thousands of samples and attacks are consistently
successful with only one hundred samples. Together, these con-
siderations raise serious concerns about the efficacy of any of
these models and defences in the presence of these simple ad-
versaries, meaning attacks will likely be many orders of mag-
nitude cheaper than defences for tested configurations of this
model. Furthermore, state of-the art leaderboards* show that
a 99% generalised adversarial accuracy is, at best, optimistic.

8 Conclusion

Convolutional neural networks have shown to be widely ap-
plicable to a large number of fields when large amounts of la-
belled data are available. By examining the role of the attacks,
defences, and model depth in the context of adversarial fail-
ure rate, this paper presents a reliable and effective modelling
framework that applies AFT models to deep neural networks.
The metrics outlined Table 1 and explained in Section 3.3
show that this method is both effective and data-agnostic. We
use this model to demonstrate the efficacy of various attack-
and defence-tuning techniques, to explore the relationships be-
tween accuracy and adversarial robustness (Figure 1), and show
that various model defences are ineffective on average and
marginally better than the control at best. By measuring the
cost-normalised failure rate or TRASH score (see Section 4 and
Figure 2), it is clear that all tested configurations of ResNet fail
to meet the TRASH criterion. The methods can easily extend to
any other arbitrary collection of model pre-processing, training,
tuning, attack and/or deployment parameters. In short, AFTs
provide a rigorous way to compare not only the relative ro-
bustness of a model, but of its cost effectiveness in response to
an attacker. The measurements rigorously demonstrate that the
depth of a ResNet architecture does little to guarantee robust-
ness while the community trends towards larger models [18].

4Madry’s MNIST Challenge
SCroce’s Robust Bench

While the train-test split methodology relies on an ever-
larger number of samples to increase precision, the survival
time method is able to precisely and accurately compare mod-
els using only a small number of samples [48, 30] relative to the
many billions of samples required of the train/test split method-
ology and safety-critical standards [39, 37, 38, 42]. In short,
by generating worst-case examples (e.g., adversarial ones), one
can test and compare arbitrarily complex models before they
leave the lab, drive a car, predict the presence of cancer, or pi-
lot a drone.
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Abstract

Considering the growing prominence of production-level Al and the threat of
adversarial attacks that can evade a model at run-time, evaluating the robustness
of models to these evasion attacks is of critical importance. Additionally, test-
ing model changes likely means deploying the models to (e.g. a car or a medical
imaging device), or a drone to see how it affects performance, making un-tested
changes a public problem that reduces development speed, increases cost of devel-
opment, and makes it difficult (if not impossible) to parse cause from effect. In
this work, we used survival analysis as a cloud-native, time-efficient and precise
method for predicting model performance in the presence of adversarial noise.
For neural networks in particular, the relationships between the learning rate,
batch size, training time, convergence time, and deployment cost are highly com-
plex, so researchers generally rely on benchmark datasets to assess the ability of
a model to generalize beyond the training data. However, in practice, this means
that each model configuration needs to be evaluated against real-world deploy-
ment samples which can be prohibitively expensive or time-consuming to collect
— especially when other parts of the software or hardware stack are developed
in parallel. To address this, we propose using accelerated failure time models to
measure the effect of hardware choice, batch size, number of epochs, and test-
set accuracy by using adversarial attacks to induce failures on a reference model
architecture before deploying the model to the real world. We evaluate several
GPU types and use the Tree Parzen Estimator to maximize model robustness
and minimize model run-time simultaneously. This provides a way to evaluate
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the model and optimise it in a single step, while simultaneously allowing us to
model the effect of model parameters on training time, prediction time, and accu-
racy. Using this technique, we demonstrate that newer, more-powerful hardware
does decrease the training time, but with a monetary and power cost that far
outpaces the marginal gains in accuracy.

Keywords: artificial intelligence, machine learning, adversarial Al, optimisation,
compliance

1 Introduction

1.1 Motivation

Recently, machine learning (ML) using deep neural networks has become a popular way
to classify large amounts of data — with applications ranging from medical imaging [1]
to aviation [2] and from security [3-5] to self-driving cars [6]. Statistical learning
theory [7, 8] provides us no guarantees about the generalization performance of deep
neural networks due to the massive number of tunable parameters. To overcome this,
neural networks need large amounts of data [9, 10] to train ever-larger model [9], which
has yielded increasingly marginal gains on test-set accuracy [11]. It is also clear that
reaching safety-critical standards using test-set accuracy would require an infeasibly
large test set [12]. Therefore, we propose using Accelerated Failure Time (AFT) models
to simulate edge-cases and verify models using a small number of samples. Modern
neural networks are massive — they have have grown to be one of the largest consumers
of data-center power, especially with the rise of generative Al [13]. For image systemns,
AlexNet [14] is now considered small with only 60 million parameters. ResNet152 has
even more parameters at 116 million [15]. However, modern architectures have lead
to an explosion in model size with the recent Mamba model boasting a massive 8
billion tunable parameters [16]. At these scales, we have no statistical guarantees about
the performance of these models and test-set validation would require many, many
billions of samples for each and every model change. Furthermore, even if we ignore the
immense cost of training modern neural networks, the required number of test samples
creates serious questions about the efficacy of the typical train/test split methodology
for assessing model generalization [12] since regulatory standards around safety-critical
software applications [17-20] clearly define the maximum failure rate to be in the range
[107'2,107'°] depending on the number of lives at risk. Furthermore, ensuring the
robustness of ML models against adversarial noise has become a critical concern since
inducing a failure at run-time has consistently shown to be trivial [21-26]. Collecting,
labelling, and testing a new set of data for every software change — as required by law
in most of the world [17-20] — would be prohibitively expensive for these large models.
Therefore, a new evaluation methodology is required. We propose to use survival
analysis as a methodological framework to model the failure conditions of a machine
learning (ML) model. Instead of having a test set large enough to cover all of the
failure cases, we generate adversarial samples crafted specifically to make the model
fail and then use survival analysis to predict these failures in general. In this work, we
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used accelerated failure-time methods to predict model performance as a function of
various model parameters. The methodology outlined in Section 3 allows the model-
builder to minimize the training cost, optimise for adversarial robustness, estimate the
effects of covariates on model performance during routine training procedures. Then,
one can perform a cost analysis (Section 4). We then demonstrate the efficacy of this
methodology in Section 6 by examining the role of hardware on model performance,
the particulars of which are outlined in Section 5.

1.2 Contributions

To tackle the problems of minimizing deployment cost while maximizing the model
performance on both the test set and in the presence of adversarial noise we present
a scalable and effective methodology (see Figure 1) and software framework (see
Figure 2) for the training (see Section 3) and evaluation (see Section 4) of ML models
that:

® Optimises for benign and adversarial accuracy simultaneously,

® Demonstrates a scalable and effective method to train a model while simultaneously
estimating the effect of various hyper-parameters, and

® Measures the power and monetary cost of deploying a model across different
hardware architectures to model the trade-offs between deployment hardware and
robustness.

® Demonstrates that, even when we separately measure the effect of the slower clock
speed of “inference only hardware” compared to hardware tailored for training,
that models trained using the “inference only” devices are more robust for image
classification tasks than models built on hardware designed for training.

Section 2 defines the terminology used throughout the paper. Section 3 outlines
the training and evaluation methodology presented in this paper. Section 4 discusses
the resulting cost analysis framework, arising from the methodology in the previous
section. Section 5 outlines the software components and specific experiments that were
conducted, while Section 6 contains the results and discussions of those experiments.
Section 7 and Section 8 reveal the caveats and the conclusions respectively.

2 Background

In this paper, we evaluate a comprehensive methodology for evaluating model robust-
ness during training time and model the asymptotic effect of the various parameters
in the hyper-parameter search space. For the sake of the reader, we provide a section
for definitions and requisite background information below.

2.1 Cloud Architectures

ML pipelines play a crucial role in the development and deployment of robust and
accurate models. However, managing complex pipelines across diverse central process-
ing unit (CPU) and graphics processing unit (GPU) architectures, ensuring robustness
against adversarial attacks, and understanding the relationship between computational
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cost, model loss, and prediction accuracy remain ongoing challenges. One popular solu-
tion is using a network of interconnected services [27-30] where a service is the smallest
component of a “cloud-native” software stack. In the context of ML, that might be
some software component meant for training, inference, pre-processing, sampling, or
any other arbitrarily small part of the data pipeline. A service mesh typically con-
sists of a set of interconnected components or proxies deployed alongside the services
within the system. These components facilitate various capabilities and functionalities
essential for managing the communication between services. Kubernetes has become
one of the largest open source projects on the code-sharing website Github [31] and
provides a framework for managing, monitoring, and networking a self-scaling set of
tools across arbitrary software and hardware architectures using a service mesh. For
ML applications, these services are often divided into “training” and “inference” con-
figurations that often have distinct hardware and software configurations [32]. In this
work, we leveraged Kubernetes [33] to manage a multi-stage ML pipeline (see Figure 1)
and measure the power and cost of training and evaluating the pipeline (see Figure 2)
across a variety of different hardware architectures (see Table 1).

2.2 ML Pipelines

ML pipelines are often long-running and complex software tool-chains with many
tunable hyper-parameters. Managing, tracking, and controlling for various parameters
is non trivial, but many management tools are available [33-35]. In general, a dataset
is split into training and test sets. The test set is then used to determine the best
configuration of a given model architecture on a given hardware architecture with the
expectation that it will generalize both on the withheld test set and on new data
generated and submitted by users. Since different hardware devices have differing
amounts of video random access memory (VRAM), the resulting models will have
differing optimal configurations if both robustness and training cost are considered. To
verify the training process, the test set is validated against the inference configuration
of a model which may run on different hardware than the training configuration to
reduce cost, latency, or power consumption. Likewise, Nvidia offers hardware that is
marketed as either for training (e.g., v100 and p100) or only for inference (e.g., 14).

2.3 Classifiers

We consider ML classifiers, K (z;6) with model parameters, 6. The true labels are
denoted by y, and the model predictions by § = K(z;6) where z is a mini-batch of
size N of data samples. The loss function, the measure of discrepancy between the
true label and the predicted label, is denoted by L(y, 7). Because of the complexity of
modern ML models, researchers rely on numerical optimisation, and one popular choice
of optimisation algorithm is stochastic gradient descent, which updates the model
parameters by taking a step in the negative gradient direction, where the gradient is
computed using a subset (a mini-batch) of the training samples instead of all training
samples. This procedure is repeated for some number of epochs (iterations through
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the entire training set). Every iteration takes a step,
00 =0 — Ve Ly, K (2,61)) 8y

where the gradient is approximated using b samples per mini-batch and 7 is the
learning rate (or step size) that is tuned to the particular model and data.

2.4 Learning Rate Selection

Choosing a good learning rate is critical for model performance greatly effecting
both the accuracy and the training cost. A small learning rate will more accurately
approximate the class boundaries [36], but will converge slower, all other things being
equal. Of course “small” is arbitrarily defined, but the scale of the optimal learning
rate will vary with e.g., the mini-batch size, number of epochs, dimensionality of the
input data, etc. [37]. GPUs with larger amounts of VRAM are able to hold more data
in memory at a time, increasing the effective mini-batch size, and reducing the number
of model-tuning steps per epoch. A “good” learning rate will allow a model to converge
quickly [37, 38] and the ideal mini-batch size will be determined by the memory
bandwidth of the GPU and the size of the model and the size and dimensionality of the
data. However, since cloud infrastructure is virtualized and shared with other users, the
available bandwidth will not necessarily match the peak available bandwidth specified
by the manufacturer [39], so researchers must evaluate this in situ. Furthermore, since
hardware is typically billed by the hour on public clouds, optimising the training and
inference times allows a model-builder to minimize the cost of deployment. To optimize
for training time as well as robustness (both Ape,, and Agqy ), the TPE optimization was
used (see: Section 3.3). However, before progressing any further, it is first necessary
to define robustness.

2.5 Adversarial Attacks

In the context of ML, an adversarial attack refers to deliberate and malicious attempts
to manipulate or exploit ML models. Adversarial attacks are designed to deceive or
change the model’s behavior by introducing carefully crafted input data that can
cause the model to make incorrect predictions or otherwise produce undesired out-
puts. That is, a successful attack is one in which the model outputs on the original,
unperturbed data, g, are not the same as the model outputs on perturbed data, ¥,.
That is adversarial success or accelerated failure is one in which

97 Ja = K(z +&;0), 2)

where ¢ is a noise distance bounded by 0 < e < ¢* Additionally, one can measure the
accuracy of the model when tasked with these adversarial samples, giving us a metric
called adversarial accuracy which is Eq. 4 calculated on the perturbed samples. The
goal of an adversarial attack is often to exploit vulnerabilities in the model’s decision-
making process or to probe its weaknesses. These attacks can occur during various
stages of the ML pipeline, including during training [40, 41], inference [42, 43], or
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deployment [21, 22, 24, 42, 44-46]. One of many possible attacks is designed to induce
failures as quickly as possible, and is conveniently called the fast gradient method [47].
It works by applying noise to a set of samples, z, to generate adversarial examples,
T4, such that,

g =2+ 1 -sign(VyL(y, K(z,0))). 3)
In essence, this is process seeks to increase the loss by changing the input data, in
contrast to model training which seeks to minimize the loss by changing the model
parameters.

2.6 Adversarial Analysis

In the case of safety- or security-critical domains, considering the worst-case scenario is
routine [39]. Whether in the context of automotive safety [6], crytographic systems [48,
49], or healthcare malpractice [1], a component, algorithm, or system is considered
broken if the failure rate exceeds a certain amount, depending the risk to human
life [17]. An order of magnitude more automotive accidents, security breaches, or
deaths due to negligence would be unacceptable and, as such, these standards are
non-negotiable. However, this would mean testing many millions of samples for every
model change that has the potential to injure a human, with orders of magnitude
more stringent requirement in the case of potentially fatal systems. This is just not
computationally feasible. Instead, researchers can use adversarial failure analysis [12,
22, 50] to improve the precision of our estimates while only using a small set of
test-data.

3 Survival Analysis for Robustness Verification
during Training

We propose a methodology for model training and verification using accelerated
failure-time (AFT) models, drawn from the field of survival analysis, with a focus on
cost-efficient evaluation methods. AFT models are statistical models used to analyze
multivariate effects on the observed failure rate to predict the time-to-failure across
a wide variety of circumstances [51, 52]. In medical science, these models are used to
make claims like “smokers are twice as likely to die from lung cancer” or used to set the
operating limits of manufactured components. This methodology can be used to map
the relationship between various model tuning parameters and their effect on model
performance. The next section outlines the methodology for modelling the effect of
model hyper-parameters during routine training procedures. We precisely outline the
methodology for using survival analysis during the training of ML methods.

3.1 Accuracy

Accuracy measures the vulnerability or susceptibility of the model to failures. A larger
accurate indicates a higher rate of true classifications, signifying a weaker model in
terms of robustness against (noise-induced) failures. Throughout, we use the termi-
nology benign accuracy to refer to the performance on the test set using unperturbed
data and adversarial to refer to the performance in the presence of additive noise that
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is intended to confuse the model. The subscripts ben and adv are used respectively.
The accuracy, A, is defined as

False Classifications
A= Aceuracy =1 Total Classifciations’ “)
which is generally assumed to indicate the rate of successes in real-world data sampled
from the same distribution as the training data [53]. However, the normal test/train
split methodology consistently overestimates the model’s performance in the presence
of adversarial noise [23]. In addition, it ignores the run-time cost of a given architec-
tural decision, caring only about accuracy on benchmark data [9, 10]. Additionally, it
has been shown that it is trivial to generate adversarial counter examples that reveal
the test/train split methodology to be optimistic at best [12, 21, 22, 24, 40, 42, 46, 54].

3.2 Failure Rate

The failure rate refers to the percentage or proportion of examples that cause the
targeted ML model to misclassify or produce incorrect outputs [12]. To encompass
the cost of a particular model or attack, the proposed methodology considers failures
to be a function over some time interval (e.g., training time, inference time, attack
generation time, etc.) and some covariates, 0, so that the failure rate is the average
time until a failure in a time interval around time, ¢, such that:

False Classification | 6
ho(t) = ( o | )t7

where p(False Classification | 6) is the probability of a false classification given a
particular set of hyper-parameters, 0, At is a time interval, and ¢ is a point in time.
Note that 1 — X is an estimate of this value when At = ¢ and converges to this value
as the number of samples, N — oco. By modelling accuracy as a function of time,
one can then compare the probability of failure to the cost, which is also measured in
time, allowing one to make deployment decisions based on the risk analysis standards
outlined in IEC61508 [17]. This then allows us to make claims like “increasing training
time by X% will yield survival time gains of Y%” [55].

3.3 Optimisation

ML models are typically trained by examining the effect of the entire hyper-parameter
space on the resulting accuracy. However, the number of hyper-parameter combina-
tions are often infinite or at least exponential in the number of hyper-parameters,
making it infeasible to exhaustively evaluate the entire hyper-parameter search space.
Additionally, the goals of test-set accuracy and adversarial accuracy are often at
odds [22] with several researchers noting an inverse relationship between model
accuracy and model robustness [12, 22, 54]. Therefore, a proper search would keep
this dual-objective in mind. In addition, we attempt to minimize the training time
for each piece of hardware since optimal batch size and, therefore, learning rate will
be determined by the VRAM, the size bit depth of the data as well as the size and
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Fig. 1: For each dataset and hardware combination, a random state parameter was
chosen at random to decide the test and train sets. Next, model parameters and
attack parameters are chosen at random. After 128 random trials, the TPE algorithm
attempts to maximize benign and adversarial accuracy while minimizing training time
by tuning the model parameters. The random seed for the data split and the attack
parameters are sampled independently from this optimization, which is why they are
colored differently. The model tuning (blue-box) is discussed in Section 3.3. After the
trials are completed, several AFT models are fit (see Section 3.4) and compared (see
Section 3.5) using the process depicted in the purple box. Finally we conduct the cost
analysis outlined in Section 4 (green box).

bit depth of the model. To maximise adversarial and benign accuracy simultaneously
while minimizing training time, we propose the use of the Tree-structured Parzen Esti-
mator (TPE) because it has been shown to converge over tens or hundreds of trials
rather the the 1000s of trials typical of other multi-objective optimisation algorithms
like CMAES or NSGA-II [56-58]. In addition, we seek to minimize the training time
in order to maximize the number of hyper-parameters that can be examined on a fixed
budget. Further discussion of the cost analysis can be found in Section 4.

3.4 AFT Models

AFT models are widely used in industrial, medical, or risk-mitigation contexts [51, 52]
to model the effect of covariates on a model’s expected time-to-failure (also called
survival time). For industrial components, this often means testing the component
under a variety of extreme circumstances to induce failures prematurely. For medical
applications, this is used to model the effect of demographic characteristics or the
efficacy of certain treatments on a given disease. For ML, this means inducing failures
during training to measure generalization performance.
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The point of this is to model the survival time, Sp(t), as a function of the time, ¢,
and some set of model parameters, € such that,

St) = (> ¢10) = (- [ o) i)

where p(T > t) is the probability that a model has not failed by time ¢ (“survives”
beyond time t). The expected survival time is

Es, [T] = 0' So(u) du, 5)

where ¢* is the latest time observed in the survival data. However, modelling Sy(t)
requires a choice in modelling function for Sp. The Log-Logistic, Log-Normal, and
Weibull functions are widely used alternatives [52, 55]. For each trial, one can measure
the attack generation time to define the time interval and the accuracy to estimate
the number of failures and successes in that time interval.

3.4.1 Survival Time

By using adversarial samples (see Equation 2), failures can be induced. The likelihood
of that failure is dependent on the amount of adversarial noise, ¢, since adversarial
noise is known to induce failures. That is, the rate of adversarial success (Equation 2),
will increase as € increases. In terms of AFT models, this can be expressed as the
expected lifetime of an adversarial sample when treating € as a covariate. In the
language of accelerated failure time models, this can be expressed in terms of the
accelerated failure time assumption [52]

Sy(t) = So (ﬁ) : (6)

where ¢y is the acceleration factor, described by the joint effect of the covariates, such
that
dg(x) = exp (oo + 0121 + -+ + Onzy),

and where © = (2o, ...,2,) is a vector of covariates and 0 = (6, ..., 0,) describe the
fitted parameters, and € is used as one of the covariates. That is, when the adversar-
ial noise level changes, it will also alter the expected survival time of a sample. This
assumption means we can evaluate the generalization performance using a small num-
ber of adversarial samples with our precision coming from careful time measurements
rather than massive test sets [52, 55]. However, in order to find the best AFT model,
one must compare the tested models using the techniques outlined below.

3.5 Choosing the best AFT Model

To choose a best-fit from the possible AFT functions, one should prepare the collected
metrics and scores and then compare them using e.g., Akaike Information Criterion
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(AIC), Bayesian Information Criteria (BIC), or Concordance, as per the best-practices
for this methodology [51, 52]. For AIC and BIC, that means choosing the smallest
value. Concordance, however, is a number between 0 and 1 that quantifies the degree
to which the survival time is explained by the model, where a 1 reflects a perfect
explanation [52] and 0.5 reflects random chance. By evaluating Eg,[T] under extreme
perturbations, one can test the model and minimize the number of evaluated sam-
ples [51, 52] rather than relying on the > 10'2 samples as required by IEC61508 [17].
While the aforementioned metrics measure goodness-of-fit, one should conduct a sur-
vival probability calibration, where one fits the AFT model to the data and compares
it to a cubic-spline that is meant to capture the un-modelled relationship between
failures and time [59]. These plots can be used to visually inspect the goodness-of-fit
of various models, as in Figure 7, and this method is called survival probability cali-
bration (used in Figure 1). The integrated calibration index (ICI) as well as the error
at the 50th percentile E50 [59] can then be calculated. These are the mean absolute
difference between observed and predicted probabilities and the median absolute dif-
ference between observed and predicted probabilities, respectively [59]. Additionally,
the data were split into a training set that was used to fit the model (80%) and an
unseen test set (20%) and the concordance, ICI, and E50 were measured for both.

4 Cost Analysis

In addition to the survival analysis, we can use an estimate of survival time to conduct
a cost analysis as dictated by IEC61508 [17] which allows us to quantify the marginal
risk. To quantify this marginal risk, one must measure the benign and adversarial
accuracies (see Equations 2 and 4), the model training time, ¢;, the model inference
time or latency, t;, the attack generation time, t,, the cost per hour for a particular
hardware, C, as well as the power consumption, P, of each tested model and attack.

4.1 Accuracy

In order to estimate the number of failures in a given time period, we measured both
the benign accuracy and the adversarial accuracy, which reflect the normal test-set
accuracy and the test-set accuracy in the presence of additive noise in the direction
that maximizes loss. Under the AFT framework above, we can use the adversarial
accuracy as a measure of the survival time across a specified time period as outlined
in Figure 1.

4.2 Training Time

The training time, T%, is the time it takes to evaluate n samples when ¢; is the training
time per sample. It is defined as

T, :=t:-n-m,

where m is the number of epochs.
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4.3 Latency

Latency is the time it takes to respond to a query. We assume that latency per sample
is

T :=t;-n,
which will be driven by the memory bandwidth (measured in bits/second) of a
given CPU or GPU and the size [60] and complexity [15] of a given neural network
architecture.

4.4 Attack Generation Time

A successful attack is one that induces failure in a model. That is, the expected survival
time, Eg, [T], can be thought of as the average time it takes for an attacker to induce
a change in the model output. Assuming a uniform distribution, 7y, for n samples, i
iterations, and attack time per sample, ¢,, as

To :=1q 1. (7)

In reality, the attack time will not be drawn from a uniform distribution and prior
research [55] has shown that by treating model and attack parameters as covariates,
one can model the survival time accurately by using and AFT model, such that:

1~ Egy[T] = / So(t)dt. (8)

4.5 Cost

Furthermore, we approach the cost of deployment at two scales. Firstly, we consider
the cloud-rental scale, where a small-business might test and deploy a model using e.g.,
the Google Cloud Platform (GCP) compute costs as a measure of total cost. However,
at a certain scale or with certain applications, it is more appropriate to talk about
cost in terms of power (e.g., to deploy a self-driving car with a useful operating range).
Finally, we define metrics that provide an efficient way to minimize the latency, cost
of deployment, and maximize the generalized performance of a model. We define the
training cost as

Cy=Cp - Tt,
the cost of model inference time as,

Ci=Cy Tg,
and the cost of an attack as,

Co=0Cy - T

where C}, is the cost per unit time for the hardware, T} is the training time, 7} is the
inference time, and T, is the attack generation time, as defined above.
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4.6 TRASH Score

With an estimate of the expected survival time in hand, quantify the cost-normalized
failure rate, or the ratio of training time to attack time. Assuming that the cost scales
linearly — as discussed above — the model builder’s cost is proportional to the training
time (Cy o t;), and the attacker’s cost is proportional to the attack time, which is
approximately the expected survival time (C, o t, ~ Egg[T]). Using the definition of
¢ from Equation 2 and definition of ¢/, from Equation 8, we can express the cost of
failure in adversarial terms as follows:

tet
Bo[T] ~ !,

TRASH = 9)

4.6.1 Power

The power consumption for a particular piece of hardware, P,, measured in Watts
(Joules per second), can be thought of similarly such that the total power consumption
of model training is

Py =Py - Tt,

the power consumption during model inference is
P=PF,-T;

and the power consumption during attack generation is
Py = Py - T,

where Py, is the cost per unit time for the hardware, T} is the training time, 7} is the
inference time, and T, is the attack generation time, as defined above.

5 Experiments

This section outlines specific implementation details for the evaluation of the survival
analysis methodology outlined in Section 3 and the cost analysis methodology outlined
in Sec 4.

5.1 Cloud Platform and Hardware

To conduct the experiments and have access to different types of hardware, we utilized
GCP. Six virtual machines running container optimised operating system provided by
GCP constituted the test-bed. Using Google Kubernetes Engine 1.27.3 and Containerd
1.7.0, a cluster consisting of six worker nodes was created. Three worker nodes were
responsible for running the monitoring platforms— Prometheus 2.47.2 and Grafana
10.2.0. These nodes were of the “e2-medium” instance type provided by GCP. In total,
three GPU architectures were used-the Nvidia P100, V100, and L4. For P100 and
V100 GPUs, the “nl-standard-2” type was used for the nodes and for .4 GPUs the
“g2-standard-4” was used.
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Fig. 2: For our experiments we used four node pools from Google Cloud Platform,
each has a particular responsibility. The first node pool includes 3 different nodes
responsible for hosting monitoring services such as Prometheus and Grafana. The
other node pools each had one node with a specific GPU. The KEPLER exporter
is then deployed on each node as DaemonSet to monitor the resource usage. All the
storage requirements during the experimentation such as storage for experiments and
monitoring data were then stored on storage provided by persistent volume claim
(PVC). A PVC is a request for storage by user in Kubernetes which is then connected
to the object storage. The blue experiment, blue-green object storage, green analysis
component, and purple AFT component correspond to the same colors in Figure 1.

To assess the energy consumption of the experiments, KEPLER deployed on a was
used to measure the power consumption of each experiment [61]. This approach enables
gathering energy consumption data on granular levels as it runs in Kubernetes cluster
and capable of collecting energy consumption of Kubernetes components. In essence,
KEPLER uses extended Berkeley Packet Filter to probe energy-related system stats
and exports them as Prometheus metrics. This filter can be described as a lightweight
and sandboxed virtual machine (VM) in kernel space. The filter programs are invoked
by the kernel when certain events occur. Examples of such events include system calls
or network activity. These processes enable deep analysis and full control over different
events with low overhead [62]. A diagram of the cloud architecture can be found in
Figure 2. Finally, for a cost-effective model evaluation technique, all of the experiments
were restricted to a single one-thousand United States dollar budget (a research grant
from Google). Approximately 10% of this was used for development and 90% was used
for the evaluations. Over the course of the evaluations, 6% of the budget went to the
storage, 6% to the monitoring, and the remaining 88% went the GPUs.
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5.2 AFT Models

For each hardware configuration and dataset, the TPE algorithm was used to select
the hyper-parameters [56, 63], and it was iterated for 1000 trials. This was chosen to
be substantially larger than the 200 used successfully by Watanabe et al. [58] while
still allowing for reasonable run times [64]. We used three optimisation criteria: benign
accuracy, training time, and adversarial accuracy, seeking to maximize both benign
and adversarial accuracy while minimizing training time (and therefore deployment
cost). We selected a set of parameters as per the TPE algorithm and trained on
80% of the samples for each of the MNIST, CIFAR10, and CIFAR100 datasets. Of
the remaining samples, 100 were withheld to be attacked and used to evaluate the
adversarial accuracy. Figure 1 illustrates this methodology. For each dataset, we tested
this on ten random splits of the data to create 10 unique test/train pairs. For each
trial, we recorded attack generation time, model training time, model inference time,
benign accuracy and adversarial accuracy, and the size of the training set, test set,
and attack set. Using these values, we fit an AFT model to the number of failures
(indicated by accuracy and sample size) and the attack generation time after adding
dummy variables for the dataset and hardware device. Additionally, we approximate
the AFT model using the methodology depicted in Figure 1.

5.3 Datasets

The AFT models were evaluated using the MNIST [65], CIFARIO [66], and
CIFAR100 [66] datasets, chosen primarily for their standardized use in adversarial
analysis [22, 23, 67, 68] and decades of experimental results. Before training, we cen-
tered and scaled the data so that the attack distance would be analogous for all tested
datasets. Furthermore, to reduce the complexities of system overhead, distributed or
federated training, and the effect of shared cloud environments, we restricted ourselves
to datasets that were small enough to reside entirely within GPU memory with the
model, since the disk read speed in cloud environments is incredibly variable.

5.4 Models

The evaluations were restricted to a single model. Primarily, this was done to meet
the budgetary constraints since evaluating more models would mean evaluating fewer
pieces of hardware. As discussed in Section 2.4, the relationship between hardware
specifications, hyper-parameters, and performance is highly complex and hard to pre-
dict. So, we sampled learning rates € [107%,1], batch sizes € [1,10°], and epochs
€ [1,50] for MNIST and CIFAR10 on the P100 and V100. For CIFAR100, the range
of the tested epochs was increased to be € [1,100]. The Feature Squeezing defence [69]
was used to evaluate the efficacy of different bit-depths on the L4 hardware, as pro-
vided by IBM’s adversarial robustness toolbox [26] with bit depths € [4, 8,16, 32, 64]
which casts the inputs into pytorch compatible arrays. Model parameters were chosen
using the optuna optimisation framework, the configuration was handled by hydra,
and dvc was used to ensure reproducibility and aid in collaborative development.
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5.5 Attacks

To examine the effect of model parameters at run-time, evasion attacks, which attack
the model at the prediction stage, were examined. Prior research [12, 55] has shown
that the Fast Gradient method (see Eq. 3) is consistently the most effective at inducing
a large number of failures in a small amount of time. To evaluate the effect of adver-
sarial noise on the samples, the noise levels were varied 0 < ¢ < 0. This was done using
the adversarial-robustness-toolbox package maintained by a team at IBM [26].

5.6 GPU Configurations

Several hardware configurations were tested, that had various hourly costs, peak power
demands, and theoretical memory bandwidths. The V100 was chosen as a baseline,
since it is routinely used in the literature [70, 71]. The P100 architecture comes from
the same line of server-grade GPUs, but from an older generation. The L4, however,
is advertised as a machine built for inference — not training — relying on a smaller
number of bits per tensor core. Consequently, the number of operations per second
depends on the bit depth of the data and model weights, with peak numbers outlined
in Table 1 for 8-bit inputs. The rental cost of the hardware, measured in United States
Dollars per hour, indicates the operating cost of a given model. To calculate this, the
price per hour from each cloud service pricing page [72, 73] were used and the cost of
training (Cy) and the cost of inference (C;) calculated from the cost of hardware (Cy),
the training time (7%), and the inference time (75).

V100 P100 L4

Cost (USD/hour) 2,55 1.60 0.81
Power (Watts) 250 250 T2
Memory Bandwidth (GB/s) 900 732 300

Table 1: Hardware specifications for the tested GPUs. The specifications were
retrieved from Nvidia’s website at the following links: V100 Datasheet, P100
Datasheet, and L4 Datasheet. Prices were retrieved from Google Cloud Platform for
the europe-west4 region on 3 December 2023.

5.7 Survival Analysis

In addition to the optimisation criteria of benign/adversarial accuracy and training
time, prediction times, attack times, power consumption, batch size, and number of
epochs were also collected to be used as covariates in the AFT model, Syp(t). To fit the
AFT model and to plot the effect of the covariates, the 1lifelines Python package
was used [74]. The Weibull, Log Logistic, and Log Normal AFT models (see Section 3)
were also compared.
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6 Results and Discussion

This section presents and discusses the results for all of the experiments across all
datasets and hardware. First, the accuracy, training time, inference, and monetary
cost are discussed in Sections 6.1-6.2, followed by the fitted AFT model in Section 6.3.

6.1 Accuracy

Figure 3 shows the benign (left) and adversarial (right) accuracies for all datasets
and hardware. It demonstrates little to no change in accuracy or adversarial accuracy,
regardless of hardware. The benign accuracy decreases with difficulty (CIFAR10 vs
MNIST) or with the number of classes (CIFAR10 vs CIFAR100). For all three datasets,
the adversarial accuracy becomes the reciprocal of the number of classes (i.e., the
accuracy we would expect with random data), demonstrating the efficacy of the attack
outlined in Section 3.3.

6.2 Time, Power, Cost

Figure 4 reveals the training time, inference time, and attack generation time across
all datasets and models. Slower hardware (see Memory Bandwidth in Table 1) is
only a few milliseconds slower, so this is unlikely to be noticeable to an end-user
during inference. This should be no surprise since the less-capable hardware is meant
to be used exclusively for inference. Additionally, the attack time (right sub-figure)
increases with both the training (left) and prediction times (center) across hardware
and datasets — an expected result since this is driven by the number of samples
and the inference time (see Equation 7). We can also see that average training time
per sample is takes slightly more than than attack generation time per sample (see
Figure 4 left and right plots).

The power consumption during training, inference, and attack generation for all
hardware and datasets is illustrated in Figure 5. It tracks monetary cost (Figure 6)
closely, probably because that’s the predominant cost for the datacenter itself [75], so
it is unsurprising that cloud billing is correlated with the power requirement. Further-
more, we see that the largest dataset (CIFAR100) and smallest GPU (L4) require the
least amount of power (Figure 5) for prediction, while differences between hardware
and datasets are insignificant for the training and attack metrics.

The monetary cost for each dataset and each piece of hardware is shown in Figure 6.
For all three datasets across all three pieces of hardware, the cost of training on a
single sample often exceeds the cost of attacking a single sample. In the best case
scenario, they are comparable, but attacks consistently succeed with only 100 samples
(Figure 3) while model training requires orders of magnitude more.

6.3 AFT Models

Table 2 shows the performance metrics for all three AFT models, as outlined in
Section 3.4. A total 75% of the available data were used to build the AFT models and
25% were withheld for evaluation. The concordance is both strong (> 0.5) and similar
for all three AFT models and both the train and test sets. We observed no more than

140



> >
g 100% 2 100%
§ ! 'm § Device
2 10% ’ 2 10% = V100
o o E P100
o 1% S 1% S
m & = &S <

s & 0@5'

Fig. 3: Benign and adversarial accuracy across all hardware and datasets for all 1000
trials using plots that depict the distribution of the y-axis values using the width of
the plot. Each color is a different device and the datasets are displayed along the x-
axis. Outliers are denoted with a white dot.
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Fig. 4: This depicts the training, inference, and attack times for all hardware and
datasets for all 1000 trials using plots that depict the distribution of the second axis
values using the width of the plot. The time per sample was assumed to be uniform
across the batch of samples for each training, inference, or attack measurement. Each
color is a different device and the datasets are displayed along the first axis. Outliers
are denoted with a white dot. For these plots, the second axes have been scaled by
the number of samples for the sake of comparison.

1% mean absolute error in the probabilities ICI and no error in the median proba-
bility E50 across all three AFT models. Figure 7 depicts the observed and predicted
probabilities for all three AFT models. All three models have strong predictive power
(see Table: 2), with an average test error of around 1% ICI and a similar error for the
median sample E50. We also see that these metrics are functionally identical across
all AFT models as well as between the test and train set of each model.

Figure 8 shows the log-scale coefficients for the AFT model. It shows that epochs,
batch size, and training time have no effect on the survival time. Additionally, the
covariate value of 0 for random state indicates that random permutations of the train-
ing and test data have no effect on the survival time, which is expected. However, we
can clearly see that inference time is as strong an indicator as the attack noise distance,
revealing that model speed is nearly as important as the the noise value of the attack
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Fig. 5: This depicts the training, inference, and attack times for all hardware and
datasets for all 1000 trials using plots that depict the distribution of the second axis
values using the width of the plot. The power per sample was assumed to be uniform
across the batch of samples for each training, inference, or attack measurement. Each
color is a different device and the datasets are displayed along the first axis. Outliers
are denoted with a white dot. For these plots, the second axes have been scaled by
the number of samples for the sake of comparison.
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Fig. 6: This depicts the training, inference, and attack times for all hardware and
datasets for all 1000 trials using plots that depict the distribution of the second axis
values using the width of the plot. The cost per sample was assumed to be uniform
across the batch of samples for each training, inference, or attack measurement. Each
color is a different device and the datasets are displayed along the first axis. Outliers
are denoted with a white dot. For these plots, the second axes have been scaled by
the number of samples for the sake of comparison.

(€). Furthermore, we see that benign accuracy is negatively correlated with the sur-
vival time, confirming previous assertions that robustness (Sy(t)) is inversely related to
benign accuracy (which is the standard indicator of generalization performance) [22].

Using the Sy(t) described in Section 3, we can model the effect of various hardware
devices, which is depicted in Figure 8. It clearly shows that hardware choice has a
relatively small effect (£20%) on robustness, despite the much larger disparity in cost
outlined in Table 1.

6.4 Why Cost Matters

In security analysis, it is routine to think in optimistic terms for both the attacker and
defender. In cryptography, these ideal attack- and defence-scenarios are used to test
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Table 2: Comparison of AFT Models across all hardware and datasets. AIC and BIC are
measures of goodness-of-fit, with a smaller value being preferred. Concordance (Conc)
is a value between 0 and 1 that reflects how what proportion of events (failures) can
be explained by the model. ICI measures the average error between a cubic-spline and
the model and E50 measures the median error between the spline and the model. These
measured on both the train and test sets of the collected data, with the latter being

denoted “Test”.

AIC BIC Conc Test Conc ICI  Test ICI E50 Test E50
Weibull —2.11-10* -2.11-10% 0.84 0.83  0.00 0.01  0.00 0.00
Log Logistic =~ —2.18-10% —2.18-10* 0.84 0.83 0.01 0.01  0.00 0.00
Log Normal — —2.25-10% —2.25-10% 0.84 0.83  0.01 0.00  0.00 0.00
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Fig. 7: The red and blue lines depict the relationship between the modelled number of
failures (x-axis) and the measured number of failures (y-axis) for the training set (blue)
and test set (red). The dotted line indicates a cubic spline fit to Sp(t = t4) = Aadw-
A model that fits this cubic spline exactly would be a diagonal line at y = x. The
process of comparing the fitted AFT model to a default cubic spline is called survival
probability calibration and is discussed in more detail in Section 3.5.
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Fig. 8: Coefficients of the Covariates for the Weibull, Log-Normal, and Log-Logistic
AFT models. Here, “Random State” is used as a control variable that should be (and
is) close to 0. A positive value indicates that covariate increases the survival time and
negative value indicates that covariate decreases the survival time. The symbols T}
and T} refer training and inference time for all samples, while Ben. Accuracy refers to
the benign accuracy (accuracy on the un-altered samples), and € is the noise distance.

the computational feasibility of subverting a particular cryptographic system [48, 49]
(e.g., whether or not a given cryptographic method should be considered “broken”).
Using AFT, one can model the Pareto front — the set of points that are superior to
all others in the search space — for all objectives [63]. By using a whitebox attack
to generate the failures, we ensure that our defender operates under the worst case
scenario while the attacker operates under their best case scenario to yield a worst-case
failure rate. As such, we center our analysis on the whitebox Fast Gradient Method
(FGM) [47] (see Eq. 3) which is both effective and fast [12]. If the cost to a model
builder is much larger than the cost to an attacker, then it is clear that the model is
“broken” in this cryptographic sense and can be discarded as ineffective [55]. Figure 9
depicts the TRASH score defined in Equation 9, that quantifies the per-sample ratio
of training to attack time. It is clear that even with the reduced GPU bandwidth
(Table 1), that the L4 model is not only superior in terms of cost (Table 1), but also in
terms of robustness (Table 1), presumably since the extra bit-depth provided by the
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Fig. 9: The training rate and survival heuristic score (TRASH score) that depicts the
per-sample ratio of training time to attack time for each of the tested AFT models.
If this value is greater than one (the red line), then the model can be discarded as
ineffective. The x-axis shows each dataset, the y-axis shows the TRASH score and
each GPU model is given its own color. Outlier scores are depicted with a white dot.

P100 and V100 ends up being useless noise anyway when operating on 8-bit images
like MNIST and CIFAR.

6.5 Advantages of this Methodology

The primary advantage of this methodology over the traditional test/train split mea-
surements is that the precision of the latter is determined by the number of samples;
whereas, the precision of the survival time estimate is driven by the resolution of our
timing measurements. For test-set accuracy, meeting the weakest safety-critical TEC
standard (one failure in a million) would require many millions of samples to con-
fidently conclude that a model is safe. However, the presented AFT model has an
average error rate of 1% while requiring a very small number of samples (10 sets of
100) (see Table 2). Because of the small number of samples needed for building AFT
models (when compared to testing against massive in-distribution test sets), AFT
models could, for example, act as a unit test in ML applications. This is in contrast
to a full-system integration tests to evaluate changes to a single model, signal process-
ing technique, data storage format, or API access mechanism [76, 77]. It could also be
used to highlight error-prone classes or other subsets of data to reduce error or create
synthetic samples as is common in medical research [52]. Furthermore, by isolating
changes and testing them as quickly as possible, it is easier to parse cause and effect
when compared to full-system integration tests that could include many changes from
many different development teams and require live and potentially dangerous systems
(like cars, drones, or industrial equipment) to effectively test. To further increase devel-
opment velocity, these models can quantify the marginal risk associated with each
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change, as dictated by the IEC 61508 standard [17], allowing the model builder to
make a quantitative assessment about the efficacy of a model change without testing
the effect on real users. Additionally, since AFT models have strong predictive power
for untested hyper-parameter combinations, this method has a potential to reduce
the search space by quickly eliminating candidates that are unlikely to increase the
survival time.

7 Considerations

We have taken much care to conduct all timing measurements as carefully as possible.
Primarily, to minimize timing jitter and account for GPU parallelization, we assumed
that the time-to-failure during the benign and adversarial accuracy measurements was
uniform across the samples in each trial. While it is very possible (if not altogether
guaranteed) that some classes or samples are easier to attack than others, we assume
that this averages out over the 100 samples given to each attack. Further work exam-
ining, for example, the effect of imbalanced datasets on the the distribution of survival
times across classes is outside the scope of this work, though the methodology would
remain identical. Similarly, one could examine survival times for samples near the class
boundary and compare them with prototypical samples near the center of the class
cluster. However, given the strong results and uniformity across AFT functions in
Table 2, the uniform time assumption appears to be insignificant, though accounting
for the failure rate per sample or class is likely to account for some of the remain-
ing unexplained variance. Additionally, we chose a model and set of datasets small
enough to fit entirely in GPU memory to minimize the confounding factors around
parallelized, distributed, and/or federated learning as well as the complexities around
storage hardware, file systems, and various access mechanisms. Larger models acting
on larger datasets are likely to perform better on hardware with a higher GPU band-
width, but the 48GB of VRAM provided by the L40 should be more than sufficient for
vision tasks based on 8-bit images standard in the literature (e.g. MNIST, CIFARI10,
CIFAR100). Furthermore, the attack batch size and the training batch size were set to
be the same for every trial for each dataset and piece of hardware so that the attack
timing would mimic the usage of regular users. If anything, the smaller sample size
of the attacks means that proportionally more parallelization overhead is needed per
sample, leading to an underestimate of the attack efficacy compared to the benign
measurements. Furthermore, while FGM is fast, it is not guaranteed to find failures
as quickly as possible, meaning that the survival time estimate is likely to be overes-
timated. In general, distributed/federated models were out of scope for this work, but
architectural choices regarding the configuration of such methods could be evaluated
using the cost and survival analysis techniques outlined above. The hyper-parameter
search was restricted to only a single evasion attack (see Eq. 3) in the interest of
time and budget, though this analysis would generalize to other evasion, extraction,
inversion, or poisoning attacks [40, 43, 44, 50].
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8 Conclusions

In this work, we applied survival analysis to cloud-native ML, developed a method
to quickly and efficiently test model parameter choices and evaluated them in the
presence of adversarial noise, allowing one to the model performance as a function of
tested model parameters. Using this technique, it is clear that reduced run-times with
newer and/or larger hardware, that adversarial robustness is not substantially effected
and that the specific choice of attack parameters is far more important than model
training time.

The experiments conducted confirm that this methodology is both sound and cost-
effective. While 88% of the cloud budget went to GPU rentals, the data show how
cutting that cost by 75% and using less power-intensive hardware designed for 8-bit
image processing would be more effective than using the 32-bit datacenter GPUs (V100
and P100) for typical image classification tasks. Using proved to be a cost-effective
as real-time monitoring only used a fraction of the budget (6%). Figure 3 confirms
the efficacy of the TPE algorithm discussed in Section 3.3, allowing an infrastructure
engineer to ignore the intricacies of learning rate optimization while tuning the model
to a particular piece of hardware. Additionally, Table 2 and Figure 7 show that AFT
models are an effective way to model the survival time across hardware variants. By
comparing the training, inference, and attack times, costs, and power consumption
across different hardware devices (Figures 4- 6), it is clear that attacks generally
cost less than training, even when we ignore the fact that attacks are consistently
effective using a small number of samples while training relies on many thousands (see
Figures 1 & 3). This analysis is further confirmed by examining the coefficients of the
AFT models in Figure 8 wherein it is evident that neither training time (7%) nor the
number of epochs have noticeable effect on the survival time, but that model latency
(T;) does.

Regardless of which AFT model is chosen, the model suggests that the P100
decreases the survival time compared to the V100 and the L4 increases the survival
time (both compared to the V100, which has no significant effect). Furthermore, the
coefficients again confirm an inverse relationship between test set (benign) accuracy
and the adversarial robustness (i.e., survival time). Finally, even when we account for
the reduced GPU bandwidth (see Table 1) and increased training time (see Figure 4),
it is clear the the L4 model is superior in terms of robustness and cost-effectiveness
(see Figure 9), despite it being advertised as “inference only” by the manufacturer.
Furthermore, the data demonstrate the un-advertised training capability of the Nvidia
L4 GPU which yields a 20% increase in survival time while costing 75% less than the
V100 that’s been typical in the literature over the last several years.
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8.1 List of Abbreviations

AFT Accelerated Failure Time.
AIC Akaike Information Criterion.

BIC Bayesian Information Criteria.
CPU central processing unit.
E50 error at 50th percentile.
FGM Fast Gradient Method.

GCP Google Cloud Platform.
GPU graphics processing unit.

ICT integrated calibration index.
KEPLER Kubernetes Efficient Power Level Exporter.
ML machine learning.

TPE Tree-structured Parzen Estimator.
TRASH training rate and survival heuristic.

VRAM video random access memory.
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Abstract

The recent developments in machine learning have highlighted a
conflict between online platforms and their users in terms of privacy.
The importance of user privacy and the struggle for power over user
data has been intensified as regulators and operators attempt to po-
lice the online platforms. As users have become increasingly aware
of privacy issues, client-side data storage, management, and analysis
have become a favoured approach to large-scale centralised machine
learning. However, state-of-the-art machine learning methods require
vast amounts of labelled user data, making them unsuitable for mod-
els that reside client-side and only have access to a single user’s data.
State-of-the-art methods are also computationally expensive, which
degrades the user experience on compute-limited hardware and also
reduces battery life. A recent alternative approach has proven remark-
ably successful in classification tasks across a wide variety of data
using a compression-based distance measure (called normalized com-
pression distance) to measure the distance between generic objects in
classical distance-based machine learning methods. In this work, we
demonstrate that the normalized compression distance is actually not
a metric; develop it for the wider context of kernel methods to allow
modelling of complex data; and present techniques to improve the
training time of models that use this distance measure. We show that
the normalised compression distance works as well as and sometimes
better than other metrics and kernels—without incurring additional
computational costs and in spite of the lack of formal metric proper-
ties. The end results is a simple model with remarkable accuracy even
when trained on a very small number of samples allowing for models
that are small and effective enough to run entirely on a client device
using only user-supplied data.
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1 Introduction

Modern machine learning (ML) methods have demonstrated remarkable ef-
ficacy across many domains. However, they often have large numbers of
parameters, and thus also require large numbers of samples to train on [1].
This aggregation of vast amounts of data creates numerous privacy, safety,
and security threats [2] that are consequences of large-scale user data col-
lection, for instance by online platform operators (see Section 1.1 for more
details). We evaluate and extend prior work on compression-based distance
measures by incorporating them into novel kernel methods, enabling efficient
classification even with limited training samples. When using small train-
ing sets and small and efficient models, they can be trained entirely on a
client device without sharing private user data with anyone—allowing the
model builder to circumvent many weaknesses associated with state-of-the-
art methods [2, 3, 1]. We demonstrate the efficacy of the proposed approach
in the context of malware detection, network intrusion detection, and spam
detection.

1.1 Threat Model

In the context of online platforms, data are collected from end-users using
dubious amounts of consent [4] and aggregated at massive scales [1]. Such
data collection on online platforms often creates privacy, safety, and security
risks [5, 6]. One such privacy risk is the periodic attempts by regulators
to weaken encryption standards [7] and create backdoors to user devices.
Platform operators and governments discuss best-practices for scanning client
devices for illegal or “offensive” content [2, 8], but existing proposals are
no less risky to user privacy, safety, or security than weakening encryption.
Privacy experts have denounced such approaches for numerous reasons: the
ease of extracting private training data [9, 10, 11] or the model itself [10, 12,
13, 14, 15], the ability of a malicious user to induce false positives for other
users when the model is trained on user data [poisoning attacks; 16, 17, 18,
19, 20, 21, 22, 23, 24], and the triviality of simply evading the detection
mechanism [25, 26, 27, 28, 6, 5, 29, 27].

Current platform solutions often rely on large-scale ML methods that are
trained on vast amounts of user data and federated across devices [8]—an ap-
proach that has been criticized by privacy experts [2]. Examples of security
risks include attacks against ML systems that target a model during train-
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ing [30], prediction [28, 29, 25], and deployment [31, 32]. Even when access
to a model by an adversary is limited, it is possible to induce a misclassifica-
tion [27], reverse engineer the model [33], determine the model weights [13],
or infer the class-membership of new samples [34]. This raises profound
questions for safety-critical systems [6] and legal questions about access and
control of the underlying data [35, 36]. Additionally, it has been shown that
finding prototypical meta samples from the training set of large-scale ML
models is trivial [37, 6]. Even if the attacker only has access to a typical
application programming interface (API), there are reliable ways to fool the
model [27].

Many privacy experts warn of the potential for any hypothetical central-
ized content-censoring system not only because of the potential failures due
to adversaries mentioned above, but also because of the potential these sys-
tems to be used for mass surveillance and censorship [2]. In short, distributed
and centralised training paradigms are both inherently fragile to malicious
users and dangerous for user privacy, even if the resulting model lives on the
user device (rather than in the cloud).

1.2 Motivations

In contrast to many state-of-the-art methods, this work proposes a light-
weight, client-side approach to content filtering that does not rely on large-
scale data collection.

Recently, Jiang et al. [38] proposed a remarkably successful approach to
“parameter free” classification, dubbed NCD-KNN; that exploits a compress-
ion-based distance measure, the normalized compression distance [NCD; 39],
to classify objects using the k-nearest neighbours (KNN) method [40]. NCD-
KNN is known to work well even when trained on small numbers of sam-
ples [41]. By building a model that is accurate on a small number of sam-
ples, we can fulfil the goal of training a ML model entirely on a client device
using data generated by a single user. An additional goal of this work was to
evaluate the efficacy of NCD in general and to extend it to kernel methods
in particular.

While other research examined topics like image classification [42], molec-
ular property classification [43], and text classification [44], the ability of
NCD to classify datasets that contain strings, numeric values, and categori-
cal data (heterogenous datasets) has remained unexplored.

Additionally, the original NCD work [39] included an error term that
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is usually ignored in recent research [42, 43, 44, 38]. To the best of our
knowledge, no research has addressed the problem of negative values for
NCD. The original authors [39] asserted that NCD is always positive when
using perfect compressors. However, this is clearly demonstrated to be false
in Lemma 1 when using imperfect compressors (which is what we will have
in practice) .

Prior works about NCD have primarily focused on distance-based ML
methods (e.g., KNN), which limits both the class of methods that can be
considered and the types of data that can be effectively analysed. A key
motivation for this work was to extend the use of NCD beyond distance-based
methods by developing a novel kernel-based formulation. This significantly
broadens the applicability of NCD, making it suitable for a wider range
of machine learning techniques where traditional distance-based approaches
cannot be used.

1.3 Contributions

To use NCD, the model builder must choose a compression algorithm. While
the effect of various compressors has been explored, in part, before [45],
we expand the analysis by Cebridn et al. [45] to more recent compression
algorithms and also offer additional run-time improvements over previous
implementations [38].

The NCD-KNN method has shown very strong performance across several
benchmarks, but prior implementations [38] are not appropriate for real-time
settings due to unnecessary repeated computations. We therefore propose
several run-time improvements and modifications, outlined in Section 3.1.

Further, we show that NCD is not a metric [42, 43, 44, 38], which means
that applying ML methods blindly can lead to erroneous results (e.g., by
incorrectly ordering the nearest neighbours). In this work we demonstrate
this non-metric behaviour in Lemma 1 and propose techniques to mitigate
the effects of this behaviour in Section 3.1, effectively making the modified
NCD “more like a metric”.

Additionally, we expand the notion of NCD [42, 43, 44, 39, 38, 38] to
kernels (Section 3.2) thus allowing for this method to be used with other
models besides KNN. We thus extend NCD to reproducing kernel Hilbert
spaces and hence more elaborate ML methods—allowing its use in a broader
set of ML methods and to model more complex decision boundaries.

Hence, in this paper, we:
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e Demonstrate that the normalized compression distance is not a metric
(Lemma 1) and propose techniques to make it behave “more like a
metric” (Section 3.1.2).

e Propose the use of NCD as a kernel and evaluate its efficacy.

e Develop classifiers (evaluations with KNN, logistic regression, and sup-
port vector machines (SVC)) that offers large run-time improvements
over a reference implementation [38](Section 3.1).

e Evaluate and empirically show the efficacy of the proposed NCD-based
classifiers across multiple binary classification tasks (Section 4).

2 Background

In the sections below, we describe and define the NCD, outline the NCD-KNN
method proposed by Jiang et al. [38], outline several other string metrics, and
discuss the distance matrix and how to efficiently compute it,

2.1 Normalized Compression Distance

NCD has been demonstrated to be a universal measure of similarity between
two objects [39]—where a value of 0 denotes equivalence and a value of 1
denotes complete dissimilarity. The NCD is defined as [39]

C(za’)| — min{|C ()], |C (')
max{|C(x)|,|C(x")[}

NCD(z,2') = | [} +¢, (1)
where |C(z)] is the length of the compressed form of the data, z, using com-
pression algorithm, C, the notation zz’ denotes the concatenation of strings
x and 2/, and € > 0 is an error term accounting for imperfect compression
algorithms [39]. The error term is usually assumed to be small relative to
the other term.

NCD requires a choice of compression algorithm, and we evaluated the
gzip [46], bz2 [47], and brotli [48] compressors. To distinguish between
the use of these different compressors, a subscript is used such that NCD,y;,
denotes the use of the gzip compressor.

While NCD is often discussed as a measure of distance [42, 43, 44, 38, 39],
it does in fact not adhere to the axioms of metric spaces. A function, d :
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X x X — R, associated with a set of points, X, where R denotes the set of
real numbers, is said to be a metric if the following four axioms hold for all
x1,Tg, 23 € X [49]:

Zero Axiom: d(x1,22) =0 <= 1 =13 (2)
Non-negativity Axiom: d(zq,z2) >0 (3)
Symmetry Axiom: d(z,xs) = d(z2, 1) (4)
Triangle Inequality: d(xq,x3) < d(x1,x9) + d(xe, x3). (5)

Much of the literature devoted to NCD has treated it as a proper met-
ric [42, 43, 44, 38]. However, as we show now, it is not.

Lemma 1. When using gzip, bz2, and brotli compressors, NCD does not
adhere to the axioms in Equations 2-5, and is thus not a metric.

Proof. We show in what follows that NCD fails to adhere to the axioms for
metrics by counter-examples.

Zero axiom: The following counter-examples violate the zero axiom:

NCDgip(A, A) = 0.05, NCDpya(B,G) =0, and NCDpou(X, X) = 0.2.

Non-negativity aziom: The following counter-examples violate the non-nega-
tivity axiom:
NCDyip(AAAA, AAAA) = —0.04,

NCDy,o(AABABAA, BAABAAB) = —0.03,
and

NCDhyotii(CCCCBBCCC,CBCCCBBCCC) = —0.08.

Symmetry axiom: The following counter-examples violate the symmetry ax-
iom:

NCDyip(AA, BAA) = 0.13 # NCD,,i, (BAA, AA) = 0.04,
NCDyya(AA, AAB) = 0.11 # NCDy,0(AAB, AA) = 0.00,

and

NCDyrori(AAAAAAA, B) = 0.6 # NCDyroui (B, AAAAAAA) = 0.7.
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Triangle Inequality: The following counter-examples violate the triangle in-
equality:

NCDyip(AAA, A) > NCDyyip(AAA, AAAA) + NCD,yip (AAAA, A),

NCDy2(BC, AN) > NCDy(BC, J) + NCDy,(J, AN),
and if

21 = CAAAACAA, x5 =CAC, and x3 = CCACCCACCC,

then
NCDy,2(21, 23) > NCDyyo(21, %2) + NCDyyo (w2, 3).

2.2 Other String Metrics

To model datasets that comprise strings, several existing measures of distance
between strings are routinely used [50]. To evaluate the relative performance
of the NCD metric, we compared it to several other common measures of
string distance:

e Levenshtein is the “edit distance” or minimum number of single-character
edits to transform one string into another [51].

e Lev Ratio is the Levenshtein distance divided by the total length of the
longer string [50].

e Hamming is the number of character positions where two strings differ.

e Ham Ratio is the number of character positions where two strings differ,
divided by the length of the longer string.

2.3 Calculating the distance matrix

In what follows, the pairwise distances between two sets of samples (denoted
X and X’) is collected in a a distance matriz, D. When computing the value
of NCD(z, '), it is necessary to calculate the values of C(z) and C(z'). To
classify a sample, Jiang et al. [38] iterated over all elements in the sets X
and X', where X would be a set of samples with known labels and X’ one
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with unknown labels, such that for each z; € X the compression C(z;) was
computed repeatedly for each z/; € X'. Because computational time scales
linearly with the size of both X and X', the run time is thus O(|X| - |X"])
for both compute and memory, where |X| is the cardinality of the set X.
Clearly, if the number of samples in X and X’ are large, then run-time
becomes a concern. We propose some modifications to how the pairwise
distances are computed and which pairwise distances are computed to reduce
the computational costs and also make NCD behave “more like a metric”,
which is outlined in Section 3.1.

3 Methods

This section outlines proposed modifications to NCD and Jiang’s NCD-KNN
method [38] before outlining the data and experiments used to verify the
efficacy of said modifications.

3.1 Proposed Modifications to NCD

Jiang et al’s implementation of the NCD-KNN method [38] becomes inef-
ficient because it includes many repeated computations. To minimize run-
time, we first propose a simple improvement in Section 3.1.1. Second, we
propose several modifications that symmetrise the distance matrix, intended
to ensure adherence to the symmetry axiom (Equation 4). Then, in an effort
to improve the adherence to the zero axiom (Equation 2) we propose a mod-
ification for the special case of z = 2’ in Section 3.1.3. Finally, we outline
the proposed way to use NCD as a kernel in Section 3.2.

3.1.1 Pre-computing the Compression vector

When computing the value of NCD(z,2’), it is necessary to calculate the
values of C(z) and C(z') as in Equation 1. For each z € X, the C(z) would be
computed repeatedly when computing the pairwise NCD distances between
x € X and the elements in X'. Instead of recomputing the C(x) repeatedly,
it is much more efficient to pre-compute the compressed versions of each
element in X and X’ only once. Since compressing the input samples is
the most costly part of this computation, this saves substantial run-time as
demonstrated in Section 4.
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3.1.2 Symmetrisation

We propose three new ways to induce “more” adherence to the axioms in
Equations 2-5 and compare their efficacy and run-time in Section 4.

For the purposes of the experiments below, the method proposed by Jiang
et al. [38] is denoted “Vanilla” and computes the pairwise distances between
two sets by naively computing every element of a distance matrix using the
NCD function in Equation 1.

The second method, proposed here as a modification to NCD, assumes
symmetry by only computing the lower triangular part of the distance matrix
and then reflecting those values about the diagonal, instead of computing
the entire distance matrix; this method is denoted “Assumed.” Hence, in a
distance matrix, D, the “Assumed” method computes the lower triangular
part of D and then let

Dij = Dj;, (6)

which effectively halves the computational cost of computing the distance
matrix.

In the third method, proposed here, symmetry is enforced by sorting
the inputs of NCD alphanumerically before computing the distance between
them. This approach thus ensures symmetry during prediction as well as
training. This method is denoted “Enforced”, and also effectively halves the
computational cost of computing the distance matrix since again D; ; = D; ;.

The fourth method, also proposed here, computes the average value of
NCD(z, 2’) and NCD(z/, ). The average of NCD(z,2") and NCD(a/, z) is

NCD (s, 2/) — NCD(z, 2') ;L NCD(z ,I)7 7)

which can be simplified to

EEmEE) — min[C(x), (o))

NCD(z,y) = max[C(z),C(z')]

+ e, (8)

which clearly leads to D; ; = D;;. The simplification in Equation 8 thus only
includes one additional compression, increasing the computational cost by
roughly 20% instead of doubling the computational cost as in Equation 7.
This method is denoted “Averaged”.
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3.1.3 Zero-axiom check

A simple means to ensure that the output of NCD is zero when the two
inputs are equal, we propose to check for this case before any distances are
computed and return zero if the inputs are equal. We denote this modifi-
cation the “Zero-axiom check”. The Zero-axiom check was performed with
the “Assumed” and “Enforced” methods, but not the “Averaged” method,
assuming that the error associated with calculating NCD(z, 2’) would cancel
out the error associated with NCD(z, z').

3.2 Kernelisation

We propose to use NCD to construct an approximate kernel, allowing NCD
to be used with a much larger set of ML methods than as a distance. For
this purpose, a kernel is defined as a function, k£ : X x X — R, such that

k(w,a') == (b(x), (")) 9)

for all z, 2" € X, where ¢ : X — Y is a feature function (a function extracting
features from its inputs), and (-,-) denotes an inner product in the feature
space, Y. The i-th row and j-th column of a kernel matrix, K, is

The radial basis function (RBF) kernel [40], also known as the Gaussian
kernel (when the distance is the Euclidean distance) is defined as

3 (10)

k(z,z') = exp (—
where A is a tunable parameter (denoted a length scale) that controls how
quickly the kernel function decreases as a function of the distance between
points, i.e., determines the influence of individual points on neighbouring
points. We thus propose to use NCD as the distance function, d, in the kernel
in Equation 10. The RBF kernel is particularly effective as it is known to be
a universal function approximator [52].

The Hamming kernel [53], based on the Hamming distance between two
strings or binary vectors, is defined as

dH(xv x/)

k(z,2/) =1 — \—t0D0)
max(|z|, |z'])

(11)
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where dy(x,2’) denotes the Hamming distance, max(|z|,|2’|) denotes the
length of the longer string, and A is a tunable parameter that controls the
sensitivity of the kernel to differences between input vectors. Smaller val-
ues of A\ cause the kernel to decay more rapidly as the number of differing
positions increases, thereby emphasizing exact or near-exact matches. We
propose to use this kernel in settings where inputs are strings or binary
representations, as it naturally captures similarity through positional agree-
ment. Like the RBF kernel, the Hamming kernel belongs to the class of
positive-definite kernels and has been shown to be effective at classification
tasks [54].

Euclidean distances can be computed in the feature space by using a
kernel. We see that

d(z,2") = [|p(x) — o)}

(¢(z) — ('), d(x) — d(a"))
(8(x), 6(2)) + (8(a"), d(')) — 2{d(), $(z"))
= k(z,z) + k(z',2') — 2k(z,2'),

and denote this distance as the kernel distance. For the RBF kernel, when
the symmetry and the zero axioms hold, we have that k(x, z) = k(2/,2") = 1,
and the kernel distance can be computed efficiently as

d(z,2") = 2 — 2k(z, 2'). (12)

This formulation was used to extend NCD-KNN to kernels, i.e., the kernel
distance in Equation 12 was used together with the RBF kernel in Equa-
tion 10, as well as with the Hamming kernel in Equation 11. Logistic re-
gression and SVCs were trained on the kernel matrices formed from Equa-
tions 10 & 11.

3.3 Data

Several open datasets were used to evaluate the efficacy of NCD in the context
of heterogeneous tabular and text data.

We used the KDD-NSL data, which is a log of system process data for
both regular users (denoted benign) and malicious software (denoted adver-
sarial) [55]. It includes 6072 samples and 41 features that encapsulate the
behaviour of both benign software and malware. KDD-NSL includes software
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protocol, system error rate, whether the process has root privileges, and the
number of files accessed by the process.

We also used the DDoS IoT dataset [56], which includes information
collected from network packet headers of adversarial and benign users across
many types of DDoS attacks. Specific features include source IP address,
source port, destination IP address, destination port, and network protocol
among a total of 90 features across more than 40 million samples, collected
from both benign users and malicious traffic.

We used the Truthseeker dataset [57], which includes 134 thousand mes-
sages from Twitter users with a label provided by the data distributors, and
a label that encodes whether or not a given user was a suspected bot.

Finally, we used the SMS Spam dataset [58] which includes SMS messages
and a label indicating whether or not a message is spam across 5575 samples.

For several of the datasets, malicious examples were rare compared to the
number of benign examples. To address the class imbalances, each dataset
was under-sampled [59] using the imblearn package [60] to reduce bias to-
wards the majority class and to ensure metrics like accuracy are meaningful.
For each dataset, model, symmetrisation method, and distance metric, 1000
samples from each dataset were used to conduct five-fold cross validation,
yielding five disjoint validation sets of 200 samples each. Accuracy, distance
matrix computation time, model training times, and prediction times were
recorded for each of the five cross-validation folds. In an effort to represent
both text and numerical data as strings, the rows of each numerical dataset
were extracted as lists in Python and then those lists were cast directly to
strings for the DDoS, KDD-NSL, and SMS Spam datasets.

3.4 Experiments

We evaluated the proposed methodology using the described datasets, mod-
els, symmetrisation methods (“Vanilla”, “Assumed”, “Enforced”, and “Aver-
aged”), and metrics (NCDg,ip, NCDy,,e, and NCDy,o, Levenshtein distance,
a normalised Levenshtein distance (labelled Lev Ratio), Hamming distance,
and a normalised Hamming distance (labelled Ham Ratio)). After generat-
ing the 5-fold cross validation sets for each dataset, the distance matrices
for each symmetrisation method and metric were computed, as outlined in
Sections 2.3 and 3.1.2. Additionally, kernel matrices were computed as de-
scribed in Section 3.2. The classifiers used were KNN, logistic regression, and
SVC, as implemented in scikit-learn [61]. For KNN, we both used NCD
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directly and used the kernel distance from Equation 12 computed using both
the RBF and Hamming kernels. For (kernel) logistic regression and SVC,
the RBF kernel in Equation 10 and the Hamming kernel in Equation 11 were
used with the NCD distance.

Each model was tuned using the hyper-parameters outlined in the follow-
ing. For NCD, all metrics (NCD, Hamming distance, Levenshtein distance,
etc) were used to compute kernel matrices as per Equations 10 and 12. In
addition, the Hamming kernel from Equation 11 was used as a baseline [53].
Both kernels have a hyper-parameter, A\, that must be tuned; A was was
evaluated in powers of 10 in the range [107%,103].

KNN requires the model builder to specify the number of nearest neigh-
bours. In our experiments, k € {1,3,5,7,11}, as odd numbers means there
were 1o ties (for our binary classification task). In logistic regression, an ¢y
penalty was used as well as a configuration without any penalty. The coef-
ficient of the penalty was set to powers of 10 in the range [1073,10%]. The
SAGA solver [62] was used for logistic regression, with a tolerance of 107*. The
penalty term in the SVC was varied in the range [1073,10°] for each power
of ten.

To find the most appropriate set of hyper-parameters, each of the dataset-
model-symmetrisation-metric combinations enumerated above were evalu-
ated using a grid search and 5-fold cross-validation. Then, the best-fit model
was chosen for each dataset-model-symmetrisation-metric configuration by
finding the configuration(s) with the highest mean cross-validation accuracy
and choosing the model with the smallest standard deviation in the case
ties. After fitting each model to each dataset, symmetrisation method, mea-
sure of distance, and model-dependent hyper-parameters, the best-fit models
were repeatedly trained on m € {10, 20, 35,60, 100,200,500, 1000} samples
and evaluated against the 200 withheld samples during cross-validation to
evaluate the ability of the model to generalise even when trained on a small
number of samples.

In addition to the classification experiments above, the distance matrices
calculated from those datasets were exhaustively checked for adherence to
the axioms in Equations 2—4 and the percentage of violations for each axiom
was recorded. In addition, 100k randomly selected 3-tuples from each dis-
tance matrix were sampled to compute the percentage of samples that violate
Equation 5. An additional synthetic dataset comprised of 100k 3-tuples was
generated from short, alphabetic strings using the uppercase English alpha-
bet and a maximum string size of 144 characters (the length of a “tweet”) for
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each metric and symmetrisation method and used to calculate the probability
of axiom violations.

4 Results and Discussion

In this section, the results from the aforementioned experiments are dis-
cussed.
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Figure 1: The 5-fold accuracy across each dataset (columns), distance metric
(first-axis), whether or not the distance or kernel matrix was used (top plot,
colour), and symmetrisation method (bottom plot, colour). For both plots,
the bars represent the mean accuracy and the error bars represent 95% con-
fidence intervals.

Figure 1 depicts the 5-five fold accuracies of the best-fit model for each
dataset-metric-model-kernel combination. The error bars reflect the 95%
confidence interval of the mean accuracy, computed across five cross-validated
folds. The top of Figure 1 compares accuracy of the proposed kernelised KNN
to the distance-based KNN proposed by Jiang et al. [38] for a variety of
string metrics (first axis). The bottom of Figure 1 compares the RBF kernel
(Equation 10) to the Hamming kernel (Equation 11) for all three kernelised
ML models. It is clear that the kernel method is consistent with the distance
method (top of Figure 1), apart from the un-normalised Levenshtein and
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Hamming distances, wherein the distance method is superior for the DDoS
dataset. Additionally, the RBF kernel has accuracy that is consistent with
the Hamming kernel (bottom of Figure 1) and at least one version of NCD
outperforms the Hamming ratio in every dataset. Therefore, it is clear that
the proposed kernelised classification model is as accurate at the distance-
based KNN [38] (top of Figure 1) and can also outperform the Hamming
kernel (bottom of Figure 1).
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Figure 2: The accuracy across each dataset (columns), distance metric (first-
axis), model (top plot, colour), and symmetrisation method (bottom plot,
colour). For both plots, the bars represent the mean accuracy and the error
bars represent 95% confidence intervals. Only KNN was used in the top plot
as it is the only tested model that is meant to use distance matrices and
the results depict the 5-fold accuracies for the best-fit model of each model-
dataset-metric combination before (orange) and after kernelisation (blue).

Figure 2 shows the classifier performance across each dataset and string
metric (including NCD, using various compressors) for both the kernel and
distance matrices (top row), all models (middle row) and all symmetrisation
methods (bottom row). The top sub-figure groups the results by whether
or not the distance or kernel matrix was used, the middle sub-figure groups
the results by model type using colour, and the bottom figure groups the
results by symmetrisation method. From these results it is clear that KNN
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is the most consistently accurate (middle of Figure 2) for NCD and that
the distance matrix method tends to out-perform the kernel method (top of
Figure 2).
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Figure 3: Accuracy across varying training sample sizes, computed on 200
samples withheld during cross-validation using the best-fit model for each
model-metric-symmetrisation configuration. Top: Accuracy is grouped by
evaluation metric (colour), showing how different metrics behave across
datasets (columns) and training sizes, averaged over models and symmetri-
sation methods. Bottom: Accuracy is grouped by symmetrisation method
(colour), illustrating how different symmetrisation choices impact perfor-
mance across datasets, averaged over models and metrics. Each line repre-
sents the mean accuracy, and error bars indicate the 95% confidence interval
of the mean.

Figure 3 depicts the accuracy of the best-fit models as the number of
training samples is varied (first-axis). The top of Figure 3 groups the results
by metric and the bottom groups the results by symmetrisation method,
using colour to differentiate the groups. For the DDoS dataset, it is clear
from the top subplot of Figure 3 that NCD improves the accuracy when a
small number of samples are used to train the model compared to other string
metrics. However, results are more mixed for other datasets. Additionally,
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we can see that non-Vanilla symmetrisation methods tend to outperform the
Vanilla variety on DDoS, SMS-Spam, and Truthseeker, although this is not
significant.

DDoS KDD NSL SMS Spam Truthsecker
&
g
E Vanilla
3 Assumed
3 Enforced
| g L II e
=
o5 O“’ﬁ S Q&K& o“g o %@“\ & &"“%\@ \OO 5o O”‘O\ ° T o“o Qg? RS \&K\& %\\@“
o‘ & & & (»
GG V@@s\‘$\»e~“’@ as"mn&'@&@ ®$"\‘$¢e~”\'
_ DDoS KDD NSL SMS Spam Truthseeker
e
=
£
B . Vanilla
£ s Assumed
= = Enforced
’ II Il I I i ill' =
E. llll I llll .. llll llll
\~° \~° \~° \~°
& ¥ ¥
Metric
DDoS KDD NSL SMS Spam Truthseeker
£
Z
5"
5 W Vanilla
£ B Assumed
s = Enforced
|II| i IIII IIII i IIII = ==
o g g 11” g ® &
0 & &‘ \a‘ & \ @ & \ & S e &
0% o «o O” o fo %\ Q_'v FO% o @ L
L ‘°~2~° & a@ CLEE év& & a* $(, O @& F L OO «\'°

Melnc

Figure 4: Performance times for various stages of the model evaluation pro-
cess, computed across different metrics, datasets, and methods. Top: Dis-
tance matrix calculation time per sample averaged over all dataset-method-
metric combinations. Middle: Training time per sample, measured after com-
puting the distance matrix, averaged over all dataset-method-metric-model
combinations. Bottom: Prediction time per sample, also after distance ma-
trix computation, showing the time required for predictions averaged over
all dataset-method-metric-model combinations. For all three sub-plots, the
colour reflects the symmetrisation method. The firs-axis shows the metric in
the top and bottom plots, but the middle plot depicts the training time as
it varies more by model than metric. The top of each bar reflects the mean
of the measured time and the error bars are 95% confidence intervals.
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Figure 4 shows the run-times associated with calculating the distance be-
tween two samples (top), training the model on a single sample (middle), or
inferring the classification of a new sample (bottom). The importance of the
symmetrisation methods is to reduce the run-time. It is clear from Figure 4
that choice of symmetrisation method has a substantial effect on run-time,
with the “Assumed” and “Enforced” symmetrisation methods taking roughly
half as long per sample as the “Vanilla” version and the “Averaged” version
taking slightly longer. During training (assuming the distance or kernel-
matrix is pre-computed), the variance between models is far large than the
variance induced by the symmetrisation methods (see middle row of Fig-
ure 4). During prediction, the differences between symmetrisation methods
are much less pronounced, owing to the smaller number of samples—instead,
the variance in prediction times is predominated by the run-time of the dis-
tance function as the variance within a given metric is much smaller than
the variance between them (see the bottom row of Figure 4).
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Figure 5: Percentage of violations of Axioms 2-5 among 100,000 random
strings (from the standard English alphabet), using four symmetrisation
methods: vanilla (top row), assumed symmetry, enforced symmetry, and
averaging (bottom row). The top plots vary max string size; bottom plots
vary alphabet size. Default settings: max string size is 144, alphabet size
is 26. Colours indicate axioms; solid lines indicate NCD (Equation 1) and
dashed lines are for other string metrics (Section 2.2).

Figures 5-6 display how the symmetrisation methods influence to what

degree a given metric adheres to the axioms outlined in Equations 2-5 and
show that they enforce adherence to the symmetric and zero-axiom as ex-
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Figure 6: Percentage of examples found that violate the assumptions out-
lined in Equations 2-5 using the vanilla (top row), assumed symmetry (sec-
ond row), enforced (third row), and averaged (bottom row) methods on the

training matrices for each of the outlined datasets.

Each column is dedi-

cated to a dataset and each model is given a column. The first axis displays
which of the axioms is violated and the colour indicates which symmetrisa-
tion method was used. Since evaluating all possible distance 3-tuples would
be computationally infeasible for even hundreds of samples, three samples
were sampled 100 thousand times such that no 3-tuple was repeated.
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pected. It is clear from these figures that the averaging, enforcing, or as-
suming symmetry works quite well, thus fulfilling Equation 4. Likewise,
Equation 2 acts as expected (compare “Vanilla” and “Averaged” with the
other two methods). This is true on randomly constructed strings (Figure 5)
as well as strings collected from the aforementioned datasets (Figure 6). It is
clear that this does not correspond to a decrease in accuracy (see Figure 2)
and that these modifications can significantly improve run-time (see Figure 4
in Figures 5-6).

5 Limitations

While the methods presented in this work demonstrate strong performance
across various tasks and datasets, several limitations should be acknowledged.

To further improve run-time performance, compression algorithms opti-
mised for graphics processing units (GPUs) have been developed [63]. These
are likely to outperform the CPU-based implementations used in this paper
when applied to large-scale datasets. Incorporating such GPU-accelerated
compressors could significantly reduce processing time and improve scalabil-
ity.

The model tuning parameters used in this study were limited in scope.
While the selected configurations were sufficient to demonstrate key insights,
a broader hyperparameter search may reveal additional trade-offs or improve-
ments in accuracy and efficiency.

This work focused on a specific set of compression algorithms. Although
other compressors exist-including those optimised for specific data types [63,
64, 65]—they were considered out of scope for this study. Future work
could explore the impact of alternative compressors on both accuracy and
run-time. Likewise, the data preprocessing step used for heterogeneous tab-
ular data was intentionally kept simple—each row was cast to a Python list
then cast again as a string. While effective for our purposes (see Figure 1),
this approach is crude and may obscure structural or semantic relationships
within the data by including extraneous characters like commas and brackets
(used to delineate and denote a list in Python, respectively). As always, the
best implementation will be determined by the data and its schema. More
sophisticated encoding methods—such as schema-aware parsing or embed-
ding techniques—could improve performance, particularly on more complex
or high-dimensional datasets.
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6 Conclusion

Overall, we see that NCD is at least as accurate as other string metrics (top of
Figure 2), despite not being a true metric (Lemma 1). Furthermore, we see
that the proposed symmetrisation methods are quite effective—sometimes
even outperforming the “Vanilla” method (bottom of Figure 2). Kernelised
NCD is effective even when only a small number of samples are used to train
the model, making it ideal for lightweight, client-side deployments (top of
Figure 3) and our extensions (Section 3.1) do not significantly change this
result (bottom of Figure 3). NCD can reach more than 95% accuracy on even
tens of samples (Figure 3). It is clear from Figure 4 that the “Assumed” and
“Enforced” symmetrisation methods proposed in this work are superior to
those found in the literature by decreasing the run-time without penalising
accuracy (bottom of Figure 2). In some cases, the “Averaged” symmetri-
sation method offers superior accuracy over the other methods (Figure 2,
bottom) while inducing a marginal cost of only a few milliseconds (Figure 4,
top). In other cases, “Enforced” and “Assumed” offer both superior accura-
cies (Figure 2, bottom) and run-times (Figure 4, top and bottom).

The proposed model is a real-time, client-side classification method that
can be trained on a very small number of samples—potentially collected from
only a single user. This reduces the attack surface to only adversaries that
have access to data that users generally consider private (e.g., the contents of
a message). That is, the attack surface is reduced and can be unique to each
user, session, or device by using data from each user in isolation and training
a model on that user’s device. Client-side models would only need to share a
single bit (the classification label in a binary classification context) with the
platform operator—allowing those operators to serve user-specific contents
without exfiltrating private data from their entire user base. However, not
training a model on large amounts of collected user data means that such
hypothetical client-side methods are at risk of not performing at the level
of state-of-the-art large-scale methods. The end result is a model with a
substantially reduced attack surface that is nevertheless accurate, but also
simple, generally applicable, and very fast.

179



References

[1]

R. Desislavov, F. Martinez-Plumed, J. Herndandez-Orallo, Compute and
energy consumption trends in deep learning inference, arXiv preprint
arXiv:2109.05472 (2021).

H. Abelson, R. Anderson, S. M. Bellovin, J. Benaloh, M. Blaze, J. Callas,
W. Diffie, S. Landau, P. G. Neumann, R. L. Rivest, J. I. Schiller,
B. Schneier, V. Teague, C. Troncoso, Bugs in our pockets: the risks
of client-side scanning, Journal of Cybersecurity 10 (1) (Jan. 2024).

Goldman Sachs Research, Al is poised to drive 160% increase in data
center power demand, Goldman Sachs (May 2024).

URL https://www.goldmansachs.com/insights/articles/
AI-poised-to-drive-160-increase-in-power-demand

M. Nouwens, 1. Liccardi, M. Veale, D. Karger, L. Kagal, Dark patterns
after the GDPR: Scraping consent pop-ups and demonstrating their in-
fluence, in: Proceedings of the 2020 CHI conference on human factors
in computing systems, 2020.

A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, D. Mukhopad-
hyay, Adversarial attacks and defences: A survey, arXiv:1810.00069 [cs,
stat] (2018).

C. Meyers, T. Lofstedt, E. Elmroth, Safety-critical computer vision: An
empirical survey of adversarial evasion attacks and defenses on computer
vision systems, Artificial Intelligence Review (2023).

Amnesty International, Encryption—a matter of human rights (2016).
URL https://www.amnesty.nl/content/uploads/2016/03/160322_
encryption_-_a_matter_of_human_rights_-_def.pdf?x12112

Apple Inc., CSAM detection: A technical summary (2021).
URL https://www.apple.com/child-safety/pdf/CSAM_Detection_
Technical_Summary.pdf

C. A. Choquette-Choo, F. Tramer, N. Carlini, N. Papernot, Label-only
membership inference attacks, in: International conference on machine
learning, PMLR, 2021, pp. 1964-1974.

180



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M. Fredrikson, S. Jha, T. Ristenpart, Model Inversion Attacks that Ex-
ploit Confidence Information and Basic Countermeasures, in: Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security - CCS 15, ACM Press, Denver, Colorado, USA,
2015.

7. Li, Y. Zhang, Membership leakage in label-only exposures, in: Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer and Com-
munications Security, 2021, pp. 880-895.

T. Orekondy, B. Schiele, M. Fritz, Knockoff nets: Stealing functionality
of black-box models, in: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2019, pp. 4954-4963.

M. Jagielski, N. Carlini, D. Berthelot, A. Kurakin, N. Papernot, High ac-
curacy and high fidelity extraction of neural networks, in: 29th USENIX
security symposium (USENIX Security 20), 2020, pp. 1345-1362.

J. R. Correia-Silva, R. F. Berriel, C. Badue, A. F. De Souza, T. Oliveira-
Santos, Copycat cnn: Stealing knowledge by persuading confession with
random non-labeled data, in: 2018 International joint conference on
neural networks (IJCNN), IEEE, 2018, pp. 1-8.

R. Shokri, M. Stronati, C. Song, V. Shmatikov, Membership inference
attacks against machine learning models, in: 2017 IEEE Symposium on
Security and Privacy (SP), IEEE, 2017, pp. 3-18.

A. Rawat, K. Levacher, M. Sinn, The devil is in the gan: backdoor at-
tacks and defenses in deep generative models, in: European Symposium
on Research in Computer Security, Springer, 2022, pp. 776-783.

R. Shokri, et al., Bypassing backdoor detection algorithms in deep learn-
ing, in: 2020 IEEE European Symposium on Security and Privacy (Eu-
roS&P), IEEE, 2020, pp. 175-183.

T. Gu, B. Dolan-Gavitt, S. Garg, Badnets: Identifying vulnerabil-
ities in the machine learning model supply chain, arXiv preprint
arXiv:1708.06733 (2017).

181



[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

A. Saha, A. Subramanya, H. Pirsiavash, Hidden trigger backdoor at-
tacks, in: Proceedings of the AAAI conference on artificial intelligence,
Vol. 34, 2020, pp. 11957-11965.

H. Aghakhani, D. Meng, Y.-X. Wang, C. Kruegel, G. Vigna, Bullseye
polytope: A scalable clean-label poisoning attack with improved trans-
ferability, in: 2021 IEEE European symposium on security and privacy
(EuroS&P), IEEE, 2021, pp. 159-178.

A. Turner, D. Tsipras, A. Madry, Clean-label backdoor attacks (2018).

A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras,
T. Goldstein, Poison frogs! targeted clean-label poisoning attacks on
neural networks, Advances in neural information processing systems 31
(2018).

J. Geiping, L. Fowl, W. R. Huang, W. Czaja, G. Taylor, M. Moeller,
T. Goldstein, Witches’ brew: Industrial scale data poisoning via gradient
matching, arXiv preprint arXiv:2009.02276 (2020).

H. Souri, L. Fowl, R. Chellappa, M. Goldblum, T. Goldstein, Sleeper
agent: Scalable hidden trigger backdoors for neural networks trained
from scratch, Advances in Neural Information Processing Systems 35
(2022) 19165-19178

N. Carlini, D. Wagner, Towards evaluating the robustness of neural
networks, in: 2017 IEEE symposium on security and privacy (sp), leee,
2017, pp. 39-57.

E. Dohmatob, Generalized No Free Lunch Theorem for Adversarial Ro-
bustness, in: Proceedings of the 36th International Conference on Ma-
chine Learning, Vol. 97 of PMLR, 2019.

J. Chen, M. I. Jordan, M. J. Wainwright, HopSkipJumpAttack: A
query-efficient decision-based attack, in: IEEE symposium on security
and privacy (sp), IEEE, 2020, pp. 1277-1294.

B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndié¢, P. Laskov, G. Gi-
acinto, F. Roli, Evasion attacks against machine learning at test time,
2013, pp. 387-402.

182



[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

S.-M. Moosavi-Dezfooli, A. Fawzi, P. Frossard, Deepfool: a simple and
accurate method to fool deep neural networks, in: Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2574-2582.

B. Biggio, B. Nelson, P. Laskov, Poisoning Attacks against Support
Vector Machines, 2013.

A. Aljuhani, Machine learning approaches for combating distributed de-
nial of service attacks in modern networking environments, IEEE Access
9 (2021).

P. M. Santos, B. Manoj, M. Sadeghi, E. G. Larsson, Universal adversar-
ial attacks on neural networks for power allocation in a massive mimo
system, IEEE Wireless Communications Letters 11 (1) (2021) 67-71.

M. Jagielski, N. Carlini, D. Berthelot, A. Kurakin, N. Papernot, High ac-
curacy and high fidelity extraction of neural networks, in: 29th USENIX
security symposium (USENIX Security 20), 2020, pp. 1345-1362.

J. W. Bentley, D. Gibney, G. Hoppenworth, S. K. Jha, Quantifying mem-
bership inference vulnerability via generalization gap and other model
metrics, arXiv preprint arXiv:2009.05669 (2020).

L. Mitrou, Data protection, artificial intelligence and cognitive services:
is the general data protection regulation (gdpr)‘artificial intelligence-
proof’?, Artificial Intelligence and Cognitive Services: Is the Gen-
eral Data Protection Regulation (GDPR)‘Artificial Intelligence-Proof
(2018).

M. Marks, C. E. Haupt, Ai chatbots, health privacy, and challenges to
hipaa compliance, Jama (2023).

C. Meyers, M. R.. S. Sedghpour, T. Lofstedt, E. Elmroth, A training rate
and survival heuristic for inference and robustness evaluation (trashfire),
in: 2024 International Conference on Machine Learning and Cybernetics
(ICMLC), 2024, pp. 613-623.

Z. Jiang, M. Y. Yang, M. Tsirlin, R. Tang, J. Lin, Less is
more: Parameter-free text classification with gzip, arXiv preprint
arXiv:2212.09410 (2022).

183



[39] M. Li, X. Chen, X. Li, B. Ma, P. Vitanyi, The similarity metric, IEEE
Transactions on Information Theory 50 (12) (2004).

[40] S. Shalev-Shwartz, S. Ben-David, Understanding machine learning:
From theory to algorithms, Cambridge university press, Cambridge,
UK., 2014.

[41] M. Scilipoti, M. Fuster, R. Ramele, A strong inductive bias: Gzip for
binary image classification, arXiv preprint arXiv:2401.07392 (2024).

[42] J. Opitz, Gzip versus bag-of-words for text classification with knn, arXiv
preprint arXiv:2307.15002 (2023).

[43] J. Weinreich, D. Probst, Parameter-free molecular classification and re-
gression with gzip (2023).

[44] K. Nishida, R. Banno, K. Fujimura, T. Hoshide, Tweet classification by
data compression, in: Proceedings of the 2011 international workshop on
DETecting and Exploiting Cultural diversiTy on the social web, 2011,
pp- 29-34.

[45] M. Cebridn, M. Alfonseca, A. Ortega, Common pitfalls using the nor-
malized compression distance: What to watch out for in a compressor
(2005).

[46] Free Software Foundation, GZIP: Gnu zip,
https://www.gnu.org/software/gzip/manual /gzip.html (2009-2023).

[47] muraroa.demon.co.uk, bz2 (Jul. 1998).
URL https://web.archive.org/web/19980704181204/http://www.
muraroa.demon. co.uk/

[48] Google Inc., Github - google/brotli: Brotli compression format.
URL https://github.com/google/brotli

[49] D. Burago, A course in metric geometry, American Mathematical Soci-
ety (2001).

[50] rapidfuzz, Levenshtein, https://rapidfuzzrap.github.io/Levenshtein/
(2021).

184



[51]

[52]

[53]

[54]

[55]
[56]

[58]

[59]

[60]

[61]

G. Navarro, A guided tour to approximate string matching, ACM com-
puting surveys (CSUR) 33 (1) (2001) 31-88.

B. Hammer, K. Gersmann, A note on the universal approximation ca-
pability of support vector machines, neural processing letters 17 (2003)
43-53.

K. T. Phelps, M. LeVan, Kernels of nonlinear hamming codes, Designs,
Codes and Cryptography 6 (3) (1995) 247-257.

M. Norouzi, D. J. Fleet, R. R. Salakhutdinov, Hamming distance metric
learning, Advances in neural information processing systems 25 (2012).

G. Mohi-ud din, NSL-KDD, IEEE Dataport (2018).

E. C. P. Neto, S. Dadkhah, R. Ferreira, A. Zohourian, R. Lu, A. A.
Ghorbani, Ciciot2023: A real-time dataset and benchmark for large-
scale attacks in iot environment, Sensors 23 (13) (2023) 5941.

M. Khalil, M. Azzeh, Fake news detection models using the largest so-
cial media ground-truth dataset (truthseeker), International Journal of
Speech Technology (2024) 1-16.

T. Almeida, J. Hidalgo, SMS Spam Collection, UCI Machine Learning
Repository (2011).

S. Yen, Y. Lee, Under-sampling approaches for improving prediction of
the minority class in an imbalanced dataset, Lecture notes in control
and information sciences 344 (2006) 731.

G. Lemaitre, F. Nogueira, C. K. Aridas, Imbalanced-learn: A python
toolbox to tackle the curse of imbalanced datasets in machine learning,
Journal of Machine Learning Research 18 (17) (2017).

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay,
Scikit-learn: Machine learning in Python, Journal of Machine Learning
Research 12 (2011) 2825-2830.

185



[62]

[63]

[64]

[65]

A. Defazio, F. Bach, S. Lacoste-Julien, Saga: A fast incremental gradi-
ent method with support for non-strongly convex composite objectives,
Advances in neural information processing systems 27 (2014).

R. A. Patel, Y. Zhang, J. Mak, A. Davidson, J. D. Owens, Parallel
lossless data compression on the GPU, IEEE, 2012.

K. Brandenburg, Mp3 and aac explained, in: Audio Engineering So-
ciety Conference: 17th International Conference: High-Quality Audio
Coding, Audio Engineering Society, 1999.

V. Sze, M. Budagavi, G. J. Sullivan, High efficiency video coding
(HEVCQ), Integrated circuit and systems, algorithms and architectures
39 (2014) 40.

186



187



Paper gaY4!

Deckard: A tool for robust, declarative, and re-
producible Al.

Charles Meyers.
Manuscript, Umea University, Sweden, 2025.

How can we build auditable and reproducible tests to meet regulatory standards
for safety critical systems?






deckard: A Declarative Tool for Machine Learning Robustness
Evaluations

15 April 2025

Summary

The software package presented, called deckard, is a modular software toolkit designed to streamline and
standardize experimentation in machine learning (ML) with a particular focuse on the adversarial scenario.
It provides a flexible, extensible framework for defining, executing, and analyzing end-to-end ML pipelines in
the context of a malicious actor. As it is built on top of the Hydra configuration system, deckard supports
declarative YAML-based configuration of data preprocessing, model training, and adversarial attack pipelines,
enabling reproducible, framework-agnostic experimentation across diverse ML settings.

In addition to configuration management, deckard includes a suite of utilities for distributed and parallel
execution, automated hyperparameter optimisation, visualisation, and result aggregation. The tooling
abstracts away much of the engineering overhead typically involved in adversarial ML research, allowing
researchers to focus on algorithmic insights rather than implementation details. The presented software
facilitates rigorous benchmarking by maintaining an auditable trace of configurations, random seeds, and
intermediate outputs throughout the experimental lifecycle.

The system is compatible with a variety of ML frameworks and several classes of adversarial attacks, making
it a suitable back-end for both large-scale automated testing and fine-grained empirical analysis. By providing
a unified interface for experimental control, deckard accelerates the development and evaluation of robust
models, and helps close the gap between research prototypes and verifiable, reproducible results.

Statement of need

While tools such as mlflow (Zaharia et al. 2018), Weights & Biases (Biewald 2020), optuna (Akiba et al.
2019), and Kubernetes (Kubernetes 2019) provide essential infrastructure for model tracking and experiment
management, deckard occupies a different position in the ML ecosystem—focusing specifically on configurable,
adversarially robust experimentation.

Unlike MLflow and Weights & Biases, which emphasize logging, visualization, and reproducibility for
various ML frameworks, deckard enforces reproducibility by construction through its declarative, YAML-
driven configuration system built on Facebook’s hydra (Yadan 2019) configuration management tool. In
contrast to cloud-management software like Kubernetes—which is a general-purpose container orchestration
platform—deckard abstracts away orchestration details and offers native support for parallel and distributed
experimentation, tailored to ML workflows involving attack/defense cycles, model retraining, or optimisation.
While deckard integrates tightly with IBM’s Adversarial Robustness Toolbox (Nicolae et al. 2018), the
software is designed to be easily extensible to other attack frameworks. The human- and machine-readable
parameter configuration system allows researchers to declaratively define end-to-end pipelines that span data
sampling, preprocessing, model training, attack generation, defense evaluation, multi-objective optimisation,
and visualisation. Tools like ray (Moritz et al. 2018), optuna (Akiba et al. 2019), or nevergrad (Bennet et
al. 2021) offer components of this pipeline (e.g., hyperparameter search or configuration management), but
lack unified support for adversarial ML, verification, or auditability at scale. While deckard complements
these existing tools, and in many cases can be integrated with them, its primary contribution is in automating
and verifying adversarial ML experiments in a way that is both extensible and framework-agnostic.
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Usage

Various versions of this software have been used in several recently published and not-yet-published works
by the author of this paper, all of which are available in the examples folder in the source code reposi-
tory https://github.com/simplymathematics/deckard. One published work, now reproducible via the
examples/attack_defence_survey folder, includes a large survey of attacks and defences against canonical
datasets and models (C. Meyers, Lofstedt, and Elmroth 2023). Another work analysed the run-time require-
ments of attacks against a particular model before and after retraining against those attacks (Charles Meyers
and Elmroth 2024) (reproducible via examples/retraining). The next paper formalised a method for
estimating the time-to-failure of a given model against a suite of attacks and introduce a metric that quantifies
the ratio of attack and training cost (Meyers et al. 2023) (reproducible via examples/survival_heuristic).
Furthermore, a not yet published work uses this time-to-failure model as a mechanism for analysing the cost
efficacy of various hardware choices in the context of adversarial attacks (reproducible via examples/power)
(C. Meyers et al. 2024). Another work exploits the tooling to train a custom model that is designed to
run client-side by using compression algorithms to measure the distance between text (reproducible via
examples/compression).

Experiment Management

Typically ML projects are composed of long and complex pipelines that are highly dependent on a number
of parameters that must be configured by either the model builder or attacker. Due to the large scale and
cost associated with training ML models, it is often necessary to tune a model using many individual model
configurations (often called hyper-parameters). To determine adversarial robustness, one of many benchmark
datasets is first sampled, then preprocessed, sent to a model, with optional pre- and post-processing defences,
and then scored according to some chosen metric which may include the performance against any number
of adversarial attacks. Each stage in this example pipeline might include tens or hundreds of possible sets
of hyper-parameters that must be exhaustively tested. Furthermore, this problem scales drastically as we
include more and more stages in a pipeline since each additional stage introduces a new combinatorial layer
of complexity, rapidly expanding the total number of potential configurations that must be evaluated for
robustness and be reproducible for posterity. Not only does deckard provide a standard way to document
and configure these hyper-parameters, it gives each experiment an auditable identifier.

Reproducibility and Auditability

For ML, various regulatory and legal frameworks govern safety (The Parliament of the European Union
2024; “ISO 26262-1:2011, Road Vehicles — Functional Safety” 2018; IEC 61508 Safety and Functional Safety
2010; IEC 62304 Medical Device Software - Software Life Cycle Processes 2006), privacy (The Parliament
of the European Union 2024; European Parliament and Council of the European Union 2016; Legislature
of the United States 1996, 1998) and/or transparency (The Parliament of the European Union 2024; The
Legislature of California 2024). The software package presented here provides a machine- and human-readable
format for creating reproducible and auditable experiments as required by various regulations. In addition,
several examples connected to both published and not-yet-published work live in the examples folder in the
repository, allowing for easy reproducibility of several extensive sets of experiments across several popular ML
software frameworks. The power example provides a reproducible way to run a suite of adversarial tests using
popular cloud-based platforms and the retraining and survival_heuristic examples provide examples of
both CPU and GPU-based parallelisation, respectively.

The basics subfolder provides a minimum working example for each of the supported ML frameworks:
tensorflow (Abadi et al. 2015), pytorch (Paszke et al. 1912), scikit-learn (Pedregosa et al. 2011), and
keras (Chollet 2015). The basics folder also provides examples of various classes of adversarial examples:
poisoning attacks that change model behaviour by injecting data during training (Biggio, Nelson, and Laskov
2012), inference attacks (Li and Zhang 2021) that attempt to reverse engineer properties of the training data,
extraction attacks that attempt to reverse engineer the model (Jagielski et al. 2020), and evasion attacks that
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induce errors of classification during run-time (C. Meyers, Lofstedt, and Elmroth 2023). The parameters file
for each experiment ensures that a given pipeline can be reproduced and the standardised format allows us to
derive a hash value that is hard to forge but easy to verify. Not only does this hash serve as an identifier to
track the state of an experiment, but also serves as a way to audit the parameters file for tampering. Likewise,
by using dve (DVC Authors 2023) to track any input or output files specified in the parameters file, the
software associates each score file with a identifier that is easy to track and verify, but hard to forge—ensuring
that forged or modified results are easy to spot in version-controlled experiment repository.

Parallel and Distributed Design

Since ML projects can exploit specialized hardware such as multi-core processors or GPUs, and often rely
on clusters of machines for large-scale data processing, it was necessary to enable parallel and distributed
experiment execution and model optimization. By leveraging the hydra configuration framework, deckard au-
tomatically supports optimization libraries like nevergrad (Bennet et al. 2021), Adaptive Experimentation
(A. Developers 2025), and optuna (Akiba et al. 2019), making the software modular and extensible. Addi-
tionally, experiments can be managed using a variety of popular job schedulers, including Ray (Moritz et
al. 2018), Redis Queue (Stamps 2025), and slurm (Yoo, Jette, and Grondona 2003) for distributd jobs or
joblib (Joblib Developers 2025) for jobs on a single machine.

By using a declarative design, a given set of experiments can be specified once and executed seamlessly across
different backends without modification to the underlying codebase. This makes deckard both adaptable and
scalable, suitable for use on personal laptops, multi-node servers, or large-scale, high-performance clusters.
When configured appropriately, experiment batches can be parallelized, enabling massive parameter sweeps,
ensemble evaluations, or adversarial robustness tests to be executed in parallel—reducing turnaround time
while maintaining strong guarantees on reproducibility and auditability. The design of the presented software
prioritizes clarity and maintainability by capturing each experimental configuration as a YAML artifact,
making both successful and failed runs equally traceable and shareable. This approach transforms experiment
tracking from an afterthought into a first-class component of the trustworthy ML workflow.
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