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Abstract

The widespread adoption of machine learning (ML) in various domains has en-
abled the extraction of meaningful insights from complex, large–scale datasets.
However, recent research has revealed that ML models are vulnerable to a range
of privacy attacks which can expose sensitive information about the individuals
in the training data. With regulatory frameworks like the General Data Pro-
tection Regulation (GDPR) which enforces strict requirements on data sharing,
the need for privacy–preserving solutions has become increasingly critical. As
the world becomes more digital, massive volumes of data are generated, often
in high–dimensional spaces, where the number of attributes matches or exceeds
the number of samples. ML models are extensively used to process such data,
making it critical to protect both the data and the models from privacy attacks.

Traditional anonymization techniques such as k–anonymity and differential
privacy often fall short when applied to high–dimensional datasets, because
as dimensionality of the data increase, data–points tends to concentrate in
the sparse regions of the feature space, making it difficult to find clusters of
similar records. Therefore, this thesis proposes a set of privacy–preserving
methodologies tailored for high–dimensional data and large–scale foundation
models.

In this thesis, we begin by exploring manifold learning techniques to project
high–dimensional data into a lower-dimensional latent space while preserving
the intrinsic geometric structure of the original data. This transformation en-
hances the effectiveness of anonymization while maintaining data utility. Build-
ing on this, we then present a novel hybrid privacy method that integrates the
strengths of k–anonymity with differential privacy, enabling robust anonymiza-
tion that preserves both privacy and the underlying data structure. We further
investigate synthetic data generation as a privacy–preserving alternative to us-
ing sensitive data, leveraging advanced generative models such as GANs and
VAEs to produce high–quality synthetic datasets. To enhance the quality of
the generated data, we propose techniques that preserve the intrinsic structure
of the original high–dimensional data and incorporate prior domain knowledge
to guide the generation process. We rigorously evaluate the synthetic data in
terms of statistical fidelity, privacy risks, ML utility, and distributional capabil-
ities through detailed visualizations. We then address high–dimensionality and
privacy concerns in the context of large–scale foundation models. We propose
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two model compression strategies using knowledge distillation and pruning,
that effectively reduce the number of model parameters while preserving per-
formance and enhancing the privacy of the system.

Collectively, the thesis contributes towards building privacy–aware AI sys-
tems by developing practical solutions that address the complex interplay be-
tween high–dimensionality and privacy models.
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Sammanfattning

Den utbredda användningen av maskininlärning (ML) inom olika omr̊aden har
gjort det lättare att utvinna meningsfulla insikter ur komplexa, storskaliga
datamängder. Ny forskning har dock visat att ML-modeller är s̊arbara för en
rad integritetsattacker som kan avslöja känslig information om enskilda per-
soner i träningsdata. Med regelverk som General Data Protection Regulation
(GDPR), som ställer strikta krav p̊a datadelning, har behovet av integritetssky-
ddande lösningar blivit allt viktigare. I takt med att världen blir alltmer dig-
ital genereras enorma mängder data, ofta i högdimensionella, där antalet at-
tribut stämmer överens med eller överstiger antalet datapunkter. ML-modeller
används i stor utsträckning för att bearbeta s̊adana data, vilket gör det viktigt
att skydda b̊ade data och modeller fr̊an integritetsattacker.

Traditionella anonymiseringstekniker som k-anonymitet och differentiell in-
tegritet kommer ofta till korta när de tillämpas p̊a högdimensionella datamängder,
eftersom datapunkter tenderar att koncentreras i glesa regionerna inom omf̊anget
av egenskaper när datadimensionaliteten ökar, vilket gör det sv̊art att hitta
kluster med liknande poster. Därför föresl̊ar denna avhandling en uppsättning
integritetsskyddande metoder som är skräddarsydda för högdimensionella data
och storskaliga grundmodeller.

I den här avhandlingen börjar vi med att utforska tekniker för m̊angfaldig
inlärning för att projicera högdimensionella data i ett lägre dimensionellt la-
tent omf̊ang samtidigt som vi bevarar den inneboende geometriska strukturen i
originaldata. Denna omvandling förbättrar anonymiseringens effektivitet sam-
tidigt som dataanvändbarheten bibeh̊alls. P̊a grundval av detta presenterar vi
sedan en ny hybridintegritetsmodell som integrerar styrkorna hos k-anonymitet
med differentiell integritet, vilket möjliggör robust anonymisering som bevarar
b̊ade integritet och den underliggande datastrukturen. Vi undersöker vidare
generering av syntetiska data som ett integritetsbevarande alternativ till att
använda känsliga data, och utnyttjar avancerade generativa modeller som GAN
och VAE för att producera syntetiska datamängder av hög kvalitet. För att
förbättra kvaliteten av genererad data föresl̊ar vi tekniker som bevarar den in-
neboende strukturen i de ursprungliga högdimensionella datan och införlivar
tidigare domänkunskap för att vägleda genereringsprocessen. Vi utvärderar
de syntetiska uppgifterna noggrant med avseende p̊a statistisk tillförlitlighet,
integritetsrisker, ML-värde och distributionsegenskaper genom detaljerade vi-
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sualiseringar. Vi tar sedan itu med hög dimensionalitet och integritetsfr̊agor
i relation till storskaliga grundmodeller. Vi föresl̊ar tv̊a modellkomprimer-
ingsstrategier med hjälp av kunskapsdestillation och beskärning, som effektivt
minskar antalet modellparametrar samtidigt som prestanda bevaras och sys-
temets integritet förbättras.

Sammantaget bidrar avhandlingen till att bygga integritetsmedvetna AI-
system genom att utveckla praktiska lösningar som hanterar det komplexa
samspelet mellan hög dimensionalitet och integritetsmodeller.
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Paper I Sonakshi Garg and Vicenç Torra. K–Anonymous Privacy Pre-
serving Manifold Learning. International Conference on Security
and Cryptography (SECRYPT), pp. 37-48. SciTePress, 2023
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Paper III Sonakshi Garg and Vicenç Torra. Can Synthetic Data preserve
manifold properties? IFIP International Conference on ICT Sys-
tems Security and Privacy Protection (IFIPSEC), pp. 134-147.
Cham: Springer Nature Switzerland, 2024

Paper IV Sonakshi Garg and Vicenç Torra. Exploring Distribution Learn-
ing of Synthetic Data Generators for Manifolds. European Sym-
posium on Research in Computer Security, pp. 65-76. Cham:
Springer Nature Switzerland, 2025

Paper V Sonakshi Garg, Marcel Neunhoeffer, Jörg Drechsler and Vicenç
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Chapter 1

Introduction

The choice of problems is the
primary determinant of what one
accomplishes in science

— John Hopfield

1.1 Importance of Privacy in the Digital Era

In today’s digital age, personal data has become a highly valuable asset. Ev-
ery online interaction–whether browsing the web, using mobile applications, or
engaging with smart devices generates vast amounts of data. While businesses
and organizations use this data to improve services and decision–making, its
collection often occurs without individuals’ full awareness or control, raising
serious privacy concerns. The rapid advancement of artificial intelligence (AI)
has further intensified these concerns. AI systems analyze large datasets to
automate decisions, personalize experiences, and enhance efficiency. From gen-
erative AI that creates content based on user inputs to smart assistants that
learn personal preferences, AI relies heavily on personal data. While these
technologies offer convenience, they also introduce risks, including unautho-
rized surveillance, data misuse, and identity theft. A common example is
targeted advertising, seeing an ad for a product moments after discussing it
with a friend or receiving health–related recommendations based on the recent
purchases. Such instances reveal how companies track and analyze personal
data, often without explicit consent. The key issue is not just personalization
but also the lack of transparency and control over how data is collected, shared,
and used.

Privacy is a fundamental human right, ensuring the individuals to control
their personal information and its usage. The Universal Declaration of Human
Rights states this in its Article 12, UN General Assembly.
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Article 12. No one shall be subjected to arbitrary interference
with his privacy, family, home or correspondence, nor to attacks
upon his honour and reputation. Everyone has the right to the
protection of the law against such interference or attacks [Uni48].

In Europe, the General Data Protection Regulation (GDPR) [GDP18] has
been in force since 2018, establishing a comprehensive legal framework for
data protection and privacy. It clearly defines personal data and data pro-
cessing, outlining the responsibilities of organizations handling such informa-
tion. GDPR grants individuals key rights, including the right to erasure and
right to rectification, empowering them with greater control over their personal
data. Additionally, it mandates timely reporting of data breaches and enforces
strict penalties for non–compliance, promoting transparency, accountability,
and stronger safeguards against data misuse.

Several countries have enacted regulations in their constitutions similar to
GDPR such as in the United States, they have Health Insurance Portability
and Accountability Act (HIPAA,1996) [HHS96] and California Consumer Pri-
vacy Act (CCPA) [Par18] etc. These regulations set the legal framework for
how personal data should be handled, ensuring individuals’ privacy rights are
respected across various sectors.

The application of advanced data analysis techniques to personal data en-
ables the discovery of behavioral patterns, facilitates trend prediction, and
contributes to the optimization of personalized services. When the data is pro-
cessed by data controllers who adhere to privacy standards, the risk of privacy
violations can be mitigated. However, in many cases, data sharing among dif-
ferent stakeholders is essential. For instance, personal data may need to be
shared with software development firms for system testing or with data ana-
lysts leveraging AI models to derive insights about the customers to improve
service offerings. This sharing, while beneficial, introduces significant privacy
risks, as it increases the potential for unauthorized access, misuse, and breaches
of confidentiality. Addressing these risks requires robust privacy frameworks,
secure data–sharing protocols, and clear guidelines for data handling across
organizations. As technology continues to evolve, privacy must remain a pri-
ority. Achieving a balance between innovation and ethical data use requires
transparent AI systems, robust privacy frameworks, and policies that empower
individuals to protect their personal information.

1.2 Motivation

Data privacy is a critical concern, particularly when handling sensitive per-
sonal information. Privacy regulations mandate strict protections to prevent
unauthorized access and misuse of data. Privacy–Preserving Data Publishing
(PPDP) [Hun+12; VC04] provides methodologies to share valuable insights
while ensuring individuals’ privacy. A key challenge in PPDP is to ensure
that anonymized data remains useful for downstream tasks while protecting
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individuals’ privacy. One common approach within PPDP is data anonymiza-
tion, where raw data is transformed through techniques such as generalization,
suppression and perturbation to minimize privacy risks.

However, traditional anonymization techniques often fall short, particularly
for high–dimensional data. The real–world datasets originate from various
resources such as online platforms, financial institutions, healthcare systems,
and smart city applications, where large–scale data analysis fuels predictive
modeling, AI–driven decision–making, and real–time analytics. Such modern
datasets have number of attributes often exceeding the number of individu-
als in the dataset. Various organizations, including government agencies and
healthcare institutions, collect and share such data such as census records and
medical histories, with third parties for specific analytical purposes. However,
directly releasing raw data may expose individuals to privacy risks. An adver-
sary can exploit auxiliary information from external sources, such as voter lists,
to re–identify individuals, undermining the intended privacy protections [De
+12].

High–dimensional datasets introduce unique challenges for anonymization.
As dimensionality increases, data points tend to concentrate in the sparse re-
gions of the feature space, making it difficult to form sufficiently large groups
of similar records. This sparsity reduces the effectiveness of traditional pri-
vacy–preserving mechanisms. Various privacy models such k–anonymity [Sam01],
l–diversity [Mac+07], t–closeness [LLV06] and approaches such as [LGS13;
TMK08; Zhu+17] have been proposed to address privacy concerns. However,
the current mechanisms for these privacy models diminishes in high–dimensional
settings due to the difficulty of finding meaningful equivalence classes. Even im-
plementation of an alternative privacy model, Differential Privacy (DP) [Dwo06],
requires injecting too much noise to ensure privacy guarantees, which can
severely degrade the usability of the data. Unfortunately, as the dimensionality
increases, most existing privacy techniques struggle to handle high–dimensional
data effectively [Agg05; Agg06; GTK08] due to two fundamental limitations.

First, privacy preservation in high–dimensional data often results in severe
utility degradation [Fun+11]. With the increase in number of attributes, adver-
saries have more information to compare with external data, making it easier
to identify individuals. To counter this, stronger perturbation is required, lead-
ing to a significant loss of data utility. Second, the spatial locality assumption
used in many anonymization techniques, such as generalization–based meth-
ods [Bre+14; HN09; LGS13], becomes impractical in high–dimensional spaces.
This sparsity leads to greater distances between points, making it difficult to
find clusters of similar records. As a result, traditional anonymization tech-
niques become ineffective [Agg06].

Some techniques have been proposed to address the problem of dimension-
ality in privacy models. Feature selection, feature transformation, and parti-
tioning techniques have been widely explored to reduce dimensionality while
preserving privacy [Var+12; CS14; Li+19; RR20; Wan+20a]. Principal Com-
ponent Analysis (PCA) [AW10] is also commonly used to project database onto
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lower–dimensional representations while retaining key characteristics, and then
privacy models could be used on the low–dimensional database. However, these
methods primarily work well for linear data, but falls short when dealing with
non–linear structure of the data [SSM98], necessitating advanced techniques ca-
pable of handling non–linearly distributed high–dimensional data while ensur-
ing privacy. Given these challenges, there is a need for novel privacy–preserving
mechanisms tailored for high–dimensional data. A promising direction is the
integration of manifold learning techniques [TSL00] with privacy models to
capture intrinsic data structures in a lower–dimensional space, which works
well for non–linear data structures while maintaining privacy guarantees.

Furthermore, personal data is frequently utilized by machine learning (ML)
models for prediction, decision–making, and analytics. While anonymization
aims to protect raw data, ML models and aggregated outputs can also pose
privacy risks. These models may retain implicit patterns from the training
data, enabling adversaries to infer sensitive information through attacks such as
membership inference [Sho+17] and model inversion [FJR15]. Also, ML models
frequently encounter these challenges when dealing with such high–dimensional
data [JT09]. This highlights the need for Privacy Preserving Machine Learn-
ing (PPML) techniques that ensure data protection at different stages: before
training (on input data), during training the model (privacy on computation),
or after training (on the output). The choice of a privacy model depends on the
specific application and the required level of protection. For instance, differ-
ential privacy provides a formal framework to limit the influence of any single
data point on the model, ensuring privacy–preserving computations.

In addition to employing PPDP and PPML techniques to protect sensi-
tive data, an alternative approach is to generate synthetic data that closely
mimics the statistical properties and patterns of the original dataset [Rub93;
Dre11]. By replacing real data with synthetically generated data, privacy risks
can be mitigated, as no actual personal information is shared, published, or
used for model training and analysis. However, several challenges arise with
this approach. First, generating high–quality synthetic data that accurately
preserves the distributions and relationships of high–dimensional real–world
data is non–trivial. Poorly generated synthetic data can fail to capture the
necessary statistical dependencies, reducing its usefulness. Second, ensuring
that synthetic data is truly privacy–preserving is crucial, as merely generating
synthetic data does not guarantee privacy unless rigorous privacy assessments
are conducted. There is a risk that synthetic data may still leak sensitive pat-
terns or allow attackers to infer information about individuals from the original
dataset [HAP17; Sho+17]. Third, improving the performance of synthetic data
generators, such as Generative Adversarial Networks (GANs) [Goo+20] or Vari-
ational Autoencoders (VAEs) [Kin13], remains an ongoing research challenge,
particularly in balancing privacy and utility.

Further, high–dimensionality is not only a concern for data but also for
modern machine learning models. Many large–scale models, such as deep
learning architectures and NLP models, contain millions to billions of param-
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eters, leading to high computational costs and latency. The inference time
of a model that is the time taken to respond to a query must be in the or-
der of milliseconds for real–world deployment. These models often learn from
high–dimensional data, also increasing the significant computational overhead.
As the models grow larger to achieve higher performance, their inference la-
tency and resource demands also increase significantly, making them imprac-
tical for real–time applications. Several model compression techniques have
been introduced in the literature to mitigate these challenges, including knowl-
edge distillation [HVD15], pruning [ZG17], quantization [Wu+16; Gon+14],
low–rank factorization [Che+05], and batch inference [CKY23]. These meth-
ods aim to reduce model complexity, but often comes at the cost of reduced
model utility.

Beyond computational efficiency, large–scale models also pose critical pri-
vacy and security risks. Deep neural networks, particularly transformer–based
models, are susceptible to several privacy attacks [Sho+17; Car+21], where
adversaries can reconstruct the sensitive training data or determine whether a
specific individual was included in the training dataset. Techniques like differ-
entially private training, have been explored to mitigate these risks, however
with carefully designed attacks, it is still possible to recover certain information
from the model. To address both scalability and privacy concerns, there is a
strong need for research into privacy–preserving model compression techniques,
which optimize models for efficiency while ensuring privacy guarantees.

The overarching goal of this thesis is to explore privacy–aware AI systems by
investigating techniques that ensure data protection while maintaining utility
in machine learning models and data publishing. Specifically, it will focus on
enhancing privacy–preserving mechanisms in high–dimensional data, develop-
ing privacy–aware synthetic data generation methods, and establishing privacy
frameworks for large–scale AI models. By systematically evaluating their ef-
fectiveness in terms of utility retention and privacy protection, this research
contributes to the development of privacy frameworks that enable secure and
robust AI systems.

1.3 Research Questions

Ensuring data protection for high–dimensional data is inherently challeng-
ing due to the trade–off between privacy and utility. The primary aim of
this research is to develop privacy–aware AI systems that effectively protect
high–dimensional data while preserving its usability for downstream tasks.
Thus, the objective is to explore existing privacy models and manifold learn-
ing techniques. Existing mechanisms of privacy–preserving models, such as
k–anonymity and differential privacy, struggle to maintain utility of anonymized
datasets especially as dimensionality increases. Manifold learning offers a
potential solution by leveraging the manifold hypothesis, which states that
real–world high–dimensional data often lie on a lower–dimensional manifold
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that is embedded in a high–dimensional space [Cay+08]. By leveraging the
manifold structure of high–dimensional data, we obtain a lower–dimensional
representation that preserves its intrinsic characteristics. Privacy models can
then be applied more effectively to this low–dimensional data, reducing the
need for excessive perturbation while maintaining data utility, which is a ma-
jor drawback in high–dimensional data anonymization. Thus, we explore how
manifold learning can be effectively utilized to protect high–dimensional data
while maintaining utility. Additionally, we investigate whether hybrid privacy
models, combining k–anonymity and differential privacy could be used instead
of individual privacy models.

Furthermore, an alternative to direct anonymization is using high–quality
synthetic data as a privacy–preserving mechanism. The key idea behind syn-
thetic data generation is that if real data samples are not explicitly reproduced
in synthetic datasets, they should theoretically be protected against adversarial
attacks. We investigate whether high–fidelity synthetic data can be generated
for high–dimensional datasets while preserving the statistical properties of the
original data. We also explore techniques to enhance the performance of GANs
and VAEs for tabular data generation, particularly in datasets with many cat-
egorical variables. Additionally, we investigate the vulnerabilities of synthetic
data generators to privacy attacks and develop privacy–preserving generative
models to mitigate these risks.

High–dimensionality is not only about data, but also about model param-
eters. There are large–scale models, such as deep learning and NLP models,
which contain millions or even billions of parameters. These models pose two
major challenges: computational inefficiency and privacy. Large–scale models
have high inference times, because they are trained on millions of parameters,
making real–time deployment difficult, also large–scale models are vulnera-
ble to several privacy attacks. We aim to design privacy–aware AI systems
that minimize computational overhead while maintaining strong privacy guar-
antees. To achieve this, we investigate the integration of model compression
techniques such as knowledge distillation and pruning with privacy–preserving
mechanisms.

The main, and specific research questions of this thesis are as follows.

RQ1: Are existing privacy models and their combinations effective in preserv-
ing the privacy and utility of high–dimensional data?

RQ2: Can synthetic data generation methods capture and preserve the intrin-
sic manifold structure of high–dimensional data?

RQ3: Can large–scale models like language models leverage privacy models
and model compression to ensure privacy and reduce computational over-
head?
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1.4 Main Contributions

To answer the research questions, this thesis contributes to the development of
privacy–aware AI systems by systematically investigating and designing tech-
niques that ensure data protection while preserving the utility and effectiveness
of machine learning models and high–dimensional data publishing. This inte-
gration enhances the effectiveness of PPDP and PPML techniques by improving
data utility, privacy, and robustness against privacy attacks. We now describe
how each research question is addressed and outline the key contributions.

In order to address RQ1, we aim to evaluate the effectiveness of existing tech-
niques for privacy models, such as k–anonymity and DP, in balancing privacy
and utility for high–dimensional data. Additionally, we investigate the syner-
gies between k-anonymity and differential privacy, and if k-anonymity can help
to improve the utility of DP responses. There are two main outcomes of this
research question.

• Limitations of existing mechanisms for k–anonymity and differential pri-
vacy models, in preserving the utility of high–dimensional data are an-
alyzed. To address them, a manifold learning based privacy–preserving
framework is proposed. This framework introduces geodesic distance as
an alternative to Euclidean distance, capturing the intrinsic structure
of the data more effectively. Additionally, manifold learning techniques
are employed to project high–dimensional data onto a lower–dimensional
space before applying anonymization. By preserving meaningful geo-
metric relationships, this approach enhances privacy while minimizing
information loss, thereby achieving a more favorable trade–off between
privacy and utility compared to conventional models.

• Design a hybrid anonymization technique, integrating the strengths of
both k–anonymity and DP. Additionally, a relationship between the pri-
vacy parameters k and ϵ is established in terms of its impact on data
utility.

These results are presented in Paper I and II.

In order to answer RQ2, we explore the challenges faced by synthetic data
generators in producing high–quality synthetic data, with a focus on ensuring
that the generated data is safe from privacy risks. We also examines whether
incorporating prior knowledge about the data can enhance the performance of
these generators. There are three main outcomes of this research question.

• Design a framework for generating high–fidelity synthetic data that pre-
serves both privacy and the inherent structure of the data. This frame-
work evaluates privacy risks through data reconstruction attacks and as-
sess the utility by analyzing statistical and machine learning performance
metrics.
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• Explore distributional learning capabilities of synthetic data generators,
such as GANs and VAEs, to enhance their ability to capture and replicate
the underlying data distribution effectively.

• Investigate the use of prior knowledge about the data to enhance the
performance of GANs for tabular data, while ensuring that the privacy
is not compromised.

These results are presented in Paper III, IV and V.

In order to address RQ3, we investigate the challenges of high–dimensionality
in large–scale models, focusing on language models, particularly in terms of
the number of parameters. We explore methods for compressing these models
to reduce computational overhead while ensuring they remain secure against
privacy attacks through the application of privacy model. There are two main
outcomes of this research question.

• Design a task–specific knowledge distillation approach that combines
transfer learning and differential privacy for model compression, ensuring
the privacy of the model during the process.
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• Develop a pruning strategy integrated with DP fine–tuning, ensuring that
the pruning process is complemented by privacy protection, while evalu-
ating privacy vulnerabilities through training data extraction attacks.

These results are presented in Paper VI and VII.
As a summary, our research focuses on understanding the interplay between
high–dimensionality and privacy models and provides privacy–aware AI sys-
tems. Figure 1.1 provides an overview of the thesis outline, illustrating the
relationships between research questions, key concepts, thesis chapters, and
the corresponding papers.

1.5 Research Method

This research aims to enhance our understanding of privacy vulnerabilities in
data publishing and machine learning while proposing viable privacy–aware AI
solutions to mitigate these risks. These technological solutions can be consid-
ered as artifacts. To ensure a rigorous and systematic design process, we adopt
the Design Science Research (DSR) methodology [Hev+04]. DSR focuses on
the creation and evaluation of innovative IT artifacts that address well–defined
problems, as depicted in Figure 1.2. The first step in DSR is problem identi-
fication, which involves recognizing a challenge that can be addressed through
the development of an artifact. This is typically derived from a comprehensive
literature review to establish the significance of the problem. In this thesis, we
follow a similar approach, reviewing existing literature to identify the challenge
posed by the interplay between data dimensionality and privacy models.

Following problem identification, the suggestion phase defines the research
objectives and outlines the expected outcomes. The primary goal of this thesis
is to develop privacy–aware AI solutions that balance privacy and utility. In the
design phase, prototype solutions are developed iteratively. This stage involves
refining ideas, designing models, and conducting preliminary experiments to
evaluate feasibility. Next, in the demonstration phase, the refined solution is
applied in relevant scenarios to assess its practical effectiveness. The evalu-
ation phase follows, where the solution undergoes rigorous assessment based
on predefined performance metrics, ensuring it meets privacy and utility re-
quirements. Once the solution achieves the desired quality, it transitions to the
conclusion phase, where final insights are drawn, and the findings are prepared
for publication.

1.6 Thesis Organization

The thesis is organized as follows. Chapter 2 provides essential background
concepts on various privacy models, techniques for handling high–dimensional
data, and synthetic data generation methods, which forms the foundation
for the subsequent chapters. Chapter 3 explores privacy–preserving solutions
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specifically designed for high–dimensional data publishing. Chapter 4 presents
synthetic data generation as an alternative to traditional anonymization tech-
niques and evaluates its effectiveness. Chapter 5 discusses the challenges associ-
ated with large–scale models, such as language models, and proposes potential
solutions. Chapter 6 concludes the thesis by summarizing key findings and
outlining directions for future research.
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Chapter 2

Privacy Models and
Machine Learning

Meet the first beginnings; look to
the budding mischief before it
has time to ripen to maturity

— William Shakespeare

In today’s data–driven world, vast amounts of data are collected and shared
every second. This data is frequently analyzed using advanced statistical and
data mining techniques to extract insights. When the data is analyzed inter-
nally within the organization that collected it, the risk of disclosing sensitive
information remains relatively low. However, when the analysis requires col-
laboration with third parties, the risk of privacy breaches becomes significantly
higher, making data privacy a critical concern. The concept of privacy origi-
nally emerged as a concern among statisticians, particularly in the context of
publishing census data, where the objective was to prevent the disclosure of
sensitive information. Over time, privacy concerns expanded into the field of
computer science, addressing challenges related to data mining, secure compu-
tation, and data communication.

This chapter explores the multidimensional nature of data privacy, address-
ing key questions such as: whose privacy is being protected, how can data
privacy be achieved during computations, how do privacy–preserving methods
adapt to scenarios involving different numbers of data sources. We then in-
troduce privacy–preserving methods [VC04; Hun+12], which includes Privacy
Preserving Data Publishing (PPDP) and Privacy Preserving Machine Learn-
ing (PPML) that has developed comprehensive frameworks and mechanisms
to ensure privacy protection for various types of data. These mechanisms en-
compass a wide range of anonymization techniques, categorized as perturbative
(e.g., noise addition or data masking), non–perturbative (e.g., generalization
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or suppression), and synthetic data generation methods. We then introduce
different privacy models that formalize the definition of privacy. Finally, we
delve into privacy considerations for machine learning applications, particu-
larly when dealing with high–dimensional data. We discuss techniques such
as manifold learning, which reduces the dimensionality while preserving the
data’s structure, and model compression, which optimizes computational effi-
ciency without compromising privacy. These approaches enable effective data
analysis while adhering to stringent privacy requirements.

2.1 Dimensions of Data Privacy

Data privacy is a discipline focused on developing theories, tools, and method-
ologies to ensure the proper governance of personal data. Different methods
have been developed for different scenarios and under different assumptions
on the data. According to [Dom07; Tor17], data privacy has been broadly
categorized into three dimensions.

1. Whose privacy is being sought

2. The computations to be done

3. The number of data sources

The first dimension can be discussed considering a scenario which involves three
actors.

• Data subject/respondent: This focuses on individuals that have gen-
erated the data i.e, customers, participants etc. We consider them as
passive subjects as they cannot take actions to protect their own privacy.

• Data controller/ holder: This refers to an organization or individual
who has gathered the data and owns the database. For instance service
providers, government agencies etc.

• Data user/recipient: This is an authorized party responsible for inter-
acting with the collected data. This includes activities such as visualizing,
analyzing, or processing the data to derive insights or support decision-
making.

The second dimension considers the prior knowledge that the data controller
has about the usage of this data. This dimension emphasizes how the data
will be utilized and the expected applications of the protected data. Data
protection methods can be categorized based on their suitability for specific
use cases, considering the level and type of prior knowledge available to the
data controller. They can be categorized into three procedures.
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• Computation–driven or specific purpose protection procedure:
In this scenario, the analysis or computation to be performed on the
data is known beforehand. Consequently, the protection procedures are
specifically tailored to align with the intended purpose.

• Data–driven or general purpose protection procedure: In this
scenario, no specific analysis is anticipated for the data. These proce-
dures are designed to provide broad privacy protection, making the data
suitable for diverse and unforeseen applications. A common example
includes datasets published for public use by government agencies or re-
search organizations.

• Result–driven protection procedure: In this scenario, the focus of
privacy is on the outcomes generated from applying a specific data mining
method to a particular dataset [Ata+99; Atz+08].

The third dimension corresponds to the number of data sources, which could
be distinguished in two cases: (i) single data source: where one dataset
is considered. (ii) multiple data source: where multiple data sources are
considered.

2.2 Statistical Disclosure Control (SDC)

The objective of data privacy is to safeguard the collected personal data so that
the data can be published or shared without exposing sensitive information or
allowing the data to be linked back to the individuals who contributed in the
data. Essential mechanisms to ensure privacy preservation in data publishing
and sharing have been developed by SDC community. According to [Dom08],
there are three key sub disciples of SDC as (i) tabular data protection, (ii)
dynamic database protection, and (iii) micro–data protection.

• Tabular–data protection: This is crucial for statistical agencies to
publish survey or census results using SDC techniques. Historically, re-
sults were shared in aggregated formats, limiting the scope for future
analysis. The primary privacy requirement is to ensure that no sensi-
tive information about individuals can be inferred from the published
aggregated data.

• Dynamic/statistical database protection: Statistical queries are
submitted by users in order to obtain aggregated information (e.g. sum,
mean). The primary privacy requirement is to ensure that successive
queries should not enable the inference of sensitive information about the
individuals.

• Micro–data protection: This involves personal data collected from the
individuals. The privacy requirement is to publish or share micro–data
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without compromising individual’s privacy. Data anonymization tech-
niques are applied in order to protect such micro–data.

There are four types of attributes available in a micro–dataset: (i) identifiers:
attributes that directly identify data subjects e.g., social security number or
email address etc. (ii) quasi–identifiers: attributes, that in combination can be
linked with external information to re–identify some of the respondents. For
instance a combination of (age, zipcode, gender) can serve as a quasi–identifier
in some context (iii) confidential: attributes containing sensitive information
on the respondent such as salary or health condition (iv) non–confidential:
attributes without including sensitive information.

2.3 Data Anonymization Techniques

Various data anonymization techniques have been introduced to protect the
database. According to [Tor17], these techniques, also referred to as masking
methods, can be broadly categorized into three main groups based on how they
manipulate the original data to create a protected dataset.

• Perturbative: The original micro–dataset is modified or distorted to pro-
duce a protected dataset. Common techniques in this category include
noise addition, microaggregation, and rank swapping.

• Non–Perturbative: The original micro–dataset values are replaced with
less–specific or more general values to create a protected dataset. Com-
mon techniques in this category include generalization and suppression.

• Synthetic Data Generators: Rather than modifying the original dataset,
an entirely new artificial dataset is generated to mimic the statistical
properties of the original data. This synthetic dataset is then used as a
substitute for the original values.

The choice of an appropriate data masking method depends on the type of
database (e.g., continuous, categorical, time–series) and the database usage.
Some of the most common techniques are discussed below.

2.3.1 Noise Addition and Multiplication

Noise addition and multiplication are commonly used data masking techniques,
particularly for numerical data, where a certain amount of noise is added or
multiplied with the original data to create a protected dataset [Bra02]. This
method ensures that individual data points remain obfuscated while retaining
statistical properties at a macro level. For example, if X represents the original
data, the protected data X ′ is obtained through the following operations:

X ′ = X + ϵ (Addition) X ′ = X · ϵ (Multiplication)
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Here, ϵ represents the noise, which is typically drawn from a distribution with a
mean of 0 and variance σ2. If the noise is drawn from a normal distribution, it
can be denoted as ϵ ∼ N(0, σ2). The amount of noise added is directly related
to the level of privacy achieved: a higher variance in ϵ results in stronger privacy
but may compromise data utility. In contrast, a lower variance preserves more
of the original data but provides less privacy protection. Noise addition ensures
differential privacy (which is discussed later) by masking the contribution of
individual data points, making it difficult to re–identify sensitive information.
Furthermore, noise multiplication introduces multiplicative perturbations, pro-
viding an alternative method of protecting data while potentially enhancing the
robustness of the model to privacy attacks.

2.3.2 Swapping

Data swapping was first introduced by Dalenius [DR82] in 1978 for categorical
data, with the goal of preserving the t–order frequency/contingency tables while
protecting the individual data points. Over time, the concept was extended to
numerical data through a technique known as rank swapping [Moo96]. In rank
swapping, the values of a given variable are first sorted in ascending order,
and then each ranked value is swapped with another randomly selected ranked
value within a specified range p. Typically, p represents a percentage of the
total number of records in X, and it allows the user to control the level of
disclosure risk. The value of p is directly proportional to the level of privacy
achieved: a higher p increases privacy by reducing the risk of re–identification,
but may also reduce the utility of the data. It has been classified as one of the
best methods for protecting micro–data in numerical attributes by [DT01a],
and the best for categorical attributes by [Tor04].

2.3.3 Microaggregation

Microaggregation is another data masking technique that involves creating
small micro–clusters from the original dataset. The values within each cluster
are then replaced by a cluster representative, typically the mean or median of
the records within the cluster. This process ensures that individual data points
are obfuscated by representing them as a group. To achieve privacy, each mi-
cro–cluster must contain a predefined number of records i.e., k. As a result, the
cluster representative—now the published data—is no longer a single record’s
value but a representation of the entire cluster. This aggregation helps mask
individual data points, making it difficult to identify specific records, thereby
achieving privacy while maintaining the overall statistical properties of the
dataset.

This method can be formulated as an optimization problem, where the
objective is to partition the data into homogeneous clusters that minimize the
global error, typically measured by the sum of squared errors (SSE) between
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the records and their respective cluster centers.

SSE =

D∑
j=1

N∑
i=1

(xij − x̄j)
2 (2.1)

where D is the number of attributes, N is the number of records, x is the value
of record, and x̄ is the mean of j− th feature. Various clustering methods have
been proposed in the literature for microaggregation. Some methods use a fixed
group size, where the cluster size k is predetermined and constant [DT05]. In
contrast, other methods propose variable cluster sizes, where the size of each
cluster is determined based on the characteristics of the data at hand [DM02].

For numerical data, the Euclidean distance is typically used to compute
the distances between records, and the arithmetic mean is employed as the
cluster representative. When each attribute is microaggregated independently,
this approach is known as univariate microaggregation. In high–dimensional
datasets, the distances between records and the cluster centroid increases, lead-
ing to significant utility loss, especially when attributes are not correlated. To
address this, multivariate microaggregation could be used that groups related
attributes together and independently microaggregates each group, rather than
treating the entire dataset as a whole. Various heuristics have been developed
for multivariate microaggregation such as MDAV (Maximum Distance to Aver-
age Vector) [Dom+06] and V–MDAV (Variable Maximum Distance to Average
Vector) [SMD06]. The MDAV algorithm is described in Algorithm 1 which is
also used later in Chapters 3 and 4.

2.3.4 Generalization and Recoding

In this method, a few categories are combined into more general ones to achieve
data protection. This technique is primarily targeted at categorical attributes.
It can be further classified into two types: global and local recoding. In global
recoding, the same recoding is applied to all categories in the original data.
This approach tends to result in larger information loss, as changes are applied
uniformly across all categories, regardless of their specific need for privacy
protection. While simple, global recoding often leads to a greater reduction in
data utility. In contrast, local recoding allows different generalizations to be
applied to the same category based on its occurrence in different records. This
approach introduces a larger domain for the dataset, providing a finer–grained
level of privacy protection. However, this can be problematic when analyzing
the protected dataset, as the expanded domain might introduce complexity or
inconsistencies in analysis due to varying recoding schemes applied to similar
categories.

2.3.5 Suppression

The suppression method involves replacing some values with a special label.
It is typically used for categorical data. It can be applied in combination
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Algorithm 1 MDAV Microaggregation

Require: Original dataset X = {x1, x2, . . . , xN} ∈ RD, Micro–cluster size k
Ensure: Anonymized dataset X ′ ∈ RD

1: while |X| ≥ 3k do
2: Compute the centroid x̄ of all records in X
3: Identify the record xr ∈ X that is farthest from x̄
4: Identify the record xs ∈ X that is farthest from xr

5: Form a cluster Cr with xr and its k − 1 nearest neighbors
6: Form a cluster Cs with xs and its k − 1 nearest neighbors
7: Remove the records in Cr and Cs from X
8: end while
9: if |X| ≥ 2k then

10: Compute the centroid x̄ of X
11: Identify the record xr ∈ X that is farthest from x̄
12: Form a cluster Cr with xr and its k − 1 nearest neighbors
13: Remove the records in Cr from X
14: Form a cluster Cs with the remaining records
15: C = C ∪ {Cr, Cs}
16: else
17: C ← C ∪ {X}
18: end if
19: return Anonymized dataset X ′

with generalization to achieve the k–anonymity privacy model. In this context,
suppression helps ensure that each record is indistinguishable from at least k−1
other records. When suppression of a particular value in a record results in the
suppression of all subsequent appearances of that value across the dataset, it is
referred to as global suppression. This approach guarantees that the suppressed
value is uniformly hidden across all records, increasing privacy but potentially
reducing data utility. On the other hand, local suppression occurs when the
suppression of a value in one record is independent of its occurrence in other
records. In this case, only specific instances of a value are suppressed, allowing
for more flexibility in retaining data utility while still contributing to privacy
protection.

2.4 Privacy Models

In the previous section, we discussed commonly used data anonymization tech-
niques, which focus on transforming original data into a protected form to
minimize disclosure risk. Complementing these techniques, privacy models
provide formal definitions of privacy and outline specific conditions that, when
satisfied, ensure a measurable degree of privacy while controlling disclosure
risks. Anonymization techniques and privacy models are inherently interre-
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lated. Anonymization techniques serve as the mechanism to fulfill the require-
ments of specific privacy models by defining how the original data should be
transformed to produce protected data. This interplay enables data controllers
to carefully balance the trade–off between privacy and utility, allowing them
to fine–tune the level of privacy protection while maintaining sufficient data
utility for analysis.

2.4.1 k–Anonymity

k–Anonymity is a widely adopted privacy model introduced by Samarati [SS98;
Sam01] that is designed to safeguard individual privacy by ensuring that each
record in a dataset cannot be distinguished from at least k − 1 other records
based on a set of quasi–identifiers. This is achieved by modifying the dataset
such that any group of records sharing the same quasi–identifier values forms
an equivalence class. While k–anonymity effectively prevents identity disclo-
sure, it does not fully eliminate the risk of attribute disclosure. For instance,
if all records within an equivalence class share identical values for sensitive
attributes, an attacker could infer those values, leading to what is known as
a homogeneity attack [De +12]. Additionally, if an attacker possesses prior
knowledge about an individual and there is limited variation in the sensitive
attribute values, they may exploit this information to deduce sensitive details.

To protect individual privacy, we anonymize the quasi–identifiers by apply-
ing techniques such as generalization. This ensures that the resulting database
reduces the risk of identity disclosure while maintaining utility for analysis.
Table 2.1 and 2.2 illustrate how generalization and suppression techniques can
be applied to protect sensitive information while enforcing k–anonymity. Table
2.1 shows the original dataset, which contains attributes such as Zip Code,
Birth Year, Gender, and Illness without any privacy–preserving transforma-
tions. In this format, the dataset presents a significant privacy risk, as individ-
uals can be uniquely identified using quasi–identifier like Zip Code, Birth Year
and Gender. To address this risk, Table 2.2 demonstrates k = 2 anonymity
using generalization and suppression. Birth Year values are generalized into
broader intervals, such as 1980–1985, 1985–1990 etc, ensuring that individuals
within the same interval cannot be distinguished. Additionally, Zip Code val-
ues are partially suppressed by replacing the last digit with a wildcard symbol
(e.g., 1234*). This reduces the risk of exact identification while still retaining
some geographic context. Gender values are generalized according to the most
common value in that cluster. These adjustments create equivalence classes
where each group contains at least two records with identical quasi–identifiers,
satisfying k = 2 anonymity for the list of quasi–identifiers. However, these
transformations also reduce the granularity of the data, reflecting the trade–off
between privacy and utility. Micro–aggregation is one of the techniques used
to achieve k–anonymity by grouping similar records and replacing them with
aggregated values.
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Table 2.1: Original Dataset

Zip Code Birth Year Gender Medical Condition
12345 1982 Male Flu
12346 1983 Female Cold
12447 1995 Male Diabetes
12538 1986 Female Asthma
12349 1984 Male Flu
12530 1988 Female Cold
12441 1992 Male Diabetes

Table 2.2: Anonymized Dataset with k = 2

Zip Code Birth Year Gender Medical Condition
1234* 1980––1985 Male Flu
1234* 1980––1985 Male Cold
1244* 1990––1995 Male Diabetes
1253* 1985––1990 Female Asthma
1234* 1980––1985 Male Flu
1253* 1985––1990 Female Cold
1244* 1990––1995 Male Diabetes

2.4.2 l–diversity

k–anonymity is vulnerable to attribute inference attacks, especially when the
values of sensitive attributes within an equivalence class are homogeneous. To
address this issue, l–diversity [Mac+07] was proposed. In l–diversity, each
group of k records must exhibit diversity in the values of sensitive attributes,
ensuring that attackers cannot easily infer sensitive information based on the
lack of variability. This privacy model helps to prevent attacks like the ho-
mogeneity and attribute inference attack. Several approaches have been intro-
duced to ensure l–diversity, including distinct l–diversity, entropy l–diversity,
and recursive (c, l) l–diversity. However, despite its improvements, l–diversity
does not offer a comprehensive solution to eliminate all types of attribute in-
ference attacks.

Skewness attacks can still target l–diversity. This occurs because, if certain
values in a sensitive attribute are rare in the original dataset, the application
of l–diversity will introduce more diverse values for those attributes. As a
result, the attacker can exploit the differences in the distribution of sensitive
attributes between the original and the anonymized dataset. By observing
these distribution discrepancies, the attacker may link a particular individual
to an equivalence class. Once the individual is associated with a specific class,
there is a high probability that the attacker can identify that individual within
the class, undermining the protection provided by l–diversity.
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2.4.3 t–closeness

t–closeness [LLV06] is an extension of k–anonymity designed to address its vul-
nerability to attribute inference attacks. This model introduces a constraint on
the distribution of sensitive attribute values within equivalence classes. Specif-
ically, t–closeness requires that the distribution of sensitive values in any equiv-
alence class is similar to their distribution in the entire dataset. While both
l–diversity and t–closeness aim to minimize the risk of attribute disclosure,
they have been criticized for making unrealistic assumptions about the data
distribution of sensitive attributes. Additionally, applying these models often
reduces data utility more significantly than k–anonymity, as they further dis-
tort the relationships between sensitive attributes and quasi–identifiers within
equivalence classes.

2.4.4 Differential Privacy

The Differential privacy (DP) model, introduced by Dwork [Dwo06], has be-
come a cornerstone in privacy–preserving data analysis. This model guaran-
tees that the presence or absence of any single individual in a dataset cannot
be inferred by analyzing the output of a function applied to two neighboring
datasets. Neighboring datasets are defined as datasets that differ by only one
record. DP ensures that the output of the function doesn’t vary significantly,
regardless of whether a specific record is included or excluded. This property
provides plausible deniability, ensuring that the presence or absence of any
particular record remains uncertain, thereby protecting individual privacy.

Definition 1. (ϵ, δ)–Differential Privacy: Consider two datasets as neighbor-
ing if they differ by only one record (either by the addition or removal of a
single data point). A mechanism F is said to be (ϵ, δ)–differentially private if,
for any two neighboring datasets DB1 and DB2, and for any subset S of the
output range of F , the following inequality holds:

P [F (DB1) ∈ S] ≤ eϵ × P [F (DB2) ∈ S] + δ. (2.2)

Here, ϵ controls the strength of the privacy guarantee and δ accounts for possi-
bility of failure in maintaining the privacy guarantee. Typically, δ is set to small
values such as 1/N with N representing the number of records in a dataset,
with smaller values providing stronger privacy. A key property of differentially
private mechanisms is that any post–processing (data–independent transfor-
mation) of their output remains differentially private with the same privacy
guarantees. The above expression underlines that, eϵ is the bound of the dif-
ference between two probabilities. Thus, it becomes clear that, the smaller
the ϵ, the greater the privacy. When it is equal to zero, distributions of both
neighboring data sets are the same. It means there is no privacy leakage.

There are different mechanisms for implementing DP such as Laplace noise
mechanism, Gaussian noise mechanism, exponential mechanism, randomized
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response, sample–aggregate method, which could be used depending on the
type of query and application. One of the most commonly used mechanism
for numerical functions is Laplace mechanism, which is also discussed here.
Laplace mechanism perturbs the data with the noise drawn from the Laplace
distribution.

Definition 2. Laplace Mechanism: Let f be a function with sensitivity ∆s.
Then, the function F (x) defined as

F (x) = f(x) + Lap(
∆s

ϵ
) (2.3)

satisfies ϵ–differential privacy.

Here, ϵ is the privacy budget, ∆s is the global sensitivity of the function f ,
and Lap(S) denotes sampling from Laplace distribution with center 0 and scale
S. The scale S of noise is calibrated to the sensitivity of f for two neighbor-
ing databases and the privacy requirements. Global sensitivity is the maximum
variation a given function takes with respect to all neighboring datasets. Math-
ematically, it is defined as

∆s = max
DB1,DB2

∥F (DB1)− F (DB2)∥1 (2.4)

where ∥·∥1 represents the L1 norm, which is the sum of the absolute differences
between corresponding elements, and DB1 and DB2 are arbitrary neighboring
datasets. In machine learning, DP can be introduced at various stages, such
as at the input level, during model training (DP–Training), or when serving
predictions (model inference) [Pon+23]. For non–convex loss functions, one of
the most effective DP–Training methods is gradient–noise injection, such as
Differentially Private Stochastic Gradient Descent (DPSGD) [Aba+16]. This
approach limits the sensitivity of the loss function by clipping per–example
gradients and adding Gaussian noise to the aggregated clipped gradients to
ensure privacy. The noise level is tied to the clipping norm (which controls
sensitivity) and the strength of the ϵ guarantee. A similar strategy could be
adopted to other optimizers as well.

2.5 Synthetic Data Generation

Masking methods, both perturbative and non–perturbative, modify the origi-
nal data to ensure confidentiality. A promising alternative to these approaches
is the release of synthetic data. In this approach, a model is trained on the
original data, and synthetic values are generated by sampling from this model.
Depending on the desired level of privacy protection, either a subset of records
(partially synthetic data) or the entire dataset (fully synthetic data) is replaced
with synthetic values. According to [Tor22], the methods for generating syn-
thetic data can be categorized into three major classes based on their underlying
principles and techniques.
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1. Synthetic reconstruction methods leverage a dataset containing the
marginal distribution of the entire population and the conditional proba-
bilities for specific attributes, often derived from publicly available contin-
gency tables. The data generation process follows a structured approach.
(i) Individuals are either selected from an existing population or synthet-
ically created to represent the target demographic. (ii) Attributes are
sequentially assigned to the synthetic records. Each attribute is gener-
ated one at a time, ensuring consistency with the relevant conditional
probabilities. For example, after creating a synthetic individual, an at-
tribute such as residential status (e.g., homeowner or tenant) is assigned.
Based on this value, subsequent attributes, like property size, are gen-
erated in alignment with the conditional probabilities. (iii) Historically,
methods like Iterative Proportional Fitting (IPF), developed in the 1930s,
were employed to construct such datasets by aligning marginal and condi-
tional distributions [BT13; HW01]. More advanced techniques have since
been developed to improve the efficiency and accuracy of the synthetic
data generation methods.

2. Combinatorial optimization methods generate synthetic data by sys-
tematically combining attribute values from the original dataset. Instead
of replicating statistical patterns directly, this method focuses on creating
all possible combinations of attributes or a representative subset, ensur-
ing diversity and offering robust privacy guarantees. It is particularly
effective for datasets with categorical variables or when ensuring diver-
sity in the synthetic data is crucial. By generating combinations that
may not exist in the original dataset, it inherently enhances privacy by
reducing the risk of re–identifying individuals in the original data.

3. Model–based simulations have gained significant momentum in syn-
thetic data research, driven by advancements in generative models like
Generative Adversarial Network (GANs). These models generate syn-
thetic data by learning the underlying distribution of real datasets. Over
time, various GAN variants have been developed to cater to specific
data types and applications. CTGAN (Conditional Tabular GAN) is
specialized for generating high–quality tabular data with mixed data
types and imbalanced distributions. Another GAN, i.e., tableGAN is
designed to produce realistic tabular data by learning row–wise depen-
dencies. DPGAN (Differentially Private GAN) integrates differential pri-
vacy mechanisms to ensure the generated data maintains privacy guar-
antees. PATEGAN (Private Aggregation of Teacher Ensembles GAN)
focuses on privacy–preserving synthetic data for tabular datasets using
a teacher–student framework. In addition to GANs, other model–based
generators have proven effective such as Variational Auto–Encoders (VAE)
and Diffusion Models. We describe some of them as follows.
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Figure 2.1: Generative Adversarial Network Architecture

2.5.1 Generative Adversarial Network (GANs)

GANs are a class of deep learning models designed to generate realistic syn-
thetic data by learning the underlying data distribution. Introduced by [Goo+20]
in 2014, GANs consist of two neural networks: the generator and the discrim-
inator. The generator takes random noise (sampled from a latent space) as
input and produces synthetic data. Its goal is to generate data that closely
resembles the real data. The discriminator is a binary classifier that differen-
tiates between real data and data generated by the generator. Its goal is to
correctly identify whether the input is real or fake. The training process in-
volves the two networks playing a min-max game, where the generator tries to
fool the discriminator, and the discriminator tries to distinguish the real data
from the fake data. The aim of generator is to minimize the discriminator’s
ability to correctly identify fake data. The generator’s loss is defined as:

LG = −Ez∼pz(z) [logD(G(z))] (2.5)

Here, z is the input noise, G(z) is the generated data, and D(G(z)) is the
discriminator’s probability of classifying the generated data as real. The aim
of discriminator is to maximize its ability to correctly classify both real and
fake data. The discriminator’s loss is defined as:

LD = −Ex∼pdata(x) [logD(x)]− Ez∼pz(z) [log(1−D(G(z)))] (2.6)

Here, x is a real data sample, andD(x) is the discriminator’s probability of clas-
sifying x as real. During training, the generator improves its outputs based on
feedback from the discriminator, while the discriminator adapts to the genera-
tor’s improvements. Ideally, the generator’s outputs become indistinguishable
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from real data, and the discriminator’s accuracy converges to 50%, indicating
it can no longer distinguish the real data from the fake data. The architecture
of GANs is pictorially depicted in Figure 2.1. GANs have been successfully ap-
plied to various domains, including image synthesis, text–to–image generation,
and synthetic data generation, establishing them as a cornerstone of modern
generative modeling. We will use different architectures of GANs in Chapter
4.

2.5.2 Variational Autoencoder (VAE)

Variational Autoencoder (VAE) are a type of generative model that learn to
encode the data into a latent representation and then decode it back to re-
construct the original data. Introduced by [Kin13] in 2013, VAE combine
probabilistic modeling with neural networks, making them effective for gener-
ating new samples from a learned distribution. It consists of two components:
the encoder, and the decoder. The encoder maps the input data x into a la-
tent space by learning the parameters of a probability distribution. The latent
representation z is sampled from this distribution:

qϕ(z|x) ∼ N (µ(x), σ2(x)) (2.7)

where µ(x) and σ2(x) are the mean and variance learned by the encoder network
with parameters ϕ. The decoder maps the latent variable z back to the data
space to reconstruct the input. It learns the conditional probability pθ(x|z),
parameterized by θ. The VAE optimizes a loss function that is a combination of
reconstruction loss and KL divergence loss. The reconstruction loss measures
how well the reconstructed data x̂ matches the input x, typically using the
negative log–likelihood:

Lreconstruction = −Eqϕ(z|x)[log pθ(x|z)] (2.8)

While KL Divergence loss regularizes the latent space by encouraging the ap-
proximate posterior qϕ(z|x) to be close to the prior distribution p(z), typically
a standard normal distribution:

LKL = DKL(qϕ(z|x)∥p(z)) (2.9)

The total loss is the sum of these two terms:

L = Lreconstruction + LKL (2.10)

Figure 2.2 depicts the architecture of VAE. During training, the encoder and
decoder are optimized jointly to minimize the total loss. VAE excel at generat-
ing smooth interpolations in the latent space and are widely used in applications
such as image synthesis, anomaly detection, and representation learning.

24



Figure 2.2: Variational Autoencoder Architecture

2.6 Selection of a Data Protection Mechanism

Different data protection methods have distinct properties and introduce vary-
ing degrees of distortion to the original data. The extent of this distortion
depends on both the chosen method and its parameterization. A critical consid-
eration when selecting a protection mechanism is the trade–off between privacy
and data utility—specifically, the level of protection provided and the extent
to which the modified data remains useful for analysis. This trade–off can be
assessed using two key parameters:

1. Disclosure Risk: It measures the probability that sensitive information
can still be inferred despite the applied protection mechanism.

2. Information Loss: It computes the degree to which data utility is de-
graded due to the distortion introduced by the protection technique.

An optimal data protection method should minimize the disclosure risk
while preserving as much information as possible, ensuring that the protected
data remains suitable for meaningful analysis. We discuss both of them in
detail.

2.6.1 Disclosure Risk

Disclosure occurs when an adversary leverages observations and analysis of a
released dataset to enhance their knowledge about a specific item of interest.
A privacy violation arises when an adversary exploits either the raw personal
data or the outcomes of an analysis performed on that data to infer previously
unknown confidential attributes. This threat is known as disclosure risk. There
are two main types of disclosure risk.

1. Identity Disclosure occurs when an attacker uses publicly available
database or introduces own database to link the records and identify an
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individual in the protected database. This is also known as re–identification,
and could be achieved through record linkage between the protected and
the original database.

2. Attribute Disclosure occurs when an attacker infers sensitive attributes
of the target individual, even if their identity remains undisclosed. This
type of disclosure arises when an adversary, possessing prior domain
knowledge about a target individual, leverages protected data to gain
additional insights into their sensitive attributes.

2.6.2 Information Loss

A data protection method alters the properties of the original database, im-
pacting its quality and utility. This modification degrades the accuracy of any
analysis performed on the protected data, a phenomenon known as informa-
tion loss. High information loss reduces the dataset’s analytical utility, limiting
its effectiveness for meaningful insights. Conversely, low information loss may
result in an increased disclosure risk, as the protected data retains more iden-
tifiable patterns from the original dataset. Therefore, an optimal trade–off
between privacy and utility must be established to ensure both effective data
protection and usability for analysis.

Information loss can be categorized as generic or specific. Generic informa-
tion loss is assessed using statistical properties of the data, such as individual
record values [DT01b; DT01a], value rankings [LWZ08], or summary statistics
like mean, variance, and covariance [MS05]. In this thesis, we focus on spe-
cific information loss, particularly in the context of machine learning tasks. To
quantify this, we evaluate the performance of machine learning models, such
as classification, regression, or clustering on both the original and protected
datasets. The information loss is then measured using performance metrics
such as classification accuracy or regression errors, providing a direct assess-
ment of how data protection affects the model effectiveness.

2.7 Machine Learning for High–Dimensionality

High–dimensionality presents challenges for both the data and the models.
Real–world datasets often contain a large number of attributes, resulting in
high–dimensional feature spaces. Simultaneously, machine learning models de-
signed to process such data are often large–scale, with millions of parameters.
As a result, high–dimensionality impacts both the data representation and the
model complexity. In this section, we discuss various techniques that address
such concerns, and we use them in later chapters.
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Figure 2.3: Manifold Hypothesis

2.7.1 Manifold Learning

A manifold is defined as a topological space that locally resembles Euclidean
space. In small neighborhoods, it can be approximated by the Euclidean space.
More precisely, a manifold is a space in which every point has a neighborhood
that is homeomorphic to an open subset of an n–dimensional Euclidean space.
This concept can be formally described using the following definition.

Manifold Learning: Given a finite set of data points x1, ...xn ∈ RD in a
D–dimensional space, a Manifold learning algorithm aims to find the points
y1, ...yn ∈ Rd in low–dimensions where d ≪ D such that Euclidean rela-
tionship between (yi, yj) reflects the intrinsic non–linear relationship between
(xi, xj) [TSL00].

Figure 2.3 illustrates the swiss roll cake with a jam topping. The jam
layer–the most flavorful and important part of the cake, lies on a flat 2D sur-
face before the cake is rolled. Once rolled, this layer becomes embedded in a 3D
spiral structure. This captures the essence of the manifold hypothesis, which
states that data points lie on a low–dimensional manifold denoted by Rd, which
is embedded in a high–dimensional space denoted by RD. The goal of manifold
learning is to find a way to map the data from a high–dimensional space, RD,
to a lower–dimensional space while keeping the geometric properties as much
as possible. As dimensions increase, a larger proportion of the data tends to
reside near the corners of the feature space [Spr14], complicating effective anal-
ysis. High–dimensional data is present in various forms, for instance tabular
datasets with numerous rows and columns, image data, and textual data. For
low–dimensional data, visualization through graphical plots effectively reveals
local geometric patterns. However, these techniques are not as intuitive or
feasible for high–dimensional data. To address this limitation, it is essential
to understand the structure and the geometry of high–dimensional data and
transform high–dimensional data into lower–dimensional representations, with
the help of manifold learning. One common method is to preserve the pairwise
distances between data points during this transformation. This involves cal-
culating the distances between points in the original high–dimensional space
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and ensuring these distances are maintained in the lower–dimensional space.
By doing this, manifold learning captures the key geometric patterns in the
data, making it easier to interpret and remain useful for tasks like clustering,
classification, and visualization.

2.7.2 Euclidean vs Geodesic Distance

When manifold exhibits a curvature–like structure, small distances along the
curve in a high–dimensional space can appear as much larger distances on the
manifold itself. Mathematically, the Euclidean distance is defined as follows.

Definition 3. Euclidean Distance: Let RD denote an D–dimensional Eu-
clidean space. Consider two points x = (x1, x2....xD) and y = (y1, y2....yD)
in RD. The Euclidean distance between x and y is defined as.

distEuclidean(x, y) =

√√√√ D∑
i=1

(xi − yi)2 (2.11)

This distance measures the length of the shortest path between the points x
and y in the Euclidean space RD.

In a manifold, Euclidean distance fails to capture the true geometry of the
data points because it only considers linear paths and does not account for the
manifold’s curvature. In contrast, geodesic distance provides a more accurate
measure by considering the shortest path along the curved surface, following
the actual structure of the manifold. This is done by finding the path be-
tween the points that minimizes the distance, rather than relying on straight
lines, which better reflects the true relationships between points on a manifold.
Mathematically, geodesic distance can be defined as follows.

Definition 4. Geodesic Distance: Let M denote a d–dimensional manifold.
Consider two points m1, m2 ∈ M and a smooth path γ: [0, 1] → M such that
γ(t) ∈M, γ(0) = m1 and γ(1) = m2. The derivative γ′(t) depicts the velocity
of gamma since it passes through the point γ(t), with also γ′(t) ∈ M. The
length of the curve L(γ) is defined as:

L(γ) =

∫ 1

0

⟨γ′(t), γ(t)⟩ 1/2dt (2.12)

where ⟨·, ·⟩ represents the inner product between two vectors. The distance
between points m1 and m2, i.e., ρ(m1,m2) is infimum over all possible paths
connecting the two points m1 and m2. If this distance is achieved by a particular
path γ, we say that γ is a geodesic [Lee18; RBS21].

The Euclidean and Geodesic distances can be computed, as shown in Fig-
ure 2.4. Imagine data samples represented by points in a high–dimensional
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Figure 2.4: Euclidean vs Geodesic Distance

space. The task is to compute both the Euclidean and Geodesic distances be-
tween two points, A and B. The Euclidean distance is simply the straight–line
distance between A and B, representing the shortest possible path between the
two points. However, this approach does not account for the actual structure
or geometry of the data points and can ignore local variations in the data, po-
tentially leading to the loss of important information. This issue is especially
problematic in high–dimensional spaces, where data points may be sparse and
not uniformly distributed, making the Euclidean distance less informative.

To preserve the local geometry of the data and find the true shortest path
between points, Geodesic distance is a better choice. Unlike Euclidean distance,
Geodesic distance between points A’ and B’ takes into account the structure
of the data by calculating the shortest path along the manifold formed by
adjacent data points. This path tries to ensure that the relationships be-
tween points are well represented. In later chapters, we build on this con-
cept by using geodesic distance to measure the distance between data points
in high–dimensional space. This approach assumes that a sufficient number of
intermediate points exist to approximate the true geodesic path; otherwise, the
geodesic and Euclidean distances would be nearly identical.

2.7.3 Manifold Learning Techniques

Manifold learning techniques are generally divided into two broad categories:
linear and non–linear techniques. Linear manifold learning methods assume
that the high–dimensional data lies on a linear subspace, meaning the rela-
tionships between data points can be adequately described by linear mappings.
These techniques perform well on the datasets that exhibit an inherent lin-
ear structure and can successfully compute a low–dimensional embeddings.
Popular linear techniques for dimensionality reduction include Principal Com-
ponent Analysis (PCA) [Hot33], Multi–Dimensional Scaling (MDS) [Kru64],
and Linear Discriminant Analysis (LDA) [Fis36]. These methods focus on
preserving the linear relationships between data points while reducing dimen-
sionality. However, when the data lies on a non–linear manifold, these linear
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Algorithm 2 Isometric Mapping (ISOMAP)

Require: Data points X = {x1, x2, . . . , xN} in RD, neighborhood size k or
threshold ϵ, target dimension d.

Ensure: d–dimensional embedding Y = {y1, y2, . . . , yN} in Rd.
1: Construct Neighborhood Graph G by connecting points i and j (measured

by DistX(i, j)) if they are: within ϵ distance (ϵ–ISOMAP), or among k
nearest neighbors (k–ISOMAP).

2: Compute Shortest Paths by initializing DistG(i, j) = DistX(i, j) if i and j
are connected, else DistG(i, j) =∞.

3: Update shortest paths using Floyd–Warshall:

DistG(i, j) = min{DistG(i, j), DistG(i, k) +DistG(k, j)} ∀k = 1, 2..N.

4: Let λp be the p–th eigenvalue and vip be i–th component of the p–th eigen-
vector of matrix τ(DistG) =−HDist2ijH/2 whereH is the centering matrix

H = IN − 1/NeNeTN with I as an identity matrix and eN = [1...1]T ∈ RN .
5: Construct d–dimensional Embedding by setting p–th component of

d–dimensional vector yi =
√

λpv
i
p.

techniques fail to capture the intrinsic non–linear structure, leading to distor-
tions in the data representation and a loss of important relationships, such
as the preservation of pairwise distances between points [Jol02]. Non–linear
manifold learning methods are specifically designed to address this limitation.
These techniques are capable of capturing and preserving the non–linear struc-
ture of the data in high–dimensional space, ensuring that the data’s geomet-
ric properties, such as local neighborhoods and pairwise distances, are better
represented in lower–dimensional embeddings. There are some widely used
techniques including Isometric Mapping (ISOMAP), Locally Linear Embed-
ding (LLE), t–Stochastic Neighbor Embedding (t–SNE) and Uniform Manifold
Approximation and Projection (UMAP) which we use later in Chapters 3 and
4. These techniques help in generating low–dimensional embeddings of the data
while preserving the manifold structure and are discussed as follows.

ISOMAP

Isometric Mapping is a non–linear dimensionality reduction technique that
projects high–dimensional data onto a lower–dimensional space while preserv-
ing its intrinsic geometry [TSL00]. Unlike linear methods that rely on Euclidean
distance, ISOMAP uses geodesic distance to capture the manifold’s curvature.
It constructs an adjacency graph that connects neighboring points and com-
putes geodesic distances using shortest–path algorithms like Dijkstra’s [Dij22]
or Floyd–Warshall [Flo62]. By preserving the global structure of the manifold,
ISOMAP uncovers non–linear degrees of freedom, achieves globally optimal
solutions, and asymptotically converges to the true manifold as data size in-
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Algorithm 3 Locally Linear Embedding (LLE)

Require: Data points X = {x1, x2, . . . , xN} in RD

Ensure: Low–dimensional embedding Y = {y1, y2, . . . , yN} in Rd.
1: Find the nearest neighbors of each data point xi.
2: Compute weights wij by minimizing the reconstruction error:

min
w

N∑
i=1

∥∥∥∥∥∥xi −
N∑
j=1

wijxj

∥∥∥∥∥∥
2

Every point xij is a linear combination of its neighbours and weights wij

are computed such that xi is close to
∑k

j=1 wijxj .
3: Map the data points onto y by preserving the weights:

min
y

N∑
i=1

∥∥∥∥∥∥yi −
N∑
j=1

wijyj

∥∥∥∥∥∥
2

4: Return the low–dimensional embedding Y .

creases, making it effective for complex datasets. The ISOMAP algorithm is
described in Algorithm 2. We will use this algorithm later in Chapter 3.

Locally Linear Embedding

Locally Linear Embedding (LLE) [RS00] is a non–linear dimensionality reduc-
tion technique that focuses on preserving the local geometry of data by assum-
ing that each data point and its neighbors lie on a locally linear manifold. The
method works by reconstructing each data point as a linear combination of its
nearest neighbors, typically determined using Euclidean distance. After this,
LLE projects the data points into a lower–dimensional space while maintaining
the relationships between the neighbors. This approach belongs to the broader
category of local linear transformations and is particularly effective for datasets
that exhibit smooth, open planar manifolds, where the underlying structure can
be approximated well by linear combinations in the local neighborhood. The
LLE algorithm is described in Algorithm 3. We will use this algorithm later in
Chapter 3.

t–SNE

The t–SNE (t–Distributed Stochastic Neighbor Embedding) [VH08] algorithm
measures pairwise similarities between data points in the high–dimensional
space by representing them as probabilities that reflect how likely it is for one
point to be a neighbor of another. It then constructs a similar probability dis-
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tribution for the points in the lower–dimensional space. To ensure that the two
distributions align, t–SNE minimizes their divergence, typically measured via
the Kullback–Leibler (KL) divergence using gradient descent. This optimiza-
tion process enables t–SNE to effectively preserve the local structure of the data
while revealing patterns and clusters in the reduced–dimensional embedding.

UMAP

UMAP (Uniform Manifold Approximation and Projection) [MHM18] models
the data as a weighted graph where edges represent the local structure of the
data. It builds a high–dimensional graph based on local neighborhoods using a
fuzzy simplicial set, then optimizes a lower–dimensional graph to preserve the
topological structure. This optimization minimizes the cross–entropy between
the two graphs, preserving both local and some global structures. UMAP is
able to accelerate the optimization and preserve much more global structure
than t–SNE.

2.7.4 Model Compression for Language Models

Large Language Models (LLMs) have transformed the field of Natural Lan-
guage Processing (NLP), excelling in tasks like question answering, language
translation, content generation, and sentiment analysis, enabling AI to inter-
act with humans in natural language effectively. These models, with billions
or even trillions of parameters, demonstrate superior performance. According
to the scaling laws: the larger the model, the better it performs. However,
deploying such massive models for real–world applications is challenging due
to their high computational demands, requiring substantial memory, multiple
GPUs, and considerable energy resources, which also raise environmental con-
cerns. Model compression techniques address these limitations by reducing the
model size and computational requirements of LLMs. By enabling faster in-
ferences and lowering costs, model compression brings the power of LLMs to
everyday applications, bridging the gap between cutting–edge AI and practical
usability. Common model compression techniques include Knowledge Distilla-
tion, Pruning and Quantization which are discussed as follows. We later use
them in Chapter 5.

Knowledge Distillation

Knowledge distillation [HVD15] is a technique for transferring the knowledge
from a large, complex model (the teacher) to a smaller, more light–weight
model (the student). This approach is especially beneficial when the teacher
model, with its high number of parameters and computational requirements,
is unsuitable for deployment in resource–limited environments. The student
model is trained to replicate the behavior of the teacher by learning from its
outputs, often represented as softened probability distributions over classes.
Let pteacheri denote the probability assigned by the teacher model to class i and
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pstudenti denote the corresponding probability assigned by the student model.
These probabilities are obtained through the softmax function applied to the
logits produced by each model. Mathematically,

pteacheri =
exp(zi/T )∑
j exp(zj/T )

pstudenti =
exp(z̃i/T )∑
j exp(z̃j/T )

where zi and z̃i represent the logits for class i generated by the teacher and
student models respectively, and T is the temperature parameter controlling
the softness of the distributions. The distillation loss aims to minimize the
discrepancy between the teacher and student probabilities. A common formu-
lation for the distillation loss involves the KL divergence between the teacher
and student distributions

Ldistill = KL(pteacher||pstudent) =
∑
i

pteacheri log
pteacheri

pstudenti

(2.13)

The distillation loss guides the student model to align with the soft targets
produced by the teacher model, capturing the fine–grained decision boundaries
and complex relationships inherent in the teacher’s predictions. By combin-
ing this distillation loss with the task–specific loss function (e.g., cross–entropy
loss), the student model effectively absorbs the teacher’s knowledge. This dual
optimization enables the student to achieve a balance between compactness
and performance, making it a resource–efficient yet capable alternative for de-
ployment in environments with limited computational resources.

Pruning

Pruning [ZG17] is a technique used to enhance model efficiency by identifying
and removing unnecessary or redundant parameters that have minimal impact
on the model performance. The primary objective of pruning is to optimize the
models for memory efficiency, faster inference, and lower energy consumption
while maintaining comparable performance levels. It directly eliminates less
important connections or structures within the network, offering a more inter-
pretable and flexible approach to model compression. This method strikes an
effective balance between model accuracy and model size, making it a preferred
choice for resource–constrained deployments.

Various pruning strategies exist, each tailored to different stages of the
model life cycle. Unstructured pruning [Kwo+20] removes individual weights
based on their magnitude, creating sparse matrices that can be challenging
to optimize on standard hardware. In contrast, structured pruning [WWL19]
eliminates entire components, such as neurons, filters, or attention heads, re-
sulting in a smaller, denser network that is more hardware–friendly and easier
to accelerate. Pruning can be applied at different stages: pre–training pruning
(before training), gradual pruning (during training), or post–training pruning
(after training). The choice of pruning strategy and timing often depends on
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the desired balance between performance and resource efficiency for a specific
application. Common techniques include magnitude–based pruning [Lee+20],
which removes parameters with the smallest absolute values, assuming they
have minimal impact on the output, and gradient–based pruning [Yeo+21],
which leverages gradient information to identify and eliminate the least im-
portant parameters. Pruning often involves iterative cycles of pruning and
retraining to recover any lost performance, ensuring the pruned model remains
effective while being significantly more efficient.

Quantization

Quantization [Wu+16; Gon+14] is a method that reduces the precision of
weights and activations in a model. The objective is to reduce memory foot-
print and improve inference speed, which could be achieved by representing
numbers with fewer bits. For instance, instead of representing weights and
activations using 32–bit floating–point numbers, quantization can help in rep-
resenting them using 8–bit integers. While this reduction in precision can result
in some loss of model utility, methods like post–training quantization and quan-
tization–aware training are designed to mitigate this trade–off, ensuring that
the model maintains a balance between efficiency and performance.
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Chapter 3

Privacy–Preserving
Manifold Learning

Anyone who steps back for a
minute observe our modern
digital world might conclude that
we have destroyed our privacy in
exchange for convenience and
false security

— John Twelve Hawks

In this chapter, we explore and propose novel methods to protect the sensi-
tive information embedded within high–dimensional spaces. We study our first
Research Question (RQ1) in this chapter and explore how effective are existing
privacy models such as k–anonymity, differential privacy and their combina-
tions in preserving the privacy and utility of high–dimensional datasets. To
do this, we first introduce the M–MDAV privacy mechanism, which is built
upon the k–anonymity framework to anonymize high–dimensional datasets ef-
fectively. To enhance this approach, we propose integrating k–anonymity with
manifold learning techniques, recognizing the importance of preserving the in-
trinsic structure of the data while ensuring privacy. However, selecting the
most suitable privacy model can be challenging, as the effectiveness of these
models is highly dependent on the specific characteristics of the data and the
intended use cases. To address this challenge, we introduce a hybrid privacy
model, the (β, k, ϵ0)–anonymization technique, which combines the strengths
of both k–anonymity and differential privacy. This hybrid method ensures that
the benefits of both approaches are preserved while satisfying their respective
privacy guarantees, thereby achieving a balanced trade–off between privacy
preservation and utility.
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3.1 K–Anonymous Manifold Learning

We evaluate the effectiveness of the k-anonymity privacy model in preserving
privacy for high–dimensional data. To achieve k–anonymity, we applied mi-
croaggregation and implemented the MDAV (Maximum Distance to Average
Vector) mechanism as described in Algorithm 1 in Chapter 2. The MDAV
mechanism uses distance–based aggregation, grouping records that are similar
to each other. This approach preserves some of the statistical properties of the
data better than other methods such as random partitioning, generalization
or suppression. Additionally, the MDAV mechanism supports multi–variate
microaggregation making it well suited for high–dimensional data. To further
enhance its effectiveness, we propose an improved version of the MDAV mech-
anism to achieve k–anonymity for high–dimensional records.

We introduce the first approach, M–MDAV (Manifold–Maximum Distance
to Average Vector) algorithm, a manifold–based adaptation of the traditional
MDAV heuristic technique for achieving k–anonymity which is presented in Al-
gorithm 4. Traditional distance metrics, such as Euclidean distance, Manhattan
distance, or Mahalanobis distance, are commonly used to compute the distances
between data points. As we have discussed in Chapter 2, in high–dimensional
spaces, these metrics often lose their effectiveness in accurately measuring sim-
ilarity, as they fail to account for the underlying data structure. To address
this limitation, the M–MDAV algorithm employs geodesic distance (see Defi-
nition 4). Geodesic distance considers the manifold structure of the data by
accounting for local neighborhoods and computing the actual shortest paths
between points along the data manifold. This approach enables the algorithm
to preserve the intrinsic geometric structure of high–dimensional data, result-
ing in a more meaningful anonymization while maintaining the data’s manifold
characteristics. In Algorithm 4 M–MDAV operates as follows: initially pair-
wise–distances between each data points are computed using geodesic distance.
Then, the median of all data points is obtained by minimizing the geodesic dis-
tance between the data points. After that, clusters are formed around the data
points that are furthest from the median by calculating the geodesic distance.
This process is repeated until all the points get clustered. Finally, the clus-
tered data points are replaced by the median of that cluster. This method
ensures that the dataset is anonymized, preserving both privacy and the man-
ifold structure of the data. The protected dataset can then be used for further
analysis, ensuring that privacy is maintained without compromising the utility
of the data.

As we will see in our experiments our algorithm M–MDAV, is not effi-
cient enough to anonymize the high–dimensional data without loosing a lot
of utility. Thus, we propose another two methodologies M–ISOMDAV and
M–LLEMDAV, that uses ISOMAP and LLE as manifold learning techniques (as
discussed in Chapter 2) for preserving the manifold structure of the data. These
techniques helps to transform the high–dimensional data to a lower–dimensional
space, where the data’s inherent geometric structure is more easily preserved.
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Algorithm 4 M–MDAV

Require: Original dataset X = {x1, x2, . . . , xN} ∈ RD, Micro–cluster size k
Ensure: Protected dataset X ′ ∈ RD

1: while |X| ≠ 0 do
2: if |X| ≥ 3k then
3: Identify median of all the records xmedian such that :

xmedian = argmin
x∈X

N∑
i=1

γ(x, xi)
2 where γ: geodesic distance

4: Let xr ∈ X be the record farthest from xmedian

5: Let xs ∈ X be the record farthest from xr

6: Form cluster Cr with xr and its k − 1 nearest neighbors
7: Form cluster Cs with xs and its k − 1 nearest neighbors
8: Update dataset: X ← X \ {Cr ∪ Cs}
9: Update clusters: C ← C ∪ {Cr, Cs}

10: else if |X| ≥ 2k then
11: Find xmedian with all the records in X.
12: Find most distant record xr from xmedian.
13: Form cluster Cr with xr and its k − 1 nearest neighbors
14: Form cluster Cs with the remaining records in X \ Cr

15: Update clusters: C ← C ∪ {Cr, Cs}
16: else
17: Add remaining records as a final cluster: C ← C ∪ {X}
18: end if
19: end while
20: Produce k–anonymized matrix X ′ from clusters C.

Once the data is transformed, M–MDAV algorithm is applied to anonymize
the low–dimensional data points. This two–step approach effectively integrates
manifold learning for preserving data structure with M–MDAV for anonymiza-
tion, striking a balance between minimizing utility loss and ensuring privacy.
We explored how manifold learning techniques could complement privacy mech-
anisms, an area that, to our knowledge, has not been extensively investigated in
the literature. While other dimensionality reduction techniques, such as PCA,
have been explored, they do not work well for non-linear data structures. In
contrast, manifold learning is better suited for handling such structures.

In Algorithm 5, M–ISOMAP, we first take a high–dimensional dataset, ap-
ply the ISOMAP manifold learning technique to compute a lower-dimensional
representation of the dataset while preserving the geodesic distances between
data points. Unlike linear methods like PCA, ISOMAP takes into account the
global manifold structure of the data. It works by constructing a neighborhood
graph of the data points, where each edge represents a pairwise distance be-
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Algorithm 5 M–ISOMDAV

Require: Data points X = {x1, x2, . . . , xN} in RD

Ensure: Anonymized lower-dimensional representation Y ′ = {y1, y2, . . . , yN}
in Rd where d < D

1: Create a weighted graph M by connecting points xi and xj if their Eu-
clidean distance distE(xi, xj) ≤ ϵ. Set the edge weights as distE(xi, xj).

2: Compute the pairwise geodesic distance matrix M ′ ∈ RN×N using Dijk-
stra’s shortest path algorithm on graph M .

3: Construct the centering matrixH = IN−1/NeNeTN and eN = [1....1]T ∈ R.
4: Compute Kernel Matrix: K = − 1

2HM ′2H, where M ′2 is the element-wise
squared matrix.

5: Perform eigen decomposition on K and select the top d eigenvalues
{λ1, . . . , λd} and their corresponding eigenvectors {ν1, . . . , νd}.

6: Form the lower-dimensional embedding Y ∈ RN×d such that each row
yi = [

√
λ1ν

i
1, . . . ,

√
λdν

i
d].

7: Apply M–MDAV to Y to achieve k–anonymity and obtain the final
anonymized dataset Y ′.

tween neighboring points. ISOMAP then computes the shortest paths between
points on this graph, which helps to preserve the manifold’s intrinsic geom-
etry. By projecting the data onto a lower-dimensional space that maintains
these geodesic distances, ISOMAP effectively captures the underlying structure
of non–linear high–dimensional data. After applying ISOMAP, the resulting
lower–dimensional data points are then anonymized using the M–MDAV algo-
rithm, ensuring both the privacy and the preservation of the data’s manifold
structure. This combined approach results in a more effective anonymization
process, with minimal loss of utility.

Similarly, in Algorithm 6, M–LLEMDAV, we utilize Locally Linear Embed-
ding (LLE) as a manifold learning technique before applying the M–MDAV
algorithm for anonymization. It aims to preserve the local geometric structure
of high–dimensional data by reconstructing each data point as a weighted lin-
ear combination of its nearest neighbors. The process begins by identifying the
nearest neighbors for each data point based on geodesic distance. Then, recon-
struction weights are computed by minimizing the error in approximating each
data point using its neighbors while ensuring invariance to transformations.
Finally, LLE maps the data to a lower–dimensional space by preserving these
reconstruction weights, effectively maintaining local relationships. By applying
LLE before anonymization, M–LLEMDAV ensures that the intrinsic structure
of the data is retained while reducing dimensionality. The transformed data
is then anonymized using M–MDAV, combining the advantages of structure-
preserving manifold learning with privacy protection to minimize utility loss.
We chose LLE for manifold learning because it effectively preserves the lo-
cal geometric structures of high–dimensional data. This property is crucial for
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anonymization as preserving local structure ensures that similar records remain
close to each, thereby reducing distortions in data utility.

3.1.1 Experimentation and Results

We conducted experiments on the three proposed methodologies: M–MDAV,
M–ISOMDAV, and M–LLEMDAV, which aim to anonymize high–dimensional
data using the k–anonymity privacy model. For empirical evaluation, we uti-
lized three different types of datasets: tabular, image, and textual datasets. We
treated all attributes as quasi–identifiers, so we anonymized the entire dataset
accordingly. A detailed description of each dataset used in the experiments is
provided below.

RNA Data It is a classification data set, that consists of random ex-
traction of gene expression of patients having five–different types of cancerous
tumor: KIRC, PRAD, BRCA, LUAD and COAD [Fio16]. The dimensions of
this data set are (801 × 20531). The number of attributes (20531) are signifi-
cantly more than the number of instances (801).

GISETTE Data It is a handwritten digit recognition problem [Guy+04].
The task is to differentiate between highly confusible digits ’4’ and ’9’. This
data set is one of five data sets of the NIPS 2003 feature selection challenge. It
is also a classification data set having dimensions of (6000 × 5000).

SPAM Data It is a textual data set that classifies emails as Spam or
Non–Spam [Hop02]. It consists of 4457 instances which are pre–processed us-
ing TF–IDF method that quantifies the relevance of a text using statistical
measures. Therefore, when TF–IDF approach is applied on SPAM data set the
resultant data has (4457 × 5055) dimensions. This data set is widely used in
natural language processing tasks.

ADULT Data It is a census income dataset [BK96], which consists of nu-
merical and categorical values, and the target column is income, which indicates
whether an individual’s annual income exceeds 50K/yr. It is a classification
data set which consists of 48000 instances and 14 attributes.

MADELON It is an artificially created dataset that consists of two–class
classification problem with continuous input variables [Guy04]. It was a part
of NIPS 2003 feature challenge having dimension of (4400 × 500).

Breast Cancer Data Breast cancer stands as the most prevalent form of
cancer among women worldwide. This dataset is downloaded from [Kag], and
sourced from the AI for Development organization, comprises information from
569 individuals, with each individual characterized by 31 features.

MNIST Data MNIST is a widely used database of handwritten digits
commonly employed in image processing tasks [Ten]. It comprises a collection of
(60000, 28 × 28) images depicting digits ranging from 0 to 9. The objective is to
cluster a given image of a handwritten digit into one of ten classes representing
integer values from 0 to 9.

These datasets were carefully selected to enable broad experimentation and
to evaluate whether the proposed methodologies are well–suited for various
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Algorithm 6 M–LLEMDAV

Require: Data points X = {x1, x2, . . . , xN} in RD

Ensure: Anonymized lower-dimensional representation Y ′ = {y1, y2, . . . , yN}
in Rd where d < D

1: Create a weighted graph M by connecting points xi and xj if their Eu-
clidean distance distE(xi, xj) ≤ ϵ. Set the edge weights wij = distE(xi, xj).

2: Calculate geodesic distance between points xi and its neighbors that are
selected in above step using Dijkstra shortest path algorithm.

3: Construct each point from its neighbours. Reconstruction errors are calcu-
lated by minimizing the cost function

ϵ(w) =
∑
i

|xi −
∑
j

wijxj |2

subject to constraint
∑N

j=1 wij = 1. Thus, weights wij are obtained that
reconstructs each data point from its neighbors.

4: Compute the low–dimensional data Y that best preserves the manifold
structure, represented by weights wij .

ϕ(y) =
∑
i

|yi −
∑
j

wijyj |2

subject to constraint
∑N

i=1 yi = 0. Thus, lower–dimensional matrix Y (N ×
d) is resulted.

5: Apply M–MDAV to Y to perform k–anonymity and obtain the final
anonymized dataset Y ′.

types of real–world and artificially generated datasets. This diverse selection
ensures a comprehensive analysis of the methods’ effectiveness across different
data modalities and structures. In the first approach, the M–MDAV algo-
rithm directly anonymizes the high–dimensional data to achieve k–anonymity.
Alternatively, M–ISOMDAV and M–LLEMDAV transform the data into a
lower–dimensional space using ISOMAP and LLE, respectively, to preserve the
manifold structure, followed by anonymization with M–MDAV. To evaluate
performance, state–of–the–art machine learning algorithms, including SVM,
Naive Bayes, Gradient Boosting, Decision Trees, Random Forests, XGBoost,
and KNN, are implemented, and the best–performing model is identified for
testing. Finally, utility is validated by recording evaluation metrics such as
accuracy, precision, recall, and K–Stress, where K–Stress is defined as follows:

K–Stress is a weighted sum of differences between the distance in the orig-
inal space, and their corresponding representations in the lower–dimensional
space [Kar+05]. It is a measure of goodness of fit that requires that distance be-
tween two points in perturbed lower–dimensional embedding are well preserved
with respect to distance between those points in original higher–dimensional
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Table 3.1: Empirical Results of k–Anonymous Manifold Learning Approaches

Dataset X(N,D) Algorithm Accuracy Precision Recall K–Stress

RNA 800 × 20531

M–ISOMDAV

M–LLEMDAV

M–MDAV

99.17

58.12

90.10

99.18

59.3

90.12

99.17

58.13

90.11

0.43

0.73

−

Gisette 6000 × 5000

M–ISOMDAV

M–LLEMDAV

M–MDAV

77.79

85.13

69.21

76.82

86.10

69.87

77.78

85.14

69.18

0.69

0.64

−

SPAM 5272 × 5055

M–ISOMDAV

M–LLEMDAV

M–MDAV

85.20

42.61

39.56

84.34

43.13

40.10

85.21

42.59

39.81

0.45

0.89

−

space. The stress indicates the amount of information loss before and after
transformation, and expressed as a percentage with 0% stress being equivalent
to perfect transformation. Mathematically, it is calculated as follows:√∑

(dij − δij)2/
∑

d2ij (3.1)

where dij is the pairwise distance between points in higher–dimensional embed-
ding, whereas δij is the pairwise distance between points in lower–dimensional
space. The K–Stress metric is not applicable to M–MDAV algorithm because
it evaluates the preservation of pairwise distances between high–dimensional
data points and their corresponding low–dimensional embeddings. Recall,
M–MDAV operates entirely within the high–dimensional space and does not
involve any transformation or mapping to a lower–dimensional space. Conse-
quently, K–Stress cannot be computed for this approach, as there is no embed-
ding process to assess for distance preservation.

Table 3.1 presents the empirical results obtained from the datasets using
the three proposed approaches as discussed, providing a comparative analysis
of their performance. The first column lists the names of the datasets, while the
second column specifies their dimension in terms of the number of instances
and attributes. The third column indicates the algorithm applied, and the
subsequent columns detail the evaluation metrics, including accuracy, preci-
sion, recall, and K–Stress. For each dataset, the best–performing approach is
highlighted in bold to clearly showcase the most effective methodology.

For k–anonymity, the parameter k was chosen after several iterations with
different values. When k was set between 5 and 10, the outcomes in terms of
accuracy were consistently good. However, increasing k to a range of 15–20 led
to a decline in performance. As a k–value larger than 5 is commonly considered
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acceptable for k–anonymity and micro–aggregation, we selected k = 10 as a
generalized value for our experiments.

We utilized seven machine learning classification models for our analysis of
three proposed approaches. Upon evaluation, the K–Nearest Neighbors (KNN)
classifier emerged as the best–performing model for the RNA dataset. For test-
ing and performance evaluation, we set the number of neighbors to 5 and the
weight distribution to uniform. Conversely, for the Gisette and SPAM datasets,
the Gradient Boosting Classifier performed best and was used for further eval-
uation. The chosen hyper–parameters for Gradient Boosting were: 100 esti-
mators, a learning rate of 0.1, and a maximum tree depth of 5, while other
parameters were kept at their default settings as provided by the scikit–learn
library [Ped+11] in Python.

Upon analysis, it is observed that the M–ISOMDAV approach outperforms
other methodologies for the RNA and SPAM datasets, achieving the highest ac-
curacies of 99.17% and 85.20%, respectively. For the RNA dataset, the K–Stress
value of 0.43 obtained using M–ISOMDAV is significantly better compared to
the 0.73 achieved by M–LLEMDAV. Conversely, for the GISETTE dataset, the
M–LLEMDAV approach provides the best results with an accuracy of 85.13%
and a K–Stress value of 0.64. Notably, the M–MDAV approach fails to deliver
optimal results for any of the datasets, with its performance significantly lag-
ging behind the other two methods. This highlights that M–MDAV alone can-
not effectively anonymize high–dimensional data while preserving its manifold
structure, emphasizing the critical role of manifold learning in such scenarios.

The relatively poor performance of M–LLEMDAV on RNA and SPAM
datasets can likely be attributed to the presence of multiple manifolds in these
datasets. The LLE manifold learning algorithm, which utilizes various tangent
linear patches to approximate a manifold, is better suited for simpler datasets
like GISETTE. Its design, which relies on modeling a single manifold as multi-
ple small linear functions, limits its ability to generalize effectively for datasets
with complex manifold structures. This analysis underscores the need for mani-
fold learning techniques tailored to the intricacies of the data to achieve optimal
results in machine learning applications.

We also performed our experiments on other two datasets i.e., Adult and
Madelon datasets which are presented in Table 3.2. We found that in the case of
Adult and Madelon data set, the data points are not really in high–dimensions,
as it should be for the manifold learning techniques. Also, the data–distribution
for these datasets is not similar to the manifold structure. Thus, poor per-
formance in terms of accuracy and neighborhood preservation (K–Stress) is
obtained. We propose the following hypothesis based on the analysis of our
results.

Hypothesis 1. The data–points should really be in high–dimensions and must
possess manifold structure, then only the proposed approaches will be able to
learn the intrinsic structure of the manifold and anonymize data–points effi-
ciently.
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Table 3.2: Datasets and Scenarios Where Proposed Approaches Showed Sub-
optimal Performance

Dataset X(N,D) Algorithm Accuracy Precision Recall K–Stress

Adult 48842×14

M–ISOMDAV

M–LLEMDAV

M–MDAV

50.12

43.32

41.19

50.13

43.30

42.90

50.11

42.29

40.12

0.35

0.32

–

Madelon 4400×500

M–ISOMDAV

M–LLEMDAV

M–MDAV

62.18

59.23

60.38

62.25

59.21

60.30

62.19

59.23

61.21

0.28

0.25

–

Based on the results in Table 3.1 and Table 3.2, we observed that k–anonymity
alone is insufficient to ensure both strong privacy protection and high data
utility in high–dimensional datasets with complex geometric structures. While
differential privacy offers rigorous privacy guarantees, it often requires the in-
jection of significant noise particularly problematic in scenarios involving man-
ifold–based data representations, where the preservation of fine–grained lo-
cal structures is critical. To address these limitations, we propose a hybrid
anonymization technique that combines the strengths of k–anonymity with
differential privacy. This hybrid approach enables a more effective balance be-
tween privacy protection and analytical utility. However, anonymization should
not be evaluated solely through the lens of downstream machine learning per-
formance. In many scenarios, the primary goal is to preserve and understand
the underlying structure of high–dimensional data itself, especially when these
structures encode meaningful patterns or behaviors.

To this end, we emphasize the importance of capturing the geometric and
statistical properties of the data manifold, independent of any specific pre-
dictive task. In high–dimensional spaces, classical metrics often fail to reflect
the true layout of the data. As a solution, we propose the use of the Fréchet
mean as a robust, geometry–aware metric that better reflects the intrinsic data
distributions and offers a meaningful way to measure structural fidelity after
anonymization. This perspective broadens the scope of privacy–preserving data
analysis–shifting from task–specific evaluation to a more foundational assess-
ment of how well the anonymized data retains its high–dimensional character-
istics.

3.2 Fréchet Mean

Statistical summaries, such as the mean, provide valuable insights about a
dataset. The mean intuitively represents the central tendency of the data
and is one of the most widely used measures of central tendency [Man11]. It
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depicts critical information about the distribution, location, and structure of
the dataset. However, for high–dimensional datasets with manifold structures,
traditional measures like the arithmetic or geometric mean are insufficient to
capture the inherent properties of the data. In such scenarios, the Fréchet
mean [GK73], [Fré] offers a more suitable alternative. The Fréchet mean gen-
eralizes the concept of centroids to any metric space, making it capable of
preserving the intrinsic geometry and structure of high–dimensional data. It
produces a representative point for a cluster of points. For real numbers, find-
ing a representative point p works by using Euclidean distance. In contrast,
for a metric space (M, δ), operations such as Fréchet mean are preferable.

Definition 5. (Fréchet Mean) Let (M, δ) be a complete metric space, and
X = {x1, x2..., xN} be a data set with points in M. We define the Fréchet
mean as the point Z, that globally minimizes the objective function:

Z = argmin
p∈M

N∑
i=1

δ(p, xi)
2

As we have seen in Chapter 2, the sensitivity of a function provides an upper
bound on how much data must be perturbed to preserve privacy. Reimherr et
al. [RBS21] have studied the sensitivity of Fréchet mean on manifolds using the
geodesic distance.

Theorem 1. Let Z and Z ′ be the Fréchet mean of two databases DB1 and
DB2. And, let ρ(Z,Z ′) denote their manifold distance. Then it can be proven
that, for all Z and Z’ Fréchet means of databases DB1 and DB2 that only differ
in one record, it holds the following

ρ(Z,Z ′) ≤ 2D(2− h(D,κ))

Nh(D,κ)
where

h(D,κ) =

{
2D
√
κcot(

√
κ2D) if κ > 0

1 ifκ ≤ 0
(3.2)

Here, h is a function of D and κ derived from the Hessian comparison theorem
(Theorem 11.7) in [Lee18], D is the length of records, N is the sample size,
and κ is an upper bound of sectional curvature of M. That is, the global sen-
sitivity of the Fréchet mean is bounded by the above expression. We leverage
this sensitivity to anonymize the Fréchet mean under the differential privacy
framework, as well as in our proposed hybrid anonymization method.

3.3 k–Anonymity meets Differential Privacy

The primary motivation behind anonymizing the data that resides on a mani-
fold is to preserve both its geometric structure and the essential information it
contains. Conventional data privacy models operate either in high–dimensional
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ambient space or in its low–dimensional embedding, transforming the data into
a linear space where traditional privacy techniques can be applied. However,
as observed in our experiments, applying k–anonymity to the low–dimensional
representations obtained via ISOMAP and LLE manifold learning techniques
led to poor generalization and information loss when the datasets are not in
high–dimensions.

On the other hand, if we apply differential privacy mechanism directly on
the high–dimensional space, its sensitivity calculations are based solely on the
dimensions of this space. This results in overly conservative noise addition, sig-
nificantly degrading the data utility and affecting downstream tasks [Kam+19].
To overcome these limitations, we propose: (β, k, ϵ0)–anonymization method,
which integrates k–anonymity with DP to achieve effective anonymization while
preserving the intrinsic manifold structure of the data.

We provide a rigorous theoretical foundation for our method, demonstrat-
ing its robust privacy guarantees through formal proofs and analytical justifi-
cations. Furthermore, we empirically validate its effectiveness by comparing it
against conventional k–anonymity and DP–based methods. Our experimental
results highlight the superiority of our approach in terms of privacy protection,
data utility, scalability, and performance in real–world scenarios. This dual
validation–both theoretical and empirical–reinforces the credibility and prac-
ticality of our approach in ensuring privacy while maintaining the structural
integrity and usability of high–dimensional data.

3.3.1 (β,k,ϵ0)–anonymization method

We propose the (β, k, ϵ0)–anonymization method, which provides formal pri-
vacy guarantees with carefully chosen values of β, k, and ϵ0. This approach
introduces a novel way to satisfy both differential privacy and k–anonymity si-
multaneously. Traditional differential privacy techniques often require adding a
significant amount of noise to obscure sensitive information, particularly when
dealing with high–sensitive queries. In contrast, our algorithm adopts an al-
ternative approach: instead of relying on excessive noise, we introduce the
sampling step combined with generalization at the initial stage of data pro-
cessing. One well–known approach to enhance the privacy of a mechanism is
to apply it to a random subsample of the input database rather than the entire
dataset. This reduces the risk of leaking information about any particular in-
dividual, as no information can be revealed when the individual is not a part of
the subsample. This structured transformation reduces the overall sensitivity
of the data, thereby minimizing the magnitude of noise required to ensure DP
compliance. The advantage of this algorithm lies in the fact that the error
introduced in generalization step is likely to be more than compensated by the
reduction in the noise required to attain DP, compared to the noise that would
be required to attain DP with original data.

Definition 6. Given a dataset X of N points, the subsample mechanism selects
a random sample from the uniform distribution over all subsets of X of size
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m. The ratio β = m
N is defined as the sampling parameter of the subsample

mechanism.

We will need the following lemmas.

Lemma 1. [Ull17] Let s represent a subsample mechanism with ratio β. Let
M be a mechanism which is (ϵ, δ)–DP. Then the mechanism M ′ = M◦s is
(ϵ′, δ′)–DP with ϵ′ = βϵ and δ′ = βδ.

In mathematical notation, the composition of functions is often denoted by
the symbol ◦. Therefore, the notation M◦s signifies applying the function M
to the output of the subsample. Intuitively, the lemma says that subsampling
with probability β <1 improves a (ϵ, δ)–DP algorithm to a (βϵ, βδ)–DP algo-
rithm for any ϵ and δ. Privacy budget reduction by the subsampling principle
ensures that a differentially private mechanism run on a random subsample of
a population provides higher privacy guarantees than when run on the entire
population [SD17].

Let us now consider the sensitivity associated to clustering and centroids.
As the contribution of a record to the centroid is inversely proportional to the
cardinality of its corresponding cluster, the sensitivity of the centroid can be
calculated by dividing the sensitivity of the record by the cluster’s cardinality.
This concept can be expressed formally through the following lemma.

Lemma 2. [SD17] Let C ⊂ X be a cluster of records in a dataset X and let
C̄ be the mean of the records in C. Let ∆D be the L1–sensitivity of a record in
the dataset X. The L1–sensitivity of the centroid C̄ is ∆C̄ = ∆D

|C| .

Using all these preliminaries, we can propose our algorithm and provide its
privacy guarantees.

Algorithm

Let c be the number of clusters, let k be the number of records in a cluster and
assume c = ⌊|X|/k⌋. The Algorithm 7 describes the step–by–step procedure of
our proposed (β,k,ϵ0)–anonymization method.

Theorem and Proof

Theorem 2. (β,k,ϵ0) –anonymization algorithm: Random sampling with
probability β when 0 <β <1 followed by microaggregation of records into c
clusters each with atleast k records and laplacian noise addition with scale

b =
∆D

ϵ0 · k

satisfies ϵ–differential privacy with ϵ = βϵ0.
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Algorithm 7 (β,k,ϵ0)–anonymization

Require: Dataset X, parameters β, k, ϵ0, steps
Ensure: Anonymized Dataset X ′

1: Initialize: set of parameters β, k, ϵ0
2: for int i ← 1,...., steps do
3: Draw a random sample Xs with prob β from X.
4: Micro–aggregate Xs in k–clusters.
5: Compute ∆D =L1–sensitivity of a record in Xs

6: Add Lap(0,b) into k–clusters with b = ∆D
ϵ0k

7: end for
8: Return Dataset X ′.

Proof. Note that the microaggregation will produce c clusters. Let us con-
sider that we protect each of them independently with ϵ0–DP, then, the overall
microaggregation will still be ϵ0–DP. Each cluster has atleast k records. There-
fore, according to Lemma 2, the sensitivity of a cluster is ∆D/k, where ∆D is
the sensitivity of one record. Therefore, we can achieve ϵ0–DP for microaggre-
gation with a Lap(0, b) where b = ∆D/(ϵ0k). This is precisely the parameter b
used in the algorithm. Therefore, our approach of combining microaggregation
and Laplacian noise produces ϵ0–differential privacy.

The algorithm concatenates sampling and the differential privacy version
of microaggregation. Therefore, we can apply Lemma 1. We have already
seen that with the selected b leads to a ϵ0–differential privacy mechanism. Or,
equivalently (ϵ0, 0)–differential privacy. The sampling is with parameter β.
Therefore, the application of Lemma 1 implies (ϵ0β, 0β)–differential privacy.
So, in overall, the mechanism is ϵ= ϵ0β–differential privacy with b = ∆D/(ϵ0·k).
Note that ϵ0 is the parameter of the last iteration of microaggregation+ DP,
while ϵ is the privacy budget of the whole (β,k,ϵ0)- anonymization method.
Therefore, if we want to apply (ϵ, δ)–DP, then we need to select β, k, ϵ0 so that
ϵ0 = ϵ/β.

This completes the proof.

Theorem 3. (β,k,ϵ0) –anonymization algorithm: Random sampling with
probability β when 0 <β <1 followed by microaggregation of records into c
clusters each with atleast k records and laplacian noise addition with scale

b =
∆D

ϵ0 · k

satisfies k–anonymity.

Proof. Theorem by construction.

Thus, our proposed anonymization method satisfies the formal definitions
of both k–anonymity and differential privacy. To evaluate the effectiveness
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of the proposed method beyond conventional downstream machine learning
tasks, we instead adopted the Fréchet mean as a metric, which offers a geo-
metric assessment of the data’s intrinsic structure in high–dimensional spaces.
We performed data anonymization using three different techniques: our pro-
posed (β,k,ϵ0)–anonymization method, as well as traditional methods such as
k–anonymity and DP. For the k–anonymized Fréchet mean, we employed the
M–MDAV algorithm as outlined in Algorithm 4 in the previous section. Once
the anonymized dataset was obtained using Algorithm 4, the Fréchet mean was
computed on this anonymized dataset. To generate the differentially private
Fréchet mean, we added Laplace noise to the dataset based on the sensitivity
bounds provided in Theorem 1 and the chosen value of ϵ. After noise addi-
tion, we computed the Fréchet mean on the differentially private dataset. To
evaluate the effectiveness of our approach, we calculated the manifold distance
between the original Fréchet mean (computed in the high–dimensional space)
and the anonymized Fréchet mean obtained using all three approaches. This
analysis demonstrates how closely the anonymized Fréchet mean aligns with
the original mean. A smaller distance indicates better utility, as it shows that
the anonymized data retains more of the original structure and information.

We also introduce a machine learning clustering model specifically tailored
for high–dimensional dataset, termed Fréchet Mean Clustering. Unlike conven-
tional clustering techniques that rely on the arithmetic mean (e.g., k–means),
our model leverages the Fréchet mean to more accurately capture the underly-
ing geometric structure of high–dimensional data. This approach is particularly
beneficial when the data distribution deviates from simple linear assumptions,
as is often the case in real–world high–dimensional datasets.

By adopting the Fréchet mean as the central tendency measure, we demon-
strate that for high–dimensional spaces, it provides a more representative and
geometry–aware alternative to the arithmetic mean. Consequently, Fréchet
Mean Clustering serves as a meaningful downstream evaluation task, offer-
ing a more principled way to assess the structural preservation and utility
of anonymized data. This shift allows us to move beyond standard machine
learning tasks, and instead evaluate how well an anonymization method retains
the intrinsic properties of the data manifold providing a stronger justification
for using Fréchet mean–based metrics and models in privacy–preserving data
analysis.

3.4 Fréchet Mean Clustering

Fréchet mean–based K–Means clustering introduces a novel approach to clus-
tering datasets by utilizing the concept of the Fréchet mean to improve the
robustness and accuracy of cluster representations. The algorithm starts by
randomly selecting c data points from the dataset as initial cluster centroids,
similar to traditional K–Means. Subsequently, each data point is assigned to
the nearest centroid based on the Riemannian distance, as described in [NK17].
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Algorithm 8 Fréchet Mean Clustering

Require: X = {x1, x2, . . . , xN} ⊂ M: dataset on a manifold M, c: no. of
clusters, τm: step size for Fréchet mean

Ensure: V = {v1, v2, . . . , vc}: Fréchet mean centroids, labels = {f1, f2, ..fn}:
cluster assignment for each xi

1: Initialize: Choose c initial centroids V = {v1, v2, ..vc} randomly from M
2: repeat
3: for i = 1 to N do ▷ dreim: Riemannian distance
4: Assign xi to closest cluster: fi ← argminj∈{1,...,c} dreim(xi, vj)
5: end for
6: for j = 1 to c do
7: Update centroid vj : vj ← FréchetMean({xi | fi = j}, τm)
8: end for
9: until Centroids V converge when changes are below threshold

10: return V , labels

The Riemannian distance between two points (z0, z1) is defined as:

dreim(z0, z1) =
1

2
arcosh

(
1 +

|z1 − z0|2

(1− |z20 |)(1− |z21 |)

)
(3.3)

This metric provides a suitable approach for clustering in non–Euclidean spaces.
After assigning all data points to their respective clusters, the centroids are re-
calculated as the Fréchet mean of all data points within each cluster. The
process of assigning data points to the nearest centroid and updating the cen-
troids is iteratively repeated until convergence, which is typically defined by
minimal changes in centroid positions or a set maximum number of iterations.
This method offers a more refined measure of central tendency, particularly
advantageous for datasets with complex structures or non–linearities. As a
result, it leads to more meaningful and accurate clustering outcomes. The
step–by–step explanation of the algorithm is provided in Algorithm 8.

3.5 Study Design

In this section, we present a step by step explanation of the complete workflow
of our methodology.

1. Pre–processing: The first step involves normalizing the dataset to re-
move biases and inconsistencies, ensuring data quality and consistency
for further processing.

2. Anonymization: The pre–processed data is anonymized with our pro-
posed (β,k,ϵ0)–anonymization method. To provide a comparative analy-
sis we also apply traditional privacy models, including k–anonymity using
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M–MDAV algorithm as outlined in Algorithm 4, and a differential privacy
model.

3. Fréchet Mean Computation: The Fréchet mean is calculated on the
anonymized dataset, obtained from the previous step. The Fréchet mean
effectively captures the complex geometric structure of high–dimensional
data, providing a robust central tendency measure in non–Euclidean
spaces.

4. Measure the Manifold Distance: Compute the manifold (geodesic) dis-
tance, as defined in Definition 4 in Chapter 2, between the anonymized
Fréchet mean (computed in the previous step) and the original Fréchet
mean (computed on the pre–processed dataset). Since the dataset is
anonymized using three different methods, we assess utility separately
for each approach. This distance metric plays a critical role in evaluat-
ing the utility of anonymized datasets, particularly in high–dimensional
and sparsely distributed data spaces. By quantifying the geometric dis-
crepancies between the original and anonymized datasets, it provides key
insights into the extent to which the underlying data structure is pre-
served. A smaller manifold distance indicates higher utility, signifying
that the anonymization technique better retains the intrinsic properties
of the dataset.

5. Fréchet Mean Clustering: Another approach to assess the utility of the
anonymized dataset is through machine learning analysis. Traditional
k–means clustering relies on Euclidean distance, which may not accu-
rately capture relationships in high–dimensional, non–Euclidean spaces.
In contrast, Fréchet mean–based clustering is better suited for such sce-
narios, as it computes cluster centroids as Fréchet means, which provide a
more geometrically meaningful representation of the average point within
each cluster. This method enhances the interpretability and representa-
tiveness of cluster centroids, particularly in high–dimensional spaces. In
the final step, clustering performance is evaluated using Normalized Mu-
tual Information (NMI) and the Silhouette Score, which measure the
quality and coherence of the clustering assignments.

3.6 Experimental Results and Discussion

The experiments are conducted on diverse datasets, including RNA dataset,
MNIST and Breast Cancer dataset. We analyze the results from various per-
spectives including the effect of sample size, the impact of ϵ and k on manifold
distances, with a comparison between them. Additionally, we assess machine
learning performance through Fréchet mean clustering, determining the opti-
mal number of clusters using the elbow method. A detailed discussion of the
results is provided in the following sections.
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3.6.1 The Effect of Sample Size on Manifold Distance

The objective of this analysis is to examine how the sample size influences the
Fréchet mean of the data. Intuitively, the larger the sample size, the more
accurate is the mean of the data. As the sample size increases, the dispersion
of the data gets smaller, and the mean of the distribution becomes closer to the
population mean. To investigate this, we computed the Fréchet mean on both
the original pre–processed dataset (denoted as Z) and the anonymized dataset
(denoted as Z ′) obtained through three different anonymization methodolo-
gies: our proposed (β, k, ϵ0)–anonymization method, as well as k–anonymity
and Differential Privacy models. We then calculated the manifold (geodesic)
distance between them, denoted as ρ(Z,Z ′), as defined in Definition 4.

In Figure 3.1, the x–axis represents the sample size, where samples are ran-
domly drawn from the entire dataset using a uniform distribution. The y–axis
shows the manifold distance ρ(., .) calculated between the original Fréchet mean
Z and the anonymized Fréchet mean Z ′. The Fréchet mean Z is computed by
minimizing the objective function directly on the high–dimensional data X, as
described in Definition 5. On the other hand, the anonymized Fréchet mean Z ′

is derived by anonymizing the dataset using the three models: k–anonymity,
Differential Privacy, and our proposed (β, k, ϵ0)–anonymization method out-
lined in Section 3. In the plot, the blue line represents the Differential Privacy
model, the green line corresponds to the k–anonymity method, and the red
line illustrates the manifold distance computed using our proposed approach.
As expected, manifold distance decreases as the sample size increases, a trend
observed across all approaches for each dataset. Specifically, Figure 3.1 re-
veals that the Breast Cancer and RNA datasets show similar patterns, where
the manifold distance between the original and anonymized Fréchet means is
closer when using the k–anonymity model. However, for the MNIST dataset, we
observed a different trend, where the Differential Privacy model outperformed
the k–anonymity model. In these cases, the DP model more effectively cap-
tures the structure and information of the data compared to the k–anonymity
method. Furthermore, when combining both k–anonymity and DP through our
proposed (β, k, ϵ0)–anonymization method, the resulting manifold distance plot
lies between those of the k–anonymity and DP models. This suggests that our
approach offers a better utility to privacy trade–off than either model individu-
ally. By blending elements from traditional models with novel methodological
considerations, our approach preserves more of the data’s geometric structure,
reducing the loss of information typically associated with anonymization. This
analysis underscores the effectiveness of our proposed method in maintaining
data utility while ensuring privacy protection.

3.6.2 The impact of ϵ of DP on manifold distance

We analyze the impact of the Differential Privacy parameter ϵ on the manifold
distance while keeping the sample size fixed. The ϵ parameter plays a crucial
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Figure 3.1: Sample size vs Manifold distance (ρ) for different datasets. The
blue line represents anonymized results using DP, the green line represents
anonymized results using k–anonymity, and the red line represents anonymized
results using our method.
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role in DP by controlling the level of noise introduced to anonymize the data. A
lower ϵ value enforces stronger privacy by adding more noise, whereas a higher
ϵ value reduces noise, thereby improving data utility. However, the optimal
value of ϵ cannot be determined a priori and must be empirically evaluated
based on its effect on the results. To systematically examine this trade–off, we
conducted experiments across a range of ϵ values, from 0.01 to 1.00.

Figure 3.2 (a), (c), (e) illustrate the relationship between ϵ and the man-
ifold distance between the original and anonymized Fréchet means. As ex-
pected, increasing ϵ leads to a reduction in manifold distance, indicating that
the anonymized mean becomes closer to the original mean. This is because
a higher ϵ value introduces less perturbation, thereby retaining more of the
dataset’s geometric structure. This trend is consistently observed across all
datasets, reinforcing the fundamental trade–off between privacy and accuracy
in DP.

To determine an appropriate ϵ value for each dataset, we identify the point
at which the manifold distance stabilizes, suggesting diminishing gains in util-
ity despite further increases in ϵ. For the Breast Cancer dataset, this occurs
around ϵ = 0.04, where the curve transitions into a near–linear trend. Similarly,
for both the RNA and MNIST datasets, the optimal ϵ value is found to be ap-
proximately 0.03 based on the same criterion. These values provide a balance
between privacy preservation and data utility, ensuring that the anonymization
process retains meaningful structural information while minimizing information
leakage.

3.6.3 The impact of k of k–Anonymity on manifold dis-
tance

We analyze the impact of the parameter k in the k–Anonymity privacy model
on the manifold distance while maintaining a fixed sample size. The param-
eter k determines the level of anonymity by ensuring that each record in the
dataset is indistinguishable from at least k − 1 other records. As k increases,
privacy is strengthened because more records are grouped together and re-
placed by identical values, reducing the granularity of the data. However, this
increased privacy comes at the cost of utility, leading to a larger distortion
in the dataset. Consequently, the manifold distance between the original and
anonymized Fréchet means increases, indicating a greater deviation from the
original data distribution.

Figure 3.2 (b), (d), (f) illustrate this inverse relationship between k and
data utility across different datasets. As k increases from 5 to 40, the privacy
level improves at the expense of utility, resulting in a corresponding rise in
the manifold distance between the original and the anonymized Fréchet mean.
This trend is consistently observed across all datasets, including Breast Can-
cer, RNA, and MNIST, reinforcing the trade–off between privacy and data
utility. It is particularly noteworthy that for smaller values of k, the increase
in privacy introduces minimal distortion, leading to relatively low manifold

53



ϵ of DP k of k-Anonymity

0.01 0.02 0.03 0.04 0.05 0.06
ε

1.1540

1.1545

1.1550

1.1555

1.1560

1.1565

m
an

ifo
ld

 d
is

ta
nc

e 
(ρ

)

ε vs ρ (Breast Cancer)
DP

(a)

5 10 15 20 25 30
k

57

58

59

60

61

62

63

64

m
an

ifo
ld

 d
is

ta
nc

e 
(ρ

)

1e−7+1.15963 k vs ρ (Breast Cancer)
k-Anonymity

(b)

Breast Cancer

0.01 0.02 0.03 0.04 0.05 0.06
ε

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

m
an

ifo
ld

 d
is

ta
nc

e 
(ρ

)

1e−5+1.5707 ε vs ρ (RNA)
DP

(c)

5 10 15 20 25 30
k

29.5

30.0

30.5

31.0

31.5

m
an

ifo
ld

 d
is

ta
nc

e 
(ρ

)

1e−6+1.5707 k vs ρ (RNA)
k-Anonymity

(d)

RNA

0.01 0.02 0.03 0.04 0.05 0.06
ε

1.5670

1.5672

1.5674

1.5676

1.5678

1.5680

1.5682

m
an

ifo
ld

 d
is

ta
nc

e 
(ρ

)

ε vs ρ (MNIST)
DP

(e)

5 10 15 20 25 30
k

1.5673

1.5674

1.5675

1.5676

1.5677

1.5678

1.5679

1.5680

1.5681

m
an

ifo
ld

 d
is

ta
nc

e 
(ρ

)

k vs ρ (MNIST)
k-Anonymity

(f)

MNIST

Figure 3.2: Epsilon of Differential Privacy and k of k-Anonymity vs Manifold
Distance (ρ) for a fixed sample size across different datasets: Breast Cancer
(569 × 31), RNA (801 × 20531), and MNIST (60000 × (28× 28)).
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distances. This observation aligns with existing findings in machine learning
literature, where slight perturbations in data do not significantly degrade model
performance [AY04]. Machine learning models often exhibit robustness to small
modifications in input data, meaning that minor levels of anonymization may
not substantially impact model accuracy. However, as k continues to grow, the
excessive generalization of data results in a more substantial loss of structure,
thereby increasing the discrepancy between the original and anonymized data
representations in the manifold space. Selecting an optimal k value thus re-
quires balancing privacy requirements with utility constraints, ensuring that
data remains useful for downstream tasks while complying with anonymity
standards.

3.6.4 Comparison between ϵ and k

We also analyzed the relationship between the Differential Privacy parame-
ter ϵ and the k value in k–Anonymity by identifying pairs (ϵ, k) that yield
comparable manifold distances. In other words, we examined combinations
where the manifold distance between the original Fréchet mean (Z) and the
anonymized Fréchet mean (Z ′) remains similar under both anonymization tech-
niques. Figure 3.3 illustrates these equivalent levels of perturbation across
different datasets.

For instance, in the Breast Cancer dataset, we observed that when k = 10,
the resulting manifold distance is equivalent to that obtained with ϵ = 0.07.
Similarly, in the MNIST dataset, a k value of 10 corresponds to ϵ = 0.071,
producing a comparable level of perturbation. However, this relationship is
dataset–dependent. For example, when k = 15, the equivalent ϵ values differ
significantly: in the Breast Cancer dataset, ϵ = 0.06, while in the RNA dataset,
it is ϵ = 0.035, and in the MNIST dataset, it drops further to ϵ = 0.026.

This discrepancy arises from the inherent differences in dataset distributions
and sample sizes. Specifically, the MNIST dataset contains a larger number
of unique values, enabling Differential Privacy to achieve comparable utility
at a lower ϵ value, thereby providing stronger privacy guarantees. This obser-
vation aligns with the theoretical underpinnings of Differential Privacy, which
suggest that as sample size increases, the mechanism can introduce noise more
effectively while maintaining data utility.

A clear inverse relationship between ϵ and k emerges from our findings.
As ϵ values increases, k values decrease, reflecting the fundamental trade–off
between privacy and utility. A lower k value indicates less generalization in
k–Anonymity, preserving more granular data utility but reducing privacy. Con-
versely, a lower ϵ value implies stronger privacy in Differential Privacy at the
cost of increased noise, potentially reducing utility. The highest level of privacy
is achieved when k is maximized and ϵ is minimized, ensuring both anonymiza-
tion techniques offer the strongest possible protection.

These findings confirm that both k–Anonymity and Differential Privacy can
be effective in preserving manifold structures under appropriate parameter se-

55



0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
ε of DP

5

10

15

20

25

30

k 
of

 k
-A

no
ny

m
it

y

ε vs k (Breast Cancer)
ε vs k

(a) Breast Cancer

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
ε of DP

5

10

15

20

25

30

k 
of

 k
-A

no
ny

m
it

y

ε vs k (RNA)
ε vs k

(b) RNA

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
ε of DP

7.5
10.0
12.5
15.0
17.5
20.0
22.5
25.0
27.5

k 
of

 k
-A

no
ny

m
it

y

ε vs k (MNIST)
ε vs k

(c) MNIST

Figure 3.3: Relationship between different privacy models: ϵ of Differential
privacy vs k of k–Anonymity for 3 data sets, where blue line depicts a fixed
distortion in terms of manifold distance (ρ) between original and anonymized
Fréchet mean.
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Figure 3.4: Comparison of Privacy Models: (β,k,ϵ0)–anonymization vs
k–Anonymity and DP

lection. However, choosing a single privacy model that consistently outperforms
across diverse datasets and applications remains challenging. This motivates
our proposed (β, k, ϵ0)–anonymization method, which seeks to leverage the
strengths of both models. Instead of relying on a single technique, our ap-
proach integrates key aspects of k–Anonymity and Differential Privacy, strik-
ing a balance between privacy and utility. By combining their benefits, (β, k,
ϵ0)–anonymization enhances data utility while preserving the geometric struc-
ture of high–dimensional data, making it a more robust and adaptable solution
for privacy–preserving data anonymization across various contexts.

3.6.5 Comparison of Privacy Models

We introduced a novel methodology for the comparative evaluation of different
privacy–preserving techniques, addressing the complexity introduced by mul-
tiple parameters in our proposed (β, k, ϵ0)–anonymization method. Unlike
traditional models such as k–Anonymity and ϵ–Differential Privacy, which rely
on a single parameter, our method incorporates multiple factors to achieve a
more balanced trade–off between privacy and utility.

To ensure a meaningful comparison, we systematically analyzed the rela-
tionship between the k parameter in k–Anonymity and its counterpart in our
(β, k, ϵ0)–anonymization method while maintaining a fixed ϵ value. Our results
indicate that for a given ϵ, the manifold distances obtained using our method
and traditional k–Anonymity exhibit a consistent trend across varying k values.
Specifically, the k parameter in (β, k, ϵ0)–anonymization aligns closely with the
k value in standard k–Anonymity in terms of its impact on manifold distances.
This trend is visually depicted in Figure 3.4(a), where the x–axis represents the
k values in our (β, k, ϵ0)–anonymization method, and the y–axis corresponds
to those in traditional k–Anonymity. The plotted lines indicate different fixed
ϵ values (e.g., 0.01, 0.05, and 0.08), demonstrating their respective influences
on privacy preservation. Notably, lower ϵ values, such as 0.01, correspond to
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stricter privacy guarantees, as expected from DP principles.
Furthermore, we performed a comparative analysis of the ϵ values in our

(β, k, ϵ0)–anonymization method and those in traditional ϵ–DP while keeping
k constant. This relationship is illustrated in Figure 3.4(b), where we exam-
ine the impact of ϵ on privacy and utility trade–offs. Our findings indicate
that for a fixed k, the manifold distances obtained under our method closely
follow the trends observed in traditional DP, reinforcing the validity of our ap-
proach. Although these results were derived using the Breast Cancer dataset,
the observed patterns are consistent across diverse datasets, highlighting the
generalizability of our methodology.

By systematically analyzing the interplay between multiple privacy parame-
ters, our approach provides a rigorous framework for evaluating privacy models
beyond traditional single–parameter techniques. This contributes to advanc-
ing privacy–preserving data analytics by offering a more flexible and adaptable
anonymization strategy that accounts for dataset characteristics and privacy
requirements in a principled manner.

3.6.6 Assessing ML Performance with Fréchet Mean Clus-
tering

Through the application of Fréchet mean clustering, which leverages the Fréchet
mean for computing centroids and Riemannian distance for similarity measure-
ments, we obtained compelling clustering results across multiple datasets. To
evaluate the effectiveness of Fréchet mean clustering approach, we employed
Normalized Mutual Information (NMI) and the Silhouette Score, two widely
used metrics in clustering analysis. The NMI measures the agreement between
clustering assignments and ground truth labels, with higher values indicating
a stronger correspondence. The Silhouette Score quantifies the cohesion and
separation of clusters, where higher values suggest well–defined and distinct
clusters. By using these evaluation criteria, we ensured a rigorous assessment
of clustering quality under different privacy–preserving transformations.

Our experimental results demonstrate that the (β, k, ϵ0)–anonymization
method consistently outperforms privacy models such as k–Anonymity and
DP across all datasets, as presented in Table 3.3. Specifically, our method
achieves the highest NMI values, indicating superior retention of structural
information in the anonymized data. Furthermore, it also yields the highest
Silhouette Scores, signifying well–separated and coherent clusters despite the
anonymization process. These findings underscore the robustness of our ap-
proach in preserving meaningful data patterns while ensuring privacy.

Analyzing the results in more detail, we observe that k–Anonymity gener-
ally maintains better utility than DP, particularly in datasets with structured
categorical attributes, such as the RNA and Breast Cancer datasets. How-
ever, the increase in k reduces the granularity of data, leading to a decline
in clustering performance. On the other hand, DP introduces random noise,
which impacts the data distribution and subsequently reduces clustering per-
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Table 3.3: Clustering Analysis using NMI and Silhoutte score

Dataset
Breast Cancer RNA MNIST

NMI Silhoutte score NMI Silhoutte score NMI Silhoutte score

k–Anonymity 0.44 0.30 0.61 0.22 0.50 0.07
DP 0.49 0.25 0.47 0.12 0.47 0.09
(β, k, ϵ0)–anonymization 0.74 0.38 0.84 0.25 0.61 0.08

formance, especially on datasets with high–dimensional continuous attributes
like MNIST. In contrast, our proposed method effectively balances privacy
and utility, achieving a more optimal trade–off between protection and data
integrity.

A key observation from our study is that the relative impact of different pri-
vacy models varies across datasets. For instance, in the Breast Cancer dataset,
our method achieves an NMI of 0.74 and a Silhouette Score of 0.38, signifi-
cantly surpassing both k–Anonymity (0.44, 0.30) and DP (0.49, 0.25). Similar
trends are observed in the RNA dataset, where our approach attains an NMI
of 0.84 and a Silhouette Score of 0.25, outperforming k–Anonymity (0.61, 0.22)
and DP (0.47, 0.12). The MNIST dataset, being inherently more complex and
high–dimensional, presents more challenges for privacy–preserving clustering.
Nevertheless, our approach still outperforms the baseline models, achieving an
NMI of 0.61 and a Silhouette Score of 0.08, compared to k–Anonymity (0.50,
0.07) and DP (0.47, 0.09).

These results indicate that our (β, k, ϵ0)–anonymization method not only
preserves privacy but also retains essential structural characteristics of the
data, making it particularly effective for tasks requiring meaningful cluster-
ing. The findings reinforce the notion that traditional privacy models often
involve trade–offs that may not be optimal across all datasets, whereas our
approach provides a more adaptable and reliable solution. Our hybrid (β, k,
ϵ0)–anonymization method offers more flexibility than traditional models, as it
combines the strengths of k–anonymity (for β = 1, k) and ϵ-differential privacy
(for β = 1, k = 1). This allows us to select the optimal parameters from each
model, though finding the best set of parameters can be challenging.

3.6.7 Determine suitable number of cluster with Elbow
Method

The elbow method is a widely used technique in cluster analysis for determining
the optimal number of clusters in a dataset. It involves plotting the inertia (also
known as the within–cluster sum of squares) against the number of clusters. As
the number of clusters increases, inertia always decreases since clusters become
more refined and data points are grouped more specifically. However, beyond
a certain point, adding more clusters results in diminishing returns, where the
reduction in inertia is no longer significant. This inflection point, or elbow,
marks the optimal number of clusters, striking a balance between maximizing
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variance explained and avoiding over–fitting due to excessive complexity.

In Figure 3.5, we present the elbow plot, which depicts the relationship
between the number of clusters (k) and inertia. The key principle behind the
elbow method is identifying the point where the rate of decrease in inertia signif-
icantly slows down, forming an elbow–like shape in the graph. This plateauing
effect suggests that additional clusters provide minimal improvement in cluster
compactness, making the chosen k at the elbow the most suitable choice for
the dataset.

Our analysis, applied across multiple datasets, confirms the effectiveness
of this method in identifying meaningful cluster structures. For instance, in
the Breast Cancer dataset, our results indicate that the optimal number of
clusters is two, aligning with the underlying biological classification of tumors
into malignant and benign groups. This outcome reinforces the validity of
our clustering approach in medical diagnostics, where precise classification is
crucial for decision–making.

Similarly, in the RNA dataset, the inertia curve suggests that the ideal
number of clusters could be five or six, as evidenced by the point where the
decline in inertia slows down. This result is particularly relevant for analyzing
genetic expression profiles, where multiple distinct patterns of gene expression
can be uncovered through clustering. The ability to distinguish between these
patterns is essential for biomedical research, disease classification, and person-
alized medicine applications.

For the MNIST dataset, a well–known benchmark in image recognition, we
observe a similar trend. The optimal cluster count aligns with the inherent
structure of the dataset, further demonstrating the reliability of our method.
Given the high–dimensional nature of handwritten digit images, the fact that
the elbow method successfully identifies an interpretable clustering structure
underscores the robustness of our Fréchet mean clustering approach.

Overall, our findings validate the effectiveness of the proposed Fréchet mean
clustering model, showcasing its ability to detect intrinsic data structures across
diverse application domains, including medical diagnostics, genetic data anal-
ysis, and image processing. By leveraging Riemannian geometry in cluster
analysis, our approach enhances interpretability and preserves the fundamental
relationships within data, offering a superior alternative to traditional cluster-
ing techniques. These insights not only improve our understanding of complex
datasets but also facilitate more data–driven decision–making in fields where
privacy, accuracy, and structure preservation are paramount.

3.7 Conclusion

In this chapter, we explored techniques for anonymizing high–dimensional data
while preserving its intrinsic structure. We began with the k–anonymity privacy
model and extended it using manifold learning techniques such as ISOMAP and
Locally Linear Embedding (LLE). These methods enabled us to develop pri-
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vacy–preserving models that anonymize high–dimensional data while maintain-
ing its underlying manifold structure. To achieve this, we proposed novel ap-
proaches: M–MDAV, M–ISOMDAV, and M–LLEMDAV, which leverage man-
ifold learning for effective anonymization. Our experiments revealed that these
techniques are particularly effective when applied to genuinely high–dimensional
datasets that exhibit a well–defined manifold structure. In such cases, the
models successfully preserve data utility while achieving privacy protection.
However, a critical challenge remains: accurately measuring information loss
in high–dimensional spaces is a non–trivial task. Traditional evaluation metrics
often fail to capture the complexity of transformations in such settings.

To address this issue, we introduced the concept of the Fréchet mean as a
statistical measure for assessing information loss in high–dimensional spaces.
The mean, as a fundamental statistic, encapsulates key properties of a dataset,
making it an intuitive and powerful tool for evaluating privacy–preserving
transformations. By leveraging the Fréchet mean, we provided a principled
approach for quantifying distortions introduced by anonymization techniques.
Furthermore, we highlighted the limitations of both k–anonymity and differ-
ential privacy in high–dimensional settings. Selecting a single privacy model
that consistently outperforms others across diverse datasets and applications
is challenging. To overcome this, we proposed the (β, k, ϵ0)–anonymization
method, a hybrid approach that combines the strengths of k–anonymity and
DP, ensuring improved privacy guarantees while maintaining higher utility com-
pared to traditional models. Our theoretical analysis and empirical validation
demonstrated that (β, k, ϵ0)–anonymization consistently outperforms stan-
dalone k–anonymity and DP, offering a more robust and adaptable privacy
framework. However, due to the presence of multiple parameters in this (β,
k, ϵ0)–anonymization method, fine–tuning them effectively can be challenging
and may require careful calibration to balance privacy and utility.

Finally, we extended our work by introducing Fréchet Mean Clustering,
a machine learning model designed specifically for high–dimensional spaces.
This approach enhances the applicability of the Fréchet mean in clustering
tasks, further reinforcing its role in preserving data structure while enabling
meaningful pattern discovery. Overall, our work provides a comprehensive
framework for high–dimensional data anonymization, addressing both privacy
and utility trade–offs. By integrating manifold learning, hybrid privacy mod-
els, and advanced clustering techniques, we contribute to the advancement of
privacy–preserving data analysis in complex, high–dimensional domains.
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Chapter 4

Beyond Anonymization:
Synthetic Data Solutions

Generative models are a key
enabler of machine creativity,
allowing machines to go beyond
what they’ve seen before and
create something new

— Ian Goodfellow

Ensuring privacy in AI–driven systems is a critical challenge, particularly
when dealing with sensitive, high–dimensional datasets. This chapter builds
upon previous efforts in this thesis to develop privacy–aware AI systems, fo-
cusing on the role of synthetic data generation as an alternative to direct data
anonymization. Traditional anonymization techniques, such as generalization
and perturbation, often struggle to balance privacy and utility, especially when
datasets are high–dimensional or subject to adversarial attacks. Synthetic
data generation has emerged as a promising solution, that mimics the orig-
inal dataset, aiming to retain the statistical properties and underlying rela-
tionships of the original dataset without directly exposing individual records.
By design, synthetic data should prevent adversaries from reconstructing or
linking specific individuals to their real–world counterparts, thereby enabling
privacy–preserving data sharing across institutions and industries.

In high–dimensional scenarios, preserving geometric properties, structural
integrity and the relative positioning of data points is crucial, as neglecting
these can compromise utility. However, synthetic data is not inherently im-
mune to privacy risks. Reconstruction attacks, membership inference attacks,
and linkage attacks can still expose patterns that leak sensitive information,
challenging the assumption that synthetic data is inherently safe. Therefore, it
is essential to assess the privacy guarantees of synthetic data generators, par-
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ticularly in high–dimensional settings where complex patterns are harder to
obfuscate. This chapter addresses these challenges by analyzing existing syn-
thetic data generation techniques, identifying their strengths and limitations,
and proposing new approaches for generating high–quality, privacy–preserving
synthetic data. This aligns with Research Question RQ2, which explores tech-
niques for generating high–quality synthetic data, particularly in the context
of high–dimensional real–world datasets.

In this chapter, we first propose a framework that replaces high–dimensional
sensitive data with synthetic data generated using Generative Adversarial Net-
works (GANs). The goal is to create synthetic datasets that closely resemble
the original data while preserving privacy. We then explore whether incorpo-
rating prior knowledge about the dataset during GAN training can enhance the
quality of the generated data. In addition to evaluating various synthetic data
generators, we also focus on understanding their distributional learning capa-
bilities. To achieve this, we visualize the generated data, assessing how well the
models capture the underlying structure of the real dataset. We now turn our
attention to the development of synthetic data generators specifically designed
for high–dimensional data. This section focuses on preserving the geometric
properties of the synthetic data, ensuring that its structure and relationships
are maintained while still achieving privacy preservation.

4.1 The Need of Synthetic Data Generators for
High–Dimensional Data

The objective is to develop high–quality synthetic data generation approach,
specifically for high–dimensional real–world datasets. Synthetic data genera-
tion has been a prominent research area for the past two decades. However,
early research primarily focused on generating artificial images, while struc-
tured data such as tabular, time–series, and categorical datasets have only
recently gained attention. Among the various generative models designed for
tabular data, CTGAN, proposed by Xu et al. [Xu+19], is one of the most
widely used. CTGAN effectively models multi–modal distributions in continu-
ous variables and mitigates class imbalance in discrete variables, enabling the
synthesis of realistic tabular data suitable for analytical tasks. While several
GAN architectures–such as Vanilla GAN and WGAN–have been explored for
tabular synthetic data generation, CTGAN stands out due to its compatibil-
ity with structured datasets. However, GANs inherently learn from training
samples, which raises significant privacy concerns [HAP17]. To mitigate this
issue, several privacy–preserving synthetic data generators have been proposed.
For instance, DPGAN [Xie+18] ensures privacy guarantees through differential
privacy mechanisms, while PATEGAN [YJS19] employs a teacher–student ar-
chitecture to bound the privacy risks. ADSGAN [YDV20] provides a legal and
ethical solution for data sharing. Despite their effectiveness in addressing pri-
vacy concerns, these models do not explicitly focus on preserving the intrinsic
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structure of high–dimensional data, which is crucial for generating high–utility
synthetic data.

Beyond GANs, Variational Autoencoders (VAEs) have also been widely
adopted for synthetic data generation. Akrami et al. [Akr+20] proposed RT-
VAE, a model designed to handle both categorical and continuous features
while being robust to outliers. However, RTVAE does not incorporate pri-
vacy–preserving mechanisms, making it susceptible to potential privacy risks.
Most existing synthetic data generation methods focus either on generating
synthetic data for different kinds or focuses on privacy preservation while over-
looking the importance of manifold learning–which is crucial for modeling com-
plex, high–dimensional data structures [Sná+17]. In high–dimensional spaces,
data typically resides on a low–dimensional manifold, meaning that traditional
distance metrics (such as Euclidean distance) fail to capture the true relation-
ships between data points [Dok+15]. This leads to distortions in the synthetic
data, which significantly compromise its utility for downstream analytical tasks.

Manifold learning techniques, such as t–SNE [VH08] and UMAP provide an
effective way to map high–dimensional data into lower–dimensional representa-
tions while preserving the intrinsic structure. By integrating these techniques
into the synthetic data generation process, we ensure that the underlying ge-
ometric relationships of the original dataset are retained. This enhances the
utility of the generated data for machine learning tasks, statistical analysis, and
real–world decision–making. We now explore how we can generate high–quality
synthetic data for high–dimensional data that replaces sensitive data.

4.2 Generate Privacy–Preserving Synthetic Data
using M–KCTGAN Approach

In this section, we describe our proposed methodology, M–KCTGAN, for gen-
erating synthetic data while preserving both privacy and the manifold struc-
ture of the original dataset. The flowchart of the proposed algorithm can be
visualized in Figure 4.1. Our approach begins with a high–dimensional real
dataset X(N,D), where N represents the number of samples and D denotes
the number of features (Step 1 in Figure 4.1). To effectively capture the un-
derlying manifold structure, we employ t–SNE, to transform X(N,D) into a
lower–dimensional representation Y (N, d), where d < D. The goal is to train a
CTGAN model on Y (N, d) to generate synthetic data that retains the original
manifold properties.

However, GANs are prone to privacy risks, as they can inadvertently memo-
rize and leak sensitive training data. Key concerns include the memorization of
individual records [Web+19] and membership inference attacks against genera-
tive models [Hay+17]. To mitigate these risks and prevent our model from over-
fitting to real data, we apply anonymization on Y (N, d) (Step 2 in Figure 4.1).
This is achieved using M–MDAV, the manifold–aware k–anonymization tech-
nique, which is detailed in Algorithm 4. Once anonymization is performed, we
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Figure 4.1: Privacy Preserving Synthetic Data Generation using M–KCTGAN
Approach

train our CTGAN model on the anonymized dataset (Step 3 in Figure 4.1). The
trained generator is then used to produce synthetic samples that preserve the
underlying manifold properties (Steps 4 and 5 in Figure 4.1). Finally, to facili-
tate a meaningful comparison between the synthetic and real data distributions,
we map the synthetically generated data back to the original high–dimensional
space using a neural network. This transformation ensures that the real and
synthetic datasets can be compared in the same feature space, making it easier
to assess shape similarity and distribution alignment. A step–by–step break-
down of our proposed M–KCTGAN approach is provided in Algorithm 9.

Different manifold learning techniques, including ISOMAP, LLE, and UMAP,
were empirically tested, and t–SNE was ultimately chosen for this approach.
t–SNE is particularly effective when preserving fine local structures, which is
essential for capturing small, tightly–knit clusters in GAN training. Unlike
ISOMAP, which focuses on global geometry, or LLE, which may struggle with
complex manifolds, t–SNE maintains meaningful local relationships while min-
imizing distortion. Although UMAP is efficient, t–SNE’s probabilistic mapping
ensures that similar points in the high–dimensional space remain close in the
lower–dimensional representation, aiding the GAN in learning underlying pat-
terns.

Since, t–SNE lacks a built–in inverse transformation to map low–dimensional
embeddings back to the original high–dimensional space, we employed a neu-
ral network (autoencoder) to learn the reverse mapping. t–SNE’s non–linear
embedding is particularly effective for datasets with complex relationships and
the neural network offers a highly flexible and accurate reconstructions from
low–dimensional t–SNE embeddings. Additionally, t–SNE’s stochastic nature

66



Algorithm 9 M-KCTGAN

Require: Original Dataset X = {x1, x2, . . . , xN} in RD

Ensure: X
′

s(N,D) is manifold privacy preserving synthetically generated data
1: Convert Euclidean distance between high–dimensional data points (xi and

xj) into conditional probabilities, representing similarities, where σ is the
variance between data points.

pj|i =
exp(−||xi − xj ||2/2σ2

i )∑
k ̸=i exp(−||xi − xk||2/2σ2

i )
(4.1)

2: Compute similar conditional probabilities for low–dimensional counterparts
yi, and yj .

qj|i =
exp(−||yi − yj ||2)∑
k ̸=i exp(−||yi − yk||2)

(4.2)

3: Minimize sum of differences of pj|i and qj|i using KL Divergence, and obtain
Y (N, d) where d≪ D.

4: Anonymize the data Y (N, d) using M–MDAV and obtain protected records
Y ′(N, d).

5: Train CTGAN model on protected records Y ′(N, d).
6: Generate privacy–preserving synthetic samples Y ′

s (N, d).
7: Transform synthetically generated data to its high–dimensional embedding

using neural network and obtain X
′

s(N,D).
8: Evaluate original recordsX(N,D) and privacy–preserved synthetically gen-

erated records X
′

s(N,D) using statistical and privacy metrics.

helps to handle noisy data by focusing on fine local structures, making it ben-
eficial for synthetic data generation. Though UMAP supports approximate
inverse mapping, its global optimization strategy may not always preserve fine
local structures as effectively as t–SNE. The neural network based reverse trans-
formations provide more precision and adaptability for capturing data nuances.

4.2.1 Emphasizing the Importance of Manifold Structure
with a Comparison to the KCTGAN Approach

To emphasize the importance of preserving the manifold structure in our syn-
thetic data generation process, we conducted a comparative analysis between
our proposed approach (M–KCTGAN) and the KCTGAN algorithm. In the
KCTGAN approach, instead of transforming the high–dimensional dataset
into a low–dimensional space using t–SNE, the algorithm directly applies the
M–MDAV Algorithm 4 on the original dataset X(N,D). Following this, the
CTGAN model is trained on the anonymized data to generate synthetic sam-
ples. This comparative analysis is essential for highlighting the advantages of
incorporating manifold learning techniques in our methodology. By leveraging

67



Algorithm 10 KCTGAN

Require: Original Dataset X = {x1, x2, . . . , xN} in RD

Ensure: X ′
s(N,D) is privacy preserving synthetically generated data

1: Anonymize the data X(N,D) using M–MDAV k–anonymity privacy model
(Algorithm 4 and obtain privacy–preserved records X ′(N,D).

2: Train CTGAN model on protected records X ′(N,D).
3: Generate privacy–preserving synthetic samples X ′

s(N,D).
4: Evaluate original recordsX(N,D) and privacy–preserved synthetically gen-

erated records X ′
s(N,D) using statistical and privacy metrics.

t–SNE to project the data into a low–dimensional space before anonymization
using M–MDAV, we ensure the preservation of the intrinsic data structure.
This process mitigates the risk of information loss and improves the quality
of the generated synthetic data. For a more detailed understanding of the
algorithmic steps, please refer to Algorithm 10.

4.3 Evaluation Metrics and Privacy Assessment

We conducted experiments using datasets similar to those discussed in previ-
ous chapters, including the RNA dataset, Gisette dataset, and Adult dataset.
In this section, we outline the evaluation metrics employed to assess both sta-
tistical and machine learning performance. Additionally, we discuss the data
reconstruction attack applied to the synthetically generated datasets to evalu-
ate potential privacy risks and vulnerabilities.

4.3.1 Statistical Evaluation of Data Utility

We evaluate the utility of the synthetic data by assessing its statistical perfor-
mance, specifically focusing on whether the synthetically generated data from
our proposed framework can effectively preserve the distribution and correla-
tions inherent in the real data. To quantify this, we employ two widely–used
measures: the Maximum Mean Discrepancy (MMD) and the Fréchet Inception
Distance (FID), both of which are robust two–sample tests that compare the
statistical properties of real and synthetic datasets.

Maximum Mean Discrepancy (MMD). It calculates the dissimilarity
between two probability distributions Pr and Ps using samples drawn indepen-
dently from each distribution [FM53; Gre+12]. The larger the MMD statistic,
the greater is the dissimilarity between the distributions. Mathematically, we
compute the square of MMD as follows.
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MMD2 =
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

K(xi, xj)−
2

nm

n∑
i=1

m∑
j=1

K(xi, yj)

+
1

m(m− 1)

m∑
i=1

m∑
j ̸=i

K(yi, yj) (4.3)

Here, K is a kernel function. We used Gaussian RBF Kernel [STV04] to com-
pute similarity between the joint data.

K(x, x′) = exp(
−||x− x′||2

2σ2
) (4.4)

Fréchet Inception Distance (FID). It embeds a set of generated samples
into a feature space [Heu+17], and estimates the mean and covariance for
both real and synthetic data. The Fréchet distance between two Gaussian
distributions is equivalent to their Wasserstein–2 distance and quantifies the
quality of generated synthetic samples as follows.

FID(r, s) = ||µr − µs||22 + Tr(Σr +Σs − 2(ΣrΣs)
1
2 ) (4.5)

where (µr,Σr) and (µs,Σs) are the mean and covariances of real and synthetic
data respectively, and Tr is the trace of the matrix. Lower FID depicts smaller
distances between synthetic and real samples. It appears to be a good measure,
even though it only considers the first two order moments of the distributions.
It has been shown that FID is consistent with human judgements and is more
robust to noise [Heu+17].

Although FID is generally used to compute the feature distance between
real images and generated images as it is able to capture the structure, location
and order of points in a curve. It can also be used to investigate if synthetically
generated data preserve the inherent manifold structure of the data. This is
the motivation behind using this metric to investigate if the synthetic data
generated can also preserve the inherent structure of data with minimal loss.

4.3.2 ML Performance in Classification Tasks

Our methodology leverages synthetic data for training machine learning mod-
els, followed by testing on real–world samples. The classification of these sam-
ples is carried out using a variety of models, including Support Vector Ma-
chines, Decision Trees, and Gradient Boosting. To assess the performance of
these models, we use the F1 score as the primary evaluation metric, focusing
on identifying the model that delivers the best performance within our frame-
work. The F1 score is a metric that combines precision and recall into a single
value to evaluate the performance of a classification model. More precisely, it
is the harmonic mean of precision and recall, providing a balanced measure
when there is an uneven class distribution. The formula for the F1 score is:
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F1 = 2× Precision× Recall

Precision + Recall
(4.6)

where precision and recall are defined as:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(4.7)

In these formulas, TP denotes true positives, FP denotes false positives, and
FN denotes false negatives. The F1 score is used because it provides a balanced
evaluation of a classification model’s performance, especially in cases where the
dataset has an imbalanced class distribution. In such scenarios, accuracy can
be misleading, as a model may predict the majority class well but fail to identify
the minority class. The F1 score combines precision (the ability to correctly
identify positive samples) and recall (the ability to capture all positive samples),
providing a balanced evaluation by accounting for both false positives and false
negatives.

4.3.3 Privacy Evaluation: Data Reconstruction Attack

The objective of generating synthetic data is to ensure that the statistical
properties of the real dataset are well–preserved while preventing the retention
of specific local characteristics that might expose sensitive information about
individual records. This is crucial for safeguarding personally identifiable in-
formation (PII). We consider a scenario where an adversary has access to both
real and synthetic datasets and attempts to establish a mapping between a real
data point rs and a synthetic data point ss. To assess the privacy risks associ-
ated with synthetic data generation, we conduct the following steps. For each
synthetic sample ss, we identify its closest real counterpart rs by computing
the minimum Euclidean distance ds between them. The overall privacy leak-
age is then estimated by computing the mean and variance of these minimal
distances, i.e., across all synthetic samples ss.

Formally, given a real data point rs ∈ RD and a synthetic sample ss ∈
RD, we define a successful linkage for the synthetic sample ssi as the closest
real sample rsi that lies closest than the other real sample rsj . We define
an indicator function for this θss : [D] → {0, 1}, which determines whether a
successful linkage has occurred:

θss(i) =

{
1, if |ssi − rsi | = minj∈[D] |ssi − rsj |
0, otherwise

(4.8)

The total number of successfully linked records is then defined as:

link(ss) =
∑
i∈[D]

θss(i) (4.9)
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Additionally, a disclosure risk assessment is performed to evaluate whether
the synthetic data generator effectively preserves privacy. A disclosure event
occurs if an adversary can infer that a specific real data record was used in
training by analyzing synthetic samples [Cho+17]. This type of attack is re-
ferred to as a data reconstruction attack. Formally, disclosure is considered to
have occurred if a synthetic sample ss is found within a predefined threshold
distance ϵ from its closest real counterpart rs.

4.4 Results and Discussion

A comprehensive analysis was conducted to evaluate both the statistical and
ML performance of the synthetically generated data. Additionally, a privacy
evaluation was performed to determine whether any sensitive information was
inadvertently disclosed. A well–known challenge in GANs is that the density
of the learned generative distribution tends to concentrate around the train-
ing data points, potentially leading to memorization of these samples due to
the high model complexity of deep neural networks. To address this, we com-
pared our proposed approach with several baseline privacy–preserving models,
including DPGAN, ADSGAN, and PATEGAN. We also compared our method
with RTVAE to assess their ability to generate synthetic data while maintain-
ing the manifold structure of the original data. RTVAE was selected due to
its effectiveness in synthetic data generation for tabular data and its support
for β–divergence, which allows flexible control over the trade-off between re-
construction accuracy and latent space regularization.

4.4.1 Utility Evaluation

Table 4.1 presents the statistical performance metrics, comparing the original
datasets with the synthetically generated datasets using MMD and FID. Both
MMD and FID metrics are designed to assess the dissimilarity between syn-
thetic and real data distributions, with lower values indicating higher similarity.
These metrics are particularly useful for evaluating how well the synthetically
generated data captures the underlying manifold structure of the real data.
Our proposed approach, M–KCTGAN, yields the lowest MMD and FID val-
ues across all three datasets when compared with other privacy–preserving
approaches. The integration of the t–SNE manifold learning technique in our
method aids in capturing the most relevant data information while filtering
out potential noise, ensuring that the data is represented in a more informa-
tive and low–dimensional space. As a result, synthetic data generated using
M–KCTGAN exhibit a distribution closer to that of the original data, while
preserving privacy.

Among the baseline generative models, CTGAN demonstrates superior per-
formance in modeling structured data, achieving lower MMD and FID values
compared to other baselines such as DPGAN, PATEGAN and RTVAE. This
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Table 4.1: Statistical Evaluation: MMD and FID score

Dataset
ADULT GISETTE RNA

MMD FID MMD FID MMD FID

RTVAE 1.14× 10−3 1.85× 109 3.97× 10−4 1.84× 108 3.12× 10−3 3.21
DPGAN 1.10×10−3 2.44×1011 4.47×10−4 7.23×108 2.51×10−3 1.43×105
ADSGAN 1.10×10−3 9.05×108 4.79×10−4 7.33×108 3.12×10−3 - 4.05
PATEGAN 1.15× 10−3 1.94× 1010 4.99× 10−4 7.18× 107 3.16× 10−3 - 3.63
CTGAN 1.24×10−3 1.18×109 4.15×10−4 2.22× 108 2.98× 10−3 2.95× 105

KCTGAN 1.10× 10−3 2.29× 108 3.99× 10−4 2.08× 108 2.63× 10−3 6.21× 104

M-KCTGAN 7.10×10−4 1.95×108 3.41×10−4 1.76×108 2.52× 10−3 3.59× 104

Table 4.2: F1-score when trained on synthetic data and tested on real data

Method ADULT Gisette RNA

RTVAE 0.510 0.53 0.22
DPGAN 0.086 0.55 0.23
ADSGAN 0.173 0.57 0.04
PATEGAN 0.035 0.54 0.13
CTGAN 0.025 0.58 0.39
KCTGAN 0.035 0.61 0.40

M-KCTGAN 0.591 0.70 0.51

highlights the effectiveness of CTGAN in handling the complexities of tab-
ular data, particularly in learning multi–modal distributions for continuous
attributes and in addressing class imbalances in categorical variables. Given
its strong performance and widespread adoption, we chose to enhance CT-
GAN rather than other models, building on its advantages while addressing its
limitations in preserving geometric properties and privacy.

To further assess the effectiveness of the synthetic data, we performed ma-
chine learning classification tasks in which a classification model was trained on
the synthetic data and tested on the original dataset. The F1 scores presented
in Table 4.2 demonstrate that our approach outperforms other methods, high-
lighting the effectiveness of M–KCTGAN in generating high–quality synthetic
data.

Despite achieving a higher F1 score compared to existing methods, the over-
all performance remains suboptimal with respect to the real data. This could
be attributed to several factors, one of which is the insufficient preservation of
dependencies between attributes. If critical feature relationships present in the
real data are not accurately captured in the synthetic data, models trained on
synthetic data may fail to learn meaningful decision boundaries. To address
this limitation, we will further investigate and refine our approach to enhance
the modeling of attribute dependencies.
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Table 4.3: Mean and Variance of minimal distance between real and synthetic
nearest neighbors

Method ADULT (48842 × 14) Gisette (6000 × 5000) RNA (800 × 20531)

RTVAE 1672 ±15× 106 20324 ±13× 9.47 74 ±3.47
DPGAN 25036 ±13× 107 26610 ±13× 103 190 ±28× 10−2

ADSGAN 536 ±81× 105 26609 ±12× 103 192±23× 10−2

PATEGAN 4711 ±19× 107 13926 ±24× 105 91±54
CTGAN 3605 ±85× 107 22955 ±80× 104 780±104
KCTGAN 1552 ±26× 105 22547 ±45× 104 56 ±32

M–KCTGAN 1126 ±47 21620 ±850 33 ±26

4.4.2 Privacy Risk Evaluation

To assess the privacy risks of synthetically generated samples, we performed an
analysis to measure the proximity between each synthetic sample and its closest
neighbor in the real data. This was done by calculating the minimum Euclidean
distance between synthetic samples and real data, while also considering the
mean and variance of the distances, as detailed in Table 4.3.

For the Adult dataset, we observed that the ADSGAN model yields a min-
imum mean of 536, with a variance of 81 × 105. In contrast, M–KCTGAN
produced a mean of 1126 and a much lower variance of 47. Although the
ADSGAN model achieved a lower minimum mean, it resulted in a significantly
higher variance. To further investigate, we computed the mean and variance of
the minimal distances within the original real data samples themselves. Inter-
estingly, we found that these values were similar to those of the synthetic data
generated by ADSGAN. The Adult dataset consists of various categorical vari-
ables, which were encoded using ordinal encoding during the pre–processing
phase. Due to the diverse types of variables, the data points are quite scat-
tered, leading to a high variance in the distance measures. However, when the
M–KCTGAN approach was applied, the t–SNE effectively retained only the
most relevant information while filtering out noise. This approach contributed
to a more compact representation of the data, resulting in a lower variance in
the distances. Similar trends were also observed for the other two datasets,
demonstrating the ability of M–KCTGAN to reduce variance while preserving
privacy.

We also performed a data reconstruction attack to examine whether a real
sample was involved in training the model and if privacy leakage had occurred.
To do this, we verify whether the synthetic sample falls within a certain thresh-
old distance from the original sample. We plot the graph threshold value (com-
puted in terms of mean) vs number of records. When the minimal Euclidean
distance is such that ds < ϵ, we consider that disclosure has occurred. We
count the number of records whose privacy is compromised. This is plotted in
Figure 4.2. The number of records is cumulative, as it increases with an in-
crease of the threshold. For the Adult dataset, after a certain threshold value,
for instance ϵ > 0.6, the number of records does not increase significantly. How-
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Figure 4.2: Data Reconstruction Attacks: Plot of ϵ threshold vs Number of
Generated Record
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ever, when data reconstruction attack is performed using the M–KCTGAN ap-
proach, no disclosure has taken place for ϵ upto 0.7. Afterwards also, i.e., when
ϵ > 0.8, the number of records that are disclosed is quite less than for the other
two approaches. Thus, we can say that the proposed approach M–KTCGAN
is least vulnerable to data reconstruction attack and also able to preserve the
manifold structure of a high–dimensional data. Even for RNA data, the results
from M–KCTGAN seems the best until ϵ = 0.5, and progressing until ϵ= 0.7,
which is almost the best except for DPGAN.

4.5 Challenges with Tabular Data

Generating synthetic data using GANs for tabular datasets, such as the Adult
dataset, presents significant challenges compared to other datasets like Gisette.
The primary difficulty lies in the high number of categorical variables within
tabular data, as GANs are typically more effective with continuous variables.
While GANs have demonstrated considerable success with continuous data,
they face substantial limitations when applied to tabular datasets, which often
contain discrete attributes. Tabular datasets, which are common in fields such
as healthcare, finance, and social sciences, have unique statistical properties
that make them difficult to model using traditional GAN architectures. These
datasets exhibit heterogeneous data types, imbalanced distributions, and com-
plex dependencies between variables, all of which add layers of complexity that
GANs struggle to capture. One of the reasons we achieved the suboptimal
F1 score in Table 4.2 is the difficulty of the GANs to learn the dependencies
between attributes. Unlike image or text data, which possess inherent spatial
or sequential structures, tabular data lacks these easily recognizable patterns,
and its relationships are often high–dimensional and intricate.

One of the primary obstacles in applying GANs to tabular data is the
non–differentiable nature of discrete attributes, which limits the gradient–based
optimization typically used in GANs. Several approaches have been proposed to
address this issue. For instance, [KH16; Che+17] introduced differential models
that incorporate specialized functions to handle discrete data, while [Yu+17]
employed reinforcement learning to train non–differentiable models, particu-
larly for natural language generation. Additionally, convolutional neural net-
works [Par+18] and recurrent neural networks [XV18] have been adapted to
learn the marginal distributions of columns in tabular data. To overcome these
difficulties, specialized GAN architectures have been proposed, such as CTGAN
(which we have already seen) and CTAB–GAN [Zha+21], designed specifically
for tabular data. These models address some of the challenges by focusing on
the generation of discrete values and the preservation of dependencies between
variables. However, they are still constrained by their reliance on fixed assump-
tions about the structure of the data and remain sensitive to issues like training
instability. Despite advancing the field of tabular data generation, these mod-
els fall short of fully capturing the complexity of real–world data distributions,
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as noted by [MS24].
A crucial challenge that remains is the integration of domain knowledge

and prior statistical information to enhance the fidelity of synthetic tabular
data. Current GAN–based models primarily rely on learning patterns from
raw data, often neglecting essential domain–specific relationships that could
improve data quality and utility. Incorporating structured prior knowledge
into GAN architectures could significantly improve the robustness of generated
data and mitigate existing limitations. To address this, we utilize Bayesian
Networks to encode prior knowledge about the dataset into GANs, allowing for
a more informed and structured approach to tabular data generation.

4.5.1 Bayesian Network

A Bayesian Network (BN) [CH92] is a probabilistic graphical model repre-
senting the joint probability distribution of a set of random variables using a
directed acyclic graph (DAG). Each node corresponds to a random variable,
and directed edges represent conditional dependencies. The joint probability
distribution is factorized as

P (X1, X2, . . . , Xn) =

n∏
i=1

P (Xi | Parents(Xi)) (4.10)

where Parents(Xi) are the parent nodes of Xi. There are several methods to
learn the structure of BN from the data. Constraint–based methods (e.g., the
PC Algorithm [KB07]) use statistical tests to identify independencies between
variables. Score–based methods (e.g., Hill Climbing (HC) [TBA06]) evaluate
the quality of a network structure using a scoring criterion, such as the Bayesian
Information Criterion (BIC). In this work, we chose HC because of its efficiency
in identifying probabilistic dependencies in large datasets.

The HC algorithm starts with an empty graph and iteratively adds, removes,
or reverses edges between nodes. Each modification is evaluated using a scoring
function like the BIC, which balances model complexity and data likelihood.
The algorithm continues making improvements until it converges on the best
network structure. The dependencies in the graph capture the conditional
relationships between variables and serve as valuable auxiliary information.
Specifically, each variable in the network has a set of parent nodes, which
represent the variables that directly influence it. We used the pgmpy python
package [AP15] to construct the BN structure as described.

4.5.2 Datasets Description

In this analysis, we specifically worked with different discrete tabular datasets.
A prominent example of such datasets is social science data, which typically
contains a higher proportion of categorical attributes. We used three distinct
social science datasets in our experiments. The first is the Adult dataset [BK96],
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Table 4.4: Description of Tabular Datasets

Dataset # of Instances # of Categorical Attr. # of Numerical Attr.

ADULT 48842 9 6
SD2011 5000 21 14

Credit Risk 1000 6 4

which is a pre–processed version of the 1994 US Census data collected from over
45,000 individuals. This well–known dataset has been used in various ML ex-
periments, including those in our prior research in Chapter 3. The second
dataset is the Social Diagnosis 2011 (SD2011) [JT11], which focuses on defin-
ing both objective and subjective measures of quality of life in Poland. It is
a raw census dataset containing 35 attributes, predominantly categorical, with
key variables such as education level, smoking status, work experience abroad,
and duration spent abroad. We chose SD2011 due to its realistic challenges,
such as missing values, outliers, and messy entries, making it a more repre-
sentative choice compared to cleaner or simulated datasets. This ensures that
our experiments address the complexities typically encountered in real–world,
minimally pre–processed data. The third dataset used is the German Credit
Risk dataset [Hof94], which classifies individuals as either low or high credit
risks based on various attributes, including savings amount, checking amount,
credit amount, and credit history. The characteristics of each dataset, includ-
ing the number of instances and attributes, are summarized in Table 4.4. These
datasets were selected as representative examples of discrete social science data,
with the objective of incorporating their inherent structures and prior knowl-
edge into GANs for improved synthetic data generation.

4.6 Integrating Prior Knowledge into GANs

We focus on improving the quality of synthetic tabular data by proposing
three distinct approaches to incorporate prior knowledge into GANs, enhancing
their ability to generate high–quality, realistic data. First, we integrate public
knowledge as constraints in the adversarial loss function, introducing a penalty
for violations. This ensures that the generated data adheres more closely to
the known patterns, thereby improving its fidelity and realism. Second, we
enforce the preservation of the original data’s correlation structure. This step
is critical for maintaining statistical consistency between the synthetic and real
data, ensuring that relationships between variables are accurately represented.
Third, we model attribute dependencies using a Bayesian network, encoding
these dependencies as embeddings. These embeddings are then integrated into
Conditional GANs (CGANs) [Mir14] to guide the data generation process,
allowing the model to better capture complex dependencies among attributes.
To address the privacy concern, we also incorporate differential privacy into our
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GAN framework by adapting noise injection technique. These modifications
strike a balance between privacy and utility, ensuring that the synthetic data
remains useful for downstream tasks while providing robust privacy protection.
These techniques are described in detail as follows.

4.6.1 Public Constraint GAN (PCGAN)

Real–world datasets often contain publicly known constraints, such as logical
boundaries or dependencies between variables. Incorporating these constraints
into GANs prevents the generation of implausible or unrealistic data, thereby
improving the authenticity and utility of synthetic outputs. To achieve this,
domain–specific constraints are embedded directly into the GAN training pro-
cess as penalty terms within the generator’s loss function. These constraints
serve as additional guidance, ensuring that synthetic data adheres to predefined
rules or logical relationships. Since they apply universally rather than being
dataset–specific, they do not raise privacy concerns. For instance, human age
can be restricted to a realistic range (0–120 years) by introducing a penalty
term for values outside this range:

Penaltyage = mean (max(0,−age) + max(0, age− 120)) (4.11)

These penalties are incorporated into the generator’s total loss function:

Ltotal = λadvLadv +
∑
i∈I

λiPenaltyi (4.12)

where I is the set of penalties, Ladv is the adversarial loss, and λadv, λi are
weighting coefficients. During training, penalty terms are computed and back-
propagated alongside adversarial loss, ensuring that generated data respects
real–world constraints while maintaining diversity.

Incorporating Specific Data Constraints

For the Adult dataset, we enforce an age constraint (0–120 years) with a penalty
coefficient (λage) of 10, experimentally determined to balance constraint ad-
herence while preserving data fidelity. For the SD2011 dataset, we apply
three constraints: age constraint (similar to adult dataset), smoking constraint
and work–abroad constraint. Smoking constraint ensures consistency between
smoking status and the number of cigarettes smoked. If an individual is labeled
as a non–smoker, their cigarette count should be zero:

Penaltysmoking = mean ((smoke < 0.5) · |nociga|) (4.13)

where smoke represents smoking status (non–smokers encoded as values < 0.5)
and nociga represents the number of cigarettes smoked. Work–abroad con-
straint ensures logical consistency between working abroad status and dura-
tion. If a person is marked as working abroad (workab > 0.5), their recorded
duration (wkabdur) must be non–negative:
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Penaltywabroad =
1

n

n∑
i=1

(I(workabi > 0.5) ·max(0,−wkabduri)) (4.14)

Each of these constraints is integrated into the generator’s loss function with
a penalty coefficient of 10. For the German Credit Risk dataset, we enforce
two constraints: an age constraint and a purpose constraint. The purpose con-
straint applies penalties if the credit amount exceeds predefined thresholds for
specific purposes, such as 5000e for vacation or repairs and 15,000e or 20,000e
for business or education. These thresholds were determined through dataset
analysis and aligned with real–world expectations, ensuring the generated data
remains realistic while maintaining diversity and utility.

4.6.2 Correlation Structure GAN (CSGAN)

An effective strategy for ensuring that synthetic data retains the structural
properties of the original dataset is to align their correlation matrices, which en-
capsulate pairwise variable relationships. To achieve this, categorical variables
are first numerically encoded using a Label Encoder [Ped+11]. The correlation
matrix of the real dataset, denoted as Creal, is computed and serves as a ref-
erence. Similarly, the correlation matrix of the synthetic dataset, Csynthetic, is
computed during training. Any discrepancies between these matrices are min-
imized by incorporating a penalty term into the loss function. The penalty is
defined using the Frobenius norm, which quantifies the element–wise differences
between the two matrices:

Correlation Penalty = ∥Creal − Csynthetic∥F (4.15)

where ∥ · ∥F represents the Frobenius norm. The generator’s objective function
is modified to include this penalty term, ensuring that the synthetic data pre-
serve the correlation structure of the original dataset. The overall loss function
is formulated as follows.

Ltotal = λadvLadv + λcorr · Correlation Penalty (4.16)

Here, Ladv denotes the adversarial loss of the GAN, while λadv and λcorr are hy-
perparameters that balance adversarial training with correlation preservation.
By penalizing deviations in correlation structure, this approach encourages the
synthetic data to maintain the intervariable dependencies and statistical prop-
erties observed in the original dataset.

4.6.3 Bayesian Network GAN (BNGAN)

The primary goal of this approach is to capture the attribute dependencies
effectively and integrate them as auxiliary information for GANs. To achieve
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this, a Bayesian Network (BN) is utilized to model the relationships between
variables. BNs are well–suited for this task as they explicitly encode condi-
tional dependencies, offering a structured and interpretable representation of
variable interactions. The extracted dependencies are subsequently leveraged
within a Conditional GAN (CGAN) [Mir14], providing additional guidance for
generating realistic synthetic data. A CGAN extends the conventional GAN
framework by incorporating auxiliary information into both the generator and
discriminator. Unlike standard GANs, which generate data without additional
constraints, CGANs condition the generation process on specific input data.
This conditioning ensures that the generated samples adhere to predefined
structural relationships, resulting in more coherent and meaningful synthetic
data. The proposed methodology is outlined in Algorithm 11, followed by a
detailed step–by–step explanation.

To implement this approach, dependencies among variables are first learned
using a BN, as described in Section 4.5.1. The identified parent–child relation-
ships are then encoded into dense vector representations (embeddings), which
serve as guidance for the GAN. For each parent variable, a corresponding em-
bedding layer is initialized, where the embedding dimension depends on the
number of distinct categories in that variable. These layers are trained to map
categorical values to continuous vector spaces, allowing semantic relationships
to be captured based on the BN structure. The embeddings of the parent
variables are concatenated to form a conditioning vector, encapsulating the
combined influence of multiple parent attributes. This vector is further pro-
cessed using dense layers to generate a refined representation, which serves as
input to the CGAN, guiding its data generation process.

Embedding layers have been widely used for learning continuous vector rep-
resentations of categorical variables [Mik+13], as seen in models like Word2Vec
for text processing. These embeddings encode semantic similarities by map-
ping categorical values to a continuous space, where proximity between vectors
reflects underlying relationships. A similar strategy is adopted here to capture
probabilistic dependencies in BNs. By integrating these embeddings into a
CGAN, the generated synthetic data preserves the structural relationships in-
herent in the original dataset while benefiting from the flexibility of the CGAN
architecture.

4.6.4 Enforcing DP for the enhanced GAN synthesizers

Standard GANs lack inherent differential privacy guarantees as they do not
explicitly limit the influence of any individual data point. To enforce DP, a
common strategy is to apply Differentially Private Stochastic Gradient Descent
(DPSGD) to the discriminator, as it directly interacts with the real data to
distinguish between real and synthetic samples. Since the generator never
accesses the original dataset, privacy–preserving mechanisms are not required
at this stage.

For PCGAN and CSGAN, we assume that the auxiliary information used
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Algorithm 11 Bayesian Network GAN

Require: Xtrain, ytrain

Ensure: Dsyn, Performance Metrics
Step 1: Learning Variable Dependencies

1: Define: df ← Dataset containing both Xtrain and ytrain

2: Initialize: G← ∅
3: for each chunk in df do
4: while no improvement in score do
5: G← modify(G)
6: score(G)← BIC(G)
7: end while
8: Gchunk ← G
9: end for

10: Gfinal ←
⋃
Gchunk

Step 2: Encoding Dependencies
11: for each parent ∈ Gfinal do
12: eparent ← Embedding(parent)
13: end for
14: for each child ∈ Gfinal do
15: echild ←

∥∥eparent ▷ Concatenate embeddings of parents
16: end for

Step 3: Define CGAN
17: G ← Generator(z, e)
18: D ← Discriminator(x, e)
19: Ladversarial ← E[logD(G(z, e))]
20: Lreconstruction ← E[∥x− G(z, e)∥2]

Step 4: Training CGAN
21: for t = 1 to T do xreal ∼ Xtrain

22: xsyn ← G(z, e)
23: Train Discriminator: LD ← E[logD(xreal, e)] + E[log(1−D(xsyn, e))]
24: Train Generator: LG ← Ladversarial

25: end for

81



is public knowledge. As a result, no additional privacy–preserving techniques
are necessary beyond applying DPSGD to the discriminator. In the case of
BNGAN, which utilizes a Bayesian network to model attribute dependencies
and generates an embedding layer as input to the CGAN, we introduce an ad-
ditional privacy mechanism by adding Laplace noise to the embeddings. Given
that the values of the embeddings lie within the range of [−1, 1], the maximum
possible change between two neighboring datasets is at most 2. This value
serves as the global sensitivity for the Laplace mechanism, ensuring that the
added noise appropriately preserves DP. Applying DP at the embedding level
provides a more fine–grained privacy guarantee that is difficult to achieve using
k-anonymity. By combining DPSGD for the discriminator and Laplace noise
for Bayesian network embeddings, BNGAN ensures robust privacy protection
while maintaining the fidelity of the synthetic data. Applying k-anonymity
before training the GAN distorts attribute relationships, disrupts dependency
structures, and reduces data utility, leading to poor–quality embeddings and
synthetic data. In contrast, DP preserves fine–grained patterns by adding
controlled noise during training, ensuring both privacy and high–fidelity data
generation.

4.7 Empirical Results

We now describe the architecture of the GAN, and the effects of synthetic
data generated using the proposed techniques on ML performance, correlation
similarity, and the effectiveness of differentially private synthetic data.

4.7.1 Conditional GAN (CGAN) Architecture

The Conditional GAN employed in this analysis consists of two primary com-
ponents: the generator and the discriminator. The generator receives a con-
catenated noise vector and a conditioning vector as inputs. These are passed
through four fully connected layers, each utilizing LeakyReLU activation, batch
normalization for stable training, and dropout for regularization. The output
is generated through a final dense layer. On the other hand, the discrimina-
tor takes both a data sample and the conditioning vector, concatenates them,
and processes them through four fully connected layers with LeakyReLU and
dropout. The output is classified as either real or synthetic using a sigmoid acti-
vation function in the final layer. Both the generator and the discriminator are
trained using binary cross–entropy loss and the Adam optimizer. Unlike tradi-
tional GANs, this CGAN integrates a conditioning vector along with random
noise, enabling the generation of domain–specific data that preserves the in-
herent attribute relationships, which is crucial for structured discrete datasets.
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4.7.2 Impact of Synthetic Data on ML Performance

We assess the utility of synthetic data generated by four methods: CTGAN,
PCGAN, CSGAN, and BNGAN, using multiple machine learning models. CT-
GAN serves as the baseline for comparison, as it is previously used and widely
regarded as one of the most effective GAN architectures for synthesizing tabular
data. For classification tasks on the Adult and German Credit Risk datasets,
we use LightGBM, XGBoost, and Logistic Regression models, evaluating the
performance based on accuracy. For the SD2011 dataset, income prediction
is performed using LightGBM regression, XGBoost regression, and Linear Re-
gression models, with performance measured by Root Mean Squared Error
(RMSE). This comprehensive evaluation provides a thorough analysis of the
utility of synthetic data across various tasks and datasets, as summarized in
Table 4.5.

Each model is trained on synthetic data and evaluated on real, out–of–sample
data. For the Adult dataset, BNGAN outperforms the other models with the
highest accuracy, ranging from 0.78 to 0.79 , across all machine learning mod-
els. Similarly, for the SD2011 dataset, BNGAN demonstrates the lowest RMSE
across all models, ranging from 0.42 to 0.45, with PCGAN achieving compara-
ble results ranging from 0.43 to 0.46. In contrast, CTGAN shows much higher
RMSE values 1185 to 1237 for the SD2011 dataset. We think that this is
because it contains missing values and outliers, as no pre–processing was ap-
plied. This highlights the challenges of working with raw, unprocessed data
and emphasizes the importance of incorporating structure into synthetic data
generation.

For the German Credit Risk dataset, BNGAN again achieves the highest
accuracy across all models ranging from 0.68 to 0.74, demonstrating the benefits
of using a Bayesian network to capture dependencies between attributes. By
modeling these dependencies, BNGAN generates more realistic synthetic data,
leading to improved performance in machine learning models. On the other
hand, CSGAN consistently yields the lowest utility among all methods for both
classification tasks. Additionally, we compared the performance of synthetic
data against the original data. As anticipated, we observed a slight decline in
machine learning performance with synthetic data, which aligns with the goal
of synthetic data: to approximate the original distribution rather than surpass
it.

For the Adult dataset, we compared our results with the previously pro-
posed M–KCTGAN approach. As shown earlier in Table 4.2, the F1 score
achieved by M–KCTGAN was 0.591. In contrast, our proposed BNGAN model
achieved a higher F1 score of 0.66. Given that the Adult dataset is the most
imbalanced among those considered, reporting the F1 score is particularly rel-
evant, as it better reflects the model’s performance on minority classes. This
improvement demonstrates that incorporating prior knowledge into the gener-
ative process effectively helps address class imbalance.
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Table 4.5: Utility evaluations for ML models trained on synthetic data and
tested on real out–of–sample data

Data Utility Metric ML Model
Synthetic Data Original

CTGAN PCGAN CSGAN BNGAN Data

ADULT
LightGBM 0.75 0.74 0.70 0.79 0.87

Accuracy ↑ XGBoostC 0.75 0.73 0.69 0.79 0.86
LogisticR 0.74 0.74 0.71 0.78 0.86

Credit Risk
LightGBM 0.66 0.61 0.58 0.74 0.75

Accuracy ↑ XGBoostC 0.65 0.62 0.56 0.68 0.76
LogisticR 0.67 0.63 0.59 0.70 0.74

SD2011
LightGBM 1207.35 0.44 0.48 0.43 1050.31

RMSE ↓ XGBoostR 1236.80 0.46 0.50 0.45 1091.21
LinearR 1185.21 0.43 0.47 0.42 1015.82

4.7.3 Impact of Synthetic Data on Attribute Correlations

Preserving the pairwise correlations between the attributes in synthetic data
is an important aspect of data utility. To assess this, we used Cramér’s V
with bias correction [Ber13], a commonly adopted measure for evaluating the
strength of relationships between pairs of categorical attributes, as detailed in
the literature [Tao+21]. Cramér’s V is defined as:

V =

√
χ2

n ·min(k − 1, r − 1)
(4.17)

where χ2 is the chi–squared statistic, n is the total number of observations, k is
the number of categories in the first variable, and r is the number of categories
in the second variable. The Cramér’s V values are grouped into four categories:
low (V ∈ [0, 0.1)), weak (V ∈ [0.1, 0.3)), middle (V ∈ [0.3, 0.5)), and strong
(V ∈ [0.5, 1)). To evaluate how well the synthetic data replicates the original
data, we use a correlation accuracy metric for categorical attributes. This
metric calculates the percentage of attribute pairs in the synthetic data that
exhibit the same correlation levels as in the original data.

The results, shown in Table 4.6, reveal that different methods of generating
synthetic data vary in their ability to preserve attribute relationships. In the
case of the Adult dataset, which has a high class imbalance, correlation accu-
racy is relatively low across all methods. This is likely due to the minority class
attributes not being well represented in the synthetic data, resulting in weaker
correlations between attributes. For the SD2011 dataset, PCGAN achieved
the highest correlation accuracy of 0.6915, likely due to its effective enforce-
ment of domain–specific constraints in the loss function, which helps the model
better capture relationships between attributes. BNGAN also performed well,
achieving a correlation accuracy of 0.6780, reflecting the advantages of incorpo-
rating a Bayesian Network model to capture dependencies between attributes
and effectively preserve correlations. Similar trends were observed with the
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Table 4.6: Correlation Accuracy and Similarity for Categorical and Numerical
Attributes

Categorical Numerical

Dataset CTGAN PCGAN CSGAN BNGAN CTGAN PCGAN CSGAN BNGAN

ADULT ↑ 0.3626 0.4190 0.3524 0.3714 0.8581 0.8843 0.8718 0.8932
Credit Risk ↑ 0.6723 0.6812 0.6235 0.6981 0.8642 0.8714 0.8312 0.8711
SD2011 ↑ 0.6684 0.6915 0.6123 0.6780 0.9758 0.9916 0.9468 0.9971

Credit Risk dataset, where BNGAN achieved the highest correlation accuracy
of 0.6981, slightly outperforming PCGAN. Once again, CSGAN exhibited the
weakest performance in all settings.

In addition to categorical correlations, we also evaluate the preservation of
relationships between numerical attributes by computing the Pearson correla-
tion coefficient [Coh+09] for both real and synthetic data. We compute two
correlation values: RA,B for the real data and SA,B for the synthetic data. The
similarity between these values is quantified using the following formula:

score = 1− |SA,B −RA,B |
2

(4.18)

A score of 1 indicates perfect similarity, while a score of 0 indicates no similar-
ity. This method, adapted from SD Metrics [Dat23], provides a standardized
way to evaluate data quality. The results show that BNGAN consistently
achieved the highest correlation similarity scores, particularly for the SD2011
and Adult datasets, indicating its effectiveness in preserving numerical rela-
tionships. PCGAN also performed well, particularly on the SD2011 and Credit
Risk datasets, by enforcing constraints in the loss function. In contrast, CS-
GAN, which relies on correlation–based penalties, achieved lower correlation
similarity scores, suggesting that it may struggle to fully capture the complex
dependencies between attributes. Overall, constraint–based approaches such as
PCGAN and BNGAN outperform CSGAN, with BNGAN demonstrating the
strongest ability to preserve both categorical and numerical correlations across
multiple datasets.

4.7.4 Impact of Differentially Private Synthetic Data

To ensure that the synthetic data generation process adheres to Differential
Privacy, we implemented a DP mechanism in our proposed GAN models, as
outlined in Section 4.6.4. We assessed the efficacy of these models by compar-
ing them with three baseline methods: DPGAN, PATEGAN, and ADSGAN.
Table 4.7 presents the machine learning performance when models are trained
with DP, where we set ϵ = 1 and δ = 1

N .

For our DP-BNGAN model, we apply noise injection at two stages: first,
during the generation of Bayesian network–based embeddings with ϵ = 1, and
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Table 4.7: ML performance using Differential Privacy

Dataset Utility Metric DP-PCGAN DP-CSGAN DP-BNGAN DPGAN PATEGAN ADSGAN

ADULT Accuracy ↑ 0.65 0.67 0.72 0.54 0.69 0.71
Credit Risk Accuracy ↑ 0.62 0.40 0.66 0.54 0.96 0.82
SD2011 RMSE ↓ 0.48 0.57 0.51 0.61 0.58 0.49

second in the discriminator component of the CGAN, also with ϵ = 1. Con-
sequently, the total privacy budget for DP-BNGAN is ϵ = 2. We assessed
model utility accross three datasets. For the Adult and Credit Risk datasets,
classification accuracy was measured using LightGBM, the highest–performing
model from Table 4.5. For the SD2011 dataset, we evaluated prediction per-
formance using RMSE with linear regression, which was also the top performer
in Table 4.5.

The results reveal that each model performed differently across datasets,
highlighting their ability to adapt to the specific characteristics of each dataset
while maintaining privacy. For the Adult dataset, DP–BNGAN yielded the
best performance, demonstrating its ability to capture complex data distribu-
tions while ensuring privacy. PATEGAN performed best on the Credit Risk
dataset, likely due to its enhanced learning capabilities. In contrast, DPGAN
showed the lowest performance across all datasets. Although the inclusion of
DP slightly reduced model performance, the results indicate that the models
still maintained utility comparable to the baseline methods, suggesting that
a balance between privacy and utility can be achieved. Moreover, there is
potential to further improve utility at the cost of a reduced privacy guarantee.

4.7.5 Discussion

So far, we have explored synthetic data generators from multiple perspectives.
We began by focusing on generating high–quality synthetic data for real–world
high–dimensional datasets, emphasizing the role of manifold learning and the
need for privacy protection. While some approaches yielded promising re-
sults, others exhibited suboptimal performance, highlighting the challenges in
preserving both data utility and privacy. To enhance performance, we then
investigated whether attribute dependencies could be effectively preserved and
explored strategies to incorporate prior knowledge into GANs. Our goal was
to determine whether structural dependencies and domain constraints could
improve the quality and realism of synthetic data.

However, despite these advancements, GANs and VAEs remain largely
black–box in nature, raising concerns about their distributional capabilities,
whether they truly capture the underlying data distribution or merely learn
superficial patterns. Understanding these distributional properties is critical to
ensure that synthetic data faithfully represents real–world distributions rather
than producing unrealistic or biased samples. Thus, we now shift our focus
to systematically analyze the distributional characteristics of these models, ad-
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dressing their interpretability and reliability in real–world applications.

4.8 Explore Distribution Learning of Synthetic
Data Generators

Until now, we have explored various synthetic data generation techniques.
While these methods are highly effective in generating synthetic data, their
black–box nature makes it challenging to interpret and analyze their learning
behavior, especially with complex datasets [Den+09]. To address this, we uti-
lize simpler, artificially constructed datasets such as Swiss Roll and S–Curve,
which can be visualized in lower–dimensional spaces. These datasets provide
clearer insights into the learning dynamics of generative models and their ability
to capture data distributions. Although GANs have demonstrated strong per-
formance in certain applications [Kar+17], their effectiveness can vary when
handling complex data distributions [BDS18; OOS17]. By focusing on arti-
ficially generated datasets, we aim to analyze the learnability of fundamental
data structures in low–dimensional spaces. This approach enables a more trans-
parent evaluation of synthetic data generation models, helping us to uncover
their strengths, limitations, and broader applicability across different domains.
We adopted the following framework to visualize that the manifolds generated
using synthetic data generators converge to real data manifolds.

1. Dataset Selection: We start by selecting a real–world high–dimensional
dataset exhibiting the manifold structure such that the dataset is in the
topological space which is not Euclidean. We have used MNIST [Den+09]
dataset for this task.

2. Train a Manifold Learning Model: Utilize Uniform Manifold Ap-
proximation and Projection (UMAP) [MHM18], to train a model on the
data set chosen from the previous step. UMAP is specifically selected
for its ability to preserve both local and global structures within the
dataset, also because of its inverse transformation function. This charac-
teristic makes UMAP more scalable compared to other manifold learn-
ing techniques. Furthermore, UMAP boasts faster computation times
than t–SNE, which enhances its practicality. Through this step, the
high–dimensional dataset is transformed into a lower–dimensional Eu-
clidean space, facilitating visualization. Visualization becomes feasible in
this latent space, enabling a better understanding of the data’s intrinsic
structure.

3. Reconstruction to Original Space: Employ the inverse mapping func-
tion of UMAP, to reconstruct the transformed data from the previous
step back to its original high–dimensional space using the same dataset
chosen from step 1. This process ensures that the model is trained to han-
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dle data sets effectively with manifold structures, leveraging the insights
gained from high–dimensional data sets in the real world.

4. Generation of Artificial Data: Now we generate artificial datasets
created in R4 and R2 such as S-Curve and Swish roll dataset to visual-
ize and understand the dataset, and their lower–dimensional transforma-
tions, which is not feasible with high–dimensional real–world data.

5. Test the Manifold Learning Model: Apply the trained manifold
learning model from Step 2 to transform artificial datasets into the latent
space for visualization. This step assesses the model’s ability to preserve
proximity between points from high–dimensional to lower–dimensional
spaces and allows for performance evaluation of the manifold learning
algorithm.

6. Synthetic Data Generation: This step involves using models such as
GANs and VAEs to generate synthetic data from a learned latent space.
The goal is to assess how effectively the generated data captures the sta-
tistical properties of real data while introducing sufficient variability to
prevent direct replication. This approach enhances privacy by maintain-
ing the underlying data structure without exposing exact original records.

7. Synthetic Data Reconstruction: Apply the inverse transformation
function of UMAP model to map the generated synthetic data back to
its original high–dimensional space. Assess the fidelity of this reconstruc-
tion by comparing it with the original synthetic data, ensuring that key
structural and statistical properties are preserved. This evaluation helps
to determine how well the transformation process retains the integrity of
the data.

We carefully selected a range of datasets with manifold structures to com-
prehensively evaluate our approach. Manifold structure represents intricate
data distribution patterns in a high–dimensional space that can’t be fully cap-
tured by traditional linear methods. The selected datasets offer different com-
plexities and characteristics, allowing us to assess the performance of generators
across diverse scenarios. These datasets include point datasets like the Swish
Roll dataset [Mar11], S–curve dataset [Ped+11], Concentric circles [Ped+11],
Mixture of Gaussian points [Ped+11], and Two–Half Circles datasets [Ped+11].
The first two datasets reside in R4, with points distributed across a 3D plane
and their labels in another dimension. The remaining datasets are in the
R2 plane. Each dataset comprises 4000 samples, with each sample repre-
senting a fixed point in Rn. All datasets were generated using the sklearn
library [Ped+11]. For instance, the Swish Roll and S–curve datasets provide
examples of non–linear structures in higher–dimensional spaces, while datasets
like Concentric circles and Mixture of Gaussian points showcase different pat-
terns in two–dimensional spaces with some degree of discontinuity. By including
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datasets with varying complexities, we aim to comprehensively test the robust-
ness and effectiveness of our manifold learning techniques and synthetic data
generators. Additionally, the MNIST dataset, with its images of handwritten
digits, offers a real–world example where manifold learning can be applied to
understand and generate complex data distributions.

We implemented multiple generative models for synthetic data generation,
starting with a Vanilla GAN. The generator comprised four dense layers with
Leaky ReLU activations and a tanh output, while the discriminator mirrored
this structure with a sigmoid activation. After updating the discriminator, it
was frozen, and the generator was trained on fake data, with loss back propa-
gated to adjust its weights. For improved image synthesis, we employed a Deep
Convolutional GAN (DCGAN), integrating Batch Normalization and a Convo-
lution1D layer for upsampling. Unlike Vanilla GAN, DCGAN’s discriminator
processed image–like inputs instead of vectors, using Leaky ReLU activations
for stability.

To handle tabular data, we used Conditional Tabular GAN (CTGAN), while
Differentially Private GAN (DPGAN) was implemented to introduce privacy
guarantees by injecting controlled noise during training. Additionally, we ex-
plored Variational Autoencoders (VAEs), with an encoder learning the latent
distribution’s mean and log–variance, and a decoder reconstructing samples via
a sigmoid output. The reparameterization trick ensured smooth gradient flow
through the stochastic layer. All models—Vanilla GAN, DCGAN, CTGAN,
DPGAN, and VAE—were trained using the Adam optimizer with a learning
rate of 10−4 ensuring stable convergence and high–quality synthetic data gen-
eration.

We now visualize the distributional capabilities of synthetic data generators
on artificially created datasets.

4.8.1 Visualize Synthetic Generation with S-Curve Dataset

Figure 4.3 illustrates the step-by-step application of our methodology to the
S-Curve dataset. We began with the original S-Curve dataset, generated us-
ing the make-s-curve function from the sklearn library. Then, we applied the
pre–trained UMAP manifold learning model, originally trained on the MNIST
dataset, to project the S-Curve data into a 2D plane (Figure 4.3b). This
transformation effectively preserved the data’s shape, curves, and geometry,
with the univariate positioning of the samples (highlighted by colored labels)
maintaining the original structure. This validates the manifold hypothesis,
indicating that points close in high–dimensional space remain close in the
lower–dimensional representation.

Next, we generated synthetic data points using a VAE, based on the man-
ifold–transformed data (Figure 4.3c). The VAE, a generative model that learns
the underlying distribution of input data by encoding it into a lower–dimensional
latent space and decoding it back, was able to leverage the manifold–transformed
data. This allowed the VAE to generate synthetic data that aligns with the
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original dataset’s patterns and distribution. The S-curve structure observed in
the latent space further confirms the VAE’s ability to capture essential features
and variations of the data.

Finally, we used the inverse transform function of the manifold model to
reconstruct the data in the original space (Figure 4.3d). While the recon-
structed data points clustered around the central region, the dispersion was
limited, indicating that the inverse transform struggled to fully recover the
high–dimensional structure. This suggests potential improvements, such as re-
fining the transformation process to better preserve the details of the original
data distribution.

4.8.2 Unrolling the Swish Roll:Manifold Transformation

Figure 4.4 presents the Swish roll dataset, first depicted in Figure 4.4a. When
transformed into a two–dimensional space using UMAP (Figure 4.4b), the
dataset’s underlying structure and relationships become more apparent, demon-
strating the principles of manifold learning. UMAP efficiently maps complex
high–dimensional patterns into a lower–dimensional space while preserving key
characteristics, making it valuable for meaningful data representation. In Fig-
ure 4.4c, synthetic data generated by a VAE from the UMAP–transformed
points retains distinct labels and closely resembles the original dataset. Minor
variations introduce controlled noise, enhancing privacy while maintaining key
data properties. Finally, Figure 4.4d illustrates the reconstruction of the orig-
inal dataset using the inverse transform of the manifold model. While labeled
points tend to cluster, overlapping regions present challenges for precise recon-
struction, underscoring the difficulties of managing high–dimensional data with
noise and intersecting surfaces.

4.8.3 Understanding 2D Point Datasets

In our evaluation of synthetic data generators, we applied our methodology
to 2D point datasets. Figure 4.5 illustrates Gaussian clusters generated using
the make-blobs function from sklearn, where three clusters are defined with a
standard deviation of 0.2. To assess the generative capabilities of a VAE, we
trained the model on this dataset and visualized the generated data. The syn-
thetic points form three distinct clusters, demonstrating the VAE’s ability to
approximate the original distribution. However, some intra–cluster stretching
is observed, reflecting minor deviations that contribute to privacy preservation.
Despite these distortions, the VAE effectively captures the discrete nature of
the dataset, preserving the underlying cluster structure. This outcome con-
trasts with the findings in [RM19], where VAEs exhibited challenges in han-
dling discontinuous data due to their assumption of a continuous latent space.
However, our results suggest that while the VAE introduces minor distortions,
it successfully models discontinuous data distributions without collapsing the
distinct clusters.
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(a) Original Data (b) Data Transform

(c) Synthetic Data (d) Reconstructed data

Figure 4.3: S-Curve Dataset
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(a) Original Data (b) Data Transform

(c) Synthetic Data (d) Reconstructed Data

Figure 4.4: Swish Roll Dataset
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Figure 4.5: Mix of Gaussian Points
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Figure 4.6: Concentric Circles
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Figure 4.7: Two Half Circles

A similar pattern is observed in Figures 4.6 and 4.7, which presents results
for the concentric circles and two half-circles datasets. Both original datasets
exhibit inherent discontinuities with well–defined geometric structures. The
VAE generated synthetic data closely follow these patterns while incorporating
slight variations. This behavior arises from the VAE learning the probability
distribution of the input data and sampling new points accordingly. The minor
deviations introduced by the VAE ensure that key structural and geometric
properties of the original dataset are preserved while enhancing privacy through
controlled noise.

4.8.4 Visualizing Real–World Dataset

We investigated the effectiveness of manifold learning and synthetic data gener-
ation using the MNIST dataset, a widely used benchmark in machine learning.
The original MNIST dataset consists of 70,000 handwritten digit images, each
sized at 28×28 pixels. Figure 4.8a presents the raw dataset before any trans-
formations. To explore its structure, we applied manifold learning to project
the high–dimensional image data into a 2D latent space, as shown in Fig-
ure 4.8b. This transformation results in well–separated clusters, where each
cluster corresponds to a distinct digit class. Using this lower–dimensional rep-
resentation, we then trained a VAE to generate synthetic data. The resulting
synthetic samples, visualized in Figure 4.8c, exhibit tight clustering, indicating
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Figure 4.8: MNIST Dataset

that the VAE effectively captures the underlying data distribution. Finally,
Figure 4.8d shows the reconstructed data, which closely resembles the origi-
nal images, demonstrating the VAE’s ability to learn and regenerate realistic
samples. We achieved similar results with GAN on MNIST dataset.

However, when working with real–world image datasets like MNIST, visu-
alization is inherently limited. While we can observe and compare the original
and reconstructed images, once the data is projected into a latent space, direct
visualization is restricted to examining the spatial distribution of data points
based on their labels. This black–box nature of synthetic data generators makes
it challenging to interpret how the data’s geometry evolves through each trans-
formation stage. To address this limitation, we incorporated artificially created
datasets in 4D and 2D spaces, enabling a more transparent visualization of how
synthetic data generators learn and preserve the structural properties of the
data.

4.8.5 Privacy Risk Assessment in VAE

We extended our privacy analysis of VAE by introducing artificial points into
the original S-Curve dataset and evaluating the model’s ability to regener-
ate them. Figure 4.9a presents the modified dataset, where 10% additional
points are systematically placed along a straight line and highlighted in red

94



and green. The corresponding synthetic data, generated by the VAE, is shown
in Figure 4.9b, where the newly introduced points are successfully regenerated.
This indicates that the VAE effectively learns and generalizes from the dataset
while preserving its overall structure, including the added data points. When
newly introduced points are numerous and systematically distributed, as in Fig-
ure 4.9a, the VAE’s ability to regenerate them in Figure 4.9b suggests that it
has effectively captured the dataset’s underlying distribution. This reinforces
the VAE’s capability to generate realistic synthetic data while maintaining
structural consistency with the original dataset.

However, if the VAE reproduces only a small fraction of the added points
in their exact original locations, this may indicate a privacy risk due to mem-
orization rather than learning general patterns. Figure 4.9c and 4.9d illustrate
this scenario. In Figure 4.9c, only 0.01% of the dataset consists of newly
added points, strategically placed within the S-Curve. Figure 4.9d presents
the VAE–generated synthetic data, where the newly added points appear in
different positions rather than being replicated exactly. This suggests that the
model has learned general patterns instead of memorizing specific samples.

A closer examination of Figure 4.9c reveals that three newly introduced
points (two green and one red) coincide with the S-Curve structure. However,
in Figure 4.9d, these points are not regenerated at their original locations but
are instead distributed throughout the S-Curve, further indicating that the
VAE has not memorized the exact data points. The scattered placement of
these points confirms that the VAE preserves the overall S-Curve structure
while preventing direct replication of individual samples, thereby reducing the
risk of privacy leakage.

This analysis highlights the importance of assessing privacy risks in syn-
thetic data generation. If a VAE precisely regenerates specific added points,
it suggests memorization of individual data samples, potentially compromising
privacy. To mitigate this risk, it is crucial to ensure that the VAE captures
the general distribution of the data without retaining identifiable information.
This prevents potential privacy breaches and safeguards sensitive data while
enabling realistic synthetic data generation.

4.8.6 Visualization with Diverse GAN Architectures

We evaluated multiple GANs for synthetic data generation, including Vanilla
GAN, Deep Convolutional GAN (DCGAN), Conditional Tabular GAN (CT-
GAN), and Differentially Private GAN (DPGAN). Our assessment began with
Vanilla GAN applied to the S-Curve dataset, as shown in Figure 4.10a. The
generated data exhibited poor alignment with the original points, indicating
that Vanilla GAN struggled to capture the intrinsic 3D structure of the dataset.
A similar trend was observed across other datasets, but for clarity, we present
only the results for the S-Curve dataset. Next, we applied DCGAN to the
Swish Roll dataset in Figure 4.10b. While the generated points overlapped
with the original data, their distribution appeared disorganized, suggesting
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Figure 4.9: Privacy Risk Assessment in VAE

that DCGAN had difficulty preserving the dataset’s geometric structure. Sim-
ilarly, when using CTGAN on the S-Curve dataset in Figure 4.10c, we observed
significant overlap between synthetic and real data points, but the latent space
representation remained scattered. This suggests that CTGAN struggled to
learn the 3D geometry effectively. Finally, we tested DPGAN on the Swish
Roll dataset in Figure 4.10d. However, the generated points were dispersed
without preserving the dataset’s original geometric properties, demonstrating
DPGAN’s difficulty in maintaining structural fidelity. GANs, in general, are
known for instability and slow convergence [Goo+20; RMC15], particularly
when applied to manifold data. In contrast, VAEs provided more consistent and
reliable results. Unlike GANs, which often suffers from mode collapse, VAEs
effectively captured the diverse structures present in our datasets [HYW18].

This discrepancy highlights a key challenge: while GANs excel in gener-
ating complex, structured data like images, they often struggle with simple,
low–dimensional point cloud datasets such as Swiss Roll or S-Curve. This is
primarily due to the nature of their latent space, which is typically modeled
as a dense and unstructured distribution in Rn, making it difficult to capture
the intrinsic geometry of manifolds with sparse or highly non–linear structures.
In contrast, VAEs tend to offer greater stability and better manifold align-
ment, making them more effective for synthetic data generation in such settings.
However, for real–world datasets like MNIST, which have more structured and
well–sampled distributions, both GANs and VAEs perform comparably well.
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(a) VanillaGAN (b) DCGAN

(c) CTGAN (d) DPGAN

Figure 4.10: Results with other types of GAN
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4.9 Conclusion

In this chapter, we explored the generation of high–quality synthetic data as
an alternative to traditional anonymization, particularly for high–dimensional
datasets where generalization or suppression may lead to excessive informa-
tion loss. To preserve the intrinsic structure of data, we leveraged manifold
learning and integrated k–anonymity to protect training data before synthetic
data generation. We evaluated the generated data using statistical and ML
utility assessments and conducted data reconstruction attacks to analyze pri-
vacy vulnerabilities. While our approach outperformed existing baselines, some
suboptimal cases emphasized the need to better preserve data correlations for
improved generation quality.

To address these limitations, we explored the role of prior knowledge in
GANs, incorporating public constraints, correlation structures, and Bayesian
networks to improve data realism. Given that GANs are susceptible to adver-
sarial attacks, we introduced differential privacy mechanisms (DPSGD, Laplace
noise for Bayesian network embeddings) to enhance robustness. Our compari-
son across three tabular datasets demonstrated that prior knowledge improves
both the quality and privacy of synthetic data.

Beyond evaluating synthetic data quality, we analyzed the black–box na-
ture of generators by examining their distribution learning capabilities, latent
space representations, and privacy risks. Our findings revealed that VAEs out-
perform GANs for simple, low–dimensional datasets due to their structured
latent space and stable training, whereas GANs struggle with mode collapse
and instability. However, for complex datasets such as MNIST, both models
perform comparably, as GANs leverage adversarial training to capture richer
data distributions. Additionally, VAEs inherently offer stronger privacy pro-
tection, while GANs require careful tuning to mitigate privacy risks. Overall,
our study underscores the challenges of understanding and improving synthetic
data generators. In the future, other generative models such as diffusion mod-
els could be explored to assess the quality of synthetic data, particularly in the
context of high–dimensional and tabular datasets.
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Chapter 5

Privacy-Aware Language
Models

We are getting to the point where
the machines are going to surpass
us, and it’s going to happen
much faster than anyone thinks

— Geoffrey Hinton

So far, we have focused on protecting the sensitive information of individu-
als that resides in high–dimensional databases. However, high dimensionality is
not only a concern for data but also for modern machine learning models, par-
ticularly foundation models, which consist of millions of parameters and exhibit
high inference times. Many of these models are also vulnerable to memoriz-
ing the sensitive training data, which poses significant privacy risks. In this
chapter, we study our third Research Question RQ3 and explore methods to
improve the efficiency and privacy of such large–scale models. Specifically, we
focus on techniques to reduce the inference time while simultaneously mitigat-
ing privacy risks. A prime example of such models is language models, which
have gained immense popularity due to their recent advancements but also
present significant computational and privacy challenges. The objective of this
chapter is to make these models more practical for real–world deployment by
enhancing their efficiency and ensuring robust privacy protection.

5.1 Problem Formulation

Transformer–based models, particularly large–scale language models such as
BERT [Dev18] and GPT [Bro20], have significantly advanced natural language
understanding (NLU). Their growing size and complexity have enabled remark-
able improvements in accuracy and emergent capabilities [Cho+23; Bro20].
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However, their widespread deployment is hindered by two major challenges:

High Computational Overhead. Large Language Models (LLMs) con-
tain millions to billions of parameters, making both training and inference
time highly computational intensive. The time taken by a model to generate
a response to a query is referred to as inference time. For real–time appli-
cations such as next–word prediction or sentence completion, achieving a re-
sponse time within milliseconds is essential for usability. However, the large
size of these models due to large training parameters significantly increases the
inference time, creating a major bottleneck in their widespread adoption for
real–world production scenarios [Xu+23]. To enable seamless integration into
practical applications, it is crucial to develop techniques that reduce the number
of model parameters, thereby decreasing the inference time, while preserving
the model performance. Several approaches have been proposed to achieve
this, including pruning [HP88], knowledge distillation [BCN06], and quantiza-
tion [Wu+16; Gon+14]. These methods focus on compressing the model by
reducing the number of parameters, thereby lowering the memory and com-
putational requirements. A compressed model with fewer parameters results
in faster inference times, making LLMs more suitable for real–time applica-
tions. It’s commonly observed that deep learning models often contain many
redundant parameters that could be removed while still maintaining perfor-
mance [Naj+15]. Thus, addressing this challenge is pivotal to unlocking the
full potential of transformer–based technologies and realizing their impact at
scale.

Privacy Vulnerabilities. Safeguarding privacy emerges as another critical
concern while deploying language models. The utilization of personal sensitive
data for model training makes it susceptible to inadvertent disclosure, rais-
ing formidable privacy implications, as input text or its vector representations
can inadvertently expose private information [CN18; LBC18]. Recent stud-
ies have demonstrated that language models can remember the training data,
which can lead to privacy attacks [Car+19; Car+21]. In LLMs, techniques like
prompt engineering can exploit this memorization, potentially extracting con-
fidential or personally identifiable information from the model, which poses a
critical risk when models are deployed in real–world applications. While there
are several methods to protect privacy, automatic de–identification is a widely
explored approach for removing personally identifiable information. Some au-
thors [Vak+22; VD22] evaluated the effects of pre–training and fine–tuning
BERT models on both de–identified and original datasets, employing tech-
niques such as pseudo anonymization and sentence removal to protect sensitive
content. However, to achieve stronger and more generalizable privacy guaran-
tees, Differential privacy can be incorporated into the training process, pro-
viding formal protection against data leakage. While DP mitigates these risks
by adding noise during training, language models still face privacy challenges,
such as vulnerability to inference–time attacks [Sho+17], where sensitive in-
formation can be inferred from the model outputs and repeated queries can
weaken the privacy guarantees. Achieving DP or model compression for the
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LLM typically involves a trade–off with utility loss. Attempting both simulta-
neously can result in significant utility loss, highlighting the complexity of this
challenge.

Some studies have investigated model compression in ensemble learning un-
der privacy constraints, notably through the Private Aggregation of Teacher
Ensembles (PATE) framework [Pap+16; Pap+18]. In PATE, an ensemble of
teacher models is trained on disjoint subsets of sensitive data, and their aggre-
gated outputs are used to supervise a student model on a separate, public or
non–sensitive dataset. The aggregation mechanism, often combined with DP,
ensures that individual data points in the teachers’ training sets are protected
during student model training. However, while PATE provides strong privacy
guarantees for the training data of teacher models, the student model itself
may still access private or auxiliary data during training, which introduces a
potential vulnerability to privacy leakage. Moreover, if the student model is
later fine–tuned or deployed in settings where it encounters sensitive data, the
absence of built–in privacy protections during this phase can further compro-
mise privacy. Additionally, several model compression frameworks have been
explored in the context of differential privacy, including Differentially Private
Knowledge Distillation (DPKD) and Differentially Private Iterative Magnitude
Pruning (DPIMP), as discussed in [Mir+22]. In the DPKD approach, tradi-
tional knowledge distillation is applied, where both the teacher and student
models are trained using DPSGD. The authors also emphasize the significance
of random initialization for the student model to ensure effective learning un-
der privacy constraints. In the DPIMP approach, the authors integrate mag-
nitude–based pruning with DPSGD, resulting in a more efficient compressed
model. Their results indicate that the pruning–based strategy outperforms the
distillation–based approach in terms of model utility. However, in our work, we
compare both approaches and demonstrate that our proposed method achieves
superior performance, balancing both privacy guarantees and model utility
more effectively.

Addressing both model compression techniques to reduce inference time and
ensuring that these models remain privacy–preserving presents a significant
challenge. While methods such as pruning, knowledge distillation, and quan-
tization effectively reduce computational costs, they may inadvertently expose
models to privacy risks, such as information leakage or membership inference
attacks. Balancing efficiency and privacy remains an open problem, requiring
novel techniques that integrate compression with robust privacy–preserving
mechanisms. In this chapter, we explore strategies to achieve this balance,
ensuring that the models maintain both low–latency performance and strong
privacy guarantees, making LLMs practical, secure, and scalable in real–world
applications.

We chose to work with BERT models in this study because they serve as
the foundational models with a relatively smaller architecture, making them
easier to interpret and analyze. While more recent models, such as LLaMA,
offer advanced capabilities, their significantly larger size introduces additional
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BERT Masked Language Model

Sweden is in[MASK] winters[CLS] [SEP]

Sweden is incold winters[CLS] [SEP]

INPUT

OUTPUT

cold, dark, beautiful... cold has the highest probability

Figure 5.1: BERT Model

complexity, making it challenging to examine their internal mechanisms. How-
ever, since both BERT and LLaMA models are based on the transformer ar-
chitecture and rely on attention mechanisms for language understanding, the
proposed approach is expected to be applicable to LLaMA models as well. We
describe the traditional BERT model as follows.

5.2 BERT Model

BERT (Bidirectional Encoder Representations from Transformers) [Dev18] is
a deep learning model developed by Google that has revolutionized Natural
Language Processing (NLP) by introducing a bidirectional approach to under-
standing the text. Unlike traditional language models that process text in a
left–to–right or right–to–left manner, BERT reads entire sequences of words
at once, capturing contextual relationships from both directions. This bidirec-
tional training enables BERT to understand the meaning of words in context,
improving tasks like question answering, text classification, and named entity
recognition. BERT is pre–trained on massive corpora using a masked language
model (MLM) objective, where random words in a sentence are masked and the
model learns to predict them based on surrounding context, making it highly
effective in transfer learning for various NLP tasks.

Figure 5.1 illustrates the core idea behind BERT’s MLM objective. In this
approach, a portion of the input tokens is randomly replaced with a special
[MASK] token during pre–training. For example, in the sentence “Sweden is
[MASK] in winters”, the model is tasked with predicting the original word
(cold) that was masked, using the context provided by the surrounding words.
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As shown in the figure, the input tokens are first fed into the BERT model,
which processes them using multiple transformer layers. The output layer then
attempts to predict the most likely token to replace the masked word, leveraging
bidirectional context. In this case, the model assigns the highest probability
to “cold”, among other possible tokens like “dark”or “beautiful”. This masked
language modeling enables BERT to learn deep contextual embeddings for
words, allowing it to generalize effectively across downstream NLP tasks.

The architecture of BERT is based on the Transformer model, specifi-
cally utilizing multiple layers of self–attention and feedforward neural net-
works. It comes in different sizes, with BERT–base consisting of 12 trans-
former layers and 110 million parameters, while BERT–large has 24 layers and
340 million parameters. The model is fine–tuned on specific NLP tasks by
adding task–specific layers on top of its pre–trained representations. During
fine–tuning, BERT adjusts its weights to optimize for the given task, ensuring
adaptability across diverse language applications. Due to its bidirectional na-
ture and deep representation learning, BERT has set new benchmarks for NLP,
significantly improving the performance of models in understanding complex
linguistic structures.

5.3 Approach 1: Task–Specific Knowledge Dis-
tillation with DP

To reduce model inference time while ensuring strong privacy guarantees, we
propose our first methodology titled Task–Specific Knowledge Distillation with
Differential Privacy. We leverage Knowledge Distillation (KD) (as discussed
in Chapter 2) as a model compression technique to transfer knowledge from
a large teacher model to a more efficient student model while preserving data
privacy through DP. KD is particularly suitable for our objective as it enables
model compression, knowledge transfer, and improved generalization of the stu-
dent model. While traditional KD has been extensively studied, it often over-
looks task–specific features, motivating our task–specific distillation approach
that aligns student learning with the end–task objectives for improved perfor-
mance. To address the limitation of conventional knowledge distillation–where
the student may learn generic features not optimized for the end task, we em-
ploy Task–Specific Knowledge Distillation, where the teacher model is trained
on a particular task, allowing the student model to capture domain–relevant
knowledge effectively. This targeted approach enhances the student model’s
performance beyond conventional knowledge distillation techniques.

Thus, our proposed methodology aims to construct a privacy–preserving
model with enhanced task–specific performance. The process begins with
preparing a general teacher model, specifically a pre–trained BERT model
fine–tuned on data similar to the target dataset. Next, knowledge distillation
is applied to derive a general student model, capturing essential knowledge in a
compressed form. The general teacher model is then fine–tuned using Differen-
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Source Data
(Public Corpus)

Target Data
(Private Data)
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General Student Fine-Tuned Student
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1. Distillation

2. TL & Fine-Tuning

Private
 Training 

3. Initialization

4. Private
Task-Specific
Distillation

Figure 5.2: Overview of TSKD : Task–Specific Knowledge Distillation with
Differential Privacy framework. Each step of the framework is elaborated in
corresponding sections of our methodology (e.g., Step 1 in Section 5.3.1)

tially Private Stochastic Gradient Descent (DPSGD) with task–specific data,
ensuring adaptability while preserving privacy guarantees. Following this, the
student model is initialized with the parameters of the distilled general student
model. Finally, task–specific knowledge distillation is performed, leveraging
DPSGD to transfer distilled knowledge from the fine–tuned teacher model to
the initialized student model. This iterative process enables the student model
to acquire task–specific knowledge while maintaining strong privacy protection,
making it suitable for privacy–sensitive applications. The detailed steps of this
methodology are elaborated in subsequent sections, with a step–by–step pro-
cedure outlined in Algorithm 12. The notations used in the Algorithm 12 are
summarized in Table 5.1.

5.3.1 Preparation of General Teacher Model

The first step involves preparing a general teacher model, which serves as
the foundation for subsequent stages. We select a pre–trained BERT model
fine–tuned on a task similar to the target task of interest. This model, referred
to as the general teacher model, leverages transfer learning by encapsulating
valuable knowledge from a related domain. Next, we perform knowledge distil-
lation to derive a general student model, which compresses the essential knowl-
edge and patterns learned by the general teacher model into a more efficient
representation. This step is illustrated in Step 1 of Figure 5.2.
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Algorithm 12 TSKD : Task–Specific Knowledge Distillation with DP

Require: Pre–trained teacher model θteacher, task–specific data, ϵ, δ
Ensure: Student model |θstudent| < γ · |θteacher| & θstudent are (ϵ, δ)–DP

Step 1: General Teacher Model
1: Take a pre–trained teacher model with θteacher on source task
2: θgeneral student ← Distill(θteacher)

Step 2: Private Fine Tuning
3: for each mini–batch Xi in task–specific data do
4: Compute gradients: ∇L(θteacher, Xi)
5: Clip gradients: ∇clipped ← clip(∇L(θteacher, Xi), clip value)
6: Add noise: ∇noisy ← ∇clipped + noise(ϵ1,noise scale)
7: Update parameters: θteacher ← θteacher − learning rate×∇noisy

8: end for
Step 3: Initialization of Student Model

9: θstudent ← θgeneral student
Step 4: Private Task Specific Distillation

10: for each mini–batch Xi in task–specific data do
11: Compute gradients: ∇L(θstudent, Xi)
12: Clip gradients: ∇clipped ← clip(∇L(θstudent, Xi), clip value)
13: Add noise: ∇noisy ← ∇clipped + noise(ϵ2,noise scale)
14: Update parameters: θstudent ← θstudent − learning rate×∇noisy

15: end for

5.3.2 Private Fine–tuning of General Teacher Model

After selecting the general teacher model, it undergoes fine–tuning to enhance
its performance and adaptability for the target task. Since the target task
involves sensitive personal data, it is crucial to fine–tune the model while
preserving privacy. To achieve this, we utilize DPSGD optimizer, which en-
sures privacy protection by applying gradient clipping and noise addition dur-
ing parameter updates. These mechanisms control the influence of individual
data points and introduce stochastic noise, thereby safeguarding privacy. The
fine–tuning process requires a privacy budget of (ϵ1, δ1) from the total budget
(ϵ, δ). This step is visually represented in Step 2 of Figure 5.2. By fine–tuning
with DPSGD, the model effectively adapts to the target task while maintain-
ing strong privacy guarantees, achieving a balance between utility and privacy
preservation.

5.3.3 Initialization of Student Model

After fine–tuning the teacher model, the student model is initialized using
the parameters obtained from the previously distilled general student model.
Since this initialization is derived from a publicly pre–trained model, the as-
sociated privacy cost is zero. This step is visually represented in Step 3 of
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Figure 5.2. The initialization serves as a crucial foundation for the subse-
quent task–specific knowledge distillation process. By leveraging knowledge
distilled from the teacher model, the student model inherits essential insights
and patterns, providing a well–informed starting point for further refinement
and adaptation to the target task. While prior research has predominantly
focused on initializing the student model with the teacher model’s weights to
improve accuracy [Mir+22], in our approach–initializing from the distilled stu-
dent model demonstrates superior performance.

5.3.4 Private Task–Specific Knowledge Distillation

The final step involves private task–specific knowledge distillation, where the
fine–tuned teacher model transfers its distilled knowledge to the initialized stu-
dent model, as illustrated in Step 4 of Figure 5.2. To ensure private training,
we employ DPSGD allowing the student model to learn from task–specific
data while maintaining privacy guarantees. This process consists of comput-
ing gradients, clipping them to prevent large updates, adding noise for privacy
preservation, and iteratively updating the student model’s parameters. The
privacy cost incurred during this step is (ϵ2, δ2) from the total budget. By
distilling task–specific knowledge from the fine–tuned teacher model under dif-
ferential privacy constraints, the student model effectively adapts to the target
task while adhering to strict privacy–preserving protocols.

5.3.5 Privacy Analysis

We now conduct a privacy assessment of our framework.

Theorem 4. The student model parameters θstudent obtained from Algorithm 12
are (ϵ, δ)–DP with ϵ = ϵ1 + ϵ2 and δ = δ1 + δ2. Here (ϵ1, δ1) are the privacy
parameters consumed in Step 2 and (ϵ2, δ2) are those consumed in Step 4 of the
Algorithm.

Proof. Our aim is to ensure that the Algorithm 12 guarantees (ϵ,δ)–DP for the
sample data D. In the first step, the teacher model is a pre–trained model from
a public dataset. So, it doesn’t incur any privacy loss. In the next step, the
teacher model is privately fine–tuned with access to the private database. It
upholds a privacy budget of (ϵ1,δ1)–DP. In step 3, student model is initialized
from open domain models, so it doesn’t introduce an additional privacy loss.
Finally, in the last step task–specific distillation is performed using the private
database and the previously trained private teacher model from Step 2. This
step fine-tunes the student model and requires an additional privacy budget
of (ϵ2,δ2)–DP, since it involves accessing the private data again. Thus, the
resultant student model parameters θstudent distilled from teacher model are
privacy preserving with a privacy budget of (ϵ,δ) obtained via a composition
of (ϵ1,δ1) and (ϵ2,δ2).

This completes the proof.
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Table 5.1: Notations

θteacher teacher model parameters
θstudent student model parameters
ϵ privacy loss parameter
δ probability of privacy guarantee being violated
γ scaling factor (level of compression)
(ϵ1, δ1) privacy budget for private fine–tuning of teacher model
(ϵ2, δ2) privacy budget for task–specific knowledge distillation

5.4 Experimental Setup

In this section, we first discuss the datasets we used, the baseline models for
comparison, the privacy budget and hyper–parameters of our methodology.

5.4.1 Source and Target Data

We describe the datasets and task that are considered for experimentation. We
have used GLUE benchmark [Wan+18] for our evaluation that is an evaluation
benchmark designed to measure the performance in NLP. Many existing stud-
ies including [Li+21; Mir+22] used them in their frameworks. We used few
of the following tasks from GLUE: SST–2 (Single–Sentence text classification
task), RTE (Recognizing textual entailment), QNLI (Question–answering NLI),
COLA (Corpus of Linguistic Acceptability) and MRPC (Microsoft Research
Paraphrase Corpus). Our selection spans a diverse array of tasks, varying in
the number of training examples. Notably, QNLI boasts the largest training
set with 104K examples, whereas RTE contains 2K examples, representing the
smallest training dataset in our experimentation.

Our methodology incorporates transfer learning [PY09], where a model is
first pre–trained on a source task and then fine–tunes it for the target task. This
approach facilitates the transfer of information, patterns, and representations
learned from the source data to the new training process, improving efficiency
and performance. Transfer learning can be applied in both same–domain and
cross–domain scenarios. In same–domain transfer learning, the source and
target domains are closely related, whereas cross–domain transfer learning is
used when limited knowledge about the target domain is available. Given that
we had sufficient knowledge about the target task, we opted for same–domain
transfer learning, specifically Inductive Transfer Learning. In this approach,
while the source and target domains remain similar, the tasks performed may
differ, allowing the model to leverage domain–specific knowledge effectively.

Initially, we utilize pre–trained models that have been fine–tuned on tasks
similar to the downstream target task. Selecting an appropriate source task for
pre–training is critical to achieving optimal performance in the target task, as
it ensures that the features learned during pre–training are relevant and trans-

107



ferable. For example, when working with QNLI (a large question–answering
dataset) as the target task, we chose SST–2 (a sentence classification task) as
the source task for pre–training. Similarly, for SST–2 as the target task, we
selected MRPC (Microsoft Research Paraphrase Corpus) as the pre–training
task. For RTE (Recognizing Textual Entailment) as the target task, we used
WNLI (a reading comprehension task) as the source task. Pre–training on a
dataset from the same domain or a closely related domain allows the model
to capture domain–specific nuances, which can significantly enhance its per-
formance on the target task. By leveraging large–scale and diverse datasets
for pre–training, the model learns rich linguistic representations that can be
effectively transferred to downstream tasks, improving generalization and ro-
bustness.

5.4.2 Baselines

We conducted a comprehensive comparison of our proposed methodology with
several baseline models. The baseline models include state–of–the–art mod-
els, such as the BERT–base [Dev18], which consists of 12 transformer lay-
ers, the BERT–tiny model [Tur+19] with 6 transformer layers, and the Dis-
tilBERT model [San+19], which is a distilled version of BERT–base. All of
these pre–trained models were fine–tuned on our target tasks under both pri-
vacy–preserving and privacy–agnostic setups. This approach ensures a fair
comparison between our methodology and baseline models, including those
that do not incorporate privacy–preserving mechanisms.

5.4.3 Privacy Budget and Hyper–parameters

To compare our work with the closely existing work [Mir+22], we adopted the
same privacy budget as they used i.e., ϵ = 1, and δ = 1

N , where N is the
number of samples in the dataset. We allocated a privacy budget of (ϵ1, δ1)
for fine–tuning the teacher model, followed by (ϵ2, δ2) for task–specific knowl-
edge distillation. The overall privacy budget utilized was (ϵ, δ) = (1, 1N ). We
experimented with a learning rate of 10−5, batch size = 64, maximum epochs
= 10. The rate of compression in knowledge distillation is controlled by two
parameters: α (weighting factor) and temperature (softmax temp). α provides
a balance between student’s own loss and distillation loss (KL loss). Higher
alphas put more emphasis on mimicking teacher’s prediction, whereas lower al-
phas give more weight to student’s own prediction. In our experiments, we used
α = 0.5. Parameter temperature controls softening the teacher’s probability
before it is used to train the student. Higher value leads to softer probability
distribution making training less reliant on hard targets, whereas lower values
leads to sharper probability. We used temperature value of 5 in our experi-
ments. The experimentation were performed on Google Colab with Intel Xeon
CPU and 13GB of RAM. The GPU used was NVIDIA Tesla K80 with 12 GB
of VRAM.
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Table 5.2: Comparison of our approach TSKD with 12–layer BERT
(BERT–base) and 6–layer BERT (BERT–tiny) which are fine–tuned using
DPSGD with privacy budget ϵ =1.

Model Training Teacher Num-Params SST–2 RTE QNLI COLA Avg

BERT–base DP–Finetune - 109M 92.20 59.56 87.8 81.30 80.21
BERT–tiny DP–Finetune - 5M 78.89 55.23 81.42 69.12 71.16
BERT–tiny TSKD BERT–base 5M 86.23 59.92 83.17 72.38 75.42

5.5 Results and Discussion

We now present the results obtained from our methodology and provide a
detailed discussion on their implications.

5.5.1 A Comparative Analysis with Differentially Private
Fine–tuned Models

We conducted experiments on our proposed approach, Task–Specific Knowl-
edge Distillation (TSKD), using BERT–base as the general teacher model,
which was subsequently distilled into a general student model (BERT–tiny).
The evaluation was performed on four different datasets, as previously de-
scribed, to measure model accuracy. To assess the effectiveness of TSKD, we
compared its performance against pre–trained baseline models–BERT–base and
BERT–tiny, both fine–tuned using DPSGD on the four target datasets. This
comparison aimed to determine how well our proposed compression approach
preserved accuracy while ensuring privacy. For a fair comparison with existing
studies, we used a privacy budget of ϵ = 1 for fine–tuning both the baseline
models and our TSKD approach. A lower privacy budget provides stronger
privacy guarantees but comes at the cost of reduced model utility.

The results are summarized in Table 5.2. When fine–tuning the BERT–base
model with DPSGD, we achieved an accuracy of 92.2% on the SST–2 dataset.
In contrast, our proposed TSKD approach attained an accuracy of 86.23%,
demonstrating a slight trade–off in performance. Whereas, when fine–tuning
the BERT–tiny model (which also serves as our student model) using DPSGD
with the same privacy budget, we obtained an accuracy of 78.89% on SST–2
dataset. This analysis highlight that TSKD significantly reduces model size–from
109 million parameters (BERT–base) to 5 million parameters–while sacrificing
only 6% accuracy compared to the privacy–preserving fine–tuned BERT–base
model. This demonstrates the efficacy of our approach in achieving a trade–off
between model compression, privacy preservation, and performance.
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Table 5.3: Comparison of our approach TSKD with BERT–base and
BERT–tiny which are fine–tuned without preserving privacy

Model Training Teacher Num-Params SST–2 RTE QNLI COLA Avg

BERT–base Finetune - 109M 92.31 61.01 87.9 80.72 80.48
BERT–tiny Finetune – 5M 79.93 58.48 81.96 69.12 72.37
BERT–tiny TSKD BERT–base 5M 86.23 59.92 83.17 72.38 75.42

Table 5.4: Comparison of our approach TSKD with 6–layer DistilBERT which
is fine–tuned without and with DP

Model Training Teacher Num-Params SST–2 RTE QNLI COLA Avg

DistilBERT Finetune - 66M 90.90 59.12 87.33 81.49 79.71
DistilBERT DP–Finetune - 66M 90.71 58.12 88.46 77.08 78.59
DistilBERT TSKD BERT–base 66M 89.90 60.35 84.29 68.16 75.67

5.5.2 A Comparative Analysis with Fine–tuned Models
in a Privacy–Agnostic Context

We also conducted a comparative analysis of our proposed approach against
non–private models. Privacy–preserving techniques often introduce a trade–off
between privacy and utility. In scenarios where maximizing the model utility is
the primary objective, privacy constraints may not be desirable. To assess this
trade–off, we fine–tuned the same pre–trained models, specifically BERT–base,
on downstream tasks without applying any privacy–preserving techniques. This
resulted in an accuracy of 92.31% on the SST–2 dataset, which is marginally
higher than the accuracy achieved with the differentially private fine–tuned
model. In contrast, our proposed approach, TSKD, achieved an accuracy of
86.23%. This indicates that by sacrificing only 6% of model accuracy, one
can obtain a differentially private model. These results, summarized in Ta-
ble 5.3, which also aligns with prior research findings, which suggest that large
pre–trained models fine–tuned using DPSGD can achieve performance compa-
rable to non–private models [Mir+20; Meh+22].

5.5.3 Initialization of Student Models with Pre–Distilled
Models

We further examined whether improved initialization of student models en-
hances performance. In this experiment, as presented in Table 5.4, we ini-
tialized the student model with a pre–distilled DistilBERT model instead of
BERT–tiny. When this initialized student model was incorporated into our
TSKD approach, we observed an improvement in model accuracy, achieving
89.90%. To provide a comprehensive comparison, we also directly fine–tuned
the DistilBERT model on the target tasks, both with and without DPSGD.
The resulting accuracies were 90.90% (without DPSGD) and 90.71% (with
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Figure 5.3: Comparison of Model Performance on SST–2 Dataset: We plot the
accuracy of BERT–base, DPKD, and our TSKD approach (ϵ = 1) against the
number of parameters.
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DPSGD), respectively. These results indicate that our proposed approach
TSKD with DP achieves performance comparable to non–private learning while
maintaining strong privacy guarantees. Additionally, our method performs
competitively against standard baseline models, such as BERT–base, high-
lighting its effectiveness in privacy–preserving model compression.

The Figure 5.3 illustrates the performance of various models on the SST–2
dataset concerning accuracy versus the number of parameters. Three primary
models are compared: BERT family models, DPKD [Mir+22], and our pro-
posed approach TSKD with ϵ equal to 1. Each model’s accuracy is plotted
against the number of parameters, showcasing their relative performance. Er-
ror bars represent the variability in accuracy for our model. Additionally,
three specific points on the BERT–base curve are labeled as BERT–tiny, Dis-
tilBERT, and BERT–base, indicating performance benchmarks. It depicts that
our approach is significantly better than existing works, and even comparable
to non–private state–of–the–art models.

5.6 Revisiting Model Compression: Beyond KD

The proposed TSKD approach achieves performance comparable to both pri-
vate and non–private baselines while significantly reducing the model size by
95%. However, there remains a scope for further improvement. Firstly, this
approach is task–specific. While it demonstrates effectiveness across multiple
tasks, it may not generalize well to all tasks, as it is not a universally applica-
ble method. Developing a more generalized framework that adapts to a wider
range of tasks could enhance its applicability. Secondly, prior research suggests
that model pruning can, in some cases, yield better performance than knowl-
edge distillation [Mir+22]. Given this insight, we now explore the potential
benefits of pruning as an alternative to this method.

We specifically focus on structural pruning, which involves removing en-
tire filters or structural components from the neural network. Unlike unstruc-
tured pruning, which removes individual weights and often requires specialized
hardware for efficient execution, structural pruning offers better hardware ef-
ficiency and is more suitable for deployment on real–world systems [HX23]. It
is particularly effective for compressing large networks where significant reduc-
tions are needed, whereas unstructured pruning is more appropriate for smaller
models requiring fine–grained adjustments without altering the overall struc-
ture. Structural pruning can be achieved through various techniques, including
L1–based pruning [Han+15], which eliminates the parameters based on their
magnitude, first–order importance estimation [Hou+20], which ranks compo-
nents based on their contribution to the loss function, Hessian–based tech-
niques [Kur+22], which consider second–order information to determine prun-
ing importance, and the Optimal Brain Surgeon method, which removes pa-
rameters based on their impact on the network’s overall loss. Different studies
have explored various pruning strategies, targeting different units of the model,
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such as entire layers, multi–head attention mechanisms, or feed–forward lay-
ers. We chose structural pruning because it aligns well with hardware–friendly
optimizations, ensuring that the pruned model remains computationally effi-
cient and easier to deploy on resource–constrained environments. Furthermore,
structural pruning results in models that are easier to fine–tune post–pruning,
maintaining a balance between efficiency and task performance.

Pruning can also be thought of as analyzing the notion of redundancy in
the transformer models, which could be layer–level redundancy or neuron–level
redundancy [Dal+20]. LLM–Pruner [MFW23] computed the importance of
channel–wise weights to perform structural pruning and then fine–tuned the
pruned model using LoRA. However, each channel may contain crucial infor-
mation and pruning them can degrade the performance. Also, they didn’t
consider if any sensitive data was used in training, and its privacy implica-
tions. Sparse–GPT [FA23] performed unstructured pruning on weights, while
compensating for weights that are not pruned. They performed one–shot prun-
ing, but many research works demonstrate that fine–tuning with LoRA saves
computational time and efficiency. LLM–Streamline approach [Che+24] per-
forms pruning and removes redundant layers by computing cosine similarity
and then a lightweight network is trained to replace the pruned layers. How-
ever, we show that fine–tuning is more efficient than re–training, and also no
privacy parameters were considered, which is an essential component for our
approach.

However, pruning techniques present several challenges, some of which we
aim to address in the new approach. These challenges include:

Complexity of Optimal Pruning. Determining which weights or neu-
rons to prune is complex. Strategies like magnitude–based pruning, where
weights with small magnitudes are removed, might not always capture the most
important parameters. More sophisticated techniques, such as those based on
sensitivity analysis or learned pruning, require additional computational re-
sources and can be more difficult to implement.

Overhead of Post–Pruning. Following model pruning, it is often neces-
sary to retrain or fine–tune the model to restore any lost performance. Also,
privacy is still a critical issue, as models can memorize and unintentionally
expose sensitive information from the training data. While the literature
has largely overlooked privacy–preserving strategies during this phase, our
approach addresses this gap by exploring effective techniques for secure and
private fine–tuning after pruning.

5.7 Approach 2: PrunePrivyTune With DP

We now present our methodology: PrunePrivyTune. We divide it into three
main components: efficient pruning, private fine–tuning and data synthesis
with the fine–tuned model. We conceptualize pruning as the removal of redun-
dant layers in the model using pairwise cosine similarity. Firstly, we extract
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Figure 5.4: PrunePrivyTune: An Approach For Efficient Pruning and Private
Fine–Tuning

the hidden states of the model, and compute the pairwise cosine similarity
between these states. We then find the average pairwise cosine similarity
and prune layers based on it. This leads to information loss, so to mitigate
the potential loss of information, the model should be either re–trained or
fine–tuned. Given that re–training can be computationally intensive, we opt
for fine–tuning, and we fine–tune the pruned model with the task of interest in
a privacy–preserving manner, using DPSGD. Now, we generate the synthetic
data with the fine–tuned model to assess privacy vulnerabilities. We perform
training data extraction attack and assess whether the model memorized train-
ing data and has the capability to regenerate it or not. The methodology is di-
agrammatically depicted in Figure 5.4 with step by step explanation described
in the next sub–sections.

5.7.1 Pruning

The objective of pruning is to minimize the redundancy in the model while
maintaining similar performance. The idea is that if two consecutive layers are
very similar, one of them might be redundant and can be pruned. This method
emphasizes incremental knowledge changes across layers. Let L be the set of
all layers in the model. For each pair of consecutive layers (ℓ, ℓ+1), the cosine
similarity is denoted by cos-sim(x(ℓ),x(ℓ+1)), where x(ℓ) denotes the ℓ-th hidden
state. The objective function is to minimize the sum of cosine similarities for
the pruned layers, subject to the constraint that the pruned model maintains a
performance metric P within a threshold ∆ of the original model’s performance
P0. Formally, the optimization problem can be written as:

min
S⊆L

∑
ℓ∈S

1

2

(
cos-sim(x(ℓ), x(ℓ+1)) + cos-sim(x(ℓ), x(ℓ−1))

)
subject to P(S) ≥ P0 −∆

(5.1)

where S is the set of pruned layers, P(S) is the performance of the model after
pruning the layers in S, P0 is the original model’s performance and ∆ is the
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allowable degradation in performance. The step by step explanation of the
proposed methodology for pruning is found as follows.

Extract Hidden States

LLM mainly use a transformer architecture, which is made up of several trans-
former encoder–decoder layers. The effect of each layer can be analyzed as a
transformation of the previous hidden state. Importantly, these layers follow
a residual structure, meaning that instead of replacing the input with a new
value, each layer adds a learned transformation to the input, helping with gra-
dient flow and stability during training. The transformation performed at layer
ℓ can be expressed as:

x(ℓ+1) = x(ℓ) + f(x(ℓ), θ(ℓ)) (5.2)

In this equation, layer f(.) represents a transformation function applied at a
layer, and θ(ℓ) denotes the parameters of layer ℓ that define how f transforms
the input. Therefore, we can understand the importance of each layer in LLMs
by looking at how much it changes the input hidden states.

Compute Pairwise Cosine Similarity

To quantify the redundancy between two layers in a model, we compute the
cosine similarity between their corresponding hidden states (x, x′), which is
computed as follows:

cos-sim(x, x′) =

∑L
i=1

∑d
j=1 xi,j · x′

i,j√∑L
i=1

∑d
j=1(xi,j)2 ·

√∑L
i=1

∑d
j=1(x

′
i,j)

2
(5.3)

This metric captures the angular similarity between two activation matrices,
treating them as flattened vectors. A high cosine similarity indicates that the
two layers produce highly aligned representations, suggesting redundancy and
potential for pruning.

Identification of Redundant Layers

We define the redundancy metric to evaluate how similar each layer is to its
neighboring layers. To do this, we compute pairwise cosine similarity of each
layer ℓ and its adjacent layers ℓ−1 and ℓ+1. For a given layer ℓ, the average
cosine similarity is calculated as follows.

avg cosℓ =
1

2

(
cos-sim(x(ℓ−1), x(ℓ)) + cos-sim(x(ℓ), x(ℓ+1))

)
(5.4)

The average cosine similarity quantifies how similar the transformations are
between a given layer and its adjacent layers. A higher value indicates that the
layer has a higher degree of similarity with its neighbors, suggesting potential
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redundancy. Based on this, we define threshold–based pruning strategy. To
determine which layers to prune, set a threshold value τ for the average cosine
similarity. Layers with an average similarity above this threshold are considered
redundant. That is,

redundant layers = {ℓ | avg cosℓ > τ} (5.5)

where τ is the predefined threshold value. These identified layers are considered
candidates for pruning, as they offer limited unique transformation and can be
removed with minimal impact on the model’s overall capacity.

Prune Redundant Layers

In this step, the pruning procedure is performed by removing the redundant
layers identified based on the computed average cosine similarity and adjusting
the connections between the preceding and succeeding layers to maintain the
model’s structural integrity. The proposed pruning method can be executed by
following the steps described above, as detailed in Algorithm 13. After pruning,
the model undergoes fine-tuning to recover potential performance loss due to
layer removal. This step ensures that the compressed model retains predictive
capability while benefiting from reduced complexity and improved efficiency.

5.7.2 Private Fine–Tuning

After pruning, the model may suffer from information loss and performance
degradation. To mitigate this, the model needs to be either re–trained or
fine–tuned. Fine–tuning is generally preferred over re–training because it is
computationally more efficient and leverages pre–learned features, resulting in
faster convergence. Several fine–tuning techniques allow updating pre–trained
models without modifying all the weights. One widely used method is LoRA
(Low–Rank Adaptation) [Hu+21], which introduces low–rank decomposition
matrices within each dense layer. This approach significantly reduces the num-
ber of trainable parameters compared to full fine–tuning while maintaining
model effectiveness. Due to its efficiency and scalability, LoRA is the preferred
technique for our fine–tuning process.

However, fine–tuning carries the risk of memorizing the training data, as
models can inadvertently learn and store specific data points. To mitigate this
risk, differential privacy can be applied, which helps prevent data memorization
and reduces the potential for privacy leakage. Since fine–tuning is performed on
sensitive target data, incorporating DP is essential to ensure privacy protection.
To address this, we propose DP–LoRA fine–tuning, a method for privately
fine–tuning the pruned model on sensitive target tasks. LoRA is particularly
effective in this setting because it updates only a small subset of parameters
instead of fine–tuning the entire model. Specifically, instead of updating the
full weight matrix W, LoRA introduces low–rank matrices L and R such that
the updated weight matrix becomes: W + LR. During fine–tuning, only the
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matrices L and R are updated, significantly reducing the number of trainable
parameters. This improves computational efficiency, especially when combined
with DPSGD.

In prior research on privacy–preserving training of LLMs, the entire set
of weights were typically updated under DP constraints [Mir+22]. However,
this approach is computationally expensive and often results in suboptimal
performance when used with DPSGD. In contrast, fine–tuning a subset of pa-
rameters with DPSGD is generally more effective than re–training the full
model with DP. There is limited research on privacy–preserving fine–tuning
with LoRA, highlighting the novelty and potential advantages of our approach.
The step–by–step methodology of DP–LoRA fine–tuning is detailed in Algo-
rithm 14. Unlike traditional LoRA, which updates only the low-rank matrices
L and R, our approach additionally applies gradient clipping and Gaussian
noise to these updates, limiting the influence of individual training samples
and providing formal privacy guarantees. This makes the fine–tuning pro-
cess privacy–preserving while still benefiting from LoRA’s parameter efficiency.
Furthermore, by focusing on low–rank updates, our method achieves a bal-
ance between privacy protection and model efficiency, making it well–suited
for large–scale models. This approach significantly reduces the computational
overhead compared to traditional DP methods, without sacrificing model per-
formance.

5.7.3 Data Synthesis using the Fine–Tuned LLM

Transformer models are known for their tendency to memorize the training
data, making the application of DP essential to mitigate the risk of unintended
data leakage. After fine–tuning the model with DP, we assess privacy risks by
generating synthetic data and evaluating whether the fine–tuned model mem-
orizes and inadvertently regenerates its training data. While auto–regressive
language models are commonly used for text generation, recent advancements
have demonstrated the effectiveness of masked language models (MLMs), such
as BERT. In this approach, text is generated by iteratively predicting masked
tokens and refining outputs. Specifically, MLMs predict masked tokens in an
input text, and least likely predictions are re–masked and refined in successive
iterations [Gha+19]. This technique has shown promising results in machine
translation and other NLP tasks.

Inspired by this methodology, we employ a fine–tuned BERT model as MLM
for synthetic data generation. The process begins by selecting input sentences
from the target task and randomly masking a portion of the tokens. The model
then predicts these masked tokens using top–k sampling, which introduces di-
versity by selecting one of the top–k most probable tokens for each masked
position. Least likely predictions are iteratively re–masked and refined until
all masked tokens are replaced, yielding a complete sentence. By repeating
this process across a large number of sentences, a diverse and high–quality
synthetic dataset is generated. To assess the privacy risks associated with the
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Algorithm 13 Pruning Redundant Layers in a Model

Require: Model M, DataLoader D, Threshold τ , Performance Function P,
Max Degradation ∆

Extract Hidden States(M, D):
1: Initialize hidden states H = [ ]
2: for each batch in D:
3: x← batch[ input ids]
4: outputs ← M(x, output hidden states=True)
5: hidden states ← outputs hidden states
6: Append hidden states to H
7: end for
8: Return H

Compute Cosine Similarity(H ):
9: Initialize pairwise cosine similarity C = [ ]

10: for sample in H
11: for ℓ = 1 to L− 1
12: Append cos-sim(x(ℓ), x(ℓ+1)) to C[ℓ]
13: end for
14: end for
15: Return C

Identify Redundant Layers(C, τ):
16: Initialize redundant layers = ∅
17: for ℓ = 1 to L
18: avg cosℓ =

1
2

(
cos-sim(x(ℓ−1), x(ℓ)) + cos-sim(x(ℓ), x(ℓ+1))

)
19: If avg cosℓ > τ then
20: Add ℓ to redundant layers
21: end if
22: end for
23: Return redundant layers

Prune Layers(M, C, τ , P, ∆):
24: Initialize P0 ← P(M), pruned layers S = [ ]
25: for ℓ = 1 to L− 1
26: If C[ℓ] > τ then
27: Prune layer ℓ+ 1 from M, append to S
28: Pnew ← P(M)
29: If Pnew < P0 −∆ then
30: Restore layer ℓ+ 1 to M, remove from S, BREAK
31: end if
32: end if
33: end for
34: Return M,S
35: main():
36: H ← Extract Hidden States (M, D)
37: C ← Compute Cosine Similarity (H )
38: redundant layers ← Identify Redundant Layers (C, τ)
39: Return Prune Layers(M, C, τ , P, ∆)
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Algorithm 14 DPSGD LoRA Fine–Tuning

Require: Weight matrix W , Low–rank matrices L and R, η, Noise scale σ,
Clipping norm C, Dataset D, ϵ

1: Initialize L and R with small random values
2: for each minibatch B ⊂ D do
3: Compute gradients for L and R:

∇LB ,∇RB ←
1

|B|
∑
i∈B

∇Li,∇Ri

4: Clip gradients to norm C:

∇LB ←
∇LB

max(1, ∥∇LB∥2

C )
, ∇RB ←

∇RB

max(1, ∥∇RB∥2

C )

5: Add noise to the gradients:

∇̃LB ← ∇LB +N (0, σ2C2I), ∇̃RB ← ∇RB +N (0, σ2C2I)

6: Update L and R using noisy gradients:

L← L− η∇̃LB , R← R− η∇̃RB

7: end for
8: Return updated weight matrix W + LR

synthetic data, we compare it with the real dataset using training data extrac-
tion attacks. This evaluation helps determine whether the fine–tuned model
inadvertently memorizes and regenerates sensitive training samples, ensuring
that DP effectively mitigates privacy risks.

5.7.4 Privacy Analysis of PrunePrivyTune

We employ DP to safeguard sensitive data during model training, specifically
using a DPSGD optimizer. The privacy guarantee in DP is characterized by
the parameter ϵ. In our approach, the ϵ value directly corresponds to the ϵ
used in DPSGD. A crucial aspect of our methodology is that each training
example xi is utilized only once during the training process. This is important
because, in standard DP mechanisms, repeated use of the same data point leads
to cumulative privacy loss, a concept known as composition. However, since
each training example is used exactly once, there is no iterative exposure, and
thus no need to account for composition. Consequently, the privacy budget of
the whole process is also ϵ. Naturally, the same applies for privacy parameter
δ. This approach is similar to Local Differential Privacy [Jos+18], where each
user’s data is independently protected before being incorporated into the model.
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5.8 Privacy Risk Assessment

The AI models are vulnerable to various privacy attacks such as membership
inference attacks [Sho+17], model inversion attacks [FJR15], and training data
extraction attacks [Car+21]. We focus on evaluating the effectiveness of our
privacy mitigation strategy through the lens of the training data extraction
attack, as it is the most relevant and direct approach to assess our concerns. A
training data extraction attack is effective to find whether a language model has
memorized some portions of training data that could lead to privacy leakage.
This attack aims to reconstruct exact instances from the training data, instead
of producing similar or approximates instances. To provide a clear context, we
define memorization within the scope of language models, the threat model,
and evaluation of privacy attack as follows.

5.8.1 Memorization

To some extent, memorization is a natural byproduct of how language models
are trained. Language models are trained using maximum likelihood estima-
tion, where the objective is to predict the next word (or a missing word) by
maximizing the probability of the correct answer given the training data. To
achieve this, the model learns statistical patterns and relationships from the
dataset. However, in doing so, the model may also store and recall specific
training examples, especially if the data appears frequently or is overrepre-
sented.

When a dataset contains repeated patterns, the model may memorize them
to optimize its objective of maximizing likelihood and improving accuracy.
However, a more concerning issue arises when the model memorizes rare or
unique data points, especially if they contain sensitive information and appear
only once in the training set. If the model unintentionally reproduces such
unique samples, it indicates privacy leakage, as the model has learned some-
thing it was not intended to store or reveal.

5.8.2 Threat Model

We consider an adversary with black–box access to the model. This means the
adversary can compute the probability of arbitrary sequences fθ(x1, . . . , xn)
and generate text or obtain next–word predictions based on these probabilities.
However, the adversary does not have access to the model’s internal parame-
ters, such as the individual weights or hidden states (e.g., attention vectors).
This type of attack is highly realistic in real–world scenarios, especially con-
sidering that many language models, including GPT models, are often trained
on sensitive data. Through careful prompt engineering, an adversary can gen-
erate synthetic text that may inadvertently reveal sensitive information. This
risk highlights the importance of implementing robust privacy–preserving tech-
niques during model training. The adversary’s primary objective is to extract
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specific instances of memorized training data from the model. The effectiveness
of the attack is evaluated based on the sensitivity of the extracted information,
with the assumption that more sensitive or unique examples represent a greater
privacy risk. Consequently, the attack’s strength is measured by the degree of
privacy compromise, specifically focusing on how well the adversary can retrieve
highly private or unique training examples

5.8.3 Privacy Attack Evaluation

We utilize two evaluation measures to quantify privacy. The first is a natural
likelihood measure, the perplexity of a sequence, which quantifies how well the
language model predicts the given data [Car+21]. Specifically, given a sequence
of tokens x1, . . . , xn, the perplexity P is defined as:

P = exp

(
− 1

n

n∑
i=1

log fθ(xi | x1, . . . , xi−1)

)
(5.6)

For a sequence of tokens x1, x2, . . . , xn, the perplexity is computed by sum-
ming the log-likelihoods (i.e., the logarithm of the probability of each token xi

given its previous tokens) across the entire sequence. The average of these log-
likelihoods is then taken, and the exponential of this value gives the perplexity.
Perplexity captures the model’s uncertainty regarding the sequence, where a
lower perplexity indicates that the model assigns higher average probabilities
to the tokens in the sequence, suggesting the model is less surprised by the
sequence. This implies that the model has a stronger predictive capacity over
the given data.

Another key metric is BERTScore [Zha+20], which uses pre–trained contex-
tual embeddings from our fine–tuned model to measure the similarity between
candidate and reference sentences via cosine similarity. BERTScore correlates
well with human judgments at both sentence and system levels. It also cal-
culates precision, recall, and F1 scores, providing a nuanced evaluation of lan-
guage generation tasks.

5.9 Results and Discussion

We empirically evaluate the effectiveness of our approach PrunePrivyTune,
analyzing its impact through different aspects. We emphasized the importance
of pairwise cosine similarity metric that we used for our pruning in Section 5.9.1,
We also compared the effectiveness of re–training in Section 5.9.2, the impact
of pruning rate in Section 5.9.3, and the effect of DP in fine–tuning in Sec-
tion 5.9.4, with a comparison between training and fine–tuning in Section 5.9.5,
and a fair comparison with existing baselines in Section 5.9.6. We also discuss
the advantages of redundancy based pruning in Section 5.9.7 and analyze our
training data extraction attack in Section 5.9.8.
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5.9.1 Significance of Pairwise Cosine Similarity

We used pairwise cosine similarity metric in our proposed approach for identi-
fying redundant layers and then pruning them. It is essential to showcase the
efficiency of pairwise cosine similarity over traditional cosine similarity. So we
provide a fair comparison between them in Table 5.5. The cosine similarity
between consecutive hidden states ℓ and hidden state ℓ+ 1 is computed for all
layers. These similarity measures are then used to identify the least important
layers in the model. Higher similarity values between two consecutive layers
indicate minimal changes in information, suggesting that the layers are redun-
dant. As a result, such layers can be pruned without significantly affecting the
model’s performance.

We experimented with four different tasks, as mentioned earlier, and evalu-
ated model accuracy. The results in Table 5.5 demonstrate that pruning models
using pairwise cosine similarity leads to improved accuracy compared to using
just cosine similarity for pruning. Additionally, we analyzed the impact of pri-
vacy by comparing model performance with and without DP. Even when DP
is applied, models pruned using pairwise cosine similarity exhibit significantly
better accuracy than those pruned with regular cosine similarity. For experi-
ments involving DP, we set the privacy budget to ϵ = 1. The results show that
models pruned using pairwise cosine similarity consistently achieve higher ac-
curacy across all datasets compared to those pruned with standard cosine sim-
ilarity. Furthermore, LoRA fine–tuning improves model performance relative
to standard training, with the most significant improvements observed when
combining pairwise cosine similarity pruning with LoRA fine–tuning. When
DP is applied, this combination proves to be the most effective, as it maintains
high accuracy while ensuring privacy protection. These results raise an intrigu-
ing question: why does the accuracy of the tasks from our approach is
higher even with DP than without it? We hypothesize that this improve-
ment stems from the sequential application of pruning, DP mechanisms, and
fine–tuning. Pruning redundant layers using pairwise similarity first reduces
the number of parameters, ensuring that only the most impactful features are
retained. This simplification makes gradient clipping for DP more effective,
as it focuses on controlling the magnitude of updates for meaningful parame-
ters, preventing overly large updates that could dominate learning. With fewer
gradients to update, the noise added during the DP step is distributed over
a smaller set of critical parameters, reducing the effective noise per parame-
ter. This targeted application of noise acts as a regularizer, further aiding in
avoiding over–fitting to the training data. Finally, LoRA fine–tuning adapts
the model within a low–rank subspace which limits the degree of freedom and
ensures that the added DP noise minimally impacts meaningful updates. This
combination of pruning, DP noise, and LoRA not only focuses the learning
process on essential features but also facilitates more robust generalization,
yielding better utility even under the constraints of DP. These results are also
aligned with existing studies [SO17] that in some cases the prediction accuracy
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Table 5.5: Comparison of cosine similarity vs Pairwise-cosine similarity

Pruning Strategy Training DP SST-2 RTE MRPC COLA

Cosine Train - 88.75 62.45 80.21 77.93
Pairwise-Cosine Train - 91.05 64.62 82.84 78.14

Cosine LoRA Fine-Tune - 89.33 44.76 82.34 68.11
Pairwise-Cosine LoRA Fine-Tune - 91.97 47.29 83.71 69.12

Cosine Train Yes 88.72 46.93 60.65 62.48
Pairwise- Cosine Train Yes 90.11 49.09 63.33 64.21

Cosine LoRA Fine-Tune Yes 90.43 47.32 80.28 76.15
Pairwise-Cosine LoRA Fine-Tune Yes 92.31 49.45 82.37 79.70

improves because of the noise reduction effects of the condensation process.
When ML models are resistant to errors, some noise addition does not reduce
dramatically the accuracy of the model. in fact, adding noise may results into
models that are better from the point of view of generalization.

Figure 5.5 shows the heatmap between different BERT layers. It presents
the computation of pairwise cosine similarity between hidden states of layers
of BERT which includes 12 transformer layers and a embedding layer. The
color gradient of heatmap ranges from shades of red to blue, illustrating the
degree of similarity. Color red indicates higher similarity between layers which
suggests that consecutive layers are more alike, while color blue indicates lower
similarity between layers, suggesting greater differences between layers. This
visualization allows us to identify which layers produce similar representations
and which layers exhibit distinct characteristics, providing insights into the
internal structure and behavior of the BERT model across its various layers.

5.9.2 Comparative Analysis of Model Re–training: With
and Without Differential Privacy

We evaluate the impact of full model retraining following our proposed pruning
methodology. Instead of fine–tuning the pruned model, we retrain it from
scratch to recover any lost information. While this approach can potentially
restore model performance, it is significantly more computationally expensive
compared to fine–tuning.

Table 5.6 presents the results of retraining the pruned model across different
sparsity levels, ranging from 10% (sparsity = 0.1) to 30% (sparsity = 0.3). This
evaluation helps analyze the trade–offs between model size, performance, and
privacy. We further assess the impact of DP by comparing results with and
without DP, using a privacy budget of ϵ = 1 when DP is applied. As sparsity
increases from 0.1 to 0.3, a greater proportion of layers are pruned, reducing
model complexity and inference time. However, this also results in a slight
decline in accuracy across different tasks. For instance, in the SST–2 dataset,
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Figure 5.5: Pairwise Cosine Similarity between BERT layers

Table 5.6: Re–training the model with and without DP

Sparsity DP SST–2 RTE MRPC COLA Avg

0.1 - 91.05 64.62 82.84 78.14 79.16
0.2 - 88.79 59.92 84.06 78.14 77.72
0.3 - 84.60 61.73 82.35 73.92 75.65
0.1 Yes 90.11 49.09 63.33 64.21 66.68
0.2 Yes 88.99 50.54 67.64 54.74 65.47
0.3 Yes 83.66 61.73 68.13 65.12 69.66

accuracy drops from 91.05% at 0.1 sparsity to 84.60% at 0.3 sparsity when
retraining is performed without DP.

The introduction of DP further decreases accuracy beyond the effects of
sparsity alone. Interestingly, the impact of DP combined with higher sparsity
can be less severe compared to DP with lower sparsity levels. This suggests
that higher sparsity might mitigate some of the negative effects of DP. For ex-
ample, in the MRPC dataset, the accuracy with 0.1 sparsity and DP is 63.33%,
while with 0.3 sparsity and DP, it improves to 68.13%. In summary, there is
a trade–off between sparsity and model performance. Retraining the pruned
model from scratch offers a more thorough recovery of accuracy, but it is more
computationally demanding. Additionally, while DP reduces accuracy, its com-
bined effect with higher sparsity may sometimes result in better performance
than lower sparsity levels with DP.
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5.9.3 The Effect of Pruning Rate on Accuracy

Higher sparsity levels result in models with fewer parameters, simplifying their
structure and reducing the overall gradient magnitudes during training. This
reduction enhances the efficiency of DP, as fewer gradients are subjected to clip-
ping and noise addition. Notably, pruned models are inherently less sensitive to
noise, allowing DP–induced noise to function as an effective regularizer rather
than a source of distortion. By focusing updates on the most critical parame-
ters, sparsity improves the signal–to–noise ratio in gradient updates, enabling
the model to retain useful information even under DP constraints. Further-
more, pruning removes redundant parameters, reducing the risk of overfitting
and encouraging the model to prioritize essential features. This synergy be-
tween sparsity and DP leads to a more robust training process, where higher
sparsity levels help the model maintain its utility despite the privacy–preserving
modifications. This positive correlation between pruning rate and model per-
formance under DP is evident in Table 5.6 and aligns with findings from prior
studies [AP23], which observed improved test accuracy as the pruning rate
increased when models were trained with DP.

5.9.4 Comparative Analysis of Model Fine–Tuning: With
and Without Differential Privacy

Table 5.7 highlights the impact of our proposed methodology on model accuracy
by combining model compression with parameter–efficient fine–tuning. We ap-
plied the pruning strategy at various sparsity levels to reduce the model size and
then fine–tuned the pruned models using the LoRA (Low–Rank Adaptation)
method. The table captures the model’s accuracy across different tasks, both
when DP is applied (privacy–preserving) and when it is not (privacy–agnostic).
This comprehensive evaluation demonstrates how model sparsity and privacy
considerations influence the performance, providing insights into the trade–offs
between efficiency, privacy, and accuracy. It can be observed that higher spar-
sity levels lead to reduced accuracy in both private and non–private models.
However, the impact of increased sparsity is more severe in non–private mod-
els. Also, DP decreases model accuracy, but its impact is less severe at higher
sparsity levels. The added noise for privacy protection contributes to accuracy
loss, but this loss can be somewhat mitigated by higher sparsity. For example,
in RTE dataset, the accuracy drops from 47.29% to 46.57% without DP while
it just drops from 49.45% to 48.73% with DP. Trade–offs between sparsity,
DP, and fine–tuning need to be carefully balanced based on the application re-
quirements. Lower sparsity and better fine–tuning strategies (like LoRA) help
in maintaining model accuracy while still achieving some level of pruning and
privacy protection.
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Table 5.7: Performance Comparison of Parameter–Efficient Fine–Tuning Using
LoRA with and without DP

Sparsity DP SST–2 RTE MRPC COLA Avg

0.1 - 91.97 47.29 83.71 69.12 71.69
0.2 - 89.33 46.93 83.21 68.42 71.97
0.3 - 86.69 46.57 78.38 68.05 71.25
0.1 Yes 92.31 49.45 82.37 79.70 75.95
0.2 Yes 89.44 46.57 80.72 78.25 73.74
0.3 Yes 85.32 48.73 82.11 76.63 73.20

Table 5.8: Training vs Parameter–Efficient Fine–Tuning using DP

Training Sparsity SST–2 RTE MRPC COLA

Train 0.1 90.11 49.09 63.33 64.21
LoRA Fine–Tune 0.1 92.31 49.45 82.37 79.70

Train 0.2 88.99 50.54 67.64 54.74
LoRA Fine–Tune 0.2 89.44 46.57 80.72 78.25

Train 0.3 83.66 61.73 68.13 65.12
LoRA Fine–Tune 0.3 85.32 48.73 82.11 76.63

5.9.5 Training vs Fine–Tuning

In addition to evaluating our pruning and fine–tuning strategies, we compared
full model retraining with parameter–efficient fine–tuning to determine which
approach better preserves model performance while ensuring privacy. Full
model retraining, though thorough, allows for a comprehensive recovery of
information lost during pruning. However, it is computationally expensive and
time–consuming, particularly when applying DP, as the added noise compli-
cates the process. In contrast, parameter–efficient fine–tuning, such as LoRA,
adjusts only a subset of model parameters, offering a more efficient alternative.
LoRA fine–tuning allows for faster adaptation to the pruned model while incor-
porating privacy safeguards, making it less resource–intensive compared to full
retraining. Table 5.8 demonstrates that models fine–tuned with LoRA achieve
higher accuracy across various datasets (SST–2, RTE, MRPC, and COLA)
compared to those trained without LoRA. For instance, at a sparsity level of
0.1, accuracy on the SST–2 dataset improves from 90.11% to 92.31% with LoRA
fine–tuning, with similar improvements observed across other datasets. This
trend is consistent across all sparsity levels, suggesting that LoRA fine–tuning
is more effective at maintaining or even enhancing model performance after
pruning. These findings indicate that LoRA’s parameter–efficient fine–tuning
outperforms traditional retraining methods in balancing model compression
with performance retention.
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Table 5.9: Comparison with Baselines

Model Training SST–2 QNLI

BERT–base Finetune 92.31 87.90
BERT–small Finetune 79.93 81.96
DistilBERT Finetune 90.90 87.33
1/2–BERT DPKD [Mir+22] 78.5 80.10
1/2–BERT Structured DPIMP [Mir+22] 83.3 80.90
SparseBERT Unstructured DPIMP [Mir+22] 83.7 82.20
BERT–small TSKD 86.23 83.17
BERT–base PrunePrivyTune 92.31 86.51

5.9.6 Comparison with Baselines

We now compare our approach with several baselines such as BERT–base,
BERT–small, DistilBERT in Table 5.9. We also provided a fair comparison with
other model compression techniques such as our previously proposed TSKD,
and an existing paper [Mir+22] which is closely related with our work, as it is
about knowledge distillation with zero–shot prompting (DPKD) and structured
and unstructured pruning (DPIMP). BERT–base having the most parameters
i.e., 109M, achieves the highest accuracy across tasks like SST–2 and QNLI,
but it is most computationally expensive. In contrast, smaller models like
BERT–small, with only 5M parameters, show a significant drop in performance.
DistilBERT offers a middle ground with reduced parameters of upto 66M and
moderate accuracy. The table also includes approaches like 1/2–BERT and
SparseBERT, which use pruning techniques, showing how structured and un-
structured pruning can recover some performance while reducing the model
size. Differentially Private Knowledge Distillation (DPKD) [Mir+22] resulted
in 78.5% accuracy on SST–2 dataset while 80.10% on QNLI which is quite
lower than the state–of–the–art BERT models. But authors in [Mir+22] found
that pruning performs better than distillation with an accuracy of 83.70% on
SST–2 and 82.20% on QNLI dataset. Also, our previous approach TSKD, im-
proved the accuracy of the model by 86.23% on SST–2 and 83.17% on QNLI
dataset. On the contrary, our approach of PrunePrivyTune performs better
than the existing works of private model compression and almost similar to the
BERT state–of–the–art model which is quite computationally expensive. Fi-
nally, the table shows that the proposed approach using LoRA for fine–tuning
BERT–base maintains top performance on several datasets matching the full
BERT–base fine–tuning results, illustrating the effectiveness of the proposed
PrunePrivyTune method in preserving performance with efficient parameter
usage.
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5.9.7 Advantages of Redundancy Based Pruning for DPLoRA

Our pruning method offers significant improvements over traditional techniques
like magnitude–based pruning, particularly in the context of DPLoRA. Mag-
nitude–based pruning removes layers based on the magnitude of their weights,
assuming that smaller weights contribute less to the model’s output. However,
this approach fails to consider the semantic redundancy between consecutive
layers, which may lead to the pruning of important layers with small weights,
resulting in utility loss. In contrast, our redundancy–based approach uses co-
sine similarity between the hidden states of consecutive layers to identify and
prune redundant layers, which contribute minimally to downstream tasks. This
selective pruning minimizes utility loss, which is crucial for preserving accuracy
during DP fine–tuning.

Furthermore, in DPLoRA, the DP noise depends on gradient sensitivity,
which is influenced by the number of parameters and updates in the pruned
layers. Traditional pruning methods overlook this aspect, potentially increasing
gradient noise variance, leading to inefficiencies. Our approach, by focusing on
pruning redundant layers, reduces gradient sensitivity, thereby minimizing the
noise injected into the gradients and improving the privacy–utility trade–off.

Additionally, the convergence rate of DPSGD is inversely proportional to
noise scale and directly proportional to gradient variance. Traditional prun-
ing methods may inadvertently increase gradient variance, slowing down the
convergence process. Our method reduces gradient variance, enabling faster
convergence while still adhering to DP constraints, making it more efficient for
DPLoRA fine–tuning. Moreover, studies have shown that pruning itself can
enhance model privacy [Hua+20], as it helps prevent leakage from membership
inference attacks [Wan+20b]. By applying DPLoRA fine–tuning after pruning,
we not only improve model privacy but also reduce model storage and com-
putational costs, striking a balance between privacy preservation and resource
efficiency.

5.9.8 Quantifying Privacy and Memorization in Synthetic
Data

Language models inherently have a tendency to memorize the data they are
trained on, which could lead to the leakage of sensitive information. To miti-
gate this risk and prevent memorization, DP is applied during training. After
pruning the model and fine–tuning it with a privacy–preserving approach, we
generate the synthetic data with the model to assess its privacy effectiveness,
as described in Section 5.7.3. Table 5.10 presents an evaluation of the syn-
thetic data generated across various datasets using two key metrics discussed
in Section 5.8.3: Perplexity and BERTScore. Perplexity measures the model’s
confidence in its predictions. A lower perplexity indicates that the model is
more confident in its predictions, suggesting that it may have memorized sim-
ilar training data. Conversely, higher perplexity suggests that the model is
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Table 5.10: Evaluation of Generated Synthetic Data using Perplexity and
BERTScore

DP Metric SST–2 RTE MRPC COLA

No

Perplexity 6.32×105 5.27 ×106 6.29×10−3 4.87 ×101
BERT Precision 0.3701 0.3931 0.3833 0.3425
BERT Recall 0.3698 0.3940 0.3852 0.3481
BERT F1 0.3697 0.3935 0.3832 0.3460

ϵ=1

Perplexity 7.10× 105 5.76× 106 1.12× 10−2 5.22× 104

BERT Precision 0.3536 0.3613 0.3412 0.3384
BERT Recall 0.3500 0.3679 0.3484 0.3392
BERT F1 0.3512 0.3646 0.3448 0.3380

ϵ=5

Perplexity 6.83× 105 5.52× 106 9.10× 10−3 9.25× 103

BERT Precision 0.3573 0.3754 0.3650 0.3397
BERT Recall 0.3509 0.3848 0.3724 0.3399
BERT F1 0.3523 0.3800 0.3678 0.3385

ϵ=10

Perplexity 6.62× 105 5.35× 106 7.50× 10−3 1.40× 103

BERT Precision 0.3694 0.3879 0.3690 0.3412
BERT Recall 0.3690 0.3885 0.3922 0.3474
BERT F1 0.3702 0.3882 0.3790 0.3442

less confident and encountering data in a more novel context, which could in-
dicate reduced memorization. BERTScore, which includes Precision, Recall,
and F1, evaluates the quality of synthetic text in terms of its similarity to
reference text. This metric helps assess how well the generated text resembles
human–generated text in terms of semantic similarity, which is important for
determining the naturalness and coherence of the synthetic data. These met-
rics help us determine whether the model is successfully preserving privacy by
generating novel and diverse synthetic data, without inadvertently memorizing
or leaking sensitive information from the training data.

The results show that as the value of ϵ increases, the model’s perplexity
generally decreases across all datasets. When ϵ = 1, the model has the highest
perplexity, indicating it has limited access to specific details from the train-
ing data due to stronger privacy protection. As ϵ increases from 1 to 10, the
strength of privacy protection weakens, allowing the model to access and po-
tentially retain more detailed information from the training set. This leads
to lower perplexity scores, meaning the model’s predictions align more closely
with the training data, a sign of increased memorization. Without any differ-
ential privacy, the model exhibits the lowest perplexity, reflecting the highest
degree of memorization. This trend illustrates the trade–off between privacy
and data exposure, stronger privacy guarantees (smaller ϵ) restrict the model
from learning precise patterns in the data, while weaker guarantees (larger ϵ)
allow the model to memorize more from the training data.

129



For the BERTScore Precision, Recall, and F1 metrics are observed as ϵ in-
creases, indicating that the synthetic data becomes more similar to the original
training data. When ϵ=1, the synthetic data exhibits the least similarity to the
training data, reflecting strong privacy preservation through DP. As ϵ increases,
privacy protection diminishes, allowing the synthetic data to more closely re-
semble the original text, which results in higher BERTScore. The highest
BERTScore is achieved when no privacy constraints are applied, demonstrat-
ing that the synthetic data is most similar to the training data in the absence
of privacy guarantees.

5.10 Conclusion

In this chapter, we explored strategies to address two critical challenges asso-
ciated with language models: high computational overhead and privacy leak-
age. Due to their massive parameter sizes ranging from millions to billions,
these models often suffer from high inference times, limiting their deployment
in real–world applications. At the same time, these models are susceptible
to privacy risks, as they can inadvertently memorize and reveal the sensitive
information from their training data.

To mitigate these concerns and enhance the practical usability of LLMs,
we proposed two approaches: Task-Specific Knowledge Distillation with Dif-
ferential Privacy and PrunePrivyTune. The first approach leverages transfer
learning to perform knowledge distillation from a larger teacher model into a
smaller student model, while ensuring privacy guarantees through DP training.
This method is especially useful when focusing on a specific downstream task.
We demonstrate that the model size can be reduced by up to 95% while pre-
serving the utility, achieving a comparable accuracy to both non-private and
private baselines.

To generalize beyond task–specific scenarios, we further studied pruning as
an effective model compression technique. In particular, we introduced a novel
redundancy–based pruning framework that uses pairwise cosine similarity of
activation states to identify and remove redundant transformer layers. Layers
with high similarity to their neighbors are deemed redundant and pruned, lead-
ing to a leaner model with fewer parameters and faster inference. Fine–tuning
is essential post–pruning, to recover the lost knowledge. However, when deal-
ing with sensitive data, ensuring privacy during this step is crucial. To this
end, we proposed a differentially private version of fine–tuning strategy using
LoRA, which we call DPLoRA. Unlike standard LoRA, our method incorpo-
rates gradient clipping and Gaussian noise addition to the low–rank matrices,
thus providing formal privacy guarantees while maintaining LoRA’s efficiency.
Our study highlights the synergy between pruning and DPLoRA. Pruning re-
dundant layers reduces the number of parameters needing DP protection, en-
abling more focused and effective updates. This improves gradient clipping and
noise addition in DPSGD, minimizing the utility loss. Additionally, LoRA’s
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low–rank structure acts as a regularizer, enhancing generalization while pre-
serving privacy. Finally, we evaluated the privacy risks of our method using
a training data extraction attack and showed that our approach mitigates the
memorization of sensitive data while preserving model utility.

In summary, these strategies serve as a solid foundation for building future
scalable, privacy–preserving, and deployable language models.
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Chapter 6

Conclusion

We can only see a short distance
ahead, but we can see plenty
there that needs to be done

— Alan Turing

The work presented in this thesis aims to advance our understanding of
developing privacy–aware AI systems. In particular, it explores challenges of
existing privacy techniques for high–dimensional data. It also investigates the
effectiveness of synthetic data generation as an alternative to anonymization,
evaluating its impact on both privacy protection and model utility. Addition-
ally, it extends the investigation to large–scale models, ensuring that privacy
constraints do not degrade their performance. A key focus of this work is to
achieve an optimal balance between privacy and utility. This chapter summa-
rizes the key findings of this research, highlighting its contributions to advanc-
ing privacy–aware machine learning methodologies.

6.1 Reflection on the Research Questions

In this section, we revisit the research questions outlined at the beginning of
this thesis and reflect how each has been addressed within the scope of this
thesis.

RQ1: Are existing privacy models and their combinations effective in
preserving the privacy and utility of high–dimensional data?

In Chapter 3, we examined the limitations of traditional privacy tech-
niques such as k–anonymity and DP when applied to high–dimensional
data as they often suffer from sparsity and significant utility degradation.
Our findings show that k–anonymity struggles with sparsity and DP of-
ten reduces utility due to excessive noise. To overcome these limitations,
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we explored manifold learning techniques that uncover and preserve the
intrinsic structure of the data by projecting it onto a lower–dimensional
space. This not only improved the performance of k–anonymity by en-
abling better clustering but also reduced information loss during anonymiza-
tion. This approach proved especially effective when the data exhibited
a well–defined structure. Building on these insights, we proposed a hy-
brid privacy framework that combines k–anonymity and DP. This model
leverages the grouping efficiency of k–anonymity, the formal guarantees of
DP, enhanced through Fréchet mean. Our evaluation showed that this hy-
brid approach achieves privacy protection comparable to standalone DP
while significantly improving data utility. In downstream tasks, it consis-
tently outperformed individual models, offering a better balance between
privacy and information retention. We conclude that while traditional
privacy models face limitations in high–dimensional settings, thoughtful
combinations augmented with manifold learning can provide effective and
practical solutions for privacy–preserving machine learning on complex
data.

RQ2: Can synthetic data generation methods capture and preserve
the intrinsic manifold structure of high–dimensional data?

In Chapter 4, we investigated synthetic data generation techniques to
assess their ability to capture and preserve the intrinsic manifold struc-
ture of high–dimensional data while maintaining privacy. Specifically, we
explored whether existing generative models, such as CTGAN, could be
adapted for high–dimensional tabular data while ensuring privacy pro-
tection, as these models have a tendency to memorize training samples,
which can lead to privacy leakage and violate data protection regula-
tions. Through statistical and privacy evaluations, we found that while
our proposed framework improves upon existing baselines in some as-
pects, they also exhibit suboptimal performance in certain cases, high-
lighting the inability of current methods to fully capture the underly-
ing data correlations. This motivated us to investigate whether incor-
porating prior knowledge about the data distribution could enhance the
quality and privacy of synthetic data generation. We explored various
strategies to integrate prior knowledge and found that using Bayesian
networks effectively improved synthetic data realism by explicitly model-
ing dependencies between variables. Beyond evaluating the performance
of generative models, we also sought to understand their black–box na-
ture by visualizing latent space representations. Our analysis revealed
that for low–dimensional structured datasets, VAEs outperform GANs
due to their ability to learn smooth latent representations. However,
for more complex high–dimensional datasets, GANs could achieve com-
parable performance when properly trained. These findings emphasize
the importance of enhancing synthetic data generation techniques with
domain–specific knowledge to ensure both data utility and privacy pro-
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tection, making them more viable for real–world applications.

RQ3: Can large–scale models like language models leverage privacy
models and model compression to ensure privacy and reduce
computational overhead?

In Chapter 5, we addressed the challenges associated with the high di-
mensionality and privacy concerns of large–scale language models. These
models, which contain millions of parameters, often suffer from high in-
ference latency and pose significant privacy risks due to their tendency to
memorize sensitive training data. To mitigate these issues, we explored
a combination of model compression techniques, such as knowledge dis-
tillation and pruning, alongside privacy–preserving methods like differen-
tial privacy. Our findings reveal that both approaches effectively reduce
model parameters, which in turn lead to decrease in inference time. At the
same time, they help protect privacy during training, outperforming ex-
isting baselines. However, we observed that each approach performs opti-
mally in different contexts. For scenarios that require a generalized frame-
work and computational efficiency, our pruning method PrunePrivyTune
is particularly effective, as it not only prunes but also privately fine–tunes
the model. On the other hand, when extreme compression is required,
especially when pre–trained models are large, the data is complex and
multi–tasked, or when a model pre–trained on a similar task is available,
then our proposed TSKD approach should be preferred. Both frameworks
contribute to the improvement of existing model compression techniques,
offering a viable solution for deploying large–scale language models in a
more cost–efficient and privacy–conscious manner.

6.2 Main Contributions

In summary, the main findings of this thesis are outlined below. Each contri-
bution corresponds to one of the research papers included in this work.

• We investigated the use of manifold learning techniques in combination
with the k–anonymity privacy model to preserve the intrinsic structure
of high–dimensional data while anonymizing it, ensuring privacy while
maintaining utility. (Paper I)

• We proposed a hybrid anonymization model that integrates the strengths
of k–anonymity and differential privacy. Additionally, we analyzed the
trade–off between the privacy parameters (ϵ of DP and k of k–anonymity)
in terms of utility preservation. (Paper II)

• We designed a privacy–preserving synthetic data generation framework
that maintains the manifold properties of the original data while miti-
gating privacy risks, and assess the effectiveness of our approach through
data reconstruction attacks. (Paper III)
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• We investigated the distribution learning capabilities of generative models
to better understand their black–box nature and latent space representa-
tions. Our analysis showed that VAE excels at capturing low–dimensional
point distributions, offering insights into their ability to model structured
data. (Paper IV)

• We explored strategies to incorporate prior knowledge into GANs to im-
prove the quality of synthetic data. We found that Bayesian networks
can effectively capture attribute dependencies and serve as a structured
prior for training GANs. (Paper V)

• We studied whether large–scale language models can be efficiently com-
pressed to reduce inference time while ensuring privacy–preserving train-
ing to prevent memorization of sensitive data. Our task–specific knowl-
edge distillation approach compressed model parameters by 95%, achiev-
ing performance comparable to non–private training. (Paper VI)

• We further investigated pruning–based model compression and also pro-
posed a method to recover the lost information using differentially private
fine–tuning. To assess privacy vulnerabilities, we conducted training data
extraction attack, demonstrating that our approach provides enhanced
privacy protection while maintaining model efficiency. (Paper VII)

6.3 Future Work

One interesting avenue for future research is deepening our understanding of
the proposed hybrid anonymization technique that synergizes k–anonymity and
differential privacy. This could be studied by developing dynamic methods that
adjust privacy parameters (k and ϵ) based on the sensitivity of different data re-
gions, as traditional privacy techniques overlook distinct sensitivities. Such an
approach would mitigate excessive data distortion while ensuring robust privacy
protection. Moreover, adapting this hybrid privacy technique to diverse data
modalities, such as sequential data and graph–structured data, is another im-
portant direction. For sequential data, it would be essential to preserve tempo-
ral dependencies while ensuring strong privacy guarantees. Similarly, in graph-
based applications (e.g., social networks or knowledge graphs), anonymizing
node–link structures without losing relational information remains a critical
challenge. Another crucial research direction is evaluating the resilience of this
privacy model against different types of privacy attacks. Developing adap-
tive countermeasures against these threats could significantly strengthen the
real–world applicability of the hybrid anonymization framework.

Another interesting future direction is the development of interpretable syn-
thetic data generation models. While several techniques exist for generating
synthetic data, assessing the quality and validity of both the synthetic data
and the underlying generative models remains a significant challenge. Current
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methods often lack transparency, making it difficult to evaluate how well the
synthetic data captures the real–world distribution or whether privacy guaran-
tees are maintained without compromising data utility. The goal is to enhance
the interpretability of both the data generation process and the properties of
the synthetic data, enabling more effective evaluation of its quality and ensuring
that privacy protections are preserved.

Further research could explore the development of foundation models with
built–in forgetting mechanisms, enabling models to selectively forget specific
data after training. This capability is essential for compliance with privacy reg-
ulations, such as GDPR, which require models to remove sensitive or personal
information upon request. Current models lack the ability to efficiently unlearn
specific data without requiring costly retraining from scratch. By designing
modular architectures and efficient unlearning algorithms, we can isolate the
influence of sensitive data within the model and remove it without sacrificing
overall model performance. This approach will enhance the privacy compliance
and adaptability of LLMs, making them more suitable for deployment in reg-
ulated industries, such as healthcare and finance, where privacy concerns are
paramount.

This thesis provides a foundation for advancing privacy–aware AI systems
by addressing key challenges across multiple dimensions. We propose novel
solutions for protecting high–dimensional data through hybrid privacy mod-
els, generate high–quality synthetic data that balance utility and privacy, and
develop strategies to mitigate privacy risks and computational overhead in lan-
guage models. These contributions aim to enhance the trustworthiness and
applicability of machine learning systems in privacy–sensitive domains. The
outlined future directions present promising avenues to extend this work fur-
ther, enabling the continued development of secure and interpretable AI solu-
tions in an increasingly data–driven world.
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[Tor04] Vicenç Torra. “Microaggregation for categorical variables: a me-
dian based approach”. In: Privacy in Statistical Databases: CASC
Project Final Conference, PSD 2004, Barcelona, Spain, June 9-
11, 2004. Proceedings. Springer. 2004, pp. 162–174.
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