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Abstract

Machine learning models are inherently shaped by the data used to train them.
Understanding the relationship between datasets and the models they generate
is essential for tasks such as model selection, privacy metrics, and robustness
evaluation. This thesis presents a rigorous mathematical framework for com-
paring machine learning models and algorithms by formalizing the interaction
between two fundamental spaces: the database space, which captures possi-
ble datasets, and the model space, which contains the models or hypotheses
derived from those datasets.

A central motivation stems from the observation that different datasets can
lead to the same or highly similar models. Such recurrent models—which arise
frequently across diverse data sources—are particularly significant in privacy-
sensitive applications. Their recurrence suggests reduced dependence on any
specific data point or subgroup, thus offering inherent privacy and generaliza-
tion benefits. By quantifying the relationship between models and their gener-
ating data, this work enables principled evaluation of a model’s robustness and
disclosure risk.

To formalize relationships between the two spaces, the thesis develops a fam-
ily of probabilistic metric space constructions tailored to different aspects of the
data–model interaction. The first contribution models database evolution as
a Markov process and defines probabilistic distances between models based on
the likelihood of transitioning between their generating datasets. The second
contribution introduces F-space, a framework based on fuzzy measures that
captures richer structural properties of the data—such as redundancy, synergy,
and overlap among subsets. Building on this, the third contribution applies the
F-space theory in practical machine learning scenarios. It demonstrates how
fuzzy measures can be used to compare different linear regression algorithms
trained over structured subsets of real datasets. The final contribution fur-
ther generalizes the framework through Generalized F-spaces, where the model
space itself is endowed with probabilistic structure—allowing uncertainty in
both the datasets and the model outputs to be captured simultaneously.

Together, these constructions offer a principled alternative to traditional
model comparison metrics. Rather than relying solely on pointwise loss or
accuracy, the proposed framework incorporates the diversity, dynamics, and
internal structure of the data that underlies each model—enabling more robust
and privacy-aware assessments.
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Sammanfattning

Maskininlärningsmodeller formas i grunden av den data de tränas på. Att
förstå relationen mellan datamängder och de modeller som genereras från dem
är avgörande för uppgifter såsom modellval, sekretessmätningar och robus-
thetsanalys. Denna avhandling presenterar ett rigoröst matematiskt ramverk
för att jämföra maskininlärningsmodeller och algoritmer genom att formalisera
samspelet mellan två grundläggande omfång: databasrummet, som represen-
terar möjliga datamängder, och modellrummet, som innehåller de modeller
eller hypoteser som härrör från dessa datamängder.

Ett centralt motiv är observationen att olika datamängder kan leda till
samma eller mycket liknande modeller. Sådana återkommande modeller —
som ofta uppstår över varierande datakällor — är särskilt betydelsefulla i in-
tegritetskänsliga tillämpningar. Återkommandet antyder ett minskat beroende
av enskilda datapunkter eller undergrupper, vilket ger fördelar vad gäller både
integritet och generaliserbarhet. Genom att kvantifiera relationen mellan mod-
eller och deras genererande data möjliggör detta arbete en principbaserad
utvärdering av en modells robusthet och risk för avslöjande.

För att formalisera relationen mellan de två omfången introducerar avhan-
dlingen en familj av probabilistiska metriska rum, anpassade för olika aspek-
ter av samspelet mellan data och modeller. Det första bidraget modellerar
databasers utveckling som en Markovprocess och definierar probabilistiska avstå-
nd mellan modeller baserat på sannolikheten att övergå mellan deras genererande
datamängder. Det andra bidraget introducerar F-rum (F-space), ett ramverk
baserat på fuzzy-mått som fångar rikare strukturella egenskaper hos data—
såsom redundans, synergi och överlappning mellan delmängder. Det tredje
bidraget tillämpar F-rum-teorin i praktiska maskininlärningsscenarier. Det
visar hur fuzzy-mått kan användas för att jämföra olika linjära regressionsal-
goritmer tränade på strukturerade delmängder av verkliga datamängder. Det
fjärde och sista bidraget generaliserar ramverket ytterligare genom Generalis-
erade F-rum, där även modellrummet ges en probabilistisk struktur — vilket
möjliggör att osäkerhet i både datamängden och modellutdata fångas sam-
tidigt. Tillsammans erbjuder dessa konstruktioner ett principiellt alternativ
till traditionella jämförelsemått för modeller. I stället för att enbart förlita
sig på punktvisa fel eller noggrannhet beaktar det föreslagna ramverket datans
mångfald, dynamik och inre struktur — vilket möjliggör mer robusta och in-
tegritetsmedvetna analyser.
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Chapter 1

Introduction

Machine learning has experienced rapid advancements over the past few decades,
establishing itself as a transformative field within computer science. Driven by
increased computational power, data availability, and algorithmic innovation,
machine learning has found widespread applications across various domains,
including healthcare, finance, and environmental science [JM21; LBH15]. For
example, in healthcare, machine learning assists in medical diagnosis and pre-
dictive analytics [Est+17]; in finance, it powers fraud detection systems and
algorithmic trading [HPW17]; and in environmental science, it contributes to
climate modeling and resource optimization [Rei+19].

At its core, machine learning involves leveraging data to extract patterns
and build models that generalize from past observations [Mur12]. Given a
dataset, the objective is to develop models capable of making accurate predic-
tions or informed decisions. Various machine learning models address different
problem domains, including decision trees [Qui96], support vector machines
[CV95], neural networks [GBC16], and ensemble techniques such as random
forests [Bre01] and gradient boosting machines [Fri01].

Traditionally, model selection in machine learning has been primarily based
on accuracy metrics, where models are evaluated based on their predictive
performance on test datasets [Bis06]. However, recent advancements and soci-
etal considerations have broadened evaluation criteria beyond accuracy alone.
Modern machine learning models must also be explainable, interpretable, unbi-
ased, and privacy-preserving [DK17; Lip18]. Explainability refers to the ability
to understand and articulate how a model arrives at its decisions, which is
crucial for trust and regulatory compliance in high-stakes applications. Inter-
pretability ensures that model outputs are human-comprehensible and can be
linked to domain knowledge, while bias-free models aim to prevent unfair or
discriminatory outcomes [Meh+21].

One of the most pressing concerns in machine learning is data privacy. As
machine learning models increasingly rely on large-scale datasets containing
sensitive information—ranging from medical records and financial transactions
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to behavioral data—the risk of exposing private details grows. Moreover, most
real-world data are dynamic and subject to regular updates. This dynamic
nature affects the consistency of aggregations and inferences drawn from the
data unless models are continuously updated. For example, a machine learning
model built on an evolving data source must be regularly updated to stay
aligned with its underlying dataset. Changes in training data can lead to
model transformations, and an adversary with access to auxiliary information
might exploit these changes to infer sensitive details [Sal+19; TN16].

Among the key privacy-preserving models that have been developed are
differential privacy and integral privacy. Differential privacy ensures that the
inclusion or exclusion of any individual data point in a dataset does not sig-
nificantly alter the model’s output [Dwo06]. Integral privacy [TN16], on the
other hand, emphasizes generating recurrent models from distinct datasets to
prevent any single dataset from being the sole source of learning.

1.1 Motivation
Despite the growing emphasis on privacy, interpretability, and fairness in ma-
chine learning, existing approaches often overlook the fundamental relationship
between datasets and the models they produce. As data evolves, machine learn-
ing models must be updated accordingly, raising critical questions about pri-
vacy risks, model stability, and selection criteria. Understanding how dataset
changes influence model behavior is essential for designing robust and privacy-
preserving machine learning systems. Another crucial yet underexplored aspect
is the comparison of models concerning the similarity of the databases that have
generated them. Our aim is to provide tools to analyse the relationship be-
tween the space of data and the space of models, specifically in the context
of privacy-preserving machine learning models. To the best of our knowledge,
aside from [TN18], this aspect has not been explored in the literature, high-
lighting the need for further research in this direction to better understand
model similarities in relation to the data that generate them.

Machine learning models are inherently dependent on data, which evolves
over time. This creates a fundamental interaction between two spaces: the
database space (the space of datasets) and the model space (the space of trained
machine learning models). Changes in datasets—whether due to new informa-
tion, updates—impact model construction, necessitating model updates. Un-
derstanding this interaction is crucial for several reasons:

• Privacy Considerations: If a privacy-preserving model undergoes updates
due to dataset modifications, it is essential to ensure that these updates
do not inadvertently reveal sensitive information.

• Model Stability and Robustness: Small changes in training data can lead
to significant shifts in model behavior. Quantifying these shifts helps
assessing the reliability and robustness of machine learning models.
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• Model Selection: Machine learning can be seen as a selection process,
where the goal is to choose models that achieve high accuracy, avoid
overfitting, remain resistant to membership inference attacks, and exhibit
similarity to models generated from related datasets.

A key challenge in addressing these concerns is establishing a theoretical
framework for comparing machine learning models and algorithms while ex-
plicitly accounting for the datasets on which they are trained. Traditional
similarity measures—such as comparing model parameters, architectures, or
performance metrics—fail to capture the nuanced impact of dataset evolution
on model behavior. Instead, a principled approach is needed that explicitly
integrates the structure of both the database space and the model space to
quantify model relationships meaningfully.

1.2 Approach: Probabilistic Metric Space
To analyze the relationship between data and models and to compare models
and algorithms, it is essential to define distances and metrics for the spaces.
Since model comparison is based on the sets of generators, these metrics must
be defined on sets rather than on individual elements.

Metric spaces [Fré06] provide a rigorous mathematical foundation for defin-
ing distances, consisting of a non-empty set and a distance function (or metric)
that satisfies three fundamental properties: non-negativity, symmetry, and the
triangle inequality. However, extending a metric from individual elements to
sets of elements is not straightforward, as it requires a principled way of aggre-
gating pairwise distances while preserving the essential properties of a metric.

Several set-based distance measures exist, including the Hausdorff distance
[Hau14], the sum of minimum distances [Nii87], and the Surjection distance
[Odd79]. However, these measures often fail to capture the overall structural
relationships within the sets and, as a result, do not satisfy all the properties
required for the distance to be a metric. To address this limitation, [EM97]
introduced a metric for sets that is based on finding an optimal path between
the elements of the two sets, providing a more robust approach to defining
distances in set spaces.

Classical metric spaces assign a single numerical value to distances, which
may not fully capture the inherent uncertainties in model comparisons. In
contrast, probabilistic metric spaces (PMS) [SS83] generalize the notion of a
metric by defining distances as distribution functions rather than fixed num-
bers. The axioms of PMS correspond to those of classical metric spaces, with
adaptations to account for uncertainty. In particular, the positive definiteness
and symmetry axioms remain, while the triangle inequality is reformulated in
terms of a triangle function. This triangle function, which is crucial to PMS, is
often constructed using t-norms. T-norms—binary operations that generalize
the logical conjunction in fuzzy logic—are defined on the unit interval and sat-
isfy properties such as commutativity, associativity, monotonicity, and having
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1 as the neutral element. See, e.g. the reference books by Alsina et al. and
Klement et al. [AFS06; KMP00]). The choice of a particular t-norm directly
influences the strictness of the triangle inequality, thereby affecting the overall
structure of the space.

A noteworthy subclass of PMS is the Menger space, where the triangle
function is directly induced by a t-norm. In Menger spaces, the generalized
triangle inequality is enforced in a manner that closely parallels the classical
metric case. This concept was originally introduced by Menger [Men42] and
later developed by Schweizer and Sklar [SS83], providing a rigorous framework
for modeling distances under uncertainty.

Probabilistic metric spaces provide a natural framework for model compari-
son by encoding distances as distribution functions rather than fixed numerical
values. This formulation inherently captures uncertainty in the distance mea-
sure. Moreover, when models are generated from datasets, the uncertainty
embedded in the datasets can be inherited by the PMS framework, thereby
offering a comprehensive tool for comparing models under realistic conditions.

1.3 Research Questions and Problem
The central objective of this thesis is to establish a theoretical framework that
formalizes the interaction between the database space and the model space
(see Figure 1.1), providing mathematical tools for quantifying algorithmic and
model distances.

We formulate our problem as follows: Let Ω be the space of databases
(the base space), and let G denote the set of algorithms, where each algorithm
g ∈ G maps elements from Ω to the model space M (the target space). For any
given model m ∈ M , let Gen(m) represent the set of all databases that can
generate m. The objective is to compare models m1,m2 and algorithms g1, g2
by constructing distances based on the sets of datasets that produce them. In
other words distances based on Gen(m1) and Gen(m2).

This research is guided by the following key questions:

RQ1: How can models m1 and m2 in M be compared while accounting for
transformations in the database space Ω?

RQ2: How can we construct distances and metrics for machine learning algo-
rithms in G that capture complex interactions of the databases?

RQ3: Which characterizations can be provided for the metrics we propose?

1.4 Thesis Contributions
To address (RQ1), we utilize Markov chains and transition matrices to model
transformations within the database space. Specifically, we introduce two def-
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DB3 DB4 DB5

DB1 DB2

Figure 1.1: Graphical representation of databases (cylinders) and machine
learning models (3D pyramids)

initions of probabilistic metric spaces for databases, both grounded in transi-
tion matrices and Markov chains. The first definition quantifies the distance
between two databases based on the probability of one being transformed into
the other. This formulation constructs the probabilistic metric space exclu-
sively from the transition matrices. We present both symmetric and asymmet-
ric definitions for the distance distribution functions, providing a structured
approach to measuring database similarity. We refer to this type of space as
the Visited Database-Based Probabilistic Metric Space (VD-PMS). The second
definition, in contrast, evaluates the distance between two databases in terms
of their evolution over time. Instead of considering direct transformations, this
approach examines whether two databases will exhibit similarity as time pro-
gresses. We term this approach Database Distance-based Probabilistic Metric
Space (DD-PMS) These resulting metrics are then extended to define distances
between models (Paper 1).

To address (RQ2), we introduce (in Paper 2) a specialized type of proba-
bilistic metric space, called F-space, where the base space is structured as a
measurable space using fuzzy measures. This framework enables the modeling
of dependencies and interactions within datasets, allowing for a more nuanced
representation of data relationships. F-space facilitates the computation of
distances between functions and algorithms that map from the base space to
the target space. Specifically, it evaluates sets of elements whose distances do
not exceed a given threshold when mapped to the target space. We demon-
strate (in Paper 3) how to apply F-space in machine learning using the Sugeno
λ-measure. To answer (RQ3) for F-spaces, we analyze the properties of the
measure on the database space that yields a probabilistic metric space satisfy-
ing a generalized triangle inequality. Our theoretical results found in (Paper
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2) demonstrate that when employing a stronger t-norm, fewer constraints are
imposed on the measure to ensure that the space retains the desired metric
properties.

In our initial formulation, models in F-space were represented in a met-
ric space with fixed distances. However, practical machine learning scenarios
demand a framework that captures uncertainties arising from dataset shifts,
noise, and randomness in training processes. To address this, we extend the
F-space construction by generalizing the target space from a metric space to
a probabilistic metric space (PMS). This extension allows distances to be rep-
resented as distribution functions, thereby capturing the inherent uncertainty
and variability present in real-world machine learning scenarios. We character-
ize mathematically the conditions under which the induced probabilistic metric
space satisfies a generalized triangle inequality. In particular, we analyze how
properties of the underlying measure defined on the database space (e.g., super-
modularity, inclusion-based properties) interact with the choice of triangular
norms (t-norms), and when it can yield to a proper Menger space. Therefore,
we answer for these generalized F-spaces (RQ3).

More concretely, our theoretical results in (Paper 4) confirm that employing
a stronger t-norm relaxes the constraints imposed on the underlying measure
while still ensuring that the space retains its desired metric properties. These
findings reveal a clear relationship between the type of probabilistic metric
space and the t-norm used: the stronger the t-norm, the fewer restrictions
are required on the measure. For instance, when using the drastic t-norm,
the measure only needs to satisfy minimal conditions, whereas employing a
less strict t-norm, such as the minimum, necessitates more constraints on the
measure (e.g., unanimity measure). Overall, our results are fully consistent with
the previous framework (F-space), collectively demonstrating that a careful
selection of t-norms allows for a broader class of measures to be used without
compromising the generalized metric structure.

We provide practical validation of our theoretical findings by applying the
results to the comparison of machine learning algorithms (RQ2). By modeling
the database space as a measurable space equipped with fuzzy measures and
the model space as a PMS, our approach allows for a more nuanced assessment
of model similarities that accounts for complex interactions among datasets and
uncertainties arising from factors such as dataset shifts, noise, and randomness
in training.
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1.5 Thesis Outline
The remainder of this thesis is structured as follows: Chapter 2 explores the
foundational principles of probabilistic metric spaces, their mathematical struc-
tures, and their connections to classical metric spaces. Chapter 3 presents
fuzzy sets and their properties, followed by fuzzy measures, including Sugeno
λ-measures for non-additive aggregation. Chapter 4 presents the main research
contributions, while Chapter 5 concludes the thesis and outlines potential di-
rections for future work. The appendix includes four research papers that form
the basis of this work.
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Chapter 2

Probabilistic Metric Space

The 19th century marked the beginning of the modern scientific era, charac-
terized by significant advancements in measurement and mathematical formal-
ism. These developments paved the way for major breakthroughs but also
highlighted the inevitable presence of errors in measurement processes. Early
in the 20th century, it was believed that meticulous design and large datasets
could reduce measurement errors to arbitrarily small levels. However, the ad-
vent of quantum mechanics fundamentally challenged this belief. Heisenberg’s
uncertainty principle [Hei27] demonstrated that uncertainties are intrinsic to
the measurement process itself and cannot be completely eliminated. This
marked a paradigm shift, revealing the limitations of determinism and intro-
ducing probabilistic methods as an essential framework.

By the mid-20th century, the recognition of inherent uncertainties became a
central theme across disciplines such as psychometrics, communication theory,
and pattern recognition [Sha48; Bri56; DH73]. This perspective profoundly
influenced mathematical frameworks like cluster analysis and interval analy-
sis [Jan78; She80]. Despite these advancements, many mathematical models
continued to assume idealized, rigid reference frames for measurements, over-
looking the distributed nature of uncertainties in real-world systems.

The term “metric” originates from the Greek word metron, meaning “mea-
sure”. The modern concept of metric spaces was introduced by Maurice Fréchet
in his seminal Ph.D. thesis [Fré06]. This work laid the foundation for system-
atically quantifying distances in mathematics and science. The concept of an
abstract metric space offers a unifying framework applicable to diverse con-
structs, from points and functions to sets and even subjective experiences like
sensations [Blu70]. Metric spaces elegantly associate a non-negative real num-
ber with each ordered pair of elements in a set, governed by axioms reflecting
the intuitive properties of physical distances.

However, real-world applications often reveal that assigning a single value
to represent the distance between two elements is an oversimplification. For
instance, measuring physical length frequently involves averaging multiple ob-
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servations, making it more accurate to treat distance as a statistical measure
rather than a deterministic quantity. To address this limitation, K. Menger
[Men42] introduced the concept of a statistical metric space in 1942. Instead of
defining distance as a single numerical value d(p, q), he proposed a distribution
function Fp,q(x) that represents the probability of the distance being less than
x. This probabilistic generalization allowed for modeling systems with inher-
ent uncertainties, broadening the classical notion of metric spaces to stochastic
settings [SS83].

Shortly thereafter, A. Wald [Wal43] critiqued Menger’s generalized triangle
inequality and proposed an alternative formulation that refined the framework.
This alternative formed the basis of a theory of betweenness, offering certain
advantages in practical applications. Menger [Men51] expanded the theory with
additional examples, further solidifying the foundations of statistical metric
spaces and exploring new directions for their application.

This chapter focuses on the foundational aspects of probabilistic metric
spaces together with their mathematical structures. It is organized into four
main sections: Menger Space, Developments on Probabilistic Metric
Spaces, and On Some Specific Cases, and Random Metric Spaces. The
first section introduces the core definitions and properties of Menger spaces.
The second section explores refinements and advancements in PM-Space the-
ory, including critiques and alternative formulations. The third section presents
some specific cases and examples of PM-Spaces. The final section introduces
E-Spaces, a significant construction within PM-Space theory introduced by
Sherwood [She69]. This section outlines the use of measurable functions and
probability spaces in defining E-Spaces and highlights their connection to clas-
sical metric spaces via the Lebesgue measure.

Topics such as fixed-point theory or the topology of probabilistic metric
spaces are not included in this chapter, as the focus remains on establishing
a foundational understanding and tracing key developments within PM-Space
theory.

2.1 Menger Space

The notion of a distance introduced by Frechet was later given the name Metric
Space by F. Hausdorff [Hau14] in 1914. Metric space is an ordered pair (S, d)
where S is an abstract set and d is a mapping of S×S into the real numbers.

9



Definition 1. Let d : S × S → R+
0 , then d is called a metric on S if the

following properties hold for a, b, c ∈ S:

(1) d(a, b) ≥ 0 with equality if and only if a = b (non-negativity property),

(2) d(a, b) = d(b, a) (symmetry property), and

(3) d(a, b) ≤ d(a, c) + d(c, b) (triangle inequality property).

When the distance function does not satisfy the symmetry condition, the
space (S, d) is called a quasimetric space. If the distance function does not fulfill
the triangle inequality, the space (S, d) is identified as a semimetric space.

When defining probabilistic metric space (briefly PM-Space), we use the
notion of distribution functions as follows.

Definition 2. A distribution function is a non-decreasing function F defined
on R, satisfying F (−∞) = 0 and F (+∞) = 1.
If F is defined on R+ and satisfies the following conditions:

- F (0) = 0, F (∞) = 1,

- F is left-continuous on (0,∞),

then F is referred to as a distance distribution function.

Distribution functions are commonly associated with probabilities, where
F (x) represents the probability that the distance between two elements p and
q is less than or equal to x for p, q ∈ S. We denote the distribution function
of F for p and q as Fp,q. The collection of all distance distribution functions
is denoted by ∆+, while the distance distribution function corresponding to a
classical distance equal to a is denoted by ϵa and is defined as follows:

ϵa(x) =

{
0, 0 ≤ x ≤ a,

1, a < x ≤ ∞.
(2.1)

To generalize the metric space to a probabilistic metric space, the function
F must satisfy the following properties:

(1) Fp,q(x) ≤ Fp,q(y) whenever x ≤ y.

(2) If p = q, then Fp,q(x) = 1 for all x > 0.

(3) If p ̸= q, then Fp,q(x) ≤ 1 for some x > 0.

(4) Fp,q = Fq,p.

Although distribution functions effectively generalize the first two axioms
of metric spaces, extending axiom (3) in Definition 1 poses challenges. This
has led to the study of alternative triangle inequalities, which remain a central
topic in the development of probabilistic metric spaces.

The weakest generalization of the triangle inequality is the one given by
Schweizer and Skalar [SS83], defined as follows:
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Definition 3. A PM-space is an ordered pair (S, F ), where S is a non-empty
set and F is a map F : S × S → ∆+, satisfying the following properties:

PM-1 Fp,q(x) = 1 ∀x > 0 ⇐⇒ p = q,

PM-2 Fp,q(0) = 0,

PM-3 Fp,q = Fq,p,

PM-4 If Fp,q(x) = 1 and Fq,r(y) = 1, then Fp,r(x+ y) = 1.

Inequality PM-4 means that If it is certain that the distance of p and q
is less than x, and likewise certain that the distance of q and r is less than y,
then it is certain that the distance of p and r is less than x+ y.

Remark 1. In view of the condition PM-2, which obviously implies that
Fp,q(x) = 0 for x ≤ 0, condition PM-2 is equivalent to the statement

p = q ⇔ Fp,q = ϵ0.

Remark 2. PM-4 can be seen as a minimum generalization of the ordinary
triangle inequality, however, it is vacuous in all space in which functions Fp,q,
for p ̸= q never attains the value 1.

Remark 3. Every Metric space can be viewed as PM space if we set

Fp,q(x) = ϵd(p,q)(x)

The condition PM-4 of the above definition is always satisfied in metric
space where it reduces to ordinary triangle inequality.

In 1942, Menger [Men42] introduced a generalization of the triangle inequal-
ity and defined a statistical metric space as a set S equipped with a family of
distribution functions F . He formulated the generalized triangle inequality, also
known as the Menger triangle inequality, as follows ∀p, q, r ∈ S and ∀x, y ∈ R:

PM-5: Fp,r(x+ y) ≥ T (Fp,q(x), Fq,r(y))

Where T is a binary operation that satisfies the conditions described below.

Definition 4. Let T : [0, 1] × [0, 1] → [0, 1], be a binary operation, where T
satisfies the following properties for all a, b, c, d ∈ [0, 1]:

T-1 0 ≤ T (a, b) ≤ 1,

T-2 T (a, b) = T (b, a),

T-3 T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d,
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T-4 T (1, 1) = 1,

T-5 T (a, 1) > 0 ∀a > 0.

Definition 5. A triangle inequality is said to hold universally in a PM-space
iff it holds for all triples of points, not necessarily distinct.

Menger’s triangle inequality suggests that our knowledge of the third side
of a triangle depends monotonically on the probabilities of the other two sides.
This interpretation can be further clarified by specifying T as a particular
function. Below, there are some examples:

– Minimum: ⊤(a, b) = min(a, b), denoted by M(a, b).

– Algebraic product: ⊤(a, b) = ab, denoted by Π(a, b).

– Bounded difference
⊤(a, b) = max(0, a+ b− 1), denoted by W (a, b).

– Maximum: ⊤(a, b) = max(a, b), denoted by M∗(a, b).

For example, if we choose T = Π, then the probability that the distance
from p to r is less than x + y is at least as large as the joint probability,
independently for the distance from p to q is less than x, and the distance from
q to r is less than y.

Remark 4. Given condition T-4, it can be observed that PM-5 encompasses
condition PM-4 as a special case.

A metric space emerges as a specific case of a Menger space when d is
defined as a function from S × S → [0,∞), such that:

Fp,q(x) = ϵd(p,q) (2.2)

Therefore, the Menger space (S, F, T ) with the above definition of F , is a
classical metric space.
Naturally, we have to prove only the classical triangle inequality, since all other
properties hold trivially. If we have p, q, r ∈ S with d(p, q) < x and d(q, r) < y,
for some x, y > 0 then from Equation 2.2 it follows that Fp,q(x) = 1 and
Fq,r(y) = 1. Then by PM-5 and the boundary property of T , we obtain
d(p, r) < x + y, which gives the desired inequality. If we begin with a metric
space (S, d), then by taking Fp,q as defined in 2.2 we find the functions Fp,q are
probability distribution functions satisfying all the conditions in Definition 3
and PM-5 under any T .
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2.2 Developments on Probabilistic Metric Space

Schweizer and Sklar further refined Menger’s triangle function through the
introduction of t-norms, which were inspired by three foundational results.
These advancements provided a more generalized and flexible framework for
modeling probabilistic metric spaces.

Lemma 1. If a PM-space contains two distinct points, then the condition
PM-5 can not hold universally in the space under the choice T = M∗.

Proof. Let p and q be two distinct points of space and let x and y satisfy
0 < y < x. Suppose that PM-5 holds universally with T = M∗. Then we have

Fp,q(x) ≥ max(Fp,q(x− y), Fq,q(y)) = 1.

Since x can be any positive number, condition PM-1 implies p = q, which
contradicts the assumption.

Lemma 2. If in a nonmetric PM-space, PM-5 holds universally for some
choice of T satisfying the conditions T-1 to T-5, then the function T has the
property that there exists a number a, 0 < a < 1, such that T (a, 1) ≤ a.

Proof. If PM-space is not a metric space, then there is a point (p, q) ∈ S × S
in which Fp,q assumes values other than 0 or 1. Since F is left continuous and
monotonic, this means there is an open interval (x, y) on which 0 < Fp,q < 1.
Now, let us assume that T (a, 1) = a + Φ(a), where Φ(a) ≥ 0, for 0 < a < 1.
Let z ∈ (x, y) and take t > 0. Then we have

Fp,q(z + t) ≥ T (Fp,q(z), Fq,q(t)) =T (Fp,q(z), 1) = Fp,q(z) + Φ(Fp,q(z))

Now, let t → 0, we have

Fp,q(z) ≥ Fp,q(z) + Φ(Fp,q(z)) ≥ Fp,q(z)

This proves discontinuity of Fp,q at z, and therefore at every point of (x, y).
However, this is a contradiction as non-decreasing functions can be discontin-
uous at only denumerable points. This ends the proof.

Theorem 3. If a PM-space (S, F, T ) where

(1) PM-5 holds universally.

(2) T is continuous, then for any x > 0

T (Fp,q(x), 1) ≤ Fp,q(x)
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Proof. Let p, q ∈ S, and let x > 0 be given. Choose y such that 0 < y < x.
Then, we have:

Fp,q(x) ≥ T (Fp,q(x− y), Fq,q(y)) = T (Fp,q(x− y), 1).

Letting y → 0+, we obtain:

Fp,q(x) ≥ lim
y→0+

T (Fp,q(x− y), 1).

Using the assumed continuity of Fp,q, we can write:

lim
y→0+

T (Fp,q(x− y), 1) = T

(
lim

y→0+
Fp,q(x− y), 1

)
.

By the left continuity of Fp,q, we know:

lim
y→0+

Fp,q(x− y) = Fp,q(x).

Substituting this back, we find:

lim
y→0+

T (Fp,q(x− y), 1) = T (Fp,q(x), 1).

Therefore, Fp,q(x) ≥ T (Fp,q(x), 1). This completes the proof.

Motivated by these lemmas and the observation that there are three weak
functions in T satisfying T (a, 1) = a, Sklar and Schweizer [SS83] redefined the
concept of triangle inequality in Definition 4, introducing what is now known
as t-norms. In this redefinition, the conditions T-1, T-4, and T-5 are replaced
with the following:

• T-6 : T (a, 1) = a and T (0, 0) = 0.

• T-7 : The associative condition, T (T (a, b), c) = T (a, T (b, c)).

This modification enables the extension to a polygonal inequality. With
these adjustments, we are now in a position to introduce the following defini-
tion.

Definition 6. A triangular norm (t-norm) is a binary function T : [0, 1] ×
[0, 1] → [0, 1] that satisfies T-2, T-3, T-6, and T-7.

If, for two t-norms T1 and T2, the inequality T1(x, y) ≤ T2(x, y) holds
∀(x, y) ∈ [0, 1]

2, then we say T1 is weaker than T2 or, equivalently, that T2 is
stronger than T1.

Remark 5. The strongest t-norm is the minimum t-norm, T (a, b) = min(a, b).
On the other hand, the weakest t-norm is the drastic product, defined as:

TD(a, b) =

{
min(a, b), if max(a, b) = 1,

0, otherwise.
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Remark 6. In respect of a t-norm T , an element x ∈ [0, 1] with T (x, x) = x is
called an idempotent element of T . It is immediate that 0 and 1 are idempotent
elements (which are termed as trivial idempotent elements) for every t-norm.

In addition to t-norms, another fundamental concept in fuzzy set theory
and probabilistic metric spaces is the triangular conorm (t-conorm), which
serves as the dual operation to t-norms.

Definition 7. A triangular conorm (t-conorm), also called an s-norm, is a
binary function S : [0, 1]× [0, 1] → [0, 1] that satisfies the following conditions:

• S-1: Commutativity, S(a, b) = S(b, a).

• S-2: Associativity, S(S(a, b), c) = S(a, S(b, c)).

• S-3: Monotonicity, a ≤ b ⇒ S(a, c) ≤ S(b, c).

• S-4: Boundary conditions, S(a, 0) = a and S(1, 1) = 1.

Similar to t-norms, if for two t-conorms S1 and S2, the inequality S1(x, y) ≥
S2(x, y) holds for all (x, y) ∈ [0, 1]2, we say that S1 is stronger than S2 (or
equivalently, S2 is weaker than S1).

Remark 7. The strongest t-conorm is the maximum t-conorm, given by S(a, b) =
max(a, b). The weakest t-conorm is the probabilistic sum, defined as:

SP (a, b) = a+ b− ab.

Having established the fundamental operations of t-norms, we now revisit
the concept of Menger spaces, incorporating t-norms as the underlying function
for probabilistic metric structures.

Definition 8. A Menger space is a probabilistic metric space (PMS) in which
the condition PM-5 holds universally for a function T that satisfies T-2, T-3,
T-6, and T-7.

The following lemma establishes that, in determining whether a PM-space
is a Menger PM-space, it is sufficient to consider only triplets of distinct points.

Lemma 4. If the points p, q, r are not all distinct, then the condition PM-5
holds for the triple p, q, r under any choice of T satisfying T-2, T-3, T-6, and
T-7.

Proof. We only need to consider the case where T = min.
- If p = r, then Fp,r = ϵ0, and the conclusion is immediate.
- If p = q ̸= r, then for any x, y ≥ 0, we can write:

min(Fp,q(x), Fq,r(y)) = min(ϵ0(x), Fq,r(y)) ≤ Fq,r(y),

and since Fq,r(y) ≤ Fq,r(x+ y), it follows that:

min(Fp,q(x), Fq,r(y)) ≤ Fq,r(x+ y).

Hence, the condition holds.
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The other triangle inequality, attributed to Wald [Wal43], is introduced
below.

Definition 9. Wald triangle inequality is defined as:

(PM-4) Fp,r(x) ≥ [Fp,q ∗ Fq,r](x), ∀x ≥ 0,

where ∗ denotes convolution. Specifically,

[Fp,q ∗ Fq,r](x) =

∫ +∞

−∞
Fp,q(x− y) dFq,r(y).

Since Fp,q(x− y) = 0 for y ≥ x and Fq,r(y) = 0 for y ≤ 0, we may evidently
write

[Fp,q ∗ Fq,r](x) =

∫ x

0

Fp,q(x− y) dFq,r(y)

as the convolution of the distribution functions of two independent random
variables gives the distribution function of their sum.

Definition 10. A PM space (S, F, T ) where T is a convolution is called a Wald
space.

Using the equality ϵa∗ϵb = ϵa+b and Fp,q = ϵd(p,q) where d : [S×S] → [0,∞),
one can show the triple (S, F, ∗) is a Wald space if and only if (S, d) is the
classical metric space.
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Theorem 5. Every Wald space is a Menger PM-space under the choice T = Π.

Proof. In a Wald space, for any x, y ≥ 0, we have:

Fp,r(x+ y) ≥
∫ x+y

0

Fp,q(x+ y − z) dFq,r(z).

Expanding the expression:

Fp,r(x+ y) ≥
∫ x+y

0

[∫ x+y−z

0

dFp,q(t)

]
dFq,r(z).

Using Fubini’s theorem:

Fp,r(x+ y) ≥
∫∫

t,z≥0,t+z≤x+y

dFp,q(t) dFq,r(z).

Now, observe that:
∫∫

t,z≥0,t+z≤x+y

dFp,q(t) dFq,r(z) ≥
∫∫

0≤t≤x,0≤z≤y

dFp,q(t) dFq,r(z),

since {(t, z) | 0 ≤ t ≤ x, 0 ≤ z ≤ y} ⊂ {(t, z) | t, z ≥ 0, t+ z ≤ x+ y} and F is
non-decreasing.

Now, for the integral over the subset:
∫∫

0≤t≤x,0≤z≤y

dFp,q(t) dFq,r(z) =

∫ x

0

∫ y

0

dFp,q(t) dFq,r(z).

Simplifying further:
∫ x

0

∫ y

0

dFp,q(t) dFq,r(z) =

∫ x

0

dFp,q(t) ·
∫ y

0

dFq,r(z) = Fp,q(x) · Fq,r(y).

Therefore, by combining the inequalities, we obtain:

Fp,r(x+ y) ≥ Fp,q(x) · Fq,r(y).

This inequality is indeed PM-5 under the t-norm product.

Corollary 1. If the Wald inequality (PM-4) holds, then the inequality PM-4
also holds.

Proof. Since a Wald space is a Menger PM-space in which PM-4 holds, we
have:

Fp,r(x+ y) ≥ Fp,q(x) · Fq,r(y).

If Fp,q(x) = 1 and Fq,r(y) = 1, then:

Fp,r(x+ y) ≥ 1 · 1 = 1,

which implies Fp,r(x+ y) = 1. Therefore, the inequality PM-4 holds.
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Lemma 6. If the points p, q, r are not all distinct, then the condition PM-4
holds for the triple p, q, r.

Proof. Consider the following cases:

- If p = r, then Fp,r = ϵ0, and the condition PM-4 is satisfied.

- If p = q ̸= r, then for x ≥ 0:

Fp,r(x) = Fq,r(x) =

∫ x

0

dFq,r(y).

Expanding further:

Fp,r(x) =

∫ x

0

ϵ0(x− y) dFq,r(y).

Rewriting:

Fp,r(x) =

∫ x

0

Fp,q(x− y) dFq,r(y) ≥ [Fp,q ∗ Fq,r] (x).

- The case p ̸= q = r follows similarly by interchanging p and r.

This concludes the proof.

Theorem 7. If in a PM-space, the condition PM-5 holds for all triples of
distinct points under T = M∗, then the space is a Wald space.

Proof. Let p, q, r be distinct points. For any x ≥ 0, we have:

Fp,r(x) ≥ max(Fp,q(x), Fq,r(x)).

Expanding further:

Fp,r(x) ≥
∫ x

0

dFq,r(y).

By the definition of convolution and the fact that 0 ≤ Fp,q(x− y) ≤ 1, we can
write:

Fp,r(x) ≥
∫ x

0

Fp,q(x− y) dFq,r(y).

Therefore, the condition PM-4 holds for all triples of distinct points in the
space. This implies that the space is a Wald space.

In 1962, Šerstnev [Šer63] proposed a generalized triangle inequality that
encompasses all previously defined inequalities as special cases. To formally
define PM-spaces in the sense of Šerstnev, the notion of a triangle function is
introduced as follows:

Definition 11. A triangle function T is a binary operation on ∆+ that satisfies
the following properties for any F,G,H,K ∈ ∆+:
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(1) T (F, ϵ0) = F ,

(2) T (F,G) = T (G,F ) (commutativity),

(3) T (F,G) ≤ T (H,K) whenever F ≤ H and G ≤ K (monotonicity),

(4) T (T (F,G), H) = T (F, T (G,H)) (associativity).

Definition 12. A triangle function T1 is stronger than a triangle function T2

if for all F,G ∈ ∆+, and all x ∈ R+, T2(F,G)(x) ≤ T1(F,G)(x).

Example 1. Let T be a left continuous t-norm. Then the function T : ∆+ ×
∆+ → ∆+ defined by

T (F,G)(x) = T (F (x), G(x))

is a triangle function.

Example 2. The maximal triangle function TM (F,G)(x) = min(F (x), G(x)).
For any triangle function T we have:

T (F,G) ≤ T (F, ϵ0) = F,

T (F,G) ≤ T (ϵ0, G) = G,

Hence
T (F,G)(x) ≤ min(F (x), G(x)) = TM (F,G)(x).

Example 3. If T is a left-continuous t-norm, then Tτ defined by

Tτ (F,G)(x) = sup{T (F (u), G(v)) | u+ v = x}

is a triangle function.

Definition 13. Let (S, F, T ) be a PM-space where

Tτ (F,G)(x) = sup{T (F (u), G(v)) | u+ v = x}.

Then (S, F, T ) is called a Menger space, which will be denoted by (S, F, T ) in
the sequel.

Remark 8. If the t-norm T is left-continuous, then Tτ in Definition 13 is a
triangle function. Thus, we have

Fp,r(x+ y) ≥ T (Fp,q(x), Fq,r(y)) ∀p, q, r ∈ X and x, y ∈ R.

Definition 14. A PM-space (in the sense of Šerstnev [Šer63]) is a triple
(S, F, τ), where:

– S is a non-empty set,
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– F : S × S → ∆+,

– τ is a triangle function,

such that the following conditions are satisfied for all p, q, r ∈ X:

(1) Fp,p = ϵ0,

(2) Fp,q ̸= ϵ0 for p ̸= q,

(3) Fp,q = Fq,p (symmetry),

(4) Fp,r ≥ τ(Fp,q, Fq,r) (PM-6, triangle inequality).

Given a probabilistic metric space (S, F, τ), we say that (S, F ) is a proba-
bilistic metric space under τ . A probabilistic pseudometric space (PPM space)
(S, F, τ) is defined as above but not requiring condition (2). When all condi-
tions above apply but (4) is not required we have a probabilistic semimetric
space. When all conditions apply but condition (3) is not required we have a
probabilistic quasimetric space.

Remark 9. If τ(ϵa, ϵb) ≥ inf{ϵc | c < a+b} for all a, b > 0, then the inequality
reduces to PM-4. If τ is a convolution, then PM-6 reduces to PM-4.

Definition 15. Let (S, F, τ) be a PM-space. The space (S, F, τ) is called
proper if:

τ(ϵa, ϵb) ≥ ϵa+b, ∀a, b ∈ R+.

2.3 On some specific cases
The simplest metric spaces are discrete spaces, often referred to as equilateral
spaces, where the metric d is defined as

d(p, q) =

{
a, p ̸= q
0, p = q

where a is a positive constant. Similarly, a PM-space is termed equilateral if
it satisfies the following property for a specific distribution function G where
G(0)=0,

Fp,q(x) =

{
G(x), p ̸= q
ϵ0(x), p = q

It can be easily confirmed that all the conditions (PM-1 through PM-4) re-
quired for PM-spaces are fulfilled.

Theorem 8. In an equilateral PM-space, the Menger triangle inequality (i.e.,
PM-5) holds for any triple of distinct points under T = M∗ and universally
under T = M .
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Proof. Since G is non decreasing,

G(x+ y) ≥ max(G(x), G(y))

≥ min(G(x), G(y))

and

G(x+ y) ≥ min(G(x), 1).

Next, we provide examples demonstrating the existence of equilateral PM-
spaces where the generalized triangle inequality (PM-5) is satisfied under a
t-norm stronger than T = M∗.

Example 4. Let

G(x) =





0, x < 0
x, 0 ≤ x ≤ 1
1 1 ≤ x.

For any triple of distinct points in this space, the condition PM-5 holds under
T = W , as in all cases, we have

G(x+ y) ≥ min(G(x) +G(y), 1).

Example 5. Let

G(x) =

{
0, x ≤ 0

1− e−x, x ≥ 0.

For any triple of distinct points in this space, condition PM-5 holds under
T = (a+ b)−ab. This is evident in the view of the fact that e−xe−y = e−(x+y).

A more interesting class of PM-spaces, compared to equilateral PM-spaces,
can be defined using the concept of a specific distribution as follows:

Consider (X, d) as a metric space and let G represent a distribution function
distinct from ϵx such that G(0) = 0. For each pair of points p, q ∈ X, the
distribution function Fp,q is defined as follows.

Fp,q(x) =

{
G
(

x
d(p,q)

)
, p ̸= q

ϵ0(x), p = q.
(2.3)

Definition 16. A PM-space (S,F) is said to be a simple space iff there exists
a metric d on S and a distribution function G satisfying G(0)=0, such that for
every point p, q ∈ S, Fp,q is given by Equation 2.3. Furthermore, we say that
(S,F) is a simple space generated by the metric space (S, d) and the distribution
function G.
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Theorem 9. A simple space is a Menger PM-space under any choice of T
satisfying T-2,T-3,T-6, and T-7.

Proof. It is sufficient to show that the condition PM-5 holds universally under
T = M , since this is the strongest choice of T possible. From Lemma 4, we
have only to show that for p, q, r are distinct

G

(
x+ y

d(p, r)

)
≥ min

(
G

(
x

d(p, q)

)
, G

(
y

d(q, r)

))
(2.4)

Since d is an ordinary metric, therefore

d(p, r) ≤ d(p, q) + d(q, r).

Which in turn yields that

x+ y

d(p, r)
≥ x+ y

d(p, q) + d(q, r)
(2.5)

Furthermore, since d(p, q) and d(q, r) are positive real numbers, therefore

max

(
x

d(p, q)
,

y

d(q, r)

)
≥ x+ y

d(p, q) + d(q, r)
(2.6)

≥ min

(
x

d(p, q)
,

y

d(q, r)

)

with the equality of either side iff

x

d(p, q)
=

y

d(q, r)

Consequently, from inequalities 2.5 and 2.6, we have

x+y
d(p,r) ≥ min

(
x

d(p,q) ,
y

d(q,r)

)

Since G is non decreasing, it implies 2.4, which completes the proof.

Corollary 2. If G(x) = ϵ0(x− 1), then the generated PM-space reduces to the
generating metric space.

Proof. Consider the function:

Fp,q(x) = ϵ0

(
x

d(p, q)
− 1

)
= ϵd(p,q).
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In most simple spaces, using the t-norm T = M∗ will be too restrictive. This
is evident from inequality 2.6, which shows that for a triple of distinct points
p, q, r satisfying

d(p, r) = d(p, q) + d(q, r),

the condition PM-5 fails under the t-norm M∗.

2.4 Random Metric Space
In this section, we introduce a family of PM-spaces called E-Spaces, which were
introduced by Sherwood [She69]. To define E-Spaces, we first need to establish
the foundational concept of probability spaces.

2.4.1 Probability Spaces

Definition 17. Let Ω be a non-empty set. A sigma-field (or σ-field) A on Ω
is a collection of subsets that satisfies the following properties:

- Ω ∈ A, i.e., the sample space is included,

- If A ∈ A, then Ω \A ∈ A (closure under complements),

- If A1, A2, A3, . . . ∈ A, then
⋃∞

n=1 An ∈ A (closure under countable unions).

Definition 18. A probability space is a triple (Ω,A, P ), where:

- Ω is a non-empty set,

- A is a sigma-field on Ω,

- P is a function P : A → [0, 1] satisfying:

(1) P (Ω) = 1 and P (∅) = 0,

(2) If {An}∞n=1 is a sequence of pairwise disjoint sets in A, then:

P

( ∞⋃

n=1

An

)
=

∞∑

n=1

P (An).

Lemma 10. Let (Ω,A, P ) be a probability space. Then for any A,B ∈ A, the
following properties hold:

(1) If A ⊂ B, then:
P (B) = P (A) + P (B \A),

and hence:
P (A) ≤ P (B), (2.7)

which shows that P is non-decreasing on A.
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(2) The complement satisfies:

P (Ω \A) = 1− P (A). (2.8)

(3) The union and intersection satisfy:

P (A ∪B) + P (A ∩B) = P (A) + P (B).

(4) For triangle norms W and M , the following inequality holds:

W (P (A), P (B)) ≤ P (A ∩B) ≤ M(P (A), P (B)). (2.9)

Proof. The first three properties follow directly from the axioms of probability.
We now prove the inequality in (2.9). The right-hand inequality follows from
(2.7), which is a property of probabilities. The left-hand inequality arises from
the fact that P (A ∩B) ≥ 0. Furthermore:

P (A ∩B) = P (A) + P (B)− P (A ∪B),

and since P (A ∪B) ≤ P (Ω) = 1, it follows that:

P (A ∩B) ≥ P (A) + P (B)− P (Ω).

Substituting P (Ω) = 1, we obtain:

P (A ∩B) ≥ P (A) + P (B)− 1.

This completes the proof.

Remark 10. If Ω is the unit interval I and F is the identity function on I
with F (0) = 0 and F (1) = 1, then F defines a unique probability measure
called Lebesgue measure denoted by λ, and the corresponding space is denoted
by (I, λ)

E-Space

E-Spaces are one family of PM-spaces [She69; Ste68] defined through the use of
measurable functions and probability spaces. These spaces provide a framework
for quantifying the measure of points where the distance between two functions
does not exceed a given value x. The construction of E-Spaces is based on
probability measures, which extend the traditional application of the Lebesgue
measure on the interval I = [0, 1], as highlighted by Schweizer and Sklar [SS83].

Formally, let p, q : I → M , where (M,d) is a metric space with a dis-
tance function d(a, b) = |a − b|. Using the Lebesgue measure λ, the distance
distribution function for Ω = I = [0, 1] is defined as:

Fp,q(x) = λ ({t ∈ I | |p(t)− q(t)| < x}) .
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E-Spaces generalize this construction by incorporating a probability space
(Ω,A, P ) rather than limiting the scope to the Lebesgue measure (I, λ). This
generalization allows for a broader class of measurable spaces. Furthermore,
E-Spaces make use of L+

1 (Ω), which represents the set of all positive, almost
everywhere finite, Lebesgue-measurable functions on Ω.

Definition 19. Let (Ω,A, P ) be a probability space, let (M,d) be a metric
space, let S be a set of functions from Ω into M and let F be a mapping from
S × S into ∆+. Then, (S,F) is an E-space with base (Ω,A, P ) and target
(M,d) if

- (i) For all p, q ∈ S and all x ∈ R+ the set

{ω ∈ Ω|d(p(ω), q(ω)) < x}

belongs to A; i.e., the composite function d(p, q) from Ω into R+ is P-
measurable and therefore in L+

1 (Ω).

- (ii) For all p, q ∈ S, F(p, q) = Fpq defined by

Fp,q(x) = P ({ω ∈ Ω|d(p(ω), q(ω)) < x}). (2.10)

Equation 2.10 implies that F satisfies Properties (1) and (3) in Defini-
tion 14. If F also satisfies Property (2), then (S, F ) is a canonical E-space.

Theorem 11. Let (S, F ) be an E-space. Then (S, F ) is a PPM space under
τW . If (S, F ) is canonical, then it is a Menger space under W .

Proof. We need only establish PM-6. For any p, q, r ∈ S and any x ∈ R+, let
u, v ∈ R+ such that u+ v = x. Define the sets A,B,C as follows:

A = {w ∈ Ω | d(p(w), q(w)) < u},

B = {w ∈ Ω | d(q(w), r(w)) < v},
C = {w ∈ Ω | d(p(w), r(w)) < x}.

Since d satisfies the triangle inequality, it follows that A ∩ B ⊆ C. Hence
2.9 yields:

P (C) ≥ P (A ∩B) ≥ W (P (A), P (B)).

By 2.10, we have:

P (A) = Fp,q(u), P (B) = Fq,r(v), P (C) = Fp,r(x).

Thus:
Fp,r(x) ≥ W (Fp,q(u), Fq,r(v)).
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Chapter 3

Fuzzy Measures

Uncertainty is an inherent aspect of human cognition and decision-making,
manifesting in various forms such as imprecision and vagueness. While these
terms are often used interchangeably, they have distinct meanings: impreci-
sion refers to a lack of exactness in numerical or quantitative data, whereas
vagueness arises in qualitative or linguistic contexts. For example, describing
an image as having "good quality" is inherently vague, as its interpretation
depends on subjective and context-dependent factors. The ability to model
and quantify such uncertainty is crucial, particularly in domains where precise
boundaries or strict definitions are difficult to establish [KY95].

Traditional mathematical frameworks, such as classical set theory and prob-
ability measures, have long been employed to address uncertainty. However,
these models rely on binary and additive principles that often fail to accommo-
date the gradual transitions and overlapping categories characteristic of real-
world phenomena [Zad65]. This limitation has led to the development of alter-
native approaches, including fuzzy set theory and its extension, fuzzy measure
theory, which provides a more flexible and expressive means of representing
and reasoning about uncertainty [Sug74; TNS14; TN07].

The foundations of fuzzy set theory were introduced by Lotfi Zadeh in
1965, marking a paradigm shift in the mathematical treatment of vagueness
and imprecision. Unlike classical set theory, which enforces strict membership
rules, fuzzy set theory allows elements to have partial membership, quantified
by a degree between zero and one [Zad65]. This fundamental concept laid the
groundwork for fuzzy measures, introduced by Sugeno in 1974, which generalize
classical measures by relaxing the requirement of additivity [Sug74]. Instead,
fuzzy measures rely on properties such as monotonicity and continuity, enabling
them to model uncertainty in a way that better aligns with human reasoning
and real-world complexity. For instance, whereas classical measures assign a
fixed numerical value to the area of a shape, fuzzy measures can express the
degree to which a region belongs to a particular category, such as estimating the
proportion of blackness in an image based on reflected light intensity [WK92].
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Since their introduction, fuzzy measures have been further developed through
the contributions of researchers such as Wang and Klir [WK92], Ralescu and
Adams [RA78], Grabisch [Gra96], and Pap [Pap95], who have refined their
mathematical properties and expanded their applicability. Unlike classical
probability measures, which require strict additivity, fuzzy measures provide
non-additive models of uncertainty including plausibility, possibility, and be-
lief functions [Sha76]. These concepts allow fuzzy measures to handle both
probabilistic and non-probabilistic uncertainty, broadening their utility across
various disciplines. For example, belief functions quantify the degree of support
for a given hypothesis, while possibility measures assess the feasibility of events
under incomplete information [DP88].

Fuzzy measure theory has been widely applied in artificial intelligence, de-
cision analysis, data mining, and information fusion. In artificial intelligence,
fuzzy measures facilitate multi-attribute evaluation and data aggregation, sup-
porting tasks such as pattern recognition, clustering, and classification [Zad78].
In decision-making, they provide a structured framework for aggregating ex-
pert opinions and evaluating alternatives, particularly in multi-criteria decision
analysis [MS89]. The adoption of fuzzy measures in these domains has been
instrumental in improving the interpretability and robustness of computational
models, particularly in contexts where traditional probability-based approaches
struggle to handle uncertainty effectively [Yag81].

A significant application of fuzzy measures is the concept of fuzzy integrals,
which generalize classical integrals to accommodate non-additive measures.
Notable examples include the Choquet and Sugeno integrals, which provide
alternative methods for aggregating information in decision-making and data
analysis. The Choquet integral is particularly valuable for modeling interac-
tions between attributes in multi-criteria decision-making [Cho54], while the
Sugeno integral is useful in scenarios where max-min aggregation is preferable,
such as in robust decision models [Sug74].

Beyond theoretical advancements, fuzzy measures have been applied to a
range of real-world problems involving uncertainty and imprecision. Examples
include assessing the severity of cerebral damage using fuzzy classification mod-
els [Blo96], modeling the spatial extent of vague geographical regions [Rob03],
and optimizing resource allocation in complex decision-making environments
[Gra97]. These applications highlight the adaptability of fuzzy measures in
addressing challenges that require reasoning under uncertainty.

This chapter provides a brief introduction to fuzzy measures, beginning
with the fundamental concepts of fuzzy set theory, including its motivation,
formal definitions, and key operations. It then presents fuzzy measures as an
extension of fuzzy sets, outlining their key properties such as monotonicity,
continuity, and non-additivity. Additionally, it introduces Sugeno λ-measures,
a specific class of fuzzy measures that incorporates an interaction parameter to
model non-additive aggregation.

27



3.1 Fuzzy Sets
Fuzzy set theory extends classical (crisp) set theory by allowing elements to
have varying degrees of membership, rather than being strictly included or
excluded. In classical set theory, also referred to as crisp set theory, a set A
defined on a universe X contains an element x if and only if x is a full member of
A. This means that every element is either fully included (x ∈ A) or completely
excluded (x /∈ A), with no intermediate states.

Fuzzy set theory generalizes this concept by introducing partial membership,
where elements belong to a set with a degree of membership that continuously
ranges between 0 and 1. This is captured by a membership function, which
assigns a real value in the interval [0, 1] to each element in X, reflecting its
degree of association with the set. Higher values indicate stronger member-
ship, allowing for a more refined representation of uncertainty and vagueness
in mathematical modeling.

Definition 20. A fuzzy set A on the universe X is defined by a membership
function:

µA : X → [0, 1] (3.1)

where µA(x) represents the membership degree of element x in A.

One of the key applications of fuzzy sets is in modeling concepts that lack
precise boundaries, such as the notion of expensiveness.

Example 6. Consider the concept of an expensive car. In classical set theory,
a car would either be classified as expensive or not, based on a strict threshold.
However, in fuzzy set theory, expensiveness is viewed as a spectrum, allowing
cars to belong to the category of expensive cars with varying degrees of mem-
bership.

Suppose we consider a selection of cars: Ferrari, Rolls Royce, Mercedes,
BMW, Honda, Fiat, and Renault. Some, such as Ferrari and Rolls Royce, are
unquestionably expensive, while others, like Fiat and Renault, are considered
relatively inexpensive. Using a fuzzy set, we can model the concept of expensive
cars as follows:

A =





(Ferrari, 1)
(Rolls Royce, 1)
(Mercedes, 0.8)
(BMW, 0.7)

(Honda, 0.4)
(Fiat, 0.2)
(Renault, 0.2)

Here, Ferrari and Rolls Royce have a membership value of 1, indicating that
they are fully considered expensive. Mercedes and BMW have lower membership
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values of 0.8 and 0.7, respectively, reflecting their relative cost. Honda, Fiat,
and Renault have even lower values, indicating that they are perceived as less
expensive.

Fuzzy sets are widely used to represent linguistic terms such as low, medium,
and high. Such terms describe variables that transition smoothly rather than
abruptly. A variable that follows this principle is referred to as a fuzzy variable.

The importance of fuzzy variables lies in their ability to model gradual
changes and handle measurement uncertainty. For instance, temperature can
be described as “cold”, “warm”, or “hot,” but these categories do not have strict
boundaries. Instead of enforcing sharp divisions, fuzzy sets allow for a smooth
transition between these states, enabling a more flexible and intuitive repre-
sentation of imprecise concepts.

In some cases, defining membership functions with exact values may not be
feasible due to inherent uncertainty. Instead of assigning a single precise mem-
bership value, an interval-valued fuzzy set represents membership as a closed
interval within [0, 1]. This approach provides greater flexibility in modeling
uncertainty and capturing variations in data.

Definition 21. An interval-valued fuzzy set A on the universe X is defined by
a membership function:

µA : X → P([0, 1]) (3.2)

where P([0, 1]) represents the set of all closed subintervals within [0, 1].

By allowing interval-based membership values, these sets accommodate a
broader range of uncertainties that may arise in real-world applications. Com-
pared to standard fuzzy sets, interval-valued fuzzy sets provide greater flexibil-
ity by eliminating the need for exact membership values. This characteristic
makes them especially valuable in scenarios where data is imprecise or uncer-
tain. However, this flexibility introduces greater computational complexity,
making processing and analysis more demanding.

3.1.1 Notation and Classical Sets

A fuzzy set on a universe X is a mapping from X to the interval [0, 1]. The
collection of all fuzzy sets on X is denoted by:

F(X) = {A | A : X → [0, 1]}.
For a finite universe X = {x1, x2, . . . , xn}, a fuzzy set A can be represented

as:

A = {a1/x1, a2/x2, . . . , an/xn}, ai ∈ (0, 1].

Elements with zero membership (A(x) = 0) are typically omitted for brevity.
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Several fundamental classical sets are associated with fuzzy sets. The sup-
port of a fuzzy set consists of all elements with nonzero membership, capturing
the range of elements that contribute to the fuzzy set. The α-cut of a fuzzy
set represents the subset of elements whose membership degree is at least

Definition 22. The support of a fuzzy set A ∈ F(X) is the set of elements
with positive membership:

Supp(A) = {x ∈ X | A(x) > 0}. (3.3)

Definition 23. The α-cut of A for a given threshold α ∈ [0, 1] is defined as:

Aα = {x ∈ X | A(x) ≥ α}. (3.4)

The α-cut produces a crisp subset of X that includes all elements whose
membership value in A meets or exceeds α. A fundamental property of α-cuts
is their nesting behavior:

Aα ⊇ Aβ , for α ≤ β. (3.5)

This means that as α increases, the corresponding α-cut becomes a smaller
subset of X, reflecting a stricter inclusion criterion.

3.1.2 Convexity of Fuzzy Sets

An important property of fuzzy sets is their convexity, which generalizes the
classical notion of convexity in crisp sets.

Definition 24. A fuzzy set A on R is convex if and only if for all x1, x2 ∈ X
and for all λ ∈ [0, 1], the following inequality holds:

A(λx1 + (1− λ)x2) ≥ min{A(x1), A(x2)}. (3.6)

Proof. 1. Assume that A is convex. Let α = A(x1) ≤ A(x2). Then, x1, x2 ∈
Aα, and by the convexity of A, we have:

A(λx1 + (1− λ)x2) ≥ α = A(x1) = min{A(x1), A(x2)}.

2. Assume that A satisfies (3.6). We need to show that for any α ∈ (0, 1),
Aα is convex. Since x1, x2 ∈ Aα, meaning A(x1) ≥ α and A(x2) ≥ α,
using (3.6), we get:

A(λx1 + (1− λ)x2) ≥ min{A(x1), A(x2)} ≥ α.

This implies that λx1 + (1− λ)x2 ∈ Aα, thus proving convexity.
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3.1.3 Operations on Fuzzy Sets
Similar to classical set theory, fundamental operations such as intersection,
union, and complement can be extended to fuzzy sets. These operations are
governed by appropriate aggregation functions, specifically t-norms for inter-
section and t-conorms for union. The following definitions formalize these op-
erations.

Definition 25. Let A,B ∈ F(X), and let T and S denote a t-norm and a
t-conorm, respectively. Then, the basic operations on fuzzy sets are defined as
follows:

• The intersection of A and B, denoted as C = A ∩ B, is a fuzzy set
C ∈ F(X) with the membership function given by:

C(x) = T (A(x), B(x)), ∀x ∈ X. (3.7)

• The union of A and B, denoted as D = A ∪B, is a fuzzy set D ∈ F(X)
with the membership function given by:

D(x) = S(A(x), B(x)), ∀x ∈ X. (3.8)

• The complement of A, denoted as Ā, is defined by:

Ā(x) = 1−A(x), ∀x ∈ X. (3.9)

A commonly used choice for these operations are T=min and S= max.
These standard definitions ensure that fuzzy set operations generalize clas-

sical set operations while accommodating degrees of membership, providing a
flexible framework for handling imprecise information.

3.1.4 Fuzzy Relations
Introduced in Zadeh’s seminal work on fuzzy sets [Zad65], fuzzy relations ex-
tend classical (crisp) relations by allowing elements to be associated with vary-
ing degrees of membership rather than a strict binary classification. Unlike
crisp relations, which define a strict inclusion or exclusion of element pairs,
fuzzy relations are represented as fuzzy sets over pairs (or n-tuples) of objects,
enabling a more flexible and nuanced representation of relationships.

Let A ∈ F(X) and B ∈ F(Y ). Their Cartesian product is a fuzzy set
A×B ∈ F(X × Y ) with the membership function:

(A×B)(x, y) = A(x) ∧B(y), ∀x ∈ X, y ∈ Y. (3.10)
In (3.10), the minimum operator ∧ is used to compute the membership

degree. This is the most usual operator for conjunction. However, a more
general formulation allows for the use of an arbitrary t-norm T, leading to the
generalized Cartesian product:

(A×T B)(x, y) = T (A(x), B(y)), ∀x ∈ X, y ∈ Y. (3.11)
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Definition 26. An n-ary fuzzy relation R is a fuzzy set defined over the Carte-
sian product X1 × · · · × Xn of n universes. When all domains are identical,
i.e., X1 = · · · = Xn = X, the relation is referred to as an n-ary fuzzy relation
on X.

The membership function R(x1, . . . , xn) quantifies the degree to which the
elements xi ∈ Xi, for i = 1, . . . , n, belong to the relation R. Notably, the
Cartesian product of two fuzzy sets corresponds to a special case of a binary
fuzzy relation.

Since a fuzzy relation is a fuzzy set defined on a Cartesian product of crisp
sets, its fundamental operations—intersection, union, and complement—are
naturally inherited from fuzzy set theory.

3.2 Fuzzy Measures
Fuzzy sets and fuzzy measures are closely related but fundamentally different
in how they represent and handle uncertainty. A fuzzy set assigns a mem-
bership degree to each individual element, indicating the extent to which it
belongs to the set. This degree of membership typically ranges between 0 and
1, allowing for partial membership and a smooth transition between inclusion
and exclusion.

In contrast, fuzzy measures do not evaluate individual elements directly but
instead assign values to entire subsets. Rather than indicating the membership
of a single element, they quantify the overall belief or confidence in the classi-
fication of a subset, often based on available evidence. This transition from an
element-wise classification to a subset-level evaluation enables fuzzy measures
to provide a more comprehensive representation of uncertainty.

To illustrate this distinction, consider the problem of assessing an individ-
ual’s guilt in a legal context. A fuzzy set would assign a degree of guilt directly
to the individual, reflecting the level of certainty about their culpability. Con-
versely, a fuzzy measure would evaluate the strength of evidence supporting
the classification of a subset of individuals as guilty. This broader perspec-
tive allows fuzzy measures to incorporate multiple sources of information and
express varying degrees of confidence more effectively.

Fuzzy measures are also known as capacities or non-additive measures,
as they generalize classical probability measures while relaxing the additivity
property. Their formal definition is as follows:

Definition 27. Let X be a universal set and A a nonempty family of subsets
of X. A function µ : A → [0, 1] is called a fuzzy measure if it satisfies the
following conditions:

FM-1
µ(∅) = 0 and µ(X) = 1

The boundary condition ensures that the empty set has no evidence
assigned to it, and the entire universal set receives full certainty.

32



FM-2
∀A,B ∈ A, A ⊆ B ⇒ µ(A) ≤ µ(B)

This property, called Monotonicity, states that as a set expands, the
measure should not decrease, ensuring consistency in uncertainty
representation.

3.2.1 Properties of Fuzzy Measures
Fuzzy measures can be classified based on the following continuity properties.

FM-3

µ

( ∞⋃

i=1

Ai

)
= lim

i→∞
µ(Ai)

This ensures that the fuzzy measure behaves consistently for in-
creasing sequences of sets.

FM-4

µ

( ∞⋂

i=1

Ai

)
= lim

i→∞
µ(Ai)

This requirement applies to decreasing sequences of sets, ensuring
stability in convergence.

Specifically, a measure µ is termed lower semicontinuous if it satisfies conditions
FM-1, FM-2, and FM-3, whereas it is considered upper semicontinuous if it
meets conditions FM-1, FM-2, and FM-4. A measure that satisfies both
lower and upper semicontinuity is referred to as a continuous fuzzy measure.

Beyond continuity, fuzzy measures exhibit various fundamental properties
that characterize how they aggregate information over sets. One crucial aspect
is the additivity condition, which determines how the measure behaves when
applied to disjoint sets. Classical probability measures are strictly additive,
meaning that the measure of a union of disjoint sets equals the sum of their
individual measures. However, in many real-world applications, uncertainty
cannot be precisely modeled using strict additivity, leading to the need for
non-additive measures such as subadditive and superadditive measures.

Definition 28. Let µ be a non-additive measure on the measurable space
(X,A). The measure µ satisfies the following properties:

- Additivity: µ is additive if, for sets A,B ∈ A,

µ(A ∪B) = µ(A) + µ(B), when A ∩B = ∅. (3.12)

- Superadditivity: µ is superadditive if:

µ(A ∪B) ≥ µ(A) + µ(B), when A ∩B = ∅. (3.13)
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- Subadditivity: µ is subadditive if:

µ(A ∪B) ≤ µ(A) + µ(B), when A ∩B = ∅. (3.14)

- Submodularity: µ is submodular if:

µ(A) + µ(B) ≥ µ(A ∪B) + µ(A ∩B). (3.15)

- Supermodularity: µ is supermodular if:

µ(A) + µ(B) ≤ µ(A ∪B) + µ(A ∩B). (3.16)

- Symmetry: µ is symmetric if, for a finite set X, whenever |A| =
|B|, then:

µ(A) = µ(B). (3.17)

Additionally, a supermodular measure inherently satisfies the superadditiv-
ity property, while a submodular measure implies subadditivity. These rela-
tionships highlight the structural dependencies between different properties of
fuzzy measures.

3.2.2 Examples on Fuzzy Measures
Example 7. Let µ be the Dirac measure on (X,A), i.e., for any E ∈ A,

µ(E) =

{
1, x0 ∈ E,

0, x0 /∈ E,

where x0 is a fixed point in X. This set function µ is a probability measure and
a fuzzy measure.

Example 8. Let X = {1, 2, . . . , n}, and let A = P(X), where P(X) denotes
the power set of X. Define the function µ : A → [0, 1] by:

µ(E) =

( |E|
n

)2

,

where |E| is the number of elements in E, then µ is a fuzzy measure. Since X
is finite, continuity (both from above and below) is naturally satisfied.

Example 9. Let X0 = {1, 2, . . . }, and define X = X0 × X0. If E ∈ P(X),
define

µ(E) = |Proj E|,
where

Proj E = {x | (x, y) ∈ E}.
µ satisfies the conditions (FM1), (FM2), and (FM3), but is not continuous
from above.
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Example 10. Let f(x) be a nonnegative, extended real-valued function defined
on X = (−∞,∞). If

µ(E) = sup
x∈E

f(x), ∀E ∈ P(X),

then µ satisfies (FM-1), (FM-2), and (FM-3), but is not necessarily con-
tinuous from above. Thus, µ is a lower semicontinuous fuzzy measure on
(X,P(X)).

Example 11. Let the measurable space (X,P(X)) be the same as in the pre-
vious example. Let f : X → [0, 1] is such that

inf
x∈X

f(x) = 0,

then the set function µ is given by

µ(E) = inf
x∈E

f(x).

3.2.3 Sugeno λ-Measures

Sugeno λ-measures are a class of fuzzy measures that generalize classical prob-
ability measures by introducing an interaction parameter λ. Unlike additive
probability measures, which assume independent contributions from disjoint
subsets, Sugeno λ-measures allow for interactions between elements, making
them particularly useful for non-additive aggregation in applications such as
decision-making, information fusion, and uncertainty modeling.

A key property of Sugeno λ-measures is their λ-decomposability, which de-
fines how the measure of a union of two disjoint sets is computed based on their
individual measures. This decomposability is given by a specific functional form
that accounts for potential synergy or redundancy between subsets.

Definition 29. A fuzzy measure µ is called a Sugeno λ-measure if there exists
a fixed parameter λ ∈

(
−1

supµ ,∞
)
, where supµ = supE∈A µ(E), such that for

all sets A,B ∈ A, with A∪B ∈ A and A∩B = ∅, the following equation holds:

µ(A ∪B) = µ(A) + µ(B) + λµ(A)µ(B). (3.18)

This equation expresses the λ-decomposability property, meaning that the
measure of a union is not strictly additive but rather incorporates an interac-
tion term λµ(A)µ(B). The value of λ determines whether the measure exhibits
synergistic (λ > 0), neutral (λ = 0), or redundant (λ < 0) aggregation effects:

• If λ > 0, the measure is superadditive, meaning that the whole is greater
than the sum of its parts, modeling reinforcement or synergy.
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• If λ = 0, the measure reduces to standard additivity, behaving like a
classical probability measure.

• If λ < 0, the measure is subadditive, implying redundancy, where the
whole is less than the sum of its parts.

An important consequence of this formulation is that a Sugeno λ-measure
is fully determined by specifying the measure values for all singletons in the
universe and the parameter λ. The following proposition formalizes this re-
sult and provides a general expression for computing Sugeno λ-measures over
arbitrary subsets.

Proposition 1. [Sug74] Let v : X → [0, 1] and λ > −1 be such that

1

λ

( ∏

xi∈X

[1 + λv(xi)]− 1

)
= 1 if λ ̸= 0

∑

xi∈X

v(xi) = 1 if λ = 0;

then, the fuzzy measure defined by

µ(A) =





v(xi) if A = {xi}
1
λ

(∏
xi∈A[1 + λv(xi)]− 1

)
if |A| ≠ 1 and λ ̸= 0∑

xi∈A v(xi) if |A| ≠ 1 and λ = 0

is a Sugeno λ-measure.

Constructing a λ-fuzzy measure is a significant and interesting issue. Con-
sider a finite set X, and let F consist of X and all singletons. Suppose µ is
known on the singleton subsets, i.e., µ({xi}) for all xi ∈ X, with the condition
that µ({xi}) < µ(X). A λ-fuzzy measure on F satisfies the equation:

µ(X) =
1

λ

[
n∏

i=1

(1 + λµ({xi}))− 1

]
(3.19)

An important result establishes that the measure values assigned to the single-
tons uniquely determine the parameter λ. Consequently, defining a measure
within this family requires only |X| values, making it computationally efficient.
The following theorem provides a formulation for computing λ.

Theorem 12. [Sug74] Under Equation 3.19, the parameter λ is uniquely
determined by the following equation:

1 + λµ(X) =

n∏

i=1

(1 + λµ({xi})).

Moreover, the sign and magnitude of λ are characterized as follows:
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(1) λ > 0 if
∑n

i=1 µ({xi}) < µ(X), indicating a superadditive measure.

(2) λ = 0 if
∑n

i=1 µ({xi}) = µ(X), reducing to an additive measure.

(3) − 1
µ(X) < λ < 0 if

∑n
i=1 µ({xi}) > µ(X), corresponding to a subadditive

measure.

Proof. Define µ(X) = a0 and µ({xi}) = ai for i = 1, 2, . . . , n. Consider the
function:

fk(λ) = (1 + akλ)fk−1(λ).

By differentiation, we obtain:

f ′
k(λ) = akfk−1(λ) + (1 + akλ)f

′
k−1(λ).

which leads to:

f ′
n(λ) =

n∑

i=1

ai.

Since fn(λ) is concave and limλ→∞ fn(λ) = ∞, it follows that fn(λ) has a
unique intersection with f(λ) = 1 + a0λ, establishing the uniqueness of λ.

Thus, solving a polynomial equation of degree n− 1 yields the unique valid
λ.

Example 12. Consider the finite set X = {a, b, c} with µ(X) = 1 and the
following singleton values:

µ({a}) = 0.3, µ({b}) = 0.25, µ({c}) = 0.15.

Using Equation 3.19, we obtain:

1 =
(1 + 0.3λ)(1 + 0.25λ)(1 + 0.15λ)− 1

λ
.

Expanding the expression:

0.01125λ2 + 0.7λ− 0.5 = 0.

Solving the quadratic equation:

λ =
−0.7±

√
0.49 + 0.045

0.0225
.

λ =
−0.7± 0.72

0.0225
.

λ = 1.70 or − 15.70.

Since λ = −15.70 is outside the feasible range λ > −1, the unique valid
solution is λ = 1.70.
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Chapter 4

Summary of Contributions

This thesis formalized the interaction between the space of datasets (database
space) and the space of trained machine learning models (model space), with
the goal of developing principled, uncertainty-aware distances for comparing
models and learning algorithms. Grounded in probabilistic metric spaces, the
thesis develops a flexible theoretical framework that supports multiple sce-
narios—ranging from evolving datasets, to structured data interactions, to
uncertainty within the model space—using tools such as fuzzy measures and
transformation-based modeling to assess model similarities.

The central research problem was defined as: How can we meaningfully
compare machine learning models and algorithms by explicitly accounting for
the datasets that generate them? This problem was articulated through three
key research questions:

RQ1: How can models m1 and m2 in M be compared while accounting for
transformations in the database space Ω?

RQ2: How can we construct distances and metrics for machine learning algo-
rithms in G that capture complex interactions of the databases?

RQ3: Which characterizations can be provided for the metrics we propose?

Answering these questions required the development of new mathematical tools
to quantify uncertainty in model comparisons. Collectively, the four papers
present a coherent framework for understanding and measuring distances be-
tween machine learning models, grounded in probabilistic metric space theory
and shaped by dataset dynamics and data-driven interactions.

This chapter provides an overview of the papers included in the thesis, out-
lining their individual contributions and how they address the research ques-
tions.
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Summary of Paper I

Vicenç Torra, Mariam Taha, & Guillermo Navarro-Arribas. The space of
models in machine learning: using Markov chains to model transitions. Progress
in Artificial Intelligence, 10, 321–332 (2021). https://doi.org/10.1007/s13748-
021-00242-6

Paper I develops a probabilistic metric space framework to characterize how
transformations within the database space affect the resulting model space. To
reflect the evolving nature of real-world datasets, the paper models database
transitions using Markov chains and transition matrices. This approach enables
the definition of a distance metric between models, grounded in the probability
of transitioning between the datasets from which they are generated. Two
forms of probabilistic metric spaces are introduced:

• Visited Database-Based Probabilistic Metric Space (VD-PMS): Measures
the probability that one database transitions into another within a given
number of steps.

• Database Distance-Based Probabilistic Metric Space (DD-PMS): Defines
distances between databases based on their long-term evolution rather
than immediate transitions.

To approximate distances efficiently and reduce computational costs, the
paper examines the minimum number of steps needed to transition between
databases, ensuring that probability values remain zero before a specific thresh-
old. Additionally, the approach allows for non-modifying transitions, increasing
the number of valid paths while preserving theoretical consistency. This leads
to a probabilistic formulation where the probability of transitioning in a given
number of steps follows a recursive structure.

The paper also proposes approximating transition probabilities by consid-
ering only a random subset of valid transition paths, leading to a compu-
tationally feasible lower bound for the distance function. This ensures that
any decision based on applying a threshold to these approximated probabili-
ties—for example, determining whether two databases or models are sufficiently
close—remains valid even when the full set of transition paths is considered.
Furthermore, the use of a reference database to approximate distances emerges
naturally from the triangle inequality property of the space, allowing efficient
estimation without full pairwise computations across all database states.

These definitions extend to machine learning models by associating each
model with the set of databases that have generated it. The model distance
function is derived by averaging the probabilistic distances over all generat-
ing databases, ensuring that similarity comparisons reflect dataset evolution.
This approach accounts for dataset-driven transformations. Furthermore, when
lower bounds of database distances are used, the model distance function re-
tains these lower bounds. This formulation directly contributes to answering
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RQ1: How can models be compared while accounting for transformations in
the database space? The contributions of this paper provide a theoretical foun-
dation for model similarity that integrates dataset evolution, paving the way
for robust model selection and privacy-preserving analysis in dynamic data
environments.

Summary of Paper II

Yasuo Narukawa, Mariam Taha, & Vicenç Torra. On the definition of prob-
abilistic metric spaces by means of fuzzy measures. Fuzzy Sets and Systems,
Vol. 465, Article ID 108528, 2023.https://doi.org/10.1016/j.fss.2023.108528

Paper II presents a new framework for constructing probabilistic metric spaces
based on fuzzy measures, referred to as F-spaces. Unlike other approaches
such as E-spaces that rely on additive probability measures, F-spaces enable
the modeling of complex interactions among subsets of a base space—such
as redundancy, synergy, or overlap—by leveraging non-additive set functions.
This theoretical advancement provides a more expressive foundation for mea-
suring similarities between models or functions that operate over input domains
composed of interacting or overlapping subsets.

The core idea is to assess how similarly two functions behave across groups
of inputs that are considered meaningful according to a fuzzy measure. This
yields a distance distribution function, which captures how much of the input
space—weighted by importance—satisfies a given similarity threshold.

To ensure that the space satisfies the properties of a probabilistic metric
space, the paper investigates the compatibility between classes of fuzzy mea-
sures (such as Sugeno λ-measures and indicator-based measures) and various
t-norms (e.g., minimum, product, Lukasiewicz).

The results of this investigation are presented through a sequence of for-
mal propositions and theorems. For instance, Theorem 2 proves that when
the fuzzy measure is supermodular, the induced F-space satisfies the triangle
inequality under the bounded difference t-norm, thus forming a probabilistic
pseudometric space. Proposition 3 extends this to convex distortions of prob-
ability measures, showing how distorted probabilities also yield valid F-spaces.
This illustrates that moving from a classical E-space to an F-space is concep-
tually and technically straightforward: by applying a convex transformation to
a probability measure, one can construct a valid fuzzy measure that preserves
the desired probabilistic metric properties under suitable t-norms. Theorem 3
confirms that canonical F-spaces form proper Menger spaces, while Theorem 4
shows that even 1−-measures result in valid pseudometric structures under the
drastic t-norm. Theorem 5 further demonstrates that unanimity measures still
yield valid F-spaces under the minimum t-norm. Finally, Proposition 4 con-
nects F-spaces with the Choquet integral framework, showing how new valid
fuzzy measures can be constructed from existing ones, expanding the versatility
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of the framework.
Collectively, these results highlight a key insight: the stronger the t-norm

used, the fewer constraints are needed on the fuzzy measure to preserve the
triangle inequality. This analysis directly addresses RQ3, identifying the condi-
tions under which fuzzy-measure-based distances remain well-structured. This
theoretical foundation is particularly relevant in statistical databases, where
functions such as arithmetic or harmonic means are commonly used to summa-
rize subsets of data. F-spaces provide a principle way to compare these statisti-
cal functions by evaluating how similarly they behave across subsets considered
important under the fuzzy measure—enabling nuanced comparisons that align
with real-world data analysis needs. This is demonstrated in the application
section of the paper.

Summary of Paper III

Mariam Taha & Vicenç Torra. Measuring the distance between machine learn-
ing models using F-space. In: Proceedings of the 13th Conference of the Eu-
ropean Society for Fuzzy Logic and Technology (EUSFLAT 2023) and the 12th
International Summer School on Aggregation Operators (AGOP 2023), Palma
de Mallorca, Spain, September 4–8, 2023.
Nominated for Best Student Paper Award

Paper III applies the F-space framework to the comparison of machine learn-
ing algorithms, leveraging the structure of their generating data as the foun-
dation for defining similarity. This directly contributes to addressing RQ2, by
showing how distances between models can incorporate complex interactions
and dependencies within the training data.

Each model is treated as a function mapping a dataset to a trained out-
put (e.g., model parameters), and distances between models are computed by
evaluating how closely their outputs align across multiple databases.

The study examines both additive measures—recovering the classical E-
space formulation—and non-additive ones such as Sugeno λ-measures and una-
nimity measures. Experiments involve comparing linear regression, Huber re-
gression, and Ridge regression models trained on sampled subsets of a real
dataset. The resulting model distances are analyzed using F-space construc-
tions, illustrating how the choice of a fuzzy measure affects whether the induced
space satisfies the triangle inequality.

The results confirm that supermodular fuzzy measures—such as Sugeno
λ-measures with positive λ—lead to valid probabilistic pseudometric spaces,
whereas submodular measures may violate key metric properties. The findings
also confirm theoretical results on how different t-norms, when combined with
specific fuzzy measures, preserve the triangle inequality.

Paper III provides practical validation that F-spaces capture nuanced differ-
ences between models beyond classical metrics. By incorporating fuzzy notions
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of subset importance, the approach supports more robust comparisons.

Summary of Paper IV
Mariam Taha & Vicenç Torra. Generalized F-spaces through the lens of
fuzzy measures. Fuzzy Sets and Systems, Vol. 507, Article ID 109317, 2025.
https://doi.org/10.1016/j.fss.2025.109317

Paper IV introduces a further generalization of the F-space framework by ex-
tending the target space from a metric space to a probabilistic metric space,
resulting in what we term a Generalized F-space. This construction allows
both the base space and the target space to account for uncertainty: the base
is equipped with a fuzzy (non-additive) measure, while the target employs dis-
tance distribution functions instead of fixed distances. This dual-layered prob-
abilistic reasoning enables more expressive modeling of both data structure and
uncertainty in learned models.

The key contribution of this work is the formal definition and analysis of
Generalized F-spaces. It proves that under specific conditions—particularly
when the fuzzy measure is supermodular and the triangle function in the tar-
get space is proper—the resulting space satisfies the axioms of a probabilistic
pseudometric space. Several theorems confirm that different classes of fuzzy
measures (e.g., Sugeno λ-measures and indicator-based 1-measures) yield valid
Generalized F-spaces under suitable t-norms (e.g., bounded difference, drastic,
or minimum).

An important theoretical insight is that Generalized F-spaces preserve the
structural benefits of F-spaces while allowing the target distances themselves
to be probabilistic, which captures uncertainty in model behavior due to data
variability, randomness in training, or architectural differences.

To demonstrate practical relevance, the paper applies this framework to
machine learning models—specifically, to estimate distances between classifiers
trained on varying subsets of data. By viewing the database space as the
base and the model space as a probabilistic metric space (constructed using
performance differences), the paper shows how generalized F-spaces allow nu-
anced, uncertainty-aware comparisons between classifiers. Experiments using
the IRIS dataset and three classifiers—Logistic Regression, Random Forest,
and SVM—confirm the theoretical results. The use of both Sugeno λ-measures
and indicator-based fuzzy measures illustrates the flexibility of the approach
under different structural assumptions.

This work directly contributes to addressing RQ2 and RQ3: it expands the
class of models and spaces in which distances can be defined, and establishes
conditions under which these distances form valid probabilistic metrics. As
such, it pushes the boundary of the F-space framework, enabling its appli-
cation to more complex model evaluation scenarios involving uncertainty and
variability in both data and model behavior.
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Chapter 5

Conclusion and Future
Directions

This thesis develops a mathematical framework for comparing machine learn-
ing models by incorporating the influence and structure of the datasets that
generate them. Motivated by challenges in data privacy, generalization, and
uncertainty quantification, it addresses the fundamental question: How can
we compare models in a way that reflects their dependence on data? Tradi-
tional evaluation methods often overlook how variations in training data affect
model behavior. In contrast, this work formalizes the relationship between the
database space and the model space, proposing that model comparison must
account for dataset diversity, evolution, and internal structure.

The approach is grounded in probabilistic metric spaces, using Markov
chains to model dataset evolution and fuzzy measures to capture redundancy,
synergy, and importance among data subsets. These tools lead to distribution-
valued distances, which quantify model differences while expressing uncertainty
about their origin. The contributions span four papers. The first models data
transitions to define distances between models based on transformation proba-
bilities. The second introduces F-spaces, a class of probabilistic metric spaces
based on fuzzy measures. The third applies this framework to compare regres-
sion models trained on real data. The fourth generalizes the model space itself,
allowing uncertainty to be represented in both data and models.

Together, these contributions offer a principled and flexible foundation for
models comparison. The resulting framework supports privacy-aware, robust
model comparison that goes beyond traditional scalar metrics.
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5.1 Future Directions
While the thesis establishes a theoretical framework for comparing machine
learning models using probabilistic metric spaces, several promising directions
remain for future investigation.

A key area for future work is the scalability of the proposed distance func-
tions to real-size databases. While the current framework has been validated
on illustrative examples and small datasets, applying it to large-scale, high-
dimensional datasets presents both computational and modeling challenges.
Techniques such as sampling, approximation of transition paths, or dimen-
sionality reduction could help make distance computation feasible in practical
settings. Second, there is a need for refined strategies to approximate distances
especially in settings where the set of possible databases becomes prohibitively
large. Future research may explore lumpability in Markov chains as a prin-
cipled way to aggregate states while preserving transition dynamics, or adopt
clustering-based state aggregation to group databases with similar behavior as
a more flexible approximation. Additional directions include exploring bound-
ary conditions, path-based approximations, and selecting optimized subsets of
transition chains to reduce computational complexity while maintaining theo-
retical guarantees.

Another line of investigation involves extending the model selection frame-
work to incorporate privacy and robustness considerations. The metric struc-
tures developed in this thesis allow for comparing models not only by accuracy
but also by their sensitivity to training data variations. In privacy contexts,
these distances can be used to formulate disclosure risks measures. This is es-
pecially relevant to integral privacy, where private models are defined as those
with multiple possible generators; the proposed distances provide a natural
way to assess how far a given model is from the private ones. Future work
could integrate these metrics into visualization tools and decision-support sys-
tems, helping practitioners identify models that are not only accurate but also
generalizable, robust, and privacy-preserving.

There is also interest in exploring more expressive fuzzy measures tailored
to specific machine learning tasks. While the thesis explored classical examples
like Sugeno λ-measures and indicator-type measures, future directions include
learning fuzzy measures from data, or defining them based on privacy risk,
fairness criteria, or domain-specific importance.

In the theoretical realm, further exploration is warranted regarding the role
of associativity in t-norms, particularly how it affects the construction of prob-
abilistic metric spaces. More work is also needed to understand how F-spaces
and Generalized F-spaces behave under various assumptions on the measure
space and on the model outputs—especially in the case of non-deterministic
functions or randomized models, which were outside the scope of this thesis.
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Finally, this framework opens opportunities for advancing privacy auditing
and fairness assessment in machine learning. Because model distances are de-
fined in terms of their generating datasets, the theory provides a natural lens
for evaluating how sensitive a model is to specific training data. Future ex-
tensions could include developing formal privacy bounds or fairness diagnostics
based on the distance geometry induced by the framework.

45



Bibliography

[AFS06] C. Alsina, M. J. Frank, and B. Schweizer. Associative Functions:
Triangular Norms and Copulas. World Scientific, 2006.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learn-
ing. Springer, 2006.

[Blo96] Isabel Bloch. “Information Combination Operators for Data Fu-
sion: A Comparative Review with Classification”. In: IEEE Trans-
actions on Systems, Man, and Cybernetics 26.1 (1996), pp. 52–67.

[Blu70] Leonard M. Blumenthal. Theory and Applications of Distance Ge-
ometry. Oxford University Press, 1970.

[Bre01] Leo Breiman. Random Forests. Springer, 2001.

[Bri56] Léon Brillouin. Science and Information Theory. Academic Press,
1956.

[Cho54] G. Choquet. “Theory of Capacities”. In: Annales de l’Institut Fourier
5 (1954), pp. 131–295.

[CV95] Corinna Cortes and Vladimir Vapnik. “Support-Vector Networks”.
In: Machine Learning 20.3 (1995), pp. 273–297.

[DH73] Richard O. Duda and Peter E. Hart. Pattern Classification and
Scene Analysis. Wiley, 1973.

[DK17] Finale Doshi-Velez and Been Kim. “Towards A Rigorous Science of
Interpretable Machine Learning”. In: arXiv preprint arXiv:1702.08608
(2017). url: https://arxiv.org/abs/1702.08608.

[DP88] D. Dubois and H. Prade. Possibility Theory: An Approach to Com-
puterized Processing of Uncertainty. Springer Science Business Me-
dia, 1988.

[Dwo06] Cynthia Dwork. “Differential Privacy”. In: Proceedings of the Inter-
national Colloquium on Automata, Languages, and Programming
(2006).

[EM97] Thomas Eiter and Heikki Mannila. “Distance measures for point
sets and their computation”. In: Acta Informatica 34 (1997), pp. 109–
133.

46

https://arxiv.org/abs/1702.08608


[Est+17] Andre Esteva et al. “Dermatologist-level classification of skin can-
cer with deep neural networks”. In: Nature 542 (Jan. 2017). doi:
10.1038/nature21056.

[Fré06] Maurice Fréchet. “Sur quelques points du calcul fonctionnel”. PhD
thesis. University of Paris, 1906.

[Fri01] Jerome H. Friedman. “Greedy Function Approximation: A Gradi-
ent Boosting Machine”. In: Annals of Statistics 29.5 (2001), pp. 1189–
1232.

[GBC16] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[Gra96] M. Grabisch. “The Application of Fuzzy Measures in Decision Mak-
ing”. In: International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems 4.3 (1996), pp. 245–262.

[Gra97] M. Grabisch. “Fuzzy Measures and Integrals in Multicriteria Deci-
sion Making”. In: European Journal of Operational Research 92.3
(1997), pp. 613–626.

[Hau14] Felix Hausdorff. Grundzüge der Mengenlehre. Leipzig: Veit & Comp.,
1914.

[Hei27] Werner Heisenberg. “Über den anschaulichen Inhalt der quanten-
theoretischen Kinematik und Mechanik”. In: Zeitschrift für Physik
43.3–4 (1927), pp. 172–198.

[HPW17] J.B. Heaton, N.G. Polson, and J.H. Witte. “Deep Learning for Fi-
nance: Deep Portfolios”. In: Applied Stochastic Models in Business
and Industry 33.1 (2017), pp. 3–12.

[Jan78] Martin F. Janowitz. “Cluster Analysis Algorithms”. In: Mathemat-
ical Biosciences 41 (1978), pp. 49–95.

[JM21] Michael I. Jordan and Tom M. Mitchell. “Machine Learning: Trends,
Perspectives, and Prospects”. In: Science 349.6245 (2021), pp. 255–
260.

[KMP00] E. P. Klement, R. Mesiar, and E. Pap. Triangular Norms. Kluwer
Academic Publishers, 2000.

[KY95] G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic: Theory and
Applications. Prentice Hall, 1995.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep Learning.
Vol. 521. 7553. Nature, 2015, pp. 436–444.

[Lip18] Zachary C. Lipton. “The Mythos of Model Interpretability”. In:
Proceedings of the 2018 ICML Workshop on Human Interpretability
in Machine Learning (WHI). 2018. url: https://arxiv.org/abs/
1606.03490.

47

https://doi.org/10.1038/nature21056
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1606.03490
https://arxiv.org/abs/1606.03490


[Meh+21] Ninareh Mehrabi et al. “A Survey on Bias and Fairness in Ma-
chine Learning”. In: ACM Computing Surveys (CSUR) 54.6 (2021),
pp. 1–35. doi: 10.1145/3457607. url: https://dl.acm.org/doi/
10.1145/3457607.

[Men42] Karl Menger. “Statistical Metrics”. In: Proceedings of the National
Academy of Sciences 28.12 (1942), pp. 535–537.

[Men51] Karl Menger. “Probabilistic geometry”. In: Proceedings of the Na-
tional Academy of Sciences of the United States of America 37
(1951), pp. 226–229.

[MS89] T. Murofushi and M. Sugeno. “An Interpretation of Fuzzy Measures
and the Choquet Integral as an Integral with Respect to a Fuzzy
Measure”. In: Fuzzy Sets and Systems 29.2 (1989), pp. 201–227.

[Mur12] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective.
MIT Press, 2012.

[Nii87] Ilkka Niiniluoto. Truthlikeness. Dordrecht, Holland: D. Reidel Pub-
lishing Company, 1987.

[Odd79] Graham Oddie. “Verisimilitude and Distance in Logical Space”. In:
The Logic and Epistemology of Scientific Change. Ed. by Ilkka Ni-
iniluoto and Raimo Tuomela. Vol. 30. Acta Philosophica Fennica.
North-Holland, 1979, pp. 243–264.

[Pap95] E. Pap. Null-Additive Set Functions. Kluwer Academic Publishers,
1995.

[Qui96] J. Ross Quinlan. “Improved Use of Continuous Attributes in C4.5”.
In: Journal of Artificial Intelligence Research 4 (1996), pp. 77–90.

[RA78] D. A. Ralescu and C. Adams. “The Fuzzy Integral”. In: Journal of
Mathematical Analysis and Applications 62.1 (1978), pp. 12–24.

[Rei+19] Markus Reichstein et al. “Deep learning and process understanding
for data-driven Earth system science”. In: Nature 566.7743 (2019),
pp. 195–204.

[Rob03] P. Robinson. “Fuzzy Measures and Geographical Information Sys-
tems”. In: Geographical and Environmental Modelling 7.2 (2003),
pp. 175–198.

[Sal+19] Ahmed Salem et al. “Updates Leak: Data Set Inference and Re-
construction Attacks in Online Learning”. In: Proceedings of the
29th USENIX Security Symposium. USENIX Association, 2019,
pp. 1291–1308. url: https://www.usenix.org/conference/
usenixsecurity20/presentation/salem.

[Šer63] A. N. Šerstnev. “On certain generalizations of the triangle inequal-
ity in probabilistic metric spaces”. In: Siberian Mathematical Jour-
nal 4 (1963), pp. 112–124.

48

https://doi.org/10.1145/3457607
https://dl.acm.org/doi/10.1145/3457607
https://dl.acm.org/doi/10.1145/3457607
https://www.usenix.org/conference/usenixsecurity20/presentation/salem
https://www.usenix.org/conference/usenixsecurity20/presentation/salem


[Sha48] Claude E. Shannon. “A Mathematical Theory of Communication”.
In: Bell System Technical Journal 27.3 (1948), pp. 379–423.

[Sha76] G. Shafer. A Mathematical Theory of Evidence. Princeton Univer-
sity Press, 1976.

[She69] H. Sherwood. “On E-spaces and their relation to other classes of
probabilistic metric spaces”. In: Journal of the London Mathemat-
ical Society 44 (1969), pp. 441–448.

[She80] Roger N. Shepard. “Multidimensional Scaling, Tree-Fitting, and
Clustering”. In: Science 210.4468 (1980), pp. 390–398.

[SS83] B. Schweizer and A. Sklar. Probabilistic Metric Spaces. Elsvier-
North-Holland, 1983.

[Ste68] S. S. Stevens. “Metrically generated probabilistic metric spaces”.
In: Fundamenta Mathematicae 61 (1968), pp. 259–269.

[Sug74] M. Sugeno. “Theory of Fuzzy Integrals and Its Applications”. PhD
thesis. Tokyo Institute of Technology, 1974.

[TN07] V. Torra and Y. Narukawa. Modelling Decision: Information Fu-
sion and Aggregation Operators. Springer, 2007.

[TN16] V. Torra and G. Navarro-Arribas. “Integral Privacy”. In: Cryptol-
ogy and Network Security: 15th International Conference, CANS
2016, Milan, Italy, November 14-16, 2016, Proceedings. Vol. 10052.
Lecture Notes in Computer Science. Springer, 2016, pp. 389–399.
doi: 10.1007/978-3-319-48965-0_44. url: https://link.
springer.com/chapter/10.1007/978-3-319-48965-0_44.

[TN18] V. Torra and G. Navarro-Arribas. “Probabilistic Metric Spaces
for Privacy by Design Machine Learning Algorithms: Modeling
Database Changes”. In: Data Privacy Management, Cryptocurren-
cies and Blockchain Technology: ESORICS 2018 International Work-
shops, DPM 2018 and CBT 2018, Barcelona, Spain, September 6-7,
2018, Proceedings. Vol. 11025. Lecture Notes in Computer Science.
Springer, 2018, pp. 422–430. doi: 10.1007/978-3-030-00305-0_
30. url: https://link.springer.com/chapter/10.1007/978-
3-030-00305-0_30.

[TNS14] V. Torra, Y. Narukawa, and M. Sugeno. Non-Additive Measure—Theory
and Applications. Studies in Fuzziness and Soft Computing. Vol. 310.
Springer, 2014.

[Wal43] Abraham Wald. “On Some Systems of Equations of Mathematical
Economics”. In: Econometrica 11.4 (1943), pp. 367–403.

[WK92] Z. Wang and G. J. Klir. Fuzzy Measure Theory. Springer Science
Business Media, 1992.

[Yag81] R. R. Yager. “A Procedure for Ordering Fuzzy Subsets of the Unit
Interval”. In: Information Sciences 24.2 (1981), pp. 143–161.

49

https://doi.org/10.1007/978-3-319-48965-0_44
https://link.springer.com/chapter/10.1007/978-3-319-48965-0_44
https://link.springer.com/chapter/10.1007/978-3-319-48965-0_44
https://doi.org/10.1007/978-3-030-00305-0_30
https://doi.org/10.1007/978-3-030-00305-0_30
https://link.springer.com/chapter/10.1007/978-3-030-00305-0_30
https://link.springer.com/chapter/10.1007/978-3-030-00305-0_30


[Zad65] L. A. Zadeh. “Fuzzy Sets”. In: Information and Control 8.3 (1965),
pp. 338–353.

[Zad78] L. A. Zadeh. “Fuzzy Sets as a Basis for a Theory of Possibility”.
In: Fuzzy Sets and Systems 1.1 (1978), pp. 3–28.

50



IPaper
The space of models in machine learning: using  Markov 
chains to model transitions

Vicenç Torra, Mariam Taha, and Guillermo Navarro- Arribas. 

Progress in Artificial Intelligence, 10, 321–332 (2021).

Taha_Reg_pages_30088_S5.indd   1Taha_Reg_pages_30088_S5.indd   1 2025-04-11   09:072025-04-11   09:07



52



Progress in Artificial Intelligence (2021) 10:321–332
https://doi.org/10.1007/s13748-021-00242-6

REGULAR PAPER

The space of models in machine learning: using Markov chains to
model transitions

Vicenç Torra1,2,3 ·Mariam Taha4 · Guillermo Navarro-Arribas5

Received: 4 April 2020 / Accepted: 26 March 2021 / Published online: 12 April 2021
© The Author(s) 2021

Abstract
Machine and statistical learning is about constructing models from data. Data is usually understood as a set of records, a
database. Nevertheless, databases are not static but change over time. We can understand this as follows: there is a space
of possible databases and a database during its lifetime transits this space. Therefore, we may consider transitions between
databases, and the database space. NoSQL databases also fit with this representation. In addition, when we learn models from
databases, we can also consider the space of models. Naturally, there are relationships between the space of data and the
space of models. Any transition in the space of data may correspond to a transition in the space of models. We argue that a
better understanding of the space of data and the space of models, as well as the relationships between these two spaces is
basic for machine and statistical learning. The relationship between these two spaces can be exploited in several contexts as,
e.g., in model selection and data privacy. We consider that this relationship between spaces is also fundamental to understand
generalization and overfitting. In this paper, we develop these ideas. Then, we consider a distance on the space of models based
on a distance on the space of data. More particularly, we consider distance distribution functions and probabilistic metric
spaces on the space of data and the space of models. Our modelization of changes in databases is based on Markov chains
and transition matrices. This modelization is used in the definition of distances. We provide examples of our definitions.

Keywords Machine and statistical learning models · Space of data · Space of models · Hypothesis space · Probabilistic
metric spaces

1 Introduction

Machine and statistical learning can be seen as a search prob-
lem. That is, we have a state space corresponding to possible
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models and we want to find the one that better represents
our data. Here, better can correspond to the one with best
accuracy. Different definitions of better as well as different
search strategies to find a good solution can be considered.
From this perspective, we consider operators that permit to
transform one model into another one. In this case, a trans-
formation is usually to improve accuracy (i.e., better = better
accuracy). Examples of these transformations include oper-
ators that expand a node in a decision tree, update weights in
a deep learning model, or operators that mutate a solution in
genetic algorithms.

In this paper, we consider a different perspective. We con-
sider the space of models taking into account the space of
data that have generated these models.

When we learn a model from an actual database, the
database is just a database from the space of data. When
databases change, we are traversing the space of data through
a particular path. Different databases in this particular path
can lead to different machine learning models.
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Weclaim that it is necessary to study how the space of data
interacts with the space of models. More particularly, that
any decision on the space of models has to take into account
relationships between the space of data that generate these
models.

We consider that this perspective is of great interest in the
following areas.

– In model selection for statistical andmachine learning In
this area the goal is to select models that better general-
ize data and avoid overfitting. The study of the interaction
between the space of models and the space of data can
increase our understanding on the models themselves,
and on the methods that generate the models (compar-
ing their respective mappings between the two spaces).
In particular, we think it is fundamental to understand
the concepts of generalization and overfitting. This also
relates to the effect of outliers and influential points in
learning. It is important to understand generalization and
overfitting in terms of the relationship between the space
of models and the space of data.

– In privacy preserving data mining and machine learning
The need to study the relationship between the two spaces
wasfirst proposed in [14] in the context of integral privacy
[10,11]. In short, a model is integrally private if it can
be generated by a large number of databases, and these
databases are sufficiently different (e.g., they do not share
records). This is to avoid some type of privacy attacks on
machine learning models as, e.g., membership attacks
[12].

We are interested in knowingwhen twomodels are similar,
where similar does not correspond to a syntactic similarity
of the models (e.g., if two decision trees have the same struc-
ture), nor on a semantic similarity of the models (e.g., if
two models have the same accuracy). We are interested in
knowing when models are similar because they have been
generated from similar databases.

There are naturally different ways of understanding the
similarity between databases. For example, one database
may be similar because it is a noisy version of the other
(e.g., an anonymized version of the original database). Here,
we focus on changes in databases due to the natural pro-
cesses a database suffers in a company. That is, we consider
a database that is updated, as time passes, by means of e.g.,
adding and removing records. These types of changes are
usual when databases are in production. In addition, these
types of changes are also relevant in the framework of data
privacy [13] with the right to be forgotten and the right to
amend (under the GDPR).

In [14], the authors proposed the use of probabilistic met-
ric spaces [9] for modeling the similarity between models.
Informally, these spaces are defined in terms of distance dis-

tribution functions. That is, distance between pairs of objects
are not a real number but a distribution on these numbers.
This approach permits us to define a distance between pairs
of models taking into account the distance between the set
of databases that have generated these models.

In this paper, we propose the use of Markov chains and
transition matrices to represent, respectively, sequences of
changes in databases and the probability of changes taking
place. This representation permits the definition of proba-
bilistic metric spaces on the space of data. We use them later
to define distance distribution functions for the space ofmod-
els in terms of the databases that have generated them. This
is a much simpler approach than the one introduced in [14].

The structure of this paper is as follows. In Sect. 2, we
introduce the definitions that are needed later in the paper.
In particular, we introduce Markov chains and probabilistic
metric spaces. In Sect. 3, we introduce two definitions ofmet-
ric spaces for databases based on Markov chains and prove
some results. In Sect. 4, we introduce definitions for distance
distribution functions for models based on the probabilistic
metric spaces introduced in Sect. 3. We provide some exam-
ples of how these distances can be actually computed. The
paper finishes with a discussion and lines for future work.

2 Preliminaries

In this section, we review some concepts that are needed
later. We begin with Markov chains and transition matrices.
We also discuss probabilistic metric spaces and distances for
sets of elements.

2.1 Markov chains

In this paper, we will use Markov transition matrices and
Markov chains to model the space of databases. Because of
that, we will review in this section a few concepts that we
need later. See e.g., [7] for details.

We consider a state space S finite or enumerable. We will
use

S = {DB1, DB2, DB3, . . . }

to denote the space of possible databases. Thus, in our case,
a finite although extremely huge set.

We will consider chains defined on the state space S. That
is, (Zn)n∈N taking values in S, i.e., Zn ∈ S.More particularly,
we consider Markov chains. This corresponds to chains in
which the probability distribution on Zn+1 depends only on
the process Zn at time n and not on previous values of Z . In
other words, there is no memory on previous transitions.
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Formally,

P(Zn+1 = DBj |Zn = DBi , Zn−1 = DBn−1, . . . , Z0 = DB0)

= P(Zn+1 = DBj |Zn = DBi ).

We consider time-homogeneous Markov chains. That is,
the probability of transition does not depend on time. This is
expressed mathematically as

P(Zn+1 = DBj |Zn = DBi ) = P(Zm+1 = DBj |Zm = DBi )

for any n,m.
As the probability does not depend on n, we will not use

this index unless required. Then, we will use Pi j to denote
P(Zn+1 = DBj |Zn = DBi ) (for any n). For the sake of
simplicity, we will also use P(Zn+1 = j |Zn = i) when no
confusion arises.

From the explanation above, it is clear that transition
depends only on the probabilities Pi j . These probabilities
for all states i and j define a matrix. It is known as transition
matrix. Formally, a transition matrix P is a S× S matrix with
values in [0, 1] such that (for any n)

∑

DBj∈S
Pi j =

∑

DBj∈S
P(Zn+1 = DBj |Zn = DBi ) = 1.

We can prove that given a probability distribution π on
S for time 0, say probabilities P(Z0 = i) for i ∈ S, the
probability distribution for time 1, say probabilities P(Z1 =
j) for j ∈ S, can be expressed in matrix notation as π P .
Let us denote by Pn the transition matrix defined by Pn

i j =
P(Zm+n = DBj |Zm = DBi ). Naturally, the computation
of Pn

i j does not depend on m. We can prove that

Pr+t
i j =

∑

k∈S
Pr
ik P

t
k j ,

or inmatrix form Pr+t = Pr Pt . This is called theChapman–
Kolmogorov equation.

2.2 Probabilistic metric spaces

Probabilistic metric spaces [9] are a generalization of metric
spaces in which a distance distribution function replaces the
role of distance functions. That is, instead of considering
d(a, b) as a real number, it is a distribution function on the
real numbers.

Recall that metric spaces are defined in terms of sets (a
non-empty set) and a distance or metric for pairs of elements
in this set. Formally, we denote a metric space by (S, d),
where S is the set and d for a, b ∈ S the distance. The

function d is required to satisfy the following properties:
(i) positiveness, (ii) symmetry, and (iii) triangle inequality
(formally, d(a, b) ≤ d(a, c) + d(c, b) for any a, b, c in S).
Also, it is usual to require that if a and b are different then the
distance should be strictly positive. Special names are given
when some of these conditions fail. For example, when the
distance does not satisfy the symmetry condition, we say
that (S, d) is a quasimetric space; and when the distance
does not satisfy the triangle inequality, we say that (S, d) is
a semimetric space.

Probabilistic metric spaces are a generalization of met-
ric spaces. As stated above, we can informally consider that
we replace the function d(a, b) by a distribution function
F(a, b) defined onR. These functions are known as distance
distribution functions. Their definition follows.

Definition 1 [9] A nondecreasing function F defined on R+
that satisfies (i) F(0) = 0; (ii) F(∞) = 1, and (iii) that is
left continuous on (0,∞) is a distance distribution function.
�+ denotes the set of all distance distribution functions.

The following interpretation is usual for these functions:
F(x) corresponds to the probability that the distance is less
than or equal to x . Note that this definition is a generalization
of a distance.

In particular, we use εa to denote the distance distribu-
tion function that represents the classical distance a. This εa
function is just a step function at a. Its definition follows.

Definition 2 [9] For any a in R, we define εa as the function
given by

εa(x) =
{
0, −∞ ≤ x ≤ a
1, a < x ≤ ∞.

In order to define probabilistic metric spaces we need to
consider the set of distance distribution functions, and we
need to define a condition on triples of functions in this set
analogous to the triangle equality in metric spaces. This con-
dition given below is based on triangle functions. Let us start
defining the triangle functions.

Definition 3 [9] Let �+ be defined as above, then a binary
operation on �+ is a triangle function if it is commutative,
associative, and nondecreasing in each place, and has ε0 as
the identity.

Using triangle functions we can establish the definition of
probabilistic metric spaces.

Definition 4 [9] Let (S,F , τ ) be a triple where S is a
nonempty set, F is a function from S × S into �+, τ is
a triangle function; then (S,F , τ ) is a probabilistic metric
space if the following conditions are satisfied for all p, q,
and r in S:
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– (i) F(p, p) = ε0
– (ii) F(p, q) �= ε0 if p �= q
– (iii) F(p, q) = F(q, p)
– (iv) F(p, r) ≥ τ(F(p, q),F(q, r)).

As usual in this field, we will use Fpq instead of F(p, q).
This permits to express the value of the distance distribution
function at x by means of the expression: Fpq(x).

2.3 Metrics for sets of objects

In order to define the distance between pairs of models, we
will consider the set of databases that have generated these
models. This permits to define the distance in terms of the
distance between these sets. Let us first consider the classical
setting with a standard distance.

Let G be an algorithm that given a database generates a
model, then, the set of generators of a model m is defined by
Genm = {DB|G(DB) = m}. In this case, given two models
m1 and m2 we define the distance between m1 and m2 in
terms of Genm1 and Genm2 . In order to do so, we need to
extend the distance for databases to sets of databases.

Nevertheless, given a metric space (S, d), its extension
to a set of elements of S is not trivial. This is so because
although several distances have been defined on sets, not all
of them satisfy the triangle inequality. This implies that they
are not valid to define a metric.

In [14], different types of functions are considered. The
discussion includes the Hausdorff distance and the sum of
minimum distance (which do not satisfy the triangle inequal-
ity) and the definition by Eiter and Mannila [3] that is indeed
a valid definition of a distance and leads to a metric space.
Nevertheless, this is a very complex function to compute.

3 Probabilistic metric spaces fromMarkov
chains

We consider that transition matrices are a suitable approach
to model changes on databases. In other words, we consider
that for a given database there is some probability that this
database is transformedbymeans of amodification to another
database. For the sake of simplicity, we consider in this work
time-homogeneous Markov chains. That is, as explained in
Sect. 2 that changes on a database only depend on what is
currently available in the database and that it does not depend
on its previous values (history of the database). This assump-
tion can be considered simplistic, as e.g., the probability of
adding a record may depend on how many times has been
already present in the database and has been removed. Nev-
ertheless, we consider that this assumption is acceptable for
this initial study.

For illustration, we consider only addition and deletion of
records from a database, and that only one addition and one
deletion is allowed at a time. We also assume that we have
access to the whole population or that we know the size of
the whole population. Then, we can define a transitionmatrix
based on assigning a probability of having a deletion (pd )
and a probability of having an addition (pa). Naturally, these
probabilities add less than or equal to one (pd + pa ≤ 1).

Definition 5 Let pd and pa be the probability of deleting
or adding a record. Then, given an arbitrary database DBi ,
where DBi is a subset of the whole population P (with |P|
denoting the size of this population),wedefine theprobability
of transition from DBi to any DBj as follows (here, pi j
stands for P(Zn+1 = DBj |Zn = DBi ) as above):

pi j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

pd
1

|DBi | if c1&c3
pa

1
|P|−|DBi | if c2&c3

1
|P| if (c1 or c2)&c4

1 − (pd + pa) if c5&c3
0 otherwise

(1)

where c1 − c5 are the following conditions:

– c1: DBj ⊂ DBi and |DBi \ DBj | = 1
– c2: DBi ⊂ DBj and |DBj \ DBi | = 1
– c3 : |DBi | /∈ {0, |P|}
– c4: |DBi | ∈ {0, |P|}
– c5: DBi = DBj

Here, c4 means that the database DBi is either empty or no
further records can be added to it, and c3 means that DBi is
not one of such extreme databases.

Lemma 1 The above definition leads to a valid transition
matrix. That is,

∑
j pi j = 1 for all j .

Proof Observe that given DBi , pi j is not zero for databases
DBj �= DBi that have either one additional recordmore (i.e.,
DBi ⊂ DBj and |DBj \ DBi | = 1) or less (i.e., DBj ⊂
DBi and |DBi \ DBj | = 1) than DBi . Then, in the general
case, DBi can lead to any of the |DBi | databases that has
just one record less, or DBi can lead to any of the |P| −
|DBi | databases that have exactly one additional record. So,
according to Equation 1, the probability of deleting a record
is pd and the probability of adding a record is pa . As the
probability of DBi not being modified is 1− (pd + pa), it is
proved that the definition leads to a row adding to one. Then,
we have conditions for the extreme cases in which DBi is
empty or DBi includes all records. In this case, there are |P|
neighboring databases with a probability of transition equal
to 1

|P| . Therefore, this row also adds to one. Therefore, the
matrix is a transition matrix. �	
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In this section, we introduce two definitions of probabilis-
tic metric spaces for databases based on transition matrices
and Markov chains.

The first definition considers the distance between two
databases in terms of the probability of being transformed
into the second one. This approach defines the probabilis-
tic metric space solely based on the transition matrices. We
give below both symmetric and asymmetric definitions for
the distance distribution functions. See Definition 6. We call
this type of space, visited database-based probabilisticmetric
space (VD-PMS).

The second definition considers the distance between two
databases in terms of their evolution. That is, given two
databases, will they be similar as time passes? In order to
give a formal definition, we need to consider how databases
are being modified, and what similarity means for databases.
With respect to the later, the model presumes the existence
of a standard distance function (a metric space, in fact) on
the space of databases. We call this type of space, database
distance-based probabilistic metric space (DD-PMS). See
Definition 7.

We consider that both types of definitions are relevant for
statistical andmachine learning and, in particular, for privacy
preserving data mining. We are interested in models that are
valid today but that will be also valid in the future. So, the
first definition states that two models are similar if we can
transit from one to the other and the second definition states
that two models are similar if they have a similar future (a
similar machine learning model in the future).

3.1 Visited database-based probabilistic metric
spaces

We consider a definition of probabilistic metric spaces for
databases based on [5]. The distance between two databases
depends on the probability that one database becomes the
second one after a sequence of changes (there is a chain
between the first to the second) within a given time frame.

The definition is based on transition matrices P on the
space of databases. The definition follows.

Definition 6 Let S be a state space representing the space of
databases, let P be the transition matrix for S that defines a
time-homogeneous Markov chain (Zn)n∈N. Then, given two
states i and j in S we define

Fi j (t) = P[exists a time s < t such that Zs = j |Z0 = i].

Formally, let f si j denote the probability that with Z0 = i
(i.e., starting the chain from state i), the first time we visit
state j is exactly at time s. Then, Fi j (t) = ∑t

s=1 f si j .

From the point of view of the space of databases, the
definition above establishes that the distance between two

databases DB1 and DB2 for the value t isα (i.e., P12(t) = α)

if the probability of reaching DB2 from DB1 in less than t
transitions is α.

We can prove from this definition that Fi j (t1 + t2) ≥
Fik(t1)Fkj (t2). From this property, we can prove the follow-
ing theorem. See [5] for a proof. Observe that the formulation
of the following theorem in [5] uses stationary to refer to
time-homogeneous, using the notation in [2].

Theorem 1 Let S, P, (Zn)n∈N and Fi j (t) be defined as in
Definition 6. LetF be themapping from S×S into the space of
cumulative distribution functions defined by F(i, j) = Fi j .
Then, F satisfies properties (i) and (iii) in Definition 1, and
properties (i), (ii), and (iv) in Definition 4.

It is a non-symmetric distance distribution function satis-
fying (iv) under the t-norm T = Prod (i.e., T (a, b) = ab).

The hitting time of a state DBj starting from state DBi is
the random variable defined by

Ti j = min{n ≥ 0 : Xn = DBj }

with the minimum of the empty set defined as ∞. The prob-
ability of hitting state DBj is defined by

h j
i = P(Ti j < ∞).

Not all transition matrices lead to Markov chains with
probabilities of hitting a state equal to 1. If this is the case,
then, the Definition above will lead to a probabilistic metric
space with a non-symmetric function. We establish this in
the next theorem.

Theorem 2 Let S, P, (Zn)n∈N and Fi j (t) be defined as in
Definition 6. Then, the pair (S,F) is a probabilistic metric
space with a non-symmetric distance function under the t-
norm T = Prod when h j

i = 1 for all i, j .

Definition 6 gives a distance that is not necessarily sym-
metric. Note that accessing j from i at time t does not mean
that it is possible to access i from j in the same time t .

It is possible to define a probabilistic metric space with a
symmetric distance function using F ′

i j = √
Fi j Fji or F ′′

i j =
0.5(Fi j + Fji ). The first definition is a probabilistic metric
space satisfying the Menger inequality with T = Prod and
the second one satisfies the Menger inequality with T = Tm
(i.e., Tm(a, b) = max(a + b − 1, 0)).

3.2 Computation and example

Definitions above use f si j , that as explained above, denotes
the probability that with Z0 = i the first time we visit state
j is exactly at time s when we start at Z0 = i . For a given
transition matrix P , we can compute f si j as follows. If s = 1,
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Fig. 1 F13 for Example 1 according to Definition 6

f si j = Pi j . If s > 1 then we perform the following steps: (i)

define P̄ as P and assigning P̄rs = 0 for all pairs ( j, t)
and (t, j) with j ∈ S, (ii) compute P̄s−1, (iii) compute
f si j = ∑

k∈S P̄
s−1
ik Pk j . Finally, (iv) using the expression in

Definition 6 we compute Fi j (t) as Fi j (t) = ∑
s≤t f

s
i j .

The rationale of this definition is that in order to reach j
from i in exactly s steps (with s > 1) we need to reach any
other state k �= j in exactly s − 1 steps without reaching j at
any moment s′ < s, and then move from k to j . Probabilities
of reaching k �= j from i in s − 1 steps without hitting j
will be computed using P̄ . This computation corresponds to
compute P̄s−1 as noted above.

We give an example of this computation with a very small
database. The space is built from a set of 5 records. In this
way, we can consider the whole database space that has a
size of 25 databases.

Example 1 Let DB be the set of all databases that can be
generated from 5 records. That is, DB corresponds to the
power set of these 5 records. Let P be the transition matrix of
DB defined according to Definition 5 using pa = pd = 0.5.
Then, we can compute F13 according to Definition 6. F13 is
the distance between databases DB1 = {a} and DB3 = {c}.
Figure 1 represents this computation.

3.3 Results on the approximation of distance
distribution functions

Computation of the distance introduced in Definition 6 is
costly. Because of that we are interested in the approximation
of this distance.We can prove the following results in relation
to Definition 6.

Lemma 2 Let DB1 and DB2 be two databases. Let us con-
sider the sets DB1 ∩ DB2, DB1 \ DB2, and DB2 \ DB1. Let
ta = |DB2 \DB1| be the number of elements we need to add
to transit from DB1 to DB2, and let td = |DB1 \ DB2| be

the elements we need to delete to transit from DB1 to DB2.
Then, the shortest chain from DB1 to DB2 when we only
consider addition and deletion of records has length

t0 = |DB1 \ DB2| + |DB2 \ DB1| = ta + td

and, therefore,

F12(t) = 0

for all t < t0.

Let us consider an arbitrary order for the ta elements we
add, and an arbitrary order for the td elements we remove.
Let i in {1, . . . , ta} represent the addition of the i th element
according to this order and i in {ta + 1, . . . , ta + td} the
removal of the (i − ta)th element according to this order.
Using this interpretation, it is clear that any permutation of
{1, . . . , ta + td} represents a valid chain with only additions
and deletions andwith no cycles from DB1 to DB2. So, there
are (ta + td)! valid chains with no cycles.

We can also prove a lemma similar to Lemma 2 when in
addition to addition and deletion we allow transitions that do
not change the database. Shortest chains will of course still
have length ta + td , and from this it also follows: F12(t) = 0
for all t < t0.

Let Ct
12 denote all valid chains from DB1 to DB2 with

length t . Then, Cta+td
12 will represent all shortest chains.

Therefore, |Cta+td
12 | = (ta + td)!. It is also clear that Ct

12 = ∅
for t < ta + td .

Let use denote a chain c ∈ Ct by c0, c1, . . . , ct . Here ci
will correspond to a database DBi . Then, the probability of
transiting from DB0 to DBt through the chain c is naturally

Pc =
∏

cr∈c
Pcr−1,cr . (2)

Lemma 3 Using the notation in Lemma 2 and Pc as in Equa-
tion 2, we have that when only addition and deletion are
allowed, or when addition, deletion and transition without
change are allowed, it holds (for ta and tb as above)

F12(ta + td) = f ta+td
12 =

∑

c∈Cta+td
12

Pc

=
∑

c∈Cta+td
12

∏

cr∈c
Pcr−1,cr . (3)

We can also prove that when only addition and deletions
are allowed, Ct

12 = ∅ for any t = ta + td + 1 + 2k for any
k, i.e., given a shortest chain, we can only enlarge this chain
both adding and removing k records. So, in this case, for all
k it holds f ta+td+2k+1

12 = 0.
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When addition, deletion and also non modification are
allowed as transitions between databases, we have that for
t = ta+td+1+2k (for any k), the chains inCt

12 are the ones in
Ct−1
12 adding a transition corresponding to non-modification

(say tnm). Let p∅ denote the probability of a non-modification
(this corresponds to the value 1− (pd + pa) in Equation 1).
Let c ∈ Ct be one of such chainswith elements c0, c1, . . . , ct .
Then, we can insert this tnm transition between any pair of
elements of the chain (but not at the end of the chain as we
are considering that is exactly at time s that we reach the
goal state). This means that there are t options. Given P(c),
the probability of the chain c ∈ Ct , the probability of any of
these chains is p∅ · p(c). So, as we have t new chains for a
given chain c, the probability for this set of chains (say c̃) is
p(c̃) = tp∅ p(c). Then, considering all c̃ generated from all
c ∈ Ct , we have that for t = ta + td + 1 + 2k

P(Ct
12) =

∑

c∈Ct−1
12

p(c̃) =
∑

c∈Ct−1
12

tp∅ p(c)

= tp∅
∑

c∈Ct−1
12

p(c) = tp∅P(Ct−1
12 ).

Using Expression 3, it is easy to prove the following lemma.

Lemma 4 Let DBi and DBj be two arbitrary databases, and
let R = {c}c be a set of random valid chains c ∈ R from
DBi to DBj with different lengths. Then,

f si j ≥
∑

c:|c|=s+1

Pc

and

Fi j (t) ≥
∑

c:|c|≤t+1

Pc.

This result implies that the consideration of random valid
chains give lower bounds for Fi j (t). Therefore, any deci-
sion based on a threshold th on a given t (i.e., Fi j (t) ≥ th)
valid for a set R will be also valid if all the set of chains is
considered.

The links between triangle functions and t-norms (see e.g.,
[1], and Def. 7.1.3 and Section 7.1 in [9]) permit us to estab-
lish the following lemma. This lemma establishes another
lower bound for distance distribution functions for any pair
of databases if we can compute exact values for pairs involv-
ing a particular database (e.g., a reference one denoted by
DBa below).

Lemma 5 Let (S,F , τT ) be a probabilisticmetric space gen-
erated by a t-norm T (i.e., τT (F,G)(x) = T (F(x),G(x)) is
the triangle function generated by T ). Let DBa be a particu-
lar database for which we can calculate exactly the distance

distribution function for all DBi ∈ S. Then,

F(DBi , DBj ) ≥ T (FDBi ,DBa (x), FDBa ,DBj (x))

is a lower bound of FDBi ,DBj .

Proof If T is a t-norm, then the triangle function τT generated
by T is

τT (F,G)(x) = T (F(x),G(x))

for distance distribution functions F and G. Then, as
(S,F , τT ) is a probabilistic metric space on the space of
databases, we know that for all p, q, and r it holds that

F(p, r) ≥ τT (F(p, q),F(q, r))

and, therefore, in particular for p = DBi , q = DBa and
r = DBj we have that

F(DBi , DBj ) ≥ τT (F(DBi , DBa),F(DBa, DBj ))

= T (F(DBi , DBa),F(DBa, DBj )).

�	

3.4 Database distance-based probabilistic metric
space

We consider an alternative way to define probabilistic metric
spaces in which in addition to a transition matrix we use a
distance on the state space. The definition is based on [5].

Definition 7 Let S be the database space, let P be the tran-
sition matrix for S that defines a time-homogeneous Markov
chain (Zn)n∈N. Let d : S × S → R+ be a distance function
on S. Then, for any given time t ≥ 0, we define the function
Ft
i j (x) as follows:

Ft
i j (x) = Pr [d(i, j) < x at time t]

=
∑

k∈S
Pt
ik

⎛

⎝
∑

�:d(�,k)<x

Pt
j�

⎞

⎠ .

Informally, for a given time t , this definition implies that the
probability level between states i and j at time x is computed
in terms of the probability of reaching states k at time t from
i and the probability of finding states � from j at most at
distance x .

We can prove the following result that is similar to
Lemma 4.
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Lemma 6 LetDB be a collection of databases sampled from
the space of databases. Let

F̃ t
i j (x;DB) =

∑

DBk∈DB
Pt
ik

∑

�

: d(�, k) < xDB� ∈ DBPt
j�.

Let F̃ t
i j (x;DB,R) correspond to F̃ t

i j (x;DB) when Pt
ik only

considers a given set R of random valid chains as in
Lemma 4. Then,

F̃ t
i j (x;DB,R)

≤ F̃ t
i j (x;DB)

≤
∑

DBk∈DB
Pt
ik

∑

�:d(�,k)<x,DB�∈DB
Pt
j�.

The implications of this lemma are similar to the ones of
Lemma 4. That is, the consideration of random chains and
sets of databases give lower bounds for Fi j (t). Therefore,
any decision based on considering two databases DB1 and
DB2 as different based on a threshold th on a given t (i.e.,
F12(t) ≥ th) valid for a set R and for a set of databases DB
will be also valid if all the sets of chains and all databases are
also considered. We illustrate this distance with one example
that uses the same space of databases we have considered
before.

Example 2 Let P be the transition matrix and let DB be
the space of databases considered in Example 1. Let DB1

and DB3 be the databases considered in Example 1. We can
compute F13 according to Definition 7. To do so, we use
the Jaccard Index to measure the similarities between the
databases. Figures 2, 3 and 4 represent these computations
with different values of t . We display F1,3 as in the previ-
ous example, but we also considered the computations for
very different databases (i.e., F0,31) in Figures 5, 6 and 7.
Here, F0,31 is the distance between databases DB0 = {} and
DB31 = {a, b, c, d, e}.

From the threefigures, Figs. 2, 3 and4,wenotice thatwhen
t becomes larger, and x is greater than 0.5, the probability
become higher.

Figures 5, 6 and 7) show that when we have very different
databases, and the Jaccard distance is less than 0.5, we need
more transitions in order to increase the probability.

4 Construction of the distance on the space
of models

The definitions above permit to extend the probabilistic met-
ric space for databases to models. As discussed in Sect. 2.3,
given two models m1 and m2 the goal is to define a distance
based on the generators Gm1 and Gm2 of m1 and m2. In this

Fig. 2 F13 when t = 5 for Example 2 according to Definition 7

Fig. 3 F13 when t = 15 for Example 2 according to Definition 7

Fig. 4 F13 when t = 25 for Example 2 according to Definition 7
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Fig. 5 F0,31 when t = 1 for Example 2 according to Definition 7

Fig. 6 F0,31 when t = 5 for Example 2 according to Definition 7

Fig. 7 F0,31 when t = 50 for Example 2 according to Definition 7

Table 1 Set of models and their corresponding sets of Databases from
Example 3

Model m Gen(m)

1000 (a), (b), (a, b), (a, b, c).

1500 (a, c), (b, c)

2000 (c)

case, instead of a standard distance, we consider a distance
distribution function.

Proposition 1 Let S be the space of databases, let G be an
algorithm to generate models from the space of databases
S, let G be the space of models that can be generated by G.
Let m1 and m2 be two models generated by the application
of algorithm G to databases in S. Let Genm1 and Genm2

be the set of databases that generate m1 and m2. That is,
Genm1 = {DB ∈ S|G(DB) = m1} and Genm2 = {DB ∈
S|G(DB) = m2}.

Let (S,F) be a probabilistic metric space. Then, letF for
pairs of models m1 and m2 be defined as follows:

F(m1,m2)(x)

= 1

|Genm1 ||Genm2 |
∑

DB1∈Genm1

∑

DB2∈Genm2

FDB1,DB2(x).

(4)

Then, F is a distance distribution function.

Lemma 7 Using Equation 4 with Definition 6, we obtain a
function F(m1,m2) that is a non-symmetric distance distri-
bution function. Using instead definitions F ′ and F ′′ above
will lead to symmetric distance functions. Using Definition 7
results into a distance distribution function.

Lemma 8 When we approximate F(m1,m2)(x) using lower
bounds of FDB1,DB2 (as considering only some chains and
some databases), we will obtain lower bounds of the real
F(m1,m2)(x).

It is relevant to point out that this definition does not nec-
essarily lead to a probabilistic metric space, as condition (iv)
in Definition 4 does not always hold.We illustrate this defini-
tion above considering databases as in the previous examples
based on three records/people and their salaries.

Example 3 Suppose we have three records a, b, and c, with
salaries 1000, 1000 and 2000, respectively. The space of
databases is the power set of theses records. If we choose
G to be the median function to generate the models, then the
space of models is G = {1000, 1500, 2000}. The models and
their generators are listed in Table 1. Figure 8 displays the
distance between model m1=1000 and model m2=2000 by
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Fig. 8 F1000,2000 for Example 3
according to Proposition 1 and
Definition 6

using Proposition 1, as well as the distance between pairs of
databases according to Definition 6. Similarly, we have also
computed the distance between the same pair by using the
same proposition, but where the distance between databases
follows Definition 7 as illustrated in Fig. 9.

From both Fig. 8, and Fig. 9, we can see that the distance
distribution functions for the models and the databases are
quite similar.

5 Summary and conclusions

In this paper, we have proposed the use ofMarkov chains and
transition matrices to model transitions between databases,
and used them to define a probabilistic metric space for mod-
els.

Our goal is to better understand the relationship between
data and models. From our perspective, this requires a metric
space on the space of models that reflects the relationships
between the databases that can generate these models. From
a machine learning perspective, a good model is one that
has a good accuracy, but also that is not overfitted to data

and has some level of generalization. From a data privacy
perspective, a good model is one that does not lead to
disclosure. This includes not leading to disclosure on the
data that has been used to generate the model. In other
words, we understand machine and statistical learning as
a selection process. We want to select a model with good
accuracy that does not have overfitting (and not vulnera-
ble to membership attacks) and that is near to models with
similar generators. This work is to formalize what near
means.

As future work, we plan to develop strategies for com-
puting these distances and for defining in practice metric
spaces for real-size databases. In this paper, examples have
been described for small databases because they are easier
to understand but also because when considering a regular
size database its power set becomes extremely large. Some
initial results on boundary conditions on the distances were
given in the paper. We plan to consider how to extend this
approach by means of approximating the distances.

We also plan to work on the problem of model selection.
Research on graphical visualization of the models and the
metric spaces will be appropriate here. Sammon’s map as

123

62



Progress in Artificial Intelligence (2021) 10:321–332 331

Fig. 9 F1000,2000 for Example 3
according to Proposition 1 and
Definition 7

well as other multidimensional scaling procedures can help
on this purpose.
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Abstract

Metric spaces are defined in terms of a space and a metric, or distance.
Probabilistic metric spaces are a useful extension of metric spaces where the
distance is a distribution instead of a number. In this way, we can take into
account uncertainty. Then, the triangle inequality is replaced by a condition
based on triangle functions on the distributions.

In this paper we introduce F-spaces. This is a new type of probabilistic
metric spaces which is based on fuzzy measures (also known as non-additive
measures and capacities). We prove some properties that describe which
families of fuzzy measures are compatible with which type of triangle functions.
Then, we show how we can use Sugeno, Choquet integrals, and, in general,
any other fuzzy integral as a tool for building these spaces.

We show how these results can be used to compute distances between
functions. We illustrate the example comparing three types of means when
applied to a set of databases. The example uses Sugeno λ-measures to
illustrate the theoretical results presented in the paper.

Keywords: Fuzzy measures, fuzzy integrals, probabilistic metric spaces.

1. Introduction

Probabilistic metric spaces extend metric spaces in the sense that the
metric is no longer a real number but a distribution function. These spaces
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were studied by several authors, among others Schweizer and Sklar, and much
of the results are summarized in their book [18].

It is well known that t-norms and t-conorms extensively used in fuzzy sets
and systems, both in theory and applications, have their origins in the studies
of probabilistic metric spaces. See e.g. [1, 10, 8] and references therein.

The definition of probabilistic metric spaces is not so easy or straightforward
in practice. The literature provides a few results that ensure that a given
construction leads to a probabilistic metric space. This is the case of E-
spaces, a family of probabilistic metric spaces that are constructed in terms
of a set of functions and a probability space. These spaces were studied by
Sherwood [20] and Stevens [21]. More precisely, E-spaces define distances
between functions between a space Ω and another M . For this we need a
probability on Ω and a metric in M .

In this paper we introduce F-spaces, where instead of using probabilities
on Ω we use fuzzy measures [27, 7]. We study some of the properties of these
new spaces, and show that under some conditions on the measures (i.e., for
some types of measures) we obtain a probabilistic metric space under certain
t-norms.

We then show how we can exploit Choquet and Sugeno integrals as a
basic brick to define these new spaces. It is well known that fuzzy measures,
also known as non-additive measures and capacities, permit to represent
the interactions between the elements of the reference set. They have been
extensively used in applications [6, 2, 3, 4, 5, 9, 16, 15, 27, 30]. When used
to define F-spaces, we can represent interactions in the objects of the space.
This is not possible in E-spaces.

We also illustrate our results with an example. Its motivation is in
the context of machine learning and statistics. More particularly, we are
interested in defining a distance between two models or statistics taking into
account the possible generators of these models. That is, we consider the
space of models (the hypothesis space) with the goal of defining a distance
between pairs m1, m2 of models in this space. Our objective is that the
distance is based on the sets of databases that generate m1 (i.e., we denote
this set by Gen(m1)) andm2 (i.e., Gen(m2)). Then, we consider probabilistic
metric spaces instead of metric spaces. Therefore, the distance d(m1,m2)
will be a distribution function instead of a real number. As we will see,
the distribution function is based on all databases DB in Gen(m1) and
Gen(m2), and the distances between them. This example is based on previous
works [25, 29] where we discuss the convenience of probabilistic metric spaces
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in the context of model selection, and its special relevance in data privacy.
Our approach based on fuzzy measures will permit to model the interaction
between the objects (i.e., databases) in the space. As we will see, fuzzy
measures will be defined on the space of databases, and, therefore, they can
model the interaction (i.e., redundancy and complementarity [23]) in terms
of a property (e.g., coverage) of a set of databases.

The structure of this paper is as follows. In Section 2 we review previous
definitions and results, mainly related to t-norms, and fuzzy measures and
integrals. Then, in Section 3 we review relevant results related to probabilistic
metric spaces. Section 4 presents our main results. This includes the definition
of F-spaces, and several results showing that a construction using fuzzy
measures leads to F-spaces. Section 5 includes some small examples of our
results and Section 6 describe the application of our approach. The paper
finishes with some conclusions.

2. Preliminaries

This section is divided in two parts. We begin reviewing some results
based on t-norms, and then on fuzzy measures.

2.1. t-Norms

We will use in this paper the concept of t-norm [1, 10]. They are functions
on [0, 1]× [0, 1] that generalize Boolean conjunction. The definition follows:

Definition 1. A function ⊤ : [0, 1]× [0, 1] → [0, 1] is a t-norm if and only if
it satisfies the following properties:

(i) ⊤(x, y) = ⊤(y, x) (symmetry or commutativity)

(ii) ⊤(⊤(x, y), z) = ⊤(x,⊤(y, z)) (associativity)

(iii) ⊤(x, y) ≤ ⊤(x′, y′) if x ≤ x′ and y ≤ y′ (monotonicity)

(iv) ⊤(x, 1) = x for all x (neutral element 1)

They are usually required to satisfy also continuity and subidempotency
(⊤(x, x) < x for x ̸= 0). Such t-norms are called Archimedean t-norms.

Some examples of t-norms follow.

Example 1. The following functions are t-norms.
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• Minimum: ⊤(x, y) = min(x, y). The minimum is often denoted by ∧.
That is, x ∧ y = min(x, y).

• Algebraic product: ⊤(x, y) = xy. This t-norm is denoted by Π(x, y)
following [18].

• Bounded difference or Lukasiewicz t-norm: ⊤(x, y) = max(0, x+
y − 1). This t-norm is denoted by W (x, y) following [18].

• Yager family: ⊤w(x, y) = 1 − min
(
1, ((1 − x)w + (1 − y)w)1/w

)
for

w ≥ 0.

• Drastic: ⊤d(x, y) = y if x = 1, ⊤d(x, y) = x if y = 1, and ⊤d(x, y) = 0
otherwise.

It easy to see that t-norms are proper generalizations for conjunctions,
as, for all of them, ⊤(0, 0) = ⊤(0, 1) = ⊤(1, 0) = 0 and ⊤(1, 1) = 1.

2.2. Fuzzy measures

Let us review in this section fuzzy measures and some of their properties.
See e.g. [27, 7, 13, 14] for details. These measures are also known as capacities
and fuzzy measures.

Definition 2. Let (Ω,A) be a measurable space. A set function µ defined on
A is called a fuzzy measure if and only if

• 0 ≤ µ(A) ≤ ∞ for any A ∈ A;

• µ(∅) = 0;

• If A1, A2 ⊆ A and A1 ⊂ A2 then

µ(A1) ≤ µ(A2)

Some definitions and properties of fuzzy measures follow.

Definition 3. Let µ be a fuzzy measure on the measurable space (Ω,A).
Then,

• µ is additive if µ(A ∪B) = µ(A) + µ(B) when A ∩B = ∅;

• µ is submodular if µ(A) + µ(B) ≥ µ(A ∪B) + µ(A ∩B);
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• µ is supermodular if µ(A)+µ(B) ≤ µ(A∪B)+µ(A∩B). A supermodular
measure implies superadditivy. That is, µ(A ∪B) ≥ µ(A) + µ(B).

In this paper we will use, to build our example, a well-known family of
measures: Sugeno λ-measures. We use this family of measures because the
selection of λ makes easy to build submodular and supermodular measures.
The theory is not limited to this type of measures but it is general for all
types of fuzzy measures. The definition follows.

Definition 4. Let Ω be a finite set and let λ > −1. A Sugeno λ-measure is
a fuzzy measure µ : 2Ω → [0, 1] such that

• µ(Ω) = 1

• if A,B ⊆ Ω with A ∩B = ∅ then
µ(A ∪B) = µ(A) + µ(B) + λµ(A)µ(B)

The measure of the singletons xi ∈ Ω is often called a density and it is
denoted by v(xi). For any Sugeno λ-measure µ with values v(xi), λ should
satisfy the following:

λ+ 1 =
n∏

i=1

1 + λv(xi). (1)

This means, that given any assignment v, the value λ is completely
determined from the equation above. The determination of λ from the values
on the singletons is proved and explained in e.g. [11, 22, 27, 26].

Therefore, any fuzzy measure µ(A) can be defined from the singletons as
follows (through first the computation of λ, if unknown).

µ(A) =





v(xi), A = {xi}
1
λ

{∏

xi∈A
(1 + λv(xi))− 1

}
, |A| ≠ 1 & λ ̸= 0

∑

xi∈A
v(xi), |A| ≠ 1 & λ = 0

For Sugeno λ-measures it is known that when λ > 0, µ is supermodular.
Whereas, when λ > 0, µ is submodular (see e.g. [27, 26]).
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Definition 5. Let φ be a real valued function on a closed interval [c, d].
Then,

• φ is said to be convex if

φ(βx+ (1− β)y) ≤ βφ(x) + (1− β)φ(y)

for x, y ∈ [c, d], 0 < β < 1.

• φ is said to be concave if

φ(βx+ (1− β)y) ≥ βφ(x) + (1− β)φ(y)

for x, y ∈ [c, d], 0 < β < 1.

Proposition 1. [13] Let µ be a fuzzy measure on (Ω,A), and φ : [0, 1] →
[0, 1] be a non-decreasing function with φ(0) = 0 and φ(1) = 1. Let λ be the
Lebesgue measure. Then, the following holds:

1. If φ is convex, then φ ◦ λ is supermodular.

2. If φ is concave, then φ ◦ λ is submodular.

The same applies for distorted probabilities. They are measures of the
form µ = φ ◦ P , where P is a probability distribution.

As we just said, distorted probabilities are fuzzy measures representable
by a non-decreasing function φ and a probability distribution P . They were
generalized to m-dimensional distorted probabilities [12, 28, 24] which for
an appropriate m permit to represent any measure. They are defined in
terms of a function φ and m probabilities P1, . . . , Pm. Distorted probabilities
generalize the Sugeno λ-measure defined here, and m-distorted probabilities
are such that they permit to extend these restricted type of measures to any
one possible.

We introduce now another example of fuzzy measures that will be used
later.

Definition 6. Let A0 ̸= ∅ be a subset of Ω, then we define the set function
µA0 as µA0(A) = 1 if and only if A0 ⊆ A and µA0(A) = 0 otherwise.

It is easy to prove the following.

Proposition 2. The set function µA0 is a fuzzy measure.
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This measure can be represented by a distorted probability but not as a
Sugeno λ-measure.

The integration of a function with respect to a fuzzy measure can be done
using different types of fuzzy integrals. Choquet and Sugeno integrals are the
most important ones, but there are several generalizations as well [15, 16].
Let us represent them by (C)

∫
fdµ and (S)

∫
fdµ, respectively. Given a

measure µ and a function f such that the fuzzy integral on the reference set
is one, we can build another measure µ′ as follows:

µ′(A) = (C)

∫

A

fdµ. (2)

3. Probabilistic metric spaces

In this section we review the concept of probabilistic metric spaces. To
do so we begin with the concept of metric spaces and then the definitions
of distance distribution functions and triangle functions. In this way we can
introduce Menger spaces. Then, we introduce E-spaces, a type of Menger
space.

3.1. Menger spaces

A metric space (see e.g. [19]) is defined in terms of a set S and a function
d : S × S → R+ that plays the role of distance on the set S. Here, we
understand R+ = [0,∞) and R+ = [0,∞].

Definition 7. Let d : S × S → R+, then d is called a metric on S if the
following properties hold for a, b, c ∈ S:

• d(a, b) ≥ 0 with equality if and only if a = b (positive property),

• d(a, b) = d(b, a) (symmetry property), and

• d(a, b) ≤ d(a, c) + d(c, b) (triangle inequality property).

Definition 8. The pair (S, d) where d is a metric on S is a metric space
and d(a, b) is the distance between a and b.

The pair (S, d) where d is a function S × S → R+ that satisfies the
positive property and the triangle inequality (but not the symmetry property)
is a quasimetric space. The pair (S, d) where d is a function S × S → R+

that satisfies positive property and the symmetry property (but not the triangle
inequality) is a semimetric space.
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a

1

Figure 1: Graphical representation of the distance distribution function ϵa.

Probabilistic metric spaces [18, 8] were introduced as a generalization
of the concept of a metric. They replace the distance function in a metric
space by a distance distribution function. So, the distance between a pair
of elements in S is not a number but a distribution on these numbers. We
introduce this concept below.

Definition 9. [18] A non-decreasing function F defined on R+ that satisfies
(i) F (0) = 0; (ii) F (∞) = 1, and (iii) that is left continuous on (0,∞) is a
distance distribution function.

∆+ denotes the set of all distance distribution functions.

In this definition we can understand F (x) as the probability that the
distance is less than or equal to x. In this way we can write any classical
distance a in terms of a distance distribution function. More particularly, we
will use in this case ϵa defined as follows. Naturally, ϵa is a step function at
a. Figure 1 illustrates ϵa.

Definition 10. [18] (Def. 4.1.4) For any a in R+, we define ϵa ∈ ∆+ by

ϵa(x) =

{
0, 0 ≤ x ≤ a
1, a < x ≤ ∞

The next step towards the definition of a probabilistic metric space is to
consider a counterpart of the triangle inequality. Triangle functions will be
used for this purpose. We review them below.

Definition 11. [18] Let ∆+ be the set of all distance distribution functions.
Then, a binary operation on ∆+ is a triangle function if it is commutative,
associative, and non-decreasing in each place, and has ϵ0 as the identity.
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There are several families of triangle functions. Two important families
establish a connection between triangle functions and t-norms [1]. In particular,
for a t-norm ⊤, we have that the function τ⊤(F,G)(x) = ⊤(F (x), G(x)) is
a triangle function (see Def. 7.1.3 and Section 7.1 in [18]). The maximal
triangle function is τmin (Theorem 7.1.4 in [18]). Another family of triangle
functions built from a t-norm is the following one. We will use this family in
our work. For x ≥ 0,

τ⊤(F,G)(x) = sup{⊤(F (u), G(v))|u+ v = x}.

See Def. 7.2.1 (Theorem 7.2.4) and Section 7.2 in [18].
We are now in conditions to define probabilistic metric spaces.

Definition 12. [18] Let (S,F , τ) be a triple where S is a nonempty set, F is
a function from S×S into ∆+, and τ is a triangle function; then (S,F , τ) is a
probabilistic metric space (PM space) if the following conditions are satisfied
for all p, q, and r in S:

1. F(p, p) = ϵ0
2. F(p, q) ̸= ϵ0 if p ̸= q

3. F(p, q) = F(q, p)

4. F(p, r) ≥ τ(F(p, q),F(q, r)).

Given a probabilistic metric space (S,F , τ), we say that (S,F) is a
probabilistic metric space under τ .

A probabilistic pseudometric space (PPM space) (S,F , τ) is defined as
above but not requiring condition 2. When all conditions above apply but 4
is not required we have a probabilistic semimetric space. When all conditions
apply but 3 is not required we have a probabilistic quasimetric space.

We prefer to use Fpq instead of F(p, q). Then, we express the value of the
latter at x simply as Fpq(x).

We consider in this paper particular probabilistic metric spaces. The next
definition introduces Menger spaces.

Definition 13. [18] Let (S,F , τ) be a probabilistic metric space. Then
(S,F , τ) is proper if

τ(ϵa, ϵb) ≥ ϵa+b

for all a, b in R+.
If τ = τ⊤ for some t-norm ⊤, then (S,F , τ) is a Menger space, or

equivalently (S,F) is a Menger space under ⊤.
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We illustrate this definition with an example that describes several proper
Menger spaces. We will use these examples in the next section to prove some
results.

Example 2. Let (S,F , τ) be a probabilistic metric space and a, b ∈ R+, with
a ≥ b.

• Suppose that τ is minimum. That is, τ = ∧. Then, since a∧ b < a+ b,
we have τ(ϵa, ϵb) ≥ ϵa+b. Therefore (S,F , τ) is a proper Menger space.

• Suppose that τ is the algebraic product. That is, τ = Π. Then, since
ϵa ·ϵb = ϵa, we have τ(ϵa, ϵb) ≥ ϵa+b. Therefore (S,F , τ) is also a proper
Menger space.

• Suppose that τ is the bounded difference. That is, τ = W . Then, since
0∨ (ϵa+ ϵb− 1) = ϵa, it follows that (S,F , τ) is a proper Menger space.

3.2. E-spaces

This is a family of probabilistic metric spaces [20, 21] that are constructed
in terms of a set of functions and a probability space. For any pair of
functions, and any x we can compute the measure of the points that are
a distance at most x. The definition of the E-spaces uses a probability to
measure the set of points. As discussed by Schweizer and Sklar this can be
seen as a generalization of just using the Lebesgue measure on the I = [0, 1]
interval.

Formally, given functions p and q from I to a metric space (M,d) with
d(a, b) = |a− b|, and considering the Lebesgue measure λ, we can define for
Ω = I = [0, 1] the following distance distribution function:

Fpq(x) = λ({t ∈ I| |p(t)− q(t)| < x}).
This expression is a particular case of an E-space. As we see in the next

definition, E-spaces are defined considering a probability space on Ω instead
of a space with the Lebesgue measure on I = [0, 1]. The definition also uses
an arbitrary metric space (M,d). The definition follows. In the definition,
L+
1 (Ω) is the set of all positive a.e. finite Lebesgue measurable functions on

Ω. Figure 2 gives a representation of E-spaces.
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Ω M

q : O → M

p : O → M

Figure 2: Representation for E-spaces with the probability space (Ω,A, P ) and the metric
space (M,d).

Definition 14. Let (Ω,A, P ) be a probability space, let (M,d) be a metric
space, let S be a set of functions from Ω into M and let F be a mapping from
S × S into ∆+. Then, (S,F) is an E-space with base (Ω,A, P ) and target
(M,d) if

• (i) For all p, q in S and all x in R+ the set

{ω ∈ Ω|d(p(ω), q(ω)) < x}

belongs to A; i.e., the composite function d(p, q) from Ω into R+ is
A-measurable and therefore in L+

1 (Ω).

• (ii) For all p, q in S, F(p, q) = Fpq defined by

Fpq(x) = P ({ω ∈ Ω|d(p(ω), q(ω)) < x}). (3)

Equation 3 implies that F satisfies Properties 1 and 3 in Definition 12.
If F also satisfies Property 2, then (S,F) is a canonical E-space.

The following can be proven for E-spaces. The proof of this theorem is
given in [17] and also in [21].

Theorem 1. Let (S,F) be an E-space. Then (S,F) is a probabilistic pseudometric
space under τW . If (S,F) is canonical, then it is a Menger space under W.
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4. Main results

A natural generalization of E-spaces is to consider fuzzy measures for
evaluating the set of ω that are at most at a distance x. This is proposed
in the next definition. We call it F-space (e.g., for Fuzzy Measure, and
consecutive letter to E).

Definition 15. Let (Ω,A) be a measurable space, and let µ be a fuzzy
measure on (Ω,A). Let (M,d) be a metric space, let S be a set of functions
from Ω into M and let F be a mapping from S × S into ∆+. Then, (S,F)
is an F-space with base (Ω,A, µ) and target (M,d) if

• (i) For all p, q in S and all x in R+ the set

{ω ∈ Ω|d(p(ω), q(ω)) < x}

belongs to A.

• (ii) For all p, q in S, F(p, q) = F µ
pq with

F µ
pq(x) = µ({ω ∈ Ω|d(p(ω), q(ω)) < x}). (4)

We can prove the following.

Theorem 2. Let (Ω,A) be a measurable space, let µ be a fuzzy measure on
(Ω,A) and (S,F) be an F-space with base (Ω,A, µ) and target (M,d).

Then, if µ is a supermodular fuzzy measure on (Ω,A), it follows that
(S,F) is a probabilistic pseudometric space under bounded difference τW .

Proof. We prove first that F µ
pq as defined in Equation 4 satisfies Property 1

in Definition 12. Observe that if p = q then p(w) = q(w) for all w ∈ Ω.
Therefore, d(p(w), q(w)) = 0 for all w in Ω and Ω = {ω ∈ Ω|d(p(ω), q(ω)) <
x} for all x > 0. As µ(Ω) = 1, then F µ

pq(0) = 0 and F µ
pq(x) = 1 for all x > 0.

Therefore, F µ
pq = ϵ0 and the Property is proven.

The proof that F µ
pq satisfies Property 3 is trivial. The symmetry of d

naturally implies the one of F µ
pq.

We now prove that F µ
pq satisfies Property 4. Let us consider any x in R+.

Then, consider u and v such that u+ v = x and define the following sets:

• A = {w ∈ Ω|d(p(w), q(w)) < u},
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• B = {w ∈ Ω|d(q(w), r(w)) < v}, and

• C = {w ∈ Ω|d(p(w), r(w)) < x}.
We know that d satisfies the triangle inequality.

Therefore, C ⊇ A∩B because if we have that for a w it holds d(p(w), q(w)) =
u0 < u (i.e., w ∈ A) and d(q(w), r(w)) = v0 < v (i.e., w ∈ B) we know that
by the triangle inequality

x = u+ v > u0 + v0

= d(p(q), q(w)) + d(q(w), r(w)) ≥ d(p(w), r(w)),

and thus w is in C.
Now, as C ⊇ A ∩B, by the monotonicity condition of µ, we have

µ(C) ≥ µ(A ∩B)

and by supermodularity

µ(A ∩B) ≥ µ(A) + µ(B)− µ(A ∪B).

As 1 = µ(Ω) ≥ µ(A ∪B), we have that

µ(A ∩B) ≥ µ(A) + µ(B)− µ(A ∪B) ≥ µ(A) + µ(B)− 1,

and naturally µ(A ∩B) ≥ 0. Therefore,

µ(C) ≥ µ(A ∩B) ≥ max(µ(A) + µ(B)− 1, 0)

= W (µ(A), µ(B)). (5)

Let us consider the expressions for F µ
pq(u), F

µ
qr(v), and F µ

pr(x) according
to Equation 4 and the sets µ(A), µ(B), and µ(C) as defined above. Then,
we have that Equation 5 implies

F µ
pr(x) ≥ W (F µ

pq(u), F
µ
qr(v)).

Therefore,

F µ
pr(x) ≥ sup{W (F µ

pq(u), F
µ
qr(v))|u+ v = x}

= τW (F µ
pq, F

µ
qr)(x), (6)

and Property 4 holds with τW .
As Properties 1, 3, and 4 hold, the theorem is proven.
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The next proposition is immediate from Proposition 1. Recall that a
convex function makes the distorted probability supermodular. Therefore,
Theorem 2 applies.

Proposition 3. Let (Ω,A) be a measurable space, and let P be a probability
on (Ω,A). Let φ be an increasing convex function on the closed interval [0,1]
with φ(0) = 0, φ(1) = 1. Let (S,F) be an F-space with base (Ω,A, φ ◦ P ).

Then, (S,F) is a probabilistic pseudometric space under bounded difference
τW .

The next theorem is immediate from Example 2.

Theorem 3. If (S,F) is a canonical F-space (i.e., F satisfies Property 2),
then it is a proper Menger space under W.

Definition 16. Given the reference set Ω, a fuzzy measure such that µ(A) <
1 for all A ⊂ Ω and A ̸= Ω is called a 1−-measure

Theorem 4. Let (S,F) be an F-space. Let µ be a 1−-measure on (Ω,A).
Then (S,F) is a probabilistic pseudometric space under τ⊤d

.

Proof. The proof of this theorem follows the proof of Theorem 2. In particular,
conditions 1 and 3 are proven in the same way.

Then, we define the sets A, B, and C in the same way as we defined
them in Theorem 2. We have, therefore C ⊇ A ∩ B. By the monotonicity
condition, it follows that µ(C) ≥ µ(A ∩B).

Now, let us consider the following case: A ̸= Ω and B ̸= Ω. We can prove
that ⊤d(µ(A), µ(B)) = 0 because both µ(A) < 1 and µ(B) < 1. Therefore,
it is clear that µ(A ∩B) ≥ ⊤d(µ(A), µ(B)) = 0.

Another case is when A = Ω. Then, A ∩ B = B. Therefore µ(A ∩ B) =
µ(B) = ⊤d(µ(A), µ(B)) = ⊤d(1, µ(B)) = µ(B).

Finally, we have the case in which B = Ω, that is analogous to the
previous one and we can also prove µ(A ∩B) = ⊤d(µ(A), µ(B)).

Therefore, we have that

µ(C) ≥ µ(A ∩B) ≥ ⊤d(µ(A), µ(B)),

and we can proceed as we did in Theorem 2 defining F µ
pq(u), F

µ
qr(v), and

F µ
pr(x), and obtain the equation:

F µ
pr(x) ≥ ⊤d(F

µ
pq(u), F

µ
qr(v)).

80



From this equation we prove that

F µ
pr(x) ≥ sup{⊤d(F

µ
pq(u), F

µ
qr(v))|u+ v = x}

= τ⊤d
(F µ

pq, F
µ
qr)(x),

holds for τ⊤d
. Therefore, the theorem is proven.

We prove the following theorem that considers fuzzy measures µA0 introduced
in Definition 6.

Theorem 5. Let (S,F) be an F-space. Let µA0 be a fuzzy measure defined
on (Ω,A) for a non empty set A0 ∈ A. Then (S,F) is a probabilistic
pseudometric space under τmin.

Proof. The proof of this theorem also follows the proof of Theorem 2. So,
we focus on the proof of condition 4. We also consider A, B, and C as above
and that µA0(C) ≥ µA0(A ∩B) due to the monotonicity of µ.

As µA0(A) = 1 if and only if A ⊇ A0, it is easy to prove that when A1

and A2 are such that µA0(A1 ∩ A2) = 1 it means that A1 ∩ A2 ⊇ A0 and
therefore both A1 ⊇ A0 and A2 ⊇ A0. Therefore,

µA0(A1 ∩ A2) = 1 = min(µA0(A1), µA0(A2)) = min(1, 1) = 1.

Then, if µA0(A1 ∩ A2) = 0 this means that A1 ∩ A2 does not include A0.
Therefore, it is not possible that both A1 and A2 include A0. At most one of
them can include A0. This means that either µA0(A1) = 0 or µA0(A2) = 0.
Because of that

µA0(A1 ∩ A2) = 0 = min(µA0(A1), µA0(A2)) = 0.

In a way analogous to previous proofs, we obtain that

F µ
pr(x) ≥ sup{min(F µ

pq(u), F
µ
qr(v))|u+ v = x}

= τmin(F
µ
pq, F

µ
qr)(x),

holds for τmin. Therefore, the theorem is proven.

These results show the relationship between the type of probabilistic
metric space and the type of t-norm. The stronger the t-norm, the less
constraints we have on the measure we can use to build the probabilistic
metric space. This is the case of using the drastic t-norm where the measure
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ω1 ω2 ω3

p 0 0 0
q 0 0 1
r 0 1 1
s 1 1 1

Table 1: Functions p, q, r and s from Ω := {ω1, ω2, ω3} into M for Example 3.

is only constrained to be a 1− measure (see Theorem 4). On the contrary,
the less strict the t-norm, the more constraints we have on the measure.
This is the case of the minimum where the fuzzy measure is of type µA0 (see
Theorem 5).

The following proposition is a consequence of the fact that given a fuzzy
measure µ we can build another one µ′ using Expression 2 and the Choquet
integral.

Proposition 4. Let (S,F) be an F-space with base (Ω,A, µ) and target
(M,d). Let f : Ω → R+ be a function such that (C)

∫
fdµ = 1. Then,

(S,F) with F(p, q) = Fpq defined by

F µ′
pq (x) = µ′({ω ∈ Ω|d(p(ω), q(ω)) < x})

is an F-space with base (Ω,A, µ′) and target (M,d) for µ′ defined using
Expression 2.

Proof. To prove this proposition is trivial as (S,F) is an F-space, so (i) in
Definition 15 holds, and the construction of F µ′

pq follows the one of Expression 4
in Definition 15 but with µ′ instead of µ.

5. An example

We begin with a toy example corresponding to the application of previous
results. We give a larger example in the context of machine learning and
statistics in the next section.

Example 3. Let Ω := {ω1, ω2, ω3}, and A := 2Ω. Then (Ω,A) is a measurable
space.

Let M := [0,∞) and let d(a, b) := |a− b| for a, b ∈ M . Then, (M,d) is a
metric space.
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Define the functions p, q, r, s : Ω → M as given by Table 1. Then, let
S = {p, q, r, s} and define for p1, p2 ∈ S the following functions: Hp1p2(x) :=
{ω| |p1(ω)− p2(ω)| < x} for 0 ≤ x. Then we have the sets Hpq as given in
Table 2.

x = 0 0 < x ≤ 1 x > 1

Hpq ∅ {ω1, ω2} Ω
Hpr ∅ {ω1} Ω
Hps ∅ ∅ Ω
Hqr ∅ {ω1, ω3} Ω
Hqs ∅ {ω3} Ω
Hrs ∅ {ω2, ω3} Ω

Table 2: Functions Hp1,p2
for p1, p2 ∈ S for Example 3.

Now, let us define a Probability P1 on (Ω,A) as follows: P ({ω1}) =
P ({ω2}) = P ({ω3}) = 1/3. Then, using Equation 3, we construct the
functions F1 as described in Table 3.

x = 0 0 < x ≤ 1 x > 1

F1pq 0 2/3 1
F1pr 0 1/3 1
F1ps 0 0 1
F1qr 0 2/3 1
F1qs 0 1/3 1
F1rs 0 2/3 1

Table 3: Functions F1p1,p2
for p1, p2 ∈ S for Example 3.

Let τ = W . Then, (S,F , τ) is a proper Menger space as we have shown in
Theorem 1. In fact, we can see that τ(F1pq, F1qr) = 2/3+2/3−1 = 1/3 = Fpr

if 0 < x ≤ 1. We can check the other inequalities in a similar way.
Let us now define a Probability P2 on (Ω,A) by P ({ω1}) = P ({ω2}) =

0, P ({ω3}) = 1. Then we have functions F2 as shown in Table 4.
That is, F2pq = F2pr = F2ps = ϵ1, F2qr = F2qs = F2rs = ϵ0
Let us now consider a distortion function φ(x) = xα with α ≥ 1. We can

use it to define a fuzzy measure φ ◦ P1. This permits us to have an F-space
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x = 0 0 < x ≤ 1 x > 1

F2pq 0 0 1
F2pr 0 0 1
F2ps 0 0 1
F2qr 0 1 1
F2qs 0 1 1
F2rs 0 1 1

Table 4: Functions F2p1,p2
for p1, p2 ∈ S for Example 3.

(S,F3) with base (Ω,A, φ ◦ P1). Functions F3 are described in Table 5.

x = 0 0 < x ≤ 1 x > 1

F3pq 0 (2/3)α 1
F3pr 0 (1/3)α 1
F3ps 0 0 1
F3qr 0 (2/3)α 1
F3qs 0 (1/3)α 1
F3rs 0 (2/3)α 1

Table 5: Functions F3p1,p2 for p1, p2 ∈ S for Example 3.

Let α → ∞, we have the fuzzy measure µ1 = φ ◦ P1 such that µ1(A) = 0
if A ̸= Ω, and µ1(A) = 1 if A = Ω. Then we have the F-space (S,F4) with
base (Ω,A, µ1). It is easy to see that in this case F4pq = F4pr = F4ps = F4qr =
F4qs = F4rs = ϵ1.

Now, let us regard the set of functions of the set S, that is p, q, r, s as
the points in R3: P (p), Q(q), R(r), S(s). E.g., P (p) = (0, 0, 0) and Q(s) =
(1, 1, 1) following the values in Table 1.

Figure 3 represents these points in R3.
Then, using functions F1 and F2, we can classify each pair of points

P,Q,R, S.
For example, using F1 we see that the following pairs {P,R} and {Q,S}

have the same distance. This is represented in Figure 4 (left).
Then, the pairs {P,Q}, {Q,R}, and {R, S} have also the same distance.

This can be observed in Figure 4 (right).
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P Q

R

S

Figure 3: Representation of points P (p), Q(q), R(r), S(s) as in R3.

P Q

R

S

P Q

R

S

Figure 4: Representation of points P (p), Q(q), R(r), S(s) as in R3 with pairs grouped
according to F1. On the left the pairs whose distance is 0 for x = 0, 1 for x > 1 and
1/3 otherwise. On the right the pairs whose distance is 0 for x = 0, 1 for x > 1 and 2/3
otherwise.

In contrast, the pair {P, S} is independent in the view point of P1. It is
the only pair with this particular distance.

When we use F2 to study the similarity of these objects, we have that on
the one hand the pairs {P,Q}, {P,R}, and {P, S} have same distance. On
the other hand, the pairs {Q,R}, {Q,S}, {R, S} have also the same distance.
Therefore, the sets of equivalent functions are different.

6. An application

In this section we describe the application of the results presented in this
paper in the context of machine learning and statistics. The motivation is
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the comparison of algorithms and the models and statistics they build. Our
example is small and we will only compare three aggregation functions. This
case permits to illustrate some of the theoretical results we have obtained in
the previous sections.

The motivation comes from the need to compare models and algorithms
taking into account the databases they are applied to. We have shown [25]
that probabilistic metric spaces can be useful to define metrics for machine
learning. It is known that the application of a deterministic machine learning
algorithm to a database produces a machine learning model. Then, different
databases would result into different models. Nevertheless, not all models are
different. There are models that are more occurrent than others (they appear
more frequently). Another aspect to take into account is the following. When
there are database changes (e.g., adding or removing people from a database),
we may need to retrain the model. This retraining produces the same model
or a different one, which can be similar or very dissimilar. In a previous
work [29] we considered the construction of probabilistic metric spaces based
on Markov chains and transition matrices. That is, we considered that
database changes in time can be modeled using a Markov process. The
transition matrix was used to build the space. Here we consider a different
approach, taking into account a fuzzy measure on the database space. This
measure represents our information on a set of databases. For example, the
coverage of these databases. We give more details on the interpreation of
measures in Subsection 6.3. Then, we need a metric on the space of models.
As we have said, for simplicity we only consider three aggregation functions,
and, therefore, their output is a positive number. Because of that, we use
the absolute value. With respect to the space of databases, we consider a
population and then the space of databases are samples of the information
of this population. This approach follows our previous work, and is rooted
on machine learning where multiple runs are usually considered for a given
algorithm. All these elements will permit us to construct a probabilistic
metric space, and E-spaces and F-spaces.

Let us consider the formalization of this problem. Suppose the space
(Ω,A) corresponds to the space of possible databases and A := 2Ω. Then, P
and µ are probabilities and fuzzy measures, respectively, on this space.

Our different algorithms are the computation of an aggregated value from
the database. I.e., we consider below three types of mean in our examples.
Then, the target space (M,d) corresponds to the space of models defined
by M = [0,∞) and the distance between any two models is defined by
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index groups age healthy eating active lifestyle salary

388 O 24 6 5 2878
228 O 54 7 6 3228
112 A 45 6 8 2182
745 A 33 3 6 902
780 O 35 7 3 3923
656 A 40 6 0 4038
932 O 25 6 6 2646
526 AB 40 10 6 4972
626 A 59 3 3 1598
663 B 55 4 4 1948

Table 6: Employee Dataset sample used to build the database space (Ω,A).

d(a, b) := |a− b| for a, b ∈ M .
Let S be a set of different machine learning algorithms. Each one maps

the database space to the model space, thus for any pi ∈ S, pi(DB) is
the model built from database DB using algorithm pi. For simplicity, S is
composed of only three different functions:

• Arithmetic mean as (p).

• Harmonic mean as (q).

• Geometric mean as (r).

Finally, let F be a mapping from S × S into ∆+.
Following this setup, we next illustrate some toy examples to construct the

space (S,F) with respect to different measures and t-norms. The database
space for all experiments is constructed from Table 6.

We will consider in the next sections two different cases. First, an additive
measure. That is, a probability. This will permit us to obtain results that
correspond to an E-space. Then, we consider fuzzy measures, to obtain an F-
space. These measures permit to represent a characteristic or property of the
space of databases. In our example we will represent interactions between
databases which are all either positive or negative (as complementarity or
redundancy). We finish the section discussing the meaning of measures in
this setting.

87



6.1. Case 1: Additive Measure

In this experiment, the database space is a probability space (Ω,A, P )
where P is an additive measure defined by P (DB) = 1/1023 for any database
(DB) in the space.

The model space is built as we described above. Figure 5 demonstrates
the histograms of the distances among the three functions.

Now let us define the function Hp1p2 as follows: for any p1, p2 ∈ S and for
x ≥ 0,

Hp1p2(x) = {DB| |p1(DB)− p2(DB)| < x}.
Let us define the function l(H) as the number of elements inH (i.e., cardinality
of the set). This function l(H) is given in Table 7. We will define the
probability P using l(H) and dividing by the total number of non empty
databases (1023 as we have all non empty subsets of 10 records). This is
detailed below.

x = 0 0 < x ≤ 200 x < 1500

l(Hpq) 0 152 1023
l(Hpr) 0 441 1023
l(Hqr) 0 436 1023

Table 7: Functions l(Hp1p2
)(x) for p1, p2 ∈ S.

Now, using Equation 3 and since P is additive, Fpq(x) =
l(Hpq(x))

1023
. Functions

F are given in Table 8. Since F satisfies properties 1, 2, and 3 in Definition 12,
then (S,F) is a canonical E-space and hence it is a Menger space under W .

x = 0 0 < x ≤ 200 x < 1500

Fpq 0 0.148583 1
Fpr 0 0.431085 1
Fqr 0 0.426197 1

Table 8: Functions Fp1,p2
for p1, p2 ∈ S based on additive measure P
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Figure 5: Histogram of the three different distances.

6.2. Case 2: Fuzzy Measures

In the following experiments, we consider the use of fuzzy measures. We
will show that the result in our examples are in accordance with what we have
proven in previous sections. Because of that, we use two different families of
fuzzy measures. We start with a Sugeno λ-measure (µ) followed by the fuzzy
measure µA0 . We use Sugeno λ-measures because they are simple to define
on the large space of databases we have, and we can easily define submodular
and supermodular measures.

6.2.1. Sugeno λ-measure

In this experiment, we use a Sugeno λ-measure from Definition 4 to build
the database space (Ω,A, µ). The construction of the databases space, the
Model Space M , and the set S is similar to the previous example. For
simplicity, all the singletons measures are assumed to be equal. I.e. v(xi) = k,
for all xi ∈ Ω. Therefore, solving Equation 1 for k yields:

k =
1

λ
(exp(

1

n
ln(1 + λ)− 1) (7)

Suppose λ = 0.5, we use Equation 7 to compute the values of the measure
for the singletons. The functions F are derived for Table 7, and the results
are given in Table 9. Since the measure here is supermodular, the results
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are aligned with Theorem 2, in which the space (S,F , τ) is a probabilistic
pseudometric space under bounded difference τW . Figure 6 demonstrates the
correctness of condition 4 for Definition 12.

The same steps are now repeated but with a submodular measures, i.e.,
when λ < 0 and also tested with respect to the t-norm τW . While some
measures resulted in probabilistic pseudometric spaces, some measures yield
probabilistic semimetric spaces (i.e., triangle inequality does not hold). An
example of the latter case is when λ = −0.9. The results for this case are
given in Table 10 and Figure 7.

x = 0 0 < x ≤ 200 x < 1500

Fpq 0 0.124194 1
Fpr 0 0.381992 1
Fqr 0 0.377276 1

Table 9: Functions Fp1,p2
for p1, p2 ∈ S based on Sugeno λ-measure (λ = 0.5)

x = 0 0 < x ≤ 200 x < 1500

Fpq 0 0.321933 1
Fpr 0 0.699324 1
Fqr 0 0.694664 1

Table 10: Functions Fp1,p2
for p1, p2 ∈ S based on Sugeno λ-measure (λ = −0.9)

6.2.2. Fuzzy measure µA0

Our last experiment is based on the fuzzy measure µA0 , which is introduced
in Definition 6. Suppose A0 = Hpq(x) when 0 < x ≤ 200 (see Table 7), then
we have the following relation:

Hpq ⊆ Hqr ⊆ Hpr.

The functions F are given in Table 11. It is clear that the space (S,F) is a
probabilistic pseudometric space under τmin. Therefore, this result is aligned
with Theorem 5.
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Figure 6: Testing the triangle inequality with t-norm τW for λ = 0.5 in Case 2. We observe
that the inequality holds.

Figure 7: Testing the triangle inequality with t-norm τW for λ = −0.9 in Case 2. We
observe that the inequality does not hold.

6.3. The interpreation of the fuzzy measures

Measures (additive and non-additive ones) are defined in this section on
the space of databases. They represent a characteristic or property of a
set of them. Here, we have considered either the same relevance with the
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x = 0 0 < x ≤ 200 x < 1500

Fpq 0 1 1
Fpr 0 1 1
Fqr 0 1 1

Table 11: Functions Fp1,p2
for p1, p2 ∈ S based fuzzy measure µA0

probability P (DB) = 1/1023 or some equal interaction with the Sugeno λ-
measure. Fuzzy measures permit to consider more complex interactions. We
can consider, for example, the coverage of a database or of a set of databases.
Then, naturally, we would have that the larger the set of databases, the larger
the coverage. The definition of a new measure using the Choquet integral
using Expression 2 (or, similarly, using the Sugeno integral) would permit
to define measures that combine a measure representing the coverage with
a characteristic of the database itself represented by the function f in the
expression.

7. Conclusions

In this paper we have introduced F-spaces, a type of probabilistic metric
spaces based on fuzzy measures. They can be seen as an extension of E-
spaces, which were based on additive (probability) measures. In contrast,
F-spaces use fuzzy measures which permit to take into account that objects
of the space are not necessarily independent. We have provided several
theoretical results for this type of spaces.

We have illustrated the application of our results with simple examples
inspired on machine learning. More precisely, we consider a space of databases,
and three different aggregation functions. We build F-spaces considering
different types of fuzzy measures on the space of databases. The examples
illustrate the theorems and propositions proven in Section 3. In particular, we
have shown that supermodular fuzzy measures lead to probabilistic pseudometric
spaces that satisfy the appropriate conditions of Definition 12 while for non-
supermodular fuzzy measures this is not the case (i.e., triangle inequality does
not hold). So the experimental results are consistent with our mathematical
results.

As future work we consider studying additional properties of these probabilistic
metric spaces, as well as to consider their application in real-size databases
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with more complex and realistic machine learning algorithms. In relation to
the theory, we will consider the requirement of associativity for t-norms and
its role in defining probabilistic metric spaces, as suggested by a reviewer.
This requires the consideration of metric spaces on the space of models, and
defining fuzzy measures for the space of databases. We plan to study fuzzy
measures that are appropriate to represent background information on the
space of models.

In general, the size of the databases may not be a constraint for the
application of this results. Nevertheless, a large size of the space of databases
can be. Then, we may need to consider approximations of the distance
functions. This is another direction for future work.
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Abstract. Probabilistic metric spaces are a natural generalization of
metric spaces in which the function that computes the distance outputs
a distribution on the real numbers rather than a single number. Such
a function is called a distribution function. In this paper, we construct
a distance for linear regression models using one type of probabilistic
metric space called F-space. F-spaces use fuzzy measures to evaluate a
set of elements under certain conditions. By using F-spaces to build a
metric on machine learning models, we permit to represent more complex
interactions of the databases that generate these models.

Keywords: Fuzzy Measures · Probabilistic Metric Space · Machine
Learning

1 Introduction

Probabilistic metric spaces [1] are a natural generalization of metric spaces in
which the function that computes the distance outputs a distribution on the real
numbers rather than a single number. Such a function is called a distribution
function. Constructing a probabilistic metric space (PMS) is not a straightfor-
ward process. There are different methods in the literature that aim to construct
these spaces. Among them we find the E-spaces [2,3], where the probabilistic
metric space is defined in terms of sets of functions and a probability space.
These functions map from a probability space into a metric space. Another con-
struction are the F-spaces, which generalize E-spaces by replacing the probabil-
ity space with a measure space. Hence, the distribution functions are defined in
terms of non-additive measures. We have introduced these F-spaces in a previous
work [4].

In this paper, our interest lies in measuring the distance between machine
learning models taking into account the set of databases that generate these
models. We call such sets generators. The distance between models is defined in
terms of distribution functions, and the probabilistic metric space is constructed
in terms of a F-space. Since we consider models that can be defined in terms
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of their generators, the distribution functions are based on these generators and
their distances. By using fuzzy measures and F-spaces to construct models dis-
tances, it would be possible to model the interactions of the databases in the
spaces. Such interactions can be interpreted in terms of coverage of a set of
databases or any other properties on the databases. The study of probabilistic
metric spaces and their relevance to the problem of model selection were previ-
ously studied in [12] where it was linked to data privacy, and in [5] where the
authors developed these spaces taking into account transitions that occur among
the database and modeled it using Markov chains and transition matrices.

This paper is structured as follows. In Sect. 2 we introduce the definitions that
are needed later in the paper. In particular, we review some concepts related to
fuzzy measures and their properties. In Sect. 3, we introduce probabilistic metric
spaces and F-spaces along with some results and toy examples. In Sect. 4 we
illustrate our results. Section 5 concludes the paper with some conclusions and
research directions.

2 Fuzzy Measures

Fuzzy measures were first introduced by Sugeno [6]. They are also called capac-
ities, nonadditive measures, and monotone measures. Fuzzy measures are con-
sidered as a generalization of classical measures [7–10].

Definition 1. Let (Ω,A) be a measurable space. A set function μ defined on A
is called a non-additive measure if an only if

– 0 ≤ μ(A) ≤ ∞ for any A ∈ A;
– μ(∅) = 0;
– If A1 ⊆ A2 ⊆ A then

μ(A1) ≤ μ(A2)

If in addition μ(A) = 1, then the fuzzy measure is said to be a normalized space.
We consider finite sets Ω, and for simplicity we assume A = 2Ω .

Definition 2. Let μ be a non-additive measure on the measurable space (X,A).
Then,

– μ is additive if μ(A ∪ B) = μ(A) + μ(B) when A ∩ B = ∅;
– μ is superadditive if μ(A ∪ B) ≥ μ(A) + μ(B) when A ∩ B = ∅;
– μ is subadditive if μ(A ∪ B) ≤ μ(A) + μ(B) when A ∩ B = ∅;
– μ is submodular if μ(A) + μ(B) ≥ μ(A ∪ B) + μ(A ∩ B);
– μ is supermodular if μ(A) + μ(B) ≤ μ(A ∪ B) + μ(A ∩ B);
– μ is symmetric if for finite X, when |A| = |B|, then μ(A) = μ(B).

A supermodular measure implies superadditivy, while a submodular measure
implies subadditivity. When additive fuzzy measures are normalized, they are
probability measures. In this paper we will use two families of fuzzy measures in
our experiments, Sugeno λ-measures and the non-additive measure μA0 . Their
definitions are as follows.
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Definition 3. Let Ω be a finite set and let λ > −1. A Sugeno λ-measure is a
function μ : 2Ω → [0, 1] such that

– μ(Ω) = 1
– if A,B ⊆ X with A ∩ B = ∅ then

μ(A ∪ B) = μ(A) + μ(B) + λμ(A)μ(B)

For Sugeno λ-measures, as a convention, the measure of the singletons ωi ∈ Ω is
called a density and it is noted by v(ωi). In this case, as the measure is normalized
when Ω = {ω1, ω2, ..., ωn}, λ should satisfy the following:

λ + 1 =
n∏

i=1

1 + λv(ωi). (1)

Once the densities are known, the above polynomial can be used to uniquely
determine the value of λ. Then given the densities and λ, the fuzzy measure
μ(A) is defined as:

μ(A) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v(xi), A = xi
1
λ

∏

xi∈A

(1 + λv(xi)) − 1), |A| �= 1 & λ �= 0
∑

xi∈A

v(xi), λ = 0 & |A| �= 1

For Sugeno λ-measures, when λ > 0, μ is supermodular. Whereas, when λ > 0, μ
is submodular.

Definition 4. Let A0 be a subset of Ω, then the set function defined by
μA0(A) = 1 if and only if A0 ⊆ A, is a non-additive measure.

3 Probabilistic Metric Space

In this section, we review some concepts related to probabilistic metric spaces
and their properties. Following this, we introduce E-space and F-spaces.

Definition 5. Let d : S×S → R
+, then d is called a metric on S if the following

properties hold for a, b, c ∈ S:

– d(a, b) ≥ 0 with equality if and only if a = b (positive property),
– d(a, b) = d(b, a) (symmetry property), and
– d(a, b) ≤ d(a, c) + d(c, b) (triangle inequality property).

Definition 6. [11] The pair (S, d) is called a metric space when d is a metric
on the set S. Where d : S × S → R

+ plays the role of distance on the set S.
Here, we understand R

+ = [0,∞) and R+ = [0,∞].

When the distance does not satisfy the symmetry condition, we say that (S, d) is
a quasimetric space; and when the distance does not satisfy the triangle inequal-
ity, we say that (S, d) is a semimetric space. Probabilistic metric spaces are a
generalization of metric spaces in which the distance function is replaced by a
distribution distance function.
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Definition 7. [1] A distance distribution function F is a nondecreasing function
defined on R+ that satisfies (i) F (0) = 0; (ii) F (∞) = 1, and (iii) that is left
continuous on (0,∞).

Therefore, F (x) can be interpreted as the probability that the distance is less
than or equal to x. The set of all distance distribution functions is denoted as
Δ+, while the distance distribution function that represents a classical distance
is denoted by εa and is defined as below.

Definition 8. [1] For any a in R
+, we define εa ∈ Δ+ by

εa(x) =
{

0, 0 ≤ x ≤ a
1, a < x ≤ ∞

Next, we introduce the concepts of t-norms and triangle functions in order to
construct a probabilistic metric space.

Definition 9. [13] A function � : [0, 1] × [0, 1] → [0, 1] is a t-norm if and only
if it satisfies the following properties:

– �(x, y) = �(y, x) (symmetry or commutativity)
– �(�(x, y), z) = �(x,�(y, z)) (associativity)
– �(x, y) ≤ �(x′, y′) if x ≤ x′ and y ≤ y′ (monotonicity)
– �(x, 1) = x for all x (neutral element 1)

One example of t-norm is the minimum function T (x, y) = min(x, y) which is
denoted by ∧, i.e T (x, y) = ∧(x, y). Another t-norm is the bounded difference
W (x, y) defined as T (x, y) = max(0, x + y − 1).

Definition 10. [1] A Triangle function T is a binary operation on Δ+ that for
any F,G,H,K ∈ Δ+, it satisfies the following:

– T (F, ε0) = F
– T (F,G) = T (G,F )
– T (F,G) ≤ T (H,K) whenever F ≤ H,G ≤ K
– T (T (F,G),H) = T (F, T (G,H))

For a t-norm �, we have that the function τ�(F,G)(x) = �(F (x), G(x)) is a
triangle function. Next, we introduce probabilistic metric spaces along with their
properties.

Definition 11. [1] Let (S,F , τ) be a triple where S is a nonempty set, F is a
function from S × S into Δ+, and τ is a triangle function; then (S,F , τ) is a
probabilistic metric space (PM space) if the following conditions are satisfied for
all p, q, and r in S:

– F(p, p) = ε0
– F(p, q) �= ε0 if p �= q
– F(p, q) = F(q, p)
– F(p, r) ≥ τ(F(p, q),F(q, r)).
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For simplicity we will use Fpq instead of F(p, q) and denote the value of the latter
at x as Fpq(x). Special names are given when some of the above conditions fail.
A probabilistic metric space that doesn’t satisfy the second condition is called a
probabilistic pseudometric space. If the space doesn’t satisfy triangle inequality
it is called a probabilistic semimetric space, while it is a probabilistic quasi metric
space if the symmetry property is invalid.

F-spaces are one family of probabilistic metric spaces. They permit to com-
pute the distance between functions that map from a measurable space to a
metric space, where the distance distribution function is defined in terms of
measuring those elements that are at most at distance x.

Definition 12. [4] Let (Ω,A) be a measurable space, and let μ be a non-additive
measure on (Ω,A). Let (M,d) be a metric space, let S be a set of functions from
Ω into M and let F be a mapping from S × S into Δ+. Then, (S,F) is an
F-space with base (Ω,A, μ) and target (M,d) if

– For all p, q in S and all x in R
+ the set

{ω ∈ Ω|d(p(ω), q(ω)) < x}

belongs to A.
– For all p, q in S, F(p, q) = Fpq with

Fpq(x) = μ({ω ∈ Ω|d(p(ω), q(ω)) < x}). (2)

Definition 13. [2,3] When the measure μ is additive, Definition 12 corresponds
to E-spaces.

Lemma 1. [2,3] Let (S,F) be an F-space with base (Ω,A, μ) and target (M,d).
Then if μ is additive, it is an E-space .

If F satisfies the first three properties in Definition 11, then (S,F) is a canonical
F-space.

The following theorems have been proven in [4], which describe the type of
probabilistic metric space when a specific fuzzy measure is used

Theorem 1. [4] Let (Ω,A) be a measurable space, let μ be a non-additive
measure on (Ω,A) and (S,F) be an F-space with base (Ω,A, μ).

Then, if μ is a supermodular non-additive measure on (Ω,A), it follows that
(S,F) is a probabilistic pseudometric space under bounded difference τW .

Theorem 2. [4] Let (S,F) be an F-space. Let μA0 be a non-additive measure
defined on (Ω,A) for a given set A0 ⊆ A. Then (S,F) is a probabilistic pseudo-
metric space under τmin.

Next, we give an example to show how to construct an F-space.
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Example 1. Let Ω := {ω1, ω2, ω3}, and A := 2Ω . Then (Ω,A) is a measurable
space. Let M := [0,∞) and let d(a, b) := |a − b| for a, b ∈ M . Then, (M,d) is
a metric space. Define the functions p, q, r : Ω → M as given in Table 1. Then,
let S = {p, q, r} and define for p1, p2 ∈ S the following functions: Hp1p2(x) :=
{ω| |p1(ω) − p2(ω)| < x} for 0 ≤ x. Then we have the sets Hpq as given in
Table 2.

Now let us define a Sugeno λ-measure on (Ω,A) using Eq. 1 from Definition 3,
and solve the equation for λ = 0.4. Under the assumption that all the densities
are equal, we get v(ωi) = 0.296722. Therefore we construct the functions F as
described in Table 3.

Table 1. Functions p, q, and r from Ω := {ω1, ω2, ω3} into M for Example 1.

ω1 ω2 ω3

p 1 0 0

q 0 0 1

r 0 1 1

Table 2. Functions Hp1,p2 for p1, p2 ∈ S for Example 1.

x = 0 0 < x ≤ 1 x > 1

Hpq ∅ {ω2} Ω

Hpr ∅ ∅ Ω

Hqr ∅ {ω1, ω3} Ω

Table 3. Functions Fp1,p2 for p1, p2 ∈ S for Example 1.

x = 0 0 < x ≤ 1 x > 1

Fpq 0 0.296722 1

Fpr 0 0 1

Fqr 0 0.628662 1

If we choose the t-norm τ = W , then (S,F , τ) is a canonical space under W as
we can see that all inequalities hold in Definition 11.

4 Metrics for Machine Learning Models

In Machine Learning, data are continuously generated, hence models need to
be updated to reflect any new insights from the underlying data. However, it
has been shown [15] that an adversary can get access to sensitive information
by exploiting changes in the models themselves. One of the privacy models that
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overcome this issue is Integral Privacy [16]. Its goal is that model transformations
caused by the training data should not leak any information on the training data.
It recommends selecting a machine learning model which can be generated by
sufficiently large and diverse datasets. Such models are called recurrent models
and can be used to implement Integral privacy. Then, it may also happen that
even when two models are different they may be generated from similar data.

The similarity of models in terms of the data that generated them is relevant
for model selection. Between two such models we would prefer the one that is
more privacy-preserving. From an integral privacy perspective that would be
the one with more generators. Similarly, the same applies to the algorithms that
produce the models. As we have discussed in [12], probabilistic metric spaces
can be useful to define metrics for machine learning models, and thus helps in
this process.

In a previous work [5] we considered a simpler approach to construct PMS,
where we proposed the use of Markov chains, together with transition matrices
to represent, respectively, sequences of changes in databases and the probability
of changes of databases to define model similarities. In this paper, we are con-
sidering probabilities and fuzzy measures in the space of databases, in order to
define metrics on the models.

In this paper, we show how this can be applied to real machine learning
models. We consider simple machine learning models such as Linear Regres-
sion models. Our goal is to construct distances between such models taking
into account the interaction of their generators. We run the experiments on the
dataset Salary Data which describes the salaries of employees and their years
of experience. Figure 1 illustrates the scatter plot of this dataset [14]. In this
experiment, the space (Ω,A) corresponds to the space of possible databases and
A := 2Ω . Then, P and μ are probabilities and fuzzy measures, respectively, on
this space. In order to build the model space, we define the set S as the set of
three different linear regression algorithms p, q, and r defined as follows:

– Linear Regression as (p)
– Huber Regression as (q)
– Ridge Regression as (r)

Therefore, given our approximated database space (Ω,A) together with the set
S, we construct the target space (M,d) such that for any p ∈ S, p(DB) is
the trained model we obtain after applying one of the linear regression algo-
rithm p on the database DB. Since the problem is a simple linear regres-
sion, each model can be characterized by its slope β and y-intercept α. We
choose d here to be the Euclidean distance. Hence (M,d) = (R2, d) where
d =

√
(α1 − α2)2 + (β1 − β2)2, (αi, βi) ∈ R

2.
Finally, we identify F as a mapping from S × S into Δ+.
Following this setup, we illustrate our experiments to construct the space

(S,F) with respect to different measures and t-norms. Since it is impossible
to cover the full database space, we used the subsampling method to sample
1000 datasets in order to approximate the full space (Ω,A) [17]. We ran the
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Fig. 1. Scatter Plot of Salary Data dataset

Fig. 2. Three regression models of Salary Data dataset.

experiments under Python and Sklearn library, and the value of the penalty
term α in Ridge regression algorithm is chosen to be 0.1 (see Fig. 2).

We will consider in the next sections two different cases. First, an additive
measure. That is, a probability. This will permit us to obtain results that cor-
respond to an E-space. Then, we consider fuzzy measures, to obtain a proper
F-space. These measures permit us to represent a characteristic or property of
the space of databases. In our example, we will represent interactions between
databases which are all either positive or negative (as complementarity or redun-
dancy). We finish the section discussing the meaning of measures in this setting.

4.1 Case 1: Additive Measure

In this experiment, the database space is a probability space (Ω,A, P ) where P
is the additive measure defined by P (DB) = 1/1000 for any database (DB) in
the space. The model space is built as we described above. Figure 3 shows the
histograms of the distances among the three functions.

Now let us define the function Hp1p2 as follows: for any p1, p2 ∈ S and for
x ≥ 0,

Hp1,p2(x) = {DB| |p1(DB) − p2(DB)| < x}.
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Fig. 3. Histogram of the three different distances.

Let us define the function l(H) as the number of elements in H (i.e., the car-
dinality of the set). This function l(H) is given in Table 4. We will define the
probability P using l(H) and dividing by the total number of the generated
databases (i.e. 1000). This is detailed below.

Table 4. Functions l(Hp1p2)(x) for p1, p2 ∈ S.

x = 0 0 < x ≤ 500 x < 35000

l(Hpq) 0 475 1000

l(Hqr) 0 484 1000

l(Hpr) 0 968 1000

Now, using Eq. 2 and since P is additive, Fpq(x) = l(Hpq(x))
1000 . Functions F are

given in Table 5. Since F satisfies the first three properties in Definition 11, then
(S,F) is a canonical F-space.

Table 5. Functions Fp1,p2 for p1, p2 ∈ S based on additive measure P

x = 0 0 < x ≤ 500 x < 35000

Fpq 0 0.475 1

Fqr 0 0.484 1

Fpr 0 0.968 1

4.2 Case 2: Fuzzy Measures

In the following experiments, we use two different fuzzy measures. We start with
a Sugeno λ-measure (μ) followed by the fuzzy measure μA0 . We use Sugeno λ-
measures because they are easy to define and flexible enough to represent both
subadditive and superadditive cases. That is, negative and positive interactions.
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Table 6. Functions Fp1,p2 for p1, p2 ∈ S based on Sugeno λ-measure (λ = 0.5)

x = 0 0 < x ≤ 500 x < 35000

Fpq 0 0.424786 1

Fqr 0 0.43365 1

Fpr 0 0.961327 1

Table 7. Functions Fp1,p2 for p1, p2 ∈ S based on Sugeno λ-measure (λ = −0.96)

x = 0 0 < x ≤ 500 x < 35000

Fpq 0 0.815875 1

Fqr 0 0.822323 1

Fpr 0 0.995479 1

Sugeno λ-Measure. In this experiment, we use Sugeno λ-measure from Defi-
nition 3 to build the database space (Ω,A, μ). The construction of the databases
space, the Model Space M , and the set S is similar to the previous example.

For simplicity, all the singleton measures are assumed to be equal. I.e. v(xi) =
k, for all xi ∈ X. Therefore, solving Eq. 1 for k yields:

k =
1
λ

(exp(
1
n

ln(1 + λ) − 1) (3)

Suppose λ = 0.5, we use Eq. 3 to compute the values of the measure for the single-
tons. The functions F are derived for Table 4, and the results are given in Table 6.
Since the measure here is supermodular, the results are aligned with Theorem 1,
in which the space (S, F, τ) is a probabilistic pseudo metric space under bounded
difference τW . Figure 4(a) demonstrates the correctness of the triangular inequal-
ity of Definition 11. That is, in our case F(p, q) ≥ τ(F(p, r),F(q, r)) as the blue
line is larger than the orange one. Observe that in most of the domain both
distributions are the same.

The same steps are now repeated but with submodular measures. I.e., when
λ < 0 and also tested with respect to the t-norm τW . While some measures
resulted in probabilistic pseudo metric spaces, some measures yield probabilistic
semimetric spaces (i.e., triangle inequality does not hold). An example of the
latter case is when λ = −0.96. The results for this case are given by Table 7 and
Fig. 4(b). As we can see, in this case:

F(p, q) ≥ τ(F(p, r),F(q, r))
0.815 ≥ τ(0.822323, 0.995479)

0.815 ≥ max(0, 0.822323 + 0.995479 − 1) = 0.817.

Since 0.815 is not greater than 0.817, thus the inequality does not hold.

Fuzzy Measure μA0
. Our last experiment is based on the fuzzy measure μA0 ,

which is introduced in Definition 4. Let us define A0 as the set Hpq(x) for any
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x in the range 0 < x ≤ 500, then in this example the other two sets Hpr and
Hqr are incomparable with respect to inclusion of Hpq(x) i.e.: Hpr � Hpq and
Hqr � Hpq. The functions F are given in Table 8. It is clear that the space
(S,F) is a probabilistic pseudo metric space under τmin. Therefore, this result
is aligned with Theorem 2.

Fig. 4. Testing the triangle inequality with t-norm τW for λ = 0.5 and λ = −0.96 in
Case 2. We observe that the inequality holds when the λ = 0.5, and does not hold
when λ = −0.96.

Table 8. Functions Fp1,p2 for p1, p2 ∈ S based fuzzy measure μA0

x = 0 0 < x ≤ 500 x < 35000

Fpq 0 1 1

Fpr 0 0 1

Fqr 0 0 1

4.3 The Interpretation of the Fuzzy Measures

Fuzzy measures are set functions that use the monotonicity property instead
of additivity. Therefore, naturally, we would have that the larger the set of
databases, the larger the coverage. In our experiment, all the fuzzy measures are
defined on the space of the databases, where we considered either each database
has the same relevance with the probability P (DB) = 1/1000 (i.e. the measure is
additive), or all have the same interaction under the Sugeno λ-measure. Whereas,
in the fuzzy measure μA0 , the value of the measure is computed with respect
to the inclusion relationship of a reference set. Therefore the measure is either
zero or one. Fuzzy measures can alternatively be defined using the Choquet
integral or Sugeno integral, to define measures that represent the coverage with
a characteristic of the database itself [18].
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5 Conclusions

In this paper, we have constructed a probabilistic metric space to evaluate the
distance between machine learning models built from databases. The probabilis-
tic metric space is based on fuzzy measures and F-space in which the distance
distribution function is computed based on functions that map from the database
space to the model space. In our case, these functions were represented by dif-
ferent Linear Regression algorithms. Our experiment is based on different mea-
sures, both additives and non-additives. In future work, we consider studying
additional properties of these probabilistic metric spaces, as well as considering
their application in real-size databases. Also, since our experiments are based
only on deterministic functions, we would like to expand the study on random
functions and hence consider non-deterministic models.
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Abstract. Probabilistic metric spaces are natural extensions of metric
spaces, where the function that computes the distance outputs a distri-
bution on the real numbers rather than a single value. Such a function is
called a distribution function. F-spaces are constructions for probabilis-
tic metric spaces, where the distribution functions are built for functions
that map from a measurable space to a metric space.
In this paper, we propose an extension of F-spaces, called Generalized
F-space. This construction replaces the metric space with a probabilistic
metric space and uses fuzzy measures to evaluate sets of elements whose
distances are probability distributions. We present several results that
establish connections between the properties of the constructed space
and specific fuzzy measures under particular triangular norms. Further-
more, we demonstrate how the space can be applied in machine learning
to compute distances between different classifier models. Experimental
results based on Sugeno λ-measures are consistent with our theoretical
findings.

Keywords— Fuzzy measures; Probabilistic metric space

1 Introduction

Probabilistic metric spaces (PMS) are spaces where the distance between two
points is represented as a probability distribution instead of a single numeric
value, as in traditional metric spaces. This allows for a more flexible way to
model uncertainty and variability in distances. Probabilistic metric spaces ad-
here to a set of axioms that ensure the consistent construction of these proba-
bilistic distances. One key axiom is the triangle inequality, which has undergone
various developments [1–4], One of the main concepts used to ensure the triangle
inequality condition is that of triangular norms [9–11]. In the literature, there
are only a few well-established methods for constructing PMSs. Among them,
we find E-spaces [12, 13], where the PMS is constructed using sets of functions.
These functions map from a probability space (base) into a metric space (target),
and then distribution functions are defined in terms of measuring those elements
⋆ This study was partially funded by the Wallenberg AI, Autonomous Systems and

Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.
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whose distances do not exceed a certain threshold. In a previous work [14], we
introduced another construction called F-spaces, which replaces the probability
space with a measure space. As a result, the distribution functions are defined
using non-additive measures instead of probabilities. This enables us to consider
more complex interactions among the objects of the base space. In this paper, we
propose a generalization of the F-space construction, where we consider map-
pings from a measurable space to a probabilistic metric space. Therefore, we
require a fuzzy measure for the measurable space and distribution functions for
the target space. This construction enables the representation of complex in-
teractions among objects within the base space while accounting for scenarios
where the distance between elements is uncertain in the target space. We also
demonstrate several results linking the constructed space properties to specific
measures under certain triangular norms. We present our findings through an
application in machine learning, specifically in modeling similarities between
machine learning models by considering the set of databases that these models
generate. In this framework, the base space corresponds to the database space,
while the model space serves as the target space. As we will discuss later, this
approach has significant relevance for data privacy considerations.

The paper is organized as follows: Section 2 reviews previous definitions and
results, primarily related to fuzzy measures and triangular norms. Section 3 dis-
cusses key findings related to probabilistic metric spaces and highlights some of
their constructions. Section 4 presents our main contribution, including the def-
inition of generalized F-spaces followed by several theoretical results. Examples
and applications of our results are given in Section 5. Finally, in Section 6, the
paper concludes with some final remarks.

2 Preliminaries

In this section, we review some definitions and results related to fuzzy measures
and triangular norms.

2.1 Fuzzy Measures

Fuzzy measures, first introduced by Sugeno [16], are also known as capacities,
non-additive measures, and monotone measures. They generalize classical mea-
sures [17–19] by assigning values to subsets of a universal set to capture the
degree to which those subsets contribute to a certain property or concept.

Definition 1. Let (Ω,A) be a measurable space. A set function µ defined on A
is called a non-additive measure if and only if

– 0 ≤ µ(A) ≤ ∞ for any A ∈ A;
– µ(∅) = 0;
– If A1 ⊆ A2 ⊆ A then

µ(A1) ≤ µ(A2)
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If, in addition, µ(A) = 1, then the fuzzy measure is said to be normalized. We
consider finite sets Ω, and for simplicity we assume A = 2Ω . Fuzzy measures
exhibit certain properties that demonstrate how elements and subsets within a
set interact and contribute to the overall measure. Below are some of the key
properties.

Definition 2. Let µ be a non-additive measure on the measurable space (X,A).
Then,

– µ is additive if µ(A ∪B) = µ(A) + µ(B) when A ∩B = ∅;
– µ is superadditive if µ(A ∪B) ≥ µ(A) + µ(B) when A ∩B = ∅;
– µ is subadditive if µ(A ∪B) ≤ µ(A) + µ(B) when A ∩B = ∅;
– µ is submodular if µ(A) + µ(B) ≥ µ(A ∪B) + µ(A ∩B);
– µ is supermodular if µ(A) + µ(B) ≤ µ(A ∪B) + µ(A ∩B);
– µ is symmetric if for finite X, when |A| = |B|, then µ(A) = µ(B).

A supermodular measure indicates superadditivity, while a submodular measure
suggests subadditivity. When fuzzy measures are additive and normalized, they
become equivalent to probability measures.

Next, we introduce different types of fuzzy measures. The Sugeno λ-measure
is characterized by a parameter λ that determines how subsets of the set interact.

Definition 3. Let Ω be a finite set and let λ > −1. A Sugeno λ-measure is a
function µ : 2Ω → [0, 1] such that:

– µ(Ω) = 1
– if A,B ⊆ X with A ∩B = ∅ then

µ(A ∪B) = µ(A) + µ(B) + λµ(A)µ(B)

For Sugeno λ-measures, as a convention, the measure of the singletons ωi ∈ Ω is
called a density and is denoted by v(ωi). In this case, as the measure is normalized
when Ω = {ω1, ω2, ..., ωn}, λ should satisfy the following:

λ+ 1 =

n∏

i=1

(1 + λv(ωi)). (1)

If the densities are known, the above polynomial can be used to uniquely deter-
mine the value of λ. Then given the densities and λ, the fuzzy measure µ(A) is
defined as :

µ(A) =





v(xi), A = {xi}
1
λ

∏

xi∈A

(1 + λv(xi))− 1, |A| ≠ 1 & λ ̸= 0

∑

xi∈A

v(xi), |A| ≠ 1 & λ = 0





– If λ > 0, the measure exhibits superadditivity, meaning the combined effect
of the subsets is greater than the sum of their individual effects.
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– If λ < 0, the measure exhibits subadditivity, where the combined effect is
less than the sum.

– If λ = 0, the measure behaves additively, similar to a probability measure.

Definition 4. Given the reference set Ω, a fuzzy measure such that µ(A) < 1
for all A ⊂ Ω and A ̸= Ω is called a 1−-measure.

Definition 5. Let A0 be a subset of Ω, then the set function defined by µA0(A) =
1 if and only if A0 ⊆ A, is a non-additive measure.

In the fuzzy measure µA0 , the reference set A0 represents a baseline for the
measure, and the value of the measure is computed with respect to the inclusion
relationship with this reference set.

2.2 Triangular Norms

Triangular norms (t-norms) are binary operations that generalize the logical
conjunction (AND operation) [10, 11]. They are used primarily in the context
of fuzzy logic, probabilistic metric spaces, and fuzzy set theory.

Definition 6. A function ⊤ : [0, 1] × [0, 1] → [0, 1] is a triangular norm if and
only if it satisfies the following properties:

– ⊤(x, y) = ⊤(y, x) (symmetry or commutativity)
– ⊤(⊤(x, y), z) = ⊤(x,⊤(y, z)) (associativity)
– ⊤(x, y) ≤ ⊤(x′, y′) if x ≤ x′ and y ≤ y′ (monotonicity)
– ⊤(x, 1) = x for all x (neutral element 1)

Definition 7. A t-norm T1 is stronger than a t-norm T2, if

T1(x, y) ≥ T2(x, y) ∀(x, y) ∈ [0, 1]× [0, 1].

If T1 is stronger than T2, we write T1 ≥ T2.

Definition 8. A t-norm T is strict if it is continuous on [0, 1]×[0, 1] and strictly
increasing in each argument on (0, 1]2.

Examples of t-norms are the Minimum, T (x, y) = min(x, y) denoted by Min,
the algebraic product T (x, y) = x.y denoted by Π, and the Bounded Difference
T (x, y) = max(0, x+y−1) denoted by W , also known as the Lukasiewicz t-norm.

The order of the above t-norms is as follows: W < Π < Min.

3 Probabilistic Metric Spaces

Probabilistic metric spaces extend the classical concept of a metric space by
replacing the standard distance function with a distance distribution function.
In these spaces, the distance between two elements is not expressed as a single
number, but as a distribution over possible distances. Probabilistic metric spaces
were first introduced by K. Menger in 1942 [1] and were further developed by
him in the early 1950s [5, 6]. B. Schweizer and A. Sklar [7] expanded the study
of these spaces, contributing significantly to the development of the theory. In
this section, we review the concepts related to probabilistic metric spaces.

117



Generalized F-Spaces Through the Lens of Fuzzy Measures 5

3.1 Metric Spaces

A metric space is an ordered pair (S, d), where S is an abstract set and d is a
mapping of S × S into the real numbers [21].

Definition 9. Let d : S × S → R+. Then d is called a metric on S if the
following properties hold for a, b, c ∈ S:

(i) d(a, b) ≥ 0 with equality if and only if a = b (positive property),
(ii) d(a, b) = d(b, a) (symmetry property), and
(iii) d(a, b) ≤ d(a, c) + d(c, b) (triangle inequality property).

When the distance function does not satisfy the symmetry condition, the space
(S, d) is called a quasimetric space. If the distance function does not fulfill the
triangle inequality, the space (S, d) is identified as a semimetric space.

Definition 10. [7] (Def.4.1.1) A distribution function, is a non-decreasing
function F defined on R, with F (−∞) = 0, and F (+∞) = 1. If F is defined on
R+, and it satisfies (i) F (0) = 0; (ii) F (∞) = 1, and (iii) it is left-continuous
on (0,∞), then F is a distance distribution function.

The set of all distance distribution functions is denoted by ∆+. Distribution
functions are usually linked to probabilities, where F (x) is understood as the
probability that the distance is less than or equal to x. Any classical distance
a can be represented in terms of a distance distribution function using the unit
step function ϵa as follows.

Definition 11. [7] (Def. 4.1.4) For any a in R+, we define the unit step func-
tion ϵa ∈ ∆+ by:

ϵa(t) =

{
0, 0 ≤ t ≤ a
1, a < t ≤ ∞

This implies ϵa ≤ ϵb if and only if b ≤ a. Triangle functions and Triangular
norms play a crucial role in defining PMS; they generalize the triangle inequality
in metric spaces.

Definition 12. [7] (Def.7.1.1) A Triangle function T is binary operation on
∆+ that, for any F,G,H,K ∈ ∆+, it satisfies the following:

(i) T (F, ϵ0) = F ,
(ii) T (F,G) = T (G,F ),
(iii) T (F,G) ≤ T (H,K) whenever F ≤ H,G ≤ K,
(iv) T (T (F,G), H) = T (F, T (G,H)).

Definition 13. A triangle function T1 is stronger than a triangle function T2

(this is denoted T2 ≤ T1), if for all F,G ∈ ∆+, and all x ∈ R+, T2(F,G)(x) ≤
T1(F,G)(x).

We define the set of all binary operations that are non-decreasing as J , and the
set of all binary operations on R+ which are non-decreasing, continuous, and
with range R+ as L. Next, we define one family of triangle functions that are
built from a t-norm.
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Definition 14. [7] (Def.7.1.2) Let T be a left-continuous t-norm, then the func-
tion T: ∆+ × ∆+ → ∆+ defined by Tτ (F,G)(x) = T (F (x), G(x)) is a triangle
function.

Definition 15. [7] (Def.7.2.1) For any T in J , and L in L, τT,L is the function
on ∆+ ×∆+ which is defined by: τT,L = sup{T (F (u), G(v))|L(u, v) = x}

If L = Sum, then we drop L in τT,L and simply write τT . Below, we give an
example of a triangle function that is built from a triangular norm.

Example 1. The maximal triangle function is TM (F,G)(x) = min(F (x), G(x)).
For any triangle function T we have:

T (F,G) ≤ T (F, ϵ0) = F,

T (F,G) ≤ T (G, ϵ0) = G,

Hence,
T (F,G)(x) ≤ min(F (x), G(x)) = TM (F,G)(x).

We are now in conditions to define probabilistic metric space.

Definition 16. [7] (Def.8.1.1) Let (S,F , τ) be a triple where S is a nonempty
set, F is a function from S × S into ∆+, and τ is a triangle function; then
(S,F , τ) is a probabilistic metric space (PM space) if the following conditions
are satisfied for all p, q, and r in S:

(i) F(p, p) = ϵ0
(ii) F(p, q) ̸= ϵ0 if p ̸= q
(iii) F(p, q) = F(q, p)
(iv) F(p, r) ≥ τ(F(p, q),F(q, r)).

Given a probabilistic metric space (S,F , τ), we say that (S,F) is a proba-
bilistic metric space under τ .

A probabilistic pseudometric space (PPM space) (S,F , τ) is defined as above
but does not require condition (ii). When all conditions above apply except
condition (iv), we have a probabilistic semimetric space. When all conditions
apply except condition (iii), we have a probabilistic quasimetric space.

We shall denote the distribution function F(p, q) by Fpq, therefore Fpq(x) is
read as the probability that the distance between p and q is less than x. One of
the classifications of probabilistic metric space is based on the properties of the
triangle function τ .

Definition 17. [7] (Definition 8.1.4) Let (S,F , τ) be a probabilistic metric
space. Then (S,F , τ) is proper if

τ(ϵa, ϵb) ≥ ϵa+b

for all a, b in R+.
If τ = τ⊤ for some t-norm ⊤, then (S,F , τ) is a Menger space, or equivalently

(S,F) is a Menger space under ⊤.

Theorem 1. [7] (Theorem 8.1.5) If (S, F, τT,L) is a probabilistic metric space,
T is t-norm, L is monotonic, where L ≤ Sum, then (S, F, τT,L) is proper.
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3.2 Constructions of Probabilistic Metric Spaces

One of the constructions that can lead to a probabilistic metric space is the
E-space, which was first introduced by [12, 13]. E-spaces allow us to compute
the distance between functions that map from a probability space to a metric
space, where the distance is defined in terms of measuring those elements that
are at most at distance x, using a probability measure. In a previous study [14],
we introduced another construction, which we call F-space, which permits us to
consider more complex interactions using fuzzy measures. We also proved several
results that link the type of norms with the properties of the constructed space.

Definition 18. [14] Let (Ω,A) be a measurable space, and let µ be a non-
additive measure on (Ω,A). Let (M,d) be a metric space, let S be a set of
functions from Ω into M and let F be a mapping from S × S into ∆+. Then,
(S,F) is an F-space with base (Ω,A, µ) and target (M,d) if

– (i) For all p, q ∈ S and all x ∈ R+ the set

{ω ∈ Ω | d(p(ω), q(ω)) < x}

belongs to A.
– (ii) For all p, q in S, F(p, q) = Fpq with

Fµ
pq(x) = µ({ω ∈ Ω|d(p(ω), q(ω)) < x}). (2)

Theorem 2. [14] Let (Ω,A) be a measurable space, let µ be a non-additive
measure on (Ω,A) and (S,F) be an F-space with base (Ω,A, µ).

Then, if µ is a supermodular non-additive measure on (Ω,A), it follows that
(S,F) is a probabilistic pseudometric space under the bounded difference τW .

4 Generalized F-spaces and Main Results

A natural extension of F-spaces is to generalize the target spaces, allowing for
functions that map from a measurable space to a probabilistic metric space. We
call this construction a Generalized F-space. An illustration of this space is given
in Figure 1. This concept is introduced in the following definition.

Definition 19. Let (Ω,A) be a measurable space, and let µ be a non-additive
measure on (Ω,A). Let (M, d̃, τ) be a probabilistic metric space where d̃ is a
mapping from M ×M into ∆+, and τ is a triangle function. Let S be a set of
functions from Ω into M and let F be a mapping from S × S into ∆+. Then,
(S,F) is an F-space with base (Ω,A, µ) and target (M, d̃) if

– (i) For all p, q ∈ S and all x ∈ R+ the set

{ω ∈ Ω | d̃(p(ω), q(ω)) > ϵx}

belongs to A.
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(Ω,A)

(M, d̃, τ)

q : Ω ⇒ M

p : Ω ⇒ M

Fig. 1: Generalized F-Space Representation with the measurable space (Ω,A)
and the probabilistic metric space (M, d̃, τ).

– (ii) For all p, q in S, F(p, q) = Fpq with

Fµ
pq(x) = µ({ω ∈ Ω | d̃(p(ω), q(ω)) > ϵx}) (3)

We can prove the following.

Theorem 3. Let (Ω,A) be a measurable space, let (M, d̃, τ) be a proper PMS.
Let µ be a non-additive measure on (Ω,A) and (S,F) be an F-space with base
(Ω,A, µ) and target (M, d̃, τ) according to Definition 19.

Then, if µ is a supermodular non-additive measure on (Ω,A), it follows that
(S,F) is a probabilistic pseudometric space under bounded difference τW .

Proof. We first prove that Fµ
pq as defined in Equation 3 satisfies Property (i) in

Definition 16. Observe that if p = q then p(w) = q(w) for all w ∈ Ω. Therefore,
d̃(p(w), q(w)) = ϵ0 for all w in Ω and Ω = {ω ∈ Ω|d̃(p(ω), q(ω)) > ϵx} for all
x > 0 because ϵ0 > ϵx. Since µ(Ω) = 1, it follows that Fµ

pq(x) = 1 for all x > 0.
If x = 0, then ∅ = {ω ∈ Ω | d̃(p(ω), q(ω)) > ϵx} and Fµ

pq(0) = 0. Therefore,
Fµ
pq = ϵ0 and the Property is proven.

The proof that Fµ
pq satisfies Property (iii) is trivial. The symmetry of d̃ nat-

urally implies the symmetry of Fµ
pq.

We now prove that Fµ
pq satisfies Property (iv). Let us consider any x in R+.

Then, consider u and v such that u+ v = x and define the following sets:

– A = {w ∈ Ω | d̃(p(w), q(w)) > ϵu},
– B = {w ∈ Ω | d̃(q(w), r(w)) > ϵv}, and
– C = {w ∈ Ω | d̃(p(w), r(w)) > ϵx}.

We know that d̃ satisfies the triangle inequality.
Therefore, C ⊇ A∩B because if for a w, that it holds d̃(p(w), q(w)) = u0 > ϵu

(i.e., w ∈ A) and d̃(q(w), r(w)) = v0 > ϵv (i.e., w ∈ B). Since x = u + v and τ
is proper, then ϵx = ϵu+v ≤ τ(ϵu, ϵv). Then, from property (iii) in Definition 12
we know τ(u0, v0) > τ(ϵu, ϵv). Therefore, ϵx = ϵu+v ≤ τ(ϵu, ϵv) < τ(u0, v0).
In addition, we also know from triangle inequality in Definition 16 that
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τ(u0, v0) = τ(d̃(p(w), q(w)), d̃(q(w), r(w))) ≤ d̃(p(w), r(w)).

Therefore ϵx < d̃(p(w), r(w)), thus w ∈ C. So, we have proven C ⊇ A ∩B.
Now, as C ⊇ A ∩B, by the monotonicity condition of µ, we have

µ(C) ≥ µ(A ∩B)

and by supermodularity

µ(A ∩B) ≥ µ(A) + µ(B)− µ(A ∪B).

As 1 = µ(Ω) ≥ µ(A ∪B), we have that

µ(A ∩B) ≥ µ(A) + µ(B)− µ(A ∪B) ≥ µ(A) + µ(B)− 1,

and naturally µ(A ∩B) ≥ 0. Therefore,

µ(C) ≥ µ(A ∩B) ≥ max(µ(A) + µ(B)− 1, 0) = W (µ(A), µ(B)). (4)

Let us consider the expressions for Fµ
pq(u), Fµ

qr(v), and Fµ
pr(x) according to

Equation 3 and the sets µ(A), µ(B), and µ(C) as defined above. Then, we have
that Equation 4 implies for every x = u+ v

Fµ
pr(x) ≥ W (Fµ

pq(u), F
µ
qr(v)).

Therefore,

Fµ
pr(x) ≥ sup{W (Fµ

pq(u), F
µ
qr(v))|u+ v = x} = τW (Fµ

pq, F
µ
qr)(x), (5)

and Property (iv) holds with τW .
As Properties (i), (iii), and (iv) hold, the theorem is proven. ⊓⊔

Theorem 4. Let (S,F) be a probabilistic pseudo metric space with base (Ω,A)
and target (M, d̃, τ). If F is a canonical F-space (i.e., F satisfies property (ii)
in Definition 16), then it is a proper Menger space under W.

Proof. If (S,F) is a canonical F-space, this means that all the properties in
Definition 16 are satisfied. Then, it is a probabilistic metric space.

From Definition 15 for a t-norm T and L as the sum function we have

τ⊤(ϵa, ϵb)(x) = sup{⊤(ϵa(u), ϵb(v)) | u+ v = x}

and, therefore,
τT (ϵa, ϵb) = ϵa+b.

So, Equation 5 implies that (S,F , τ) is proper, and as we are using t-norm
W , (S,F) is a Menger space under ⊤. ⊓⊔

Theorem 5. Let (S,F) be an F-space with base (Ω,A) and target (M, d̃, τ). Let
µ be a 1−-measure on (Ω,A). Then (S,F) is a probabilistic pseudometric space
under τ⊤d

.
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Proof. The proof of this theorem follows the proof of Theorem 3. In particular,
conditions 1 and 3 are proven in the same way.

Then, we define the sets A, B, and C in the same way as we defined them
in Theorem 3. We have, therefore C ⊇ A∩B. By the monotonicity condition, it
follows that µ(C) ≥ µ(A ∩B).

Now, let us consider the following case: A ̸= Ω and B ̸= Ω. We can prove
that ⊤d(µ(A), µ(B)) = 0 because both µ(A) < 1 and µ(B) < 1. Therefore, it is
clear that µ(A ∩B) ≥ ⊤d(µ(A), µ(B)) = 0.

Another case is when A = Ω. Then, A ∩ B = B. Therefore µ(A ∩ B) =
µ(B) = ⊤d(µ(A), µ(B)) = ⊤d(1, µ(B)) = µ(B).

Finally, we have the case in which B = Ω, which is analogous to the previous
one and we can also prove µ(A ∩B) = ⊤d(µ(A), µ(B)).

Therefore, we have that

µ(C) ≥ µ(A ∩B) ≥ ⊤d(µ(A), µ(B)),

and we can proceed as we did in Theorem 3 defining Fµ
pq(u), Fµ

qr(v), and Fµ
pr(x),

and obtain the equation:

Fµ
pr(x) ≥ ⊤d(F

µ
pq(u), F

µ
qr(v)).

From this equation, we prove that

Fµ
pr(x) ≥ sup{⊤d(F

µ
pq(u), F

µ
qr(v)) | u+ v = x}

= τ⊤d
(Fµ

pq, F
µ
qr)(x),

holds for τ⊤d
. Therefore, the theorem is proven. ⊓⊔

We prove the following theorem that considers non-additive measures µA0

introduced in Definition 5.

Theorem 6. Let (S,F) be an F-space with base (Ω,A) and target (M, d̃, τ). Let
µA0

be a non-additive measure defined on (Ω,A) for a given set A0 ⊆ A. Then
(S,F) is a probabilistic pseudometric space under τmin.

Proof. The proof of this theorem also follows the proof of Theorem 3. So, we
focus on the proof of property (iv). We also consider A, B, and C as above and
that µA0

(C) ≥ µA0
(A ∩B) due to the monotonicity of µ.

As µA0
(A) = 1 if and only if A ⊇ A0, it is easy to prove that when A1 and

A2 are such that µA0(A1 ∩ A2) = 1 it means that A1 ∩ A2 ⊇ A0 and therefore
both A1 ⊇ A0 and A2 ⊇ A0. Therefore,

µA0(A1 ∩A2) = 1 = min(µA0(A1), µA0(A2)) = min(1, 1) = 1.

Then, if µA0(A1 ∩ A2) = 0 this means that A1 ∩ A2 does not include A0.
Therefore, it is not possible that both A1 and A2 include A0. At most one of
them can include A0. This means that either µA0

(A1) = 0 or µA0
(A1) = 0. Thus,

µA0
(A1 ∩A2) = 0 = min(µA0

(A1), µA0
(A2)) = 0.
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In a way analogous to previous proofs, we obtain that

Fµ
pr(x) ≥ sup{min(Fµ

pq(u), F
µ
qr(v)) | u+ v = x} = τmin(F

µ
pq, F

µ
qr)(x),

which holds for τmin. Therefore, the theorem is proven. ⊓⊔

5 Example and Application in Machine Learning

In this section, we illustrate our results with a toy example first, then it follows
an application in Machine Learning.

Example 2. Let the measurable space (Ω,A) be represented by Ω = {w1, w2, w3},
and A := 2Ω . Let M = {1, 2, 4, 6}, and for any a, b ∈ M , and assume the dis-
tance distribution functions d̃(a, b) are defined as shown in Figure 2.
Then, choosing the proper t-norm τmin, the target space can be constructed as
(M, d̃, τmin). Suppose S = {p, q, s} are the functions that map from the measur-
able space Ω to the target space M as defined in Table 1.

Table 1: Functions p, q and s mapping from Ω := {ω1, ω2, ω3} into M .

ω1 ω2 ω3

p 4 6 2

q 2 1 4

s 1 4 6

4 2

1 6

ϵ2

ϵ
4

ϵ4

ϵ
2

ϵ
4ϵ1

Fig. 2: Distance Distribution functions between elements in M

Therefore for any p, q ∈ S, the distribution function is defined as

Fµ
pq(x) = µ({ωi ∈ Ω|d̃(p(ωi), q(ωi)) > ϵx})

Let Hpq be a set function defined as Hpq(x) = ({ω ∈ Ω|d̃(p(ω), q(ω)) > ϵx}),
the values of this function are given in Table 2.
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Table 2: Functions Hp,q for p, q ∈ S.

0 ≤ x < 3 3 ≤ x < 5 x ≥ 5

Hpq ∅ {ω1, ω3} Ω

Hqs ω1 {ω1, ω2} Ω

Hps ∅ ω1 Ω

Now, let us define Sugeno λ-measures µ on the space (Ω,A) according to
Definition 3, and solve Equation 1 when the measures for the singletons are
equal (i.e., µ({wi}) = k). This yields:

k =
1

λ
(exp(

1

n
ln(1 + λ)− 1) (6)

For λ = 0.5, we get µ({wi}) = 0.289428, and thus µ({w1, w2}) = µ({w1, w3}) =
0.620740. Then, using Equation 3 the distribution functions Fp,q, for any p, q ∈ S,
are constructed as in Table 3.

Table 3: Functions Fp,q for p, q ∈ S.

0 ≤ x < 3 3 ≤ x < 5 x ≥ 5

Fpq 0 0.620740 1

Fqs 0.289428 0.620740 1

Fps 0 0.289428 1

If we choose the t-norm τ = W , then we can see that all inequalities hold for
the space (S, F, τ), therefore the results are aligned with Theorem 3. Now, let us
choose the non-additive measure µA0

, which is introduced in Definition 5. Let us
define the sets A0, and A1 as follows: A0 = {w1}, A1 = {w1, w3}. Then, for the
non-additive measures µA0

, and µA1
, the functions F are given in Table 4 and

Table 5 respectively. In both cases, it is clear that the resulting space (S,F) is
a probabilistic pseudometric space under τmin. Therefore, this result is aligned
with Theorem 6.

Table 4: Functions Fp1,p2
for p1, p2 ∈ S based on fuzzy measure µA0

0 ≤ x < 3 3 ≤ x < 5 x ≥ 5

Fpq 0 1 1

Fqs 1 1 1

Fps 0 1 1
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Table 5: Functions Fp1,p2 for p1, p2 ∈ S based on fuzzy measure µA1

0 ≤ x < 3 3 ≤ x < 5 x ≥ 5

Fpq 0 1 1

Fqs 0 0 1

Fps 0 0 1

5.1 Application in Machine Learning

Over the past decade, Machine Learning (ML) has advanced significantly. Models
now require constant updates as data evolves. However, adversaries can exploit
these updates to extract sensitive information from models [24]. Data privacy [23]
is the field that studies how to prevent the disclosure of sensitive information.
Integral Privacy [26, 27] addresses this by ensuring that model transformations
during training do not leak information about the model changes or the training
data. This approach involves using recurrent models, which are generated from
combinations of datasets rather than a single dataset. Therefore, to understand
the privacy implications of these models, it is essential to study the relation-
ship between databases and models. Probabilistic metric spaces provide a useful
framework for defining metrics in ML [22, 15]. As previously discussed, our focus
is on estimating model similarities and defining a distance between models based
on their generators. Our approach computes the distance distribution function
by representing the database as a measurable space and the model space as a
probabilistic metric space. This allows us to account for uncertainties and varia-
tions in model performance across different datasets, parameters, and sampling
strategies. For example, model performance may fluctuate due to data shifts,
noise, or randomness during training. By representing distances probabilisti-
cally, we capture these variations, offering a more reliable comparison between
models under diverse conditions.

To demonstrate our results in machine learning, we formulate the problem
as follows: the measurable space (Ω,A) corresponds to the space of possible
databases, and µ is a non-additive measure on this space. In addition, the target
space (M, d̃, τ) represents the model space, where M is a set of machine learning
models {m1,m2, ...,mn}. Then, the functions in S represent algorithms that
build a machine learning model in M from a database in Ω. In our case S =
{q1, q2, q3} represents three different classification algorithms that map from the
database space into the model space. Therefore, qi(wi) = mi, means that mi

is the resulting models after applying the algorithm qi on database wi. In this
experiment the following algorithms are used to represent S:

– Logistic Regression (p).
– Random Forest (q).
– Support Vector Machines (r).

We conducted the experiment on the well-known Iris dataset, this dataset con-
sists of 150 samples of Iris flowers from three different species. The database space
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Fig. 3: Distribution functions for each pair of models for Sample 1.

was approximated with 1000 different samples. This means we had 1000 datasets
in Ω. Models in the target space are represented by their 10-fold cross-validation
accuracy vector of the dataset. Distribution functions d̃ are the empirical cumu-
lative distribution functions of the differences between pairs of models, i.e. if the
difference between a pair of models is denoted by D = (d1, d2, ..., dn), then:

d̃(p(w), q(w))(x) = ( 1n )
∑n

i=1 1{di ≤ x}

Where 1 is an indicator function that equals 1 if the condition di ≤ x is true,
and 0 otherwise. The distances are built under the Lukasiewicz t-norm. Figure 3
illustrates the distribution functions for the first sample.

The aim, therefore, is to build the space (S, F ) where F are the distance
distribution functions between any two algorithms in the set S, these distances
are evaluated by measuring those elements in the database space for which their
distance is greater than ϵx, in the model space. We illustrate the experiment
with two different non-additive measures, mainly, the Sugeno λ-measure, and
the measure µA0 .

Sugeno λ-measure.
We define Sugeno λ-measure from Definition 3 to build the measure on the
database space (Ω,A, µ). For simplicity, all the singleton measures are assumed
to be equal. i.e. v(xi) = k, for all xi ∈ X. We can therefore use Equation 6 to com-
pute the measure values for the singletons. Now let us define the function Hq1,q2

as follows: for any q1, q2 ∈ S and for x ≥ 0, Hq1,q2(x) = {DB | d̃(q1(DB), q2(DB)| >
ϵx}. Let us define the function l(H) as the number of elements in H (i.e., the
cardinality of the set). This function l(H) is given in Table 6.
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Table 6: Functions l(Hq1q2)(x) for q1, q2 ∈ S.

x=0 0 < x ≤ 0.1 0.1 < x ≤ 0.117 x > 0.117

l(Hpq) 0 671 825 1000
l(Hqr) 0 557 760 1000
l(Hpr) 0 786 901 1000

Let us consider λ = 0.6. By applying Equation 6, we find µ({wi}) = 0.000783.
The measure µ and the results in Table 6 allow us to build the functions F ,
which are presented in Table 7. The distribution functions are visualized in
Figure 4. Given that the measure is supermodular, the findings are consistent
with Theorem 3, which states that the resulting space (S, F, τ) is a probabilistic
pseudometric space under the t-norm τW . Figure 5 illustrates the validity of
the triangular inequality from Definition 16. That is, in our case, F(p, r) ≥
τ(F(p, q),F(q, r)). As we can see in this example, the distribution Fpr (blue line)
is noticeably larger than the other distribution (orange line), which is obtained
from combining Fpq and Fqr using Lukasiewicz t-norm τW .

0.00 0.02 0.04 0.06 0.08 0.10 0.12
x

0.0

0.2

0.4

0.6

0.8

1.0 Fpq

Fqr

Fpr

Fig. 4: Distribution functions F for the space (S, F, τw).

Fuzzy Measure µA0 .
We use the fuzzy measure µA0 introduced in Definition 5. Suppose A0 = Hq,r(x)
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Fig. 5: Validation of Triangle Inequality under t-norm τW

Table 7: Functions Fp1,p2 for p1, p2 ∈ S based on Sugeno λ-measure (λ = 0.6)

x=0 0 < x ≤ 0.1 0.1 < x ≤ 0.117 x > 0.117

Fpq 0 0.617 0.789 1
Fqr 0 0.498 0.715 1
Fpr 0 0.744 0.878 1

for x ∈ (0, 0.1]. Then, the only sets which include A0 are Hq,r for x ∈ (0.1, 0.117],
and Hq,r, x > 0.117. The other sets are incomparable under the same domain.
Because of this, we obtain the distribution functions Fp,q, Fq,r, and Fp,r as shown
in Table 8. We can see in this table the space (S, F ) is a probabilistic pseudo-
metric space under τmin, which is consistent with Theorem 6.

Table 8: Functions Fq1,q2 for q1, q2 ∈ S based on Fuzzy measure µA0

x=0 0 < x ≤ 0.1 0.1 < x ≤ 0.117 x > 0.117

Fpq 0 0 0 1
Fqr 0 1 1 1
Fpr 0 0 0 1
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6 Conclusion

In this paper, we proposed Generalized F-space, a construction of probabilistic
metric spaces characterized by a set of functions S, and distance distribution
functions F based on a non-additive measure µ. This approach extends the
traditional F-space by broadening the target space from a conventional metric
space to a probabilistic metric space. This generalization not only accounts for
potential dependencies among objects in the target space but also incorporates
uncertainty when measuring distances within the target space.

We have provided several results demonstrating links between the type of the
space and the properties of the fuzzy measure. We illustrated how these results
can be utilized in the domain of Machine learning. Specifically, we constructed
a database space based on Iris dataset and modeled the set function S with
three different classification algorithms. The distances in the model space were
defined based on their performance differences, and the resulting Generalized
F-space was built under two distinct fuzzy measures: The Sugeno λ measure,
which captures similar interactions within the database, and the non-additive
measure µA0 , which depends on the inclusion relationships of a reference set.
The experimental results confirmed the consistency of our theoretical findings. In
future work, we aim to extend this work to larger datasets and further investigate
the properties of the space. A particular focus will be placed on addressing the
challenges of model selection and exploring recurrent models in settings where
the database space is anonymized.
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