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Abstract

Federated Learning (FL) is a distributed machine learning paradigm that en-
ables the training of models across numerous clients or organizations without
requiring the transfer of local data. This method addresses concerns about data
privacy and ownership by keeping raw data on the client itself and only sharing
model updates with a central server. Despite its benefits, federated learning
faces unique challenges, such as data heterogeneity, computation and commu-
nication overheads, and the need for personalized models. Thereby results in
reduced model performance, lower efficiency, and longer training times.

This thesis investigates these issues from theoretical, empirical, and prac-
tical application perspectives with four-fold contributions, such as federated
feature selection, adaptive client selection, model personalization, and socio-
cognitive applications. Firstly, we addressed the data heterogeneity problems
for federated feature selection in horizontal FL by developing algorithms based
on mutual information and multi-objective optimization. Secondly, we tackled
system heterogeneity issues that involved variations in computation, storage,
and communication capabilities among clients. We proposed a solution that
ranks clients with multi-objective optimization for efficient, fair, and adaptive
participation in model training. Thirdly, we addressed the issue of client drift
caused by data heterogeneity in hierarchical federated learning with a person-
alized federated learning approach. Lastly, we focused on two key applications
that benefit from the FL framework but suffer from data heterogeneity issues.
The first application attempts to predict the level of autobiographic memory
recall of events associated with the lifelog image by developing clustered per-
sonalized FL algorithms, which help in selecting effective lifelog image cues
for cognitive interventions for the clients. The second application is the de-
velopment of a personal image privacy advisor for each client. Along with
data heterogeneity, the privacy advisor faces data scarcity issues. We devel-
oped a daisy chain-enabled clustered personalized FL algorithm, which predicts
whether an image should be shared, kept private, or recommended for sharing
by a third party.

Our findings reveal that the proposed methods significantly outperformed
the current state-of-the-art FL algorithms. Our methods deliver superior per-
formance, earlier convergence, and training efficiency.
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Sammanfattning

Federerat lärande (FL) är en distribuerad maskininlärningsparadigm som möjlig-
gör träning av modeller ute hos kunder eller organisationer utan att överföring
av lokala data krävs. Metoden behandlar farhågor om datasekretess och ägande
genom att behålla rådata på klienten och endast dela modelluppdateringar
med en central server. Trots dess fördelar står federerat lärande inför unika
utmaningar, såsom dataheterogenitet, beräknings- och kommunikationskost-
nader samt ett behov av personliga modeller. Detta resulterar i försämrad
modellprestanda, lägre effektivitet och längre träningstider.

Den här avhandlingen undersöker dessa frågor ur teoretiska, empiriska och
praktiska tillämpningsperspektiv genom fyra olika bidrag, såsom federerat funk-
tionsval, adaptivt klientval, modellpersonalisering samt sociokognitiva tillämp-
ningar. För det första tog vi itu med dataheterogenitetsproblemen för fed-
ererat funktionsval i horisontellt FL genom att utveckla algoritmer baserade
på ömsesidig information och multiobjektivsoptimering. För det andra tack-
lade vi systemheterogenitetsproblem som involverade variationer i beräknings-,
lagrings- och kommunikationsmöjligheter mellan klienter. Vi föreslog en lös-
ning som rankar klienterna med multiobjektivsoptimering för effektivt, rättvist
och adaptivt deltagande i modellträningen. För det tredje behandlade vi frå-
gan om klientdrift orsakad av dataheterogenitet i hierarkiskt federerat lärande
där personligt federerat lärande tillämpats. Till sist fokuserade vi på två ny-
ckelapplikationer som drar nytta av FL-ramverket men som lider av problem
med dataheterogenitet. Den första applikationen försöker förutsäga nivån på
självbiografiskt återkallande av händelser som är associerade med livsloggs-
bilden genom att utveckla klustrade personliga FL-algoritmer, som hjälper till
att välja ut effektiva livsloggsbilder för kognitiva ingrepp för klienterna. Den
andra applikationen är utvecklingen av en personlig bildintegritetsrådgivare för
varje klient. Tillsammans med dataheterogenitet, står integritetsrådgivaren in-
för problem med databrist. Vi utvecklade en sammanlänksaktiverad klustrad
personliga FL-algoritm, som förutsäger om en bild ska delas, hållas privat eller
rekommenderas för delning av en tredje part.

Våra resultat visar att de föreslagna metoderna avsevärt överträffar de
nuvarande toppmoderna FL-algoritmerna. Våra metoder ger överlägsen pre-
standa, tidigare konvergens och träningseffektivitet.
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Chapter 1

Introduction

The evolution of federated learning has significantly reshaped the landscape of
distributed machine learning. By enabling the training of models across decen-
tralized data sources without the need to share raw data, federated learning
enhances data privacy and security. Moreover, it reduces the need for extensive
data transfer, which can improve efficiency and reduce latency in model train-
ing. This chapter commences by outlining the motivation behind the thesis,
followed by the research objectives and the research methodology. Then, the
last part outlines the research contributions and concludes with a summary of
the overall thesis structure.

1.1 Research Motivation

Over the decades, we witnessed the rapid growth in the Machine Learning
(ML) paradigm, which has propelled the advancement of numerous Artificial
Intelligence (AI) applications. Particularly, Deep Learning (DL) has thrived
due to the availability of vast amounts of data around different applications.
This wealth of data is crucial as these models, like GPT-3 [Bro+20], GPT-
4 [Ach+23], LLaMA [Tou+23], Gemini [Tea+23], typically require significant
volumes of data to perform effectively; for instance, GPT-3 was trained with
approximately 570GB of data sourced from the Internet and licensed datasets1.
However, as these models increasingly rely on large datasets, concerns about
the source and ownership of this data are also important. Society is increasingly
aware of data ownership issues, focusing on who has the right to access and
use the data for development of AI methods. Typically, the process involves
aggregating data from various sources into a central system with the computing
power to train learning models. However, this has raised public concerns about
the potential misuse of personal data for commercial or political gain without

1https://openai.com/blog/data-partnerships, https://medium.com/@dlaytonj2/
chatgpt-show-me-the-data-sources-11e9433d57e8

1
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explicit consent from the individuals. It emphasizes the delicate balance be-
tween utilizing up-to-date data for AI and protecting individual privacy and
data security.

Despite new regulations such as the European Union’s (EU) General Data
Protection Regulation (GDPR) [PE16], the US’s California Consumer Privacy
Act (CCPA) [Cal18], Canada’s Personal Information Protection and Electronic
Documents Act (PIPEDA) [Par00] etc., aims to safeguard personal data while
handling, exchanging, and aggregating data across different entities remains
complex. The sensitive nature of certain data, like financial and health infor-
mation, requires it to be securely stored in isolated silos controlled by the data
creators or owners. Competitive tensions, privacy concerns, complex adminis-
trative procedures, and high data transfer costs complicate the integration of
dispersed datasets needed for decision-making.

This complexity extends to the AI industries, where data collaboration is a
major hurdle. When two organizations collaborate on ML model training, they
typically share data directly or involve a third party to extract insights. This
can lead to the original data owners losing control over their data, sparking
concerns about data sovereignty and privacy. Additionally, when such collabo-
rations lead to a superior model, it’s challenging to distribute the benefits from
the model fairly among all participants. The lack of clear guidelines on benefit
sharing can cause disputes or reluctance to collaborate, underscoring the need
for more defined data-sharing agreements that protect data rights and ensure
the equitable benefit of distributions.

Moreover, with the rise of edge computing in the Internet of Things (IoT)
ecosystem, data is no longer centralized but distributed across multiple loca-
tions and individuals. Edge devices at each site initially process and filter data
before transmitting only essential information to the cloud [Kha+19]. This
approach helps maintain data privacy and presents new challenges in sharing
models securely and efficiently across multiple sites. As edge devices such as
smartphones, laptops, tablets, and workstations grow more powerful, there is
an increasing potential to leverage their computational capabilities to train
models directly on these devices, enhancing privacy and efficiency in AI system
development.

Intuitively, the increasing computational capabilities and storage capacity
of edge devices2 Within the distributed networks, it is now possible to use
their power to perform on-device model training. But, on-device training is
limited to the data available on that specific device, which may not represent
broader patterns. This has led to a growing interest in Federated Learning
(FL) [McM+17a]. FL works in a collaborative learning framework that learns
by sharing the trained local model with a centralized server. In the FL setup,
the server combines all local models to create a global model. Learning in
these environments differs significantly from classical distributed settings, re-

2In this thesis, we used the terms edge device, participant, organization, institution, de-
vice, user, lifelogger, annotator, and client interchangeably. These terms indicate the same
entity.

2



quiring fundamental advancements in privacy, scalable machine learning, and
distributed optimization. It also raises new challenges that intersect various
fields, including distributed machine learning and systems [Rat+19]. Federated
learning suffers from four core challenges: communication overhead, system
heterogeneity, statistical or data heterogeneity, and privacy concerns. These
issues set apart the federated setting from distributed learning in datacenter
or traditional private data analysis.

These four challenges pose several open research questions in federated
learning, including Q1: How can federated learning be made communication
efficient? Q2: How can we reduce the impact of data heterogeneity to improve
model convergence and performance? Additionally, Q3: How can we manage
low-performing devices to mitigate the effects of system heterogeneity on feder-
ated learning model training? These open research questions have motivated
us to develop more efficient federated learning algorithms for both general and
targeted use cases.

1.2 Research Objectives

This thesis aims to develop efficient algorithms for federated learning to mit-
igate the impact of challenges such as data heterogeneity and system hetero-
geneity during model training. The Research Objectives (RO) cover a wide
range, exploring the topic from both theoretical and practical perspectives.
The high-level research objectives are outlined as follows.

RO1 : To address the challenges of data heterogeneity in federated feature se-
lection and develop algorithms for feature selection in federated settings.

RO2 : To address the challenges of system heterogeneity and develop algo-
rithms for optimal client selection in federated learning.

RO3 : To address the data heterogeneity in hierarchical federated learning
and develop personalized solutions.

RO4 : To identify applications where federated learning is beneficial and de-
velop FL-enabled solutions for them.

1.3 Research Methodology

The methodology employed in this thesis follows the principles of Design Sci-
ence Research (DSR) [VHM20], as depicted in Figure 1.1. The process begins
with identifying and scientifically formulating the research problem. Next, an
extensive literature review is conducted to gain a thorough understanding of
the field and existing solutions to the identified problem. Then, an algorithm
for the problem is designed, followed by its implementation. The performance
of the proposed algorithm is evaluated using appropriate metrics and compared

3
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Figure 1.1: Research methodology

with state-of-the-art solutions across multiple datasets. If the proposed solu-
tion does not perform well or issues are identified, the design phase is reviewed,
and improvements are made. Once the proposed solution achieves the desired
outcomes, the findings, proposed solution, implementation, and results and
analysis of the results are summarized in a scientific article. The article is then
submitted to a peer-reviewed conference or journal for publication.

Our systematic investigation process includes: (1) Fundamental research,
which aims to enhance our understanding of basic principles and theories, and
(2) Applied research, which targets specific and practical problems. This later
approach focuses on utilizing existing knowledge and theories to create solutions
or new technologies that address real-world challenges in diverse application
domains.

Throughout our studies, we utilized three different research methods: (1)
Exploratory research that structures and identifies new problems (Paper I and
III). (2) Constructive research to develop novel solutions to a specific persist-
ing problem (Paper I - VI). (3) Empirical research or simulations to test the
feasibility of a solution using empirical evidence (Paper I-VI).

1.4 Research Contributions

This study focuses on developing and implementing various Federated Learn-
ing algorithms to address the research objectives outlined in Section 1.2. An
illustration of how the six papers contribute to ROs is provided in Figure 1.2.

Papers I and III focus on achieving the objective outlined in RO1 by
addressing the challenges associated with selecting features from datasets dis-
tributed in a federated manner while dealing with data heterogeneity. We intro-
duced two approaches, Fed-FiS in Paper I and Fed-MOFS in Paper III , to
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RO1

Paper I

Paper III

RO2

Paper II

RO3

Paper
IV

RO4

Paper V

Paper VI

Data heterogeneity
System

heterogeneity

Figure 1.2: Illustration of the relationship between research objectives and
contributory papers.

tackle this issue. Both Fed-FiS and Fed-MOFS employ the same local feature
selection strategy, utilizing mutual information and clustering on individual
clients to select local features. The key difference lies in their global feature
ranking and selection methods. Fed-FiS utilizes a score function based on rele-
vance and redundancy, while Fed-MOFS employs multi-objective optimization,
simultaneously maximizing relevance and minimizing redundancy. Both meth-
ods efficiently select features from clients, enhance overall learning performance
in the presence of data heterogeneity, improve stability, and are scalable across
multiple clients. In Paper II , we address the objective set out in RO2 by
introducing a method for ranking clients based on their system heterogeneity.
Clients are then selected adaptively in FL training based on this ranking. The
ranking process involves solving a multiobjective optimization problem, where
we simultaneously maximize the available processing capacity, available mem-
ory, and available bandwidth. Once the ranking is complete, clients are selected
adaptively for each global iteration based on their rank (Best-performing client
to worst-performing client). The proposed algorithm is designed to efficiently
identify low-performing or straggler devices in FL, leading to improved per-
formance, convergence, fairness, and training time compared to random client
selection. Paper IV addresses the objective given in RO3. We studied the
problem of client drift that occurs due to statistical heterogeneity in multi-tier
or hierarchical federated learning. we proposed a personalized multi-tier fed-
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erated learning algorithm that simultaneously learns personalized models for
devices, teams, and a global model. Papers V and VI cover both objectives
RO3 and RO4 and focused problems from the application standpoints. In pa-
per V , we focused on predicting event memorability from lifelog images using
federated learning. Visual lifelogging is an act of automatically and periodically
capturing images using body-worn cameras, smart glasses, etc. The event mem-
orability data is highly subjective to the clients and depends on several factors
such as gender, age, etc. Event memorability in FL suffers from data hetero-
geneity. To solve this, we proposed clustered personalized federated learning
solutions. These clusters can be formed dynamically based on model similarity
with other lifeloggers, the distance between the global and local models, and
the distance between the cluster and the local model. Alternatively, clusters
can be formed based on the similarity between lifeloggers’ memory scores in
advance. In Paper VI , our focus was on creating personalized image privacy
advisor for each client. With minimal annotation and client preferences, our
aim was to predict the privacy score of the images. Using these privacy scores,
clients can then decide whether the image is shareable or not. This approach
aims to reduce privacy breaches and make it easier to share images with friends
or on social media. The privacy advisor model faces challenges due to data het-
erogeneity and data scarcity. To address this, we proposed daisy-chain-enabled
clustered personalized federated learning algorithms. Similar to the previous
application, the clusters can be formed dynamically based on model similarity
between users, global model, and cluster model, or made apriori based on the
personality scores of the participating clients.

1.5 Thesis Organization
The remainder of the thesis is organized as follows. In Chapter 2, we explore
the fundamental concepts of federated learning, including its challenges, the
baseline Federated Averaging (FedAvg) algorithm, categorizations of FL, data
distribution strategies, evaluation metrics, and the datasets used to evaluate the
proposed and state-of-the-art FL models in the associated papers. Chapter 3
is devoted to federated feature selection, covering its fundamentals, catego-
rization, and providing a comprehensive overview of various federated feature
selection approaches. Chapter 4 addresses system heterogeneity in FL, dis-
cussing its properties, client selection strategies, and straggler mitigation, along
with a comparative study of different client selection methods. In Chapter 5,
we examine the challenges of statistical heterogeneity, discuss the motivation
behind personalization in federated learning, categorize various personalized
FL strategies, and compare different personalized FL methods. Chapter 6 ex-
plores emerging application areas of federated learning. Chapter 7 provides a
summary of the scientific contributions presented in the six associated papers
(Papers I to VI). Finally, in Chapter 8, we discuss the potential future research
directions.
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Chapter 2

Foundation of Federated
Learning

In this chapter, we explore the fundamentals of federated learning. We begin
by introducing the federated learning problem and its associated challenges
(Section 2.1). Next, we examine the various categories of federated learning
frameworks and their topological distinctions (Section 2.2). The chapter also
covers the data distribution strategies for both Independent and Identically
Distributed (IID) and non-IID data (Section 2.3). Following this, we discuss the
evaluation metrics (Section 2.4) employed to measure the performance of both
the proposed and state-of-the-art algorithms. Finally, we provide a summary
of the datasets (Section 2.5) used in the experimental studies.

2.1 Federated Learning and Its Challenges
In traditional centralized learning, all the data collected on local devices such
as mobile phones, cameras, and watches needs to be moved and stored in a
central cloud datacenter. This requirement raises concerns about privacy risks
and data leakage and places a high demand on the storage and computing
capacity of servers when dealing with large amounts of data. Additionally,
transferring large amounts of data from a local device to a server is expensive
and increases communication overhead.

To address these challenges, Federated Learning (FL) provides a promising
solution without data displacement. FL is a collaborative and distributed ma-
chine learning framework that encourages multiple clients to participate and
perform machine learning tasks jointly. FL ensures that raw data remains pri-
vate and secure, protecting sensitive information while leveraging the combined
knowledge of all clients to improve machine learning tasks. FL comprises four
steps (see Figure 2.1) as follows.

1. Client selection: Initially, clients are chosen from the pool of available
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clients before the training begins. This selection can be carried out ran-
domly [McM+17a] or follow a specific strategy [NY19; Fu+23a; BVB22].
Selected clients initialize their local model using the global model.

2. Client update: The selected clients individually train their local model
using private data and then send the model parameters or gradients to
the server for a global update.

3. Global update: The server collects all model parameters or gradients
from the clients and aggregates them to create a global model.

4. Transfer of global model: The trained global model is then distributed
back to the available clients in the client pool.

After step 4, all clients update their local models with the global model,
and a new set of clients is selected from the client pool for the next round of
training. This process (steps 1 to 4) repeats until the global model converges.

Local models Global model Client update Local data

Client pool

Client
selection

Compute engine

1

4

2

2

2

3

Figure 2.1: Federated learning architecture

A conventional federated learning problem, for example, FedAvg [McM+17a],
focuses on training a unified, global model using data distributed across remote
clients. The objective is usually to minimize the following objective function.

min
w∈R

F (w), where F (w) =

N∑

i=1

piFi(w) (2.1)
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Where N is the total number of available clients, pi ≥ 0, and
N∑
i=1

pi = 1. The

regularized term pi specifies the relative impact of each client with two natural

settings, pi = 1
N or pi = Di

D , where D =
N∑
i=1

Di. Di represents the number

of training samples available at the ith client, while D represents the total
samples available across all participating clients. w is the parameters of the
models which are real numbers (w ∈ R).

Fi(w) is the local objective function for the ith client. The local objective
function is often defined as the empirical risk over local data, such as,

Fi(w) =
1

Di

Di∑

j=1

fi(w, xj , yj)

where, (xj , yj) represents the data point that belongs to Di. Each client in
FedAvg (see Algorithm 1) updates their local model by performing gradient
descent (see Equation (2.2)) for a certain number of local iterations on their
local data (Di). α is the learning rate and b is the current batch of inputs.

w ← w − α∇Fi(w, b) (2.2)

Algorithm 1 FederatedAveraging (FedAvg)
1: Input: Total available client M , select N clients indexed by i; Total local minibatch (B) ;

Local iterations (E); Global iterations (T ); Learning rate (α).
2: Output: wT ▷ The trained global model for which wT ≈ w∗

Server executes:
3: Initialize the global model w0

4: for each global iteration t = 1, 2, . . . , T do
5: N ← Select_Client(M) ▷ Randomly select N clients from a pool of M clients
6: send wt to the N selected clients.
7: for each client Ni ∈ N in parallel do
8: θt+1

i ← ClientUpdate(wt) ▷ Updated local model
9: end for

10: wt+1 ←
∑N

1 piθ
t+1
i ▷ Aggregate all local models to have global model

11: end for
Client executes:

12: function ClientUpdate(wt)
13: θ0,t

i ← wt ▷ client i initializing local model with the global model w at the global
iteration t

14: B ← (split Di into batches of size B) ▷ Data is divided into B batches
15: for each local iterations e from 1 to E do
16: for batch b ∈ B do
17: θe,t

i ← θe,t
i − α∇Fi(θ

e,t
i ; b) ▷ Perform gradient descent

18: end for
19: end for
20: return θE,t

i ▷ Return trained local model
21: end function

At first glance, FL and classical distributed learning both minimize global
loss by dividing data into clients. However, some fundamental challenges are
associated with solving the objective (see Equation (2.1)) in FL that distin-
guishes between FL and distributed learning.

9



2.1.1 Challenges

Federated learning has four fundamental challenges, as follows.

Statistical or data heterogeneity

In an FL system, statistical or data heterogeneity occurs due to the differing
data distributions among the participating clients. The data across clients is
distributed in a non-IID manner. Devices that generate or collect data can
result in data samples on one device being significantly different from those on
another in terms of feature and label distributions. This heterogeneity may
cause the global model to perform differently between clients and lead to client
drift [Kar+20]. We discuss more on this problem in Chapter 5. The non-IID
paradigm in FL violates the IID assumptions in distributed machine learning
[Zhu+21]. Furthermore, the skewness in the label distributions between devices
may vary significantly [Zha+22b] and affect the learning model. In addition,
skewness can also occur in features [Mou+23]. Different devices may see dif-
ferent features, leading to models biased towards the features they visit most
frequently [Mou+23]. Some devices may have more samples of specific labels
than others, which can skew the learning process towards overfitting to more
common labels at the expense of rare ones [Zha+22b]. We further discuss the
data distribution in Section 2.3.

System heterogeneity

Participating clients may exhibit heterogeneity in their devices, including vari-
ations in hardware (such as CPU and memory), network connectivity (like 3G,
4G, 5G, or Wi-Fi), and power (such as battery levels). These differences can
make it difficult for some clients to participate in the FL process. They may
cause some clients to drop out during training due to connectivity or energy
constraints. These challenges make it harder to ensure the learning process is
efficient and effective [Bon+19].To effectively address these challenges, feder-
ated learning methods must be designed to anticipate the infrequent availabil-
ity of clients, be capable of accommodating various types of hardware, and be
resilient enough to manage dropped clients within the network.

Communication overhead

Communication is a significant bottleneck in federated learning settings where
clients interact via communication networks. In a cross-device setup, the
network comprises many clients, such as millions of smartphones participat-
ing in learning. These clients are heterogeneous in computation and storage,
and the communication bandwidth is also different. Furthermore, training
computation-intensive deep neural network models at the edge makes federated
learning more communication and computation expensive. Transferring those
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heavy models in every global round consumes more data, and the heteroge-
neous communication channel causes significant delays in learning. Therefore,
to mitigate this challenge, federated learning algorithms must be both compu-
tation and communication efficient. Additionally, the size of the model update
that clients share should be small enough.

Privacy

Federated learning is called privacy-preserved collaborative machine learning
because it does not involve sharing raw data with the other collaborator but
shares model updates. However, communicating model updates throughout the
training process can still leak sensitive information, either to a third party or to
the central server [McM+17b]. Ensuring the privacy and security of the data
and the learning process against various types of attacks such as data recon-
struction attacks [Liu+23], model inversion attacks [Hua+21], membership-
inference attacks [Zha+20], attribute inference attacks [Are+24], and model
poisoning attacks [Fan+20] are crucial. While recent methods aim to en-
hance the privacy of federated learning using secure multiparty computation
[Zha+22a; Kan+22] or differential privacy [Wu+22; CCK21], these approaches
often provide privacy at the cost of reduced model performance or system effi-
ciency.

The primary focus of this thesis is to address the challenges of statistical
and system heterogeneity to enhance the performance of both the global and
local models.

2.2 Categorization

Federated learning is categorized based on data availability, client participation,
and decentralization schema.

2.2.1 Categorization based on the data availability

Federated learning is classified into three categories [Yan+19] based on data
availability among clients (see Figure 2.2). These are (a) Horizontal Federated
Learning (HFL), (b) Vertical Federated Learning (VFL), and (c) Federated
Transfer Learning (FTL).

Horizontal federated learning (HFL): Here, each client shares the same
features but has different samples, meaning that clients have a common feature
space but not a common sample space. As illustrated in Figure 2.2a, each client
possesses distinct data samples. For example, client 1 has data sample D1, and
client 2 has data sample D2, yet they share the same features represented by
the same colored boxes in Figure 2.2a.
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Vertical federated learning (VFL): Here, each client poses similar sam-
ples but different features; in other words, clients share overlapping sample
spaces but do not have overlapping feature spaces. For example, in Figure 2.2b,
the data sample D is distributed among N clients. However, these clients differ
in feature space represented by the different colored boxes.

Federated transfer learning (FTL): In this scenario, clients don’t have
overlapping data or sample space. For example, in Figure 2.2c, clients have
distinct data samples, such as D1 for client 1 and D2 for client 2, and different
features are represented by different colored boxes.

Client 1

Client N

Client 2

Local data  with a different sample space but
the same feature space

(a) Horizontal FL

Client 1

Client 2

Client N

Local data  with a different feature space but
the same sample space

(b) Vertical FL

Client 1

Client 2

Client N

Local data  with a different feature and sample
space 

(c) FTL

Figure 2.2: Categories of federated learning based on data availability

2.2.2 Categorization based on client-participation
FL is classified into cross-silo FL and cross-device FL based on clients’ partic-
ipation [Kai+21].

Cross-silo FL: Cross-silo federated learning usually involves fewer clients,
but each one has higher-quality data. In this type of federated learning, all
clients are available for the entire duration of the training. System heterogene-
ity is not a problem in this setup because the client’s device is powerful enough
to compute the local model on time. Clients are connected to a reliable com-
munication network that ensures minimal delay in data aggregation. However,
cross-silo FL is challenged by data heterogeneity.

Cross-device FL: Cross-device federated learning allows machine learning
to be performed across a large number of clients, including smartphones, tablets,
and IoT gadgets. In cross-device FL, only a small number of clients participate
in each global round, with some clients not participating in more than one
global iteration. Cross-device FL encounters challenges due to variations in
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data and system setups across clients, making it more complex than cross-silo
FL.

2.2.3 Categorization based on decentralization schema

Federated learning architecture can be influenced by the level of decentraliza-
tion among clients [Bel+23]. There are three different approaches (see Fig-
ure 2.3): Decentralized FL (DFL), Semi-Decentralized FL(SDFL), and Cen-
tralized FL (CFL).

/

Leadership
transfer

Server

Local data Aggregator
Local

learning
Local

models

(a) DFL (b) SDFL (c) CFL

Figure 2.3: Decentralization architecture

Decentralized FL: In DFL architectures (see Figure 2.3a),the network oper-
ates autonomously. Each client trains local models on their individual datasets
and communicates directly with other clients to transfer models for aggrega-
tion. In this architecture, each client functions as a local learner and aggregator,
providing relaxation from synchronous model updates.

Semi-decentralized FL: Unlike the previous approach, SDFL architecture
(see Figure 2.3b) assign an aggregator role to a client. This role rotates among
the clients in the network and changes periodically. The next leader selection
is either random or based on performance metrics such as network capacity,
the computational power of the client, or energy efficiency [Yem+22; Lin+21].
Leader rotation in SDFL improves the system’s performance, efficiency, robust-
ness, and fault tolerance.

Centralized FL: In CFL-based architecture (see Figure 2.3c), data decen-
tralization is managed by a single aggregator [McM+17a]. The server in the
cloud collects models from clients and performs aggregation.
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In this thesis, we considered all of our problems to be in a horizontal FL,
where clients have the same feature space but a different sample space. We
considered both cross-silo and cross-device setups, and we exclusively focused
on CFL1 architecture.

2.3 Data Division

The data division in clients follows Independent and Identical distribution (IID)
or non-Independent and Identical (Non-IID). These data distribution strategies
are described as follows,

2.3.1 Independent and Identically Distributed (IID)

In an IID setting, the data on each client is independently sampled from the
same underlying distribution, which remains consistent across all clients. As
illustrated in Figure 2.5a, all five clients have data from all ten classes, meaning
each client represents the entire distribution of the full dataset. Consequently,
in an IID scenario, the global model can be trained more efficiently, as each
client’s data provides a similar perspective on the overall data distribution.
This allows the model to generalize well to new, unseen data.

2.3.2 Non-Independent and Identically Distributed (Non-
IID)

In a non-IID setting, the data across clients are neither independent nor sam-
pled from the same distribution. This situation arises when clients have dif-
ferent characteristics and diverse data sources. As shown in Figure 2.5b, each
client has information about at most two different classes, while the actual
dataset comprises 10 classes. Therefore, each client only has partial informa-
tion about the whole dataset. Non-IID data introduces data heterogeneity in
federated learning, making it challenging to train a global model.

Non-IID data generation strategies

In Figure 2.4, three distinct strategies are outlined for achieving non-IID data
in federated learning: (1) Label-based division, (2) Feature-based division, and
(3) Random sampling with bias. Detailed descriptions of these strategies are
provided below.

1. Label-based division: This method ensures that different clients receive
data with varying distributions of labels. Label-based division can be achieved
through class partitioning and class imbalance. In class partitioning, each client

1Throughout the thesis, Centralized Federated Learning is referred to as Federated Learn-
ing (FL)
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Figure 2.4: Non-IID data division strategy

receives data from only specific classes. For example, as shown in Figure 2.5b,
10 classes (0 to 9) are distributed among 5 clients. Client 1 might receive data
from classes 0 and 8, client 2 from classes 3 and 4, client 3 from classes 1 and 6,
client 4 from classes 2 and 7, and client 5 from classes 5 and 9. Class imbalance
ensures that the class information available to clients is unevenly distributed.
Techniques such as the Dirichlet distribution [Li+22], power law distributions
[TTN20], are used to create this class imbalance among clients. For non-IID
class distribution, it is important to consider imbalanced class proportions and
partial class presence. For example, two clients might have data from classes 0
and 1, but client 1 could have 90% of its samples from class 0 and 10% from
class 1, while client 2 could have 90% of its samples from class 1 and 10% from
class 0. Additionally, class information can overlap, meaning that two clients
might share the same classes but never have a complete representation of the
entire class distribution. However, even though the two clients share similar
class information, the samples they have are non-overlapping.

2. Feature-based division: The data can be distributed based on features
in three ways: horizontal, vertical, and hybrid. In horizontal data division, all
client devices have similar feature spaces but differ in samples. This means
that the two clients do not have any overlapping samples. This type of data
division is useful when the samples are the same, but the features differ between
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(a) IID data division

(b) Non-IID data division

Figure 2.5: Data division MNIST dataset

clients. In the vertical data division, two clients do not have overlapping feature
spaces, but they have overlapping samples. This type of division is commonly
used in vertical federated learning. In hybrid data divisions, both horizontal
and vertical divisions are combined. This means that two clients can have
overlapping features and sample spaces.

Another method for dividing non-IID data based on features is clustering.
Clustering algorithms such as K-Means [Llo82] are employed to group data
points into clusters based on feature similarity. These clusters, which represent
different feature spaces, can then be assigned to different clients. For example,
in healthcare, data could be clustered based on patient demographics, such
as age and health conditions, resulting in clients having datasets focused on
specific patient groups.

3. Random sampling with bias: Another approach to creating non-IID
data is to perform random sampling across clients with bias. It is important
to incorporate bias to ensure that certain clients have a higher probability of
receiving a certain type of data. This introduces skewness in the dataset, where
a client can be biased towards particular features or classes.

2.4 Evaluation Metrics

In this thesis, we evaluated our proposed and state-of-the-art approaches using
different metrics. The quality of the clusters is evaluated using the Silhouette
Score. The performance of the model is evaluated across Accuracy, Precision,
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Recall, and F1-Score. For the classification tasks, the loss is evaluated using
Categorical Cross-Entropy (CE). Mean Absolute Error (MSE) and Root Mean
Square Error (RMSE) are used to evaluate regression tasks. To perform the
qualitative analysis of the clients for classification tasks, we used Confusion
Matrix (CM). Wall-clock time is used to measure the time taken to train mod-
els in FL. The descriptions and equations for these metrics are provided in
Table 2.1.

Table 2.1: Evaluation metrics

Metrics Description Equation

Accuracy Quantifies the proportion of correct predictions
(true positives (TP ) and true negatives (TN))
out of the total number of predictions.

TP+TN
Total Samples

Precision Measures the proportion of TP among all in-
stances classified as positive (true positives and
false positives (FP )).

TP
TP+FP

Recall Measure the proportion of TP identified among
all the actual positives (TP and False Negatives
(FN)).

TP
TP+FN

F1 Score The harmonic mean of precision and recall, bal-
ancing both metrics.

2 · Precision·Recall
Precision+Recall

Categorical
Cross-Entropy
Loss

Measures the difference between predicted prob-
abilities (ŷc) and actual class labels (yc) for a
multi-class (C) classification problem.

−∑C
c=1 yc log(ŷc)

Confusion Ma-
trix

Provides a detailed breakdown of model perfor-
mance, displaying counts of TP , FP , FN , and
TN .



TP FP

FN TN




Wall-clock time Measures the average training time (Ti) of the
federated learning (FL) algorithm across all train-
ing iterations (T ).

1
T

∑T
i Ti

Mean Absolute
Error (MAE)

The average (over N samples) of the absolute dif-
ferences between predicted values (ŷi) and actual
values (yi) for a regression task.

1
N

∑N
i=1 |yi − ŷi|

Root Mean
Squared Error
(RMSE)

The square root of the average (over N samples)
of the squared differences between predicted val-
ues (ŷi) and actual values (yi) for a regression
task.

√
1
N

∑N
i=1(yi − ŷi)2

Silhouette Score Measures how similar a data point is to its own
cluster compared to other clusters. Here, a is the
mean distance between a sample and all other
points in the same cluster (intra-cluster distance),
and b is the mean distance between a sample and
all points in the nearest different cluster (inter-
cluster distance).

b−a
max(a,b)
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2.5 Dataset Description
In this thesis, we evaluated the proposed and state-of-the-art approaches on
various publicly available datasets. Table 2.2 provides descriptions of these
datasets and references to the papers where they were utilized to demonstrate
the efficiency of the proposed methods from the state-of-the-art. Among these,
the Event Memorability and DIPA2 datasets are problem-specific. Additional
details about these two problems can be found in Chapter 6.

Table 2.2: Datasets

Datasets Description Type Paper

NSL-KDD99 [Tav+09] Intrusion detection

Tabular

Paper I and III
ACC [Dal+17] Credit card fraud transaction de-

tection

Wine [AF91] Wine quality classification

Paper III

Vowel [Tur14] Speech recognition from vowel
sounds

Vehicle [Kag20] Vehicle type classification

Segmentation [Sur] Customer segmentation data for
marketing

WDBC [al95] Breast cancer diagnosis

Ionosphere [al89] Radar scan classification

Hill_valley [LF08] Terrain classification

ISOLET [RM94] Isolated letter speech recognition

Diabetes [DDD90] Diabetes diagnostics

IoT [Ant19] Smart home activity recognition

Synthetic [Ban+24a;
Ban+24b]

Synthetic data for model evalua-
tion

MNIST [LeC+98] Handwritten digit recognition
Grey-scale Images Paper II and IV

FMNIST [Xia17] Fashion item classification

EMNIST [Coh17] Extended handwritten digit and
letter recognition

Paper IV

CIFAR-10 [KH09] 10-class object classification Colored Images Paper II and IV

CIFAR-100 [KH09] 100-class object classification Paper IV

Event memorability
[Xu+21b]

Event memorability prediction
from visual lifelogs

colored Image and contextual
text features (Multi-modal)

Paper V

DIPA2 [Xu+24] An Image dataset with cross-
cultural privacy perception an-
notations

Paper VI

2.5.1 Synthetic dataset
We generated the synthetic datasets for the experiments in papers III and IV
using two strategies.

Strategy-I: This synthetic data is created for the federated feature selection
experiments (Paper III 2). The synthetic dataset has n samples, m features,
and C classes. We divided m into three parts m1,m2,m3. Among them, m1

number of features are truly informative features, and m2 features are linearly
dependent on the m1. The remaining m3 = m−m1+m2 are purely noise aimed

2https://github.com/DevBhuyan/Horz-FL
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to reduce the learnability of models. A good feature selection algorithm will be
able to filter this and provide high-quality data to a model. All the data points
belong to one of the C classes. Then, we distributed the dataset among N
clients. We ensured each client received the same features but non-overlapping
samples. We incorporated skewness in the client data and ensured each client
didn’t hold information from all classes by doing label partition. For example,
for a given iid ratio (IR), a client can have samples comprising not more than
20% of the total number of class labels if IR = 0.2. If the total number of
classes in the dataset is 25, a single client would not have more than ⌊25× 0.2⌋
= 5 class labels. The first client is assigned samples having the first five class
labels; the second client is assigned samples having another set of 5 class labels,
and so on. No single client has more than (num_classes*IR) number of class
labels, and the number of samples for each client is random.

Strategy-II: To conduct personalized multi-tier federated learning experi-
ments (as described in Paper IV3), we create synthetic data by following these
steps. First, we initialize the data’s dimension d and number of classes C.
We also set up a prior distribution, which includes weights and biases for each
client, and initialize the covariance matrix of the data. Next, we generate
unique weights and biases for each client. For IID data, all clients replicate
the server’s weights and biases. In contrast, for non-IID data, the weights
and biases vary across clients. We then generate samples using a multivariate
normal distribution and compute labels with softmax and argmax functions.
Finally, the generated samples and labels are assigned to the respective clients,
following a method similar to strategy-I.

3https://github.com/sourasb05/PerMFL_1
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Chapter 3

Federated Feature Selection

Federated learning introduces unique challenges, such as data heterogeneity,
that directly affect the learning of the model. It also affects several machine
learning preprocessing tasks, such as feature selection, feature extractions, etc.
This chapter focuses on the categorization of different feature selection meth-
ods. Federated feature selection methods and their comparative analysis.

3.1 Categorization of Feature Selection Methods

In many machine learning applications, such as text mining [Den+19], com-
puter vision [BD01], and bioinformatics [WWC16], the amount of available
data has dramatically increased, both in sample size and features. To facilitate
knowledge acquisition, it is crucial to study methods for effectively utilizing
these large-scale datasets. The presence of noisy, redundant, and irrelevant
features can slow down the learning process, degrade performance, and compli-
cate model explainability [Muñ+20]. Feature selection addresses these issues
by identifying a small, relevant subset of features from the original set, thereby
eliminating noise, redundancy, and irrelevant information.

Figure 3.1 illustrates the taxonomy of feature selection methods that include
traditional machine learning, distributed learning, and federated learning. Fea-
ture selection methods are divided into three categories: (1) Label information-
based methods, which can be further classified into three categories: supervised,
unsupervised, and semi-supervised; (2) Search strategy-based methods, which
can be further divided into four categories: filter, wrapper, embedded, and
hybrid, and (3) Architecture-oriented methods that consider centralized, dis-
tributed, and federated settings. Federated feature selection is further classified
into horizontal and vertical feature selection.
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Figure 3.1: Taxonomy of feature selection methods

3.1.1 Label information-based feature selection

In supervised feature selection, label information is available for all examples.
The feature selection algorithm efficiently selects relevant and non-redundant
features that can effectively differentiate samples from different target variables
[WSG05; Nie+10; Li+07; Hru+06]. In unsupervised feature selection, no label
information is provided. This type of feature selection is unbiased and performs
well when prior knowledge of the labels is unavailable. Additionally, it can
reduce the risk of data overfitting compared to supervised feature selection
methods [SCM20]. Semi-supervised learning falls between these two, where
some examples have labeled information while others do not. This method is
essential when the dataset contains limited labeled data but a large number of
unlabelled data is available [ZL07; Xu+10]. Based on these three categories,
feature selection algorithms also differ.
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3.1.2 Search strategy-based feature selection

Search strategy-based feature selection techniques explore the feature space to
select optimal subsets that maximize model performance and improve inter-
pretability.

Filter

These methods select the most discriminative features based on the data char-
acteristics. Typically, they perform feature selection before classification and
clustering tasks, following a two-step strategy. First, all features are ranked
according to specific criteria, and then the features with the highest rankings
are selected. Many filter-type methods have been used, including correlation-
coefficient [YL03], reliefF [RS04], F-statistic [DP05], mRMR [PLD05] and in-
formation gain [RS04]. For example, a feature with a high correlation to the
target variable or one that significantly reduces uncertainty is considered highly
relevant. One of the significant advantages of filter methods is their speed and
scalability [HBL24], making them particularly suitable for high-dimensional
datasets.

Wrapper

These methods employ the performance of the learning algorithms as the objec-
tive function to evaluate different subsets of variables. Evaluating all possible
subsets (2N ) is an NP-hard problem. Therefore, wrapper methods employ
heuristic search algorithms to identify suboptimal but effective subsets. These
algorithms aim to minimize the subset of variables for which the performance,
such as the classification accuracy of the learning models would be maximized.
Various search strategies are used in wrapper methods. Sequential selection
algorithms [PNK94], such as Sequential Forward Selection (SFS), start with
an empty set and add one feature at a time toward setting a relevant feature
set. It selects the feature that gives the highest value for the objective func-
tion and then evaluates the remaining features individually, adding them to
the subset if they increase classification accuracy. This process continues until
the required number of features are added. Another approach is Sequential
Backward Selection (SBS), which is the opposite of SFS. It begins with the
complete set and removes one feature at a time without compromising learn-
ing performance. More advanced versions like Sequential Floating Forward
Selection (SFFS) introduce flexibility by allowing backtracking steps, further
refining the feature subset. Heuristic search algorithms, such as Genetic Algo-
rithms (GA) [Gol89] and Particle Swarm Optimization (PSO) [KE95], explore
the search space broadly.
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Embedded

These methods [BL97; Lan+94] incorporate feature selection directly into the
model training process, reducing computation time effectively compared to
wrapper methods, which evaluate multiple subsets of features. Embedded
methods aim to identify the most relevant features while the model is be-
ing built, optimizing both feature selection and model performance simulta-
neously. These methods can dynamically adjust important features based on
the model’s learning progress by integrating feature selection into the training
phase. Embedded feature selection algorithms use regularization techniques
in linear models, such as Lasso (Least Absolute Shrinkage and Selection Op-
erator) [FB17]. Lasso introduces a penalty term to the loss function, which
shrinks certain coefficients to zero. This effectively performs feature selection
by excluding less important features. Decision tree-based methods [WL08],
such as random forests [ZZL16] and gradient boosting [Otc+22], also naturally
perform feature selection by selecting features that best split the data at each
node. Recursive feature elimination of the support vector machine (SVM-RFE)
[Guy+02] is another example, which iteratively removes the least essential fea-
tures based on the weights assigned by the SVM. Neural networks can also
employ embedded methods by pruning connections during training, retaining
only the most influential features. Embedded methods offer a balance between
computational efficiency and effective feature selection, making them suitable
for large datasets and complex models.

Hybrid

These methods combine the strengths of the filter and wrapper methods to
enhance the feature selection process. Hybrid methods balance computational
efficiency and selection accuracy. These methods involve two steps. First, a
filter method is applied to perform the initial screening of features based on
statistical criteria, quickly reducing the dimensionality of the dataset. This
step ensures that only the most promising features are considered for the sub-
sequent computationally intensive step. In the next phase, a wrapper method
is applied to the reduced feature set to perform a more thorough assessment
of features and their impact on the model’s performance. By focusing only on
the reduced subset, hybrid methods mitigate the computational burden that
original wrapper methods often face when dealing with high-dimensional data.
For example, a common hybrid approach [Sun+10] might involve using a Mu-
tual information-based filter to select the top features, followed by a sequential
forward selection (SFS) wrapper to fine-tune the feature set based on cross-
validation performance.

These four feature selection methods are visually represented in Figure 3.2.
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Figure 3.2: Search strategy-based feature selection

3.1.3 Architecture-based feature selection

Label information-based and search strategy-based feature selection can be uti-
lized in various architectures, including centralized, distributed, and federated.

Centralized feature selection

In centralized feature selection, all the data is collected and stored in a single
location, where the feature selection process is conducted. This method has
the full dataset’s information to identify the relevant features to improve the
performance of the learning model, reduce computational complexity, reduce
training time, and enhance interpretability. Centralized feature selection faces
several challenges regarding handling large-scale data and privacy concerns.
Handling large-scale datasets in a centralized manner requires significant com-
putational and storage. Moreover, centralizing data from multiple sources can
raise privacy and security issues, as it often involves transferring sensitive in-
formation to a single location, which might not be feasible due to legal and
regulatory constraints, for example, GDPR [PE16] in the EU.
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Distributed feature selection

Traditionally, feature selection methods have been developed for centralized
computing environments. However, many distributed methods have emerged
as alternatives to centralized approaches [MBA17]. Two main factors drive
this paradigm shift. Firstly, advancements in network technologies have led to
an increase in dataset sizes across various application fields, raising significant
privacy concerns as data is often dispersed across geographical and organiza-
tional boundaries. It is often neither economical nor legal to consolidate such
data in one location. Secondly, existing feature selection algorithms struggle
to scale efficiently with large datasets, sometimes becoming impractical due
to performance deterioration. A potential solution involves distributing the
data, applying a feature selection method to each subset, and then merging
the results. Data distribution can be either horizontal or vertical. Horizontal
partitioning divides the dataset into multiple segments, each containing the
same features as the original dataset but with a subset of the instances (see
Figure 3.3a). Vertical partitioning, on the other hand, splits the dataset into
several segments, each containing the same number of instances but with a
subset of the original features (see Figure 3.3b).

Features

Sa
m

pl
es

(b) Vertical partition(a) Horizontal partition

Figure 3.3: Distributed data partition

Federated feature selection

Federated learning shares similarities with distributed learning but encoun-
ters unique challenges such as data heterogeneity (non-IID nature of data),
data scarcity, and model training on resource-constrained clients. These issues
mean that many distributed feature selection techniques that perform well on
IID data struggle with non-IID data. Additionally, wrapper or embedded meth-
ods work efficiently on distributed setups, which becomes very time-consuming
on resource-limited clients in FL setups. Unlike distributed learning, which is
typically designed to address big data problems and does not experience data
scarcity, federated learning often deals with data scarcity and unbalanced la-
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bel distributions. Therefore, specialized algorithms are essential for federated
settings to overcome these challenges effectively. Federated feature selection
can be categorized into two types based on data partitioning: Horizontal Fea-
ture Selection (HFS) and Vertical Feature Selection (VFS). HFS algorithms
are designed for horizontal federated learning setups, while VFS algorithms are
suitable for vertical federated learning scenarios.

Horizontal feature selection: Horizontal Federated Learning (HFL) en-
ables learning with multiple clients using their private data sets, each of which
carries an overlapping set of features, to jointly train a global model without
sharing raw data. Feature selection is important in HFL to train a uniform
global model across clients and enhance model performance by filtering out
noisy and redundant features. Various methods have been proposed for HFS.
For instance, In [Mas+22], LASSO regularization is utilized to perform embed-
ded feature selection that reduces overfitting and enhances the interpretability
of the global model while preserving the privacy of the client’s data. Simi-
larly, Qin et al. [QK21] employ a greedy algorithm, a wrapper method, which
customizes feature selection based on attack types in intrusion detection sys-
tems. The mRMR approach in [HBL24] maximizes relevance and minimizes
redundancy of features in an HFL environment. Conditional mutual infor-
mation [Fu+23b] and mutual information with correlation distance [Zha+23b]
are filter methods that enhance accuracy and communication efficiency. In
[MK24], the Pareto-based bi-objective strategy effectively manages multi-label
data, highlighting the nuanced trade-offs in horizontal feature selection. We
proposed two HFS approaches, Fed-FiS [BEB21] and Fed-MOFS [Ban+24a],
that use a mutual information-based approach to find relevant features. We
give a comparative analysis of the HFS methods in Table 1 of paper-III.

Vertical feature selection: Vertical Federated Learning (VFL) enables mul-
tiple clients with their private datasets, each holding different subsets of fea-
tures for largely overlapping datasets, to jointly train a global model without
sharing raw data. Feature selection (FS) is important in VFL to enhance model
performance by filtering out noisy and redundant features. Various methods
have been proposed for VFS. For example, Zhang et al. [Zha+22c] employ Se-
cret Sharing and Homomorphic Encryption to ensure privacy while performing
FS. Another method uses Particle Swarm Optimization [Zha+23c], suitable for
large-scale FS. Castiglia et al. [Cas+23] introduce Local Lasso and Group Lasso
methods, balancing accuracy and communication costs. Feng et al. [Fen22] pro-
posed a deep learning-based autoencoder that generalizes well to different data
types but demands synchronous learning and incurs high computational costs.
Jiang et al. [Jia+22] leverage Group Testing and Homomorphic Encryption to
efficiently select clients, though it relies on a trustworthy key server. Li et al.
[Li+23a] presented the FedSDG-FS that uses Gaussian Stochastic Dual-Gate
with Partially Homomorphic Encryption and Gini Impurity for effective feature
selection. These methods highlight the trade-offs between efficiency, accuracy,
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and privacy in VFS. A comparative analysis of these vertical feature selection
methods is given in Table 3.1.

Table 3.1: Summary of VFS methods

FS Method Category Advantages Disadvantages

Secret sharing and ho-
momorphic encryption
[Zha+22c]

Embedded Highly compatible with most of
the ML models. Effective
privacy preservation. Significant
accuracy gains

High communication overhead
for secret sharing. Moderate
runtime for homomorphic
encryption.

Particle Swarm Op-
timization (PSO)
[Zha+23c]

Embedded Suitable for large-scale feature
selection. Fast convergence

Requires sharing some
insensitive model parameters.

Local lasso and group
lasso [Cas+23]

Wrapper,
Embedded

Removes spurious features
efficiently. High accuracy with
selected features. Low
communication cost

High pre-training epochs for
some datasets. Complexity in
regularization parameter tuning.

Deep learning-based
Autoencoder [Fen22]

Embedded Generalizable to different data
types

Requires synchronous learning.
High computation and
communication burden with
many clients.

Gaussian stochastic
dual-Gate with PHE
and gini impurity
[Li+23a]

Embedded Efficient in filtering noisy
features. High accuracy in
feature selection. Reduces
communication. Secure through
PHE and random noise

Have moderate computation
overhead due to encryption.
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Chapter 4

Straggler-Mitigation and
Client Selection

The efficiency of Federated Learning (FL) is greatly affected by system het-
erogeneity, including diversity in clients, network conditions, and user behav-
iors, which can delay training. To accelerate FL, it’s crucial to identify strag-
glers—clients with limited resources or poor connectivity—and implement a
straggler-resilient client selection strategy. This chapter discusses the system
heterogeneity, stragglers, and client selection strategies in detail.

4.1 System Heterogeneity
System heterogeneity can be categorized into (1) heterogeneity in clients’ com-
putational resources and (2) heterogeneity in the communication channel. Both
aspects affect federated learning.

4.1.1 Heterogeneity in clients’ computational resources
Heterogeneity in computing resources is a prevalent issue in cross-device FL,
leading to variations in individual training times and causing delays in the
overall FL process. For example, the computing devices in clients could range
from low-end, such as the Raspberry Pi, to high-end, like GPUs (see Table 4.1).
These devices1 differ in terms of floating-point operations per second (FLOPS)
and internal memory (RAM) capacity, which impacts their ability to participate
in FL efficiently. Moreover, different neural network designs (see Table 4.2)
have different Multiply-Accumulate (MAC) operations for a forward pass and,
therefore, consume different amounts of memory. It usually takes three to five
times as many MAC operations to train a full epoch because training includes a
backward pass with about twice as many MACs as the forward pass [Amo+18],

1In this chapter, client and device are used interchangeably to represent the same entity.
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plus any extra calculations needed for a stateful optimizer 2. Additionally, a
device must process hundreds to thousands of local training samples per FL
round.

Table 4.1: Computational resources from low-end to high-end devices [Pfe+23]

Device FLOPS RAM

Raspberry Pi Ser. 108–1010 512 MB–8 GB
Low-End Smartphones 1010–1011 1–2 GB
Nvidia Jetson Nano 1011–1012 2–4 GB

High-End Smartphones 1011–1012 4–8 GB
Server GPUs 1013–1014 32–100 GB

Table 4.2: The resource requirements for training a neural network model in
PyTorch [Pas+19] on the CIFAR-10 dataset [KH09] with a batch size of 32
[Pfe+23]

ML Model # MACs
(Forward)

Memory
(Training)

LeNet [LeC+98] 6.7 · 105 0.5 GB
ResNet18 [He+16] 5.6 · 108 0.8 GB
EfficientNet [TL19] 3.2 · 107 0.9 GB
MobileNetV2 [San+18] 9.6 · 107 1.4 GB
ResNet152 [He+16] 3.7 · 109 5.3 GB

Not all devices are appropriate for federated learning. For instance, while a
Raspberry Pi can train a neural network, it experiences significant delays. In
contrast, powerful GPUs can perform the same task up to 100× faster. Conse-
quently, the inclusion of these low-end devices in a federated learning system
can increase training latency. These low-end devices are called stragglers in
FL. The definition of stragglers is given below,

Definition 1. Stragglers: In a federated learning system consisting of N
devices, the computational power, communication capabilities, and storage ca-
pacity of each device can vary significantly. A subset of devices denoted as k
(where k ≤ N) may cause delays in the overall training due to their limited
resources. These k devices are referred to as stragglers.

4.1.2 Categorization of computation constraints

There are two main categories of computation constraints [Pfe+23] that make
a device straggler, such as hard constraints and soft constraints.

Hard constraints, such as the limited memory capacity of a device, may
hinder the training of a Deep Neural Network (DNN) model. For instance, Mo-
bileNetV2 consists of millions of parameters that require a significant amount
of memory for training. If the selected model for FL exceeds the memory ca-
pacity of the available device, then that device will be unable to participate in
the learning process. Despite potentially having high-quality data that could
contribute to the learning, the device’s limited resources prevent it from taking
part.

The soft constraints allow DNN training on the device, but it hinders the
device’s ability to achieve high throughput, such as FLOPS, during the learn-
ing process. Soft constraints can cause a device to become a straggler. Several
factors, as mentioned in [Pfe+23], such as micro-architecture, unstable power
supplies, component degradation, or shared resource contention, can lead to
slow model training. Soft constraints enable devices to participate in the learn-

2A stateful optimizer is an optimization algorithm that maintains and updates additional
state information, such as momentum or adaptive learning rates, beyond just the model
weights to enhance the training process.
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ing process but restrict them from completing the training. The server rejects
updates that are out of sync, preventing their incorporation into FL training.

4.1.3 Properties of heterogeneity

These constraints cause heterogeneity across devices or over the training iter-
ations.

Heterogeneity across devices: The hard constraints are determined ei-
ther at the design stage or prior to the commencement of training and remain
constant over time. Various devices may have distinct constraints that im-
pact their training throughput. For instance, there is notable heterogeneity
among smartphone devices. Table 4.1 illustrates the differences in FLOPS and
internal memory between a low-end smartphone and a high-end smartphone.
For the same learning task, a low-end smartphone will have lower throughput
compared to a high-end smartphone.

Heterogeneity over global iterations: Soft constraints of devices in FL
systems can be influenced by the environments in which the devices operate
and may vary across different training rounds. These constraints include factors
such as the expected battery level during training, the current power supply, or
ambient temperatures. These constraints are characterized by their relatively
slow rate of change, typically occurring over minutes to hours, allowing them to
be predicted and known before the start of an FL round. To accommodate such
heterogeneity across rounds, FL algorithms should support dynamic changes in
device resource availability. This adaptability ensures that the FL system can
effectively manage variations in device performance and resource constraints,
maintaining efficient and reliable training processes despite the diverse and
fluctuating conditions of participating devices. This approach is crucial for
optimizing the overall training throughput and robustness of federated learning
systems.

4.2 Communication Heterogeneity

In FL, knowledge can be transferred to other devices and servers through gra-
dient sharing, sharing model weights, logits, predictions, intermediate repre-
sentations, and loss values. Since client devices are located far apart, this
sharing is only feasible through communication over the network. The sharing
of knowledge relies on the speed, timing, and trustworthiness of the commu-
nication channels. We can observe that these aspects are constrained across
various slower client devices, which has hindered the overall FL system per-
formance. Moreover, modern DNN models can have millions of parameters,
therefore, transferring models with server or clients increase communication
cost which makes the system non-scalable. To overcome this bottleneck, model
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quantization [AG20] and compression [MHM19; SL21] based techniques have
been utilized to accelerate the transmission. The communication-efficient pro-
cess [Yu+15] begins with compressing the DNN model by removing redundant
parameters that are not useful and keeping only the non-redundant parame-
ter connections. Then, the shared weights are quantized to retain the effective
weights and avoid redundant weights on the client devices. Similarly, when gra-
dients are shared in FL, we can use gradient compression [Kam+19] to reduce
the communication overhead.

4.3 Client Selection

Client selection has emerged as a significant area of research to address system
heterogeneity issues in federated learning. In this process, the server determines
which client devices to include in a global training round. Effective client se-
lection can significantly enhance the global model’s performance and minimize
training overheads. In Figure 4.1, every client is measured for its utility or
priority before each global round. The clients with high priorities are selected
for model training and aggregation.

Client pool

Selected client 
for round t

Client
selection

Local models Global model
Learning
algorithm Local data

Figure 4.1: Client selection in FL

Figure 4.2 illustrates the client selection methods, which can be based on
statistical or system information of devices.
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Figure 4.2: Client selection methods in FL

4.3.1 Statistical information based selection

Statistical information indicates the impact of a client’s local update on the
global model. This type of selection is further categorized into data sample-
based selection and model-based selection approaches.

Data sample-based selection

Client selection in FL uses local data samples to determine their statistical
utility. One method of measuring utility is based on the number of data samples
a client has. Another approach involves giving importance scores [ZYZ21] to
data samples, which is calculated using the L2-norm of each sample’s gradient.
An optimal solution can be represented as the average L2-norm of the gradients
of a client’s data samples. Alternatively, the loss value of each data sample can
be used as a proxy for its gradient norm to reduce computational overhead.
The cumulative loss [CWJ22] on a client’s data samples is also an effective
measure for client selection.

Model-based client selection

This approach quantifies the contribution of a client’s local model updates
to the global model. One method involves calculating the normalized model
divergence, which is the average difference between the client’s model weights
and the global model weights [Hsi+17]. A smaller difference means that the
local update has less impact on the global model. Another method measures
the percentage of same-sign weights [LWB19] between the client model and the
global model that represents the local model and global model aligned in the
same direction. A few methods assess the similarity to the convergence trend,
evaluating how the client’s model weights move relative to the global model’s
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convergence direction [SWR20]. Comparing the change in a client’s model
before and after local training [Zha+22d] or using the L2-norm of the local
model’s gradients [CHR20] can also indicate the client’s potential contribution.
These techniques help prioritize clients whose updates are expected to be most
beneficial for the federated learning process.

4.3.2 System-based client selection

System utility-based selection in federated learning takes into account the dif-
ferent hardware configurations and system capabilities of clients, which can
significantly impact the overall training performance. This method prioritizes
clients based on factors such as computation power, communication bandwidth,
and energy availability to avoid prolonged training rounds due to straggler or
resource-constrained devices. Here, we discuss two approaches: the deadline-
based and the resource allocation-based.

Deadline-based client selection

This approach is typically remove clients who can’t complete their local update
within the set time frame in a synchronous FL aggregation system. The time
limit can be either hard [NY19], meaning clients that take too long will be re-
moved from the system, or soft [Lai+21], meaning the server will impose penal-
ties on slow clients. This adds flexibility for the next round, where the straggler
devices may send their updates on time. This deadline can be based on various
metrics like computation speed (FLOPs) or transmission bandwidth (Mb/s).
Additionally, algorithms like FedBalancer automatically adjust these deadlines
to optimize performance. These strategies help to mitigate the adverse effect
of system heterogeneity and offer a more efficient and balanced federated learn-
ing process. Adaptive client participation can significantly improve the global
model’s performance with fewer communication rounds [BVB22; Rei+22].

Resource allocation-based client selection

Optimized resource allocation is critical for Federated learning in presence of
system heterogeneity. Given the decentralized nature of FL, the selection of
clients and the allocation of resources are important to address the expensive
communication costs and fairness. Resource allocation-based client selection
methods consider factors like computational capacity, communication band-
width, and energy consumption across clients. Selecting clients with higher
computational resources and better bandwidth can reduce training time and
improve the convergence of the global model [BVB22]. but this needs to be
balanced with fairness and the inclusion of diverse data sources to prevent
biases. Client selection approaches include managing clients based on real-
time resource conditions, utilizing bandwidth allocation under long-term en-
ergy constraints, and using fuzzy logic to optimize selection. Efficient resource
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allocation is crucial in mitigating the straggler effect, where training is de-
layed due to slower clients. Strategies to improve resource allocation involve
prioritizing clients based on resource availability and energy consumption, max-
imizing participating clients while minimizing energy use, and select the best
subset of clients. Metrics to evaluate client selection strategies typically include
testing accuracy versus communication rounds and energy consumption versus
convergence time. Studies indicate that reducing communication rounds and
optimizing resource usage significantly enhances the efficiency of FL systems.

A comparative analysis of the client selection methods discussed is presented
in Table 4.3. This analysis reveals that combining statistical information-based
and system-based client selection methods can mitigate the effects of stragglers
and data heterogeneity. Hence, a hybrid algorithm is required to balance the
system and statistical heterogeneity effectively.

Table 4.3: Comparative study of different client selection methods

Client selection approach Benefits Drawbacks

Random selection [McM+17a] Unbiased selection of
clients ensure fairness.

Performance is lower in
the presence of data
and system heterogene-
ity. Training is also
slower because of strag-
glers.

Statistical
information
based

Data Sample-
Based [ZYZ21]

Optimized client selec-
tion based on data con-
tribution that improves
model accuracy

High computational
overhead for importance
sampling. Doesn’t work
well in presence of non-
IID data.

Model-Based
[Hsi+17]

Prioritize clients based
on model updates, and
also this method en-
hances the convergence
of global model.

This method works more
during training due to
the presence of strag-
glers.

System based Deadline-based
[NY19]

It reduces training time
and mitigates stragglers
effects

might overlook data het-
erogeneity. It may not
maintain fairness.

Resource
allocation-
based [BVB22]

Efficient management of
resources for FL training
across clients. It reduces
energy consumption and
communication costs

Might not take data het-
erogeneity into consider-
ation.

4.4 Fairness in Client Selection

The selection of clients to address system heterogeneity may affect the overall
performance of the global model due to the presence of statistical heterogeneity
in the data. Therefore, the client selection algorithm should ensure effective
and fair participation from all clients in the training process.

Fairness in client selection is defined as the uniformity of performance dis-
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tribution across all participating clients, which means the performance of the
global model should be relatively consistent across different clients, regardless
of their individual data volume or computational capabilities. Client selection
algorithms favor clients with more resources or faster response times, which
can lead to biases in the global model that make the model less generalizable.
For example, if the algorithm consistently selects only the fastest clients and
deprives the participation of stragglers, that leads to a skewed representation
of data and potential biases in the trained model. The impact of unfair client
selection may lead to an increase in the number of training iterations without
a guarantee of convergence.

Therefore, it is important to consider both the data heterogeneity and
resource conditions of clients to achieve a fair client selection. Huang et
al.[Hua+20b] introduced an FL algorithm that prioritizes fairness. The algo-
rithm aims to enhance the overall performance of the global model while also
ensuring that slower clients are not left out of the training process. Although
this approach may reduce training efficiency, it results in a more balanced
performance of the model across all clients. Another method, proposed by Jee
Cho et al. [Cho+20], involves improving fairness through biased client selection
based on higher local losses. This approach guarantees that clients with lower
performance in previous global rounds are given the opportunity to participate
in the next round.
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Chapter 5

Personalized Federated
Learning

In Federated Learning (FL), data may not be Independent and Identically Dis-
tributed among the participating devices. As a result, a global model generated
using traditional federated learning algorithms such as FedAvg [McM+17a] may
not perform equally well on all participating clients. To address this problem,
Personalized Federated Learning (PFL) is introduced. In this chapter, we ex-
plore personalized federated learning, including its motivation, formulation,
and various methods. We also discuss the advantages and disadvantages of
different PFL approaches.

5.1 Motivation for Personalized Federated Learn-
ing

In Centralized Machine Learning (CML) [Dra+20], (see Figure 5.1a) data is
gathered from end devices and sent to a cloud server for training a machine
learning model. During training, the CML framework has access to the entire
data distribution (IID), which aids in training a well-generalized model. How-
ever, CML does not prioritize privacy, as the data owner loses control over the
data once it is shared with the server. Additionally, with the current surge in
data generated at edge devices, predominantly images or videos, transferring
this data to the server consumes bandwidth and increases cost.

To address these challenges, federated learning was introduced [McM+17a].
The FL settings (see Figure 5.1b) involve a federation of distributed clients,
each with its own private local datasets. Creating isolated models for each client
is not very useful because many clients suffer from a data scarcity problem
that limits their ability to train effective models using only their own data.
Therefore, they are encouraged to join the FL process, where even with a
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limited contribution, they can obtain a better-performing model.

Generalization
Privacy
Communication
Data
heterogeneity
Personalization

Generalization
Generalization
Privacy
Communication

Local data Personalized models Local models Global model Learning model

(a) CML (b) FL (c) PFL

Compute engine

Figure 5.1: Illustration of the difference among (a) Centralized Machine Learn-
ing (CML), (b) Federated Learning (FL), and (c) Personalized Federated Learn-
ing (PFL)

The FL approach has fundamental challenges, such as the convergence issue
of the global model on heterogeneous data and lack of solution personalization
[Tan+22]. The accuracy of FedAvg is significantly reduced when training the
model on non-IID data. This occurs due to client drift [Kar+20]. It refers to the
phenomenon where the local models trained on different clients start to diverge
significantly from each other and from the global model due to differences in
local data distributions. Figure 5.2 depicts the effect of client drift on IID and
non-IID data. The server updates move towards the average of client optima
in FedAvg. When the data is IID, the averaged model w̄ is close to the global
optimum w∗, as it is equidistant to both local optima w∗1 and w∗2 . However,
when the data is non-IID, the global optimum w∗ is not equidistant to the
local optima. In this case, w∗ is closer to w∗1 . Consequently, the averaged
model w̄ will be far from the global optimum w∗, and the global model does
not converge to its true global optimum. Therefore, FedAvg does not converge
on non-IID datasets, and careful tuning of hyperparameters is needed to obtain
learning stability [Li+19]. In the traditional FL setup, a single global model
is trained to fit the average client. Consequently, this global model may not
perform well for local distributions that significantly differ from the overall
distribution. Relying on a single model is typically inadequate for real-world
applications, which frequently encounter non-IID local datasets. Therefore,
personalized federated learning is required to provide customized solutions to
each client.
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Figure 5.2: Illustration of client drift in FedAvg [McM+17a] for two client
models (θ1 and θ2) on (a) IID and (b) non-IID settings

5.2 Formulation of Personalized Federated Learn-
ing

In the PFL model training, the optimization objective is formulated differently
from the conventional FL settings. The global model objective aims to minimize
the aggregate loss of overall clients’ data distributions,

w∗ = arg min
w∈Rd

N∑

i=1

piFi(w) (5.1)

where N is the number of clients. pi is the relative importance or weight of the
ith client often set to ni

n , where ni is the number of training samples at client
i and n is the total number of training samples across all clients. Fi(w) is the
loss function for client i, which depends on the model parameters w, defined
as,

Fi(w) = E(x,y)∼Di
[Fi(w;x, y)] (5.2)

which is the expected loss over the data distribution Di of client i. The FL
formulation results in a uniform output for all clients using the global model,
lacking personalization. In the presence of data heterogeneity, this approach
will lead to subpar performance.

If we consider local models where clients aim to optimize their model θi
locally without participating in the FL process, then each client will optimize
the following problem on their private data.

θ∗i = arg min
θi∈Rd

Fi(θi) (5.3)
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where Fi(θi) is the local loss function for the ith client. Here, the resulting
model may not be well generalizable as the training samples are generally lim-
ited, and they do not participate in FL, so no knowledge sharing has been
done.

In order to achieve a balance between generalization and personalization,
the use of PFL is beneficial. PFL can be implemented in various ways, one of
which involves including a regularized penalty term to the local objective to
ensure that the personalized model θi remains close to the global model w:

θ∗i = argmin
θi

Fi(θi) + l(θi, w)) (5.4)

where l(θi, w) is a regularization penalty term, which is typically formulated as
a function of the global model and the local model of client i.

5.3 Strategies for Personalized Federated Learn-
ing

In Figure 5.3, we illustrate the categorization of personalized federated learning
methods. These methods are divided into four main categories [Tan+22] such
as model-based, data-based, architecture-based, and similarity-based. Model-
based approaches focus on creating a strong global model for the future per-
sonalization of individual clients or improving the adaptation performance of
local models. On the other hand, data-based approaches aim to minimize
statistical differences among clients’ datasets to address the client drift issue.
Architecture-based approaches aim to develop personalized model architectures
for each client. In contrast, similarity-based approaches utilize client relation-
ships to enhance personalized model performance by constructing similar mod-
els for related clients.

5.3.1 Model-based approach
Model-based global model personalization focuses on learning a well-generalized
model from which personalized models will be fine-tuned for each client or im-
proving the adaptation performance of the local model. These methods are cat-
egorized into three parts: regularization-based (see Figure 5.4a), model adap-
tation through meta-learning (see Figure 5.4b), and transfer learning-based FL
(see Figure 5.4c).

Regularization: Regularization techniques help to reduce the impact of local
updates, which ultimately enhances the convergence and generalization of the
global model. This approach is also employed to create a better-personalized
model. It involves minimizing the objective function Fi(θi, w), which depends
on the global model and the local model of ith client (see Equation (5.4)). By
regulating the variance between global and local models, the issue of client drift
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Figure 5.3: Taxonomy of PFL methods

is addressed [Li 20]. Another approach is to consider the history of the local
models for personalization. MOON [LHS21] reduces the difference between
the representations learned by the local models and global models in order to
diminish the weight divergence. It also increases the difference between the
current local model and the previous local model to accelerate convergence.

Meta-learning: The goal of meta-learning is to train a model on a diverse set
of tasks so that it can efficiently tackle new tasks with only a few training exam-
ples. For these new tasks, the model should achieve good generalization with
just a few gradient steps and minimal data. Model-Agnostic Meta-Learning
(MAML) [FAL17] provides superior generalization and fast adaptation to new
tasks. Meta-learning can also be applied to FL [Jia+19]. It involves two phases:
meta-training and meta-testing. The meta-training phase corresponds to the
global model training in FL, while the meta-testing phase is associated with
the FL personalization step (see Figure 5.4b). FedAvg can be combined with
MAML, which changes the global objective ( see Equation (5.1)) into the fol-
lowing [FMO20],
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w∗ = arg min
w∈Rd

N∑

i=1

piFi(w − α∇Fi(w)) (5.5)

Here α > 0 is the learning rate. The global objective is the average of meta-
functions Fi of N clients. Fi(w − α∇Fi(w)) is the meta-function associated
with the ith client. In FL, meta-learning also offers a better initialization that
helps a personalized model to converge more quickly.

t t-1

t t-1

GD

Global model
adaption

Fine-tune

Frozen Fine-tune Frozen Fine-tune

(a) Regularization (b) Meta-learning (c) Transfer learning

Global
 model

Meta
 model

Task specific
 loss

RegularizerCombined
global loss

Personalized
 model

Local
 model

Figure 5.4: Model-based methods (a) Regularization, (b) Meta-learning, and
(c) Transfer learning

Transfer learning: Transfer Learning (TL) [PY09] is an effective technique
for model adaptation, allowing knowledge transfer from a pre-trained model to
a new task. It aims to transfer knowledge from a source domain to a related
but different target domain. Domain adaptation techniques in TL are often
used for PFL. These techniques aim to minimize the domain discrepancy be-
tween the global FL model (source domain) and local models (target domain)
for better personalization [Che+20]. The process (see Figure 5.4c) typically in-
volves three steps: (1) training a global model with FL, (2) adapting the global
model to local data to train local models, and (3) refining local models into
personalized models using the global model through TL. To minimize training
overhead in deep neural networks, the lower layers of the global model, which
capture generic features, are often transferred and reused in local models. The
remaining layers are fine-tuned with local data to learn task-specific features
for personalization.

5.3.2 Data-based methods
Data-based methods aim to reduce data heterogeneity issues for the client and
improve generalization. This method is further classified into data augmenta-
tion and client selection.
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Data augmentation: In machine learning, data augmentation methods are
required to enhance the statistical homogeneity of the data and help to reduce
data imbalance. Oversampling [Cha+02] and downsampling [KM+97] are two
useful methods for balancing the data. Data augmentation in federated learning
(see Figure 5.5a) is challenging because it usually requires some degree of data
sharing [Zha+18], which violates the privacy constraints of federated learning
or relies on having access to a proxy dataset that accurately represents the
overall data distribution. Training a Generative Adversarial Network (GAN)
based model on the FL server [Jeo+18] is useful to generate additional data
that are distributed to the clients to improve model performance.

Client selection: This mechanism enables sampling from a more homoge-
neous data distribution, which improves the generalized performance of the
model (see Figure 5.5b). Selected clients help to mitigate the bias due to non-
IID data [Wan+20]. Tire-based FL (TiFL) [Cha+20] is also useful for reducing
client drift by grouping clients into tiers based on their performance and adap-
tively selecting clients from the same tiers for each global round to optimize
training time and improve accuracy.

Augmented data Local data

Select
Clients

Client
selection

Global
model

Personalized
model

(a) Data augmentation (b) Client selection

Figure 5.5: Data-based methods: (a) Data augmentation and (b) Client selec-
tion

Using data-based methods to address client drift problems can help improve
the convergence and performance of a global model. However, modifying the
local data distributions can lead to information loss and change client behavior.
This information may be valuable for personalizing the global model for each
client. It’s important to note that data-based methods do not preserve privacy
and, therefore, violate privacy-preserving federated learning assumptions.
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5.3.3 Architecture-based approach

Architecture-based PFL customizes the model design for each client to im-
prove performance. This category includes two types of methods: parameter
decoupling and knowledge distillation.

Parameter decoupling: The concept of parameter decoupling entails the
separation of local private parameters from the global FL model parameters
[Ari+19]. Private parameters are trained locally and are not shared with the
FL server. Only the generalizable layers are shared (see Figure 5.6a). Param-
eter decoupling shares similarities with Federated Split Learning (FSL) (see
Figure 5.6b) [Vep+18], where the deep neural network is divided layerwise be-
tween the server and clients. Unlike parameter decoupling, in FSL, the server
model is not transferred to the client for training. Instead, only the client
model’s split layer weights are shared during forward propagation, and the
split layer gradients are shared with the client during backpropagation. This
gives FSL a privacy advantage over FL, as neither the server nor clients have
full access to the global and local models [Tha+22].

Sharable 
parameters Private

(a) Parameter Decoupling

Sharable 
parameters

Private

(b)FederatedSplit learning

Split layer

Share Split
layer

Back
propagationFeed

forward

Figure 5.6: Difference between (a) Parameter decouple-based FL and (b) Fed-
erate Split learning

Knowledge distillation: It transfers knowledge from an ensemble of teacher
models to a typically lightweight student model. Knowledge is usually repre-
sented as logit outputs. Knowledge Distillation (KD) can be implemented in
four main ways: (1) distilling knowledge to each FL client to enhance person-
alization (see Figure 5.7a) [LW19], (2) distilling knowledge to the FL server
to improve generalization (see Figure 5.7b)[Lin+20], (3) bidirectional distilla-
tion to both FL clients and the server (see Figure 5.7c) [HAA20a], and (4)
distillation among clients (see Figure 5.7d) [BMB20]. Knowledge distillation in
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federated learning provides flexibility for clients to customize model architec-
tures. Moreover, it aims to address communication and computation challenges
by lowering resource requirements.

KD

KDKD KD

 (a) KD from
Client to server

 (b) KD from
server to client

(c) Bidirectional
distillation

(d) Distillation
among clients

Global model
Personalized

model

Public data

Private data

Figure 5.7: Different Knowledge Distillation(KD) based FL (a) KD from client
to server, (b) KD from server to client, (c) Bideractional KD, and (d) KD
among clients

5.4 Clustering-based approach

Clustered federated learning groups clients into clusters based on data or model
similarity, where data distribution within each client is non-IID, and clients
independently train their local models on their personal data. Clustered FL
methods can be categorized into four types based on cluster formation criteria:

Distance between local and global model parameters: Clusters are
formed based on the similarity between the local and global model parameters.
If the distance between the local and global models is small, it means that the
client is more useful for federated learning. A high distance indicates that the
local model is diverging significantly from the global model. Instead of a single
global model, clustered FL provides multiple global models or cluster models
[Lon+23] to address heterogeneity. The clustering method could be partitioned
based [Llo82], hierarchical [BFA20; Ngu+22], etc.

Clustering based on gradient information: Instead of using model pa-
rameters, the gradient updates of the local models are used to measure the
similarity between clients [SMS20]. FedGroupProx [Dua+21] utilize the clients’
optimization directions to determine similarity between clients and form clus-
ters of similar clients.
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Clustering based on the training loss: The server creates multiple global
models instead of a single one and sends these models to all clients for local loss
computation. Each client assesses multiple cluster models using their private
data and chooses the cluster with the lowest loss. [Man+20; Gho+20].

Clustering based on the information about the data: This type of
clustering relies on data. These methods necessitate sharing sensitive client
information with the server for clustering. For instance, in [Hua+19], patients
are grouped based on their electronic medical records.

Table 5.1 provides a comparative analysis of different PFL strategies :

Table 5.1: Summary of personalization strategies

Categories Methods Advantages Disadvantages

Data-based
Data augmentation
[Cha+02]

Can be built on the general FL
training procedure

Privacy leakage can happen and
a representative proxy dataset is
required.

Client selection [Wan+20] Only modifies the client selection
strategy of the general FL train-
ing procedure

Computation overhead for client
selection.

Model-based
Regularization [Li 20] Balance personalization and gen-

eralization trade-off
Performance of model depends
on the hyper-parameters tuning

Meta-learning [Jia+19] Optimizes the global model for
fast personalization

Computing second-order gradi-
ents (Hessian) is computation ex-
pensive

Transfer learning
[Che+20]

Improves personalization by re-
ducing the domain discrepancy
between the global and local
models

Depends on the generalizability
of the global model.

Architecture-based
Parameter decoupling
[Ari+19]

Layer-wise flexibility in architec-
ture design for each client

Difficult to determine the opti-
mal privatization strategy

Knowledge distillation
[LW19]

Supports model heterogeneity May require a representative
proxy dataset. Moreover, clients
need more resources to accom-
modate client models (teacher
and student)

Clustering

Distance between param-
eters [Lon+23]

Cluster formation could be static
or dynamic. It gives better per-
formance on non-IID data

Computing clustering methods.
Every iteration is computation-
ally expensive and also depends
on the scalability of the algo-
rithm.

Gradient information
[Dua+21]

computation efficient Privacy sensitive.

clustering based on loss
[Man+20]

Support model heterogeneity Computationally expensive for
resource constraint clients

Clustering from data
[Hua+19]

Can use the pattern from data to
form clusters.

Privacy-sensitive
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Chapter 6

Federated Learning
Applications and Impacts

Federated Learning (FL) has proven its effectiveness across a wide range of
industries, including healthcare, finance, IoT, cybersecurity, autonomous vehi-
cles, and recommender systems. By enabling decentralized data collaboration
while maintaining data privacy, FL offers significant advantages in these fields.
For instance, in healthcare, FL enables collaborative model training without
compromising patient privacy, and in finance, it enhances fraud detection and
credit scoring by securely aggregating data from multiple organizations. In IoT,
FL enhances the intelligence of edge devices. Additionally, FL has transforma-
tive potential in autonomous vehicles and personalized recommender systems.
Beyond these established uses, we introduced two innovative applications from
socio-cognitive sectors where FL-based solutions have shown promising out-
comes.

Figure 6.1: Word cloud for diverse FL applications

Our analysis of the various applications of FL published between 2020 and
2024, presented with a word cloud in Figure 6.1, highlights healthcare as the
most explored application till now in FL, followed by edge computing, IoT, and
cybersecurity. Furthermore, researchers are exploring the application of FL in
autonomous vehicles, recommender systems, and finance, showcasing the wide-
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reaching impact and versatility of FL. This chapter begins with a discussion of
these general application areas where FL has demonstrated substantial benefits
before moving into applications in socio-cognitive sectors.

6.1 Federated Learning in Healthcare

In the healthcare domain, patient data is highly sensitive, and hospitals gener-
ally do not share private patient information with third parties. This limited
data availability poses challenges in developing accurate and efficient intelligent
healthcare services. In this scenario, FL-based solutions have proven effective
by ensuring that patients’ private information remains undisclosed [Wen+23].
There are several applications in health care where FL is useful, such as medical
imagery analysis, learning from Electronic Health Records (EHR), etc.

In medical imagery analysis, FL is employed to train models for segment-
ing brain Magnetic Resonance Imaging (MRI) data to identify brain tumors
[Roy+19; She+20]. Additionally, FL models trained on chest X-rays have
proven useful in predicting lung diseases, such as pneumonia [Ban+20], COVID-
19 [Fek+21; Li+24; MS23; Gua+24], etc. Recently, FL models have also been
used to diagnose conditions like Alzheimer’s disease [Lu+19] and autism spec-
trum disorder [Li+20] through neurological MRI data.

In EHR, FL models are useful in several statistical analyses from the data
such as Intensive Care Unit(ICU) mortality prediction [SSC19; Vai+21; Hua+20a],
preterm birth prediction [Bou+19], etc. Moreover, FL is useful in building mod-
els that can help in disease diagnosis [Gra+20; Tul+20] and provide supports
for personalized clinical decisions [Xue+21].

6.2 Federated Learning in Finance

Financial sectors, such as banking, insurance, etc., have observed criminal ac-
tivities [Zhe+22]. In recent years, fraudulent transactions have become a sig-
nificant problem for financial organizations worldwide. Consequently, the need
for advanced fraud detection systems to protect assets and maintain customer
trust is crucial in the financial sector. Furthermore, due to data privacy laws
that all financial organizations must adhere to, sharing customer data to create
a higher-performing centralized model is challenging [PE16; Con99; Cal18]. In
fraudulent transaction detection in banking [ASP24], credit risk management
[Xu+23b; Jov+24], loan risk assessment [Wan+23a], FL shows its supremacy
in performance.

6.3 Edge Computing

Edge computing extends cloud computing services closer to data sources, allow-
ing deep learning applications to run where the data is generated. Typically,
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model inference is performed at the edge, while training data is often sent
to third-party locations (cloud) to train centralized models. This approach
requires high bandwidth and may pose privacy risks. Federated learning ad-
dresses these issues by enabling collaborative learning at the edge. The integra-
tion of FL with edge computing provides significant benefits such as improved
privacy, lower latency, and better bandwidth utilization [Xia+21]. Employing
FL for computation offloading and content caching [Cui+20] decisions proves to
be beneficial [AHS22]. A dynamic cache allocation system based on FL allows
edge nodes to learn locally and exchange knowledge collaboratively, optimizing
resource allocations with minimal communication overhead [CP20]. The inte-
gration of FL and edge computing is being explored in various domains such as
smart healthcare [Xu+21a], smart home [AGM19], surveillance [Yan+21], etc.

6.4 IoT and Cybersecurity

The decentralized approach of FL enables Internet of Things (IoT) devices to
train local models and transmit updates to a central aggregator, thereby erad-
icating the necessity for centralized data processing. FL also provides services
such as localization and attack detection, which enhance security and reduce
network costs. FL transforms current systems and creates new opportunities
for applications such as indoor navigation and mobile target tracking by lever-
aging the computational capabilities of distributed devices to facilitate efficient
and privacy-aware IoT services.

Federated cybersecurity is an approach to enhance the safety and efficiency
of the IoT. It is designed to detect security threats, implement countermeasures,
and counter-spreading threats across IoT networks. It achieves cybersecurity
objectives through its privacy-aware capabilities, which play a crucial role in
securing the inherently vulnerable IoT environment. By leveraging FL, feder-
ated cybersecurity can provide robustness without compromising client privacy,
thereby addressing the unique challenges posed by IoT devices and networks
[GR22]. Many cybersecurity methods rely on federated learning to protect
IoT networks. However, using a single global model from one service provider
can cause problems due to data differences, making it less effective against cy-
berattacks. To address this, a clustered approach [Sáe+23] or a personalized
federated learning approach [TSM24] could be advantageous. This would in-
volve multiple global models and finely tuned local models managed by different
service providers. In the field of cybersecurity, FL research can be defined in
two ways. The first is federated learning for cybersecurity [GR22], where feder-
ated learning methods are developed to enhance privacy in cybersecurity. The
second way is the consideration of cybersecurity for federated learning, where
the FL system itself could become a target for various potential cyberattacks
[Bla+17].
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6.5 Autonomous Vehicles

Automated Vehicles (AVs) play a critical role in the advancement of intelligent
transportation systems. Each AV generates a substantial amount of sensitive
raw data, estimated at around 300 TB per vehicle annually [Blo24], which
poses significant privacy and security risks if shared with third-party cloud ser-
vices. FL addresses this challenge by employing collaborative learning, sharing
only model updates instead of raw data. Additionally, FL reduces communi-
cation overhead by transmitting much smaller model updates instead of large
datasets, making it feasible even in limited bandwidth scenarios. Collabora-
tive learning in FL allows AVs to benefit from knowledge derived from diverse
driving environments, thus improving the robustness and generalization of the
global model. The decentralized framework of FL also enables direct vehicle-to-
vehicle communication, enhancing scalability and ensuring that the model does
not rely on a single point of failure. Furthermore, distributed computation in
FL enhances resource efficiency, balances computational load, and accelerates
training. Additionally, FL enables adaptive and continuous learning (Continual
Federated Learning [Yua+23]), allowing AVs to learn from new data streams
over time. These advantages make FL a promising tool for advancing machine
learning in autonomous vehicles [Che+23].

6.6 Recommender Systems

Traditional recommender systems aggregate and analyze vast amounts of client
data in a centralized server that includes the client’s purchase history, browsing
behavior, and personal preferences. clients are increasingly concerned about
the potential misuse or mishandling of their sensitive information and the risks
associated with data breaches. Motivated by privacy issues, federated learning
is applied in recommender systems. The goal is to improve recommendation
accuracy in a way that preserves privacy. The decentralized nature of FL helps
maintain data privacy while still enabling the recommender systems to learn
from diverse client behaviors across different devices, leading to more accurate
and personalized recommendations. Moreover, FL addresses the personalized
recommendations to the clients [Chr+24].

Apart from these common applications, we have identified two applications
in the socio-cognitive areas where federated learning is beneficial.

6.7 Federate Learning for Predicting Epesodic
Event Memorability

Episodic event memorability refers to how well an individual recalls an event. It
is a fundamental part of human cognition and intelligence, playing a significant
role in mental health and executive functioning [MJS19]. The memorability of
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an event can be influenced by various factors, including the context in which
the event occurs and the intrinsic visual attributes of image cues associated
with the event [Iso+11]. Understanding episodic event memorability is crucial
because enhancing episodic memory through cognitive training, such as regular
photo review, can improve mental health and cognitive functioning. It helps in
reactivating certain memory traces and maintaining high-level event memory
[SOS13]. It is possible to implement lifelog-based memory interventions based
on current technology. A lifelogger is someone who attaches wearable cameras
or other recording devices to their body to continuously capture and record
daily activities and events, creating a comprehensive log of their life experi-
ences. However, designing effective cognitive intervention programs requires a
clear understanding of what factors influence event memory, such as identify-
ing which events have a higher training value and selecting effective photo cues
[Xu+21b]. Federated learning is essential in predicting event memorability for
several reasons,

Personalized model for each client: The memorability of an event is
largely subjective, as it varies among individuals due to differences in their
ability to remember events. Various personal attributes, such as age, race,
ethnicity, and gender, contribute to this variability. Therefore, the presence of
diverse data makes it difficult for a single global model to capture the mem-
orability of events accurately. Hence, it is necessary to develop personalized
models for individual clients.

Reducing self-rating effort: Although a siloed model may protect the pri-
vacy of clients by avoiding the transfer of knowledge through federated learning,
it is not feasible for all individuals. In order to achieve satisfactory model per-
formance, each client would be required to annotate a significant quantity of
images. However, this task is not feasible for elderly or physically disabled
individuals.

Preserve privacy: Information about the memorability of events can pro-
vide insights into a client’s cognitive abilities, enabling the detection of con-
ditions like Alzheimer’s disease. As a result, this data is extremely private
and cannot be disclosed to anyone else. Federated learning utilizes a privacy-
preserving framework in which individual clients retain data and not exchange
it among themselves. The secure channel guarantees that only model updates
are transmitted to a trusted server, allowing clients to maintain complete con-
trol over their data.

In this thesis, we have developed FL-based predictive event memorability
models utilizing the R3 dataset [Xu+21b] and performed several qualitative
and quantitative analyses has been performed to predict event memorability.
The characteristics of this dataset are given as follows.
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6.7.1 Event memorability from R3 dataset

The R3 dataset [Xu+21b] is useful for studying event memorability in real-
world contexts, with a focus on determining the factors that influence how
events are remembered. The dataset is a comprehensive collection of data
on visual semantics, event contexts, and memory outcomes that was obtained
from a detailed and controlled experiment that involved elderly lifeloggers. The
R3 dataset contains data from 47 elderly lifeloggers, of whom 37 were female.
The mean age of the subjects is 62 years and eight months, and the standard
deviation is six years and four months. The memory level and type of memory
(remember, know, and new) were assessed, resulting in a score that ranged from
9 (strong recollection) to 0 (no memory). Additional information regarding the
dataset is available in [Xu+21b].

We considered the annotations from 40 lifeloggers for FL; in total, 10,600
valid photo cues with associated memory scores were considered. In Table 6.1,
we provide the number of images annotated by each lifelogger.

Table 6.1: Sample distribution across lifeloggers

Lifelogger
ID

Sample
Size

Lifelogger
ID

Sample
Size

Lifelogger
ID

Sample
Size

Lifelogger
ID

Sample
Size

Lifelogger
ID

Sample
Size

16 277 27 267 35 282 44 274 53 247
17 270 28 277 36 282 45 247 54 261
18 276 29 277 37 273 46 271 55 274
19 282 30 272 38 268 47 252 56 256
22 271 31 275 39 264 48 261 57 238
23 272 32 275 41 264 49 276 60 190
25 275 33 272 42 229 51 278 61 181
26 182 34 272 43 271 52 269 62 179

6.8 Federated Learning for Personal Image Ad-
visor

With the rise of social media and cloud technology, many individuals store their
private documents on various cloud platforms, often without considering the
potential sensitivity of the information. While these services offer convenience,
there is an increasing demand for data protection and privacy awareness. Many
assume their documents are secure without fully understanding the security
protocols. As a result, clients must be mindful of the nature of the information
they upload to cloud services. An automated privacy advisor tool can play a
valuable role in helping clients assess the sensitivity of their private documents
before uploading them, allowing for more informed decisions about sharing.
To support such tools, deep neural network models have been developed us-
ing public image datasets [OSF17; CKS21]. However, privacy sensitivity is a
highly subjective matter, as perceptions and preferences regarding privacy risks
can vary significantly between individuals, cultures, and even according to the
privacy laws in different regions [Zho+17; JJS08; WNC11; Hen+12]. For in-
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stance, some clients may view certain attributes in an image, such as a pet, as
highly private, while others may not [Xu+24]. Therefore, personalized models
that incorporate fine-grained annotations based on a client’s perception of pri-
vacy risk for specific attributes or areas of interest are essential for accurately
reflecting individual preferences.

DIPA2 [Xu+24] addressed personalized, attribute-specific privacy prefer-
ence modeling by obtaining the annotations of privacy sensitivity scores for spe-
cific regions/attributes in images. They investigated the effect of personality-
based and cross-cultural variations in privacy preferences when developing mod-
els for image privacy in DIPA2. Individuals from Japan and the UK provided
their privacy annotations for the same set of images, and they found location-
specific differences. Furthermore, they obtained the personality information of
the annotators (clients) via a personality questionnaire and found that traits
such as ‘openness’ and ‘neuroticism’ influence the sensitivity score provided
by clients. Using this data, they developed their computational model, where
the annotators’ personality information, demographics, location, etc., was com-
bined with the raw image features to predict the sensitivity of a given region
of interest. A brief description of the DIPA2 dataset is as follows.

DIPA2: The DIPA2 dataset provides images with privacy sensitivity scores,
focusing on client-perceive privacy and security from a cross-cultural perspec-
tive. DIPA2 provides detailed object-level annotations for 1,304 images, encom-
passing 5,897 annotations that describe perceived privacy risks for 3,347 ob-
jects. Each annotation includes four critical privacy-related metrics explained
as follows.

• Information type: It specifies the type of information that might be
revealed if the image is shared.

• Informativeness: Using a 7-point Likert scale, this metric assesses the
perceived severity of potential privacy breaches, ranging from -3 (strongly
disagree) to 3 (strongly agree). This helps measure the informativeness
or threat level concerning privacy.

• Sharing scope as a photo owner: This metric identifies the groups
with whom annotators would be willing to share the image if they were
the owner.

• Sharing scope by others: This metric requires annotators to specify
the groups they would allow to repost the image, using the same options
as the sharing scope as a photo owner.

DIPA2 incorporated cultural differences by having annotations from Japan
and the UK, with 300 participants from each country. Each image is annotated
by two annotators from each country. This dual-perspective approach helps
to understand how cultural backgrounds influence privacy concerns. DIPA2
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collects extensive demographic information and personality traits of its anno-
tators. Participants provide their age, gender, and nationality, and the Big5
personality questionnaire, which measures the five personality dimensions: ex-
traversion, agreeableness, conscientiousness, neuroticism, and openness. The
details of the DIPA2 dataset are in [Xu+24].

The motivation to develop a personal image advisor using federated learn-
ing is because the centralized privacy models developed in [Xu+23a; Xu+24]
assume the entire set of image annotations and the client’s personality informa-
tion, etc., are provided by all the clients are available in a centralized location.
However, this may not be feasible if the clients are unwilling to share their pri-
vate images and personality information for model development. Furthermore,
the centralized approach suffers from conflicting privacy labels from clients
[Suc+17] from different cultures and personality types. Therefore, each client
should have a privacy model developed using their data. Still, they may not be
able to annotate a sufficiently large dataset on their own to train a model with
reliable results. Hence, clients should collaborate with other clients on model
development without sharing the private raw images.
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Chapter 7

Summary of Contributions

7.1 Paper I

Sourasekhar Banerjee, Erik Elmroth, and Monowar Bhuyan. Fed-FiS: A
Novel Information-Theoretic Federated Feature Selection for Learning Stabil-
ity. Proceedings of the 28th International Conference on Neural Information
Processing (ICONIP), Springer Cham., Communications in Computer and In-
formation Science, Vol. 1516, pp. 480–487, 2021.

7.1.1 Contributions

In Paper I [BEB21], we focused on addressing research objective RO1. We
investigated the challenges of feature selection in federated settings with het-
erogeneous data. Our proposed approach, Fed-FiS, effectively handles data
heterogeneity in feature selection for federated settings. Fed-FiS comprises two
main components: first, each client measures Feature Class Mutual Informa-
tion (FCMI) or relevance and Feature Feature Mutual Information (FFMI) or
redundancy scores for each feature and uses clustering to select local features;
second, the selected features are sent to the server, where we propose a score
function to generate global ranks for each feature. According to the ranks, the
features are selected for FL.

Author’s Contributions

Sourasekhar Banerjee identified the problem in collaboration with Monowar
Bhuyan and Erik Elmroth. Sourasekhar Banerjee was primarily responsible
for the problem formulation, algorithm design, implementation 1, and analysis.
Monowar Bhuyan and Erik Elmroth provided critical feedback at each stage of
experimentation and during the writing and finalizing the paper.

1Paper I and III have same repository https://github.com/DevBhuyan/Horz-FL.git
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7.2 Paper II

Sourasekhar Banerjee, Xuan-Son Vu, and Monowar Bhuyan. Optimized
and Adaptive Federated Learning for Straggler-Resilient Device Selection. Pro-
ceedings of the International Joint Conference on Neural Networks (IJCNN),
IEEE, pp. 1–9, 2022.

7.2.1 Contributions

In Paper II [BVB22], we focused on identifying and mitigating the impact of
stragglers in Federated Learning. Stragglers, which are low-performing devices,
tend to delay the FL process and hinder learning efficiency. To address this, we
developed Fed-MOODS, a method based on multi-objective optimization that
ranks devices according to their processing power, memory, and bandwidth.
We then proposed an adaptive device selection algorithm that prioritizes faster
devices in the initial stages and progressively includes slower devices to enhance
model accuracy over time.

Author’s Contributions

Sourasekhar Banerjee, in collaboration with Monowar Bhuyan and Xuan-Son
VU, identified the problem. Sourasekhar Banerjee was primarily responsible for
problem formulation, algorithm design, implementation2, and analysis. Xuan-
Son Vu and Monowar Bhuyan provided critical feedback at each stage of ex-
perimentation and during the writing and finalizing of the paper.

7.3 Paper III

Sourasekhar Banerjee, Devvjiit Bhuyan, Erik Elmroth, and Monowar Bhuyan.
Cost-Efficient Feature Selection for Horizontal Federated Learning. IEEE
Transactions on Artificial Intelligence (TAI), IEEE, doi: 10.1109/TAI.2024.
3436664, 2024.

7.3.1 Contributions

Paper III [Ban+24a] is a continuation of paper-I, where we studied research ob-
jective RO1 for horizontal federated learning only. We introduced Fed-MOFS,
a feature selection strategy based on multi-objective optimization. In this strat-
egy, we assess features considering their relevance and redundancy. This pro-
cess consists of two phases: local feature selection and global feature selection.
The local feature selection phase is similar to Fed-FiS. For the global feature
selection phase, Fed-MOFS utilizes multi-objective optimization to maximize
relevance and minimize redundancy. Following this, all locally selected features

2https://github.com/sourasb05/straggler_FL.git
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are ranked accordingly. We compared the performance of Fed-MOFS with con-
ventional and federated feature selection methods. Moreover, we evaluated the
scalability, stability, and effectiveness of both Fed-FiS and Fed-MOFS across
various datasets for classification and regression problems. We also examined
the effects of feature selection on model convergence and explored how data
heterogeneity impacts feature selection.

Author’s Contributions

Sourasekhar Banerjee identified the problem along with Monowar Bhuyan and
Erik Elmroth. Sourasekhar Banerjee took the lead in formulating the problem,
designing the algorithm, implementing it, and conducting the analysis. Devvjiit
Bhuyan contributed to the partial implementation of the algorithm. Monowar
Bhuyan and Erik Elmroth provided essential feedback during algorithm design,
experimentation, paper writing, and finalization.

7.4 Paper IV

Sourasekhar Banerjee, Ali Dadras, Alp Yurtsever and Monowar Bhuyan.
Personalized Multi-tier Federated Learning. Accepted for publication in the
31st International Conference on Neural Information Processing (ICONIP),
2024.

7.4.1 Contributions

In Paper IV [Ban+24b], we focused on the research objective RO3. We stud-
ied the data heterogeneity issue in multi-tier federated learning environments.
The main challenge of personalized federated learning is to effectively capture
the statistical heterogeneity characteristics of data through a communication-
efficient way and to achieve customized performance for participating devices.
We proposed PerMFL, a personalized federated learning algorithm for a multi-
tier FL setup, to address this challenge. PerMFL produces optimized and
personalized local models when clusters are known. We provided the theoreti-
cal guarantees of PerMFL for both convex and non-convex scenarios. PerMFL
provides linear convergence rates for smooth, strongly convex problems and
sub-linear convergence rates for smooth, non-convex problems. Empirically,
we compared the performance and convergence of PerMFL with the state-of-
the-art in multiple datasets. Moreover, we performed the ablation study of
PerMFL on different hyperparameter settings, different types of team forma-
tion, and partial client participation. Also, we evaluated the effect of team
iterations on the convergence of PerMFL.
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Author’s Contributions

Sourasekhar Banerjee, along with Ali Dadras, Alp Yurtsever, and Monowar
Bhuyan, identified the problem and designed the algorithm. Sourasekhar Baner-
jee led the implementation 3, and empirical analysis. Ali Dadras handled the
theoretical analysis part of the algorithm. Throughout the process, Alp Yurt-
sever and Monowar Bhuyan provided feedback on the empirical and theoretical
analyses as well as on the writing and finalization of the paper.

7.5 Paper V

Sourasekhar Banerjee, Debaditya Roy, Vigneshwaran Subbaraju, and Monowar
Bhuyan. Predicting Event Memorability using Personalized Federated Learn-
ing. Submitted for publication, 2024.

7.5.1 Contributions

In Paper V [Ban+24c], we focused on the research objectives RO3 and RO4.
Lifelog images are very helpful for people to remember past events. Predicting
the memorability of a lifelog image for triggering memory recall in a person
is crucial in cognitive interventions. Traditional methods for predicting event
memorability typically followed a centralized training approach, requiring mul-
tiple users to share their lifelog images. However, because lifelog images are
often very personal, sharing them may violate individual privacy. An alter-
native approach involved using a personal model trained on a lifelogger’s own
data, which preserved privacy but required the lifelogger to provide a large
number of self-rated images to develop an effective model. This placed a sig-
nificant burden on the lifelogger.

We proposed a clustered personalized federated learning method called Fed-
MEM to address these challenges. This approach avoided sharing raw images
while enabling collaborative learning through model sharing. We introduced
two clustering methods within this approach. The first was Model Similarity-
based Clustering (MSC), where clusters were formed based on the similarity
between a lifelogger’s local, global, and cluster models. After each global itera-
tion, clusters were updated, allowing lifeloggers to switch to a different cluster if
they found a cluster model that better matched their local model. The second
method was Memory Score Distribution-based Clustering (MSDC), where clus-
ters were formed based on the distribution of memory scores. In this approach,
clusters were established at the beginning of the FL process, and lifeloggers
remained in the same cluster throughout.

We conducted detailed evaluations of FedMEM combined with MSC and
MSDC against the state-of-the-art FL algorithms using the event memorability
dataset [Xu+21b]. Additionally, we performed a study to assess how FedMEM

3https://github.com/sourasb05/PerMFL_1.git
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with MSC and MSDC performed with varying levels of lifelogger participation,
data contributions, and convergence. Our analysis also examined the impact
of FedMEM on individual lifeloggers.

Author’s Contributions

Sourasekhar Banerjee identified the problem in collaboration with Vignesh-
waran Subbaraju, Debaditya Roy, and Monowar Bhuyan. Sourasekhar Baner-
jee took the lead in problem formulation, algorithm design, implementation4,
and analysis. Vigneshwaran Subbaraju, Debaditya Roy, and Monowar Bhuyan
provided feedback throughout the problem formulation, algorithm design, and
analysis stages and assisted in writing and finalizing the paper.

7.6 Paper VI

Sourasekhar Banerjee, Vengateswaran Subramaniam, Debaditya Roy, Vig-
neshwaran Subbaraju and Monowar Bhuyan. The Case for Federated Learning
in Developing Personalized Image Privacy Advisor. Submitted for publication,
2024.

7.6.1 Contributions

In Paper VI [Ban+24d], we focused on research objectives RO3 and RO4.
Images often contain privacy-sensitive information, and sharing such personal
images across different platforms can inadvertently expose this sensitive data.
An automated image privacy advisor application can help reduce this risk by
notifying users about the presence of privacy-sensitive information in their im-
ages. However, image privacy is highly subjective and depends on how users
annotate their images. As a result, different users may assign varying privacy
scores to the same image, leading to inconsistencies across users. A global
model struggles to address this issue of heterogeneity. Additionally, users often
have limited data, making it challenging to train personalized models for them.

To tackle the challenges of data heterogeneity and scarcity, we developed two
daisy-chaining-enabled clustered personalized federated learning algorithms:
Dynamic-Clustered-FedDC and Apriori-Clustered-FedDC. Alongside these al-
gorithms, we introduced a lightweight image privacy model called Personality-
Image attribute-Object network (PIONet), which is 20 times lighter than the
baseline model [Xu+24]. We tested the performance of the PIONet trained
on Dynamic-Clustered-FedDC and Apriori-Clustered-FedDC using an image
privacy dataset [Xu+24] and compared it with state-of-the-art methods. To
demonstrate the robustness of the algorithms against partial user participation,
we conducted an ablation study on Dynamic-Clustered-FedDC and Apriori-
Clustered-FedDC, examining different fractions of user involvement.

4https://github.com/sourasb05/FedMEM.git
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Author’s Contributions
Sourasekhar Banerjee identified the problem in collaboration with Vengateswaran
Subramaniam, Vigneshwaran Subbaraju, Debaditya Roy, and Monowar Bhuyan.
Sourasekhar Banerjee took the lead in problem formulation, algorithm design,
implementation5 of algorithms and analysis. Vengateswaran Subramaniam de-
signed the PIONet. Vigneshwaran Subbaraju, Debaditya Roy, and Monowar
Bhuyan provided feedback throughout the problem formulation, algorithm de-
sign, and analysis stages and assisted in writing and finalizing the paper.

5https://github.com/sourasb05/Fed-DIPA2.git
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Chapter 8

Future Research Directions

This thesis addressed the challenges of statistical and system heterogeneity in
federated learning. We focused on developing algorithms for horizontal feder-
ated learning where models are homogeneous, and the dataset remains static
across clients. Despite the contributions made in this thesis, federated learning
remains an active area of research with several critical open directions yet to be
explored. This chapter provides a brief overview of several promising research
directions of FL research.

8.1 Model Heterogeneity in Federated Learning

Due to varying design criteria and hardware capabilities [HAA20b; Wu+19],
clients need to customize models. That eliminates the model homogeneity
assumptions across clients and introduces a new challenge known as model
heterogeneity [HYD22]. In the context of homogeneous federated learning, the
methods are developed assuming that the server shares the initial model with
the clients. The clients then train on their private data and share the parame-
ters or gradients with the server for aggregation. This assumption cannot work
on heterogeneous models. To address the challenge of model heterogeneity,
model or knowledge distillation-based approaches were proposed [LW19; SL20],
in which knowledge transfer occurs through labeled data. However, obtaining
labeled data requires the server to collect data with distributions similar to
private data, which involves costly human efforts and demands special domain
expertise. Model sharing is another approach suggested in [Lia+20; Mat+22],
but it increases computational cost and requires additional model structure on
the client side. Moreover, simultaneously considering data and model hetero-
geneity in federated learning is a promising dimension for future research.
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8.2 Federated Continual Learning

In federated learning, one challenge is the assumption that all data and classes
are known in advance and will remain constant indefinitely. In reality, the en-
tire dataset is not available at once but is received continuously in the form
of task streams. Traditional federated learning can be seen as a two-step pro-
cess: global or collaborative update and local update [McM+17a; Yan+19].
In the collaborative updating phase, clients learn from each other, and in the
local update phase, the model is optimized on private data. However, tradi-
tional federated learning faces the issue called temporal catastrophic forgetting
(Temporal-CF) when a local model is trained on new tasks. Temporal-CF
is a significant challenge in continual learning [Die+19] that involves alter-
ing essential parameters in a single model while learning sequential tasks, re-
sulting in degraded performance in previous tasks [MC89]. Another type of
catastrophic forgetting discussed in [Yan+24] is known as spatial catastrophic
forgetting (spatial-CF). This occurs during the aggregation of different local
models. For example, in Federated Averaging (FedAvg), averaging the param-
eters of local models can result in overwriting critical parameters needed for
specific local tasks. Consequently, the aggregated global model may under-
perform compared to the local models when evaluated on the local test sets
[Gho+19; Luo+22; ZHZ21]. Federated Continual Learning (FCL) breaks the
static assumption of federated learning and allows learning from dynamic task
sequences. FCL suffers from Spacio-Temporal catastrophic forgetting. On the
client side, users must address Temporal-CF when learning new tasks. On the
server side, the server needs to overcome SpatialCF when aggregating different
local models. Therefore, local and global models should be capable of contin-
ually fusing knowledge, as federated and continual learning share the common
challenge of balancing knowledge from different data distributions [HYD22].

Knowledge can be expressed in various forms, including data, models, and
outputs. From the literature [Yan+24], knowledge fusion can happen in seven
ways, such as rehearsal [Luo+23; Wan+23b], clustering [Cas+22; Ton+21],
sharing all parameters and regularization [Wan+23b; Zha+23d], parameter/layer
isolation [Hu+22; Ji+19], dynamic architecture [MTF22; Ven+22], prototype
[Hu+22] and knowledge distillation [HYD22; WL22]. Knowledge fusion-based
federated continual learning holds significant potential and has not yet been
thoroughly explored, making it a promising direction for future research.

8.3 Vertical Federated Learning

In this thesis, we focused on Horizontal Federated Learning (HFL), where all
clients share a similar feature space but differ only in samples. Vertical Fed-
erated Learning (VFL) involves multiple clients with different feature spaces.
Due to their difference in data partitions, HFL and VFL adopt very different
training protocols. Unlike HFL, VFL keeps its data and model local but ex-

62



changes intermediate computed results. After training, each client in the VFL
possesses a separate local model. During inference, each client in HFL applies
the global model separately, while clients in VFL must collaborate to make
inferences. In recent years, there has been an increasing demand for VFL in
industries [Ou+20; Zha+24; Liu+21; Li+23b]. This is because clients from
various industrial segments, such as banks and retailers, are more likely to col-
laborate than compete. Various VFL methods have been introduced recently to
improve communication efficiency and model effectiveness. VFL is widely used
in recommender systems, finance, healthcare, wireless networks, and smart
grids. However, VFL still has significant challenges, such as interoperability
and trustworthiness. The lack of interoperability of existing frameworks makes
cross-platform collaboration difficult [Liu+24]. The VFL framework should
have privacy, efficiency, fairness, explainability, and robustness. Protecting
data during transit with well-defined privacy parameters is also crucial. The
trade-off between privacy, efficiency, and fairness remains a central focus for
future studies [Zha+23a] in VFL.
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Abstract: In the era of big data and federated learning, traditional feature selection
methods show unacceptable performance for handling heterogeneity when deployed
in federated environments. We propose Fed-FiS, an information-theoretic federated
feature selection approach to overcome the problem that occurs due to heterogeneity.
Fed-FiS estimates feature-feature mutual information (FFMI) and feature-class mu-
tual information (FCMI) to generate a local feature subset in each user device. Based
on federated values across features and classes obtained from each device, the central
server ranks each feature and generates a global dominant feature subset. We show
that our approach can find stable features subset collaboratively from all local devices.
Extensive experiments based on multiple benchmark iid (independent and identically
distributed) and non-iid datasets demonstrate that Fed-FiS significantly improves over-
all performance in comparison to the state-of-the-art methods. This is the first work
on feature selection in a federated learning system to the best of our knowledge.

Key words: Federated Learning, Feature Selection, Mutual Information, Classifica-
tion, Statistical Heterogeneity

1 Introduction

Feature subset selection is a crucial task in data mining, knowledge discovery, pat-
tern recognition, and machine learning to construct cost-effective models for multiple
applications. Information-theoretic measures have been widely used and established
paradigm for feature selection. Specifically, mutual information-based feature selec-
tion (MIFS) empowers identifying relevant features subset by removing redundant
and irrelevant features without impacting classifiers reachable performance. In gen-
eral, feature selection techniques are classified into four categories [Man21] such as
filter, wrapper, embedded, and hybrid. Traditional MIFS approaches [Hoq14; Liu21]
are designed for centralized systems where data stored in the server. Having terabytes
of user generated data and bringing them to the central server for constructing a model

*The paper has been re-typeset to match the thesis style. Reproduced with permission of Springer.
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increases communication cost and also violate users privacy. Hence, the primary so-
lution is to learn the model at the edge of the network using federated machine learn-
ing. Performing feature selection without relocating data to a centralized server is
challenging because data present in local devices suffer from statistical heterogene-
ity. Real-world data combines iid and non-iid data and massively distributed across
multiple devices. Moreover, local devices are low-end with limited resources, e.g.,
computation power. In such scenarios, traditional machine learning (ML) methods
face difficulty in handling terabytes of data with statistical heterogeneity. Therefore,
feature selection is essential and paramount to process such data and uncover useful
knowledge for developing low-cost models. Feature selection is worthwhile for feder-
ated learning from many aspects, including (1) finding the common features set from
the local device’s data; hence, federated machine learning algorithms could learn ef-
ficiently, (2) dimensionality reduction leads to lowering the computational cost and
the model size. The proposed work covered these aspects and introduced a federated
feature selection method using mutual information.
Classical feature selection methods are widely developed for centralized systems to
solve computational problems that occur due to higher dimensionality [Hoq14; Zhe21;
Liu21]. Also, federated feature selection is different from the distributed feature se-
lection [Gui20; Soh20; Mor17] being presence of heterogeneity . We propose a novel
information-theoretic federated feature selection approach (Fed-FiS) for identifying
relevant features subset from the federated dataset to learn ML models with stability.
A federated dataset can be horizontal or iid where all devices have complete informa-
tion of the features and classes and hybrid or non-iid where all devices don’t have full
details of the features and classes. But every device must have a features subset that
is common in every device. Our major contributions are as follows.

• Fed-FiS introduces a local feature subset selection method by using mutual infor-
mation and clustering.

• We develop a score function based on FFMI (minimize redundancy) and FCMI
(maximize relevance) for global feature subset selection.

• Fed-FiS finds a most relevant features subset from all devices where data is dis-
tributed in horizontal or iid manner and in hybrid or non-iid manner.

• We evaluate Fed-FiS with multiple benchmark datasets and achieved cost-
effective model performance in both iid and non-iid data partitions.

2 Problem Statement

Consider a federated learning system consists of q local devices (∀q
i=1Cli) and a server.

We assume that q ≥ 2, if q = 1, then it is considered as a centralized system hav-
ing full information of the dataset. Suppose the dataset D = Rm×n+1 contains the
features set F = { f1, f2, . . . , fn}, where fk ∈ Rn×1 is the kth feature and n is the to-
tal number of features, and class C ∈ {0,1}m×|F | where m is the number of data
samples. D is distributed across q devices such that ∀q

i Cli contains the features set
FCli = { f Cli

1 , f Cli
2 , . . . , f Cli

|FCli |
}, where f Cli

k is the kth feature of the ith device, Cli. | FCli |
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Figure 1: Fed-FiS: the proposed framework.

is the number of features present in Cli and | FCli |≤ n. Class CCli ∈ {0,1}mCli×|FCli |,
where mCli is number of data samples in the ith device and mCli ≤m. The data distribu-
tion creates statistical heterogeneity, i.e., each device (Cli) doesn’t have complete in-
formation on the entire dataset. Our objective is to uncover λ strongly relevant features
subset (F ′′λ ) that are present in every device. Hence, accuracy(ψ(< F ′′λ ,C

Cli >)) ≥ δ
and obtain stable global model performance. Here, ψ(< F ′′λ ,C

Cli >) is the trained
model on λ features at local device (Cli) and δ is the threshold for model accuracy.

3 Fed-FiS: The Proposed Approach

Fed-FiS is a mutual information-based federated feature selection approach that se-
lects subset of strongly relevant features without relocating raw data from local de-
vices to the server (see Figure 1 for proposed framework). Fed-FiS has two parts,
local features selection and global features selection. Initially, local devices indepen-
dently produce the local features subset, and later, the server generates global features
subset. The proposed approach is described as follows.

3.1 Local feature selection

Fed-FiS employs MI to measure the amount of uncertainty in a feature variable with
respect to a target variable. Algorithm 1 first computes aFFMI and FCMI scores
of all features (steps 2 to 4). FaFFMI

Cli
and FFCMI

Cli
are two 1d vector that contains
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aFFMI and FCMI scores of all features at local device, Cli (steps 5 and 6). The
aFFMI score close to zero indicates low redundancy and FCMI score near to one
means high relevance of a feature. Here, our objective is to find the features that
have low redundancy or high relevance. Based on the aFFMI and FCMI scores,
we compute CLUSTER(FaFFMI

Cli
) and CLUSTER(FFCMI

Cli
) (steps 7 and 8) using the

procedure CLUSTER (step 11 to 24) to generate feature clusters with lower aFFMI
scores and higher FCMI scores. Suppose clustering on aFFMI scores produce β1 clus-
ters, and similarly clustering on FCMI scores generate β2 clusters then the objective
function can be defined as follows, F ′

CliaFFMI = argmin∀i∈β1
centroid (clusteri) and

F ′
CliFCMI = argmax∀i∈β2

centroid(clusteri), where centroid(clusteri) returns the cen-

troid value of the ith cluster, and | clusteri | is the cardinality of clusteri. Union of
the output of steps 7 and 8 produces the final local features subset F ′Cli ⊆ FCli (steps
9). Figure 2 illustrates how MI and clustering help to obtain strongly relevant local
features subset in ith local device, Cli.

Algorithm 1 Fed-FiS (Local feature selection)
Input: FCli = { f Cli

1 , f Cli
2 , . . . , f Cli

|FCli
|} is the original feature set with | FCli | dimension and class CCli for the ith local

device Cli
Output: F ′Cli

is the local features subset from the ith local device Cli

1: procedure LocalFeatureSelect (< FCli ,C
Cli >)

2: for f Cli
k ∈ FCli do

3: f aFFMI
k = aFFMI( f Cli

k ) = 1
|FCli

|−1 ∑
|FCli

|−1

j=1, f
Cli
j ∈FCli

\ f
Cli
k

FFMI( f Cli
k , f Cli

j ) . ▷ return averaged FFMI score of fk

4: f FCMI
k = FCMI( f Cli

k ,CCli )≜ ∑
f
Cli
k ,CCli

Pr( f Cli
k ,CCli )log

Pr( f
Cli
k ,CCli )

Pr( f
Cli
k )Pr(CCli )

. ▷ return FCMI score of fk

5: FaFFMI
Cli

= { f aFFMI
k |∀d

k=1 f aFFMI
k ∈ [0,1]} ▷ vector of aFFMI scores of all features at Cli

6: FFCMI
Cli

= { f FCMI
k |∀d

k=1 f FCMI
k ∈ [0,1]} ▷ vector of FCMI scores of all features at Cli

7: F ′
Cli

aFFMI = CLUSTER(FaFFMI
Cli

) ▷ return cluster of features with low aFFMI scores

8: F ′
Cli

FCMI = CLUSTER(FFCMI
Cli

) ▷ return cluster of features with high FCMI scores

9: F ′Cli
= F ′

Cli
FCMI

⋃
F ′

Cli
aFFMI ▷ union of features with high FCMI and low aFFMI scores

10: return F ′Cli
▷ F ′Cli

⊆ FCli

11: procedure CLUSTER(Fx
Cli

) ▷ x is either aFFMI or FCMI
12: initialize µ random cluster centroid.
13: repeat

14: ∀
|Fx

Cli
|

k=1 fk ∈ Fx
Cli

15: minimum← 0
16: cluster member← 0
17: ∀µ

c=1centroid c ∈ µ
18: dist← Distance( fk ,c)
19: if dist < minimum then
20: minimum← dist
21: cluster member← c
22: recalculate centroid(c)
23: until converge
24: return F ′Cli

x . ▷ it returns cluster of features with lowest centroid while clustering aFFMI scores and highest
centroid while clustering FCMI scores.
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Figure 2: Illustration of the local feature selection.

3.2 Global feature selection

The steps for global feature selection is given in Algorithm 2. Where each local device
(Cli) sends triplets of locally selected features (τCli

k =< f Cli
k , f Cli

kFCMI
, f Cli

kaFFMI
>) to the

server for computing the global scores. The triplet vector F ′Cli of the ith device Cli is

defined as: F ′Cli = {τ
Cli
1 ,τCli

2 , . . . ,τCli
k }. Server receives feature triplets from q local

devices (step 2). A single feature fk can be shared by multiple local devices. Fserver
may have multiple similar features with different aFFMI and FCMI scores. Server
averages aFFMI and FCMI scores of the similar features, respectively (step 3). Server
generates the unique features set F ′server (step 4). We propose a score function to
globally rank each features and produce strongly relevant features subset.

Algorithm 2 Fed-FiS (Global feature selection)
Input: FServer = {F ′Cl1

,F ′Cl2
. . .F ′Clq} ▷ collection of feature triplets from q local devices

Output: F ′′k ▷ global feature subset

1: procedure GlobalFeatureSelect (FServer)
2: server obtained Fserver = {F ′Cli

|∀q
i=1,F

′
Cli
∈Cli}.

3: obtain global feature triplet by performing average over aFFMI and FCMI scores individually.
4: obtain {F ′server |∀ fk ∈ F ′server are unique}
5: compute S( fk),∀ fk ∈ F ′server using S( fk) = fkFCMI −

1
(|F ′server |−1)

× fkaFFMI ,where |F ′server |> 1 and S( fk)∈ [1,−1]

6: ∀q
i=1Cli send < S( fk), fk > to all Cli iff fk ∈ F ′server and fk ∈ F ′Cli

7: ∀q
i=1Cli, each Cli selects a feature subset F ′′Cli

⊆ F ′server , where accuracy(ψ(< F ′′Cli
,CCli >))≥ δ ▷ δ is an accuracy

threshold and send F ′′Cli
to server.

8: server applies
⋂q

i=1 F ′′Cli
= F ′′λ to generate global feature subset F ′′λ of size λ

9: return F ′′λ to all local devices.
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3.2.1 Global score function

Server computes the score of each feature present in F ′server to rank features based on
FCMI and aFFMI scores (Step 5) . S( fk) = 1 iff fkFCMI = 1 and fkaFFMI = 0, sim-
ilarly S( fk) = -1 iff fkFCMI = 0 , fkaFFMI = 1 and | F ′server | = 2. The server ranks
each feature based on the descending order of the global scores and sends the fea-
ture score vector < S( fk), fk > to all local devices iff the device originally contains
this feature (step 6). ∀q

i=1Cli, each Cli selects a feature subset F ′′Cli from the F ′server,
where accuracy(ψ(< F ′′Cli ,C

Cli >))≥ δ (step 7). Here, ψ(< F ′′Cli ,C
Cli >) is a learning

model, and δ is the benchmark accuracy collected for comparing with state-of-the-art
methods. Server collects dominant features set from each local devices and perform
intersection (

⋂q
i=1 F ′′Cli = F ′′λ ) and produce global features subset F ′′λ (step 8) of size

λ . Finally, server distributes optimal features subset to all local devices (step 9) for
learning.

4 Evaluation

In this section, we were carried out exhaustive experiments to validate the perfor-
mance of Fed-FiS using simulated environment with multiple benchmark datasets,
considering numerous number of local devices. We used the NSL-KDD99 [Tav09],
and the anonymized credit card transactions (ACC) 1 datasets for our experiments. We
divide both datasets into horizontal (iid) and hybrid (non-iid) manner across five local
devices. We carried out the analysis of the results in three parts: (1) cluster analy-
sis at each local device for local features subset selection, (2) global features subset
selection at server, and (3) performance of selected features with multiple learning
models.

4.1 Cluster analysis and local features subset selection

We employ the k-means clustering to group the estimated aFFMI and FCMI scores
obtain from each feature in NSL-KDD99 dataset distributed among five devices. The
primary task is to identify lowest redundant and strongly relevant features subset. Each
cluster verifies with silhouette coefficient (SC) to ensure obtaining quality and optimal
clusters. From Figure 3(a), we observed that the cluster size two makes maximum av-
eraged SC for all devices. Similarly, cluster size three provides maximum average SC
observed from Figure 3(b). Hence, we consider the cluster size 3 for aFFMI and 2 for
FCMI for our experiments. From Figure 3(c), we select cluster 2 that has maximum
centroid value (centroid -2). Similarly, from Figure 3(d), we select cluster 1 with min-
imum centroid value (centroid -1). Union among these two selected clusters produce
the local feature subset for the ith device Cli. The local feature subset of device Cl1

1Worldline and the ULB ML Group. Anonymized credit card transactions labeled as fraudulentor
genuine.https://www.kaggle.com/mlg-ulb/creditcardfraud, 2020
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Figure 3: Cluster analysis for local feature selection on horizontal or iid distribution of
NSL-KDD99 dataset among five local devices. (a) FCMI cluster analysis, (b) aFFMI
cluster analysis, (c) Clusters of features with respect to the FCMI scores for device
Cl1, (d) Clusters of features with respect to the aFFMI scores for device Cl1.

has 30 features. Now, we are able to exclude 11 irrelevant features. For other datasets,
we followed the similar approach to obtain the strongly relevant and optimal features
set.

4.2 Global features subset selection

We learned the KNN model at each local device keeping δ = 97%. All local devices
reach the threshold (see Figure 4(a)) using the top 23 features for NSL-KDD99 iid
dataset.Similarly for the NSL-KDD99 non-iid dataset, local devices C1 to C4 crossed
the threshold for the top 23 features, and C5 has crossed the threshold with top 35
features (see Figure 4(b)). The intersection among these features generates the global
relevant features subset of size 8.
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Figure 4: Global feature selection using single-objective optimization for NSL-
KDD99 dataset. (a) Feature subset for iid dataset at five local devices, (b) Feature
subset for non-iid dataset at five local devices.

Table 1: Performance of Fed-FiS with without feature selection and baseline models
across Federated Forest

Datasets Fed-FiS without FS classical MI-based FS
Optimal feature subset Accuracy (%) Feature set Accuracy (%) Feature subset Accuracy (%)

NSL-KDD99 iid 23 99.3 41 99.5 23 99.24
NSL-KDD99 non-iid 9 89.33 15 54.07 7 92.75

ACC iid 10 99.95 29 99.96 6 99.3
ACC non-iid 9 99.83 14 99.81 10 99.83

4.3 Steady learning ability

We trained the federated forest model on both iid and non-iid division of NSL-KDD99
and the ACC datasets across 5 local devices. We compare the feature’s subset size and
the model’s performance in Table 1 among Fed-FiS, MI-based baseline feature selec-
tion method2(state-of-the-art), and without using feature selection (without FS). In the
the baseline method, we computed MI of all features that are present in different de-
vices and then does the intersection among them to obtain feature subset for learning.
On NSL-KDD99 and ACC iid dataset, Fed-FiS selects global features subset of sizes
23 and 10, respectively, and achieves 99.3% and 99.83% accuracy, respectively. In
contrast, without choosing any features, the federated forest achieves 99.5% and
99.96% accuracy, respectively. The state-of-the-art method generates subsets of sizes
23 and 6, respectively and produces accuracy of 99.24% and 99.3%, respectively. The
performance of proposed method is almost equivalent with minimum number of rele-
vant features set in compare to the state-of-the-art and without FS.
For both NSL-KDD99 and ACC non-iid dataset, Fed-FiS selects a global feature sub-
set of 9 and achieves 89.33% and 99.83% accuracy, respectively. The state-of-the-art
method selects features subset of size 7 and 10, respectively and obtain 92.75% and
99.83% accuracy, respectively. Without FS, i.e., only selecting common features of

2https://scikit-learn.org/stable/modules/generated/sklearn.feature selection.mutual info classif.html
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five devices, it achieves 54.07% and 99.81% accuracy, respectively. For the non-iid
scenario, the algorithm also depends on the common features set of each local device.
If all devices share features more extensively, then the feature selection yields stability
in learning.

5 Conclusion and Future Work

In this paper, we propose Fed-FiS, a mutual information-based federated feature se-
lection method to select strongly relevant features subset for stable and low-cost fed-
erated learning. We used local feature selection on every local device using clustering
of aFFMI and FCMI scores to select feature subset in federated settings. The server
produces the global rank of each feature and generates a global feature subset. Fed-
FiS achieved expected model performance with lower number of features set, verified
with federated forest algorithm. The extension of this work for anomaly detection in
edge clouds is underway.
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Abstract: Federated Learning (FL) has evolved as a promising distributed
learning paradigm in which data samples are disseminated over massively con-
nected devices in an IID (Identical and Independent Distribution) or non-IID
manner. FL follows a collaborative training approach where each device uses
local training data to train local models, and the server generates a global
model by combining the local model’s parameters. However, FL is vulnera-
ble to system heterogeneity when local devices have varying computational,
storage, and communication capabilities over time. The presence of stragglers
or low-performing devices in the learning process severely impacts the scala-
bility of FL algorithms and significantly delays convergence. To mitigate this
problem, we propose Fed-MOODS, a Multi-Objective Optimization-based De-
vice Selection approach to reduce the effect of stragglers in the FL process.
The primary criteria for optimization are to maximize: (i) the availability
of the processing capacity of each device, (ii) the availability of the memory
in devices, and (iii) the bandwidth capacity of the participating devices. The
multi-objective optimization prioritizes devices from fast to slow. The approach
involves faster devices in early global rounds and gradually incorporating slower
devices from the Pareto fronts to improve the model’s accuracy. The overall
training time of Fed-MOODS is 1.8× and 1.48× faster than the baseline model
(FedAvg) with random device selection for MNIST and FMNIST non-IID data,
respectively. Fed-MOODS is extensively evaluated under multiple experimen-
tal settings, and the results show that Fed-MOODS has significantly improved
model’s convergence and performance. Fed-MOODS maintains fairness in the
prioritized participation of devices and the model for both IID and non-IID
settings.

Key words: Federated learning, Adaptive device selection, Statistical hetero-
geneity, Multi-objective optimization, and Straggler-resilient device

∗The paper has been re-typeset to match the thesis style. Reproduced with permission of
IEEE.
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1 Introduction

Federated learning (FL) is a paradigm in distributed machine learning where
multiple devices collaboratively train a model without sharing raw data
[Ban20]. Apart from privacy, it reduces the communication burden by sending
only the model parameters instead of sending terabytes of data to the server.
Implementation of federated learning is very challenging, as it suffers from sys-
tem (device) heterogeneity and statistical (data) heterogeneity. System hetero-
geneity refers to devices with varying computation capacity, memory capacity,
bandwidth, etc., [Wan21; Yan21; Smi17], and statistical heterogeneity means
Identical and Independent Distribution (IID) and non-Identical and Indepen-
dent Distribution (non-IID) of data [Smi17; Ban21]. Due to stragglers in the
federated learning system, keeping statistical accuracy high and dealing with
system heterogeneity simultaneously is very challenging. Straggler devices are
low performing devices that are incompetent in processing, communicating and
storage. Involving stragglers causes significant delays from learning to inference
[Kai21].

Federated learning is of two types based on how devices take part in learning:
cross-device and cross-silo [Kai21]. In cross-silo FL, every device takes part
in every round of the learning process. Compared to that, in cross-device
FL, millions of devices are attached to the edge. Since devices are dynamic,
all devices cannot be available for the entire process. Therefore, only a few
devices participate in the learning process in each round. The server selects a
subset of devices randomly for every round of training. However, the random
selection of devices works better for straggler-free FL settings. In the presence
of huge stragglers, mainly on non-IID data, the random selection based learning
approach converges very slowly, and a high impact of randomness is present
in the model training [Li 20; Li 19a]. The server’s interest is most preferred
in client selection i.e., the devices that respond quickly to the server only take
part in the learning. As a result, stragglers can never contribute to the FL.
Moreover, removing straggler devices and only training models based on the
non-straggler devices may not generalize the final model properly and cause
huge information loss, which may lead to unfairness in the learning process
and jeopardize the sustainability of the FL system. Therefore, it is essential
to choose devices such that the model converges quickly, produces sufficient
accuracy, and maintains fairness.

To mitigate these problems, Reisizadeh et al. [Rei20] proposed an approach
called FLANP that leverages the interplay between model accuracy and device
heterogeneity. The algorithm includes faster devices based on computation ca-
pability in the early learning rounds and later involves stragglers. However,
they only ranked devices based on their computational ability. We considered
computation, communications, and storage characteristics of devices altogether
and introduced Fed-MOODS, a multi-objective optimization-based adaptive
device selection approach. We inferred multi-objective optimization to rank
devices based on system performance, i.e., available processing, memory, and
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bandwidth capacity. Devices are selected adaptively from the Pareto fronts to
contribute in every global rounds. Multiple devices with varying computing and
storage capabilities constitute a typical federated learning environment. Due
to slow devices or stragglers, applying standard federated learning algorithms
such as FedAvg [McM17] on highly heterogeneous devices result in significant
and unanticipated delays. Our focus in this work is to mitigate these problems
that aggravates from system heterogeneity in the FL framework while keeping
the performance of the model stable. We employ interaction between statisti-
cal accuracy and system heterogeneity to design a straggler-resilient federated
learning approach that selects a subset of available devices adaptively in each
global round of training. Our main contributions are as follows.

• We introduce Fed-MOODS, a straggler-resilient multi-objective
optimization-based adaptive prioritized device selection approach to
mitigate the system heterogeneity problems in federated learning.

• Fed-MOODS considers computation, communications, and storage hetero-
geneity and formulates them as multi-objective functions to optimize and
generate the rank of the local devices.

• Fed-MOODS minimizes the overall wall-clock training time of the model,
improves the model’s performance, maintains fairness in device selection,
and generalizes the final model.

• We experimented Fed-MOODS across multiple benchmark datasets
(MNIST, FMNIST, and CIFAR-10) and baseline models (FedAvg, Fed-
Prox) with random-device selection. We show that the proposed approach
is superior to other baselines models for both IID and non-IID settings.

We assumed that (i) Devices would share the system level information with
the server. (ii) Local devices and the server are both trustworthy. (iii) During
the learning process, the device’s local data remains unchanged, and (iv) all
participating devices remain active for the whole learning.

Organization. The rest parts of paper is organized as follows: we provide a
brief literature survey in Section 2. The proposed approach is given in Section
3. Experiments, results, and analyses are reported in Section 4. Finally, the
conclusion and future work are discussed in Section 5.

2 Related Work

Federated Learning [McM17] allows users to learn a predictive model collab-
oratively while maintaining privacy, ownership, and data localization. Each
participating device produces a model update during local training, which is
sent to the server and aggregated with other devices’ models to produce the
global update [Wan21]. This global update is subsequently distributed to all
participating devices, allowing them to improve their local models in next con-
secutive rounds. The participating devices are heterogeneous from the system
and data perspective. Federated learning causes system heterogeneity problems
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for devices’ having different processing, communication, and storage capaci-
ties. Asynchronous approaches have shown considerable benefits in distributed
or decentralized learning [Lia18], but these approaches are not very attrac-
tive in FL for the staleness of slow devices [Sti18; Xie19]. FLANP [Rei20], a
straggler-resilient adaptive device participation algorithm to reduce the strag-
glers’ effect in FL. The learning begins with computationally faster devices
and then adaptively includes the slower devices. This process continues until
the model converges. In [Wan21], the authors analyzed the impact of statis-
tical heterogeneity on the device selection, the convergence of the model, and
fault tolerance in FL settings. In [Mit21], the authors showed that the exist-
ing federated algorithms suffer from a speed-accuracy problem in presence of
statistical and system heterogeneity. The algorithm finds global minima at a
sub-linear rate. To solve that issue, they proposed FedLin, which guarantees
linear convergence to the global minima. In [Yan21], the authors carried out
empirical studies on the effect of system heterogeneity in the FL system. They
built a heterogeneity-aware FL framework that compiles standard federated
algorithms while considering the system heterogeneity. In [Shi21a], the au-
thors proposed a FL model with attention transfer that reduces the effect of
stragglers. A few more works on adaptive FL are in [Can21; Li 21].

Multi-objective optimization-based solutions in federated learning is interest-
ing in finding model optimality by satisfying the fairness constraints of every
participating device [Cui21; Hu 20]. Fairness in federated learning is a chal-
lenging task to accomplish [Shi21b]. Unfairness may arise in different phases
of the FL process, starting from local device selection [Zho21; Hua20] to model
optimization [Moh19; Li 19b]. The notions of fairness in FL can be catego-
rized in different ways, such as, accuracy parity [Li 19b], good-intent fairness
[Moh19], selection fairness [Zho21; Hua20], contribution fairness [Lyu20], and
many more. In this paper, we only considered good-intent fairness and selection
fairness.

Here, we employ the advantages of multi-objective optimization to achieve
optimal performance of the learned model in presence of stragglers.

3 Proposed Approach

This section starts by describing the system model of the proposed approach.
Then, we formulate the adaptive FL problem and the objectives of device
selection. After that, we describe the Fed-MOODS algorithm and analyze the
computation time for learning.

3.1 System model

Many heterogeneous devices are distributed across the edge of the network and
connected to the global server in typical FL settings. A set of devices is selected
adaptively from the Pareto fronts in every global round (see Figure 1). On the
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other end, a global server is present to orchestrate the learning process and
build the global model. The server broadcasts the learned model to all the
devices. The procedure continues until the model converges.

Heterogeneous devices registered to the global server 

Global
aggregation

Select  devices from the
Pareto fronts (Fed-MOODS)

global
model

transfer
to every
device
after
each
global

iteration 

Local
models

Global
server

Figure 1: Overview of Fed-MOODS framework - an adaptive straggler-resilient
device selection.

3.2 Problem formulation

The problem formulation is divided into two categories: (i) Multi-objective
formulations of device heterogeneous properties, such as computation or pro-
cessing, communication, and storage capacity. The primary goal is to optimize
these functions or properties, generate Pareto fronts, and rank devices based
on them. (ii) The formulation of the empirical loss function for the adaptive
device selection based on Pareto fronts to mitigate the statistical heterogeneity
problem in FL.

3.2.1 Multi-objective formulations

We formulate three objective functions based on the available device computa-
tion or processing, memory, and bandwidth capacity of each device.

Maximize available processing capacity: Low level performance can
measure the instructions per cycle (IPC) of each device processing capac-
ity[Yad16]. In a multi-core environment, a processor can handle multiple in-
structions per clock cycle. Multiple devices have CPU (central processing unit)
with different processing capacities in a heterogeneous federated environment.
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The CPU utilization (u) is estimated as: u = 1 − pa [Yad16], where a is the
number of processes currently running, p is the average percentage of wait-
ing time[Yad16]. If the device contains c multiple cores then the overall CPU
utilization of each device can be defined as:

Du =
1

c

c∑

i=1

(1− pa)

where Du ∈ [0, 1]

(1)

A device contains GPU (Graphics Processing Unit) along with CPU. Based on
Equation (1), GPU utilization is Dgu and CPU utilization is Dcu. The operat-
ing system (OS) of each device checks how much GPU (Dg) and CPU(Dc) are
free using Equations (2) and (3), respectively.

Dg = (1−Dgu)(%) (2)

Dc = (1−Dcu)(%) (3)

Suppose N devices are participating in FL. The server attempts to maximize
the available processing capacity (DPA

i ) as in Equation (4).

N
max
i=1

DPA
i =

1

2
(Dg +Dc)

s.t. 0 ≤ Dg ≤ 100,

0 ≤ DC ≤ 100

(4)

Maximize available memory: Memory requirement (MR) for device Di

is the amount of memory required to train a neural network model1. While
training a ConvNet, the total required memory includes storage for parameters,
intermediate layers, and the gradient of each parameter. An extra memory is
needed if the learning uses optimizers like momentum, RMSprop, Adams, etc.
Hence, the memory requirement (DMR

i ) to learn a neural network is calculated
as follows.

DMR
i = B ×

L∑

l=1

MRl ×Byte

where the neural network has L layers (including input and fully connected
layers) and B is Batch size. Suppose the ith device, Di has current total
memory DTM

i . The available memory, DAMR
i is computed as follows.

DAMR
i = DTM

i −DMR
i

Now server collects DAMR
i from the N devices and maximize in the following

Equation (5).

1https://cs231n.github.io/convolutional-networks/#case
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N
max
i=1

DAMR
i

s.t.
DTM

i

DMR
i

≥ 1,

0 ≤ DTM
i ≤ 100,

0 ≤ DMR
i ≤ 100

(5)

Maximize available bandwidth: Network bandwidth can be estimated
based on the amount of data transferred between devices and the server. Each
device calculates the total amount of data (DTD

i ) to be replicated in giga-
bytes, data duplication ratio (DDR

i ), and length of the replication window
time (DRWT

i ) in seconds. The server collects these information from each de-
vice and calculates the required network bandwidth2 (DRNB

i )in Gbps for N
devices using Equation (6).

DRNB
i =

DTD
i ∗ (100/DDR

i )

(DRWT
i )

(6)

Server computes the required network bandwidth for N local devices and per-
form the objective in the following Equation (7).

N
max
i=1

DRNB
i

s.t. DRWT
i ≥ 1,

DDR
i ≥ 100,

DTD
i ≥ 0

(7)

Multi-objective optimization of these three functions generate the Pareto fronts
where devices are arranged in ascending order from best to worst performing
devices.

Table 1: Fed-MOODS: an example to illustrate how the multi-objective opti-
mization process works across 5 devices.

Device(s) PA MA AB PAd MAd ABd PAd + MAd + ABd

D1 97 56 25 3 0 4 7
D2 99 76 10 4 3 3 10
D3 82 81 3 2 4 1 7
D4 56 60 5 0 1 2 3
D5 70 61 2.5 1 2 0 3

Illustration: We showcase a scenario in which there are 5 heterogeneous
mobile devices for smooth understanding. These devices vary in configura-
tions, i.e., different available processing capacities, memory, and bandwidth

2https://bit.ly/ibm-itsm-srv-doc
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of the communication channels. According to Table 1, let 5 devices are:
D = {D1, D2, D3, D4, D5}. The server first computes the available process-
ing capacity (PA), available memory (MA), and available bandwidth (AB) of
each device. Next, the server calculates the domination count {(PAd), (MAd),
and (ABd)} of each device. Domination count of a device, Di signifies how
much better the device is in terms of PA, MA, and AB compared to the other
participating devices. For example, in Device D2, PAd is 4, MAd is 3, and
ABd is 3, i.e., Device D2 has maximum available processing capacity. It has
more available memory than 3 devices except for D3 and the available band-
width is also better than 3 devices except for D1. We add all the domination
counts (PAd +MAd + ABd) and rank each device based on them. The final
list contains {{D2}, {D3, D1}, {D5, D4}}. If there is a tie in domination count,
we select the device with the highest available processing capacity to break the
tie. To estimate the domination counts, we employ a multi-objective optimiza-
tion approach, NSGA-II [Deb02] to obtain an optimal solution. NSGA-II is
an evolutionary multi-objective optimization approach that can optimize three
defined objectives efficiently.

3.2.2 Federated learning formulation

Considering a federated learning system consists of N local devices, D =
{D1, D2, . . . , DN}, and a server. Each device Di ∈ D has access to m data
samples denoted by XDi = {xDi

1 , xDi
2 , . . . , xDi

m }, and XDi ∈ R. The empirical
loss function of device Di is defined as:

LDi(wDi) =
1

m

m∑

j=1

l(wj , x
Di
j )

where l(w, xDi
j ) is the empirical loss of the model w trained on the jth data

sample of the ith device Di. For any global iteration, suppose the participating
devices are n′ ( n′ ← min(n + ⟨τ, k⟩, N), and n′ ∈ [1, N ]) then the empirical
loss for each global round (L(wτ )) is defined as:

L(wτ ) ≡ Ln′(wn′) =
1

n′

n′∑

i=1

LDi(wDi)

where Ln′(wn′) denotes the average empirical loss over n′ devices. Number
of devices are increasing adaptively in each global round (τ) until the global
model converges. The adaptiveness is denoted as k. Here, the objective is to
minimize the global loss. The empirical loss for G global rounds is defined as:

L(w∗) =
G

min
τ=1
L(wτ )
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3.3 Algorithm

We propose Fed-MOODS, a multi-objective optimization-based adaptive de-
vice selection approach for FL that maximizes available processing capacity,
memory, and bandwidth among N devices. Based on the three objectives
mentioned in Equations (4, 5, and 6), Fed-MOODS ranks devices according
to their performance and selects devices adaptively in each global round. We
describe Fed-MOODS in two parts, Algorithm 1 for adaptive device selection
and learning; and Algorithm 2 for multi-objective optimization based device
ranking.

Algorithm 1: It has two phases. Phase I (steps 2 to 3) is to rank devices
according to the Pareto fronts. Phase I is described in detail in Algorithm 2.
In Phase II (steps 4 to 18), the server adaptively selects local devices from D
(step 5) for each global iteration until the model converges. The algorithm is
adaptive (steps 5 to 15), i.e., in every global round of learning, devices get an
opportunity to contribute to the global model. At first, the algorithm selects
the first n devices from the set D and then adaptively adds k devices in each
global round (τ) until the model converges. In the worst case, all devices
participate in the learning process.

Algorithm 1 Fed-MOODS - Adaptive Device Selection and Training
Input: D ▷ Collect meta-data to compute available processing capacity, memory, and
bandwidth from N number of total devices
X = {∀Ni=1X

Di}
Output: L(w∗) ▷ The optimal model, and loss function

initialize: wτ = w0 ▷ Initialize global model weight

1: procedure Fed-MOODS(D)
2: Phase 1:
3: D ← call DEVICERANK(D) ▷ Rank all devices
4: Phase 2:
5: Select first n′ devices from D
6: for each global iteration τ = 1, 2, . . . G do
7: Broadcast global model wτ to n′ devices
8: for each selected devices Di in parallel do
9: for each local epoch E do
10: for batch b ∈ XDi and b ≤ m do. ▷ Data divided in to m batches

11: wDi ← wDi − ηl(wb, x
Di
b ). ▷ Local model at device Di

12: LDi (wDi ) = 1
m

∑m
j=1 l(wj , x

Di
j ) ▷ Empirical local loss function at device Di

13: wτ ← 1
n′

∑n′
i=1 w

Di
τ ▷ Global model at round τ

14: L(wτ ) ≡ 1
n′

∑n′
i=1 LDi (wDi ) ▷ Empirical loss at global round τ

15: n′ ← min(n+ ⟨τ, k⟩, N) ▷ k devices are added from the Pareto fronts in every
global iteration.

16: w∗ = minw{L(w) ≡
∑G

τ=1 wτL(wτ )} ▷ Optimal global model

17: L(w∗) = minGτ=1 L(wτ ) ▷ L(w∗) is the minimum global empirical loss among τ
global models.

18: return L(w∗)
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Algorithm 2: The server initially collects meta-data from devices regarding
the processing capacity, memory, and bandwidth, respectively. Then calculate
DPA

i , DAMR
i , and DRNB

i for each device (i ∈ N)(steps 3 to 5). Later, we
employ NSGA-II to find the domination count of the devices and rank them
accordingly to their Pareto fronts (step 6). Finally, the server generates a list of
devices, D′, based on their ranks (steps 7 to 9) and returns to the Fed-MOODS
(step 10).

Algorithm 2 DeviceRank - Algorithm for Ranking Devices

Input: D = {∀Ni=1Di < Dg , Dc, DTM
i , DMR

i , DTD
i , DDR

i , DRWT
i >} ▷ Server

collects meta-data to compute available processing capacity, memory, and bandwidth from
N number of total devices
Output: D′ ▷ List of devices according to the maximum to minimum domination count.

1: procedure DeviceRank(D)
2: for i =1 to N do
3: Compute DPA

i (Dg, Dc) ▷ Compute available processing capacity of the ith device.

4: Compute DAMR
i (DTM

i , DMR
i ) ▷ Compute available memory of the ith device.

5: Compute DRNB
i (DTD

i , DDR
i , DRWT

i ) ▷ Compute availble bandwidth of the ith device.

6: Compute ∀Ni=1 Dom(Di(D
PA
i , DAMR

i , DRNB
i )) ▷ Compute domination count of every

devices using NSGA-II. and rank them according to the Pareto fronts
7: for i = 1 to N do
8: Select the device Di successively from the Pareto fronts.
9: D′ = D′ ∪Di ▷ List of devices according o their Pareto fronts

10: Return D′

3.4 Computational time analysis

We characterize and compare the computational run-time of Fed-MOODS with
random participation of devices as a baseline. Suppose the computation time
of the N available devices are {TCl1 , TCl2 , . . . TClN }. In Algorithm 1, each local
device performs E local iterations and G global rounds until convergence. n
is the initial set of devices, k is the adaptiveness factor. System heterogeneity
causes different computation time for each device. Therefore, server waits until
the slowest device responds. The computational run-time of TFed−MOODS is
defined below.

Definition 1. For constants N, n, k, G, and E, the time required to train global
model is O(G ∗ E ∗ (Tn + Tn+k + . . .+ Tn+⟨τ,k⟩)), where 0 ≤ τ ≤ G.

Tn+⟨τ,k⟩ is the maximum unit computation time of the slowest device at the

τ th global round. Tn+⟨τ,k⟩ can be defined as, Tn+⟨τ,k⟩ = max
n+⟨τ,k⟩
j=1 TClj .

From the Figure 5, we can observe that the computational run-time is
exponential in nature, what we represent as eλ, where λ is a constant.
The average run-time of TFed−MOODS can be written as, T̄Fed−MOODS =
1
G

∑G
τ=1(max

n + ⟨τ,k⟩
j=1 TClj ) ≈ O(eλ).

For the same settings, random device participation takes G′ global rounds
to converge. The computational run-time TRandom as the baseline is defined
below.
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Definition 2. For constants N, G′, and E, the time required to train global
model is O(G′ ∗ E ∗ (T1 + T2 + . . .+ TG′)).

TG′ is the maximum unit computation time of the slowest device (select n′ from
N) in random selection for the Gth global round. Similarly, from the Figure
5, we can observe that the computational run-time for TRandom is exponential
in nature. Therefore, the average run-time for learning by randomly selecting

devices is T̄Random = 1
G′

∑G′

τ=1(maxn
′

j=1 TClj ) ≈ O(eλ
′
), where λ′ is a constant.

In the worst case, λ = λ′, then T̄Fed−MOODS = T̄Random, otherwise, λ < λ′,
and T̄Fed−MOODS < T̄Random. Experimentally, we have shown TFed−MOODS ≤
TRandom and T̄Fed−MOODS ≤ T̄Random in Section 4.7. To support our analysis
of computational run-time for TFed−MOODS when compares with Trandom as
baseline, we prove a lemma below.

Lemma 1. The average run-time of Fed-MOODS (T̄Fed−MOODS) is always
less than or equal to the baseline federated learning with random device selection
(T̄Random) iff λ ≤ λ′.

Proof 1. Let eλ
′
< eλ as estimated run-time for Trandom and TFed−MOODS,

respectively. According to the Definition 1 and 2, the following conditions λ ≤
λ′ and λ : λ′ ≤ 1 always hold. Therefore, the assumption is false. Hence,
proved by contradiction.

4 Experiments and Analysis

4.1 Simulation setup

We simulate a FL environment in our local machine to reflect the effect of
stragglers. In order to model the device heterogeneity, we incorporated two
different approaches to validate Fed-MOODS. At first, we employ different local
rounds to different devices to incorporate system heterogeneity as we simulated
the federated network in a computer. We allowed a maximum of 10 local epochs
to a non-straggler device and less than 10 local epochs to stragglers. Assuming
that, for a synchronous federated learning, a straggler will perform less epoch
than the non-straggler device. The simulation setup is given in Table 2. We
compared the performance of Fed-MOODS with the randomly selected devices.
Secondly, to measure the wall clock run-time of Fed-MOODS, we assumed the
run-time of non-straggler devices is in the range of 102 ms to 103 ms, and for
stragglers, it is in the range of 103 ms to 104 ms. All devices complete a fixed
set of local rounds in each global round. For validation of run-time, we only
used FedAvg as a baseline method. We used the early stopping mechanism to
terminate the learning process if there is no improvement in loss function for
10 consecutive rounds.
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Table 2: Simulation setup: parameters, values, and their description
Parameter(s) Value Description

local devices 100 Devices for a local update of the model
Server 1 For performing multi-objective optimiza-

tion, model aggregation
Federated algorithm 2 FedAvg[Mit21], FedProx[Li 20]
local device’s participation Adaptive and random Adaptive participation of devices for Fed-

MOODS, by random, frequency of partici-
pation is 10%

Dataset IID and non-IID IID and non-IID division of MNIST, CIFAR-
10, and FMNIST dataset

Local iteration Maximum 10 Number of local iteration at each device for
each global iteration.

Global iteration Maximum 100, 500 100 global iterations for learning on MNIST
and FMNIST dataset. 500 global iterations
for learning model on CIFAR-10 datasets.

Presence of stragglers 10%, 50%, 70%, 90% Presence of stragglers in each global itera-
tion for different experiments.

Training network 3 Three Convolutional Neural Network (CNN)
having two hidden layers for training on
MNIST, CIFAR-10, and FMNIST datasets,
respectively.

Optimizer 1 Stochastic Gradient Descent (SGD)
Performance metrics 2 Test accuracy, F1-score

4.2 Datasets and networks

We used three benchmark datasets, MNIST [Den12] (60,000 samples for train-
ing and validation, and 10,000 testing samples), CIFAR-10 [Kri09] (50,000 sam-
ples for training and validation, and 10,000 testing samples), and FMNIST
[al17] (60,000 samples for training and validation, and 10,000 testing samples)
to validate Fed-MOODS. All datasets are distributed to devices in IID and
non-IID manner.

To implement Fed-MOODS, we created a federated network consisting of 100
heterogeneous devices. Each device trains a 2 layered convolutional neural
network (CNN). The details of the neural network is given in the Table 3.

Table 3: Neural network architecture

Neural
Network

Number of
Convolutional

layer

In
cha-
nnel

Out
cha-
nnel

Kernel
size

Number of Fully
connected

layer

In
feat-
ures

Out
feat-
ures

Activation
function

CNNMnist 2 1 10 5 2 320 50 softmax

10 20 50 10
192 120

CNNFMnist 2 1 6 5 4 120 60 ReLU

6 12 60 40
40 10

3 6 400 120

CNNCifar10 2 6 16 5 3 120 84 softmax

84 10
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4.3 Baseline algorithms

We consider FedAvg [McM17] and FedProx [Li 20] as federated algorithms
integrated with Fed-MOODS to compare the performance of adaptive device
selection with random partial participation of devices. We evaluated the perfor-
mance of Fed-MOODS with these baselines, both with respect to global rounds
and wall clock time simulations.

4.4 Rank devices based on NSGA-II

In Phase-I of the Fed-MOODS, we attempt to maximize three objective func-
tions (see Fig. 2(a)) mentioned in subsection 3.2.1 to characterize each device
and obtain the rank of devices (see Fig. 2(b)) based on their domination counts.
A device with the highest domination count is the strongest device. Similarly,
a device with the lowest domination count is the weakest device concerning its
system heterogeneity.
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Figure 2: (a) Device characteristics - devices based on the three objective
functions: available processing capacity, memory, and bandwidth. (b) Devices
with the domination counts.

4.5 Comparison with random device participation

4.5.1 Convergence comparison

We verified the convergence of Fed-MOODS integrated with FedAvg[McM17]
and FedProx[Li 20] separately with random device selection (selecting 10% of
the total devices in each global round) in the presence of different fractions of
stragglers (10%, 50%, 70%, and 90%) in Fig. 3 (left to right). The conver-
gence curves are similar for the IID datasets (see Fig. 3(a), 3(c), and 3(e)).
Fed-MOODS converges quickly; therefore, it maintains the model’s fairness
without involving all stragglers in the learning process. But for non-IID (see
Fig. 3(b), 3(d), 3(f)), Fed-MOODS takes more global rounds to converge, but
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it is faster than random device selection. The convergence curves are more
stable compared to learning with random device selection.

4.5.2 Fairness in terms of performance

We compared the performance (see Table 4) of Fed-MOODS with baseline
models with partial device selection based on the F1-score at a frequency of
90% stragglers in both IID and non-IID settings.

We compared the performance of Fed-MOODS both involving stragglers and
without involving stragglers for the IID data. Here, without incorporating
stragglers imply that we first divide data into 100 devices and then remove
stragglers. We only kept 10 non-straggler devices for learning. We observed
that Fed-MOODS gives a 97.6% F1-score for the MNIST IID dataset even if we
do not incorporate stragglers. Similarly, for CIFAR-10 (51.79%) and FMNIST
(78.16%), the performance is almost equivalent to the models incorporating
stragglers. Even though we omit 90% of the devices, Fed-MOODS still main-
tains model fairness by giving an equivalent performance with baselines.

For non-IID division of data, the performance of Fed-MOODS (94.27% for
MNIST, 49.33% for CIFAR-10, and 70% for FMNIST) is also better than the
baseline models with randomly selected devices ((93% for MNIST, 9.37% for
CIFAR-10, and 50% for FMNIST) at 90% straggler frequency. Even with high
frequency of stragglers, Fed-MOODS can often achieve maximum performance.
It also maintains fairness, as Fed-MOODS allows every device to contribute.
Here, the performances of the models on CIFAR-10 and FMNIST are deficient
because we used a simple 2-layer CNN for training and used the early stopping
mechanism to terminate. However, since the main purpose of the experiment
is to examine the behaviour of Fed-MOODS and the baselines regarding strag-
glers, the simple architecture suits the needs as well.

4.5.3 Fairness of probability of devices’ appearance (PoA)

We assumed that N heterogeneous devices are available in the FL system, and
all participate in learning. For random selection, if we select n′ devices ran-
domly from N devices in each global round, then the PoA of a device p(Di)
for the G global rounds is (1 − (N−1N )n

′
)G. Even though the straggler devices

are present, random selection gives an equal PoA to each device. Fed-MOODS
is biased toward non-straggler devices and does not assign equal PoA to every
device. According to Algorithm 1, the PoA of a device in training rounds is
0 ≤ P (Di) ≤ 1, where P (Di) =

Ḡ
G . Here, Ḡ is the number of appearances of

a device (Di) in total global rounds, and G is the total global rounds. Fed-
MOODS adaptively incorporates devices in each training round, so that the
PoA of a non-straggler device is always greater than the PoA of a straggler.
For example, the first n devices appear in every global round (Ḡ = G). There-
fore, the PoA = 1 for the first n devices. Fed-MOODS is adding k devices
adaptively in each round, so that the following k devices appear in G−1 global
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Figure 3: Convergence comparison of Fed-MOODS and baseline models with
random device participation across (a) MNIST-IID, (b) MNIST-non-IID, (c)
CIFAR-10 IID, (d) CIFAR-10 non-IID, (e) FMNIST IID, (f) FMNIST non-IID,
with different straggler fractions (sf).
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Table 4: Performance (F1-Score) comparison between Fed-MOODS and base-
line models with random device participation in presence of 90% stragglers. ♥
and ♢ denote involving stragglers and without involving stragglers, respectively.

Dataset
Fed-MOODS +

FedAvg
Fed-MOODS +

FedProx

Random
device

selection
+

FedAvg ♥

Random
device

selection
+

FedAvg ♢

Fed-
MOODS +
+ FedAvg
♢

MNIST IID 94.7 93.5 94.00 96.28 97.00

CIFAR-10 IID 48.65 52.92 49.51 49.67 51.79

FMNIST IID 78.66 78.48 80.48 79.01 78.19

MNIST non-IID 93.41 94.27 93.00 NA NA

CIFAR-10 non-IID 49.33 48.79 9.37 NA NA

FMNIST non-IID 63.12 65 50.25 NA NA

rounds. Therefore, PoA = 1− 1
G . Similarly, the devices added in the (G− 1)th

global round, the PoA will be 1
G . If N = n + ⟨G, k⟩, i.e., for Gth global round,

all devices are participating in learning. If converging round G∗ > G, then
for the G∗ − G rounds, all devices participate in training. As Fed-MOODS
considers the participation of every device until convergence (G∗), every device
will get a chance to contribute its information to maintain high statistical accu-
racy. Therefore, fairness in device selection is maintained here in the presence
of stragglers. If n + ⟨G∗, k⟩ < N , i.e., partial participation of devices can pro-
duce an equivalent model performance to that of total involvement of devices.
Therefore, Fed-MOODS is straggler-resilient as well as maintains fairness.

4.6 Test accuracy

In Table 5, we compared the test accuracy of the models for a different fraction
of stragglers. Fed-MOODS produces similar results with a random selection of
devices for IID datasets. Accordingly, in non-IID settings, Fed-MOODS out-
performs the random selection approach by a maximum of 1.88% for MNIST,
34% for CIFAR-10, and 15% for FMNIST datasets, respectively.

4.7 Wall-clock time comparison

We compared the wall clock learning time of a neural network model using
Fed-MOODS and baseline models on the MNIST and FMNIST datasets. We
compared two cases (See Fig. 4 and 5) where the straggler frequency is very
high (90%), and the straggler frequency is low (10%). From Fig. 4 we see
that Fed-MOODS gradually involve straggler devices in each global round.
Whereas in random partial device participation, the effect of randomness is
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Table 5: Comparison of models among test accuracy

Dataset SF %

Fed-MOODS
+

FedAvg

Fed-MOODS
+

FedProx

Random
+

FedAvg

Random
+

FedProx

MNIST IID 90 97.2 96.31 97.2 96.89

70 97.54 97.49 97.61 97.5

50 97.94 97.76 97.74 97.61

10 98.11 98.39 98.05 98.11

Non-IID 90 92.31 91.93 92.04 91.47

70 93.91 92.79 89.18 93.43

50 94.69 93.47 93.05 89.61

10 95.74 93.59 93.17 93.86

CIFAR-10 IID 90 53.43 50.20 49.15 48.86

70 46.3 47.15 48.62 47.17

50 43.59 49.42 46.25 48.9

10 46.71 47.33 45.48 44.72

Non-IID 90 49.23 49.55 15.84 10

70 48.75 47.68 33.99 29.75

50 46.56 45.93 24.98 38.44

10 45.86 47.81 33.75 34.0

FMNIST IID 90 78.66 78.48 80.48 79.44

70 82.63 82.81 83.04 77.63

50 83.32 83.89 85.17 82.59

10 85.39 85.22 84.44 84.68

Non-IID 90 63.22 65.33 50.26 58.18

70 67.16 65.54 56.92 64.07

50 70.0 70.97 55.56 61.81

10 71.76 67.58 58.18 59.26

clearly visible. From table 6, to complete 100 global rounds, Fed-MOODS is
1.8× and 1.48× faster than the baseline model (FedAvg) with random device
participation on the MNIST and FMNIST non-IID dataset, respectively. In
Fig. 5, we measured validation loss with wall clock time to train a federated
model. We observed that Fed-MOODS takes less time to converge than any
baseline model with random device participation for the MNIST and FMNIST
non-IID datasets.

4.8 Effect of adaptiveness

In Fig. 6, we compared the convergence of Fed-MOODS by adapting devices
from the Pareto front in each round in the presence of 90% stragglers for the
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Figure 4: Compare wall-clock time vs global iterations between Fed-MOODS
and baseline model with random device participation in the presence of 90%
(left top and bottom) and 10% (right top and bottom) stragglers on MNIST-
nonIID (top) and FMNIST-nonIID (bottom) datasets, respectively.

Table 6: Total and average wall clock time comparison between Fed-MOODS
and baseline model with random device selection at presence of 90% stragglers
on non-IID data.

Datasets
Random

Device selection
Fed-MOODS

TRandom(ms) T̄Random(ms) TFed−MOODS(ms) T̄Fed−MOODS(ms)

MNIST 9× 105 9× 103 4.9× 105 4.9× 103

FMNIST 8.9× 105 8.9× 103 6× 105 6× 103

MNIST, FMNIST, and CIFAR-10 non-IID datasets, respectively. We observed
a significant increase performance in adaptiveness, making the model converge
quickly, but it also incorporates more stragglers in the learning process.

5 Conclusion and Future Work

In this work, we proposed Fed-MOODS, a multi-objective optimization-based
adaptive device selection approach to minimize the effect of stragglers in fed-
erated learning. We formulated every device’s available processing capacity,
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Figure 5: Training loss vs wall-clock time comparison of Fed-MOODS and
baseline model with random device participation in presence of 90% stragglers
on MNIST non-IID (left) and FMNIST non-IID (right) datasets, respectively.
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Figure 6: Convergence comparison of different adaptiveness level in presence
of 90% stragglers on MNIST non-IID dataset (top left), FMNIST non-IID
(middle) and, CIFAR-10 non-IID (right) dataset, respectively.

memory, and bandwidth as a multi-objective optimization problem. We gen-
erate the rank of devices from the Pareto fronts by solving the multi-objective
functions. The algorithm adaptively selects devices for training according to
their ranking. We verified the Fed-MOODS on three baseline datasets (MNIST,
CIFAR-10, and FMNIST), considering both IID and non-IID divisions of data
among 100 devices. Fed-MOODS is straggler-resilient with the ability to main-
tain the model’s fairness and reduce overall training time by 1.8× and 1.48×
faster than the baseline model (FedAvg) with random device participation on
the MNIST and FMNIST non-IID dataset, respectively. Our work suggests
several exciting directions, including the theoretical convergence analysis of
Fed-MOODS, and understanding the trade-off between fairness and robustness
issues in device selection in scalable FL.
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Abstract: Horizontal Federated Learning exhibits substantial similarities in feature
space across distinct clients. However, not all features contribute significantly to the
training of the global model. Moreover, the curse of dimensionality delays the train-
ing. Therefore, reducing irrelevant and redundant features from the feature space
makes training faster and inexpensive. This work aims to identify the common feature
subset from the clients in federated settings. We introduce a hybrid approach called
Fed-MOFS1, utilizing Mutual Information and Clustering for local feature selection at
each client. Unlike the Fed-FiS, which uses a scoring function for global feature rank-
ing, Fed-MOFS employs multi-objective optimization to prioritize features based on
their higher relevance and lower redundancy. This paper compares the performance
of Fed-MOFS 2 with conventional and federated feature selection methods. More-
over, we tested the scalability, stability, and efficacy of both Fed-FiS and Fed-MOFS
across diverse datasets. We also assessed how feature selection influenced model con-
vergence and explored its impact in scenarios with data heterogeneity. Our results
show that Fed-MOFS enhances global model performance with a 50% reduction in
feature space and is at least twice as fast as the FSHFL method. The computational
complexity for both approaches is O(d2), which is lower than the state-of-the-art.

Key words: Horizontal Federated Learning, Feature Selection, Mutual Information,
Clustering, Statistical Heterogeneity, Multi-objective Optimization

*The paper has been re-typeset to match the thesis style. Reproduced with permission of IEEE.
1This manuscript is an extension of Banerjee et al. [BEB21]
2We share our code and data through https://github.com/DevBhuyan/Horz-FL/blob/main/

README.md.
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1 Introduction

Federated Learning (FL) is a novel machine learning paradigm that facilitates collabo-
rative model training among multiple data owners (a.k.a. clients) [BVB22; McM+17].
This occurs through the iterative exchange of model parameters via an FL server, all
while maintaining the privacy of individual clients without sharing local data. Accord-
ing to the intersection or distribution of data among clients in terms of sample space
or feature space, federated learning can be classified into three main categories: Hor-
izontal Federated Learning (HFL), Vertical Federated Learning (VFL), and Federated
Transfer Learning (FTL) [Yan+19]. HFL operates with data, sharing a uniform feature
space across all clients. Whereas, VFL leverages dissimilar data with distinct feature
spaces to train a global model collaboratively. Conversely, FTL uses a pre-trained
model initially trained on similar data to solve different problems. HFL scenarios fre-
quently occur in practical use cases, such as in internet-of-vehicles [Ham+22], smart
grid analysis [Ren+23], e-commerce [Li+21], health-care [Ban+20], etc. The efficacy
of local models is influenced by the quality of local features possessed by clients, con-
sequently impacting the overall performance of the global model. Clients may have
irrelevant or noisy features for the learning task, or they may have an excessive num-
ber of redundant features, leading to a significant degradation in the performance of
the global model. Therefore, the absence of feature selection results in poor model
performance and extends the duration of model training. Therefore, it is crucial to
identify appropriate feature sets that overlap among the clients, as this can lead to re-
duced training time and energy consumption, which results in reduced communication
rounds without compromising the global model’s performance.
Feature Selection (FS) is a crucial preprocessing technique in a centralized Machine
Learning (ML) framework. It has been extensively studied and proven valuable in data
mining, knowledge discovery, and ML. The primary goal of FS is to identify the most
pertinent, trustworthy, and non-redundant features from extensive datasets. This pro-
cess enhances model performance and facilitates cost-effective learning of models.
The choice of features is also very important when working with high-dimensional
datasets, where the number of features is much higher than the number of samples.
This makes it hard to find the right features for making cost-effective learning of mod-
els. In the context of deep learning, identifying meaningful features within a data set
is significant. Representation learning algorithms extract valuable patterns from raw
data, generating representations that simplify processing. These representations can
be crafted for interpretability, to reveal hidden features, or utilized in transfer learning
applications. In contrast to dimension reduction techniques such as principal compo-
nent analysis (PCA) [Pea01], feature selection does not modify the original features.
Instead, it identifies and chooses a subset of the most valuable features from the dataset
during runtime. The feature selection process involves evaluating the importance of
each feature using various methods, such as correlation [Hal99], mutual information
[HBK14], chi-square [Aha+23], etc. After identifying crucial features, they are em-
ployed to construct precise, effective, and budget-friendly ML models for prediction or
classification. Additionally, feature selection enhances interpretability by pinpointing
the key variables influencing the model’s predictions. Information-theoretic measures
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have been widely utilized and established as a paradigm for filter-based feature selec-
tion. Specifically, Mutual Information-based Feature Selection (MIFS) empowers the
feature selection method by removing redundant and irrelevant features without im-
pacting the classifier’s reachable performance. Traditional MIFS approaches [HBK14;
AAB11; KSG04], such as MIFS-ND are designed for centralized systems where data
is available in a centralized server.
Why does feature selection benefit in federated learning? When each client indepen-
dently performs feature selection and builds individual local models based on their
private data without exchanging the selected feature set with the server, it impacts the
global model updates and performance. This results in objective shifts by cause of fea-
ture selection bias [KŁ16] and statistical heterogeneity among clients. Furthermore,
if clients opt for distinct feature subsets, it poses challenges in ensuring homogeneous
model training across all clients in HFL settings. These issues inspired us to develop
a feature selection algorithm tailored to the context of HFL.
In our previous work, Fed-FiS [BEB21] evaluates the importance of the features by a
score function and generates global ranks of each feature from higher to lower scores.
Here, we introduce Fed-MOFS, a new federated feature ranking and selection method
based on multi-objective optimization. The resulting method optimizes the relevance
and redundancy of the feature set simultaneously. It produces a non-dominated so-
lution set or Pareto fronts from where we get the ranking of the features. The local
feature selection of Fed-FiS and Fed-MOFS remain the same, but the global feature
selection and ranking differ.
Why does global feature ranking of individual features affect FL performance?
All clients share a common set of features, but the importance of these features varies
among clients. Determining a unified and relevant set of features across all clients is
challenging, as the features selected locally by each client may differ. For instance,
in Table 3, feature f4 is crucial for clients Cl2 and Cl3 but not for Cl1. If we choose
features that are locally selected by all clients in common, we must omit f4. In the
worst-case, there might be no overlap in locally selected features among clients, mak-
ing it difficult to train a global model. To address this challenge, we consider two
approaches: Fed-FiS (refer to Table 4) and Fed-MOFS (refer to Table 5). These ap-
proaches provide global rankings for each feature. For example, f4 obtains global
rankings of 3, i.e., the third important feature using Fed-FiS and 4, which means the
fourth important feature using Fed-MOFS. Thus, calculating the global ranking for
each feature helps to achieve a fair assessment, ensuring a balanced representation of
the importance of the feature in the training process.
The main contributions of this work are summarized as follows.

• We introduce Fed-MOFS, an approach for global ranking and feature selection
based on multi-objective optimization for horizontal federated learning. It em-
ploys mutual information and 1-D clustering to choose a local set of features.
Furthermore, it utilizes Pareto optimization to create a global ranking of these
features and selects features from the Pareto fronts (see Section 4.3).

• We derived the computational complexity of both the Fed-FiS and Fed-MOFS
algorithms (see Section 4.4) and compared them with the current state-of-the-art
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horizontal federated learning algorithms (see Table 1) that explicitly demonstrate
the computational cost, benefits and drawbacks.

• We conducted a comprehensive empirical study comparing the performance, scal-
ability, efficiency, stability, and convergence of both Fed-FiS and Fed-MOFS
across various datasets, including NSL-KDD99, Wine, Vowel, Vehicle, Segmen-
tation, WDBC, Ionosphere, Hill-Valley, ISOLET, Diabetes, IoT, Anonymized
Credit Card (ACC), Boston housing prices, California house pricing, and syn-
thetic data. This analysis utilized conventional feature selection techniques within
federated settings, such as RFE and ANOVA, as well as federated feature selec-
tion methods like FSHFL [Zha+23] and Fed-mRMR [HBL24]. For classification
tasks, we trained Federated Forest [Liu20] and federated averaging [McM+17]
on Deep Neural Networks (DNNs), and for regression tasks, we employed ridge
regression, all following the application of various feature selection methods in
federated settings (see Section 5).

2 Related Work

This section provides a comprehensive overview of three key related research areas:
centralized feature selection, distributed feature selection, and horizontal federated
feature selection.

2.1 Centralized feature selection

In centralized settings, computation happens on a single system. Data is collected
and resides in a centralized server; hence, it is easy to access and build models for a
specific task. Feature selection is comparatively easy as the server has complete infor-
mation about the data. Regarding the availability of class information, feature selec-
tion methods are categorized as supervised [Son+07], semi-supervised [FDA22], and
unsupervised [SCM20] approaches. Also, depending on how feature selection meth-
ods interact with the classifier, the existing works are categorized as filter [GE03],
wrapper [BL97], embedded [LZL19], and hybrid [HHL11]. Filter methods are sta-
tistical approaches that select features based on their relevance to the class without
considering the employed model. Examples include correlation-based [Hal99], mu-
tual information-based [HBK14], and chi-squared [Aha+23] based feature selection
methods. Wrapper methods involve training a model using a subset of features
and evaluating the performance of the model [EB16; ALA16]. Examples of wrapper
methods include forward selection, backward elimination, and recursive feature elim-
ination. Embedded methods incorporate feature selection within the model-building
process. For example, lasso regression [MR16], ridge regression [Zha+18], and elas-
tic net [AH21]. Hybrid methods combine multiple feature selection techniques, such
as filter and wrapper, to improve the model’s overall performance.
The feature selection helps to describe data better for extracting valuable knowledge
from high dimensional data [AAB11] and solve problems that occur due to the higher
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dimensionality of data. This reduces the model’s computation cost by reducing feature
space and improves overall learning performance by selecting relevant and less redun-
dant features. Mutual Information (MI) based feature selection is a filter method that
chooses strongly correlated features with labels and has minimal redundancy among
feature sets. The MI method adopts the entropy difference to calculate the information
a feature contributes. MIM [Lew92] rapidly selects label-related features. However,
the consideration of feature redundancy is absent. MIFS [Bat94] proposes feature re-
dundancy as a metric for assessing the quality of features. Methods in [LT06; YM99;
BHS15; HBK14] also consider relevance and redundancy relationship to select fea-
tures. The application of feature selection is wide and beneficial. Some real-life
applications of feature selection are: healthcare analytics [Pat+22; Che+20; RB19;
Nag+22], image analysis [BR20] and recognition [Özy20], credit scoring [Koz+19;
Tri20; KR23], marketing analysis [BSC23; Qia+22; YGX20; Haq+21], anomaly
detection [BBK16; De +14; El +22; Nak+21; Ras+22], bio-informatics [WWC16;
SIL07; Li+17], etc.
These feature selection methods are not directly applicable to federated learning be-
cause, in federated settings, not all clients have complete information about the data.

2.2 Distributed feature selection

Although centralized feature selection approaches are fast and effective. They struggle
to achieve satisfactory performance when dealing with big data, which is character-
ized not only by its large volume but also by its diverse and intricate nature. There-
fore, a specific distributed feature selection method is necessary. In [MBA17], the
authors compare distributed vs centralized feature selection. Several rounds of feature
selection are performed on horizontal as well as vertical partitions of data. Finally,
the outputs of every round are combined and produce a single subset of relevant fea-
tures using different data complexity measures [HBL06]. An adaptive aggregation
(ADAGES) flexible distributed feature selection method is proposed in [Gui20]. A
distributed fuzzy rough set (DFRS) based feature selection method to enable fuzzy
rough set for big data analysis is presented in [Kon+19]. A distributed quadratic
programming-based feature selection is reported in [SE20]. In [Zad+17], the au-
thors formalized the feature selection problem as a diversity maximization problem
by proposing an MI-based metric distance on features. They focused on vertically
distributed feature selection that can deal with redundancy.
FL has additional characteristics, including imbalanced and massively distributed IID
(see Definition 2) and non-IID (see Definition 3) data, and clients with limited com-
putational capacity, despite the fact that distributed learning and federated learning
appear to be similar. However, the idea behind FL is that data should remain private
to the clients.
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2.3 Horizontal federated feature selection

Federated feature selection is challenging because the distribution of the whole dataset
is unknown for each client. Federated feature selection is first introduced in [BEB21],
where authors formulated the feature selection problem for horizontal federated learn-
ing. The authors proposed a hybrid feature selection method using mutual information
and clustering. Fed-FiS is stable while data distribution is IID, i.e., every client has
information on features and classes but is not stable for vertical or hybrid distribu-
tions. Cassara et al. [CGV22] proposed federated feature selection for cyber-physical
systems. Their approach involves a mutual information-based feature selection algo-
rithm run by the autonomous vehicles (clients) and Bayes’ theorem-based aggregation
executed on the server. Hu et al. [Hu+22] proposed a federated feature selection algo-
rithm using evolutionary computing techniques. Zhang et al. [Zha+23] proposed an
unsupervised feature selection method for horizontal federated learning where clients
share a common feature space but have different class labels. In [QK21], suggested
a greedy algorithm for feature selection. In Table 1, we report a comparative study
by considering multiple key factors between our method and the current state-of-the-
art horizontal federated feature selection methods [BEB21; Zha+23; CGV22; QK21;
HBL24].

3 Problem Statement

Consider a HFL system consists of q clients (∀q
i=1Cli) and a server. We assume that

q ≥ 2, if q = 1, it is considered a centralised system with full dataset information.
Suppose the dataset D contains samples S∈Rn×d , the features set F ∈Rd×1, and class
C ∈ {0,1, . . . ,k}n×1. D is distributed across q clients such that each client contains the
features set F. Sample set SCli ∈Rm×d , where ∪q

i=1SCli = S, and ∩q
i=1SCli = /0 and class

CCli ∈ {0, . . . ,k}m×1, where m < n. In HFL, all clients have partial class information,
which creates statistical heterogeneity. Our objective is to uncover relevant features
subset (F ′′) and obtain stable and generalizable global model performance.

4 Proposed Approach

Our approaches comprise two components: (1) local feature selection performed in-
dependently by clients using mutual information and clustering, and (2) global feature
selection achieved through a global score function for Fed-FiS and multi-objective
optimization for Fed-MOFS.

4.1 Data division

For a given dataset D(F,S) ∈ Rn×d , consists of feature set F = { f1, f2, . . . , fd}T , F ∈
Rd×1, and sample set S = {s1,s2, . . . ,sn}, S ∈ Rn×d . The dataset is distributed across
q clients in a horizontal (see Figure 1) manner. In horizontal federated learning, all
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Table 2: Notations

Symbol Description Symbol Description

D Dataset, D ∈ Rn×d . F Feature space F = { f1, f2, . . . , fd}⊺, F ∈ Rd×1.
n Number of samples F ′server The global feature set that contains unique features

only.
d Number of features F ′′ The feature subset according to the rank of each

feature.
S Sample space, S ∈ Rn×d . F ′Cli

Locally selected features at client Cli.

Di Dataset of client Cli τCli
k Feature triplet for kth feature of Cli

β Number of clusters or cluster centroids ζ Current cluster or cluster centroid
δ Performance threshold of global model ψ Performance of global model.
C Class, C ∈ {0, . . . ,κ}n×1. q Number of clients.

θCli Local model of the ith client. ω Global model.
Cli ith client from a pool of q clients. τCli

k Triplet of the kth locally selected feature of the ith

client.
FCli Feature set available at the ith client. SCli Sample set available at the ith client.

FCMI Feature Class Mutual Information. aFFMI Averaged Feature Feature Mutual Information.
f Cli
kFCMI

FCMI of the kth feature of the ith client. f Cli
kaFFMI

aFFMI of the kth feature of the ith client.

f Cli
i ith feature of the client Cli. CCli Set of target class available at the ith client.
| FCli | Number of features at client Cli. | SCli | Number of samples at client Cli.
FFCMI

Cli
Set of features with FCMI values for the ith client FaFFMI

Cli
Set of features with aFFMI values for the ith client

F ′
Cli

FCMI Set of features of Cli that belong to the clusters that
have maximum centroid value.

F ′
Cli

aFFMI Set of features of Cli that belong to the clusters that
have minimum centroid value.

fkFCMI Average of FCMI value of feature fk across all
clients.

fkaFFMI Average of aFFMI value of feature fk across all
clients.

T Global rounds ε Number of features selected from the ranked fea-
tures for training.

∆ Fraction of clients participated ∆ ∈ (0,1) γ Non-IID factor γ ∈ [0,1]

clients have access to the same set of features but different samples. The dataset
is considered to be Independent and Identically Distributed (IID) if each client pos-
sesses complete information about all the classes. On the other hand, if clients only
have partial information about the classes, the data distribution is referred to as Non-
Independent and Identically Distributed (non-IID). We introduced the following foun-
dational definitions to understand the federated settings.

Definition 1. Horizontal: For a given dataset D(F,S) ∈ Rn×d , consists of feature set
F, and sample set S, distributed across q clients. Then all clients have similar feature
sets but different samples, i.e.,

⋂q
i=1 FCli = F but

⋂q
i=1 SCli = /0, where Cli is the ith

client, FCli and the SCli are the feature and sample set of Cli, respectively.

Lemma 1. All clients share common feature set, FCli ∪FCl j = F.

Proof. Lets consider clients Cli and Cl j, if FCli
⋂

FCl j = /0, then there is no common
features between clients Cli and Cl j. According to Definition 1, FCli

⋂
FCl j ̸= /0. By

contradiction, we proved that the Lemma 1 is true.

Definition 2. IID: For a given dataset, D(F,S)∈Rn×d , C = {c1,c2, . . . ,cκ} consisting
of κ classes, it would be called IID if the probability distribution of each class ci is
independent of other class P(ci|c1,c2, . . . ,cκ) =P(ci) and all classes are drawn from
the same underlying probability distribution P(c), P(c1 = c,c2 = c, . . .cκ = c) =
P(c).
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Figure 1: Horizontal data division in HFL

Definition 3. Non-IID: For a given dataset, D(F,S) ∈ Rn×d , C = {c1,c2, . . . ,cκ}
consisting of κ classes, it would be called non-IID if the probability distribution
of each class ci depends on the values or presence of other classes within dataset
P(ci|c1,c2, . . . ,cκ) ̸= P(ci), and the classes are drawn from different underlying
probability distributions, across different clients, P(c1) ̸= P(c2) ̸= . . . ̸= P(cκ).

4.2 Framework

A conventional HFL consists of q clients (Cl1,Cl2, . . . ,Clq) and a server. Figure 2a
illustrates the proposed framework in four steps, as follows.
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Figure 2: Proposed framework
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1. Each client Cli has its private feature set FCli and runs the procedure LocalFS(Di)
independently to generate local feature subset F ′Cli (F ′Cli ⊆ FCli ) .

2. Each client Cli sends the FCMI (see Definition 4) and aFFMI (see Definition 5
and 6) value of each f Cli

i ∈ F ′Cli to the server. Server averages these scores of
similar features and generate a list of unique feature set F ′server.

3. Server applies Fed-FiS or Fed-MOFS to generate the global ranks of the locally
selected features.

4. Server sends the global ranks of each feature to the clients.

In Figure 2b, after having the rank of each feature, all clients start FL with a feature
subset (F ′′ ⊆ F ′server).

4.3 Algorithms

The federated feature selection approaches are described with four algorithms. Algo-
rithm 1 for local feature selection, Algorithm 2 and 3 described global feature ranking
using Fed-FiS and Fed-MOFS, respectively, and finally, Algorithm 4 for global feature
selection.

4.3.1 Local feature selection

We adopted Mutual Information (MI) to measure the certainty of a feature variable
with a target variable, which could be another feature or a class [Swi12; KSG04].
The MI-based feature selection approach depends on the relevance of each feature,
measured by Feature-Class Mutual Information (FCMI, see Definition 4), as well as
the redundancy, measured by, Feature-Feature Mutual Information (FFMI, see Defi-
nition 5) of each feature. The average of all FFMI values of features is called aFFMI
(see Definition 6).

Definition 4. FCMI: Given a feature fCli
k at client Cli, and class C, then FCMI of

feature f Cli
k and C can be computed as:

FCMI( f Cli
k ,C)≜ ∑

f
Cli
k ,C

P( f Cli
k ,C)log

P( f Cli
k ,C)

P( f Cli
k )P(C)

(1)

where fCli
k is the kth feature of the ith client (Cli). P( f Cli

k ) and P(C) are the marginal
and P( f Cli

k ,C) is the joint probability distribution for f Cli
k and C.

Definition 5. FFMI: Given two features fCli
k and fCli

j , at client Cli, then the FFMI of

features f Cli
k and f Cli

j can be estimated as:

FFMI( f Cli
k , f Cli

j )≜ MI( f Cli
k ; f Cli

j ) = H( f Cli
k )+

H( f Cli
j )−H( f Cli

k , f Cli
j )

(2)
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where f Cli
k and f Cli

j are kth and jth feature of the ith client (Cli), respectively, and fCli
k ̸=

f Cli
j . H( f Cli

k ) and H( f Cli
j ) are marginal entropy. H( f Cli

k , f Cli
j ) is the joint entropy of

the f Cli
k and f Cli

j , and f Cli
k ̸= f Cli

j .

Definition 6. aFFMI: Given a set of d features at client Cli, then averaged FFMI
(aFFMI) value of f Cli

k can be calculated as:

aFFMI( f Cli
k ) =

1
d−1

d−1

∑
j=1, fCli

j ∈FCli\ f
Cli
k

FFMI( f Cli
k , f Cli

j ) (3)

where fCli
k and fCli

j are kth and jth feature of the ith client (Cli), respectively, and

f Cli
k ̸= f Cli

j .

Algorithm 1 Local feature selection
Input: FCli = { f Cli

1 , f Cli
2 , . . . , f Cli

d } is the original feature set and d is the dimension of the data for the ith client Cli
Output: F ′Cli

is the selected features for client i

1: procedure LocalFS(Di)
2: for f Cli

k ∈ FCli do
3: f FCMI

k = FCMI( f Cli
k ,C) using Equation (1). ▷ return FCMI score of a feature

4: f aFFMI
k = aFFMI( f Cli

k ) using Equation (2) and Equation (3). ▷ return averaged FFMI score of a feature
5: FFCMI

Cli
= { f FCMI

k |∀d
k=1 f FCMI

k ∈ [0,1]}
6: FaFFMI

Cli
= { f aFFMI

k |∀d
k=1 f aFFMI

k ∈ [0,1]}
7: F ′

Cli
FCMI = CLUSTER(FFCMI

Cli
) ▷ return cluster of features with high FCMI values

8: F ′
Cli

aFFMI = CLUSTER(FaFFMI
Cli

) ▷ return cluster of features with low aFFMI values

9: F ′Cli
= F ′

Cli
FCMI

⋃
F ′

Cli
aFFMI

10: return F ′Cli

11: procedure CLUSTER(Fx
Cli

) ▷ here, Fx
Cli

is FFCMI
Cli

or FaFFMI
Cli

12: Initialize β random cluster centroid.
13: repeat

14: ∀
|Fx

Cli
|

k=1 fk ∈ Fx
Cli

15: minimum← 0
16: cluster member← 0
17: ∀β

ζ=1centroid ζ ∈ β
18: dist← Distance( fk ,ζ )
19: if then dist < minimum
20: minimum← dist
21: cluster member← ζ
22: recalculate centroid(ζ )
23: until Converge
24: return F ′Cli

x ▷ here, F ′Cli
x is F ′

Cli
FCMI or F ′

Cli
aFFMI

Algorithm 1 computes the FCMI and aFFMI values of all features (Line 2 to Line 4) at
each client using the Equation (1), Equation (2), and Equation (3), respectively. FFCMI

Cli
and FaFFMI

Cli
are two one-dimensional vectors that contain FCMI and aFFMI values of

all features at client Cli. The size of the vector depends on the number of features
present at the client, but it is bound to d. The FCMI and aFFMI values are within the
range of 0 to 1 (Line 5 and Line 6). The FCMI value close to zero indicates the low
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relevance of that feature. The aFFMI value close to one indicates the high redundancy
of that feature. Here, we aim to find the optimal feature set by (1) maximizing the
relevance and (2) minimizing the redundancy. Based on the FCMI and aFFMI values,
we compute CLUSTER(FFCMI

Cli
) and CLUSTER(FaFFMI

Cli
) (Line 7 and Line 8) using

the procedure CLUSTER (Line 11 to Line 24) to generate feature clusters with higher
FCMI and lower aFFMI values. If there are β clusters of features, then the objective
can be written as follows.

F ′CliFCMI = argmax
∀i∈β

Centroid(clusteri) (4)

F ′CliaFFMI = argmin
∀i∈β

Centroid(clusteri) (5)

where Centroid(clusteri) returns the centroid value of the ith cluster, and | clusteri | is
the cardinality of clusteri.
In Equation (4), select the cluster with the maximum centroid(F ′

CliFCMI ). It contains
the features with utmost relevance and F ′

CliFCMI ⊆ FCli . Similarly, Equation (5) returns
the cluster with the minimum centroid (F ′

CliaFFMI ). It contains features with minimum
redundancy and F ′

CliaFFMI ⊆ FCli . Union of the output of Line 7 and Line 8 produces
the final local feature subset (Line 9). The example of local feature selection is in
illustration 4.3.1.

Illustration: In Table 3, five features, f1, f2, f3, f4, and f5 have been distributed
across three clients, Cl1, Cl2, and, Cl3 horizontally. The FCMI and aFFMI scores
of each feature are estimated on each client independently, and then the clustering
method is employed on the FCMI and aFFMI scores separately and divided into two
clusters, C1 and C2. The value of cluster center of C1 > C2. Therefore, a union
between C1 from Clustered FCMI and C2 from Clustered aFFMI has to be performed
to get the locally selected features.

4.3.2 Fed-FiS

In Algorithm 2, each client, Cli sends triplets of locally selected features to the server.
The definition of the feature triplet is given below.

Definition 7. Feature triplet (τCli
k ): ∀q

i=1Cli, a feature f Cli
k ∈ F ′Cli then feature triplet

of f Cli
k can be defined as τCli

k =< f Cli
k , f Cli

kFCMI
, f Cli

kaFFMI
>

where τCli
k is the triplet of the kth locally selected feature of the ith client Cli. f Cli

k is
the unique identifier of the feature. f Cli

kFCMI
, and f Cli

kaFFMI
are the FCMI and aFFMI score

of f Cli
k respectively.

Each device sends a vector of triplets to the server. So a triplet vector F ′Cli of device

Cli can be defined as F ′Cli = {τ
Cli
1 ,τCli

2 , . . . ,τCli
k }, where k ≤ d. The server receives
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Table 3: Local feature selection

Client(s) Feature(s) FCMI aFFMI
Clustered

FCMI
Clusered
aFFMI

Locally selected
features

f1 0.67 0.31
f2 0.91 0.43 C1:[ f2, f1, f3] C1:[ f2, f4, f5] f1, f2,

Cl1 f3 0.57 0.21 C2:[ f4, f5] C2:[ f1, f3] f3

f4 0.27 0.61
f5 0.17 0.51

f1 0.57 0.32
f2 0.81 0.21 C1:[ f1, f2, f3, f4] C1:[ f4, f5] f1, f2,

Cl2 f3 0.37 0.42 C2:[ f5] C2:[ f2, f1, f3] f3, f4

f4 0.47 0.53
f5 0.17 0.66

f1 0.73 0.31
f2 0.82 0.17 C1:[ f1, f2, f4] C1:[ f4] f1, f2

Cl3 f3 0.46 0.23 C2:[ f3, f5] C2:[ f2, f3, f1, f5] f3, f4

f4 0.51 0.41 f5

f5 0.34 0.31

feature triplets from q clients (Line 2). Multiple clients can share a single feature fk.
Therefore, Fserver may have multiple similar features with different FCMI and aFFMI
scores. Server averages the FCMI and aFFMI values of similar features using the
Equation (6), and Equation (7) (Line 3).

fkFCMI =

j
∑

i=1
f Cli
kFCMI

j
,where j ∈ [1,q] (6)

fkaFFMI =

j
∑

i=1
f Cli
kaFFMI

j
,where j ∈ [1,q] (7)

Server generates the unique feature list F ′server (Line 4). For all features, the server
computes a score S( fk) using Equation (8) (Line 5).

S( fk) = fkFCMI −
1

(| F ′server | −1)
× fkaFFMI , (8)

where | F ′server | > 1 and S( fk) ∈ [1,−1]
Finally, the server sends the score of each feature to the clients (Line 6). We give an
example of the working of Fed-FiS in illustration 4.3.2.

Illustration: The server initially computed the average FCMI and averaged aFFMI
values for a set of five features, as presented in Table 4. Subsequently, the feature
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Algorithm 2 Fed-FiS (Score-based global feature ranking)
Input: FServer = {F ′Cl1

,F ′Cl2
. . .F ′Clq} ▷ collection of feature triplets from q clients

Output: < rank, fk > ▷ global rank of features

1: procedure Fed−FiS(FServer)
2: server obtained Fserver = {F ′Cli

|∀q
i=1,F

′
Cli
∈Cli}.

3: obtain global feature triplet by performing average over FCMI (Equation (6)) and aFFMI (Equation (7)) scores
individually.

4: obtain {F ′server |∀ fk ∈ F ′server are unique}
5: compute S( fk),∀ fk ∈ F ′server using Equation (8)
6: ∀q

i=1Cli send < S( fk), fk > to all Cli iff fk ∈ F ′server

scores were determined using Equation (8). These scores were then utilized to as-
sign ranks to the features in descending order, starting from the highest score, S( fk).
Therefore, The features are ranked in the following order from highest to lowest: f2,
f1, f4, f3, and f5.

Table 4: Illustration of feature ranking with score function in Fed-FiS

Feature(s) Averaged FCMI Averaged aFFMI S(fk) Rank

f1 0.66 0.31 0.58 2
f2 0.85 0.27 0.78 1
f3 0.47 0.29 0.398 4
f4 0.52 0.47 0.403 3
f5 0.34 0.31 0.26 5

Remark 1. Fed-FiS employs S( fk) to determine the disparity between the average
relevance and redundancy of a feature. When S( fk)→ 1, i.e., this disparity is closer
to 1 then the feature is significantly relevant and carries beneficial impact for learning.
Conversely, when S( fk)→−1, it suggests that the feature is less relevant, making it
less crucial for learning and potentially causing a negative impact. S( fk)= 0 indicates
that the feature possesses equal levels of relevance and redundancy. While it may have
a positive impact on learning, it doesn’t guarantee the absence of any negative effects.

4.3.3 Fed-MOFS

Algorithm 3 is also a feature ranking algorithm similar to Fed-FiS, but here server
applies a multi-objective optimization to find the dominant features based on the two
objective functions, (1) maximizing the average FCMI score, and (2) minimizing the
average aFFMI score (Line 6). This multi-objective optimization produces Pareto
fronts from where we get the ranking of the features (Line 7). Finally, the server
sends the feature with its rank to the clients (Line 8). The example of the working of
Fed-MOFS is in illustration 4.3.3.

Illustration: In Table 5, the averaged FCMI and averaged aFFMI values for features
f1 to f5 are presented, which were collected from clients. The server then performs a
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Algorithm 3 Fed-MOFS (Multi-objective optimization based global feature ranking)
Input: FServer = {F ′Cl1

,F ′Cl2
. . .F ′Clq} ▷ features from q clients

Output: < rank, fk > ▷ global rank of features

1: procedure Fed−MOFS(FServer)
2: server obtained Fserver = {F ′Cli

|∀q
i=1,F

′
Cli
∈Cli}.

3: obtains global feature triplet by performing average over aFFMI and FCMI scores individually.
4: obtain {F ′server |∀ fk ∈ F ′server are unique}
5: Optimize the following functions to find Pareto optimality:
6: (1) max

∀ fk ∈ F ′server
fkFCMI (2) min

∀ fk ∈ F ′server
fkaFFMI

7: Get the ranking of the features from the Pareto fronts.
8: ∀q

i=1Cli send < rank, fk > to all Cli iff fk ∈ F ′server

multi-objective optimization, aiming to maximize the FCMI scores while minimizing
the aFFMI scores in order to determine the domination and dominated count for each
feature. The difference between the domination and dominated count is used to rank
the features. According to Table 5, feature f2 has domination count 4, i.e., its averaged
FCMI is higher than f1, f3, f4, and f5. It also has a dominated count 0 because its
average aFFMI is the lowest among all features. Therefore, feature f2 is not domi-
nated by other features. Consequently, the difference between domination count and
dominated count (cdom− fdom) is 4, which is the highest among all features. Hence, f2
is the most important feature, followed by f2, f1, f4, and f5. The difference between
domination and dominated count for f4 and f5 are the same. But the domination count
of f4 is better than f5. Hence, the rank of f4 is higher than f5 as it has more relevance.

Table 5: Fed-MOFS - illustration of feature ranking through multi-objective optimiza-
tion

Feature(s) Averaged
FCMI

Averaged
aFFMI

Domination count
(cdom)

Dominated count
( fdom) cdom− fdom Rank

f1 0.66 0.31 3 2 1 2
f2 0.85 0.27 4 0 4 1
f3 0.47 0.29 1 1 0 3
f4 0.52 0.47 2 4 -2 4
f5 0.34 0.31 0 2 -2 5

Remark 2. Fed-MOFS utilizes a multi-objective optimization approximation algo-
rithm to determine feature rankings. Therefore, Fed-MOFS never guarantees to find
the exact optimal solutions but provides a set of non-dominated solutions (Pareto-
optimal). But by prioritizing the domination count over the dominated count, we can
get the unique rank of each feature.

4.3.4 Global feature selection

Algorithm 4 describes the procedure for global feature selection after acquiring feature
rankings from Fed-FiS or Fed-MOFS. Every client selects a common set of features
(F ′′ ⊆ F ′Server) according to their individual rankings (Line 3), and then clients train the
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local model (θCli ) (Line 6). The server collects the local updates from the clients and
computes the global model (ω) (Line 7). After T global rounds, the performance (ψ)
of global model (ω) is evaluated (Line 8) and checks whether ψ achieves a specified
threshold (δ ) (Line 9). If ψ ≥ δ , then, F ′′ is the selected feature subset (Line 10);
otherwise, an additional set of ε features from the next-ranked features is to be incor-
porated (Line 12).

Algorithm 4 Global feature selection
Input: F ′Server ▷ features according to their global ranks
Output: F ′′ ▷ global feature subset

1: procedure GlobalFS(F ′Server)
2: while ψ ≤ δ do
3: All Cli selects a common feature subset F ′′ ⊆ F ′server based on their global ranks.
4: for t = 1 . . .T do ▷ T is the global rounds
5: for All clients in parallel do
6: θCli = Local update(D(F ′′,SCli ,CCli ))

7: ω = Global update(θ1,θ2, . . . ,θq)
8: Compute accuracy of the global model (ψ)
9: if ψ ≥ δ then

10: F ′′ is the selected features.
11: else
12: | F ′′ | = | F ′′ |+ε where | F ′′ |+ε ≤ |FServer |

4.4 Computational complexity

The computational complexity of Algorithm 1 depends on the dimensionality of the
input data and clustering algorithm. For a given data Di ∈ Rn×d at client Cli, the
computational complexity of calculating FCMI and aFFMI is O(d2). Clustering is a
np-hard problem, but taking heuristics can make the time complexity of it to linear.
FCMI and aFFMI are two one-dimensional vectors of size d, so the time complexity
for clustering is (O(d ·β · γ)) where β is the number of clusters, and γ is the number
of iterations. So the computation complexity of Algorithm 1 is O(d2)+O(d ·β · γ).
In Algorithm 2 The computation complexity to calculate S( fk) (see Equation (8)) is
O(| F ′server |) where | F ′server |≤ d, so in worst case the computation complexity would
be O(d).
In Algorithm 3, the computation of F ′server requires O((d.q)2) because in worst-case in
each client, the local feature subset contains all features. The global feature selection
with multi-objective optimization uses NSGA-II[Deb+02] algorithm so the time com-
plexity of it is O(M. | F ′server |2), where | F ′server |≤ d and M is the number of objectives.
Here, we optimize two objectives, so the worst-case time complexity is O(d2).
The computational complexity of the Algorithm 4 depends on the specific learning
problem. In the case of strongly convex and smooth problems, the convergence of
FedAvg on non-IID dataset is O

( 1
T

)
[Li+19], where T is the global rounds. If we

have a dataset with d features, and selected features are ε , then the Algorithm 4 needs
to be run a maximum of d

ε times. Consequently, for strongly convex and smooth
problems, the computational complexity of Algorithm 4 is d

ε ·O
( 1

T

)
.
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4.5 Communication cost

To perform Algorithm 1, 2, and 3, both the client and server require a single commu-
nication round. A federated learning approach is utilised in the case of Algorithm 4.
Consequently, the maximum number of required communication rounds can be ex-
pressed as d

ε ·T . Therefore, total communication cost ≤ 1+ d
ε ·T .

5 Evaluation

We evaluated the performance of Fed-FiS and Fed-MOFS across multiple datasets.
The details of the datasets and data statistics are given in Table 6. A detailed discussion
of the datasets is in the supplementary copy. We evaluated both of our algorithms on
both IID and non-IID data division.

Table 6: Datasets

Datasets Instances Features Classes Type

NSL-KDD99 [Tav+09] 125973 41 2 Intrusion detection
ACC [Dal+17] 284807 30 2 Credit card fraud transaction detection
Wine [AF91] 178 13 3 Wine quality
Vowel [Tur14] 990 13 11 Speech recognition
Vehicle [Var20] 846 9 4 Vehicle ownership
Segmentation [Sur] 10695 10 4 Customer segmentation
WDBC [al95] 569 30 2 Breast cancer
Ionosphere [al89] 351 34 2 Radar scans
Hill valley [LF08] 606 100 2 Terrain
ISOLET [RM94] 7797 617 26 Speech data
Diabetes [DDD90] 768 8 2 Diabetes diagnostics
IoT [Ant19] 503910 28 17 Smart home data

Boston [Koe23] 506 14 - Regression dataset. Median Price of
owner-occupied homes

California [Nug17] 20640 9 - Regression dataset, Predicting median
house values in California

.

Synthetic 100000 200 25 Synthetic data

5.1 Experimental setup

The experimental setup is described in Table 7. Each client is responsible for selecting
local features and the local training of the model. Meanwhile, the server estimates the
global feature scores and ranks them. Moreover, server performs aggregation of the
local models. Our local feature selection approach is similar to [BEB21]. We em-
ployed the k-means clustering algorithm and set the number of clusters to 2 based on
the highest silhouette score of the clusters. NSGA-II was employed to maximize rele-
vance and minimize redundancy. Subsequently, we implemented federated forest and
FedAvg algorithms, utilizing feature selection results from Fed-FiS and Fed-MOFS.
In FedAvg, we are training a deep neural network (DNN). The description of the DNN
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is given in the supplementary copy. Additionally, we performed feature selection at
the client level using RFE and ANOVA-based methods. This means each client in-
dependently used RFE and ANOVA for feature selection and sent the information
regarding the selected features to the server. The server performs an intersection to
find common features, and clients perform federated learning on the selected features.
Furthermore, we compared our feature selection techniques with FSHFL [Zha+23],
and Fed-mRMR[HBL24], the state-of-the-art federated feature selection method. We
ran all experiments 10 times and carried the mean of the results.

Table 7: Parameters description in federated feature selection

Parameter(s) Value Description

clients 5 to 100 Local feature selection, Learning local
model

Server 1 Global feature selection, Learning global
model

client’s participation 10 to
100%

Partial or full participation of each client

Clustering algorithm k-means Cluster with nearest mean
Multi-objective optimization NSGA-II Non-dominated Sorting Genetic Algo-

rithm
Feature selection state-of-the-
art

4 ANOVA, RFE, FSHFL, Fed-mRMR

Learning algorithm 2 Federated Forest [Liu20], FedAvg
[McM+17]

Performance metrics 7 Accuracy, Precision, Recall, and F1-
Score, RMSE, MAE, Categorical cross-
entropy loss.

5.2 Results and analysis

Here, we assessed the outcomes based on various aspects, including performance,
scalability, stability, efficiency, and convergence of the global model.

5.2.1 Performance evaluation

We evaluated the performance of Fed-FiS and Fed-MOFS for both IID and non-IID
data division on multiple datasets representing classification and regression tasks.

5.2.1.1 Performance evaluation with IID data divisions: In the following ex-
periments in Table 8 and 9, we considered the data with random distribution among 5
clients and ensured that each client has information from all classes (IID). After con-
ducting training with Federated Forest (Table 8) and training a deep neural network
using federated averaging (Table 9) on both full feature sets and reduced feature sets
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Table 8: Performance of federated forest on selected features (mean / ratio of feature
selected)

Dataset All Features RFE ANOVA FSHFL Fed-mRMR Fed-FiS Fed-MOFS

F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy

Ionosphere 0.93/1.0 0.92 0.91/0.97 0.91 0.92/0.91 0.91 0.93/0.54 0.93 0.94/0.87 0.94 0.92/0.15 0.92 0.93/0.76 0.92

WDBC 0.95/1.0 0.95 0.95/0.52 0.95 0.96/0.52 0.95 0.95/0.26 0.94 0.94/0.45 0.94 0.96/0.23 0.95 0.96/0.39 0.96

Wine 0.97/1.0 0.97 0.98/0.92 0.98 0.98/0.85 0.97 0.86/0.46 0.83 0.98/0.77 0.98 0.98/0.54 0.98 0.98/0.77 0.98

Hill-Valley 0.52/1.0 0.52 0.55/0.05 0.54 0.52/0.90 0.52 0.49/0.21 0.49 0.51/0.35 0.51 0.53/0.25 0.52 0.53/0.10 0.52

Vowel 0.91/1.0 0.9 0.90/0.92 0.9 0.83/0.50 0.82 0.79/0.58 0.77 0.80/0.91 0.8 0.91/0.92 0.91 0.91/0.83 0.9

Vehicle 0.83/1.0 0.83 0.81/0.75 0.81 0.80/0.88 0.8 0.67/0.62 0.66 0.76/0.88 0.76 0.83/0.87 0.83 0.84/0.87 0.84

ACC 0.99/1.0 0.99 0.99/0.67 0.99 0.99/0.83 0.99 0.99/0.67 0.99 0.99/0.68 0.99 0.99/0.70 0.99 0.99/0.63 0.99

Segmentation 0.49/1.0 0.49 0.48/0.89 0.48 0.47/0.89 0.47 0.41/0.67 0.41 0.41/0.78 0.41 0.48/0.78 0.48 0.48/0.89 0.48

ISOLET 0.92/1.0 0.92 0.89/0.91 0.88 0.90/0.91 0.91 0.88/0.38 0.88 0.89/0.78 0.9 0.92/0.78 0.92 0.92/0.78 0.92

IoT 0.98/1.0 0.98 0.98/0.46 0.98 0.96/0.68 0.96 0.89/0.64 0.89 0.99/0.52 0.99 0.98/0.25 0.98 0.98/0.25 0.98

Diabetes 0.79/1.0 0.78 0.79/0.75 0.79 0.78/0.88 0.78 0.76/0.50 0.76 0.68/0.75 0.68 0.79/0.75 0.79 0.80/0.37 0.8

NSL-KDD99 0.99/1.0 0.99 0.99/0.78 0.99 0.99/0.90 0.99 0.99/0.71 0.99 0.99/0.78 0.99 0.99/0.84 0.99 0.99/0.63 0.99

Table 9: Performance of FedAvg on selected features (mean / ratio of feature selected)

Dataset All Features RFE ANOVA FSHFL Fed-mRMR Fed-FiS Fed-MOFS

F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy

Ionosphere 0.87/1 0.88 0.87/0.33 0.9 0.87/0.36 0.86 0.92/0.57 0.91 0.91/0.82 0.91 0.89/0.15 0.9 0.94/0.21 0.91

WDBC 0.94/1 0.94 0.94/0.32 0.95 0.95/0.48 0.95 0.92/0.25 0.93 0.95/0.57 0.95 0.95/0.16 0.95 0.95/0.16 0.95

Wine 0.93/1 0.92 0.87/0.53 0.94 0.93/0.61 0.96 0.93/0.38 0.93 0.96/0.84 0.96 0.91/0.46 0.96 0.93/0.38 0.94

Hill-Valley 0.5/1 0.51 0.53/0.1 0.5 0.5/0.35 0.51 0.51/0.21 0.5 0.50/0.35 0.44 0.51/0.1 0.51 0.53/0.15 0.52

Vowel 0.8/1 0.79 0.74/0.66 0.75 0.77/0.91 0.77 0.78/0.58 0.76 0.82/0.84 0.82 0.81/0.66 0.83 0.82/0.66 0.82

Vehicle 0.65/1 0.65 0.63/0.5 0.66 0.64/0.87 0.66 0.42/0.62 0.53 0.67/0.89 0.67 0.64/0.5 0.67 0.67/0.67 0.67

ACC 0.99/1 0.99 0.99/0.66 0.99 0.99/0.83 0.99 0.99/0.66 0.99 0.99/0.67 0.99 0.99/0.63 0.99 0.99/0.46 0.99

Segmentation 0.48/1 0.46 0.48/0.88 0.46 0.42/0.66 0.45 0.21/0.66 0.38 0.44/0.9 0.45 0.48/0.66 0.46 0.47/0.55 0.46

ISOLET 0.95/1 0.95 0.94/0.90 0.94 0.90/0.90 0.9 0.89/0.37 0.89 0.95/0.78 0.95 0.95/0.77 0.95 0.95/0.77 0.95

IoT 0.85/1 0.84 0.84/0.78 0.85 0.85/0.89 0.85 0.83/0.64 0.83 0.85/0.89 0.86 0.87/0.71 0.88 0.84/0.53 0.84

Diabetes 0.75/1 0.75 0.74/0.5 0.74 0.74/0.5 0.75 0.69/0.5 0.7 0.65/0.62 0.65 0.74/0.5 0.74 0.76/0.5 0.77

NSL-KDD99 0.99/1 0.99 0.99/0.76 0.99 0.99/0.81 0.99 0.99/0.71 0.99 0.99/0.85 0.99 0.99/0.68 0.99 0.99/0.63 0.99

Table 10: Performance of FedAvg on the selected features for regression tasks

Dataset/ratio
of feature
selected

Fed-mRMR Fed-MOFS Fed-FiS

RMSE MAE RMSE MAE RMSE MAE
Boston/0.71 9.04 6.1 8.98 6.08 8.96 6.03
California/0.77 0.83 0.60 0.79 0.57 0.79 0.57

produced by feature selection algorithms (RFE, ANOVA, FSHFL, Fed-mRMR, Fed-
FiS, and Fed-MOFS), we observed in Table 8, Fed-MOFS offers better accuracy and
F1-Score than the state-of-the-art in 7 out of 12 datasets. Meanwhile, Fed-FiS per-
formed better or equivalent when compared to Fed-MOFS in 4 datasets. For the Iono-
sphere dataset, FSHFL and Fed-mRMR both outperformed Fed-FiS and Fed-MOFS
by 1%. In the Hill-Valley dataset, the performance of Fed-FiS and Fed-MOFS was
similar, but their accuracy and F1-Scores were slightly lower (1% and 2%, respec-
tively) compared to RFE. On the segmentation dataset, achieving the best performance
requires the inclusion of all features. Fed-FiS and Fed-MOFS utilizes 78% and 89%
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of the feature space, respectively to achieves 48% accuracy and F1-Score, which is
just 1% lower than the optimal result. In Table 9, we observed that Fed-MOFS outper-
formed the state-of-the-art in 9 datasets in terms of accuracy and F1-Scores. Fed-FiS
outperformed state-of-the-art on 6 and 4 datasets in terms of accuracy and F1-Score
respectively. For WDBC and ISOLET, both Fed-FiS and Fed-MOFS give similar ac-
curacy and F1-Score. For WDBC and ISOLET, both Fed-FiS and Fed-MOFS produce
the same F1-Score. In the supplementary copy, we provide a set of experiments using
Random Forest where we found that Fed-MOFS performed well in 7 datasets in terms
of validation accuracy and F1-Score. Fed-MOFS is pretty consistent in 9 datasets,
excluding Vehicle, Segmentation and Diabetes datasets. We evaluated Fed-FiS, Fed-
MOFS, and Fed-mRMR on regression tasks (Table 10) using the Boston house price
and California house price prediction dataset. Our results showed that when the fea-
ture subset contained 71% of the total features, Fed-FiS slightly outperformed Fed-
MOFS on the Boston dataset. Conversely, Fed-MOFS performed equivalently with
Fed-FiS on the California dataset by selecting 77% of the features. Both methods
performed well compared to Fed-mRMR when selecting the same amount of features,
while training a ridge regression model in a federated setup on both datasets.

5.2.1.2 Performance evaluation with non-IID data divisions: Here, we focused
on the performance of Fed-FiS and Fed-MOFS on different non-IID setups given in
Table 11. The table represents, each client has information from at most how many
classes. We represent γ as a non-IID factor. For example, γ = 0.2 means each client
has data from 2 out of 10 classes, while γ = 0.8 indicates that each client has data
from 8 out of 10 classes. As γ approaches 1, the data distribution becomes more IID,
with γ = 1 signifying that all clients have information about all classes, which is IID.
Additionally, for each configuration, there are no overlapping samples among clients.

Table 11: Non-IID factors (γ) based on class information

Dataset γ

0.2 0.5 0.8 1.0
Number of classes per client

IoT 4 9 14 17
ISOLET 5 13 21 26
Synthetic 8 13 20 25

• Performance comparison with the state-of-the-art: We compared the perfor-
mance of Fed-FiS and Fed-MOFS with Fed-mRMR in Table 12 for 5 different
datasets with γ = 0.8 and 100 clients. In all experiments, we fixed the propor-
tion of features selected for each dataset. For instance, 67% of features were chosen
for the vehicle dataset, 80% for the segmentation dataset, 60% for the IoT dataset,
39% for the ISOLET dataset, and 60% for the synthetic dataset. We observed from
the experiments in 3 out of the 5 datasets, Fed-MOFS outperformed the Fed-FiS
and Fed-mRMR. Specifically, Fed-FiS showed superior results on the IoT datasets.
For the segmentation dataset, Fed-mRMR slightly surpasses (1%) both Fed-FiS and
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Fed-MOFS in performance. The difference in results occurs due to the heterogene-
ity in the data.

Table 12: Performance of different federated feature selection algorithms with non-iid
factor γ=0.8

Dataset/ratio
of feature
selected

Fed-mRMR Fed-MOFS Fed-FiS

Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score
Vehicle/0.67 0.57 0.61 0.71 0.75 0.7 0.74
Segmentation/0.8 0.46 0.49 0.45 0.47 0.45 0.48
IoT/0.6 0.86 0.85 0.91 0.9 0.92 0.91
ISOLET/0.39 0.92 0.91 0.95 0.95 0.94 0.94
synthetic/0.6 0.94 0.94 0.98 0.98 0.97 0.97

• Comparative analysis of Fed-FiS and Fed-MOFS for different non-IID factors
(γ) and the selected feature subset: To compare across models and datasets, we
trained two global models using the federated learning algorithms FedAvg and Fed-
erated Forest on the features selected by Fed-MOFS and Fed-FiS, results are re-
ported in Figure 3. During the training process, 100 clients participated fully for
both the IoT and synthetic datasets, while 75 clients were involved for the ISO-
LET dataset, maintaining full participation throughout the entire learning period.
Following observations are made from there, in the ISOLET dataset (Figure 3i to
3l), Fed-MOFS outperformed Fed-FiS. For a fixed γ , Fed-MOFS achieves better
accuracy with fewer features compared to Fed-FiS. However, in the IoT dataset
(Figure 3e) with γ = 0.5, Fed-FiS selected better features than Fed-MOFS. In the
synthetic dataset (Figure 3a, Figure 3c), the features selected by Fed-MOFS offered
better performance than those selected by Fed-FiS. These observations indicate that
the performance of Fed-FiS and Fed-MOFS varies across different datasets and de-
pends on the learning algorithm employed.

• Relation between γ and cardinality of feature subset: In Figure 3, when we keep
γ fixed and increase the feature subset (20%, 40%, 60%, 80%), the performance of
learning improves as the number of features increases. Similarly, the model’s per-
formance is enhanced when we keep cardinality of feature subset fixed and increase
γ from 0.2 to 0.8. A similar trend is observed for Fed-FiS. Thus, very low values
of γ and feature subset fail to obtain optimal results. To enhance performance, we
need to raise either γ or cardinality of the feature subsets, or both.

5.2.2 Scalability

To evaluate the scalability of Fed-FiS and Fed-MOFS, we carried out experiments
with 100 clients on IoT and 75 clients on ISOLET datasets, as depicted in Figure 4.
We set γ to 0.2 and varied client participation using the scale ∆ ∈ (0.1, 0.5, 0.8,
1.0), where ∆ = 1.0 indicates full client participation and ∆ = 0.1 implies 10% client
participation. Our results showed that on the IoT dataset (Figure 4a), Fed-MOFS
performed better with increased client participation, achieving optimal performance
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Figure 3: Performance comparison of Fed-FiS and Fed-MOFS on synthetic (Fig-
ure 3a, 3b, 3c, 3d), IoT (Figure 3e, 3f, 3g, 3h), and ISOLET (Figure 3i, 3j, 3k, 3l)
datasets across different non-iid settings.

at ∆ = 0.5. Conversely, as shown in Figure 4b, Fed-FiS achieved the best results at
∆ = 0.8. For the experiments on ISOLET using Fed-MOFS (Figure 4c) and Fed-FiS
(Figure 4d), increasing the value of ∆ impacts the model’s performance. Fed-MOFS
achieved the highest accuracy and precision at ∆ = 0.5, and the highest recall and
F1-score at ∆ = 0.8. For Fed-FiS, the model performed equivalently at ∆ = 0.8 and
∆ = 1.0, respectively.
From these observations, we can conclude that for Fed-MOFS, involving 50% partic-
ipant in each global round is sufficient for achieving a generalized model. Similarly,
for Fed-FiS, satisfactory performance is achieved with 80% client participation per
global iteration. Therefore, both Fed-MOFS and Fed-FiS are effective with partial
client participation.

5.2.2.1 Effect of non-IID Factor (γ) on Partial Participation Factor (∆): In
these experiments, we fixed the client participation factor at ∆ = 0.1, meaning only
10% of the total clients participate in each global iteration. For varying values of γ
(0.2, 0.5, and 0.8), increasing γ led to improved performance for both Fed-FiS and
Fed-MOFS. Notably, there were no significant changes in performance for both the
ISOLET (Figure 5a) and IoT (Figure 5b) datasets when γ increased from 0.5 to 0.8.
For the ISOLET dataset (Figure 5a), Fed-MOFS outperformed Fed-FiS, while for the
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Figure 4: Performance of FedAvg with feature selection using Fed-MOFS on IoT
(Figure 4a), and ISOLET (Figure 4c) datasets, compared to Fed-FiS on IoT (Fig-
ure 4b), and ISOLET (Figure 4d) datasets, for varying levels of client participation
(∆ ∈ 0.1,0.5,0.8,1.0). The total number of clients is 100, with a non-IID factor (γ)
of 0.2. The number of selected features is 17 for IoT (Figure 4a, 4b), and 240 for
ISOLET (Figure 4c, 4d) datasets, using a DNN as the learning model.

IoT dataset (Figure 5b), Fed-FiS performed better than Fed-MOFS.
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Figure 5: Performance comparison of Fed-FiS and Fed-MOFS for a fixed client par-
ticipation (∆ = 0.1) but varying non-IID factor γ ∈ (0.2, 0.5, and 0.8)

When comparing Fed-MOFS and Fed-FiS based on client participation, Fed-FiS out-
performed Fed-MOFS on IoT data (Figure 4a and Figure 4b). However, for the ISO-
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LET datasets, Fed-MOFS (Figure 4c) showed better performance compared to Fed-
FiS (Figure 4d). These observations suggest that the performance of the feature selec-
tion algorithm depends on the dataset, the non-IID factor (γ), and client participation
(∆).
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Figure 6: Validation accuracy vs. number of selected global features

5.2.3 Stability

To assess stability, we conducted a comparison between Fed-FiS and Fed-MOFS
against traditional feature selection methods like RFE and ANOVA. We evaluated
their stability by examining the validation accuracy (Figure 6) of the global model
using varying numbers of features. From Figure 6a, we observed that the ranking of
features by Fed-MOFS is better than others. Based on the outcomes displayed in Fig-
ure 6b, it can be observed that both Fed-FiS and Fed-MOFS have effectively identified
the top 5 significant features. As a result, their model’s accuracy has demonstrated a
remarkable improvement compared to other models despite reducing the feature space
by over 50%. This indicates that no crucial information has been lost during the re-
duction process.

5.2.4 Efficiency

We performed a comparative analysis of the efficiency of Fed-FiS, Fed-MOFS, and
FSHFL in terms of the time (wall-clock time) required for feature selection. As
shown in Figure 7, our findings revealed that both Fed-FiS and Fed-MOFS demon-
strate nearly identical performance in selecting the feature subset, while FSHFL takes
considerably longer to achieve the same task. Particularly, in certain datasets, the dif-
ference in feature selection time is quite significant. For instance, in the ACC dataset,
Fed-FiS outperformed FSHFL by 26.68 seconds, and Fed-MOFS was 26.54 seconds
faster. Similarly, for IoT datasets, Fed-FiS surpassed FSHFL by 15.04 seconds, and
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Fed-MOFS is 14.55 seconds faster than FSHFL. Additionally, when considering NSL-
KDD99 datasets, Fed-FiS outperformed FSHFL by 23.1 seconds, and Fed-MOFS is
23 seconds faster than FSHFL.
Table 13 compares the validation accuracy vs. model size for Federated Forest. The
number of estimators in random forests is predefined and remains constant; hence, to
get a better understanding of the complexity of a forest, we focus on the maximum
depth of trees in a forest. We computed the ratio of accuracy and depth of the forest.
For 4 (Ionosphere, WDBC, Segmentation and NSL-KDD99) out of 6 datasets, Fed-
MOFS produced a higher ratio than Fed-FiS and no feature selection (No-FS). And
in other two datasets (Hill valley and Vehicle) Fed-FiS produced higher ratio than
No-FS.
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Figure 7: Wall-clock running time of federated feature selection algorithms

Table 13: Comparison between the performance of Federated Forest and model size

Dataset Algorithm Accuracy/depth Dataset Accuracy/Depth

Ionosphere
No-FS 0.091

WDBC
0.136

Fed-FiS 0.092 0.134
Fed-MOFS 0.105 0.162

Hill valley
No-FS 0.019

Vehicle
0.031

Fed-FiS 0.021 0.033
Fed-MOFS 0.02 0.028

Segmentation
No-FS 0.014

NSL-KDD99
0.033

Fed-FiS 0.013 0.030
Fed-MOFS 0.015 0.034

5.2.5 Convergence

In the comparison depicted in Figure 8, we examined the convergence behavior of
FedAvg on both NSL-KDD99 and WDBC datasets. Feature selection was carried out
using three different methods: Fed-FiS, Fed-MOFS, and ANOVA. Additionally, we
included experiments with the full dataset, where no feature selection was applied.
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Our observations indicate that the convergence pattern remains consistent whether
feature selection is performed or not prior to the learning process. Thus, we can
conclude that the inclusion of feature selection does not hinder the convergence of the
learning model.
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Figure 8: Global rounds vs validation loss

6 Concluding Remarks

In this paper, we proposed Fed-MOFS and performed extensive studies on Fed-FiS
and Fed-MOFS. Both are feature selection methods designed exclusively for horizon-
tal federated learning. We made an extensive empirical, computational and commu-
nication complexity analysis of Fed-FiS and Fed-MOFS. In terms of performance,
Fed-MOFS and Fed-FiS together outperformed the state-of-the-art on both classifica-
tion and regression tasks. In terms of stability, Fed-FiS and Fed-MOFS show high
performance while reducing more than 50% of the feature space. Regarding effi-
ciency, Fed-FiS and Fed-MOFS are at least 2× faster than FSHFL. We also observed
feature selection doesn’t influence the convergence of the model. Furthermore, we
observed that both Fed-FiS and Fed-MOFS perform significantly well in the presence
of non-IID data and partial client participation.
Federated feature selection has several potential applications, such as anomaly detec-
tion in human activity recognition, financial fraud detection, etc. In the future, we
intend to implement federated feature selection that is capable of uncovering anoma-
lies in human activity recognition with federated learning.
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Appendix A Additional Results and Analysis

Here, we discuss the datasets and the learning models in detail. After that, we have
one additional result to show the superiority of the performance of Fed-FiS and Fed-
MOFS over the state-of-the-art.

Appendix A.1 Datasets

In the empirical studies, we have experimented with Fed-FiS, Fed-MOFS, and state-
of-the-art model FSHFL, ANOVA, and RFE on 12 datasets.

Appendix A.1.1 NSL-KDD99

The NSL-KDD [Tav+09] dataset is a refined version of the original KDD Cup 99
dataset for evaluating computer network intrusion detection systems. The KDD Cup
99 dataset was the benchmark for assessing network-based anomaly detection meth-
ods. The dataset contains 41 features. These features are derived from network traffic
data and include various types of data, such as basic features of network connections,
content features, and traffic features based on a two-second temporal window. The
dataset has two main classes: normal (benign) and attack. However, the attack class is
further divided into four major categories of network attacks, which are Denial of Ser-
vice (DoS), Remote to Local (R2L), User to Root (U2R), and Probing. In this paper,
we have only two classes: Benign and attack.

Appendix A.1.2 Annonymized Credit Card Fraud (ACC)

ACC dataset [Dal+17] is commonly used in machine learning and data science to de-
tect fraudulent credit card transactions. The dataset is anonymized for privacy reasons.
Sensitive personal information is either removed or transformed in a way that individ-
ual transactions cannot be traced back to individual cardholders. The dataset typi-
cally includes a mix of numerical features transformed using techniques like Principal
Component Analysis (PCA). The datasets have 28 feature variables (V1,V2, . . . ,V 28)
and 2 classes. Class 1 represents fraudulent transactions, and 0 represents benign
transactions. There are 492 frauds out of 284,807 transactions. The dataset is highly
unbalanced. The fraudulent transactions account for 0.172% of all transactions. We
applied SMOTE [Cha+02] to that unbalanced dataset to balance it, and after that, we
distributed the data to clients.

Appendix A.1.3 Wine

Wine [AF91] is a classic dataset used in multivariate statistics and machine learn-
ing for classification tasks. These data are the results of a chemical analysis of wines
grown in the same region in Italy but derived from three different cultivars. The dataset
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characteristic is Tabular. It has 12 features such as Alcohol, Malic acid, Ash, Al-
calinity of ash, Magnesium, Total phenols, Flavanoids, Nonflavanoid phenols, Proan-
thocyanins, Color intensity, Hue, OD280/OD315 of diluted wines, and Proline. The
features are real and integer. The dataset has 178 samples.

Appendix A.1.4 Vowel

The primary goal of the Vowel [Tur14] dataset is to classify different spoken vow-
els. This dataset has 13 features, where the number of numeric features is 10 and 3
symbolic features. 990 instances and 11 classes.

Appendix A.1.5 Vehicle

The Vehicle dataset [Var20], focuses on types of car ownership. It comprises 846
samples and 9 attributes, and the target is categorized into 4 distinct classes. The
dataset contained non-numeric data in features, which has been converted into cate-
gorical format for analysis. For instance, the ownership category has four types: ’First
owner,’ ’Second owner,’ ’Third owner,’ and ’Fourth or Above owner’. These have
been encoded as 0, 1, 2, and 3, respectively.

Appendix A.1.6 Segmentation

This is a customer segmentation classification [Sur]. It has 10 features such as
ID, Gender, Ever married, Age, Graduated, Profession, Work Experience, Spend-
ing Score, Family Size, and Var 1. The target variable is Segmentation. It has four
classes. Similar to the Vehicle dataset, it has non-numeric data in some features (For
example, Gender, Profession, etc. ). Those are converted into categorical.

Appendix A.1.7 WDBC

This is a Wisconsin Diagnostic Breast Cancer dataset [al95]. The dataset character-
istics are multivariate. The feature type is real. The dataset has 30 features and 569
samples. The dataset is useful for classification tasks. The number of classes is two
(malignant and benign).

Appendix A.1.8 Ionosphere

This is a classification of radar returns from the ionosphere [al89]. The dataset char-
acteristics are multivariate. The dataset has 34 features where the features are integer
or real. The entire dataset has 351 samples.
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Appendix A.1.9 Hill valley

This dataset [LF08] has 100 features. All have floating-point values. The number of
samples is 606. This dataset is used for 2 class classification problems. The class is
represented in binary {0,1}. 0 means valley and 1 means hill.

Appendix A.1.10 ISOLET

This dataset [RM94] is useful for classification problems. The goal is to predict which
letter name was spoken. Therefore, the target classes are 26. The characteristics of
the dataset are multivariate. The number of features is 617, and each feature has real
numbers. The total samples are 7797.

Appendix A.1.11 Diabetes

The objective of this dataset [DDD90] is to predict whether the patient has diabetes
or not. This is a binary class classification dataset. The number of features is 8, and
the number of samples is 768. All the features have a numeric value. The dataset
has the following features: Number of times pregnant, plasma glucose concentration
a 2 hours in an oral glucose tolerance test, Diastolic blood pressure (mm Hg), Triceps
skin fold thickness (mm), 2-Hour serum insulin (mu U/ml), Body mass index (weight
in kg/(heightinm)2), Diabetes pedigree function, Age (years).

Appendix A.1.12 IoT

This dataset contains smart home data[Ant19]. It has 503910 samples. 28 Features
and 18 classes. This dataset is useful for classification problems.

Appendix A.1.13 Synthetic data

We have used a synthetic dataset with 100,000 samples and 200 features specifically
for our experiments with non-iid data. This dataset contains 35 truly informative fea-
tures, and 65 features that are linearly dependent on the 35. The remaining 100 are
purely noise aimed to reduce the learnability of models. A good Feature selection
algorithm will be able to filter this and provide high-quality data to a model. All the
data points belong to one of 25 classes With a randomly initialized class imbalance
adding to the challenge of non-iidness.
For a given iid ratio (γ), a client can have samples comprising of not more than 20%
of the total number of class labels if γ = 0.2. For example, if the total number of
classes in the dataset is 25, a single client will have not more than floor(25*0.2) = 5
class labels. The first client may be assigned samples having the first five class labels,
the second client will be assigned samples having another set of 5 class labels, and
so on. Multiple checks and balances ensure that no sample is repeated in more than
one client, all the samples are utilized in the distribution process, no single client has
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more than (num classes*γ) number of class labels, number of samples for each client
is random.

Appendix A.2 Learning model

Appendix A.2.1 Neural Network

We created a neural network that has pass through 3 dense layer. The first hidden layer
is a dense layer with 128 parameters. The second hidden layer is another dense layer
with 64 parameters. The third hidden layer is a dense layer with 32 parameters. In
all three hidden layer we have a ReLU activation function. We have an output layer
where the number of parameters is equal to number of classes. The activation function
of the output layer is either a sigmoid or a softmax, depending on whether the problem
is binary classification or multi-class classification.

Appendix A.3 Performance analysis

After conducting training with distributed Random-Forest using both complete fea-
ture sets and reduced feature sets produced by feature selection algorithms (RFE,
ANOVA, FSHFL, Fed-FiS, and Fed-MOFS), we observed (in Table 14) for most of the
larger datasets, excluding Isolet (i.e. WDBC, HillValley, ACC, IoT, and NSL-KDD99
datasets), Fed-MOFS produced a smaller feature subset than others while maintaining
a high test-accuracy. In terms of F1-Score (in Table 15), Fed-MOFS is pretty consis-
tent across most datasets (excluding Vehicle, Segmentation, and Diabetes datasets),
providing the highest F1-Score at minimal features.

Table 14: Test Accuracies of the model trained using Random-Forest Algorithm
(mean± std / ratio of feature selected)

Dataset All Features RFE ANOVA FSHFL Fed-FiS Fed-MOFS

Ionosphere 0.86±0.02/1 0.86±0.05/0.33 0.86±0.03/0.36 0.82±0.01/0.54 0.89±0.02/0.15 0.88±0.02/0.21

WBDC 0.94±0.01/1 0.94±0.02/0.25 0.94±0.02/0.74 0.94±0.01/0.25 0.94±0.01/0.22 0.94±0.01/0.19

WINE 0.94±0.02/1 0.94±0.03/0.53 0.94±0.03/0.61 0.91±0.01/0.46 0.95±0.03/0.53 0.95±0.02/0.46

Hill valley 0.51±0.03/1 0.50±0.02/0.45 0.51±0.03/0.65 0.51±0.00/0.21 0.51±0.01/0.25 0.55±0.02/0.05

Vowel 0.80±0.02/1 0.80±0.02/0.83 0.80±0.02/0.91 0.78±0.00/0.58 0.79±0.02/0.91 0.79±0.03/0.66

Vehicle 0.81±0.01/1 0.80±0.01/0.75 0.79±0.01/0.87 0.65±0.00/0.62 0.80±0.01/0.87 0.79±0.02/0.87

ACC 0.99±0.00/1 0.99±0.00/0.66 0.99±0.00/0.7 0.99±0.01/0.66 0.99±0.00/0.7 0.99±0.00/0.56

Segmentation 0.43±0.00/1 0.43±0.01/0.88 0.43±0.01/0.88 0.38±0.00/0.66 0.41±0.01/0.77 0.42±0.01/0.88

ISOLET 0.90±0.00/1 0.90±0.00/0.64 0.90±0.00/0.77 0.83±0.00/0.37 0.90±0.00/0.77 0.90±0.00/0.64

IoT 0.97±0.00/1 0.98±0.00/0.32 0.96±0.00/0.67 0.89±0.01/0.64 0.98±0.00/0.25 0.98±0.00/0.25

Diabetes 0.76±0.01/1 0.76±0.01/0.5 0.75±0.02/0.87 0.69±0.02/0.5 0.77±0.01/0.75 0.76±0.01/0.62

NSL KDD99 0.99±0.00/1 0.99±0.00/0.81 0.99±0.00/0.86 0.98±0.01/0.71 0.99±0.00/0.84 0.99±0.00/0.65
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Table 15: F1-Scores of the model trained using Random-Forest Algorithm (mean±std
/ ratio of feature selected)

Dataset All Features RFE ANOVA FSHFL Fed-FiS Fed-MOFS

Ionosphere 0.87±0.01/1 0.86±0.05/0.33 0.87±0.02/0.36 0.83±0.01/0.54 0.89±0.02/0.15 0.94±0.02/0.21

WBDC 0.94±0.01/1 0.94±0.02/0.25 0.94±0.01/0.74 0.94±0.01/0.25 0.95±0.01/0.22 0.94±0.01/0.19

WINE 0.95±0.01/1 0.95±0.03/0.53 0.95±0.03/0.61 0.93±0.01/0.46 0.96±0.02/0.53 0.96±0.02/0.46

Hill Valley 0.52±0.03/1 0.5±0.02/0.45 0.52±0.03/0.65 0.52±0.00/0.21 0.52±0.01/0.25 0.56±0.02/0.05

Vowel 0.82±0.02/1 0.82±0.02/0.83 0.82±0.01/0.91 0.78±0.00/0.58 0.81±0.02/0.91 0.80±0.03/0.66

Vehicle 0.81±0.01/1 0.80±0.01/0.75 0.79±0.01/0.87 0.65±0.00/0.62 0.80±0.01/0.87 0.79±0.02/0.87

ACC 0.99±0.00/1 0.99±0.00/0.66 0.99±0.00/0.7 0.99±0.01/0.66 0.99±0.0/0.7 0.99±0.0/0.56

Segmentation 0.43±0.00/1 0.43±0.01/0.88 0.43±0.01/0.88 0.38±0.00/0.66 0.41±0.00/0.77 0.42±0.01/0.88

ISOLET 0.91±0.00/1 0.91±0.00/0.64 0.91±0.00/0.77 0.84±0.00/0.37 0.91±0.00/0.77 0.91±0.00/0.64

IoT 0.97±0.00/1 0.98±0.00/0.32 0.96±0.00/0.67 0.89±0.01/0.64 0.98±0.00/0.25 0.98±0.00/0.25

Diabetes 0.77±0.01/1 0.76±0.03/0.5 0.76±0.02/0.87 0.69±0.02/0.5 0.78±0.01/0.75 0.76±0.02/0.62

NSL KDD99 0.99±0.00/1 0.99±0.00/0.81 0.99±0.00/0.86 0.98±0.01/0.71 0.99±0.00/0.84 0.99±0.00/0.65
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Abstract: The key challenge of personalized federated learning (PerFL) is
to capture the statistical heterogeneity properties of data with inexpensive
communications and gain customized performance for participating devices.
To address these, we introduced personalized federated learning in multi-tier
architecture (PerMFL1) to obtain optimized and personalized local models when
there are known team structures across devices. We provide theoretical guaran-
tees of PerMFL, which offers linear convergence rates for smooth strongly convex
problems and sub-linear convergence rates for smooth non-convex problems.
We conduct numerical experiments demonstrating the robust empirical perfor-
mance of PerMFL, outperforming the state-of-the-art in multiple personalized
federated learning tasks.

Key words: Personalized federated learning, Multi-tier federated learning,
Hierarchical federated learning.

1 Introduction

Federated learning (FL) is a distributed on-device learning framework that
employs the heterogeneous data privately available at the edge for learning.
In classical machine learning, edge devices are supposed to send data to the
centralized server for training. However, FL relaxes this restriction by enabling
the training of each model on the end devices and aggregating them on the
global server. Classical FL learns a single global model by utilizing the private
data of the devices locally and exchanging only the model information in a
communication-efficient and privacy-preserving manner [McM+17].

The early FL literature focuses mainly on a simplistic network architecture
where all devices communicate directly with a single server [McM+17]. An
example of such a network architecture is typical on a local area network (LAN)

1https://github.com/sourasb05/PerMFL_1.git
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with all devices connected to a single server. However, real-world Internet
applications often occur on more complex, multi-tiered network architecture,
e.g., wide area networks (WAN) that span multiple geographic locations and
connect heterogeneous LANs. Hence, the conventional FL architecture is not
suitable for such a setting. To address this, we study a multi-tier FL model
Figure 1b where an intermediate layer of mediators, called team servers (TSi),
acts as a bridge between the end devices (Ni) and the global server (GS) and
facilitates intermediate aggregations. From a systems standpoint, this multi-tier
FL model resembles the cloud-edge continuum architecture [Wu+21]. In this
model, the distant cloud serves as a central server responsible for generating a
global model, and the edge servers located in various geographical regions act
as team servers that establish connections with both the distant cloud and end
devices. In contrast, the end devices perform local model computations. Multi-
tier FL models, which are also referred to as hierarchical FL, have been studied
by researchers in various applications and have shown significant advantages such
as cost efficiency and scalability [Ekm+22], reduced communication overheads
[Aba+20; Liu+22], enhanced privacy [Wai+20], improved system adaptability
and performance [Lin+20], and faster convergence speeds (both theoretically
and empirically) and reduced training time [Liu+20].

Data heterogeneity poses a significant challenge in FL, as data across dif-
ferent devices may exhibit varying characteristics and originate from diverse
data distributions. The conventional FL systems assume that a single global
model fits all devices, hindering the convergence speed and more crucially, the
model accuracy when data is disseminated in a non-independent and identically
distributed (non-IID) manner. In this scenario, using a ‘global model for all’ dis-
allows adaptation to unique needs and preferences embedded in each user’s data
characteristics, possibly leading to subpar performance and user dissatisfaction
[Tan+22]. To tackle this challenge, personalized FL (PerFL) methods learn
local models suitable for each user’s unique needs for downstream tasks while
still benefiting from collaborative training to achieve customized performance.
Popular PerFL approaches include regularization techniques that penalize the
distance between local and global models [Li+21], smoothing techniques such
as Moreau envelopes [TTN20], and other heuristics such as taking extra local
steps after the global model has converged [FAL17; FMO20].

Multi-tier FL also suffers from data heterogeneity, but the existing literature
on personalized multi-tier FL is limited. To address this challenge, we introduce
a personalized multi-tier federated learning method (PerMFL). Our method
is based on a new problem formulation that explicitly incorporates individual
models for each team and device, in addition to the global server’s model. We
enforce the proximity between team models and the global model and between
device models and their associated team models using squared Euclidean distance
regularization. As a result, our method leverages the multi-tiered architecture
and simultaneously learns three models: (1) a global model, (2) a personalized
model for each team, and (3) a personalized model for each device. Geometrically,
the global model serves as a central estimate that is agreed upon by all teams
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and end devices. On the contrary, personalized models are designed to deviate
from the global model in specific directions that align with their local data
distributions. To facilitate efficient communication, our algorithm restricts
direct communication between devices and the global server, allowing devices
to communicate only with the team servers, which in turn communicate with
the global server. Our primary goal with PerMFL is to achieve personalized
on-device model performance while still maintaining comparably high accuracy
for the global model, which can compete with conventional FL methods, all
while ensuring efficient communication and collaboration among the devices
and team servers.

Our key contributions are as follows:

1. We formulate an optimization problem for multi-tier personalized FL by
introducing personal decision variables for teams and devices through
squared Euclidean distance regularization, and we propose an algorithm
(PerMFL) to solve this problem. Our algorithm flexibly accommodates
local objectives during joint training of global and personalized models.

2. To provide a theoretical basis for our approach, we analyze the convergence
guarantees of the proposed algorithm under the assumptions of smooth
strongly convex and smooth non-convex loss functions. We show that the
method converges with linear and sublinear rates, respectively, and we
derive explicit theoretical bounds on hyperparameter settings to provide
guidance for implementation.

3. We conduct extensive numerical experiments to evaluate the empirical per-
formance of PerMFL. We compare our method to state-of-the-art (SOTA)
approaches for both conventional and multi-tier FL settings using bench-
mark datasets (MNIST, FMNIST, EMNIST-10, FEMNIST,CIFAR100)
and non-image tabular synthetic datasets with non-IID data dissemina-
tion. Moreover, we have examined the effect of hyperparameters on the
convergence of PerMFL, ablation studies on different team formations, and
ablation studies on team and client participation on the convergence of
PerMFL.

2 Related Work

This section reviews existing studies and summarizes the differences between
existing works and proposed efforts. We emphasize three different categories of
FL models - multi-tier and personalized FL.

Multi-tier FL: A multi-tier (aka hierarchical) FL model leverages the
combined capabilities of cloud and edge devices within the FL framework.
In [Liu+20], the authors demonstrated that a multi-tier FL strategy, both
theoretically and empirically, exhibits a faster convergence rate compared to
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traditional FL algorithms. In [Wan+22], the concept of “upward” and “down-
ward” divergences were introduced, exploring their implications in the context
of multi-tier FL. Additionally, [Das+22] presented Cross-Silo FL, which encom-
passes multi-tier networks and utilizes vertical and horizontal data partitioning
strategies. In [Ekm+22], they introduced FEDn, a multi-tier FL framework
designed explicitly for horizontally scalable distributed deployments. [Wai+20]
identified several potential advantages of multi-tier FL in addressing privacy
concerns. Firstly, multi-tier FL helps reduce the concentration of power and
control in a central server, promoting a more distributed and decentralized
approach. Secondly, multi-tier FL allows for the flexible placement of defense
and verification mechanisms within the hierarchical structure, enabling the
practical application of these methods. Lastly, multi-tier FL leverages the trust
between users to mitigate the number of potential threats.

Personalized FL: FedAvg [McM+17] is a classical baseline method in
FL, renowned for its simplicity and low communication cost. However, it faces
challenges when dealing with heterogeneous (non-iid) data, leading to unstable
performance due to the concept drift problem. Concept drift arises when a
single global model does not perform well for all clients. To address these issues,
FL has increasingly leaned toward personalized models [Kar+20; Man+20;
Tan+22]. In [FAL17], the authors proposed a personalized version of model-
agnostic meta-learning (MAML) for FL. They identified the problem of how fast
the initial shared model adapts to their local dataset with fewer gradient descent
steps using individual client data. In [Man+20], a systematic learning-theoretic
study of personalization led to the proposal of three model-agnostic approaches:
user clustering, data interpolation, and model interpolation. Another approach,
presented in [TTN20], formulated a personalized FL problem that utilized
Moreau envelopes to regularize devices’ loss functions. In [LHK22], the authors
introduced an Asynchronous Loopless Local Gradient Descent (Async-L2GD)
method for users from multiple known clusters, simultaneously training three
models: a global model, a model-specific cluster, and a personalized model for
each device. The architecture is similar to PerMFL, except that L2GD is an
asynchronous approach. [Ngu+22] introduced DemLearn, an FL algorithm that
employs hierarchical agglomeration clustering. Unlike our model, where teams
remain static throughout the FL process, DemLearn dynamically assembles
teams after each global round. Recent research on personalized FL also includes
works such as [Zha+22; Gas+22; Pil+22; Che+22; Tan+22; Tzi+22; Li+21;
Zha24; Zha+24].

Motivation: A hierarchical structure in FL addresses the scalability and
failure tolerance limitations observed in the centralized architecture [Wai+20]. In
addition, it is also beneficial in addressing the management difficulties, system
adaptivity, and performance [Lin+20] that arise due to fully decentralized
architecture [Wai+20]. The key challenge of personalization is the heterogeneity
of data, locally customized models, and identifying and collaborating among
clients those having similar information [LHK22]. By adding personalization at
team and device levels, we aim to capture customized and refined personalized
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properties of the model that align well with real-world applications [Wu+21;
Zho+23]. Communication with the global server is often the most expensive
step in FL [Abd+22], and communications within a team are typically cheaper
[Liu+20]. By employing the multi-tier architecture and accommodating a large
portion of the communication within the teams, PerMFL economizes significantly
on the communication iterations with the global server, preventing biases to
local clients, and achieving faster convergence [Wai+20]. These advantages
motivated us to propose multi-tier FL.

3 PerMFL

A multi-tier FL framework (see Figure 1b) is different from the conventional
FL framework (see Figure 1a) as it follows a hierarchy. All devices are divided
into M teams. Each team has a team server (TSi), which is connected with Ni

devices of the respective team. Global server (GS) only communicates with
TSi’s team.

Server

Devices

(a) Conventional FL framework

Server

Team(s)

Devices

(b) Multi-tier FL framework

Figure 1: Federated learning work-flow

3.1 Team formation

By definition, FL can be seen as a cross-silo or cross-device setting [Kai+21].
In cross-silo settings, a limited number of devices, typically between 2 and
100, participate in each round, and their participation remains fixed. On the
other hand, in cross-device setups, the client pool is extensive, potentially in
the millions, but only a small fraction of devices take part in each iteration
[Kai+21]. In a multi-tier structure, teams can be constituted in four ways: (1)
Both teams and devices within teams have full participation, (2) Teams have
full participation, whereas devices within teams are participating partially, (3)
Teams have partial participation, but all devices within teams are participating,
and (4) Teams and devices both have partial participation.

Various FL methods with different team formation strategies have been
proposed in the literature [Lon+23; YTW23]. PerMFL does not explicitly
address the creation of teams. Instead, it exhibits adaptability to accommodate
any team formation mechanism. It is important to note that PerMFL is most
efficient when communication with the team servers is cheaper compared to
communication with the global server. This situation often occurs when devices
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3.2 PerMFL formulation

are geographically distributed and connected to their nearest teams, similar to
the Cloud-Edge model [Bit+18]. We can also argue that team-level personal-
ization is more effective when the data within each team exhibits distinctive
characteristics that differentiate it from the data in other teams. Nonetheless,
we provide a comprehensive ablation study that thoroughly examines different
types of team selection, including poorly constructed and randomly constructed
team formations. In cases where teams do not exhibit such distinctive char-
acteristics, our model can still benefit from device-level personalization and
reduced communication costs with the global server.

3.2 PerMFL formulation

We consider a multi-tier FL setup, consisting of M teams, each with Ni devices
(i = 1, . . . ,M). In this setup, empirical risk minimization can be expressed as:

min
x∈Rd

1

M

M∑

i=1

1

Ni

Ni∑

j=1

fi,j(x). (1)

Here, fi,j(·) represents the loss function of the jth device from the ith team. This
formulation relies on a single decision variable x that all clients are expected
to converge upon. However, this model is unsuitable for scenarios involving
non-homogeneous data distributions, as the existence of a global model capable
of accommodating all devices becomes unreasonable.

To address this challenge, we introduce decision variables for every team
and device, denoted as wi and θi,j , respectively. Our goal is to find a global
model representing a rough average, capturing common characteristics across
all teams and devices; personalized team models that are close to the global
model but can deviate from aligning with shared features within each team; and
personalized device models that resemble the team model but can deviate to
accommodate the unique characteristics of each device. We adopt a quadratic
penalty approach to enforce that the device models are close to the team models
and the team models to the global model. The parameters γ ≥ 0 and λ ≥ 0
control the degree of personalization impact at the team and device levels
respectively.

min
x∈Rd

min
wi∈Rd

min
θi,j∈Rd

1

M

M∑

i=1

1

Ni

Ni∑

j=1

(
fi,j(θi,j)+

λ

2
∥θi,j − wi∥2+

γ

2
∥wi − x∥2

)
. (2)

We are now prepared to outline the algorithm design. Our approach involves
the use of three iteration counters: t for the global rounds, k for team-level
rounds, and ℓ for device-level rounds.

Device-level updates. Given a team model wt,k
i , the objective of the

device (i, j) is to solve the following subproblem:

f̃λ
i,j(w

t,k
i ) := min

θi,j∈Rd
fi,j(θi,j) +

λ

2
∥θi,j − wt,k

i ∥2 (3)
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The exact solution to this problem is proxfi,j/λ(w
t,k
i ); however, in general, there

is no closed-form solution available for this proximal operator. Consequently,
each device employs the gradient method to approximate the solution to Equa-
tion (3). Starting with an initial value of θt,k,0i,j = wt,k

i , and utilizing a positive
step-size α, we perform the following update rule for l = 0, 1, . . . , L− 1:

θt,k,l+1
i,j = θt,k,li,j −αi,j∇fi,j(θt,k,li,j )−αi,jλ(θ

t,k,l
i,j − wt,k

i ). (4)

Team-level updates. Similarly, the goal in team-level updates is to solve a
regularized subproblem. We define the team-level loss function as

Fi(wi) :=
1

Ni

Ni∑

j=1

f̃λ
i,j(wi). (5)

With the addition of regularization towards the global server’s model xt, Team
(i) aims to solve the following subproblem:

clustF̃ γ
i (x

t) := min
wi∈Rd

Fi(wi) +
γ

2
∥wi − xt∥2. (6)

Once again, the solution is given by the proximal operator, proxFi/γ(x
t), which

can be difficult to compute. Instead, we can find an approximate solution
by using the gradient method. Starting from wt,0

i = xt, and using a positive
step-size η > 0, the gradient method update becomes

wt,k+1
i = wt,k

i − ηi∇Fi(w
t,k
i )− ηiγ(w

t,k
i − xt)

= wt,k
i −

ηi
Ni

Ni∑

j=1

∇f̃λ
i,j(w

t,k
i )− ηiγ(w

t,k
i − xt).

(7)

Here, the second line follows from the definition of Fi. Since we do not have
the exact gradient ∇f̃i,j(wt,k

i ), we approximate it by:

∇f̃λ
i,j(w

t,k
i ) = λ

(
wt,k

i − proxfi,j/λ(w
t,k
i )

)
≈ λ(wt,k

i − θt,k,Li,j ). (8)

By combining Equation (7) and Equation (8), we construct the following update
rule for k = 0, 1, . . . ,K − 1:

wt,k+1
i =

(
1−ηi(λ+γ)

)
wt,k

i + ηiγx
t +

ληi
Ni

Ni∑

j=1

θt,k,Li,j . (9)

Server-level updates. Finally, the server applies the gradient method for

min
x∈Rd

ϕ(x) :=
1

M

M∑

i=1

F̃ γ
i (x). (10)
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3.2 PerMFL formulation

Starting from an initial state x0 ∈ Rd and using a positive step-size β, the
gradient update becomes:

xt+1 = xt − β

M

M∑

i=1

∇F̃ γ
i (x

t). (11)

Again, we use an approximation for ∇F̃i(x
t) based on the team-level models:

∇F̃ γ
i (x

t) = γ
(
xt − proxFi/γ(x

t)
)
≈ γ(xt − wt,K

i ). (12)

Finally, we construct the server-level update rule by combining Equation (11)
and Equation (12). For t = 0, 1, . . . , T − 1, the server performs the following
update rule:

xt+1 = (1− βγ)xt +
βγ

M

M∑

i=1

wt,K
i . (13)

Synthesis. By combining device, team, and server-level updates, we propose
PerMFL (Algorithm 1) for personalized multi-tier FL.

Algorithm 1 PerMFL : Personalized Multi-tier FL

Input : x0

Output : ∀Mi=1∀
Ni
j=1θ

T,K,L
i,j , xT

Initialize : ∀Mi=1w
0,0
i = x0 , ∀Mi=1∀

Ni
j=1θi,j = w0,0

i , T ,K,L,αi,j , β, γ, λ, ηi

1: for t = 0, 1, . . . , T − 1 do // Global iterations
2: global server sends xt to the teams. // Global model
3: for k = 0, 1, . . . , K − 1 do // Team iterations

4: Teams send wt,k
i to the devices. // Team-level personalized model

5: for l = 0, 1, . . . , L− 1 do // Local iterations

6: θt,k,l+1
i,j = θt,k,l

i,j − αi,j∇fi,j(θ
t,k,l
i,j )− αi,jλ(θ

t,k,l
i,j − wt,k

i ) // Personalized local

models
7: end for
8: θ̄t,k

i = 1
Ni

∑Ni
j=1 θt,k,L

i,j // Aggregation within a team

9: wt,k+1
i = (1− ηiλ− ηiγ)w

t,k
i + ηiγx

t + ληiθ̄
t,k
i // Personalized team update

10: end for
11: w̄t = 1

M

∑M
i=1 wt,K

i // Global aggregation

12: xt+1 = (1− βγ)xt + βγw̄t // Global update
13: end for

Initialization: Global server initializes the global model (x0). Every team
connected to the global server, copies the global model to their respective team
model (∀Mi=1w

0,0
i = x0). Each device within a team copies the initial team

model (w0,0
i ) as their local model (θi,j). Global server initializes the total

number of global iterations, team iterations, and local iterations as T,K, and
L, respectively.

Iterations: At each global iteration t, the global server broadcasts the global
model xt to every team. Similarly, at each team iteration k, each team broadcasts
wt,k

i to all the devices within the team. For each local iteration (l), each device
solves Equation (3) separately, but in parallel to obtain the personalized model
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θt,k,li,j . The team server of each team collects the device updates from the
respective devices after L local iterations and performs aggregation (θ̄t,ki ) on
the device updates. Each team broadcasts the updated team-level model to the
devices registered with that team and continues steps 3 to 10 for the next K − 1
team iterations. After all teams finished K team iterations, the global server
collects team updates (wt,K

i ) from each team and performs averaging (w̄t) on
team updates over M teams. The global server produces a global update (xt) by
solving Equation (13). The global server broadcasts the updated global model
to teams and continues steps 1 to 13 for the upcoming T − 1 global iterations.

Remark 1. The quadratic penalty approach leads to the concept of Moreau
envelopes, a mathematical tool frequently employed in optimization theory for
smoothing functions. For a function g : Rd → R, we define the Moreau envelope
g̃σ : Rd → R with parameter σ ≥ 0 as

g̃σ(x) := min
u∈Rd

{
g(u) +

σ

2
∥u− x∥2

}
. (14)

Clearly, we can interpret Equation (3) and Equation (6) as the Moreau en-
velopes of fi,j and Fi, respectively. It is important to note that Moreau envelopes
have been used before in [TTN20] for personalization in the conventional FL
setting.

3.3 Convergence guarantees

This section presents the convergence guarantees2 of PerMFL. We consider two
different settings, with strongly convex and non-convex loss functions. In both
cases, we assume that the loss functions are smooth in the sense that they have
Lipschitz continuous gradients. The next Theorem formalizes the guarantees of
when fi,j is strongly convex.

Theorem 1 (Strongly convex). Consider the minimization problem minx ϕ(x)
when ϕ(x) is defined in Equation (10) with Lf -smooth and µf -strongly convex
loss functions fi,j(x). For large enough numbers of inner iterations of orders L =
Ω
(
K
)
and K = Ω

(
T
)
, see the supplementary copy for the bounds, estimation

{xt}Tt=0 generated by PerMFL with step-size β satisfies:

∥xT − x∗∥2 ≤ 2(1− β)T ∥x0 − x∗∥2. (15)

where learning rates should satisfy β ≤ µF̃

4γ , ηi ≤ 1
2(λ+γ) , αi,j ≤ 1

Lf+λ , µF̃ :=
λγµf

λµf+γµf+λγ , and γ > 2λ > 4Lf .

Proof sketch. We analyze the algorithm in three levels: (i) The devices
find approximate solutions to problem (Equation (3)) by using the gradient

2The proofs of the convergence guarantees are given in https://arxiv.org/abs/2407.

14251
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method. We can control the accuracy of this stage by choosing L (the number of
iterations for the gradient method) large enough. (ii) The teams solve problem
(Equation (6)) approximately, again by using a gradient method. We use an
inexact gradient at this stage since the exact gradient requires exact solutions
from the devices to which we do not have access. At this stage, K is the number
of iterations, and L modulates the accuracy of our gradients. By choosing both
K and L large enough, we can control the solution accuracy achieved at the
teams’ level. (iii) Finally, the Server solves the problem (Equation (10)), the
original FL problem, by using the information provided by the Teams. It is
worth noting that for a fixed T , we can decrease the error (down to a threshold)
by increasing K and L. More precisely, we achieve linear convergence rates
when we choose K and L in the order of Ω(T ).

The next Theorem shows that PerMFL finds a first-order stationary point
with sublinear rates when fi,j are smooth but non-convex.

Theorem 2 (Non-convex). Consider the minimization problem minx ϕ(x) when
ϕ(x) is defined in Equation (10) with non-convex Lf -smooth loss functions
fi,j(x). For large enough numbers of inner iterations of orders L = Ω

(
K
)
and

K = Ω
(
T
)
, see the appendix for the bounds, then, estimation {xt}Tt=0 generated

by PerMFL with step-size β satisfies:

E
[
∥∇ϕ(xt̃)∥2

]
≤ ϕ(x0)− ϕ(x∗)

βT
(16)

where β ≤ 1
4γ , ηi ≤ 1

λ+γ , αi,j ≤ 1
λ , γ > 2λ > 4Lf , and t̃ is uniformly sampled

from {0, . . . , T − 1}

Proof sketch. The analysis follows a similar structure to the previous setting.
The main difference is that the errors in subproblems are guaranteed as a bound
on the gradient norms, which we translate to error bounds on objective residual
by tuning λ and γ.

Remark 2. At first glance, it may come as a surprise that our guarantees do not
necessitate a bounded drift condition, which is common in FL methods involving
multiple local steps. It is important to note a fundamental distinction between
the conventional FL template Equation (1) and our personalized multi-tier FL
template Equation (2). The former lacks consideration for data heterogeneity
as it relies solely on a single global variable. This can result in ‘drift-away’
issues when multiple local steps are taken, especially in the presence of data
heterogeneity. In contrast, our formulation explicitly incorporates team and
device-level variables, and our local steps are tailored to solve device and team-
level subproblems Equation (3) and Equation (6). The regularization employed in
these subproblems prevents ‘over-drifting’ by explicitly penalizing the divergence
between device, team, and global models in a suitable manner.
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4 Experiments

We studied classification problems to validate PerMFL using both benchmarks
(MNIST [LeC+98], FMNIST [XRV17] EMNIST [Coh+17] with 10 classes
(EMNIST-10), EMNIST with 62 classes (FEMNIST), CIFAR100 [KH09]) and
non-image synthetic datasets. For the MNIST, FMNIST, EMNIST-10, and
synthetic datasets, the data was distributed among multiple devices in a non-iid
manner, ensuring each device had data from at most two classes. Subsequently,
the devices were randomly grouped into four teams, each consisting of 10 devices,
before performing PerMFL. We considered the full participation of teams and
devices in each global round for the performance and convergence evaluation.
For the FEMNIST and CIFAR100 datasets, the data was distributed to 3,500
and 350 devices, respectively, with each device holding data from the 3 classes.
The devices are arranged into 5 teams. All datasets are split into training and
validation sets with a 3:1 ratio.

We considered a multi-class logistic regression (MCLR) model with a softmax
activation function for strongly convex scenarios. For synthetic datasets, we
constructed deep neural networks with two hidden layers, while for image
datasets, we built two-layered convolutional neural networks for non-convex
scenarios. More details of the experimental setup, datasets, and learning models
are in the supplementary copy.

In this paper, we conducted (1) the performance comparison between
PerMFL with FedAvg [McM+17], pFedMe[TTN20], Per-FedAvg [FMO20], pFed-
Bayes [Zha+22], Ditto [Li+21], and performance and convergence comparison
with two hierarchical FL algorithms, such as hierarchical-SGD (h-SGD)[Liu+22],
Asynchronous L2GD (AL2GD)[LHK22], and a hierarchical-clustered FL algo-
rithm DemLearn [Ngu+22]. (2) We investigated the impact of β, γ, and λ on
the convergence of PerMFL. (3) An ablation study to explore team formation.
(4) An ablation study to analyze the influence of team and device participation.
Moreover, in the supplementary copy, we gave an ablation study that explores
the effects of team iterations on the convergence of PerMFL. Throughout the
experiments, we denoted the personalized model and global model as (PM) and
(GM), respectively We have made the implementation of PerMFL available at
https://github.com/sourasb05/PerMFL_1.git

4.1 Results and Analysis

4.1.1 Performance

From Table 1, we observed that PerMFL(PM) outperformed the state-of-the-art
for non-convex cases in all datasets. PerMFL(GM) outperformed other global
models, including FedAvg(GM), pFedMe(GM), and Ditto(GM), and nearly
equivalent with h-SGD(GM) and DemLearn(GM) for the MNIST dataset.
For the synthetic dataset, PerMFL(GM) outperformed the state-of-the-art.
For FMNIST and EMNIST-10 datasets, the performance of PerMFL(GM) is
better than the conventional FL models and DemLearn(GM). For strongly
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convex cases, PerMFL(PM) outperformed the state of the art in MNIST and
Synthetic datasets. For the FMNIST dataset, PerMFL(PM)’s performance is
better than the conventional FL state-of-the-art. Moreover, the performance
of PerMFL(PM) is nearly equivalent to the DemLearn(PM) for FMNIST and
EMNIST-10. PerMFL(PM) also achieved better performance than h-SGD
and AL2GD on FEMNIST and CIFAR100 given in the supplementary copy.
PerMFL(GM) outperformed the state-of-the-art in Synthetic and FMNIST
datasets. PerMFL(GM) performs better than conventional methods in all
datasets and is nearly equivalent to h-SGD(GM) on MNIST and EMNIST-10.
From these observations, we can infer that PerMFL(PM) performs better than
the 7 state-of-the-art methods on 6 out of 8 experiments. The reason could be,
the personalization in both team and devices helps to get better performance.

Table 1: Performance (Validation accuracy(mean/std)(%)) comparison of
PerMFL with state-of-the-art.

Architecture MCLR (Strongly convex)

C
o
n
v
e
n
ti
o
n
a
l

Algorithm MNIST Synthetic FMNIST EMNIST-10

FedAvg(GM)[McM+17] 84.87 (± 0.054) 84.87(± 0.054) 79.80 (±0.002) 91.60(±0.001)
Per-FedAvg (PM)[FMO20] 94.81(± 0.00) 83.91(±0.15) 94.75 (±0.00) 97.57(±0.0)

pFedMe(GM)[TTN20] 75.50(±0.00) 81.93(±0.21) 83.45(±0.21) 88.78(±0.01)
pFedMe(PM)[TTN20] 88.89(±0.001) 87.61(±0.32) 91.32 (±0.08) 91.23(±0.01)

pFedBayes(PM)[Zha+22] 94.13(±0.27) 87.05(±0.5) 92.14(±0.001) 94.13(±0.001)
Ditto (GM) [Li+21] 84.81(±0.001) 82.35(±0.001) 74.02(±0.001) 91.03 (±0.0003)

M
u
lt
i-
ti
e
r h-SGD (GM) [Wan+22] 87.41(±6.35) 84.29(±5.18) 81.653(±1.8) 92.33(±0.001)

AL2GD(PM) [LHK22] 93.70 (±0.13) 84.75(±0.03) 98.52(±0.004) 98.72(±0.001)
DemLearn (GM)[Ngu+22] 87.32(±0.002) 67.93(±0.04) 62.60(±0.002) 69.09(±0.12)
DemLearn (PM)[Ngu+22] 91.26 (±0.01) 81.21(±0.01) 97.50(±0.0) 97.24(±0.005)
PerMFL(GM) [ ours ] 86.92(±0.013) 84.92(±0.06) 83.71(±0.001) 91.68(±0.0)
PerMFL(PM) [ ours ] 96.87(±0.0) 87.94(±0.001) 96.77 (±0.0) 96.49(±0.0)

DNN or CNN (Non-convex)

C
o
n
v
e
n
ti
o
n
a
l FedAvg(GM) 93.17 (±0.02) 84.53(±0.067) 84.14(±0.00) 92.73(±0.003)

Per-FedAvg(PM) 91.845(±0.00) 75.93 (±0.18) 88.69(±0.269) 97.37(±0.01)
pFedMe(GM) 80.12(±0.01) 81.23(±0.19) 68.64 (±0.009) 91.81 (±0.0002)
pFedMe(PM) 97.40(±0.001) 87.86(±0.06) 96.30 (±0.001) 97.18(±0.0003)
Ditto(GM) 87.30(±0.03) 81.12(±0.006) 57.80(±0.001) 90.58(±0.004)

M
u
lt
i-
ti
e
r

h-SGD(GM) 86.59 (±7.14) 87.42 (±5.67) 79.84 (±0.035) 96.03 (±0.001)
AL2GD(PM) 91.04 (±0.035) 84.92 (±0.02) 71.32(±0.13) 92.94 (±0.14)

DemLearn(GM) 90.75(±0.001) 68.91(±0.05) 64.84 (±0.002) 96.63 (±0.005)
DemLearn(PM) 97.20(±0.001) 82.74(±0.008) 98.64(±0.0) 98.74(±0.0)

PerMFL(GM) [ ours ] 89.39 (±0.001) 87.53 (±0.0) 79.15(±0.0) 93.12(±0.0)
PerMFL(PM) [ ours ] 98.15 (±0.0) 87.89(±0.0) 98.67(±0.0) 98.79(±0.0)

4.1.2 Convergence

From Figure 2, we observed that the convergence of PerMFL(PM) is equivalent
to DemLearn and is faster than h-SGD and AL2GD. Similar findings were
also observed in EMNIST-10, Synthetic, and MNIST datasets given in the
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supplementary copy. It is because, inside each team multiple iterations are
happening, that helps the personalized model to converge quickly.
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Figure 2: Convergence of PerMFL with multi-tier SOTA in strongly convex
and non-convex settings on FMNIST

4.1.3 Effect of hyghperparameters β, γ, and λ

From Figure 3, we observed if we increase the value of β, γ, and λ separately
then PerMFL(PM) converge faster. A similar observation is found for FMNIST,
and the synthetic dataset is given in the supplementary copy. In all experiments,
the hyperparameters followed the bounds given in Theorem 1 for strongly convex
and Theorem 2 for non-convex and smooth problems.
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Figure 3: Effect of β, γ, and λ on convergence of PerMFL(PM) in non-
convex(CNN) and strongly convex(MCLR) settings using MNIST dataset

4.1.4 Ablation studies on team formation

In Table 2, we evaluated PerMFL for both worst-case (team 1 with labels
{0, 1, 2, 3, 4} and team 2 with {5, 6, 7, 8, 9}) and average-case (teams with
overlapping labels, team 1 with labels {0, 1, 2, 3, 4, 5, 6} and team 2 with
{5, 6, 7, 8, 9, 0, 1}) over 400 global iterations which include 10 and 20, team
and local iterations respectively, with the hyperparameter settings λ = 0.5, γ
= 1.5, β = 0.6, and, α = 0.01. PerMFL(GM) showed a 4% improvement in
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average-case over the worst-case with FMNIST data. Likewise, PerMFL(PM)
had slightly better results in average-case than worst-case for non-convex se-
tups (CNN) with MNIST and FMNIST datasets, indicating PerMFL(PM)’s
performance is mostly unaffected by team formation.

Table 2: Performance of PerMFL (Validation accuracy (%)) on worst-case and
average-case team formation

Team

Formation
Algorithm MNIST FMNIST EMNIST-10

MCLR(%) CNN(%) MCLR(%) CNN(%) MCLR(%) CNN(%)

Worst

case

PerMFL(PM) 96.86 95.80 97.14 95.62 96.57 98.13

PerMFL(GM) 80.48 82.21 76.18 70.28 88.05 87.05

Average

case

PerMFL(PM) 97.01 97.02 96.72 97.38 96.39 98.15

PerMFL(GM) 80.86 83.59 74.45 74.66 90.36 87.43

4.1.5 Ablation study on teams and clients participation

PerMFL achieves quick convergence with complete participation from both
teams and devices (see Figure 4a) or when teams fully participate but devices
do so partially (see Figure 4b), in contrast to slower convergence under partial
participation from both teams and devices (see Figure 4d). Moreover, expanding
the number of teams does not impact the convergence speed of PerMFL(PM)
when there is full participation from all teams and devices throughout all
global rounds (see Figure 4a). Increased device involvement leads to faster
convergence (see Figure 4b), whereas lower team engagement (see Figure 4c)
decelerates it. Nonetheless, when team participation reaches 50% in each global
round, the convergence rate is comparable to that observed in scenarios with
complete participation (see Figure 4a). When all teams are fully participating,
increasing the number of team iterations leads to quicker convergence. However,
in scenarios where both team and device participation is minimal (2%) as shown
in Figure 4d, PerMFL(PM) requires more global and team iterations to achieve
convergence. Extended experimental results are reported in the supplementary
copy.

5 Conclusions

We introduced, PerMFL, a personalized multi-tier federated learning approach
involving global servers, teams, and devices. PerMFL utilized squared euclidean
distance regularization on both devices and teams. By employing PerMFL, we
are able to generate personalized models for each device and simultaneously
obtain a global model. The performance of PerMFL demonstrates linear baseline
rates for strongly convex scenarios and sublinear baseline rates for non-convex
and smooth scenarios. Empirically we observed that PerMFL(PM) converges
quickly and outperformed the state-of-the-art. PerMFL performs best when
both teams and devices participate fully. Very low team and device participation
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Figure 4: Ablation study on team and client’s participation on MNIST datasets
in convex settings (MCLR): Figure 4a Full teams and devices participation,
Figure 4b Full participation of 5 teams but partial participation of devices,
Figure 4c partial participation of teams but full participation of devices, and
Figure 4d Partial participation of teams (2%) with partial participation of
clients

degrade the performance of PerMFL(GM). It requires more global and team
iterations to converge. Also, in worst-case team formation, the performance of
the global model decreases, while the personalized model is able to maintain
its performance. Moreover right combination of λ, β, and γ enhances the
convergence of PerMFL.
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Appendix A Additional Results and Analysis

We studied classification problems to validate PerMFL using both image (MNIST
[LeC+98], FMNIST [XRV17] EMNIST [Coh+17] with 10 classes and 62 classes,
CIFAR100 [KH09]) and non-image synthetic datasets, but PerMFL is not
limited to these two categories of data. Data distributions are heterogeneous
and non-iid. The distribution of the EMNIST dataset with 62 classes exhibits
non-iid characteristics similar to the FEMNIST dataset. Consequently, we will
distinguish EMNIST with 10 classes as ’EMNIST’ and EMNIST with 62 classes
as ’FEMNIST’. In the case of MNIST, FMNIST, EMNIST, and synthetic
datasets, each device contains data for 2 classes. However, for FEMNIST
and CIFAR100 datasets, each device carries data for 3 classes. There are no
overlapping samples among devices. This supplementary material provides the
following experiments and analysis to validate the PerMFL.

1. A detailed empirical study to investigate the impact of hyperparameters
β, λ, and γ on the convergence of PerMFL (see Appendix A.4).

2. An ablation study to analyze the influence of team and device participation
(see Appendix A.5).

3. An ablation study to explore team formation, i.e., the performance of
PerMFL on worst-case and average-case team formation (see 4.1.4).

4. An ablation study that explores the effects of team iterations on the
convergence of PerMFL (see Appendix A.6).

5. Convergence analysis on MNIST and synthetic datasets with the multi-
tier SOTA such as (AL2GD[LHK22], h-SGD [Liu+22], [Ngu+22]) (see
Appendix A.7).

6. Performance analysis of PerMFL on FEMNIST and CIFAR100 datasets
(see Appendix A.8).

Each experiments ran 10 times, from there we produced mean and standard
deviation.

Appendix A.1 Hardware specification

The experiments were conducted using an NVIDIA DGX-A100 GPU with 40
GB of RAM. The DGX-A100 is based on the NVIDIA A100 Tensor Core GPU
architecture, and each A100 GPU in the system has 40 GB of high-bandwidth
memory (HBM2). The standard configuration of the DGX-A100 includes eight
A100 GPUs connected via NVLink, providing a total of 320 GB of GPU memory
(40 GB per GPU × 8 GPUs). However, we could utilize only one GPU at a
time for our experiments, which allowed us to utilize 40 GB of GPU memory
per experiment.
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Appendix A.2 Dataset description

We conducted our experiments using MNIST, FMNIST, EMNIST, FEMNIST,
CIFAR100 and Synthetic datasets. FEMNIST, CIFAR100, and synthetic
datasets are considered to create larger and more complicated scenarios from
these datasets. The description of the datasets is given below.

Appendix A.2.1 MNIST

The primary purpose of the MNIST dataset is to serve as a widely used
benchmark for evaluating and comparing the performance of various models in
image classification tasks. It consists of a total of 70,000 examples, with 60,000
examples used for training and 10,000 examples used for testing. Each example
is a grayscale image measuring 28x28 pixels, representing a handwritten digit
ranging from 0 to 9. Every image in the dataset is associated with a label
that denotes the correct digit it represents. The labels themselves are integers
ranging from 0 to 9, corresponding to the handwritten digits in the images.

Appendix A.2.2 FMNIST

The FMNIST dataset serves the purpose of evaluating and benchmarking
machine learning algorithms, particularly in the areas of image classification
and pattern recognition. It differs from the original MNIST dataset by focusing
on fashion-related images rather than handwritten digits, providing a more
complex task. The dataset consists of 70,000 grayscale images with dimensions
of 28x28 pixels. These images are split into 60,000 training examples and 10,000
testing examples. They depict various fashion items, including clothing, shoes,
bags, and accessories. Each image in the FMNIST dataset is associated with a
label representing the corresponding fashion item category. There are a total
of 10 classes representing different types of clothing and fashion accessories
such as T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker,
Bag, and Ankle boot. Compared to the MNIST dataset, FMNIST presents
a more significant challenge due to the diversity of clothing types and the
increased complexity of the images. These datasets are often utilized to assess
the robustness and generalization capabilities of machine learning models.

Appendix A.2.3 EMNIST

The dataset is a collection of handwritten characters, including lowercase and
uppercase letters and digits. It consists of six different splits or variations, each
representing a different task or scenario. The first split, called EMNIST ByClass,
contains a total of 814,255 images representing 62 character classes. These classes
include 26 uppercase letters, 26 lowercase letters, and 10 digits. The second split,
EMNIST ByMerge, merges similar characters into a single class, resulting in 47
classes. This split is useful and challenging for scenarios where distinguishing
between similar characters, such as uppercase and lowercase letters. The third
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split, EMNIST Balanced, aims to balance the number of samples per class. It
provides a balanced dataset with 131,600 images representing 47 classes. The
fourth split, EMNIST Letters, focuses exclusively on uppercase and lowercase
letters. It consists of 145,600 images representing 26 classes of letters. The
fifth split, EMNIST Digits, contains only the digits from 0 to 9. It consists of
280,000 images representing the 10-digit classes. Lastly, the sixth split follows
the structure of the original MNIST dataset that contains 70,000 images of
digits from 0 to 9. Each image in the dataset is associated with a label indicating
the corresponding character class that provided information about the specific
representative character or digit. Here for all the experiments, we considered
split by digits.

Appendix A.2.4 FEMNIST

It is a Federated EMNIST dataset. It is a ByClass split over the EMNIST
dataset containing 814,255 images representing 62 character classes (0-9, A-Z,
and a-z). The data are distributed among 3500 devices in an unbalanced manner,
where each device has access to a maximum of 3 classes. FEMNIST is similar
to [Cal+18].

Appendix A.2.5 CIFAR100

This dataset is a collection of 60,000 32x32 colour images in 100 classes, with 600
images per class. The dataset is distributed among 350 clients in an unbalanced
manner where each client can access 3 classes.

Appendix A.2.6 Synthetic

We generate a synthetic dataset with ᾱ = 0.5 and β̄ = 0.5. The synthetic
dataset is a tabular dataset. It has 60 features and 10 classes. The sample size
of each client ranges from 250 to 25810, and each client has almost 2 classes.
Finally, we distribute the data to N devices according to the power law in
[Li+20].

Appendix A.2.7 Data division

MNIST, FMNIST, EMNIST, and synthetic datasets have ten different class
labels representing distinct data distributions. The data was divided among
multiple devices in a non-iid manner that ensured each device had information
from two classes. To ensure each device has two classes, first, we gave specific
data from each of these two classes to that device and then randomly distributed
the remaining samples from these two classes. A similar approach is taken for
the other devices. Following that, the devices were further divided into teams
randomly. In the experiments, teams have an equal number of devices.
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Appendix A.3 Learning models

Our study examined different scenarios and used specific models to handle
them. We employed a multi-nomial logistic regression (MLR) model with l2
regularization and a softmax activation function for strongly convex scenarios.
To handle non-convex scenarios, we adopted different approaches depending on
the dataset. For synthetic datasets, we constructed deep neural networks with
two hidden layers. On the other hand, for the MNIST, FMNIST, and EMNIST
datasets, which also involve non-convex scenarios, we built three two-layered
convolutional neural networks (CNNs).

Throughout our experiments, we used the abbreviations (PM) and (GM) to
refer to the personalized model and global model, respectively.

Appendix A.4 Effect of hyperparameters

A series of tests were conducted on the MNIST, FMNIST, and Synthetic datasets
to examine the impact of various hyperparameters, including λ, γ, and β, on the
convergence of PerMFL. These tests were performed for both smooth strongly
convex and smooth non-convex scenarios. The entire experiment is performed
with the full participation of teams and devices for each global rounds. The
number of teams is four, and each team has ten devices.

Effect of β: In this study, we made the following observation: when we
increased the value of β ( see Figure 5 to Figure 10) while other hyperparameters
λ, and γ remains constant, both personalized and global model of PerMFL
exhibited faster convergence. This behaviour was consistent in both convex
and non-convex settings. Very low values of β do not generalize the global
model well and delay the convergence of personalized and global models. A
high value of β better generalizes the global model and the convergence faster.
In all experiments from Figure 5 to Figure 10, we set the value of γ = 3.0 and
λ = 0.5, η = 0.03, and α = 0.01.

Effect of γ: In this study, we examined the influence of the hyperparameter
γ on the convergence of PerMFL. From Figure 11 to Figure 16, we observed
that increasing the value of γ led to faster convergence of PerMFL PM and
GM. Like β, a low value of γ does not generalize the model well and slows the
convergence speed of personalized and global models. Increasing the value of γ
results in a better generalization with a faster convergence. In all experiments
from Figure 11 to Figure 16, we set the value of λ = 1.5 and β = 0.1, η = 0.03,
and α = 0.01.

Effect of λ: Here, we examined the influence of the hyperparameter λ on
the convergence of PerMFL. From the experimental results (see Figure 17 to
Figure 21), we found that a low value of λ tended to impede the convergence
process of both the personalized and global models. However, by increasing
the value of λ, we observed a significant improvement in convergence. All the
experiments from Figure 17 to Figure 21, we set the value of β = 0.3 and
γ = 3.0, η = 0.03, and α = 0.01.
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Discussions : The hyperparameters β, γ, and λ exhibit interdependencies
that should be taken into consideration. Modifying the value of a single hyper-
parameter can significantly influence the learning of both the personalized and
global models. Consequently, it is crucial to recognize the intricate relationship
among these hyperparameters, as changes in one hyperparameter can have
consequential effects on the overall learning process. Therefore, thoroughly eval-
uating these hyperparameters is essential to achieve optimal model performance
and convergence.
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Figure 5: Effect of β on convergence of PerMFL in non-convex settings (CNN)
using MNIST dataset
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Figure 6: Effect of β on convergence of PerMFL in strongly convex settings
(MCLR) using MNIST dataset

Appendix A.5 Ablation study on the effect of teams and
devices participation on PerMFL

In a multi-tier architecture, teams and devices can be constituted in four ways:
(1) Both teams and devices within teams have full participation (see Figure 23
to Figure 30), (2) Teams have full participation, but devices within teams are
partially participating (see Figure 31 to Figure 42), (3) Teams have partial
participation, but all devices within teams are participating (see Figure 43 to
Figure 48), and (4) Teams and devices both have partial participation (see
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Figure 7: Effect of β on convergence of PerMFL in non-convex settings (CNN)
using FMNIST dataset
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Figure 8: Effect of β on convergence of PerMFL in strongly convex settings
(MCLR) using FMNIST dataset
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Figure 9: Effect of β on convergence of PerMFL in non-convex settings (DNN)
using synthetic dataset

Figure 49 to Figure 51). In these experiments, we observed how well PerMFL
performs and converges in various team combinations. We are also studying
how PerMFL behaves when the number of participating teams and devices is
limited.
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Figure 10: Effect of β on convergence of PerMFL in strongly convex settings
(MCLR) using synthetic dataset
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Figure 11: Effect of γ on convergence of PerMFL in non-convex settings (CNN)
using MNIST dataset
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Figure 12: Effect of the hyperparameter γ on convergence of PerMFL in strongly
convex settings (MCLR) using MNIST dataset

Appendix A.5.1 Full participation of teams and devices

We conducted experiments in both convex (see Figure 24, Figure 26, Figure 28,
Figure 30 ) and non-convex (See Figure 23, Figure 25, Figure 27, Figure 29)
settings using MNIST, FMNIST, EMNIST, and Synthetic datasets. Our findings
indicate that when it comes to team and device selection strategies, having full
participation of teams and devices yields the best results compared to the other
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Figure 13: Effect of γ on convergence of PerMFL in non-convex settings (CNN)
using FMNIST dataset
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Figure 14: Effect of γ on convergence of PerMFL in strongly convex settings
(MCLR) using FMNIST dataset
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Figure 15: Effect of γ on convergence of PerMFL in non-convex settings (DNN)
using synthetic dataset

three types of participation strategies. Increasing the number of teams does
not negatively impact the performance of the personalized model. However, in
some cases, such as those depicted in Figure 29a and Figure 29b, increasing the
number of teams can lead to a decrease in the convergence of the global model.
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Figure 16: Effect of γ on convergence of PerMFL in strongly convex settings
(MCLR) using synthetic dataset
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Figure 17: Effect of λ on convergence of PerMFL in non-convex settings (CNN)
using MNIST dataset
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Figure 18: Effect of λ on convergence of PerMFL in strongly convex settings
(MCLR) using MNIST dataset
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Figure 19: Effect of λ on convergence of PerMFL in non-convex settings (CNN)
using FMNIST dataset
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Figure 20: Effect of λ on convergence of PerMFL in strongly convex settings
(MCLR) using FMNIST dataset
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Figure 21: Effect of λ on convergence of PerMFL in non-convex settings (DNN)
using synthetic dataset
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Figure 22: Effect of λ on convergence of PerMFL in strongly convex settings
(MCLR) using synthetic dataset
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Figure 23: Full participation teams and devices on MNIST datasets in non-
convex settings (CNN)
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Figure 24: Full participation teams and devices on MNIST datasets in convex
settings (MCLR)
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Figure 25: Full participation teams and devices on FMNIST datasets in non-
convex settings (CNN)
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Figure 26: Full participation teams and devices on FMNIST datasets in convex
settings (MCLR)
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Figure 27: Full participation teams and devices on EMNIST datasets in non-
convex settings (CNN)
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Figure 28: Full participation teams and devices on EMNIST datasets in convex
settings (MCLR)
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Figure 29: Full participation teams and devices on synthetic datasets in non-
convex settings (DNN)
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Figure 30: Full participation teams and devices on synthetic datasets in convex
settings (MCLR)
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Appendix A.5.2 Full participation of teams and partial participation
of devices

Here, we conducted experiments in convex settings using the MCLR approach;
we observed that PerMFL with a low percentage of device participation converges
slower compared to a high percentage of device participation (see Figure 31 to
Figure 42). Increasing the number of participating devices resulted in faster
convergence of the global model. Therefore, to achieve a better global model
with faster convergence, it is recommended to increase the number of device
participants per team iteration.
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Figure 31: Full team participation (5 teams) but partial devices participation
on FMNIST datasets in convex settings (MCLR)
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Figure 32: Full team participation (4 teams) but partial devices participation
on FMNIST datasets in convex settings (MCLR)

Appendix A.5.3 Partial participation of teams and full participation
of devices

We conducted a series of experiments in both convex (see Figure 43, Figure 45,
and Figure 47) and non-convex settings (see Figure 44, Figure 46, and Figure 48)
using EMNIST, MNIST, and FMNIST datasets. From there, we observed if
the participation of teams is limited, then the personalized and global model
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Figure 33: Full team participation (2 teams) but partial devices participation
on FMNIST datasets in convex settings (MCLR)
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Figure 34: Full team participation (2 teams) but partial devices participation
on MNIST datasets in convex settings (MCLR)

10 20 30 40 50 60 70 80 90 100

0.1

0.12

0.14

0.16

0.18

0.2

Global rounds

L
o
ss

8%

12%

20%

48%

(a) Personalized Loss
(Validation)

10 20 30 40 50 60 70 80 90 100

1

1.5

2

2.5

Global rounds

L
o
ss

(b) Global Loss
(Validation)

10 20 30 40 50 60 70 80 90 100

0.94

0.95

0.96

0.97

Global rounds

P
er
so
n
a
li
ze
d
A
cc
u
ra
cy

(c) Personalized Ac-
curacy
(Validation)

10 20 30 40 50 60 70 80 90 100

0.2

0.4

0.6

Global rounds

G
lo
b
a
l
A
cc
u
ra
cy

(d) Global Accuracy
(Validation)

Figure 35: Full team participation (4 teams) but partial devices participation
on MNIST datasets in convex settings (MCLR)

both converges slowly. The same behaviour has been observed in all datasets
for both convex and non-convex experiments (see Figure 43 to Figure 48).

Appendix A.5.4 Partial participation of teams and devices

We conducted experiments for convex scenarios on EMNIST, MNIST, and FM-
NIST datasets (see Figure 49, Figure 50, and Figure 51). From the experiments,

195



Appendix A.5 Ablation study on the effect of teams and devices participation
on PerMFL

10 20 30 40 50 60 70 80 90 100

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Global rounds

L
o
ss

10%

20%

30%

50%

(a) Personalized Loss
(Validation)

10 20 30 40 50 60 70 80 90 100

1

1.5

2

2.5

Global rounds

L
o
ss

(b) Global Loss
(Validation)

10 20 30 40 50 60 70 80 90 100

0.94

0.95

0.96

0.97

Global rounds

P
er
so
n
a
li
ze
d
A
cc
u
ra
cy

(c) Personalized Ac-
curacy
(Validation)

10 20 30 40 50 60 70 80 90 100

0.2

0.4

0.6

Global rounds

G
lo
b
a
l
A
cc
u
ra
cy

(d) Global Accuracy
(Validation)

Figure 36: Full team participation (5 teams) but partial devices participation
on MNIST datasets in convex settings (MCLR)
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Figure 37: Full team participation (2 teams) but partial devices participation
on Synthetic datasets in convex settings (MCLR)

10 20 30 40 50 60 70 80 90 100

0.56

0.58

0.6

Global rounds

L
o
ss

(a) Personalized Loss
(Validation)

10 20 30 40 50 60 70 80 90 100

2.3

2.4

2.5

2.6

Global rounds

L
o
ss

8%

12%

20%

48%

(b) Global Loss
(Validation)

10 20 30 40 50 60 70 80 90 100
0.82

0.82

0.82

0.82

0.82

0.83

0.83

Global rounds

P
er
so
n
a
li
ze
d
A
cc
u
ra
cy

(c) Personalized Ac-
curacy
(Validation)

10 20 30 40 50 60 70 80 90 100

8 · 10−2

0.1

0.12

0.14

0.16

0.18

Global rounds

G
lo
b
a
l
A
cc
u
ra
cy

(d) Global Accuracy
(Validation)

Figure 38: Full team participation (4 teams) but partial devices participation
on Synthetic datasets in convex settings (MCLR)

it was observed that when 20% of teams participated in each global round,
increasing the number of devices participating in each team iteration resulted
in improved convergence of both personalized and global models.

Discussions: Based on our empirical observations, we conclude that
the convergence and performance of PerMFL are optimal when both teams
and devices are fully present throughout the entire global iterations. However,
PerMFL also demonstrates good performance even with variations in team and
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Figure 39: Full team participation (5 teams) but partial devices participation
on synthetic datasets in convex settings (MCLR)
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Figure 40: Full team participation (2 teams) but partial devices participation
on EMNIST datasets in convex settings (MCLR)
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Figure 41: Full team participation (4 teams) but partial devices participation
on EMNIST datasets in convex settings (MCLR)

device participation. When teams fully participate but there is partial device
participation, PerMFL achieves fast convergence. On the other hand, when the
number of participating teams is limited, the convergence of the global model is
slower, requiring a higher number of global rounds to converge. It is important
to note that the convergence of PerMFL is slowest when both teams and devices
have very low participation (2%) in each global rounds.
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Figure 42: Full team participation (5 teams) but partial devices participation
on EMNIST datasets in convex settings (MCLR)
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Figure 43: Partial participation of team (2%, 4%, and 10%) and full devices
participation of devices on EMNIST datasets in convex settings (MCLR)
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Figure 44: Partial participation of team (20%, 30%, 40%, and 50%) and full
devices participation of devices on EMNIST datasets in convex settings (CNN)

Appendix A.6 Effect of team iterations on convergence
of PerMFL

In this study, experiments were conducted to investigate the impact of team
iterations on the convergence of PerMFL. The objective was to gain insights
into how varying the number of team iterations influences the convergence
behaviour of the model. Here we studied (1) the effect of the number of team
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Figure 45: Partial participation of team (20%, 30%, 40%, and 50%) and full
devices participation of devices on MNISTdatasets in convex settings (MCLR)
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Figure 46: Partial participation of team (20%, 30%, 40%, and 50%) and full
devices participation of devices on MNIST datasets in convex settings (CNN)
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Figure 47: Partial participation of team (20%, 30%, 40%, and 50%) and full
devices participation of devices on FMNIST datasets in convex settings (MCLR)

iterations on the convergence of PerMFL when teams have full involvement but
devices have fractional involvement in the entire learning process. (2) Effect of
team iterations on the convergence of PerMFL while teams and devices both
have fractional involvement. i.e., all devices are not participating in each global
rounds only a fraction of devices are participating.
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Figure 48: Partial participation of teams (20%, 30%, 40%, and 50%) and full
devices participation of devices on FMNIST datasets in convex settings (CNN)

10 20 30 40 50 60 70 80 90 100

0.12

0.14

0.16

Global rounds

L
o
ss

(a) Personalized Loss
(Validation)

10 20 30 40 50 60 70 80 90 100

2

3

4

Global rounds

L
o
ss

2%

4%

10%

20%

(b) Global Loss (Val-
idation)

10 20 30 40 50 60 70 80 90 100

0.97

0.97

0.98

0.98

0.98

0.98

0.98

Global rounds

P
er
so
n
a
li
ze
d
A
cc
u
ra
cy

(c) Personalized Ac-
curacy
(Validation)

10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

Global rounds

G
lo
b
a
l
A
cc
u
ra
cy

(d) Global Accuracy
(Validation)

Figure 49: Partial participation of team (20%) and devices (
2%, 4%, 10%, and 30%) on EMNIST datasets in convex settings (MCLR)
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Figure 50: Partial participation of team (20%) and devices (
2%, 4%, 10%, and 30%) on MNIST datasets in convex settings (MCLR)

Appendix A.6.1 Effect of number of team iterations on the full
participation of teams and partial participation of
devices.

In our experiments (see Figure 52, Figure 53 Figure 54, Figure 55, and Fig-
ure 56), we observed for both convex and non-convex scenarios, the convergence
of PerMFL’s personalized and global model improves if we increase the team iter-

200



Personalized Multi-tier Federated Learning

10 20 30 40 50 60 70 80 90 100

0.13

0.14

0.15

0.16

0.17

Global rounds

L
o
ss

(a) Personalized Loss
(Validation)

10 20 30 40 50 60 70 80 90 100

1.4

1.6

1.8

2

2.2

2.4

Global rounds

L
o
ss

2%

4%

15%

20%

(b) Global Loss
(Validation)

10 20 30 40 50 60 70 80 90 100

0.96

0.97

0.97

Global rounds

P
er
so
n
a
li
ze
d
A
cc
u
ra
cy

(c) Personalized Ac-
curacy
(Validation)

10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

Global rounds

G
lo
b
a
l
A
cc
u
ra
cy

(d) Global Accuracy
(Validation)

Figure 51: Partial participation of team (20%) and devices (
2%, 4%, 15%, and 30%) on FMNIST datasets in convex settings (MCLR)

ations. This improvement occurs because when we increase the team iterations,
more devices within the teams can actively contribute to the process.

Appendix A.6.2 Effect of number of team iterations on the partial
participation of teams and devices

In our experiments, we specifically investigated the impact of low team and
device participation on the convergence of the global model. The objective
was to determine whether increasing the number of team iterations could
expedite the convergence process. Our findings, as depicted in Figure 57 and
Figure 59, indicate that when team participation is set at 20%, increasing the
team iterations lead to improved convergence of the global model. However,
when team participation is extremely low (2%), as shown in Figure 58 and
Figure 60, simply increasing team iterations is insufficient. In such cases, a
higher number of global iterations is necessary to achieve convergence for the
global model.

Discussions: Based on our findings, we can infer that team iterations play
a crucial role in improving the performance of both the global and personalized
models. However, when there is limited participation from teams and devices in
each global round, relying solely on team iterations is inadequate. In such cases,
it becomes necessary to increase the number of global rounds to enable more
teams to participate and, consequently, enhance the performance of PerMFL.

Appendix A.7 Convergence analysis

Based on the convergence results presented in Figure 62, Figure 61, and Figure 63,
we observed that PerMFL(PM) achieved faster convergence compared to AL2GD.
Additionally, the convergence of PerMFL(GM) and h-SGD was found to be
similar for both strongly convex and non-convex scenarios.
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Figure 52: Effect of team iterations on the convergence of PerMFL in non-convex
settings (CNN) on MNIST while teams and devices have full participation
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Figure 53: Effect of team iterations on the convergence of PerMFL in strongly
convex (MCLR) settings on MNIST while teams and devices have full partici-
pation
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Figure 54: Effect of team iterations on the convergence of PerMFL in non-convex
settings (CNN) on FMNIST while teams and devices have full participation
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Figure 55: Effect of team iterations on the convergence of PerMFL in non-convex
settings (DNN) on Synthetic dataset while teams and devices fully participate.
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Figure 56: Effect of team iterations on the convergence of PerMFL in strongly
convex settings (MCLR) on Synthetic dataset while teams and devices fully
participate.
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Figure 57: Effect of team iterations {K = 30, 50, 100, and 150} when team
(20%) and devices (2%) are partially participated in the PerMFL using EMNIST
datasets in convex settings (MCLR)
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Figure 58: Effect of team iterations {K = 30, 100, 150 and 200} when team
(2%) and devices (2%) are partially participated in the PerMFL using EMNIST
datasets in convex settings (MCLR)
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Figure 59: Effect of team iterations {K = 30, 100, 150 and 200} when team
(20%) and devices (2%) are partially participated in the PerMFL using MNIST
datasets in convex settings (MCLR)
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Figure 60: Effect of team iterations {K = 30, 100, 150 and 200} when team
(2%) and devices (2%) are partially participated in the PerMFL using EMNIST
datasets in convex settings (MCLR)
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Figure 61: Convergence comparison of PerMFL with multi-tier SOTA in strongly
convex and non-convex settings on EMNIST
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Figure 62: Convergence comparison of PerMFL with multi-tier SOTA in strongly
convex and non-convex settings on MNIST
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Figure 63: Convergence comparison of PerMFL with multi-tier SOTA in strongly
convex and non-convex settings on synthetic datasets
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Appendix A.8 Performance analysis on FEMNIST and
CIFAR100 datasets

We have experimented the performance of PerMFL with the state-of-the-art
multi-tire federated learning algorithms on Federated EMNIST (FEMNIST) and
CIFAR100 datasets (see Table 3) for the strongly convex setup. From there, we
observed PerMFL(PM) produce better results than AL2GD. h-sgd produces a
better global model than PerMFL. For the CIFAR100 dataset, AL2GD overcame
the performance of PerMFL(PM). The performance of PerMFL(GM) and h-SGD
both are equivalent.

Table 3: Performance comparison of PerMFL with SOTA. (Validation accu-
racy(mean/std))

Algorithm MCLR (Strongly convex)
FEMNIST CIFAR100

h-SGD (GM) 0.6405(±0.005) 0.1232(0.001)
AL2GD (PM) 0.4467(±0.01) 0.65.87(±0.07)
PerMFL (GM) 0.5757 (±0.0) 0.1368 (±0.0)
PerMFL (PM) 0.8129 (±0.0) 0.6695 (±0.001)
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Abstract: Lifelog images are very useful as memory cues for recalling past
events. Estimating the level of event memory recall induced by a given lifelog
image (event memorability), is useful for selecting images for cognitive inter-
ventions. Previous works for predicting event memorability follow a centralised
model training paradigm that requires several users to share their lifelog im-
ages. This risks violating the privacy of individual lifeloggers. Alternatively, a
personal model trained with a lifelogger’s own data guarantees privacy. How-
ever, it imposes significant effort on the lifelogger to provide a large enough
sample of self-rated images to develop a well-performing model for event mem-
orability. Therefore, we propose a clustered personalized federated learning
setup FedMEM, that avoids sharing raw-images but still enables collabora-
tive learning via model sharing. For an enhanced learning performance in the
presence of data heterogeneity, FedMEM evaluates similarity among users to
groups them into clusters. We demonstrate that our approach furnishes high-
performing personalized models compared to state-of-the-art.1

Key words: Federated Learning, Event Memorability, Clustered Federated
Learning, Classification, Lifelogs

1 Introduction

Personal photos or images are a commonly used medium that aid the experi-
ence of re-living memories from past events in a person’s life. Visual lifelogging
— the act of automatically and periodically capturing images using body-worn
cameras, smart-glasses, etc., even as one goes about their regular life, is a po-
tent tool for acquiring, storing and reviewing image cues that represent past

1Source code is available in https://github.com/sourasb05/FedMEM.git
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moments from one’s own life. Reviewing lifelog images is found to be useful
for memory interventions [HLW16; LD07; Sil+18] by exploiting the ability of
lifelog image cues to induce a vivid memory recall of the corresponding event in
real-life. Serious games for general cognitive training [Xu+18] are also found to
benefit from the use of lifelog image content by improving the enjoyment and
engagement of users. However, since lifelog images are acquired automatically
during the regular life of a person, a large part of the image collection comes
from mundane events that may not be memory-worthy. Therefore, not every
lifelog image may serve as an useful cue for memory recall. The delayed review
of a given lifelog image can induce an event memory recall that varies from
‘vivid recall of several episodic details about the event’ to ‘absolutely no mem-
ory of the event’. Hence, estimating the level of event memory recall induced
by a given lifelog image – referred to as the event memorability of the image, is
very useful for selecting images for memory or cognitive intervention. Recently,
computational models have been developed [Xu+21] for this purpose such that
the model is able to predict event memorability on a discrete, ordinal scale of
0 to 9 for a given lifelog image, as illustrated in Figure 1.

Figure 1: The event memorability model predicts the level of event memory
recall induced by a given lifelog image. Apart from the raw image features,
contextual factors such as distinctness of a lifelog image with respect to other
lifelog images from the same user, temporal positioning of the lifelog image
frame in relation to the start/end of the event, duration of the event, activity,
place, presence of humans, etc. can also help in computing memory recall.
Event memorability model can help in choosing the most useful images as cues
for memory or cognitive intervention.

Essentially, these models are trained using a centralized approach as shown in
Figure 2a, where data from the personal lifelogs of several users are aggregated
together along with their self-reported scores of the induced memory recall (on
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Figure 2: Three approaches to develop event memorability models with dif-
ferent implications for privacy, accuracy of event memorability prediction and
the life-loggers’ effort involved in providing sufficient number of images with
self-rated event memorability scores (self-rating load). Personalised model de-
velopment provides better privacy and boosts accuracy of individual models,
while collaboration across clients reduces life-loggers’ effort needed in providing
self-rated images and improves model generalisation. We propose a federated
learning-based personalized model development approach that simultaneously
preserves privacy and also benefits from collaboration.

a scale of 0 to 9), to train the model. Such an approach suffers from two main
disadvantages — (a) the inherent privacy risk in sharing sensitive life-log data
makes the users wary of submitting their data and (b) while there are obvious
benefits with regards to generalization and the diversity of the data used in
developing an universal event memorability model, the lack of personalization
in such a one-size-fits-all approach may lead to sub-optimal performance for
individual lifeloggers, since event memorability is a highly personal phenomena.

As an alternative to the centralized approach, we can consider a siloed approach
(illustrated in Figure 2b), where each lifelogger uses only their own data for
building their personal models of event memorability. Such siloed models grant
maximum privacy and highest level of personalization to the life-loggers. How-
ever, they would suffer from (a) poor generalization performance for images
acquired from rare contexts appearing in a individual lifelogger’s data and (b)
the requirement of an extensive amount of self-rated data from the lifelogger
to comprehensively cover diverse contexts of lifelog images to attain optimal
performance. Unlike other common tasks in computer vision where the data
labelling for model training can be done by professional or crowdsourced an-
notators, the self-rating of event memory has to be provided by the end-users
(lifeloggers) themselves. The significant labor involved in such self-rating may
hinder the adoption of the models. Therefore, we propose a federated learning-
based approach (Figure 2c) for event memorability prediction where only model
parameters and not images across the lifeloggers via a trusted global server.
Through model sharing, we preserve privacy of the raw image data as well as
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derive the performance benefits of collaborative model development.

Federated learning is a collaborative machine learning framework in which mul-
tiple clients participate in learning while maintaining privacy [McM+17] of their
individual data. In a federated learning setup, clients (individual lifeloggers)
contribute by sharing gradients or model weights of their locally trained model
with the central server while maintaining full control over their data through-
out the training phase. Only the encrypted model is disclosed to the server;
the raw images remain private. This ensures that sensitive information stays
with the clients. Additionally, it allows clients to participate in the learning
process for its entirety or only a portion, as per their availability or preference.

Intuitively, Federated Learning (FL) is challenging when there is statistical het-
erogeneity, i.e., non-independent and identical distribution (non-i.i.d.) of data
across clients. Such heterogeneity is expected in lifelogs where age, lifestyle,
occupation, and activity level can cause vast differences in the events captured
throughout the day. As a result, an FL global model may exhibit client drift
– divergence of a client’s model from the global model over time due to the
local updates based on the client’s unique data distribution. This drift causes
FL to result in sub-optimal client models and global model as the aggregation
becomes less effective for individual clients. Personalized FL addresses this
problem and enables the global model to learn from this heterogeneous data
while allowing for client models to retain their unique characteristics based on
their own user data [TTN20; BYB22]. In literature [Ngu+22; Lon+23], clus-
tering client models have been demonstrated to enhance personalization when
clients contain non-i.i.d. data.

Therefore, we propose FedMEM, a personalized and clustered federated learn-
ing approach for event memorability prediction. We propose that lifeloggers
share their model parameters in clusters that are formed using either the distri-
bution of memorability scores across lifeloggers or model similarity across lifel-
oggers. We show that personalized event memorability models learned with
either of the clustering criteria using FedMEM outperform other clustered
FL approaches. Furthermore, we show FedMEM’s efficacy as client models’
performance improves even when there are a small number of participating
clients. To the best of our knowledge, this is the first work on predicting event
memorability using federated learning. Our key contributions are as follows:

• We formulated the event-memorability prediction as a personalized clus-
tered federated learning problem where each client trains the personalized
model, the server aggregates, and makes clusters of devices for better per-
sonalization. We show that this approach enhances privacy and improves
model performance.

• We introduce a similarity measure that balances three criteria across per-
sonalized models – intra-cluster similarity, inter-cluster dissimilarity, and
similarity to the global model.

• FedMEM outperforms the baseline centralized model [Xu+21] as well as
SOTA clustered federated learning algorithms such as DemLearn, h-SGD,
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and multi-centered FL and traditional federated learning algorithms like
FedAvg, pFedMe, and FedProx.

2 Related Work

2.1 Event memorability from visual lifelogs

Memorability as an inherent characteristic of images and videos has been the
subject of several prior works such as [BIO13; Iso+11; Iso+13]. Computational
models that predict image/video memorability [Kho+15; Coh+19] have been
developed by utilizing advanced techniques such as deep convolutional neural
networks (CNN) and carefully designed content analysis mechanisms [Faj+18;
Squ+18; Jin+16; Lu+20; KAC20; ABF22]. However, these works measure the
intrinsic property of a given arbitrary image/video stimulus to stick into human
memory in general. It is very important to distinguish this large body of work
from the study of event memorability - the autobiographic memory recall that
is induced by the review of visual lifelogs acquired from their personal lives,
as it deals with different memory phenomena [BR18]. For example, viewing a
personal lifelog image that was acquired during a leisurely stroll, could invoke
memories of several associated details, such as the sounds of birds, the scent of
flowers, etc., which may not even appear in the lifelog image.

Visual lifelogs acquired from wearable cameras and their ability to induce event
memory recall have been studied in several works such as [Doh+12; Mil+11;
Ris+16; Xu+21]. Despite the research interest, owing to difficulties in lifelog
data collection and sharing, the only publicly available dataset which con-
tains lifelog images along with self-reported event memorability annotations,
is the R3 dataset [Xu+21; GLT18]. Using the R3 dataset, a Contextual Event
Memory Network (CEMNet) [Xu+21] has been developed to process the multi-
modal input and predict the associated self-reported event memorability. The
same dataset has also been used to show that personalized visual lifelog content
can significantly enhance the engagement of users in serious games targeting
cognitive training [Xu+18]. Despite compelling uses in memory augmentation
[HLW16], privacy remains a major concern that hinders user adoption [FCJ17].
Therefore, in contrast to the centralised approach of CEMNet [Xu+21], which
requires the lifeloggers to share raw image data, we explore privacy preserv-
ing machine learning approaches for developing computational models of event
memorability.

2.2 Clustered and personalized FL

Federated learning is a privacy-preserving approach to distributed machine
learning. FedAvg [McM+17] serves as a fundamental baseline in Federated
Learning (FL) due to its simplicity and reduced communication overhead. Yet,
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it struggles with data heterogeneity [Li+20], resulting in inconsistent perfor-
mance and causes client drift [Kar+20]. This occurs when a global model
fails to effectively serve all clients, and shifted the objective towards some
clients, rest are not benefiting from a single global model. To mitigate these
challenges, FL has progressively shifted towards adopting personalized models
[TTN20]. Recent days, clustered personalized Federated learning algorithms
produce promising solution to this problem [BYB22; Ngu+22]

Clustered Federated Learning organizes clients into clusters based on their sim-
ilarity in data or model. Inside each cluster, data distribution in each client is
non-IID. Clients train their local models independently on their personal data.

Clustered FL methods can be classified into four categories based on the cluster
formation criteria. (1) Distance between local and global model param-
eters. In [Lon+23], the client’s association in the cluster is measured by the
distance between the local model and global models. Instead of a single global
model, it offers multiple global models. A client chose the nearest global model
to form a cluster. In [BFA20], devices are grouped using hierarchical cluster-
ing based on the similarity of their local updates. In [Ngu+22], Democratized
Learning (DemLearn) was introduced by integrating self-organized hierarchi-
cal structuring, personalization, and hierarchical generalization. (2) Partition
based on gradient information: [SMS20] used the cosine similarity be-
tween device’s gradient updates. FedGroup and FedGroupProx [Dua+21] cre-
ate clusters based on the similarity between the clients’ optimization direction.
It quantifies the similarity using the Euclidian distance of decomposed cosine
similarity (EDC) between devices. (3) Clustering based on the training
loss: In HyperCluster ([Man+20]), each client is evaluated themselves with
multiple cluster models using their data, and select a cluster which that gives
minimum loss, [Gho+20] proposed a similar concept to cluster clients. (4)
Clustering based on the information about the data: [Hua+19] apply
clustering of patients in FL, based on their electronic medical records.

We propose two new clustering schemes for our clustered FL approach – Model
Similarity based Clustering (MSC) falls under the first category and Memo-
rability Score Distribution-based Clustering (MSDC) that falls under fourth
category of clustered Federated Learning approaches.

3 FedMEM: The Proposed Approach

In this section, we describe FedMEM, a personalized clustered federated learn-
ing approach for predicting event memorability from life-logs.

3.1 Framework

FedMEM follows the client-server federated learning framework (see Figure 3)
that works in two phases. In phase 1, lifeloggers use their own data to train per-
sonalized local models (θi). In phase 2, server collects the personalized models
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and assigns lifeloggers into clusters and aggregates their models (ω1, . . . , ωC , ω).
FedMEM employs two distinct clustering criteria: (1) Memorability Score
Distribution-based lifelogger Clustering (MSDC, see Figure 3a), where lifelog-
gers transmit their memorability score distributions to the server before the
beginning of the FL process and lifeloggers are clustered according to the sim-
ilarities in their memory scores, and (2) Model Similarity-based Clustering
(MSC, see Figure 3b), in which lifeloggers send their personalized models to
the server and lifeloggers’ are clustered based on the similarity of their model
weights. MSC offers complete data privacy as the server does not have access
to the data distribution among lifeloggers. MSDC has the advantage of con-
ducting the clustering process just once before the commencement of Federated
Learning, allowing lifeloggers to be aware of their cluster models in advance.
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Figure 3: Framework of FedMEM

In both the FedMEM + MSDC and FedMEM + MSC methods, the server
calculates cluster models (ω1, . . . , ωC) and distributes them to the correspond-
ing lifeloggers. The FedMEM + MSDC approach does not require a global
model because every lifelogger is assigned to a cluster before the FL begins
(Apriori clustering), and lifelogger never changes the cluster. FedMEM +
MSC method transmits the global model to lifeloggers at the beginning (ω0) of
the FL or when a new lifelogger enters the FL process (ωt) at global iteration
t, as a reference to initialize the local models (θi’s). After that, in every global
iteration (t), only cluster models (ωt

c) are transferred to the respective lifelog-
gers in the clusters. After cluster assignment is done, Each lifelogger trains
personalized model (θti) and transfers it to the server for aggregation.

3.2 Clustering

Memorability-score distribution based clustering (MSDC) is performed
before initiating the federated learning process. At first, each lifelogger sends

215



the distribution of memory scores based on their own training data (CDi) to
the server. The server computes the similarity between the memory score dis-
tributions (CDi and CDj) from lifelogger Lgi and Lgj respectively using KL
divergence. A similarity matrix using KL divergence values is generated be-
tween every pair of lifeloggers. Hierarchical clustering is then applied to the
similarity matrix to form a cluster tree of lifeloggers based on memory score
distributions. We cut the cluster tree at a chosen height (empirically deter-
mined) to obtain C partitioned clusters of lifeloggers at a selected precision.
Each lifelogger is assigned a cluster for the entirety of the FL process. Sharing
memory score distributions across lifeloggers or to the server does not reveal
the image content. Entire MSDC process is shown in Algorithm 1.

Algorithm 1 Memorability Score Distribution based Clustering (MSDC) of
lifeloggers

1: Initialize: N , ∀Ni=0CDi

2: procedure MSDC((N ))
3: Server collects the memory score distributions (CDi) from N lifeloggers.
4: for i← 0 to N − 1 do
5: for j ← 0 to N − 1 do
6: KL[i, j]← KL divergence(CDi, CDj)
7: end for
8: end for
9: clusters ← Hierarchical Clustering(KL)
10: Return clusters
11: end procedure

Model similarity-based clustering (MSC) begins by gathering the per-
sonalized models of the lifeloggers, which means that lifeloggers are not required
to separately transmit their memory score distributions before the start of the
Federated Learning process. The server computes a similarity graph whose
edges are the similarity scores between two lifelogger’s personalized models
that is computed as:

s(θi, θj , ω, ωc) =(1− λ1 − λ2)sim(θi, θj)

+ λ1sim(θi − ω, θj − ω)

+ λ2sim(θi − ωc, θj − ωc).

(1)

Here, sim(m,n) = exp(− ||m−n||
2

2σ2 ) is the radial basis function, sim(θi, θj) is
the similarity between the personalized models (θi and θj) of two lifeloggers.
sim(θi − ω, θj − ω) measures the similarity between two lifeloggers by con-
sidering the deviation of their personalized model (θi) from the global model
(ω). Similarly, sim(θi−ωc, θj −ωc) measures the similarity between lifeloggers
(θi, θj) based on their distance from the cluster model (ωc). λ1 and λ2 serve as
regularization factors, with the constraint that λ1 + λ2 ≤ 1.

We compute a similarity graph G for N lifeloggers represented as a symmet-
ric similarity matrix S ∈ R(N−1)×(N−1). Every {i, j}th element (S[i, j] =
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s(θi, θj , ω, ωc)) of the similarity matrix contains the similarity between two
lifeloggers Lgi and Lgj computed using Equation (1). We employ spectral
clustering [SM00] to cluster G based on S and a specified number of clusters
(C) to assign a cluster to each lifelogger. The clustering process of MSC is
repeated at every global iteration and lifeloggers are flexible to change clus-
ters if a closer cluster center is identified. Entire MSC process is shown in
Algorithm 2.

Algorithm 2 Model Similarity-based Clustering (MSC) of lifeloggers

1: procedure MSC(θ1, θ2, . . . , θM )
2: After a global iteration, the server collects client models from M clients (θi, θj , ..., θM )

where M ≤ N .
3: for i← 0 to len(M)− 1 do
4: for j ← 0 to len(M)− 1 do
5: S[i, j]← s(θi, θj , ω, ωc)
6: end for
7: end for
8: clusters = Clustering(S[i, j], C)
9: Return clusters
10: end procedure

3.3 Personalized clustered federated learning

In clustered federated learning, the objective function is to find the global
model (ω) as follows:

min
ω∈Rd

f(ω) min
ω∈Rd

C∑

c=1

Nc∑

i=1

rcrifi(ω) (2)

The function fi : Rd → R denotes the local loss function computed for the
model of lifelogger Lgi in cluster c. The formulation involves a single global
model (ω) that all lifeloggers agree on when the model converges. However,
when data is heterogeneously across lifeloggers, the global model is less effective
for all lifeloggers. We address this issue by introducing a cluster model (ωc) for
each cluster and reformulate Equation (2) as follows:

min
ωc∈Rd

min
θi∈Rd

C∑

c=1

Nc∑

i=1

rc, ri(fi(θi) +
η

2
||θi − ωc||2) (3)

The parameter η ≥ 0 controls the contribution of the quadratic penalty ||θi −
ωc||2 to enforce that a lifelogger in a cluster has a personalized model close to
cluster model.

FedMEM+MSC solves the optimization in Equation (3) as we compute a
global model in addition to cluster models. But in FedMEM+MSDC, we do
not compute a global model and the optimization is performed in each cluster
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independently as follows:

min
θi∈Rd

Nc∑

i=1

ri(fi(θi) +
η

2
||θi − ωc||2). (4)

Personalized update: For a cluster c at global round t, the cluster model
is denoted as ωt

c, and personalized model of lifelogger Lgi as θ
t
i . The objective

of personalized update is to solve the following objective:

f̃η
i (ω

t
c) := min

θt
i∈Rd

fi(θ
t
i) +

η

2
∥θti − ωt

c∥2. (5)

We apply a gradient method to approximate the solution of Equation (5). We
start with an initial value for the personalized model using the cluster model
θt,0i = ωt

c. Using a positive learning rate α, we perform the following update
for local iterations l = 0, 1, . . . , L− 1

θt,l+1
i = θt,li −αi∇fi(θt,li )−αiη(θ

t,l
i − ωt

c). (6)

Cluster update: For the cluster c, the objective of the cluster update for
the global iteration t is to perform weighted aggregation over the personalized
models.

Fc(ω
t
c) :=

Nc∑

i=1

rif̃
η
i (ω

t
c) (7)

ωt
c :=

Nc∑

i=1

riθ
t
i (8)

where Nc represents the number of lifeloggers present in cluster c. ri =
DLgi

Dc
.

DLgi is the amount of data lifelogger Lgi has. and Dc is the total amount of
data the lifeloggers have in cluster c.

Global update: This is the weighted aggregation over the cluster models for
global rounds t = 0, . . . , T .

F (ωt) :=
C∑

c=1

rcFc(ω
t
c). (9)

ωt :=
C∑

c=1

rcω
t
c. (10)

where rc = Dc

D , and D represents the amount of aggregated data from all
lifeloggers across various clusters.
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3.4 Fusing contextual information

The final personalized individual lifelogger models θi are obtained using only
the raw-image features. However, each lifelog image in the R3 dataset is also
associated with several other contextual data which have been shown to influ-
ence the estimation of event memorability. Measures of such contextual data
have been provided in the R3 dataset for each lifelog image. Using these in-
formation, similar to what was done by the baseline CEMNet [Xu+21], we
perform a late-fusion of the contextual features along with the image-based
features that were obtained from the local personalised model for each lifelog-
ger obtained from FedMEM. Figure 4 illustrates this late-fusion to predict the
event memorability of a given lifelog image. This late fusion is performed in
each individuals only after its final model θi is frozen. Several of these features
are highly personal in nature such that they are relevant only for the individual
lifelogger. For example, distinctness of an image can vary between individuals.
It is also possible that these information may not be available for all lifeloggers.
Hence, they were not used for the updates in the federated learning.
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Figure 4: Late fusion of contextual information

4 Experimental Evaluation

4.1 Dataset and model details

Dataset. Our experiments were conducted on the publicly availableR3 dataset
[Xu+21]. This dataset is based on a user-study that involved 40 lifeloggers, each
providing their own unique set of lifelog images acquired over a period of 2 to 4
weeks. A subset of approximately 250 images per lifelogger were selected and
evaluated for event memorability via a self-reported score ranging from 0 to 9,
where 0 indicates absolutely no recall and a score of 9 indicates that signifi-
cant episodic details about the event were recalled by the lifelogger. In total,
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there are about 10600 images with self-reported event memorability scores.
The distribution of memory scores varies across the lifeloggers (as shown in
Figure 5), leading to non-Independent and Identical (non-IID) and unbalanced
data distributions among the lifeloggers. Apart from the image memorability
scores, the dataset also provides quantified measures for about 28 contextual
features such as distinctness, time difference from the start/end of an event,
time elapsed between image acquisition and event memory evaluation, place,
activity, presence of a human etc.

For each lifelogger, we split the data into train:val:test in 6:3:1 ratios. This was
carried out for all the lifeloggers. During FL training iterations, only the train
set from each client is utilized. After training is over, the personalised model
for each individual client is employed to infer the memorability of images in the
client’s own test set images. The overall F1-score is calculated by considering
the inferred and ground-truth memorability on all the test set images from all
clients.

(a) Lg 16 (b) Lg 56

Figure 5: Difference in histograms of memory score distribution in individual
lifeloggers (Lg)

Learning model: We adopted a transfer learning based approach for pre-
dicting the event memory score from a given lifelog image. The lifelog image
is first passed through a frozen ResNet50 backbone to extract image features.
These features are then processed through two fully connected layers with ReLU
activation to predict the memory score. The first linear layer maps the 2048-D
ResNet features to 512 and the next linear layer maps it to 10 output classes
corresponding to the memorability scores. We use dropout between the first
and second linear layers with probability of 0.5 and use batch normalization
layer to reduce feature covariance shift after the first linear layer.
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4.2 Comparison of event memorability prediction perfor-
mance

In Table 1, we present the performance of FedMEM and compare against
other state-of-the-art Federated and Non-Federated Learning approaches. We
note that FedMEM+MSC outperforms all other approaches with a F1-score
of 34.47%.

Comparison to non-FL approaches: FedMEM+MSC/MSDC performs
better than the centralized model baseline reported in [Xu+21] in terms of
F1 score by > 13%. For a fair comparison, we compare with the image-only
baseline provided in [Xu+21]. FedMEM+MSC also performs better than
siloed models which demonstrates that a carefully designed clustered feder-
ated learning approach can benefit from model sharing across lifeloggers. Thus
FedMEM+MSC realizes our primary objective of simultaneously improving
privacy and model performance by avoiding raw-image sharing as well as en-
abling collaborative learning.

Comparision to FL approaches: We observe from Table 1 that the non-
clustered approaches such as FedAvg [McM+17], FedProx [Li+20] and pFedMe
[TTN20] obtain 9− 12% lower F1-score in comparison to FedMEM+MSDC.
Other clustered federated approaches such as h-SGD [Liu+20] and DemLearn
[Ngu+22] also outperform non-clustered approaches. This underscores the im-
portance of clustering when dealing with heterogeneous data. Among the
clustered FL models, our MSDC based apriori clustering obtains 8% higher
F1-score compared to h-SGD [Liu+20] which also performs apriori clustering.
Moving on to dynamic clustering based FL methods, FeSEM [Lon+23] does
not compute a global model similar to FedMEM+MSC but our proposed sim-
ilarity computation (Equation (1)) allows MSC to perform better by 23% on
F1-score. When compared to DemLearn [Ngu+22], which is the state-of-the-art
personalization model with dynamic clustering, FedMEM+MSC personalized
models are able to achieve 5.5% higher F1 score. This demonstrates that our
proposed penalty term enforcing similarity between personalized and cluster
models creates better clusters that improves model performance.

Comparision between MSC and MSDC: FedMEM+MSC shows better
performance than FedMEM+MSDC. We attribute the improvement to MSC’s
dynamic clustering and the inclusion of a global model, which facilitates knowl-
edge transfer. In contrast, MSDC uses fixed clusters without a global model
which can limit the transfer of knowledge between clusters.

Qualitative Analysis. Our motivation behind developing personalized model
is to enhance the performance of each lifelogger’s model. Therefore, in Figure 6,
we show the impact of personalization on selected lifelogger’s models using
confusion matrices. The global model (FedAvg [McM+17]) tends to misclassify
the images to higher memorability scores. The global model learn this pattern if
a majority of lifeloggers memory score distributions (e.g. Figure 5b) are biased
towards higher scores. However, it can affect the performance of lifeloggers
when they have a different memorability score distribution as seen in Figure 6b.
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Table 1: Comparison with different FL algorithms

Method F1-Score

Non

Federated

Centralized Model [Xu+21] (Image-only baseline) 15.00

Siloed models per lifelogger 29.93

Federated

Non

Clustered

Non

Personalized

FedAvg [McM+17] 16.49

FedProx [Li+20] 16.31

Personalized pFedMe [TTN20] 19.80

Clustered

Apriori Non

Personalized

h-SGD [Liu+20] 20.39

Dynamic FeSEM [Lon+23] 11.46

Dynamic

Personalized

DemLearn [Ngu+22] 28.86

Apriori
FedMEM+ MSDC

[Ours]
28.69

Dynamic
FedMEM+ MSC

[Ours]
34.47

(a) Lg 56 (Personalized) (b) Lg 56 (Global)

Figure 6: Confusion matrix – FedMEM vs. FedAvg [McM+17]
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Personalized models capture the score distribution of each lifelogger resulting
in better performance as shown in Figure 6a.

4.3 Partial participation of lifelogger and data contribu-
tion per lifelogger

In our previous experiments, we have assumed that all lifeloggers simultane-
ously participate in all the iterations and that they utilize all their available
data when training the personalized FL models. However, all the lifeloggers
may not be collecting data at the same time and they may not be able to
provide their entire collection of lifelog images that are self-rated for event
memorability in a single shot. Therefore, it is possible that some lifeloggers
are not available when learning the FL model and also that some portion of
their data is not available during learning. To investigate such scenarios, we
measured the performance of FedMEM under such partial participation con-
ditions as presented in Figure 7. Most importantly, we note that even under
a very conservative assumption that only 20% of the lifeloggers are available,
and each of them contribute only 20% of their labelled data, both MSC and
MSDC are still able to obtain a performance that is better than the central-
ized model baseline. This shows that FedMEM can significantly lower the
self-rating effort of lifeloggers. We also notice that when each lifelogger is con-
tributing between 20% to 80% of the data, we are able to come close to peak
performance with just 60% of lifeloggers participating. These results open-up
interesting trade-offs with respect to lifelogger participation, their self-rating
load and model accuracy.

(a) FedMEM + MSC (b) FedMEM + MSDC

Figure 7: Ablation study on the performance of FedMEM with partial par-
ticipation of lifelogger and data per lifelogger.

Convergence. We also study the convergence with partial lifelogger participa-
tion in Figure 8. The convergence study investigates whether a lifelogger needs
to wait more to achieve a robust personalized model if less number of lifeloggers
are available. FedMEM+MSDC is more robust than FedMEM+MSC after
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5 iterations even with 20% due to apriori clusters that utilize the memorability
score distribution. MSC requires more lifeloggers to form stable clusters that
can benefit the personalized models.

(a) FedMEM + MSC (b) FedMEM + MSDC

Figure 8: Convergence analysis of FedMEM with partial lifelogger participa-
tion (p = 20%, 40%, 60%, 80% and 100%)

Qualitative analysis. We also investigate the effect of partial participation
on selected lifelogger’s personalized models in Figure 9. From Figure 9a and
9b,

it is observed that model sharing with 24 fellow lifeloggers (60% participation)
is sufficient to achieve nearly the same peak performance as obtained with all
40 lifeloggers.

(a) Lg 17 (b) Lg 52

Figure 9: Performance of personalized models for selected lifeloggers with par-
tial participation of other lifeloggers (8 – 20%, 16 – 40%, 24 – 60%, 32 – 80%,
and 40 – 100%)
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4.4 Fusing contextual information

We observed that the performance of every FL model improved after incor-
porating contextual information as shown in Table 2, in comparison to the
image-only results reported in Table 1. Moreover, FedMEM+MSC is better
than the selected state-of-the-art FL methods as well as baseline non-federated
learning approaches. FedMEM+MSDC gives better performance than the
FedProx, and nearly equivalent performance with FedAvg, h-SGD.

Table 2: Comparison after fusing contextual visual semantic information

Method F1 Method F1

Centralized [Xu+21] 36.8 Siloed 34.94

FedAvg [McM+17] 35.26 FedProx [Li+20] 34.41

pFedMe [TTN20] 36.22 h-SGD [Liu+20] 34.89

FeSEM [Lon+23] 35.26 DemLearn [Ngu+22] 36.73

FedMEM + MSDC [Ours] 34.80 FedMEM + MSC [Ours] 37.43

5 Conclusion

We introduced FedMEM, a clustered personalized federated learning approach
for predicting event memorability of visual lifelog images. FedMEM enhanced
privacy by avoiding image sharing across lifeloggers while simultaneously reap-
ing the benefits of collaborative learning via model sharing. We adopted a clus-
tering mechanism in FedMEM to avoid the client drift problems. We explored
two clustering strategies: apriori or memory score distribution-based cluster-
ing (MSDC) and dynamic or model similarity-based clustering (MSC). We also
developed criteria for measuring similarity among the personalized models of
lifeloggers, their cluster models, and the global model. FedMEM was imple-
mented using convolutional neural networks and was further enhanced through
the late fusion of contextual information. It was evaluated across diverse fed-
erated learning algorithms and in both siloed and centralized configurations.
FedMEM+MSC consistently outperformed state-of-the-art methods for each
test scenario.
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Appendix A Additional Results and Analysis

In this supplementary material, we provide additional details and results that
were not included in the main paper, but we evaluated during the study. This
appendix contains the following items,

• Detailed description of the FedMEM algorithm. (Algorithm 3 and Algo-
rithm 4).

• Additional details about the experimental setup.

• Additional details about the distribution of lifelog data across clients (Fig-
ure 10).

• Description and the analysis of the effect of λ1 and λ2 when lifeloggers
have partial participation (Figure 12).

• An ablation study on the impact of clusters on FedMEM+MSC (Fig-
ure 13).

• Additional details on the confusion matrix based qualitative analysis of
lifelogger’s personalized models and global model (FedAvg [McM+17]).
(Figure 11)

• Additional metrics for the performance analysis of FedMEM with other
federated learning approaches (Table 3)

Appendix A.1 Description of FedMEM algorithm

We have explored two clustering strategies: (1) Memorability Score Distribution-
based Clustering (MSDC) for lifeloggers, and (2) Model Similarity-based Clus-
tering (MSC) for lifeloggers. By integrating these clustering strategies with
personalized federated learning, we have developed a clustered personalized
federated learning algorithm, FedMEM, for event memorability prediction.

Appendix A.1.1 FedMEM+MSDC

In this Algorithm 3, all available life-loggers first send their memory score dis-
tribution (CDi) to the server for clustering. The server performs KL divergence
to determine the memory score similarity between pairs of clients, producing
a similarity matrix KL[, ]. Hierarchical clustering is then performed on this
similarity matrix KL, dividing the clients into Ck clusters. Each client initial-
izes their model from their respective cluster, such that if life-logger i belongs
to cluster C, the initial model for life-logger i would be WC . For each clus-
ter, the Personalized Local Update operation is performed, followed by the
aggregation of local models within each cluster. FedMEM+MSDC provides a
clustered federated learning approach in which lifeloggers remain in their des-
ignated clusters without migrating between them, ensuring that clusters are
fully isolated from one another with no cross-cluster movements. Therefore, no
cross-cluster knowledge sharing occurs.
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Algorithm 3 FedMEM+MSDC

1: Initialize: ω0
0 = ω0

1 = . . . = ω0
C = ω0, T , L

2: Server receives distribution of the event memory scores {CD0, CD1, . . . , CDN−1} form N
lifeloggers.

3: C ← MSDC(CD0, CD2, . . ., CDN−1) ▷ Call Algorithm 1
4: for t← 0 to T do
5: M ← Select clients(N )
6: Server sends the ωt

c to the selected lifeloggers ▷ ωt to the new lifelogger
7: for M lifeloggers in parallel do ▷ Lifelogger assigned to any of the k clusters. c ∈ C
8: θi = Personalized Local Update(ωt

c)
9: end for
10: All lifeloggers send θt

i to their respective clusters.
11: for Lgi ∈M do in all C clusters perform the cluster update
12: ωt

c ← ωt
c + riθ

t
i ▷ Equation (8)

13: end for
14: end for
15: procedure Personalized Local Update(ω̄)
16: for l ← 0 to L do
17: θt,l+1

i = θt,l
i −αi∇fi(θ

t,l
i )−αiη(θ

t,l
i − ωt

c). ▷ Equation (6)
18: end for
19: end procedure

Appendix A.1.2 FedMEM+MSC

In Algorithm 4, initially, all available life-loggers do not have any information
about the clusters. They start by initializing their local models with the same
global model. In the initial round (t=0), the server sends the global model
ω0 to the selected life-loggers. In subsequent rounds, if a life-logger has been
assigned to a cluster, the server sends the cluster model to that life-logger. If
a new life-logger joins in a later round and does not belong to any cluster,
their model is initialized with the global model. Similar to Algorithm 3, clients
perform the Personalized local update operation to train their local models.
Each life-logger then sends their trained local model to the server, where a
similarity matrix is created using Algorithm 2. Spectral clustering is then
performed to identify clusters. After cluster assignments are made, a cluster
update is performed, and a new global model is created. This process continues
until the personalized models of all life-loggers converge.

Appendix A.1.3 Comparison between FedMEM+MSDC and Fed-
MEM+MSC

The FedMEM+MSDC approach forms clusters of lifeloggers based on their
memory score distribution. These clusters remain static, meaning lifeloggers
do not switch clusters during training. Unlike FedMEM+MSC, this method
does not create a single global model. Instead, each cluster model acts as the
global model for its respective cluster. There is no knowledge sharing between
clusters since lifeloggers do not move across clusters.

On the other hand, FedMEM+MSC forms clusters based on model similarity
among lifeloggers, the global model, and cluster models. In this approach,
lifeloggers can move between clusters, enabling cross-cluster knowledge sharing.
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Algorithm 4 FedMEM+MSC

1: Initialize: ω0
0 = ω0

1 = . . . = ω0
C = ω0, T , L

2: for t← 0 to T do
3: M ← Select clients(N )
4: Server sends the ωt

c or ωt to the selected lifeloggers ▷ ωt to the new lifelogger
5: for M lifeloggers in parallel do
6: if Lgi /∈ C then ▷ Lifelogger not assigned to any cluster
7: θi = Personalized Local Update(ωt)
8: else ▷ Lifelogger assigned to any of the k clusters. c ∈ C
9: θi = Personalized Local Update(ωt

c)
10: end if
11: end for
12: All lifeloggers send θt

i to the server.

13: C ←MSC(θt
1, θ

t
2, . . . , θ

t
M ) ▷ Call Algorithm 2

14: for Lgi ∈M do in all C clusters perform the cluster update
15: ωt

c ← ωt
c + riθ

t
i ▷ Equation (8)

16: end for
17: for all c ∈ C in parallel do ▷ Only for MSC
18: ωt = ωt + rcω

t
c ▷ Equation (10)

19: end for
20: end for
21: procedure Personalized Local Update(ω̄)
22: for l ← 0 to L do
23: θt,l+1

i = θt,l
i −αi∇fi(θ

t,l
i )−αiη(θ

t,l
i − ωt

c). ▷ Equation (6)
24: end for
25: end procedure

Appendix A.2 Experimental setup

For each lifelogger, we split the data into train:val:test in 6:3:1 ratios. This
was carried out for all the lifeloggers. During FL training iterations, only the
train set from each lifelogger is utilized. After training is over, the personalised
model for each individual lifelogger is employed to infer the memorability of
images in the lifelogger’s own test set images. The overall F1-score is calculated
by considering the inferred and ground-truth memorability on all the test set
images from all lifeloggers. Cross-cluster/Cross-user testing was not carried out
as our personalized approach produced individual models for every lifelogger.

We utilized the same frozen ResNet50 as the baseline CEMNET [Xu+21]. Be-
cause we want to demonstrate the advantage of our personalized federated
learning approach over the centralized CEMNET model.

Appendix A.3 Distribution of lifeloggers data

In this supplementary copy we provide the data distributions of some more lifel-
oggers Lg23 (Figure 10a), Lg28 (Figure 10b) to Lg34 (Figure 10h). We observed
the data distribution across lifeloggers, and we noted that some lifeloggers do
not have any data for certain memory scores (such as, for Lg31, none of their
images had memory scores of 5 and 6). This showed us that the memorability
scores provided by the lifeloggers do not follow the same distribution. There-
fore, we believe that there is case of non-IID (not independent and identical)
distribution of data across lifeloggers.
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(a) Lg 23 (b) Lg 28 (c) Lg 29 (d) Lg 30

(e) Lg 31 (f) Lg 32 (g) Lg 33 (h) Lg 34

Figure 10: Difference in histograms of memory score distribution in individual
lifeloggers (Lg)

Appendix A.4 Qualitative analysis of lifelogger’s person-
alized models and global model (FedAvg)

We also provide a confusion matrix-based analysis for each qualitative analy-
sis of lifeloggers in Figure 11 . The color intensity represents the classifier’s
predictions. Darker colors usually indicate higher numbers. This means that
areas in the matrix where the model made more predictions (correct or incor-
rect) will be highlighted with a darker shade. Lighter colors typically represent
lower numbers. These areas indicate fewer predictions for those class combina-
tions. The y-axis (rows) represents the actual classes, and the x-axis (columns)
represents the predicted classes. We observed from the Figure 11 that the per-
sonalized model produces more true positive predictions, whereas the global
model makes more false positive predictions. This further supports our claim
that the personalized model is more effective than the global model for all the
lifeloggers.

Appendix A.5 Ablation of the value of λ1 and λ2

We trained both FedMEM+MSC and MSDC with 5 clusters. We defined hy-
perparameters λ1 and λ2 in the range [0,1], ensuring λ1 + λ2 ≤ 1. These
parameters regularize the similarity measure. Setting both to 0 focuses on
client similarity. Increasing λ1 emphasized the global model while increasing
λ2 emphasized the clustered model. For equal consideration of both cluster and
global models, λ1 and λ2 are set equally. In the experiments in the submitted
paper we prioritized lifelogger’s similarity and set λ1 and λ2 to 0.25.

In Figure 12, we performed a comparative analysis of λ1 and λ2 to examine
the impact of global and cluster models on clustering, which is reflected in the
effectiveness of FedMEM. The model was trained for 30 global rounds, with
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(a) Lg 23 (Per-
sonalized)

(b) Lg 23
(Global)

(c) Lg 28 (Per-
sonalized)

(d) Lg 28
(Global)

(e) Lg 29 (Per-
sonalized)

(f) Lg 29
(Global)

(g) Lg 30 (Per-
sonalized)

(h) Lg 30
(Global)

(i) Lg 31 (Per-
sonalized)

(j) Lg 31
(Global)

(k) Lg 32 (Per-
sonalized)

(l) Lg 32
(Global)

(m) Lg 33 (Per-
sonalized)

(n) Lg 33
(Global)

(o) Lg 34 (Per-
sonalized)

(p) Lg 34
(Global)

Figure 11: Personalized model (FedMEM) compared to global model (FedAvg
[McM+17]) for selected lifeloggers (Lg). Global model favors higher memora-
bility scores but FedMEM is able to capture the characteristics of each lifel-
ogger’s memorability score distribution resulting in improved F1 score.
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50% of the lifeloggers participating in each round. We found that increasing
the value of λ1 improves the performance of FedMEM. Furthermore, when λ1

and λ2 are in the range of (0.25, 0.75), the performance of FedMEM remains
relatively consistent.

Figure 12: Ablation on value of λ1 and λ2

Appendix A.6 Ablation study on the impact of clusters
on FedMEM+MSC

In Figure 13, we performed the experiment across 40 life loggers, but 50%
of them were available at each global round. We train for 30 global rounds.
The values of the hyperparameters λ1 and λ2 are 0.25. We observed if we
increase the number of clusters, the performance of FedMEM decreases. But
the decrease is not significant.

Figure 13: Ablation on the number of clusters
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Table 3: Comparison of FedMEM with different FL algorithms

Method Precision Recall F1-Score
(weighted)

Mean Abso-
lute Error

Non

Federated

Centralized Model [Xu+21] (Image-only baseline) 17.10 17.90 - 3.03

Siloed models per lifelogger 21.10 29.9 24.74 2.30

Federated

Non

Clustered

Non

Personalized

FedAvg [McM+17] 12.27 16.49 14.07 3.69

FedProx [Li+20] 12.22 16.31 13.97 3.78

Personalized pFedMe [TTN20] 15.60 19.80 17.45 3.39

Clustered

Apriori Non

Personalized

h-SGD [Liu+20] 07.00 20.39 10.42 3.96

Dynamic FeSEM [Lon+23] 03.37 11.46 05.21 4.06

Dynamic

Personalized

DemLearn [Ngu+22] 21.54 28.86 24.67 2.59

Apriori
FedMEM+ MSDC

[Ours]
21.30 28.69 24.45 2.68

Dynamic
FedMEM+ MSC

[Ours]
19.86 34.47 25.20 2.28

Appendix A.7 Performance analysis with the state-of-the-
art

In Table 3, we present a comparative analysis of the performance of FedMEM
with different state-of-the-art Federated Learning algorithms. In the main ar-
ticle, we had given only one performance metric, which is the F1-score. There-
fore, in this supplementary, we provide additional metrics here for comparison
such as the Precision, Recall, weighted-F1 score, and the Mean Absolute Error
(MAE). Since the memory score is an ordinal number, we obtain the absolute
value of the error between the predicted and ground-truth memorability scores.
Then we calculate the average value of this absolute error during inference time
over the images in the testset, which is presented as MAE. From Table 3 we
observed FedMEM+MSC performance is better than the other FL algorithms.
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Abstract:

Sharing privacy-sensitive information poses a significant risk when private in-
formation is carelessly exposed to individuals or groups through various media.
With minimal annotation and user preference, users can decide whether to
share or keep an image based on its privacy score. This approach helps reduce
the likelihood of privacy breaches and makes it easier to share images with
friends or on social media platforms. Federated Learning (FL) allows collab-
orative learning of models without sharing personal data, which is crucial for
sharing privacy-sensitive information. However, there are several challenges
associated with learning from private data. This paper proposes two FL algo-
rithms, namely Dynamic-Clustered-FedDC and Apriori-Clustered-FedDC, to
address key problems, such as data scarcity, data heterogeneity, and model
complexity in order to ensure personalized image privacy. Both algorithms
train personalized models for each annotator using clustered federated learn-
ing to address data heterogeneity. Additionally, both algorithms utilize daisy
chaining-based knowledge sharing between annotators to mitigate data scarcity
issues during training. In addition to these two algorithms, we propose the PI-
ONet model, which is 20× lighter compared to baseline models and retains
equivalent performance. PIONet, along with Dynamic-Clustered-FedDC and
Apriori-Clustered-FedDC, outperformed the state-of-the-art federated learning
algorithms and the baseline.

Key words: Federated learning, Statistical heterogeneity, Data scarcity, Per-
sonalized federated learning, Daisy chaining

∗This work was completed as part of an internship in the Social and Cognitive Computing
department at the A∗STAR Institute of High-Performance Computing in Singapore.
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1 Introduction

Privacy sensitive information are commonly found in images and users sharing
such personal images across various media are at risk of exposing sensitive in-
formation inadvertently. An automated image privacy advisor application can
mitigate this risk by informing the user about the presence of privacy sensitive
information in a given image (as shown in Figure 1), thereby enabling them
to make informed decisions regarding sharing or obfuscation. To support such

Figure 1: An hypothetical image privacy advisor application, that can inform
the image owner about various aspects of privacy in a given image to enable
sharing and obfuscation related decisions.

an application, deep neural network models trained on public image datasets
have been developed. These models (a) detect the presence of some pre-defined
categories of privacy sensitive attributes such as name, face, licence plate, lo-
cation etc. [OSF17; Yu+16; Gur+19; CKS21], (b) classify an image as private
or public [TC16; Zho+17; TC19], and/or (c) provide a score that reflects the
privacy risk of an image [OSF17; CKS21]. However, privacy sensitivity is a
highly subjective phenomenon where preferences and perceptions of privacy
risks can vary from person to person, culture to culture and it could also be
dependent on the privacy laws that are in force at different locations [JJS08;
WNC11; She02; Hen+12]. For example, certain attributes in an image (e.g.
a pet animal) may be considered to be highly private information by some
users, while other may not. Therefore, personalised models that are trained on
fine-grained annotations of a user’s own perception of privacy risk for specific
attributes or regions-of-interest in their images (as illustrated in Figure 2) are
needed to accurately reflect individual preferences.

Recent works such as DIPA [Xu+23] and DIPA2 [Xu+24] have sought to ad-
dress personalised, attribute specific privacy preference modeling by obtain-
ing the annotations of privacy sensitivity scores for specific regions/attributes
in images. They investigate the effect of personality-based and cross-cultural
variations in privacy preferences when developing models for image privacy in
DIPA2 [Xu+24]. Individuals from Japan and the UK provided their privacy
annotations for the same set of images and they found location-specific differ-
ences. Furthermore, they obtained the personality information of the annota-
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User 1

Neuroticism
Openness

Extraversion
Conscientiousness

Agreeableness

Age
Gender
Nationality

Personal
images

Category of private info - “personal information”, “location of
shooting”, “individual preferences/pastimes”,“social circle”,
“others’ private/confidential information”,

Perceived privacy risk in given attribute or informativeness (7-
Likert scale, -3 to +3)

Sharing preference category- “I won’t share it”, “close
relationship”, “regular relationship”, “acquaintances”, “public”,
“broadcastprogram”

User annotation for
every attribute (bounding

box) in image

DemographicsPersonalityDemographicsPersonality

User N
...

(a) Gathering attribute level annotation of privacy perception from individual users
from their personal images

Visual features
from ROI

DemographicsPersonality

Personalised prediction of privacy labels
for individual attributes in images

++

Predicted
privacy 
labels

Region-of-Interest
in a given image

(b) Personality and attribute specific image privacy advisor

Figure 2: Personalised model that can accommodate user specific variations
in privacy preferences for individual attributes. Each user annotates some of
their personal images, demarcating sensitive attributes or regions-of-interest in
them and providing separate privacy labels for each region/attribute. Further,
each user provides their demographic information and personality scores.
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tors via a personality questionnaire and found that traits such as ‘openness’
and ‘neuroticism’ influence the sensitivity score provided by users. Using this
data, they develop their computational model, where the annotators’ personal-
ity information, demographics, location etc. was combined with the raw image
features to predict the sensitivity of a given region-of-interest.

m1 

Image ROIs

User 1

User N
mN 

Image ROIs

Predicted
privacy labels

Centralized
Model

Demographics

+

DemographicsPersonality

+

Personality

(a) Centralised approach

m1 

Image ROIs

User 1

User N
mN 

Image ROIs

Model
Sharing

Parameter
update

Predicted
privacy labels

Global 
Model

Personlized 
Model 1

Personlized 
Model N

Demographics

+

Demographics

+

Personality

Personality

(b) A personalised federated learning-
based approach

Figure 3: Comparison of centralised and federated approaches. In the cen-
tralised approach, all the users upload their annotated images, personality in-
formation, and demographics to enable model development. The resultant
model accommodates individual variations in privacy preferences by using per-
sonality and demographic information. In the federated approach, the user’s
data stays within the client to enable local, highly personalised model devel-
opment. Only the model parameters are shared with a global aggregator that
enables collaborative learning from other users’ data.

A significant drawback of the centralized privacy models developed in [Xu+23]
[Xu+24] is that they assume that the entire set of image annotations as well
as the user’s personality information etc., are provided by all the users to a
server which aggregates all such annotations to build the model (see Figure 3a
). However, this may not be feasible if the users are not willing to share their
private images and personality information for the purpose of model develop-
ment. Furthermore, the centralised approach suffers from conflicting privacy
labels provided by annotators [Suc+17] from different cultures and personality
types. Therefore, each user should have a privacy model developed using their
own data but they may not be able to annotate a sufficiently large dataset
on their own to train a model with reliable results. Hence, users should col-
laborate with other users on model development without actually sharing the
private raw images. In this paper, we propose to develop such a collaborative
approach model development via Federated Learning (FL) [McM+17]. Each
user develops their own models with their personal images annotated with their
own perception of privacy sensitivity of specific regions or objects found in their
image, and they share these models under the FL framework with collaborative
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users as shown in Figure 3b.

Despite FL being a suitable collaborative approach to building personalized
image privacy models, the following challenges exist in designing an FL-based
solution:

1. Data scarcity: Individual users may contribute varying amounts of data
samples depending on their convenience. Based on the amount of data
each user provides, we classify them into two groups: Resourceful (RF),
who have enough data to train individual models, and Resource-Limited
(RL), who possess only a minimal amount of data, insufficient for creating
private models. As depicted in Figure 4, in DIPA2 [Xu+24] dataset, only a
small number of users (fewer than 5) have annotated more than 30 samples.
A total of 240 users have provided annotations for only 3-10 samples each.
This imbalance leads to a data scarcity issue when training individual
models at the users’ end, making it challenging to effectively train a local
model due to the limited amount of data available. This data scarcity
problem motivated us to incorporate daisy chaining in federated learning.

2. Data heterogeneity: Subjective phenomena like privacy sensitivity in-
volves high amount of variations owing to location and personality of in-
dividual users. This results in a non-iid distribution of data and models
shared between users may not be consistent.

3. Model complexity: Deep learning models are generally complex and
involve significant resources for development in a federated learning setup
due to the creation of multiple models and incur communication overheads
for model sharing and parameter updates. Hence, it is desirable to have a
lightweight model that can reduce the overheads.

Figure 4: Samples distribution across users
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To address these challenges, we introduced two algorithms, Dynamic-Clustered-
FedDC and Apriori-Clustered-FedDC, designed to tackle issues of data hetero-
geneity and scarcity. Both Dynamic-Clustered-FedDC and Apriori-Clustered-
FedDC incorporate clustered personalized federated learning to manage data
heterogeneity and utilize daisy chaining to mitigate data scarcity. The key
difference between the two algorithms lies in their clustering mechanisms and
daisy-chaining processes. Dynamic-Clustered-FedDC forms clusters based on
a model similarity-based metric. Clusters are re-formed after each global iter-
ation, allowing users to move between clusters flexibly. In contrast, Apriori-
Clustered-FedDC, clusters are established based on users’ personality scores.
The clusters remain fixed throughout the entire learning process. The daisy-
chaining methods also differ: Dynamic-Clustered-FedDC implements daisy
chaining between resourceful and resource-limited annotators, whereas Apriori-
Clustered-FedDC restricts daisy chaining to resource-limited annotators, ex-
cluding the resourceful ones. In both algorithms, daisy chaining is performed
within clusters, with no cross-cluster daisy chaining taking place. Moreover,
along with these two algorithms, we propose a lightweight deep neural network
model called Personality-Image attribute-Object Network (PIONet), which is
suitable for federated learning. Our contributions are summarized as follows
contributions:

• We developed two federated learning algorithms: Dynamic-Clustered-
FedDC and Apriori-Clustered-FedDC, that utilize clustering and daisy
chaining to overcome the problems of data heterogeneity and data scarcity.

• We developed a light-weight model for predicting the user-specific privacy
preferences for a given image. When compared to the DIPA2 baseline,
our new model is 20× lighter than SOTA and is able to achieve similar
performance.

• We empirically evaluated the performance of PIONet enabled Dynamic-
Clustered-FedDC and Apriori-Clustered-FedDC with state-of-the-art fed-
erated learning algorithms such as FedAvg[McM+17], FedProx [Li+20b],
and FedDC [KFV22], FedMEM on DIPA2 [Xu+24] dataset.

2 Related Work

Detecting privacy-sensitive regions in an image has been a matter of serious
concern with the proliferation of online social media and ubiquitous camera
hardware found in personal devices. With the advent of deep learning, several
computational models have been developed to detect privacy sensitive informa-
tion in images. A majority of such models in image privacy deal with broadly
classifying images into private vs public. [TC16] deep features from CNN-based
visual backbones were found to be useful for this purpose, and a combination
of user-generated as well as machine-generated tags were considered to be ef-
fective. [TC19] developed a multi-modal fusion mechanism by using object,
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scene context, and image tags as features to predict the binary privacy label of
a given image.

Moving on from broad image-level labels, some studies considered detecting the
presence of specific privacy-sensitive attributes and potentially localizing them
in a given image. VISPR [OSF17] introduced a large set of about 22000 images
and provided annotations of about 68 different privacy-sensitive attributes (ob-
jects, text, multi-modal, etc.) in these images. This set of 68 attributes (Eg.
name, location, passports, credit card, receipt, handwriting, fingerprints, re-
ceipts, etc.) was chosen by the authors by studying the various privacy laws
across the world. Using this data, they developed a deep-learning model to
detect these attributes in the images. They also conducted a user study to
evaluate the risk perception of individual attributes on a scale of (0-5) and
provided an aggregated risk score for each image. They found considerable
variations in individual risk perceptions of the images across different users.
Viz-WizPriv [Gur+19] is another work that considers the privacy of images ac-
quired by blind and visually impaired people. The images considered in their
work are acquired from the first-person point-of-view, and they have provided
annotations of objects and text-based private information in these photographs.
However, all these methods do not account for individual-specific variations in
the perception of privacy risks. It has been very well understood from liter-
ature in psychology that privacy perceptions are highly subjective. [JJS08]
showed that the Big5 personality scores can be broadly used to infer a person’s
perception of privacy risk. Other works, such as [Zho+17] - attack the prob-
lem of conflicting privacy labels provided by different annotators. They group
the users into several clusters and build separate classifiers for each group.
However, they consider global binary labels for individual images and do not
account for category-specific variations in privacy preferences. To account for
such variations, very recently [Xu+23] and [Xu+24] released a dataset with
fine-grained annotation labels for individual attributes in images along with
scores for personality and demographic information of the annotators. This is
valuable given that the perceptions of privacy risks are known to vary with age
group, nationality, and individual personality traits [WNC11; She02; Hen+12;
JJS08]. Using this unique dataset in [Xu+24], the authors investigated cross-
cultural variations in privacy perceptions as users from Japan and the UK
provided their perceived scores for the same set of images and attributes.

However, all the above works assume that individual annotators share the image
and personality information in a centralized location to build a single model.
This is not feasible if the individual users are annotating their own private
images and do not wish to share the images and their personality scores. In
such situations, a federated learning-based approach could provide a mechanism
for collaborative model development without actually sharing the sensitive raw
data. Instead, individual clients share the model parameters alone for learning
purposes.

Federated learning is a collaborative learning framework where we can generate
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a universal model for all collaborators. FedAvg [McM+17] was a first-of-a-kind
algorithm for federated learning. FedAvg performs local training on each client
and performs aggregation on the server. This method suffers from statistical
heterogeneity [Li+20a], resulting in inconsistent performance. Where the global
model primarily benefits a select group of clients, causing the global objective
to be skewed in favor of these benefited clients. Consequently, the remaining
clients do not gain from a single global model. To address this issue, person-
alized federated learning [TTN20] has been developed, allowing each client to
collaborate in FL while ultimately obtaining a model that is personalized to
their specific needs. The trade-off between personalization and generalization
among clients and servers is a persistent issue. Clustered federated learning
[Ngu+22] addresses this by grouping clients with similar characteristics into
clusters, based on either model [Lon+23; BFA20; Ngu+22; SMS20] or data
similarities [Man+20; Hua+19]. This approach aims for the cluster head model
to provide a more generalized model for its cluster while also enhancing the
personalized models of individual clients through shared knowledge. Addition-
ally, federated learning faces challenges due to data scarcity, where individual
clients lack enough data to effectively train deep neural network models. A
daisy chaining method could be beneficial in improving the performance of the
overall global model [KFV22; Mat+22; HHB22].

Motivated by these issues, we present Dynamic-Clustered-FedDC and Apriori-
Clustered-FedDC, which leverage the strengths of clustering and daisy chaining
to effectively learn models despite data heterogeneity and scarcity.

3 Proposed Approach

We initially introduced a lightweight image privacy model suitable for feder-
ated learning and later developed a personalized clustered federated learning
approach enabled by daisy chaining to train a privacy advisor model.

3.1 Light-weight image-privacy model - PIONet

In [Xu+24], authors inflate the annotator personality information and object
category information to the same size as the input image. The resultant input is
a 13-channel image that is processed by a parameter-heavy CNN model. Such
a model cannot be trained by every client in federated learning setup given the
limited annotated data and computational resources. Therefore, we design a
new baseline centralized model for privacy prediction called Personality-Image
attribute-Object network (PIONet see Figure 5). We introduce the various
inputs – entire image, the bounding boxes of the objects, and the annota-
tor personality information and object category at different stages in PIONet.
First, we extract the features for the entire image fI = 2048 × 7 × 7 using
a pretrained ResNet50 model. Next, we extract the object features for the
bounding boxes using RoIAlign [He+17] from the extracted image features to
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obtain fO = 2048 × 7 × 7 features per object bounding box. We consider up
to 31 objects. We concatenate the image and object features and pad zeros for
the remaining non-present objects to obtain a 32× 2048× 7× 7 input fIO. We
send fIO through the pretrained adaptive average pool layer from ResNet50
to obtain a f ′IO = 32 × 2048 feature. Note that we have no trainable layers
till this point. We train on the pooled features f ′IO with an linear layer and
ReLU activation that maps the 2048-dimensional input to 256-dimensions. We
then add a 1-layer transformer block with 16 heads to capture the interactions
between objects and the overall image. The image provides the setting where
the object is placed which can point to its informativeness/sensitivity. For ex-
ample, a patient name tag in a hospital setting is more sensitive than the name
on a visiting card. We obtain a f ′′IO = 32 × 256 feature from the transformer
which are then passed to a linear layer to form 32x16 and flattened to result
in a 512-dimensional output f ′′′IO. Next, we concatenate the object image fea-
tures f ′′′IO with the annotator personality information and object category fAC .
The annotator personality and object category form a 10-dimensional input
and is passed through two linear layers with a ReLU activation in between
to obtain a 512-dimensional fAC . The concatenated input fALL = [f ′′′IO; fAC ]
is then processed through an ReLU activation, followed by 2 MLP blocks.
Each MLP block comprises of a linear layer, a sigmoid linear activation unit
(SiLU) [EUD18] and a dropout layer (with dropout probability of 0.2) follow-
ing [Xu+24]. We use a linear layer to map the output to a 21-dimensional
output.
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Figure 5: Our new light-weight image-privacy baseline model

3.2 Formulation

In a classical FL setting, the overall objective of FL is to minimize the global
loss by aggregating the local loss from the participated users. The formulation
is given as follows,

w∗ = arg min
w∈Rd

N∑

i=1

Di

D
Fi(w) (1)

where N is the number of users in FL. Di is the number of training samples
that user i poses. D is the total number of samples. Fi(w) is the loss function
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for user i, which depends on the model parameters w.

Fi(w) = E(x,y)∼Di
[Fi(w;x, y)] (2)

Fi(w, x, y) is called the supervised loss that is formulated as the expected loss
over the data distribution Di of user i as given in Equation (2). The FL
formulation results in a uniform output for all users using the global model,
lacking any personalization.

As image privacy is very subjective, which causes data heterogeneity, this ap-
proach will lead to subpar performance and introduce client drift. In order
to achieve a balance between generalization and personalization, the use of
Personalized Federated Learning (PFL) is beneficial. We formulate the PFL
problem in Equation (3).

θ∗i = argmin
θi

Fi(θi) +Dist(θti , θt−1i , w) (3)

where Dist(θti , θt−1i , w) is a penalty term, which is typically formulated as a
function of the global model, current local model, and previous local model of
client i. Dist(θti , θt−1i , w) can be formulated as a combination of similarity and
stability, as given in Equation (4)

Dist(θti , θt−1i , w) = (1− λ)Distsimilarity + λDiststability (4)

The similarity is measured by the distance between the current local model
and the global model as given in Equation (5). By minimizing this term, the
local model is encouraged to stay close to the global model, ensuring that the
user’s model does not drift too far from the global consensus

Distsimilarity =
1

2
∥θti − w∥22 (5)

The stability is measured by the distance between the current local model and
the previous local model as given in Equation (6). By minimizing this term,
the local model is encouraged to change smoothly over iterations, preventing
abrupt changes that might destabilize the training process.

Diststability =
1

2
∥θti − θt−1i ∥22 (6)

λ is the hyperparameter to control the trade-off between similarity and sta-
bility. A lower λ places more emphasis on the similarity term, pushing the
local model to align closely with the global model. A higher λ places more em-
phasis on the stability term, ensuring that the local model changes gradually
between iterations. Based on this, we propose Algorithm 1 for the local update
operation.
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Algorithm 1 Local Update Algorithm

1: Initialization: θt,s
i = wt, θt

i = θt−1
i ▷ θt,s

i is the current local model, θt−1
i is the previous

local model, wt is the current global model
2: Input: wt , S, Di, x, y
3: Output: θt

i
4: for local step s← 0, 1, . . . , S − 1 do
5: Compute gradient of local loss:

∇Fi(θ
t,s
i ) =

1

|Di|
∑

(x,y)∈Di

∇Fi(θ
t,s
i ; x, y)

6: Update local model using gradient descent:

θ
t,s+1
i = θ

t,s
i − η

(
∇Fi(θ

t,s
i ) +Dist(θ

t,s
i , θ

t−1
i , w

t
)
)

7: Set θt
i = θt,S

i

8: Send updated local model θt
i to the server

3.2.1 Clustered FL with daisy chaining

Users are categorized into two groups based on the volume of data they pos-
sess. The Resourceful (RF) group consists of users who have 50% of the total
available data, while the resource-limited (RL) group comprises those with the
remaining 50% of the data. The resourceful users possess enough data to train
their individual models, whereas the resource-limited users do not. To ad-
dress this, resource-limited users engage in daisy chaining (see Figure 6). We
proposed two different strategies for performing Daisy Chaining.

1. RL trains models on RF’s data: Resource-limited users transfer their
local models to the resourceful(RF) user who is part of the same cluster. We
propose Dynamic-Clustered-FedDC in Algorithm 2 to train personal models
for each user using clustered federated learning and daisy chaining.

2. RL transfer model to another RL: In this strategy, RF users do
not take part in daisy chaining. RF users form clusters based on their Big5
(extraversion, agreeableness, conscientiousness, neuroticism, openness) person-
ality scores. Each RL user identifies their clusters, and Once clusters are iden-
tified, they carry out a daisy-chaining operation involving only the remaining
RL users within the cluster. We propose Apriori-Clustered-FedDC (see Algo-
rithm 3) based on this strategy.

Dynamic-Clustered-FedDC: In Algorithm 2, at the beginning of the train-
ing, N users broadcast their data availability to the server. Then, the Server
calls Divide users(N) to separate the resourceful users from the resource-
limited ones. Resourceful or resource-limited users can have full participation
or partial participation in the learning. Therefore in each global iteration t
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Figure 6: Clustering and daisy chaining

server calls Select user(N) to randomly select RLκ and RLδ users. where
κ and δ ∈ (0, 1). All users in RLκ and RLδ train their individual models in
parallel. After that, resource-limited users share their model with resourceful
users (Transfer model(RLκ,i), RFδ,j) to train on the resourceful’s data. After
training, the server first performs the clustering based on the user’s model sim-
ilarity and then aggregates the models in the same clusters to get the cluster
model (wt

c). After generating cluster models, all the cluster aggregate their
model to produce the global model (wt). The clusters are formed dynamically.
At the beginning of the FL, there are no clusters available. Resource-limited
users randomly select resourceful users to daisy chain their models. At the
end of the first iteration, the clusters are formed based on the similarity score
between the local models of the users and their global model. We have used
spectral clustering on the similarity matrix formed by the user’s similarity score.

Apriori-Clustered-FedDC: In Algorithm 3, similar to Dynamic-Clustered-
FedDC, at the initial phase, the server categorizes users into two groups:
resourceful (RF) and resource-limited (RL), based on the available annota-
tions from the users. The resourceful users are organized into C clusters
(RFc1 , RFc2 , . . . , RFC) according to their big5 personality scores. We used
the K-means algorithm to perform clustering. From each cluster, a fraction κ
of the users is selected for participation in each global iteration. For instance,
from cluster ci, κ fraction of users, denoted as RFκ

ci , are chosen. Additionally,
from the pool of resource-limited users (RL), a fraction δ is selected. Both κ
and δ have values in the range from 0 to 1. When κ and δ are equal to 1, it in-
dicates that all users are available for every global iteration of FL. All selected
resourceful (RF) users in each cluster perform the Local Update operation, as
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Algorithm 2 Dynamic-Clustered-FedDC (Daisy-chaining between RL and
RF)

1: Initialize: w0
0 = w0

1 = . . . = w0
C = w0, T , L ▷ Initialize C clusters, initialize Global

iterations, and Local iterations
2: All users broadcast their data availability to the server.
3: RF , RL = Divide users(N)
4: for t← 0 to T do
5: RFκ, RLδ ← Select users(N ) ▷ Select subset of resourceful and resource-limited users.
6: Server sends the wt

c or wt to the selected users ▷ Send wt to the selected users
7: for each user in RFκ and RLδ in parallel do
8: if Lgi /∈ C then ▷ Users not assigned to any cluster
9: θi = Local Update(wt)
10: else ▷ User assigned to any of the c clusters, c ∈ C
11: θi = Local Update(wt

c)

12: for each user in RLδ in parallel do
13: Select user from the same cluster in RFκ

14: θi = Transfer model(RLδ,i, RFκ,j) ▷ RF users transfer model with RL users for
training their model on RL’s data

15: C ← Clustering(θt
1, θ

t
2, . . . , θ

t
M ) ▷ Clustering based on model similarity

16: for each Lgi ∈M in all C clusters do
17: wt

c ← wt
c + riθ

t
i

18: for each c ∈ C in parallel do ▷ Global update
19: wt = wt + rcw

t
c

described in Algorithm 1, to train local models on their private data in par-
allel. Within each cluster, these users aggregate their local updates (θtRFκ

ci

),

but there is no cross-cluster aggregation. Users within their respective clusters
aggregate their local updates to generate a cluster model (wt

ci). Subsequently,
all cluster models from the C clusters, namely wt

c1 , w
t
c2 , . . . , w

t
cC , are sent to

the selected resource-limited (RL) users, denoted as RLδ.

Each RL in RLδ evaluates the cluster models on their private data. Based
on the evaluation performance, each RL selects its corresponding cluster. For
example, as shown in Table 1, there are five clusters and ten RLs. The evalu-
ation is based on the performance of the five cluster models, measured by the
F1 Score in informativeness prediction. RL1, RL3, and RL4 select cluster c1
because the model of c1 provides a better F1 Score compared to other cluster
models. Similarly, RL2 selects c2, RL10 chooses c3, RL5, RL6, and RL7 opt for
c4, and RL8 and RL9 choose cluster c5.

Table 1: Cluster assignment for RLs

RL1 RL2 RL3 RL4 RL5 RL6 RL7 RL8 RL9 RL10

c1 0.21 0.19 0.16 0.23 0.2 0.2 0.2 0.2 0.2 0.2
c2 0.19 0.21 0.15 0.1 0.19 0.19 0.19 0.19 0.17 0.19
c3 0.2 0.2 0.13 0.21 0.17 0.19 0.17 0.2 0.17 0.22
c4 0.2 0.17 0.14 0.2 0.21 0.21 0.21 0.19 0.16 0.2
c5 0.17 0.2 0.15 0.17 0.12 0.19 0.12 0.21 0.21 0.21

After the clusters are assigned, resource-limited users (RLs), due to their lim-
ited data, are unable to train their individual effective model independently.
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To address this, RLs utilize daisy chaining to collaboratively train a single
model across all available RLs within the cluster. This daisy chaining occurs
in a circular manner. For instance, as shown in Table 1, within cluster c4, the
model wt

ci is first trained on RL5’s data, then transferred to RL6 to be further
trained on RL6’s data, and subsequently transferred to RL7 for training on
RL7’s data. Each RL in the cluster participates in training a single model
using this daisy chaining method. Finally, the daisy-chained model wt

RLci
is

aggregated with the cluster model (wt
ci) that is computed by resourceful users

to produce a cluster model. It is important to note that there is no universal
global model computed for all users; instead, personalized models are created
for resourceful users and cluster models for resource-limited users.

Algorithm 3 Apriori-Clustered-FedDC (Daisy-chaining on RL only)

1: Initialize: w0
0 = w0

1 = . . . = w0
C = w0, T , L ▷ Initialize C clusters, initialize Global

iterations, and Local iterations
2: All users broadcast their data availability to the server.
3: RF , RL = Divide users(N)
4: Based on the informativeness score given by each resourceful user, divide them into C clusters.

▷ RFc1
, RFc2

, . . . RFC

5: for t← 0 to T do ▷ T is the global iterations, t is the current global iteration
6: for all ci ∈ C in parallel do
7: RFκ

ci
← Select users(RFci

) ▷ Select subset of resourceful users from their cluster

ci ∈ C

8: RLδ ← Select users(RL) ▷ Select subset of resource-limited users from the user’s pool
9: for all ci ∈ C in parallel do
10: Compute θt

RFκ
ci
← Local Update(wt

ci
) ▷ Perform Algorithm 1

11: for all ci ∈ C in parallel do

12: Compute wt
ci

= 1
RFκ

ci

RFκ
ci∑

1

θ
t
RFκ

ci
▷ Compute cluster model based on RF’s only

13: Server sends all cluster models wt
ci
∈ C to the all user users in RLδ

14: for all user in RLδ in parallel do
15: Evaluate all cluster models on their private data and select the cluster which one is

giving maximum accuracy.

16: A subset of RL users are selected from each clusters. ▷ RLc1
, RLc2

, . . . , RLC

17: for ci ← 0 to RLci
in parallel in all C do

18: Perform wt
RLci

← Daisy chain(wt
ci
, RLci

)

19: for all ci ∈ C in parallel do

20: wt
ci
←

wt
ci

+wt
RLci

2 ▷ w̄t
c is the cluster model for cluster c ∈ C

4 Evaluation

4.1 Experimental setup

We conducted experiments using the DIPA2 dataset [Xu+24]. This dataset
offers images along with privacy sensitivity scores, emphasizing user-perceived
privacy from a cross-cultural viewpoint. DIPA2 includes comprehensive object-
level annotations for 1,304 images, totaling 5,897 annotations that detail per-
ceived privacy risks for 3,347 objects. Each annotation provides four key
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privacy-related metrics: information type, informativeness, sharing scope as
perceived by the photo owner (sharing ownar), and sharing scope by others
(sharing others). The dataset incorporates cultural variations by including
annotations from both Japan and the UK, with contributions from 300 par-
ticipants in each country. Each image is annotated by two individuals from
each country, resulting in annotations that may differ between annotators from
Japan and the UK. Consequently, each image’s annotations are subjective to
the individual annotators. In our experiments, we included 525 annotators
out of the original 600, as 75 annotators only provided one annotation each.
Among the 525 annotators, 112 (21%) are classified as resourceful annotators,
while the remaining 413 (79%) are considered resource-limited. We trained
the PIONet model on individual annotators’ data using either direct local up-
dates or a daisy-chaining approach. Note that, annotators are the users where
the local update operation is performed. For each annotator, the data is split
into training, validation, and test sets in a 7:2:1 ratio. All the experiments
are performed on the NVIDIA A100 Tensor Core GPU enabled with 40GB of
high-bandwidth memory.

4.2 Performance

In our initial comparison between PIONet and the baseline model [Xu+24] in
centralized settings, we observed that PIONet does not surpass the baseline
in performance across “Information Type” and “Informativeness”. However,
PIONet outperforms the baseline in the “Sharing Owner” category and per-
forms on par with the baseline in “Sharing Others”. One of the most significant
advantages of PIONet is its ability to reduce the model size by at least 20 ×.
This substantial size reduction makes PIONet particularly advantageous for
Federated Learning applications, where smaller models can enhance commu-
nication efficiency and reduce computational demands. We trained PIONet
on various state-of-the-art Federated Learning algorithms, including FedAvg,
FedProx, FedDC, and FedMEM, as well as on our proposed Dynamic-Clustered-
FedDC and Apriori-Clustered-FedDC. The experiments in Table 2 consider the
involvement of all RLs and RFs in every global iteration of FL.

We observed that Federated Learning methods like FedAvg, FedProx, and
FedDC have poor performance, reflected in low scores across all metrics. The
global model of Dynamic-Clustered-FedDC also shows weak performance in
the “Information Type” category, with scores similar to those of FedAvg and
FedProx. For the “Sharing Owner” category, the metrics improve slightly but
remain low overall, while “Sharing Others” scores are also low, and “Infor-
mativeness” scores are minimal. In contrast, the cluster model in Apriori-
Clustered-FedDC demonstrates mediocre performance, with scores slightly bet-
ter than FedAvg and FedProx. Compared to Dynamic-Clustered-FedDC, the
global model achieves higher precision, recall, and F1 Scores for the “Infor-
mation Type” category, similar scores for “Sharing Owner” and “Informa-
tiveness,” but lower scores for “Sharing Others.” The personalized model in
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Dynamic-Clustered-FedDC achieved the highest scores across all four cate-
gories, surpassing PIONet (Centralized). The personalized model in Apriori-
Clustered-FedDC shows scores comparable to PIONet in the “Information
Type” category, slightly lower scores in “Sharing Owner” and “Sharing Oth-
ers”, but better performance in “Informativeness”. Also, the personalized mod-
els in Dynamic-Clustered-FedDC and Apriori-Clustered-FedDC outperformed
the baseline by 5% in the “Informativeness” category, while the personalized
model in Dynamic-Clustered-FedDC outperformed the baseline by 7% in the
“Sharing Owner” category. Moreover, compared with FedMEM with dynamic
clustering, the personalized model of Dynamic-Clustered-FedDC produces bet-
ter F1 Scores in all four categories. Whereas the personalized model of Apriori-
Clustered-FedDC only gives a better F1 Score on “Informativeness” and an
equivalent F1 Score on “Information Type”.

From the observations, we inferred that global models are not effective because
of the presence of heterogeneity in the data. Daisy chaining boosts performance
but not significantly. Proposed algorithms utilized the benefits of clustering and
personalization with daisy chaining to produce a better-personalized model and
a global model.

Table 2: Performance analysis of PIONet on centralize and federated setup

Model
Information Type Sharing Owner Sharing Others Informativeness

Prec. ↑ Recall ↑ F1 ↑ Prec. ↑ Recall ↑ F1 ↑ Prec. ↑ Recall ↑ F1 ↑ Prec. ↑ Recall ↑ F1 ↑
Centralized

Baseline [Xu+24] 0.62 0.60 0.61 0.60 0.57 0.58 0.60 0.57 0.58 0.32 0.26 0.24

PIONet 0.57 0.47 0.47 0.66 0.54 0.59 0.64 0.53 0.58 0.22 0.17 0.15

Federated

PIONet + FedAvg
[McM+17]

0.22 0.38 0.28 0.17 0.33 0.22 0.00 0.00 0.00 0.01 0.14 0.03

PIONet + FedProx
[Li+20b]

0.23 0.37 0.28 0.18 0.34 0.24 0.0 0.0 0.0 0.01 0.14 0.02

PIONet + FedDC
[KFV22]

0.32 0.39 0.34 0.27 0.33 0.29 0.0 0.0 0.0 0.06 0.09 0.07

PIONet + FedMEM
(Personalized)

0.55 0.46 0.47 0.66 0.55 0.60 0.66 0.53 0.58 0.26 0.26 0.24

PIONet +
Dynamic-Clustered-
FedDC(Global)

0.19 0.35 0.25 0.17 0.33 0.22 0.18 0.36 0.24 0.01 0.14 0.02

PIONet +
Dynamic-Clustered-
FedDC(Personalized)

0.56 0.56 0.56 0.63 0.67 0.65 0.64 0.63 0.64 0.32 0.31 0.29

PIONet +
Apriori-Clustered-
FedDC(Cluster)

0.26 0.56 0.35 0.17 0.33 0.22 0.10 0.27 0.15 0.01 0.14 0.02

PIONet +
Apriori-Clustered-
FedDC(Personalized)

0.54 0.45 0.47 0.64 0.52 0.57 0.62 0.52 0.56 0.3 0.3 0.28

According to Figure 7, in centralized settings, the baseline [Xu+24] and PIO-
Net achieved MAE values of 1.24 and 1.22, respectively. Among the federated
methods, FedAvg, FedProx, and FedDC, which are state-of-the-art techniques,
yielded higher MAE values of 1.43, 1.44, and 1.4, respectively. In our approach,
the personalized model in Dynamic-Clustered-FedDC showed the lowest MAE
at 1.14, followed by FedMEM with an MAE of 1.17. The personalized model
in Apriori-Clustered-FedDC showed an MAE of 1.19. This observation sug-
gests that our dynamic clustering approaches in federated learning (Dynamic-
Clustered-FedDC and FedMEM) can significantly reduce MAE compared to
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other federated methods.
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Figure 7: Mean Absolute Error (MAE) by different centralized (Baseline,
and PIONet) and federated (FedAvg, FedProx, FedDC, FedMEM, Dynamic-
Clustered-FedDC, Apriori-Clustered-FedDC,) learning approaches

4.3 Ablation study on partial participation of users in FL
training

4.3.1 Dynamic-Clustered-FedDC

Varing participation of RF users: The ablation studies in Figure 8 show
that the F1 Score generally increases with higher values of κ, meaning that
higher participation of RL clients has a positive impact on the performance of
Dynamic-Clustered-FedDC. In the “Information Type” category, the F1 Score
remains constant at 0.38 for κ = 0.1 and κ = 0.5 but increases to 0.40 for
κ = 0.8, indicating a slight improvement. Similarly, for the “Sharing Owner”
category, the F1 Score improves from 0.42 at κ = 0.1 to 0.46 at κ = 0.8. The
“Sharing Others” category shows a significant rise in the F1 Score from 0.48
at κ = 0.1 to 0.52 at κ = 0.8, despite a slight dip at κ = 0.5. However, in
the “Informativeness” category, the F1 Score remains relatively stable, with
minimal change, hovering around 0.20 to 0.21 across different κ values. This
suggests that while a higher number of resourceful user participation generally
enhances performance in most categories, informativeness is less influenced by
changes.

Varing participation of RL users: The ablation studies presented in Fig-
ure 9 demonstrate the impact of varying the participation (δ) of RL users on
the F1 Score across four different categories. In Figure 9a, which focuses on
the “Information Type”, the F1 Score decreases as δ increases, with the highest
score observed at δ = 0.1 (0.38) and the lowest at δ = 0.8 (0.35). Conversely,
Figure 9b examines the “Sharing Owner”, where the F1 Score increases with δ,
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Figure 8: Ablation studies of Dynamic-Clustered-FedDC based on RF’s partial
participation (κ = 0.1, 0.5, and 0.8) while RL’s participation is δ = 0.1

peaking at δ = 0.8 (0.45) and reaching a minimum at δ = 0.5 (0.40).Figure 9c
explores the Sharing Others scenario, where the F1 Score shows a slight decline
as δ increases, with the highest score at δ = 0.1 (0.48) and a minor reduction
at δ = 0.5 (0.45), followed by a slight increase at δ = 0.8 (0.47). Finally, Fig-
ure 9d analyzes Informativeness, demonstrating a consistent increase in the F1
Score as δ rises, from 0.20 at δ = 0.1 to a maximum of 0.26 at δ = 0.8.We’ve
observed that even with only partial involvement of users, Dynamic-Clustered-
FedDC performs well. In two out of four categories, a low participation rate
(delta=0.1) of RL clients results in the best F1 Score. For the informative-
ness category, 50% of total RLs’ involvement in FL can yield the maximum F1
Score. For the ”Sharing Owner” category, having 80% of RLs participate in
every global iteration produces the maximum F1 Score.

4.3.2 Apriori-Clustered-FedDC

Varing participation of RF users while RL has full participation: In
Figure 10a, focusing on the “Information Type”, the F1 Score increases as RFs
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Figure 9: Ablation studies of Dynamic-Clustered-FedDC based on RL’s partial
participation (δ = 0.1, 0.5, and 0.8) while RF’s participation is κ = 0.1

participation (κ) in each global iteration increases. Starting from 0.41 at 10%
(κ = 0.1) participation and reaching a peak of 0.48 at 80% (κ = 0.8) partic-
ipation, followed by a slight decrease to 0.47 when users fully participated (κ
= 1.0). Figure 10b examines the influence of RFs participation in the “Shar-
ing Owner” category. F1 Score substantially increases from 0.40 to 0.56 while
RF participation increases from 10%(κ = 0.1) to 50% (κ = 0.5). After that,
the performance stabilizes around 0.56 to 0.57 as κ increases further to 0.8
and 1.0. In Figure 10c F1 Score demonstrates a consistent rise from 0.39 at
10% (κ = 0.1) participation to 0.57 at 80% (κ = 0.8) participate. After that, a
slight reduction to 0.56 is observed when all users are participating (κ = 1.0) in
the “Sharing Other” category. Finally, Figure 10d looks at “Informativeness”,
where the F1 Score increases sharply from 0.03 to 0.26 when users participation
increases from 10% (κ = 0.1) to 50% (κ = 0.5) and continues to rise moderately
to 0.28 with full participation (κ = 1.0).

Overall, the performance of Apriori-Clustered-FedDC remains stable with the
involvement of users being more than 50% in each global iteration.
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Figure 10: Ablation studies of Apriori-Clustered-FedDC based on RF’s partial
participation (10%, 50%, and 80%) while RL’s participation is 100%

4.4 Comparative study between Dynamic-Clustered-
FedDC and Apriori-Clustered-FedDC

We compared the performance of Dynamic-Clustered-FedDC and Apriori-
Clustered-FedDC under varying participation fractions (κ) of RFs. In Fig-
ure 11a, for the Dynamic-Clustered-FedDC, the Mean Absolute Error (MAE)
decreases as the participation of resourceful users increases. For 50%
participation(κ = 0.5) Dynamic-Clustered-FedDC produce MAE 1.18 that
consistently declines to 1.14 as κ reaches 1.0 i.e., full participation of users.
This trend suggests that the Dynamic-Clustered-FedDC model benefits from
higher participation fractions, leading to more accurate predictions. In con-
trast, Apriori-Clustered-FedDC (see Figure 11b), shows a different pattern.
Here, the MAE slightly increases with higher participation fractions, starting
at 1.16 for κ = 0.5 and rising to 1.19 when κ is 1.0. This indicates that the
Apriori-Clustered-FedDC may experience slight degradation in performance
with increased participation. Overall, while higher participation improves the
performance of the Dynamic-Clustered-FedDC, it appears to have an opposite
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or negligible effect on the Apriori-Clustered-FedDC.
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Figure 11: Informativeness MAE measurements under partial participation (κ)
of RFs

5 Conclusion and Future Work

In this paper, we proposed two novel daisy-chaining enabled clustered feder-
ated learning algorithms, Dynamic-Clustered-FedDC and Apriori-Clustered-
FedDC, to develop personalized image privacy advisors. We also introduced
a new baseline model, PIONet, which is 20× lighter than the original DIPA2
baseline [Xu+24]. Our experiments demonstrate that PIONet in a centralized
setup performs comparably to the DIPA2 baseline. Moreover, PIONet, to-
gether with Dynamic-Clustered-FedDC, outperformed the centralized baseline
in three out of four categories, highlighting the efficacy of our approach. Specif-
ically, Dynamic-Clustered-FedDC and Apriori-Clustered-FedDC achieved a 5%
and 4% improvement in F1-score, respectively, over the baseline in the informa-
tiveness category. Importantly, both Dynamic-Clustered-FedDC and Apriori-
Clustered-FedDC support the partial participation of annotators in federated
learning, maintaining strong performance without degradation. These findings
underscore the potential of our proposed models in enhancing the effectiveness
and scalability of privacy advisory systems in federated learning environments.
In the future, we aim to further enhance the performance of the model.
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Appendix A Additional Results and Analysis

Appendix A.1 Ablation study on the value of λ

In Figure 12 and 13, we trained Dynamic-Clustered-FedDC and Apriori-
Clustered-FedDC across various values of λ. When λ is set to 0.0, the stability
term is eliminated, placing full emphasis on similarity. Conversely, when λ
is set to 1.0, the similarity term is eliminated, shifting the full emphasis to
stability.

In Figure 12a, for the Dynamic-Clustered-FedDC model, as λ increases from
0.0 to 1.0, the MAE gradually decreases. The MAE decreases from 1.18 at
λ = 0.0 to 1.15 at λ = 1.0. In Figure 12b, for the Apriori-Clustered-FedDC
model, the MAE also shows a slight decrease as λ increases. It decreases from
1.18 at λ = 0.0 to 1.16 at λ = 0.8, but then remains constant at 1.18 for
λ = 1.0.
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Figure 12: Comparing Informativeness MAE of Dynamic-Clustered-FedDC and
Apriori-Clustered-FedDC for different λ

In Figure 13a, for the Dynamic-Clustered-FedDC, the similar to MAE, Mean
Classwise MAE (CMAE) also decreases as λ increases. It drops from 1.29 at
λ = 0.0 to 1.25 at λ = 1.0. In Figure 13b, for the Apriori-Clustered-FedDC,
the Mean CMAE decreases from 1.29 at λ = 0.0 to 1.27 at λ = 0.5 and λ = 0.8,
but then returns to 1.29 at λ = 1.0.

From the observations, we infer that Dynamic-Clustered-FedDC consistently
improves both MAE and Mean CMAE as λ increases. This suggests that
putting more emphasis on stability benefits the performance of Dynamic-
Clustered-FedDC, leading to reduced error rates. The Apriori-Clustered-
FedDC shows some improvement in both MAE and Mean CMAE with in-
creasing λ, particularly around the middle values (0.5 and 0.8). However, at
λ = 1.0, the performance seems to revert to 1.29, indicating that an excessive
focus on stability or similarity might not benefit Apriori-Clustered-FedDC. A
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Figure 13: Comparing Informativeness CMAE of Dynamic-Clustered-FedDC
and Apriori-Clustered-FedDC for different λ

combination of similarity and stability is needed for Apriori-Clustered-FedDC.
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