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Abstract

Privacy-preserving techniques have become increasingly essential in the rapidly
advancing era of artificial intelligence (AI), particularly in areas such as deep
learning (DL). A key architecture in DL is the Multilayer Perceptron (MLP)
network, a type of feedforward neural network. MLPs consist of at least three
layers of nodes: an input layer, hidden layers, and an output layer. Each
node, except for input nodes, is a neuron with a nonlinear activation func-
tion. MLPs are capable of learning complex models due to their deep structure
and non-linear processing layers. However, the extensive data requirements
of MLPs, often including sensitive information, make privacy a crucial con-
cern. Several types of privacy attacks are specifically designed to target Deep
Learning learning (DL) models like MLPs, potentially leading to information
leakage. Therefore, implementing privacy-preserving approaches is crucial to
prevent such leaks. Most privacy-preserving methods focus either on protect-
ing privacy at the database level or during inference (output) from the model.
Both approaches have practical limitations. In this thesis, we explore a novel
privacy-preserving approach for DL models which focuses on choosing anony-
mous models, i.e., models that can be generated by a set of different datasets.
This privacy approach is called Integral Privacy (IP). IP provide sound de-
fense against Membership Inference Attacks (MIA), which aims to determine
whether a sample was part of the training set.

Considering the vast number of parameters in DL models, searching the
model space for recurring models can be computationally intensive and time-
consuming. To address this challenge, we present a relaxed variation of IP
called ∆-Integral Privacy (∆-IP), where two models are considered equivalent
if their difference is within some ∆ threshold. We also highlight the challenge
of comparing two DNNs, particularly when similar layers in different networks
may contain neurons that are permutations or combinations of one another.
This adds complexity to the concept of IP, as identifying equivalencies between
such models is not straightforward. In addition, we present a methodology,
along with its theoretical analysis, for generating a set of integrally private DL
models.

In practice, data often arrives rapidly and in large volumes, and its statis-
tical properties can change over time. Detecting and adapting to such drifts is
crucial for maintaining model’s reliable prediction over time. Many approaches
for detecting drift rely on acquiring true labels, which is often infeasible. Si-
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multaneously, this exposes the model to privacy risks, necessitating that drift
detection be conducted using privacy-preserving models. We present a method-
ology that detects drifts based on uncertainty in predictions from an ensemble
of integrally private MLPs. This approach can detect drifts even without access
to true labels, although it assumes they are available upon request.

Furthermore, the thesis also addresses the membership inference concern in
federated learning for computer vision models. Federated Learning (FL) was
introduced as privacy-preserving paradigm in which users collaborate to train a
joint model without sharing their data. However, recent studies have indicated
that the shared weights in FL models encode the data they are trained on,
leading to potential privacy breaches. As a solution to this problem, we present
a novel integrally private aggregation methodology for federated learning along
with its convergence analysis.
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Sammanfattning

Integritetsskyddande tekniker har blivit allt viktigare i den snabba utvecklin-
gen av artificiell intelligens (AI), och särskilt inom omr̊aden som djupinlärning
(DL). En central arkitektur i DL är det s̊a kallade MLP-nätverket (Multilayer
Perceptron), vilket är en typ av neuronnät. MLP best̊ar av minst tre lager av
noder: ett inmatningslager, dolda lager och ett utmatningslager. Varje nod,
med undantag för ing̊angar, är en neuron med en icke-linjär aktiveringsfunk-
tion. MLP kan lära sig komplexa modeller tack vare sin djupa struktur och
sina icke-linjära bearbetningslager. MLP:ernas omfattande databehov – och att
de dessutom ofta inneh̊aller känslig information – gör dock datasekretess till
en avgörande fr̊aga. Flera typer av integritetsattacker är specifikt utformade
för att rikta sig just mot Deep Learning learning-modeller som MLP, vilket
potentiellt kan leda till informationsläckor. Därför är det avgörande att imple-
mentera integritetsbevarande metoder för att förhindra s̊adana läckor. De flesta
integritetsbevarande metoder fokuserar antingen p̊a att skydda integriteten p̊a
databasniv̊a eller under modellens inferens, (slutsats/utdata). B̊ada metoderna
har praktiska begränsningar. I den här avhandlingen utforskar vi en ny in-
tegritetsbevarande metod för DL-modeller som fokuserar p̊a att välja anonyma
modeller, dvs. modeller som kan genereras av en uppsättning olika dataset.
Denna integritetsstrategi kallas Integral Privacy (IP). IP ger ett gediget försvar
mot medlemsinferensattacker (Membership Inference Attacks, MIA), som syf-
tar till att avgöra om ett prov var en del av träningsdata. Med tanke p̊a det
stora antalet parametrar i DL-modeller kan det vara beräkningsintensivt och
tidskrävande att söka i modellutrymmet efter återkommande modeller. För
att möta denna utmaning presenterar vi en avslappnad variant av IP som
kallas ∆-Integral Privacy (∆-IP), där tv̊a modeller anses vara likvärdiga om
deras skillnad ligger inom en viss ∆-tröskel. Vi lyfter ocks̊a fram utmanin-
gen med att jämföra tv̊a DNN:er, särskilt när liknande lager i olika nätverk
kan inneh̊alla neuroner som är permutationer eller kombinationer av varan-
dra. Detta gör IP-konceptet mer komplext, eftersom det inte är helt enkelt
att identifiera ekvivalenter mellan s̊adana modeller. Dessutom presenterar
vi en metod, tillsammans med dess teoretiska analys, för att generera en
uppsättning integrerat privata DL-modeller. I praktiken kommer data ofta in
snabbt och i stora volymer, och dess statistiska egenskaper kan förändras över
tiden. Att upptäcka och anpassa sig till s̊adana avvikelser är avgörande för
att upprätth̊alla modellens tillförlitliga förutsägelser över tid. Många metoder
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som används för att upptäcka avvikelser bygger p̊a att man skaffar äkta etiket-
ter, vilket ofta är omöjligt. Samtidigt utsätter detta modellen för integritet-
srisker, vilket kräver att driftdetektering utförs med hjälp av integritetssky-
ddande modeller. Vi presenterar en metod som upptäcker avvikelser baserat
p̊a osäkerhet i förutsägelser fr̊an en ensemble av integrerat privata MLP:er.
Detta tillvägag̊angssätt kan upptäcka avvikelser även utan tillg̊ang till äkta
etiketter, även om den förutsätter att de är tillgängliga p̊a begäran. Dessu-
tom tar avhandlingen ocks̊a upp problemet med medlemsinferens i federerat
lärande för datorseendemodeller. Federerat lärande (Federated Learning, FL)
introducerades som ett integritetsskyddande paradigm inom DL, där användare
samarbetar för att träna en gemensam modell utan att dela sina data. Nya
studier har dock visat att de delade vikterna i FL-modeller kodar de data de
tränas p̊a, vilket leder till potentiella integritetsintr̊ang. Som en lösning p̊a
detta problem presenterar vi en ny metod för integralt privat aggregering för
federerat lärande tillsammans med dess konvergensanalys.
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Chapter 1

Introduction

In today’s world, the presence of Artificial Intelligence (AI) in our daily lives
is constantly growing, driven by the availability of vast amount of data, en-
hanced computing power, and increased community interest. Such growth in
AI has contributed to a multitude of disciplines ranging from Healthcare [1],
Finance [2], and many more. However, the rise in data usage by AI systems
has heightened privacy concerns. Regulations like the General Data Protection
Regulation (GDPR) [3] and the California Consumer Privacy Act (CCPA) [4]
have been implemented globally to govern data usage. These regulations en-
force strict guidelines on data collection and processing, ensuring that analysis
made should be privacy-preserving.

In the literature, several privacy models have been proposed such as k-
Anonymity [5], differential privacy [6] and integral privacy [7], etc. to protect
individual/organization(s) from adversaries who aim to gain sensitive informa-
tion. k-Anonymity and its variants offers data masking i.e. while storing data
in a database, the server aggregates the data so that for each record there
are k − 1 other indistinguishable records. This is usually implemented with
clustering, where k similar records are replaced with their mean or a general-
ized representation. k-Anonymity, while useful, has many drawbacks, such as
homogeneity attacks [8], background knowledge attacks [8], etc. Consider an
example, if all the records in k-anonymous group share the same sensitive in-
formation, the k-anonymity can lead to privacy breach. On the other hand, the
widely accepted differential privacy model and its variants perturb the data or
the model to generate privacy-preserving output(s). Differential privacy (DP)
is achieved when the probability of a query producing a similar output on
neighboring datasets (datasets that differ by only one element) is almost the
same. The similarity in outputs helps DP protect individual data points from
being inferred. It ensures that the presence or absence of a single individual’s
data in the dataset does not significantly affect the outcome of the query. In
DP, the parameter ϵ quantifies the degree of privacy protection. It sets a bound
on how much the probability of any output can differ between two neighboring
datasets. A smaller value of ϵ provides stronger privacy guarantees, indicating
a greater similarity in the outputs for neighboring datasets. Theoretically, DP
offers sound privacy guarantees but it has its own practical limitations. For
instance, when the value of ϵ is small (indicating high privacy), the level of
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perturbation needed can be substantial. This means that queries with high
sensitivity require a significant amount of noise to maintain privacy. Addition-
ally, in scenarios involving multiple queries, the limited privacy budget may
necessitate adding substantial noise to each query. However, this high level
of noise can lead to a decrease in the utility or accuracy of machine learning
models.

In this thesis, we explore integral privacy (IP) as an alternative privacy
model to k-anonymity and DP for Deep Neural Networks (DNNs) which does
not cost much utility while generating privacy-preserving models. Integrally
private models recur from multiple disjoint datasets i.e. a model can be mapped
to a set of disjoint datasets. This creates ambiguity to the intruder who is look-
ing to infer if a record or a set of records were part of the training or not i.e.
perform membership inference attack and model comparison attack [9]. The
authors in [9] approximate the model space to find the recurring models for
small datasets. But in case of DNNs, the models are usually very large i.e. the
number of parameters in Deep Learning (DL) models can vary from thousands
to billions and hence approximating the model space can be computationally
challenging. It has been shown in [10] that under higher batch size and similar
training environment multiple mini batches can results in similar parameter
updates with probability close to one. This analysis suggests that, under spe-
cific training environment models can probably recur without generating the
complete (or approximate) model space.

Most privacy approaches are designed for static environments; however,
real-world data often exists in a streaming format, meaning it arrives continu-
ously. Such streaming data can experience concept drift over time, which refer
to changes in its statistical properties. It is crucial for models to detect and
adapt to these changes to ensure reliable predictions. The preferred methodolo-
gies for addressing concept drift include Adaptive Windowing (ADWIN) [11]
or Kolmogorov-Smirnov Windowing (KSWIN) [12]. They detect drifts based
on either false positive/negative rates which requires true labels or with the
fluctuations in the output probabilities over time. Having access to true labels
in real-time is unrealistic in most real-world assumptions.

In the context of Deep Neural Networks (DNNs), training requires a sub-
stantial amount of data, and acquiring ground truth for drift detection can be
costly. A recent uncertainty drift detection scheme [13] identifies drift during
inference without needing true labels. It calculates prediction uncertainty us-
ing dropout in DNNs and employs the entropy of these uncertainty values to
detect drifts. Alternatively, prediction uncertainty can be obtained through an
ensemble of DNN models. Different DNNs yield varying probabilities during
predictions, and the collective uncertainty of these predictions can be used for
drift detection. The Streaming Ensemble Algorithm [14] was one of the first
to use an ensemble of models for this purpose. However, almost none of the
approaches in the literature of concept drift focuses on the privacy aspect of
drift detection. Acquiring true labels to detect drifts can leak private informa-
tion in real-time. The output probabilities can further be used for membership
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inference attacks [15], which necessitate the need for detecting drifts privately.
Furthermore, this thesis also explore the increasing concerns about privacy

in data collection, where Federated Learning (FL) has emerged as a promising
approach. FL enables the training of a shared model across multiple users
without necessitating the sharing of their raw data. McMahan et al. [16]
introduced federated averaging (fedAvg) which is the first and perhaps the most
widely used algorithm to aggregate the models trained on user data. FedAvg
performs several communication rounds among users with heterogeneous data,
and in each communication round, it aggregates the model weight collected
from each user. However, FL has its own privacy challenges as the weights
shared by the user encodes their private information. Several attacks such
as model inversion attacks [17], membership inference attacks [18], and many
others, can lead to costly privacy leakage. Hence, ensuring user privacy is
critical to enhance the impact and applicability of FL in everyday life.

To further explore the field of privacy-preserving machine learning (ML),
this thesis seeks to explore the following research questions:

1. Given the large number of weights and biases in a deep learning model, do
we have multiple generators for such models to satisfy integral privacy?
(Papers I)

2. What is the probability of obtaining integrally private models for ML and
DL? (Paper II, Paper III)

3. Can a set of integrally private models detect drifts in Online Learning?
(Paper III)

4. How can we generate integrally private models in heterogeneous setting
under collaborative learning, and do they converge? (Paper IV)

This thesis sets out on generating privacy-preserving, computationally effi-
cient and high utility deep learning models and their applications. In Paper-I,
we introduce a relaxed notion of Integral privacy which we now call ∆-Integral
Privacy (∆-IP) as a defense against model comparison attack [19]. This allows
DNNs which are at most ∆ distant apart to be considered for integrally private
models, thereby reducing the extensive need to explore the model space. To
generate ∆-IP models, we train DNNs on multiple training sets and we find
that under a similar training environment, a very high number of models recurs
under the definition of ∆-IP. Based on the analysis of [10], we first explore with
what probability a typical machine learning model like Support Vector Machine
(SVM) can recur after training from a set of disjoint datasets in Paper-II. We
further prove that with high probability the DNN models recur in Paper-III.
The algorithm for ∆-IP returns an ensemble of integrally private models which
we use to detect the concept drift in Paper-III. Paper-III presents a methodol-
ogy, where we first compute the prediction uncertainty on the streaming data
from the models in integrally private ensemble. The prediction uncertainty is
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further used by drift detection approaches like ADWIN, to detect drifts. Fur-
thermore, we propose an integrally private federated aggregation mechanism in
Paper-IV to avoid inference attacks. Paper-I, Paper-II and Paper-III propose
methodologies to generate integrally private solutions in homogeneous settings,
while Paper-IV proposes methodologies to generate integrally private models
in heterogeneous setting along with its convergence guarantee.
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Chapter 2

Preliminaries

In this chapter, we lay the groundwork for the thesis by providing essential
background information. We first introduce the major privacy models in the
literature and then the attacks for which our privacy model has been proposed.
This is accompanied by a brief description of the support vector machine. We
then describe the concept drifts and their types and how uncertainty in the
DNNs can be used to predict the drifts. The chapter concludes with a concise
overview of the federated learning framework.

2.1 Privacy Models

Privacy models are crucial in ensuring the confidentiality of personal sensitive
information such as health records, finances, sexual orientation, etc., during
the training and inference phases of a machine learning model.

2.1.1 k-Anonymity

k-Anonymity [5] is a well-known privacy model that seeks to protect individual
identity. It ensures that each individual’s information is indistinguishable from
k−1 other individuals in the same dataset. Indistinguishability is with respect
to quasi identifiers and not necessarily all attributes. Quasi identifiers are those
attributes which in combination can uniquely identify an individual.

Definition 1 (k-Anonymity)
With respect to the set of quasi identifiers Q, A database D satisfies k-
Anonymity if the projection of D on Q results into partition of D in sets of
atleast k indistinguishable individuals.

k-Anonymity offers sound defence against identity disclosure but may strug-
gle against attribute disclosure. Consider an example of a diabetes database
having four records [(Ume̊a, 30, Diabetic-1), (Ume̊a, 30, Diabetic-1), (Borlänge,
43, Diabetic-2), (Borlänge, 43, Diabetic-2)]. This dataset is 2-Anonymous, but
allows intruders to infer that an individual in Ume̊a of age 30 is Diabetic type-
1. Additionally, if an intruder is aware that an individual’s data is present in
this dataset, they can infer that the individual is diabetic. Several variants
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such as l-diversity[8], p-sensitive k-Anonymity [20] were introduced in order to
overcome these drawbacks.

2.1.2 Differential Privacy

Since the inception of differential privacy (DP) [6], it has been widely accepted
as the go to privacy model in the industry as well as in the research community.
A function fr is differentially private if the presence or absence of a record
does not influence the outcome of fr on a query r significantly. That is, for
neighbouring datasets D1 and D2 which differ by at most one record, fr(D1)
and fr(D2) are similar.

Definition 2 (ϵ-differential privacy)
For two neighbouring datasets D1,D2, the function fr for a query r is considered
ϵ-differentially private if and only if

Pr[fr(D1) ∈ S] ≤ eϵPr[fr(D2) ∈ S] (2.1)

where S ⊆ Range(fr) and ϵ is the privacy budget.

Here, it is clear that that lower ϵ means higher privacy. Moreover, when
ϵ = 0, it implies an ideal scenario where there is absolutely no privacy leakage.
This means that the output of the data analysis or query would be the same,
irrespective of whether any individual’s data is included in or excluded from
the dataset. However, achieving ϵ = 0 in practical applications is virtually
impossible and impractical. The primary reason for this is the trade-off between
privacy and utility. DP with ϵ = 0 would add so much noise to the data or
query output that it would render the resulting information useless for any
meaningful analysis. A relaxed version of DP, (ϵ, δ)-differential privacy [21]
introduces δ in the eq. (2.1) i.e. Pr[fr(D1) ∈ S] ≤ eϵPr[fr(D2) ∈ S] + δ.
Another popular variant called local differential privacy [22] protects the data
at the record level, and is particularly useful in distributed settings.

2.1.3 Integral Privacy

Integral Privacy [7] is a privacy model which focuses on avoiding inference by
choosing a model which can recur from multiple different databases. The key
component in integral privacy is the concept of generators of a model. In the
terminology of functions, let f be a function and y be a possible outcome of
f , then the generators of y consistent with some background information S∗,
would be the set of databases which leads to y i.e., the set of f−1(y). Higher
the cardinality of the set of generators, higher the privacy. Formally,

Definition 3 (Integral privacy)
For a population P , and model G ∈ G generated by algorithm A. Let
Gen∗(G,S∗) be the set of generators consistent with the background knowl-
edge S∗. Then, the model G is k-anonymous integrally private if Gen∗(G,S∗)
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has at least k elements and
⋂

S∈Gen∗(G,S∗)

S = ∅

Here, the null intersection is required to avoid any inter-sectional analysis.

2.2 Privacy Attacks

Privacy attacks in the context of machine learning refer to methods by which
an intruder attempts to compromise the privacy of individuals and organiza-
tions. Privacy attacks often aim to leak sensitive, confidential, and personal
information. There exists several types of these attacks such as model inversion
attack, re-identification attacks and many more. The focus of this thesis is on
the integral privacy model, which specifically addresses the following two types
of attacks.

1. Membership Inference Attack: Membership inference attack aims to
determine whether a particular sample was part of the training set used
to train a machine learning model. With membership inference attack, an
intruder can expose sensitive information such as an individual’s medical
conditions in healthcare-related ML applications, reveal financial status,
and enable targeted advertising, among other privacy concerns.

2. Model Comparison Attack: In a model comparison attack, it is as-
sumed that the intruder has access to the model and some background
information (say S∗) about the dataset. As the name suggests, the in-
truder compares the model generated by the random subsamples drawn
from S∗ with the available model. Through this comparison, the intruder
finds the generators of the model. Consequently, the intruder may gain
access to the underlying training data or could conduct intersectional
analysis between subsamples to facilitate a membership inference attack.

2.3 Machine Learning

Machine learning (ML) is a subfield of artificial intelligence (AI) that has gar-
nered significant attention and revolutionized various domains in recent years.
It encompasses a diverse set of techniques and algorithms that enable com-
puter systems to learn from data, identify patterns, and make predictions or
decisions without being explicitly programmed. ML algorithms tend to im-
prove their performance with the availability of the data. Broadly, ML can be
categorized into supervised and unsupervised learning. In supervised ML, the
training entity has access to the labeled dataset while in unsupervised learn-
ing the dataset is unlabelled. We focus on supervised leaning in this thesis,
where the data set Dn×d has n points xi each of dimension d, and the output
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yi ∈ {1, ..., c} is the label of the input xi. The usual training in supervised
learning is done to tune parameters w of the ML model M .

2.3.1 Support Vector Machine

Within the realm of supervised learning, Support Vector Machine or SVM,
stands out as a powerful and widely-used approach. SVM is particularly effec-
tive in binary classification tasks, where it aims to find the optimal hyperplane
that best separates data points belonging to different classes. For a given
dataset Dn×d, the hyperplane for optimal support vector machine is defined by
J(w, b): wTx+b = 0, where w ∈ Rn represents the normal vector of this hyper-
plane, and b ∈ R denotes the bias term. For binary classification, yi ∈ {−1, 1}
represents the negative or positive class label of the ith sample. The optimal
hyperplane is computed using the following optimization problem.

J(w, b) : min
w∈Rn

1

2
wTw + C

N∑

i=1

max(0, 1− yi(w
Txi + b))

subject to,

yi(wTxi + b) ≥ 1−max(0, 1− yi(w
Txi + b)), for i = 1, 2, ..., d (2.2)

The objective of minimizing the L2 norm regularization in the first term
is to maximize the margin, ensuring broader separation between datapoints
of different classes. While the second term penalizes the objective function
for samples that are incorrectly classified. The parameter C regulates the
trade-off between the maximizing the margin and minimizing the number of
incorrectly classified samples. The initial set of constraints guarantees that the
projections of data points are separated by at least one unit. In cases where this
condition cannot be met, the optimization process adjusts to form a soft-margin
hyperplane by minimizing the error variable. This soft-margin approach allows
for the classification of data points that fall closer to the decision boundary,
accommodating some level of misclassification.

2.4 Deep Neural Networks

Deep neural networks (DNNs) are a class of machine learning models designed
to emulate human brain learning processes. The structure of these networks
consists of perceptrons, commonly referred to as neurons, which intake input
arrays and transform them into output signals. DNNs learns from data through
a list of layered structures, with each layer learning a specific relationships
or functionalities within the input data. Each layer is essentially a group of
neurons tasked with discerning patterns within the input.

When there is only a single hidden layer, the network is called artificial
neural networks (ANNs). DNNs extend the concept of ANNs with two or
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Figure 2.1: A typical ANN and a typical neuron

more hidden layers. A neuron in each layer computes a weighted sum of the
input with a bias term which is transformed using an activation function. The
transformed output is then communicated to the next layer of the DNN (as
shown in fig. 2.1).

The last layer of DNNs is the output layer, which, in classification tasks,
often employs a softmax function. This function returns a probability distri-
bution across various classes, aiding in determining the most likely class for a
given input. Often times, these class probabilities are misinterpreted as models
confidence. In many cases, a model can given high class probabilities for unseen
data even when it is uncertain in its predictions.

Measuring the uncertainty of DNNs in predicting outputs is crucial for
detecting concept drift in streaming data, where data arrives continuously over
time. Concept drifts are the changes in the statistical propertied of data with
time. They must be detected early in order to minimize the utility loss. Many
of the approaches [23] required true labels to detect drifts. But in real-world
applications, the data may come with high volume and velocity, which may
require manual labeling, expertise to label samples accurately and constant
monitoring. Hence, in such cases acquiring true labels can be time consuming
and costly. To overcome this drawback, in [13], proposed an uncertainty based
drift detection scheme using DNNs. The authors [13] quantifies the uncertainty
in prediction from an ensemble of DNNs and the uncertainty obtained is used
to detect concept drift. However, with a family of DNNs, the inference attacks
can be easily done with their range of output probabilities. Hence, privacy
remains a big concern.

2.5 Federated Learning

Federated Learning has established itself as a significant paradigm in the field
of distributed machine learning. In Federated Learning (FL), multiple users
collaborate with a central server to train a global model iteratively without
sharing their raw data. The central server hosts the global model, which it
then distributes to users. The global model is communicated to users, users in
turn train the model on their local data for few epochs and communicate the
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updated model to the server. The server aggregates the weights from the user.
This aggregation process, known as federated averaging (fedAvg), continues
until the model converges or reaches the desired number of communication
rounds. Figure 2.2 shows the framework when all the devices participates. In
partial participation, few users are randomly selected in each communication
round. In FL, users can follow iid (independent and identically distribution) as
well as non-iid. distribution. In literature, fedAvg has been shown to converge
in both settings with O( 1

T ) rate, where T is the total number of training rounds.

2.6 Mean samplers

In machine learning, the objective is to train a model M with parameters w, b
(weights and biases) using a subset X of the dataset D. The goal is for the
model to accurately classify instances into one of c classes. Training involves
iteratively processing n independently and identically distributed batches of
data. Each batch contains pairs (xi, yi) , where xi is a data instance and yi its
corresponding class label. During each training epoch, the model’s parameters
w are adjusted to minimize the loss function L, which measures classification
error. This is achieved by applying an update rule g, resulting in the param-
eter update wt+1 ← g(wt, X). A key approach in this process involves mean
samplers, which divide the training data X into n distinct batches x̂i, each
containing b data instances. The update rule in this context is represented as
wt+1 ← g(wt, x̂i) =

1
b

∑b
i=1 g(wt, (xi, yi)).

An example of a mean sampler is the minibatch stochastic gradient descent
(SGD), which updates parameters by minimizing the average loss across a
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minibatch. The update rule in minibatch SGD is expressed as:

wt+1 = g(wt, x̂k) = wt − η
1

b

b∑

i=1

∇wL(Mw(x̂i, yi))|wt
(2.3)

Here, η is the learning rate, and 1
b

∑b
i=1∇w represents the average gradient

with respect to wt for the minibatch x̂i. A set of models is considered similar
if they learn comparable average gradients from their respective minibatches.
This similarity is used to estimate the likelihood of model recurrence.
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Chapter 3

Contribution of the Thesis

This chapter presents an overview of the contributions made in this thesis,
summarizing the included research papers, and probabilistic analysis for the
recurrence of SVM model. In the following sections, each paper’s summary
is provided, followed by its contributions and limitations, which are listed in
bullet points.

3.1 Paper I

The key intuition of the thesis is based on the assumption that the machine
learning models recur i.e. there exists several models in the complete model
space which can be generated by various different datasets [9]. In paper I, the
focus is on finding such recurrent DNN models which costs minimal utility loss.
DNNs generally are applicable for big data, have huge number of parameters,
and hence huge model space. In order to avoid the computational cost of
exploring the model space, we introduce the relaxed variant of integral privacy
called ϵ-integral privacy (which we now onwards call ∆-integral privacy) in
paper I. ∆-IP considers two DNNs recurring if they are at most ∆ distant
apart from each other. This enables us to identify the recurrent models without
exploring the entire model space. Additionally, we require a set of integrally
private models to enable us to choose a model that incurs minimal utility loss.
Therefore, we propose a methodology that returns a set of integrally private
models from a given database.

Contributions

The paper presents the following contributions:

• A formalization of computationally efficient relaxed variant of integral
privacy called ∆-integral privacy.

• A methodology to return a set of ∆-integrally private models with their
statistics.

• An experimental analysis of four different DNN architectures on datasets
with varied sizes and data types to validate the performance of our
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methodology to achieve ∆-IP.

Limitations

The following limitations of the paper’s contributions are worth highlighting:

• Generation of ∆-IP models is probabilistic in nature, the paper does not
provide any formal proof that the proposed approach works.

• In the presence of outliers, generation of ∆-IP models can be difficult as
they disturb the original distribution.

• The approach may struggle to generate a set of ∆-IP models for small
datasets.

3.2 Paper II

It has been established in the literature that a minibatch used in the optimiza-
tion algorithms employing mean samplers (see section 2.6) can be forged with
probability close to one [10, 24]. The ∆-IP requires that the models should
recur after complete training. Establishing the recurrence of models with high
probability will offer insights into the privacy gurantees of ∆-IP. This paper
presents the recurrence analysis of a machine learning model (SVM in our case)
which uses mean sampling optimizers (e.g., SGD, Adam) recurs after complete
training.

Contributions

The paper presents the following contributions:

• Establishes that a machine learning model like SVM recurs with high
probability.

• Highlights that the probability of recurrence of two models can be
bounded by a distance measure, number of training sets and the number
of datapoints.

Limitations

The following limitations of the paper’s contributions are worth highlighting:

• Many algorithms, such as k-nearest neighbours and decision trees, do not
use mean samplers. Hence, the probabilistic analysis does not hold for
such models.

3.3 Paper III

In this paper, we focus on generating integrally private models in the stream-
ing context. In such settings, data arrives continuously. The models must be
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capable of detecting concept drifts while maintaining privacy. Additionally,
drift detection schemes that require true labels for incoming data may be im-
practical. Therefore, it is necessary to detect drifts in real time and maintain
privacy, even when labels are not available. Similar to [13], our method detects
drifts from the uncertainty in prediction from an ensemble of integrally private
models. Once the drift is detected, true labels are requested and the models
are retrained. Paper-III also provides theoretical analysis on the recurrence of
DNNs that for a given set of disjoint datasets.

Contributions

The paper presents the following contributions:

• A concept drift detection methodology called ’Integrally Private Drift
Detection’ which is one of first approaches in literature to detect drift
privately.

• Privacy-preserving methodology that does not require the true labels to
detect drifts, but assumes they are available or can be requested once the
drift has been detected.

• Theoretical analysis on the generation of ∆-integrally private DNNs, re-
moving one of the drawbacks of paper-I.

• An experimental analysis of the methodology that shows benchmark com-
parable utility (tested on multiple scores) and benchmark comparable
drift detection in the absence of true labels.

Limitations

The following limitations of the paper’s contributions are worth highlighting:

• The generation of ∆-IP models require training on large datasets, with
computationaly expensive comparison between models. Hence, we have
running time as the cost of privacy instead of utility.

3.4 Paper IV

This paper extends the methodology for the generation of integrally private
models in federated learning environments for Convolutional Neural Networks
(CNNs) in order to protect the identity disclosure of the clients participating.
In each communication round of fedAvg, the central server clusters the models
which are at most ∆ distant apart. The server aggregates randomly chosen
model updates from each cluster to generate the global model for the next
communication round. This protects the identity of the participating clients.
The paper also presents the convergence analysis of the proposed methodology,
we find that just like fedAvg [25] our methodology also has the convergence
rate of O( 1

T ), T is the total number of training epochs.
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Contributions

The paper presents the following contributions:

• Novel privacy preserving federated averaging algorithm, called ’k-
Anonymous Integrally Private Federated Averaging’ (k-IPfedAvg), to
protect the identity disclosure of participating clients.

• Theoretical analysis prove that under similar training environment, k-
IPfedAvg also has the convergence rate of O( 1

T ).

• An experimental analysis using three distance measures and various pri-
vacy parameters to demonstrate the minimal impact of privacy parameter
k in k-IPfedAvg on utility. The analysis also shows that k-IPfedAvg out-
performs its differentially private counterpart across multiple levels of
privacy.

Limitations

The following limitations of the paper’s contributions are worth highlighting:

• The randomly chosen models in each round may lead to some accuracy
drops in k-IPfedAvg.

• The degree of non-iidness can affect the convergence and the privacy i.e.,
if all the user’s model updates are very different then higher ∆ for ∆-IP
must be chosen which may lead to poor privacy and convergence. Further
experimentation is required.
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Chapter 4

Future Work

The papers presented in this thesis focus on generating models which can be
generated by a set of different datasets. This approach creates ambiguity for
potential intruders, preventing them from mapping the machine learning model
to a specific dataset, even when they have background knowledge. Paper-I lays
the foundation by introducing a relaxed variation of integral privacy (∆-integral
privacy), paper-II provides the probabilistic analysis for the recurrence of ∆-IP
models along with a methodology for concept drift detection, and paper-III
extends the idea of ∆-IP for federated averaging along with its convergence
analysis.

Mitigating challenges. Although generating ∆-IP models is computation-
ally less expensive compared to integrally private models, it is still signif-
icantly costly. Computationally efficient methods for model comparison
can lead to reduced cost. The ∆-IP models have been generated for
relatively small architectures e.g. architecture with 3-7 layers, further
experiments on complex network architectures such ResNet-50 can give
interesting results. At the same time, the models generated are proba-
bilistic in nature, hence reproducibility posses a big question. Further-
more, the quality of data can significantly affect the performance of the
generated model, exploring its impact on privacy presents an interesting
future direction. On the similar lines, for federated learning the impact
of non-iidness for ∆-IP models presents an interesting future direction.

Machine unlearning. Machine unlearning aims to remove the influence of
data point(s) required by the regulations such as GDPR. A naive ap-
proach to machine unlearning is retraining from scratch, and as expected
will be very computationally expensive. Machine unlearning becomes
even more challenging for distributed ML, such as federated learning,
where the global model is distributed across the users in each communi-
cation round. Integral privacy provides an efficient and plausibly deni-
able solution for federated unlearning, as discussed in [26] on unlearning.
Future research could explore its application in generative AI for large
models.
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Abstract. Deep neural networks (DNNs) are one of the most widely
used machine learning algorithms. In the literature, most of the privacy
related work to DNNs focus on adding perturbations to avoid attacks
in the output which can lead to significant utility loss. Large number
of weights and biases in DNNs can result in a unique model for each
set of training data. In this case, an adversary can perform model com-
parison attacks which lead to the disclosure of the training data. In our
work, we first introduce the model comparison attack for DNNs which
accounts for the permutation of nodes in a layer. To overcome this, we
introduce a relaxed notion of integral privacy called ε-integral privacy.
We further provide a methodology for recommending ε-Integrally private
models. We use a data-centric approach to generate subsamples which
have the same class-distribution as the original data. We have experi-
mented with 6 datasets of varied sizes (10k to 7 million instances) and
our experimental results show that our recommended private models
achieve benchmark comparable utility. We also achieve benchmark com-
parable test accuracy for 4 different DNN architectures. The results from
our methodology show superiority under comparison with three different
levels of differential privacy.

Keywords: Data privacy · Integral privacy · Deep neural networks ·
Privacy-preserving ML

1 Introduction

In today’s world, Artificial Intelligence (AI) plays a crucial role in our day-to-
day life. AI techniques are widely used in object recognition, speech recognition,
medical imaging, robotics and many other fields. AI approaches and Machine
Learning (ML) in particular are very data hungry [1]. They tend to improve with
the quality and quantity of data. The data often include sensitive and personal
information which must be guarded to ensure security/privacy of each individual
or organization. Several guidelines exists such as Europe’s General Data Protec-
tion Regulation (GDPR), to regulate the use of data in ML. GDPR requires
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that the analysis to be made should use the minimum amount of data and must
be privacy-preserving. There are several data masking and privacy-preserving
models such as k-anonymity [2], differential privacy [3], integral privacy [4], etc.
which try to protect privacy of individuals and organizations from any adver-
saries. Adversaries aim to gain sensitive information about individuals or a group
of individuals making inferences from ML models.

Data masking is used to modify sensitive information so that a record can
not be uniquely identified. K-anonymity is one of the most used data masking
methods. A database satisfies k-anonymity if for each record there are k-1 other
indistinguishable records. This can be implemented using clustering (replacing k
similar records with their mean or with their generalization). In the recent years,
much attention has been given to differential privacy (DP) and its variants (see
[5] for more details). Differential privacy is satisfied if the outputs of a query on
neighbouring datasets are similar i.e. addition or removal of one record should
not affect the outcome of the query. Differential privacy depends on a parame-
ter ε that establishes the level of this similarity. Theoretically, DP offers sound
privacy-preserving models but it has practical limitations such as the amount
of noise for small ε (high privacy) can be very high. Therefore, high sensitivity
queries require high amount of noise. However, in case of multiple queries as the
privacy budget is limited, high amount of noise is also required. High noise leads
to a loss of utility for ML models. In our approach, we have considered Inte-
gral Privacy as an alternative to DP to achieve high utility privacy-preserving
machine learning.

Integral Privacy models [4] are the data-driven models that appear recur-
rently with different training data sets. This makes inferences on sensitive infor-
mation harder for an intruder. Formally, the set of integrally private models are
the set of recurrent models, i.e. generated by different datasets for the same
problem. This approach has practical limitations, as in general, we rarely have
a huge number of different datasets. The first practical approach for Integral
private model selection was given for decision trees [6], where instead of having
an available set of datasets, the authors have used sampling approaches to build
the model space and eventually suggesting models which are integrally private.
The authors expanded the idea with integral privacy guarantees for linear regres-
sion. This is given in [7]. In [8], authors have shown how maximal c-consensus
meets (see [9] for further details) can be used in the context of integral privacy
to find datasets which can produce the same models. The work presented in [6]
generates or approximates the model space for a given dataset. A stratified sub-
sampling approach is used to approximate the model space for small datasets (≈
200 instances). The authors approximate the model space using 100k, 150k and
300k subsamples from each datasets. This can be time consuming and 100–300k
subsamples may not be enough to approximate the model space for real-world
big datasets. Overall, the approach is computationally expensive.

Deep Neural Networks is one of the most successful machine learning
paradigms for several computer vision tasks such as image classification [10],
object detection [11], video classification [12], and many other areas. However,
DNNs are known to be highly dependent on the input data. In the last few years,
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interest in adversarial DNN examples has grown [13]. DNNs are assumed to work
well with large datasets. They have large number of weights and biases which can
result in very few generators (unique in many of the cases) for each model. In other
words, generation or discovery of recurrent models in DNNs is difficult.

Considering these challenges in mind, we introduce a relaxed variant of inte-
gral privacy called ‘ε-Integral Privacy’ where models in the ε range are considered
perturbated version of each other and, thus, they are considered ε-integrally pri-
vate. We also propose a model selection strategy for choosing ε-integrally private
models for Deep Neural Networks (DNNs). Our algorithm recommends the mean
of the top recurrent models as the private model. We distribute the data in dis-
joint subsamples having same class-distribution as the original dataset. We find
that large enough disjoint subsets having same class-distribution as the original
dataset leads to the generation of the models which are utmost ε-different, with
utility comparable to the benchmark model. This way we do not need to gener-
ate 100–300k sub samples. Our approach also supports the data-centric approach
[14]. We are able to generate benchmark comparable models with samples sizes
1/100th of the original dataset. There hasn’t been much work in the literature
which discusses about using smaller datasets for training DNNs. The work in [15]
improves the quality of data by eliminating the invalid instances, our approach
is focused on maintaining the class-distribution of the data.

In this paper, we have also extended the potential model comparison attack
[6] for DNNs. In this type of attack, an intruder gets access to the training data
by comparing the models learned by the intruder obtained from original data
and the model obtained from a modified dataset. In case of DNNs, the attack
becomes tricky as any permutation of the similar set of nodes at any given layer l
results in the same learning. We incorporate this to extend the model comparison
attack on DNNs.

We have arbitrarily chosen a 3-hidden layered DNN for 6 datasets with varied
sizes. Our experimental results show that large enough disjoint sets lead to the
generation of ε-integral private models with benchmark comparable utility and
loss. We get benchmark metrics by training and testing on our chosen DNN on
70-30 split for each data. We have also compared ε-integral private models with
high DP (differential privacy) model, moderate DP model and low DP model;
we found integrally private models have better utility in many cases and have
significant improvement in terms of loss for most of the datasets.

This paper is organized as follows. In Sect. 2 we introduce the model com-
parison attack for DNNs; In Sect. 3 we introduce the notion of ε-integral privacy
and present the algorithm for private model selection procedure for DNNs; In
Sect. 4 we present the experimental analysis to support our claim and in Sect. 5
we present our conclusion and directions for future work.

2 Model Comparison Attack for DNNs

In this section, we describe our model comparison attack for deep neural net-
works. Deep neural networks are machine learning models which were created to
learn like the human brain. The underlying architecture of DNNs consists of the
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perceptron (or commonly known as neuron) which receives an array of inputs
and transform them into output signal(s). DNNs learns from data by putting
together a list of layers. Each layer is responsible for learning some relationship
or functionality in the input. Each layer is a collection of neurons that learns
to detect patterns in the input. Each neuron in the DNNs can be considered as
a logistic regression. DNNs are the extension of artificial neural networks with
two or more hidden layers. In each neuron, the weighted sum of the input with
a bias term is computed which is then transformed using an activation function,
which is then passed on to the next layer of the DNNs. Nodes at layer l receive
input from the nodes at layer l − 1, which means each neuron has |l − 1|+1 (+1
for bias) number of parameters to be tuned in training. Final weights and biases
of each neuron highly depends on their initialization.

2.1 Framework

In this section, we propose our framework. Let X be the training set from the
original dataset D, G be the model generated on X. In our work, we have con-
sidered DNNs as learning algorithm. Let us denote an initial architecture and
weight by Arch and let A be the algorithm.

We assume the intruder has some background knowledge S∗ ⊆ D. They are
the records that are known to be used to train the model. The intruder also has
access to the model. That to G which was learned from the training set X on the
initial architecture Arch. That is, G = DNN(Arch,X). With this information,
the intruder aims to gain knowledge on the training set and do membership
inference attacks

The intruder essentially can perform the model comparison attack once they
can generate the model space associated to S∗. The intruder can perform compar-
ison with the models in model space and his knowledge of G. After comparison,
if there is a single generator for the model, the intruder gets complete access to
the training set and their inferences. If there are more than one generator for the
model, an intruder can do membership inference attack for dominant records by
finding the intersection between the generators.

2.2 Intruders Approach

The intruder has some background information S∗. Then, they can draw a block
of subsamples S = {S1, S2, ..., Sn} where Si ⊆ S∗ to generate the (approxi-
mated) model space. Each subsample is a set of instances from S∗ which are used
to generate a DNN (see Fig. 1). Generation of the complete model space can be
computationally expensive but can be approximated using sampling approaches.

Comparison of two DNNs for model comparison attack is a difficult task
because we need to deal with a combinatorial problem. We need to align neurons
in each layer. Observe that layers in both DNNs must contain the same neurons
i.e. for two DNNs to be the same they must have equal layers; and for two layers
to be equal, neurons in one layer must be some permutation of the neurons in
the other layer. Given r neurons, we will have r! possible permutations.
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Fig. 1. Demonstration of model generation using algorithm A for subsamples
S1, S2, ..., Sn.

Each model in the generated model space can be compared with the original
model G. In case of DNNs, each model has one or very few generators due to
the high number of parameters of the model. Therefore, after the comparison
attack, the intruder may be able to uniquely identify the training set used to
generate the model. When there are more than one generator for a model G,
an intruder can check for membership inference by finding the dominant records
from the intersection of the generators for the model.

2.3 Integral Privacy

This privacy model [4] aims to protect the disclosure of training data and infer-
ences from a model comparison attack. Let A be an algorithm to compute
model G from a given population of samples P . The model G is integrally
private if it can be generated by enough number of samples from the popu-
lation. Let S∗ be the background information available to the intruder, then
Gen∗(G,S∗) = {S′ \ S∗ |S∗ ⊆ S′ ⊆ P,A(S′) = G} is the possible set of genera-
tors for the model G. K-anonymous integral privacy holds when there are at least
k disjoint generators in the set Gen∗(G,S∗). Disjoint generators are required to
avoid membership inference attacks. Formal definition for Integral privacy is as
follows.

Integral Privacy. Let P be the set of samples or a dataset. For model G ∈ G
generated by algorithm A on samples S ⊆ P , let Gen∗(G,S∗) represent the set
of all generators of G which are consistent with the background knowledge S∗.
Then, the model G is said to be k-anonymous integrally private if Gen∗(G,S∗)
contains at least k sets of generators and

⋂

S∈Gen∗(G,S∗)

S = ∅ (1)

3 ε-Integrally Private Model Selection for DNNs

To construct the complete model space is computationally intractable for large
sets. Consider an example of a dataset with 5000 instances. Considering all
possible datasets to produce all possible models of the model space (say Mc)
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corresponds to producing 25000 generators and the corresponding models. The
alternative to Mc is to construct an approximation of the model space (Me)
using sampling. This approach was used in previous works [6,7]. Nevertheless,
even in this case the number of generators and their corresponding models can
be high and computationally expensive. In case of bigger datasets say with 5
million instances, the process of building an approximation of a model space
will be very costly. In our approach, we have focused on reducing the huge
computational requirement to recommend relaxed integrally private deep neural
network models.

Let us consider the problem of finding the set of different models of the
model space. First, let us recall that each neuron at layer l in DNNs receive
inputs from all the neurons in layer l − 1, which in turn require weights and bias
for the neuron. The weights and biases in DNNs can take any value between
−1 and +1. Even for a small DNN there can be a unique generator for each
model or only very few models will have more than one generator. Our initial
studies on DNNs confirms this even when we round-off weights to 3 digits. It
is worth mentioning here that initialization of DNNs also affects the number of
generators. More concretely, we may not get the same generators on differently
initialized models. This makes achieving integral privacy difficult.

Because of this in our approach, we have adopted the relaxed version of
integral privacy which we call ’ε-Integral privacy’ in which models utmost ε
different from each other are considered. In case of DNNs, two models are utmost
ε different if and only if the difference between weights for the same connections
between neurons is always less than ε I.e. if G1, G2 represent the weights for two
DNNs then ||G1 − G2|| ≤ ε, where ||G1 − G2|| represent the difference between
every same connection between neurons for both DNNs. Now, let Gen∗(G,S∗, ε)
denote the set of possible pairwise disjoint generators for the models which are
utmost ε different than G (generators that are consistent with the background
knowledge S∗), then k-anonymous ε-Integral privacy holds if Gen∗(G,S∗, ε) has
at least k elements and their intersection is empty. A more formal definition
follows.

ε-Integral Privacy: Let P be the set of samples or datasets. For a model G ∈ G
generated by algorithm A on samples S ⊆ P , let Gen∗(G,S∗, ε) represent the
set of all generators of G which are consistent with the background knowledge
S∗ and are utmost ε different. Then, the model G is said to be k-anonymous
ε-Integrally private if Gen∗(G,S∗, ε) contains at least k elements and

⋂

S∈Gen∗(G,S∗,ε)

S = ∅ (2)

Now, we will focus on the private model selection procedure for DNNs. Our
approach to generate subsampling is data centric. We choose subsamples of size
N with same class-distribution as the original dataset D. We denote these sub-
samples by S1, S2, ..., Sn (here n = �|D|/N�). Here, we also satisfy there is no
intersection between subsamples i.e. S1 ∩ S2 ∩ ... ∩ Sn = ∅. This condition is
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Algorithm 1. Integrally private model selection procedure for Deep Neural Net-
works for a given perturbed dataset D′. The algorithm returns top 5 integrally
private models with their accuracies

Inputs: D - Perturbed Dataset
N - Size of subsamples
ε - Privacy parameter
A - Algorithm to generate DNNs
Output: returns a list of integrally private models with their accuracies
Algorithm:
S = Generate_subsample(D, N) � Generate n subsamples of size N
ModelList = [[]]
for Si in S do

Mi ← A(Si)
present = False
for each mj ∈ ModelList do

if compare_model(mj , Mi) ≤ ε then
ModelList[j].append(Mi)
present = True
break

end if
end for

if present == False then
ModelList.append(list(Mi))

end if
end for
chosen_models = choseXModels(ModelList)

� Chose top X recurring models
meanModels = A(mean(chosen_models)) � Compute mean models
statistics = computeMetrics(meanModels) � Statistics of mean models
return meanModels, statistics

important to avoid membership inference attack from the intersection analysis
between generators.

Now, we propose our algorithm for choosing integrally private models for
DNNs. Its flowchart is given in Fig. 2. The algorithm is as follows for a given
dataset D. First, we generate n subsamples each of size N having the same class-
distribution as the original. Second, we compute models and cluster them so that
each cluster has models that are utmost ε different from each other. Finally, we
can choose a cluster of models which are recurring in nature and has high utility.
In our methodology, we chose the mean of all the models in the cluster as our
recommended model. I.e. we generate a new model whose weights are the mean
of the weights of all the ε-integrally private models.
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Fig. 2. Flowchart of the proposed methodology to recommend an ε-integral private
model.

Algorithm 1 formalizes this approach. In the algorithm we have a dataset D,
Algorithm A, privacy parameter ε and size of each subsample N as inputs. We
initialize an empty list of lists and append models which are utmost ε distant
apart from the first one. For our results we can either chose the top recurring
model or X most frequent models (for more ambiguity) which is done in func-
tion choseXModels(). Our recommended model is the mean of the models in
the cluster. For X ε−ranged models, we recommend X mean models and their
statistics as the output of our proposed algorithm.

4 Experimental Results

In this section, we present our experimental results for our proposed methodol-
ogy. Our approach is valid for both numerical/categorical data and for classifi-
cation problems with an arbitrary number of classes. Table 1 shows the details
of the datasets we have considered for our experiments namely Adult, Susy, ai4i
and HepMass from UCI repository [16]; and Churn_Modelling, Diabetes [17]. Of
these datasets, Churn Modelling and Adult have categorical data and Diabetes is
a multi-class problem. We have considered small datasets (≈10–50K instances),
medium dataset (≈250K instances) and large datasets (≈5–7 million instances)
for our experimental study. Table 1 also shows the size of the subsamples. The
size is chosen so that there are enough subsamples to find integrally private
models.
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Table 1. Details of the used datasets

Dataset # instances # attribute Data type # classes subsample size
Adult 48842 14 Categorical

Integer
2 1000

Susy 5000000 18 Real 2 10000

ai4i 10000 14 Real 2 500

HepMass 7000000 28 Real 2 10000

Churn Modelling 10000 21 Categorical
Real

2 500

Diabetes 254000 21 Real 3 5000

To compare the performance of our approach and 2 benchmark, we have used
an architecture of 5-layered DNN with 3-hidden layers with 5-10-5 neurons. As
we explain later, we have considered other architectures as well. Then, we have
taken ε = 0.05 for all the datasets, other values could be used depending on the
application requirements.

The results of our methodology have been compared with results with a
differential private solution [18] and the benchmark results. Benchmark results
are obtained by training the model with 70-30 train-test split of original dataset.
Now, let us look at the number of generated models from randomly chosen
subsamples of the size given in Table 1. In case of the adult dataset, the total
possible models which can be considered for integral privacy are 47, similarly for
ai4i dataset we have 19, for susy dataset we have 498, for hepmass dataset we
have 698, for churn modelling dataset we have 18, and for diabetes dataset we
have 49 models to be considered for integral privacy.

Figure 3 shows the training f1 score of top 5 (for ai4i and Churn Modelling
datasets there are 2 and 3 generators only) recurring models along with the
training score of the benchmark model in black solid line and three level of
differential privacy(DP): high privacy (ε ≈ 0.1, represented by ), moderate
privacy (ε ≈ 0.5, represented by ·−) and low privacy (ε ≈ 1.0, represented by
). In general, higher DP privacy (low ε, ) leads to lower training score and

higher training loss. In the plots, the f1 scores of all the models are in the
light shade, and the dark solid line represents the mean of the ε ranged integral
private models. Observe from Fig. 3a and 3b, we achieve better training score
than the benchmark training scores while from Fig. 3c, 3d, 3e and 3f we can
observe benchmark comparable results. It can be seen from Fig. 3a, 3c and 3d,
integrally private models have better training score than all three variants of
differentially private models on the other hand Fig. 3b, 3e and 3f, the training
utility of integrally private model is comparable with the differentially private
models. We get similar results for the training loss as shown in Fig. 4. We have
denoted the loss of each model in the lighter shade solid line, their mean loss
in dark solid line, the benchmark model loss with solid black line and three
level of differential privacy: high privacy with , moderate privacy with ·− and

33



Integrally Private Model Selection for Deep Neural Networks 417

Fig. 3. f1 score of top 5 ε-recurring models over training data for (a) Adult (b) ai4i (c)
HepMass (d) Churn Modelling (e) Diabetes (f) Susy Datasets

low privacy with . It can be seen that the loss for integrally private models
is comparable with the benchmark model loss. We can observe from Fig. 4b,
4c and 4d, integrally private models have significant improvement in terms of
training loss from DP variants while Fig 4a, 4e shows some improvement from DP
variants in contrast to Fig. 4f where low, moderate DP privacy has improvement
in training loss from integrally private models.

The concept of data-centric AI simply suggests that good quality of data
can lead to good models. In our approach, we have only used 0.15% to 2% of
the original data, but with the same class-distribution, to train our model (see
Table 1 for subsample size). We got surprising result when we compared their
performance on test data i.e. 30% of the original data. Figure 5 shows the result
on the test data, lighter shade circles represent the test result for each model
while dark solid colored circle represents their mean value. From Fig. 5, we can
say that our ε-integrally private models achieve benchmark comparable f1 score
on much bigger test datasets (15 to 200 times).

Our recommended model is the mean of all the models in the ε-integral
private range. The result in Fig 5 motivated us to compare performance of the
aggregated ε-integrally private models with the original training and testing
datasets. Figure 6 shows the comparison of f1 score on training data (in solid
color circles) and test data (in hollow circles) with benchmark training score (in
solid line) and benchmark test score (in dashed line). Our recommended models
have benchmark comparable f1 score on all the datasets.
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Fig. 4. Training loss of top 5 ε-recurring models for (a) Adult (b) ai4i (c) HepMass (d)
Churn Modelling (e) Diabetes (f) Susy Datasets

Fig. 5. f1 score of top 5 ε-recurring models on bigger test data for (a) Adult (b) ai4i
(c) HepMass (d) Churn Modelling (e) Diabetes (f) Susy

Table 2 shows the recurrence of the recommended model with the test accu-
racy on much bigger test sets. We have considered 4 different architectures: DNN-
1 has 3-hidden layers (with 5-10-5 neurons respectively) architecture; DNN-2
has 1- hidden layer (with 1024 neurons) architecture; DNN-3 has 3-hidden lay-
ers (with 10-20-10 neurons respective) architecture; and DNN-4 has 5-hidden
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Table 2. Different architectures and their f1 score on 30% test dataset.

Dataset DNN-1 DNN-2 DNN-3 DNN-4
recurrence test_acc recurrence test_acc recurrence test_acc recurrence test_acc

Adult 10 0.8387 89 0.7797 16 0.8286 36 0.8284
Susy 64 0.7758 366 0.7917 8 0.7636 6 0.7882
ai4i 17 0.9647 19 0.9723 12 0.9683 10 0.9747
HepMass 171 0.8325 562 0.8344 68 0.8325 51 0.8336
Churn Modelling 9 0.8145 13 0.8520 10 0.7927 10 0.7870
Diabetes 12 0.8627 21 0.8596 13 0.8634 5 0.8596

layers (with 5-10-20-10-5 neurons respectively) architecture. Table 2 shows that
the proposed methodology produces benchmark comparable results for different
DNN architectures as well.

Fig. 6. f1 score on train and test data for mean of the ε-recurring models for (a) Adult
(b) ai4i (c) HepMass (d) Churn Modelling (e) Diabetes (f) Susy

4.1 Discussion

In summary, our results with varied sized, multi-class and categorical datasets
suggest that we can achieve ε-integral privacy with good utility (comparable to
benchmark utility) from the list of the recommended models depending on the
value of k (number of models in ε range) with no additional computational cost.

The good results of our approach can essentially be linked to the data centric
AI approach where we train our model for smaller datasets with the same class-
distribution as the original dataset and get good results. We further explored
the impact of subsample size and compared their performance on separate 70-30
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training data and testing data on moderately sized adult and diabetes datasets.
Our results from Fig. 7 shows that the f1 score for both training and testing
data is non-decreasing but it is neither increasing significantly with respect to
the increase in subsample size. Our results are in line with [19] which highlights
that one can generate arbitrarily similar model of finite floating point weights
from two (or more) non-overlapping dataset. The paper [19] also suggest that
we can get good results on smaller datasets as well, which aligns with the results
in Fig. 7.

Fig. 7. f1 score of various subsample sizes on (a) Adult (b) Diabetes datasets

For our proposed methodology, we must chose subsamples size (N) very care-
fully. The choice for N must be large enough to generate the model with good
utility at the same time it should be able to generate sufficient number of disjoint
subsamples. Probably approximately correct (PAC) [20] can suggest an estimate
for the choice of the parameter N . A model G is said to be PAC learnable with
respect to loss l if and only if the difference between the loss for the learned model
G and true (best possible) model Ḡ is at most ε with probability at least 1 − δ
i.e. P [Gl − Ḡl ≤ ε] ≥ 1 − δ. With this the minimum number of samples required
for a PAC learnable model is bounded by O([V C(G) + ln(1/δ)]/ε2) [21] where
V C(G) is the Vapnik-Chervonenkis dimension of the model G. Quantifying the
VC-dimension for complex models like deep neural network is still an open prob-
lem [22]. Therefore, in the literature scientists follow the rule-of-thumbs: (1) The
VC dimension of DNNs is considered equal to the number of weights in DNNs
[23] and then (2) the minimum number of samples required to learn the DNN is
established as 10 times the VC dimension [24]. Considering this, i.e., a sample
size of 10-times the VC-dimension (number of weights) should provide a PAC
learnable model. For datasets ai4i, and Churn_Modeling the number of weights
are 172 and 197, respectively, and hence the minimum subsample size is esti-
mated as 1720 and 1970 for PAC learnability. This results in very few disjoint
subsamples (5 for both datasets) which may not be enough to find integrally
private models. This suggests a trade-off between model complexity (number of
weights) and its learning ability for integral privacy. Further study in this area
is required to investigate the impact of this trade-off for integral privacy.
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4.2 Limitations

Based on a critical analysis of our approach and the results obtained, we can
underline the following limitations of our approach:

1. Our methodolgy may not be suitable in the presence of outliers as the outliers
disturbs the distribution of the dataset.

2. Selection of private models on very small datasets with our proposed method-
ology is not feasible.

3. High model complexity may result in less number of models in ε-range.

5 Conclusion and Future Work

In this paper, we have first extended the model comparison attack to deep neural
networks. We have also introduced the concept of ε-integral privacy which is
then used to recommend integrally private models for deep neural networks.
Our results show that we are able to achieve ε-integrally private models without
any significant utility loss (improvement of utility in some cases). Our results
also highlights that small data of good quality can result in a well trained model.

For our proposed methodology, we have arbitrarily chosen the size of the sub-
samples; the privacy parameter ε and the DNNs architecture. Tuning of these
areas may yield interesting results. Another interesting direction is to use a
data-enhancement approach to remove outliers as done in [15]. Federated Learn-
ing takes advantage of data distributed across multiple users, where learning
takes place locally. Our methodology can be seen as independent and identically
distributed (IID) ε-integral private model selection in federated learning for a
single pass. Our work can further be extended into non-IID settings of federated
learning.
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Abstract. In the era of big data, Machine Learning (ML) applications
thrive on extensive datasets, but this exposes them to privacy risks. Reg-
ulatory frameworks like GDPR and CCPA aim to mitigate these risks.
Integral privacy, an alternative to k-Anonymity and differential privacy,
focuses on creating ambiguity for intruders by considering models gen-
erated from diverse datasets as privacy-preserving. Integral privacy calls
such models as recurring models. While prior research has primarily ex-
plored recurrence in deep learning models which have large parameter
space, this paper addresses the understudied recurrence analysis of a
typical machine learning model with relatively small parameter space
like Support Vector Machine (SVM). Models having small parameter
space can have significant impact due to the presence and absence of
a datapoint. Due to this reason, their probability to recur maybe low.
We challenge this hypothesis with the recurrence analysis of SVM mod-
els trained on mean samplers like stochastic gradient descent. We find
that under constrained environment SVM models recurs with high prob-
ability. This research enhances our understanding of privacy-preserving
models in the context of SVMs, providing valuable insights into their
privacy guarantees.

Keywords: Machine learning · Support Vector Machine · Recurrence
Analysis · Integral privacy.

1 Introduction

In the era of big data, the Machine Learning (ML) applications are becoming
increasingly evident in our daily lives. These ML models tend to improve with
the vast quantity of data available which is readily available with big data.
However, this surge in data usage also escalates the potential for the leakage of
private and sensitive information. To mitigate these risks, regulatory frameworks
like the General Data Protection Regulation (GDPR) [1] and the California
Consumer Privacy Act (CCPA) [2] have been implemented. These regulations
are designed to govern data usage and minimize privacy risks in ML models,
ensuring responsible and secure handling of data.
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Several data masking and privacy-preserving methods, such as k-Anonymity
[3], [4] and differential privacy [5], have gained prominence in recent times. k-
Anonymity safeguards identities in a database by making each record indistin-
guishable from at least k − 1 others. This method is effective in maintaining
anonymity within a group, particularly when datasets are shared or published.
Achieving k-Anonymity often involves clustering data points so that each cluster
contains at least k elements, and then replacing each data point with the centroid
of its cluster. However, this approach has vulnerabilities; it can be susceptible to
various attacks, including those arising from homogeneity within a cluster [6] or
from attackers leveraging background knowledge [6]. While differential privacy
is satisfied when the results of a query on neighbouring datasets are similar,
meaning the addition or removal of a single record does not significantly affect
the query’s result. In differential privacy, the parameter ϵ determines the privacy
budget, with lower values indicating stronger privacy guarantees but potentially
reduced data utility. It quantifies the trade-off between the privacy of individual
data points and the utility or accuracy of the data analysis. This allows DP to
offer theoretically sound privacy guarantees but it has practical limitations. For
instance, in privacy critical applications such as healthcare, finance, the amount
of noise required to guarantee privacy is very high and may cost significant
amount of utility. Most of the privacy approaches in the literature either focuses
on storing data privately or preserving privacy from model’s inference, not much
focus been given to selecting models which are privacy preserving.

Integral privacy [7] was introduced as an alternative to both k-Anonymity
and Differential Privacy (DP). It defines a model as privacy-preserving if it
can be generated by multiple disjoint training datasets, introducing ambiguity
for intruders attempting membership inference and model comparison attacks.
Specifically, the set of integrally private models consists of recurring models that
can be generated with multiple datasets. However, obtaining diverse datasets for
a given application can be challenging.

In the context of machine learning models, Senavirathne et al. [8] proposed
a methodology for identifying integrally private decision trees. Their approach
involves generating an approximated model space and determining the frequency
of recurring models. While this method is feasible for small datasets, it becomes
computationally intensive for larger datasets due to the substantial number of
subsamples required to approximate the model space. This challenge becomes
even more pronounced in the case of deep learning models, which have a vast
number of parameters.

A relaxed variant of integral privacy (called ∆-Integral Privacy, ∆-IP) and
methodology to generate integrally privacy deep learning models was given in
Varshney et al. [9]. They found that under similar training conditions, subsam-
ples with similar distributions result in similar deep learning models. This finding
aligns with the observations made by Thudi et al. [10], who noted that, with high
probability, a minibatch can be replicated. Varshney et al. [11] provided a proba-
bilistic guarantee for the recurrence of complete deep learning models. It’s worth
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noting that most recurrence and forging analyses in the literature have focused
on deep learning models, which have a large parameter space.

However, the impact of a single minibatch on a weight in a deep learning
model may not be as significant as its impact on a weight in a machine learning
model with less number of weights (in comparison with DL models), such as
Support Vector Machine (SVM) [12]. Similar to [9], Kwatra et. al [13] gives
the methodology to generate recurring SVM models where the authors first
randomly selects disjoint subsamples from the training data. Then, trains the
SVM models on the subsamples. The trained SVM models are compared to find
a set of recurring models. The requirement of disjoint subsamples is required in
order to avoid any membership inference analysis. The methodology provides a
set of recurring models and their statistics but lacks theoretical guarantees on
the recurrence. Hence, in this paper, we present the recurrence analysis for SVM
models and show that with high probability, a typical machine learning model
like SVM also recurs.

2 Background

2.1 Support Vector Machine

Algorithm 1 Stochastic gradient descent for SVM

Input: S - Training set, N - Size of subsamples, T - Number of epochs
Output: returns weights for
Algorithm:
Initialize w0 = 0 ∈ Rn

for epochs i in [1, .., T ] do
Randomly sample N datapoints from the training set, S (N ≤ |S|)
Repeat for each instance (xi, yi) of N data points:
wt ← wt−1 − η∇Jt(wt−1)

end for
return final w

SVM, or Support Vector Machine, is a widely recognized binary classifier.
Given a dataset Dn×d, SVM identifies the most effective hyperplane from a set of
hyperplanes to differentiate between data samples belonging to distinct classes.
The optimal SVM hyperplane satisfies J(w, b): wTx + b = 0, where w ∈ Rn

is the normal vector of J(w, b), b ∈ R represents the bias term. The optimal
hyperplane is solved using the following optimization problem.

J(w, b) : min
w∈Rn

1

2
wTw + C

∑
max(0, 1− yi(w

Txi + b))
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for N training examples,

J(w, b) : min
w∈Rn

1

2
wTw + C.N.max(0, 1− yi(w

Txi + b)) (1)

subject to,

yi(wTxi + b) ≥ 1−max(0, 1− yi(w
Txi + b)), for i = 1, 2, ..., d

Minimizing the L2 norm regularization is equivalent to maximizing the mar-
gin in the first term. The second term penalizes J(w, b) for the incorrectly clas-
sified samples. Here, yi ∈ {−1, 1} denotes the label of the ith sample and the
parameter C regulates the trade-off between the maximizing the margin and
minimizing number of incorrectly classified samples. The initial set of constraints
ensures that the projections of data points are separated by at least one unit. If
this condition can not be satisfied, minimizing the error variable leads to the for-
mation of soft-margin hyperplane. A typical algorithm for learning the weights
of SVM is given in Algorithm 1.

2.2 Mean Samplers

SVM are the supervised machine learning models which train on the labeled
dataset D. Usually, we want to learn weights and biases (say w) of a model M
using training data X (⊆ D) so that it returns the class label ({1, 2, .., c}) for
any given instance. The training of the model M is done iteratively from the
i.i.d. sampled n batches. Each batch consists of a set of records (xi, yi). In each
epoch, for parameters w in model M the loss L : Mw × y → [0,∞) computes
the classification error for the batch. Iteratively, we aim to minimize the L and
update the parameters using some update rule g i.e. wt+1 ← g(wt, X)). Mean
samplers are an important class of update rules, where the training dataset
X is divided into n batches i.e. X =

⋃n
i=1 x̂i, x̂i ∩ x̂j = ϕ and each batch

consists of b data instances x̂i = {x1, x2, ..., xb}. Here, the update rule looks

like: wt+1 ← g(wt, x̂i) = 1
b

∑b
i=1 g(wt, (xi, yi)). Mean samplers like minibatch

stochastic gradient descent (SGD) samples a minibatch and update the parame-
ters to minimize the average loss for the minibatch. This variant of SGD is known
for its applicability in machine learning algorithms. Here, a typical update rule
looks like:

wt+1 = g(wt, x̂k) = wt − η
1

b

b∑

i=1

∇wL(Mw(x̂i, yi))|wt
(2)

Where η is the learning rate and 1
b

∑b
i=1∇w is the average gradient with

respect to wt for x̂i minibatch. A set of models is said to similar if for each they
learn the same average gradients from their minibatch. We use this analogy to
find the probability of recurrence of models.
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3 Recurrence Analysis SVM

In this section, we present the probabilistic analysis for the recurrence of SVM
models. As we can see from Algorithm 1, the update rule for the weights in the
SVM is:

wt ← wt−1 − η∇J t(wt−1)

from eq. (1)

∇J t(wt−1) =

{
wt−1 − C.N.yixi, if 1− yi(w

Txi + b)) ≥ 0

wt−1, otherwise

if yiw
Txi ≤ 1 than

wt ← (1− η)wt−1 − ηCNyixi (3)

Otherwise, wt ← (1− η)wt−1 (4)

Now, let us consider a set of data samples, D1, D2, ..., Dm, i.i.d. (independent
and identically distributed) sampled from a given dataset D with some distribu-
tion and M1,M2, ...,Mm be the SVM models we want to train. Since, we know
from Algorithm 1 that all the models are initialized with 0(∈ Rn). From eq. (3)
and (4), we can say that for two different models having same learning rate (η),
C, and N, the weights in 1st iteration will depend on the product of yixi. Simi-
larly, if two models have same weights at some iteration t− 1 then at iteration
t their weights will depend on the product of yixi sampled at iteration t.

Since, the data samples are chosen iid from D, samples from these data
samples will also follow the similar distribution. Let the mean of the product
yixi for each of the N samples at any iteration be µ and the trace of the covariance
matrix be σ2. Note here that mean value of yixi would still be µ(= 1

N

∑N
i=1 µ)

but mean sampling of trace of the covariance matrix will be 1
N σ2. Then by

Markov’s inequality we can say that,

P (| 1
N

∑
yixi − µ|2 ≥ ∆) = P (| 1

N

∑
yixi − µ|22 ≥ ∆2)

≤ E(| 1N
∑

yixi − µ|22)
∆2

(5)

Here the first equality is true by the property of monotonicity of squares and
second is Markov’s inequality. Note that E(| 1N

∑
yixi − µ|22) is just the trace of

the covariance matrix ( 1
N σ2), then we can write:

P (| 1
N

∑
yixi − µ|22 ≥ ∆2) ≤ σ2

N∆2
(6)
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Furthermore, for two models Mj , and Mk, from eq. (6) we can say

| 1
N

∑
yji x

j
i − µ|22 ≥ ∆2 and

1

N

∑
yki x

k
i − µ|22 ≥ ∆2at ith iteration (7)

Using triangle inequality (|a−b| ≤ |a|+|b|) we can say | 1N
∑

yji x
j
i− 1

N

∑
yki x

k
i | ≤

2∆2 (product of xi and yi for both models to be in ∆2 ball of µ) with probability

≥ (1− σ2

N∆2 )
2 . Then, the probability that there exists two models which are in

the ∆2 ball of µ would be:

P (|yixi − ylxl|22 ≤ ∆2) ≥
m∑

r=2

(
m

r

)(
1− σ2

b∆2

)r (
σ2

b∆2

)m−r

(8)

And, the probability that m models are in the ∆ ball of µ would be:

P (|yixi − ylxl|22 ≤ ∆2) ≥ (1− σ2

N∆2
)m (9)

Equation (8) and (9) represents the probability of weights updating in the ∆2

ball of µ for a single iteration. For T iterations, the probability that there exists a

model having weight updates in the∆2 ball of µ is≥ (
∑m

r=2

(
m
r

) (
1− σ2

b∆2

)r (
σ2

b∆2

)m−r

)T .

After T iterations, the probability of m models to be in the ∆2 ball of µ will be

≥ ((1− σ2

N∆2 )
m)T .

So, for data samples sampled iid from some dataset, we can conclude that
the lower bound for the probability that there exists recurrent models within

ϵ2 ball is ≥ (m(1 − σ2

N∆2 )
2)T . And all the m models are in the ∆2 ball of µ is

≥ ((1− σ2

m∆2 )
m)T .

Remark on the choice of ∆,N,m: In order to generate higher recurring
models, we can say that increasing the number of i.i.d samples (m), N (Number
of data points trained in each epochs) and ∆ (the error value) increases the
probability of getting recurrent models.

The experimental results verifying the recurrence of SVM for tabular data is
given in [13].

4 Discussion and Conclusion

In this paper, we present the recurrence analysis for integrally private Support
Vector Machines (SVMs). The integral privacy model selects models which recurs
from multiple datasets, introducing uncertainty for potential intruders. Unlike
existing privacy models in the literature, such as k-Anonymity and ϵ-Differential
Privacy (ϵ-DP), which primarily focus on preserving the privacy of stored data
or the privacy during model inferences, integral privacy centers around the selec-
tion of private models during training. Unlike k-Anonymity and ϵ-DP, integrally
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private models does not cost much utility. The privacy budget in integral privacy
depends on the ∆ value (see eq. 9). A higher value of ∆ means higher difference
in the models and reduced privacy.

The analysis presented in this paper emphasizes that when mean samplers
like SGD and Adam optimizers are employed during training, models tend to
exhibit recurrence with a high probability, regardless of the data type or model
size. However, certain machine learning models, such as decision trees and k-
nearest neighbors, do not utilize mean samplers in their training process. Further
recurrence analyses are needed to confirm whether machine learning models that
do not employ mean samplers also exhibit recurrence.

Acknowledgement: This work was partially supported by the Wallenberg
Al, Autonomous Systems and Software Program (WASP) funded by the Knut
and Alice Wallenberg Foundation.
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Abstract. Deep neural networks (DNNs) are one of the most widely
used machine learning algorithm. DNNs requires the training data to be
available beforehand with true labels. This is not feasible for many real-
world problems where data arrives in the streaming form and acquisition
of true labels are scarce and expensive. In the literature, not much fo-
cus has been given to the privacy prospect of the streaming data, where
data may change its distribution frequently. These concept drifts must
be detected privately in order to avoid any disclosure risk from DNNs.
Existing privacy models use concept drift detection schemes such AD-
WIN, KSWIN to detect the drifts. In this paper, we focus on the notion
of integrally private DNNs to detect concept drifts. Integrally private
DNNs are the models which recur frequently from different datasets.
Based on this, we introduce an ensemble methodology which we call ’In-
tegrally Private Drift Detection’ (IPDD) method to detect concept drift
from private models. Our IPDD method does not require labels to detect
drift but assumes true labels are available once the drift has been de-
tected. We have experimented with binary and multi-class synthetic and
real-world data. Our experimental results show that our methodology
can privately detect concept drift, has comparable utility (even better in
some cases) with ADWIN and outperforms utility from different levels
of differentially private models.

Keywords: Data privacy · Integral privacy · Concept Drift · Private
drift · Deep neural networks · Streaming data.

1 Introduction

In recent years, the interest in deep learning models has witnessed a steady in-
crease, despite encountering various challenges such as explainability, privacy,
and data dependency. To address these issues, significant advancements have
been made, including approaches to enhance explainability [1], privacy-preserving
techniques [2], adopting a data-centric perspective to facilitate model training
with high-quality data, and more. However, limited attention has been given in
the context of streaming data, which refers to the continuous arrival of data in
real-world scenarios, often accompanied by the problem of concept drift. Con-
cept drift implies that the statistical properties of the data may change over
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time, necessitating the model to adapt to these changes to ensure reliable pre-
dictions. Noisy data at one point of time may become useful data over time.
These changes in data distributions can be due to various hidden factors. Han-
dling of such drifts is a must and has been employed in many applications such as
spam detection [3], demand prediction [4]. Learned models must have the ability
to detect concept drifts and incorporate them by retraining on the new data.
Three types of concept drifts have been shown in Fig. 1. Abrupt drifts are sudden
changes in the data distribution. E.g. complete lockdown in many countries due
to COVID-19 pandemic. Gradual drifts are the drifts which changes the distri-
bution over time. E.g. in fraud detection system, fraudsters adapt according to
the improving security policies in place. Incremental concept drift are the drifts
where old concepts vanishes completely with time. E.g. after lifting COVID-19
lockdown, people may be hesitant to return to their normal behaviour.

Time

Abrupt

Gradual

Incremental

Fig. 1: Types of drifts in the data

In the literature of concept drift detection, there has been several algorithms
which can detect concept drifts such as Adaptive windowing (ADWIN) [5] and
its variant, and Kolmogorov-Smirnov Windowing (KSWIN). These are the two
prominent drift detection methods used in the streaming settings. To detect
drifts, these techniques were originally proposed assuming the availability of true
labels which is unrealistic in most real-world assumptions. ADWIN employs two
windows, one fixed size and one variable size, which slide over the incoming data
stream. The fixed size window keeps the most recent points and the variable
size window keeps the earlier points. If the statistics of the two windows differs
significantly then ADWIN indicates that the drift has been detected.

In case of DNNs, training requires huge amount of data and acquisition of
ground truth to detect drift can be very costly. A recently proposed uncertainty
drift detection scheme [6] detects drift during inference without the availability
of true labels. It computes values for prediction uncertainty using dropout in
the DNNs and uses entropy of these uncertainty values to detect drifts. Another
approach to get prediction uncertainty is through the ensemble of DNN models.
Different DNNs produce different probabilities during predictions and the overall
uncertainty in their predictions can be used to detect the drift. In the literature,
almost none of the approaches focus on the privacy perspective of drift detection.

Privacy is a crucial factor to take into account in concept drift detection as
data is often sensitive. There exists many privacy models such as k-anonymity [7],
differential privacy (DP) [8], integral privacy [9] and others for static environment
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but their counter-parts for online learning are rather limited. For online learning,
k-anonymity [10] tries to protect against identity disclosure by guaranteeing
k-anonymity for addition, deletion, and updating the records but may fail to
protect attribute disclosure; differential privacy (DP) perturbs the data or the
model in order to generate privacy-preserving outputs against the disclosure
of sensitive information. Even though DP provides theoretically sound privacy-
preserving models, it has a number of practical drawbacks. For instance, when
aiming for high privacy (small ϵ), the amount of noise added can become very
high. Moreover, there is a finite privacy budget for multiple searches, and high
sensitivity queries demand a bigger amount of noise. DP may struggle with the
privacy budget when the data distribution changes frequently. You may end up
loosing utility or privacy or both in the long run. Also, the addition of a lot of
noise to the output can make machine learning models less useful. Most of the
privacy approaches in the online learning literature focuses on either storing the
data or predicting the output privately. None or very few approaches in literature
focuses on detecting drifts privately.

In our approach, we have considered Integral Privacy as an alternative to DP
to generate high utility, privacy-preserving machine learning models. Integrally-
private models provide sound defence against membership inference attacks and
model comparison attacks. A membership inference attack is about getting access
to the records used in the training process. On similar lines, a model comparison
attack gives intruder access to the complete training set or to a huge portion
of the training set through intersectional analysis. A machine learning model is
integrally private [9] if it can be generated by multiple disjoint datasets. For an
intruder whose aim is to do membership inference attacks or model comparison
attacks, integrally-private models create ambiguity as the models are generated
by multiple disjoint datasets. It has been proven in [11] that under some condi-
tions it is possible to obtain, with probability close to one, the same parameter
updates for a model with multiple minimatchs. They also find that a small frac-
tion of a dataset can also lead to good results. One of the first works which
shows the framework for model comparison attack and the defence by integral
privacy for decision trees was given in [12]. The authors generate the complete
model space and return the integrally private decision tree models which have
approximately same model parameters. Generating complete (or approximately
complete) model space can be a very computationally intensive task for a dataset
with only few thousand instances.

For DNNs, generating model space and comparing models to find integrally
private models can be tricky. This is due to the fact that for a given layer of
two different models, equivalent neurons can be placed in different positions.
Also, due to huge number of learning parameters in DNNs, there can be very
few recurring models. In order to overcome these challenges for DNNs, a relaxed
variant of integral privacy, ∆-Integral privacy, was proposed in [13]. ∆-Integral
privacy (∆-IP) considers models which are at most ∆ distance apart, and then
recommends the mean of these models (in the ∆ range) as the integrally pri-
vate model. The ∆-IP algorithm can recommend up to X number of integrally
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private models which can be used as an ensemble of private models to detect
concept drifts in streaming data. In this paper, we propose a methodology for
drift detection through an ensemble of ∆-integrally private models. We compute
an ensemble of ∆-IP models and use them to compute a measure of prediction
uncertainty. This prediction uncertainty of ∆-IP models on the incoming datas-
tream is used to detect concept drift. Our methodology only requires true labels
to recompute the ∆-IP models once a drift has been detected. We also present
the probabilistic analysis for the recurring models. Our theoretical analysis is
inspired from the work in [11] which focuses on forging a minibatch. In our case,
the analysis focus on learning similar parameters after complete training.

Our experimental setup shows results for ANN (one hidden layer with 10
neurons) and DNN of 3 hidden layers (10-20-10 hidden layer architecture). We
evaluate our proposed methodology for 3 real-world dataset and 4 synthetic
dataset. We have also compared our results with different levels of privacy in
DP models. We show that our approach outperforms the DP alternatives. We
find that ensemble of integrally private models can successfully detect concept
drifts while maintaining the utility of non-private models.

The rest of the paper is organized as follows. Section 2 describes the back-
ground for the proposed drift detection methodology. Section 3 describes our
proposed work. Section 4 gives the experimental analysis. The paper finishes
with some conclusions and future work.

2 Background

In this section we describe the major concepts that are needed in this work.

2.1 Uncertainty in Neural Networks

Understanding the uncertainty of a model is essential to understand the model’s
confidence. In DNNs, class probabilities can not be the proxy for model’s confi-
dence. For unseen data, DNNs may give high probability even when the predic-
tions are wrong. This can be the case in concept drifts i.e, the prediction may
be uncertain but the system can give high class probability. Ensemble methods
find the uncertainty using predictions from the family of DNNs. Here you train
multiple DNNs with different initializations. In this way you generate a set of
confidence parameters from multiple DNNs, and the variance of the output can
be interpreted as the model uncertainty. In our work, we estimate the model
uncertainty using an ensemble of private models. With drift in estimated uncer-
tainty as an indicator for concept drift, we can employ drift detection schemes
such as ADWIN, KSWIN to detect concept drift.

2.2 Model Comparison Attack and ∆-Integral privacy

Integral privacy [9] is a privacy model which provides defense against model
comparison attacks and membership inference attacks. In a model Comparison
Attack [12], [13], an intruder aims to get access to the sensitive information or
do membership inference analysis by comparing the model parameters. A model
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comparison attack assumes that the intruder has access to the global model M
trained using algorithm A on the training setX a subset of the population D, and
some background information S∗(⊆ D). The intruder wants to get the maximum
(or total) number of records used in the training process. I.e. the intruder wants
to maximize access to X. The intruder draws a number of samples S1, S2, ..., Sn

from D and compares the model generated by each Si with the global model M .
Then, the intruder selects the Si corresponding to the most similar model to M
and hence guesses the records used in the training. In case that there are multiple
models similar to M , the intruder can do intersectional analysis for membership
inference. That is, find common data records which lead to the model M . In
case of DNNs, model comparison can be tricky as highlighted before in [13].
The comparison between models is done by comparing each layer and neurons
in respective layers.

In order to defend against such attacks, integral privacy requires you to
chose a model which recurs from different disjoint datasets. Disjoint datasets
are needed to avoid intersectional analysis. In this way an intruder cannot iden-
tify the training set because multiple training sets lead to the same model. As
explained in Section 1, due to the huge number of parameters in DNNs there
are very few recurring models. ∆-IP relaxes the equivalence relation between
neurons. It allows the two models to be considered as equal if neurons in each
layer of the respective model are at most ∆ distance apart. Formally, ∆-IP can
be defined as follows.

∆-Integral Privacy Let D be the population, S∗ ⊂ D be the background
knowledge, and M ⊂M be the model generated by an algorithm A on an un-
known dataset X ⊂ D. Then, let Gen∗(M,S,∆) represent the set of all genera-
tors consistent with background knowledge S∗ and model M or models at most
∆ different. Then, k-anonymity ∆-IP holds when Gen∗(M,S,∆) has atleast
k-elements and

⋂
S∈Gen∗(G,S∗,∆)S = ∅ (1)

3 Proposed Methodology

In this section, we provide the details of our proposed methodology which we call
Integrally private drift detection (IPDD) scheme. Our proposed IPDD methodol-
ogy detects drifts with unlabeled data but assumes that true labels are available
on request. Our approach is based on the detection of concept drifts from the
measure of uncertainty in prediction by ensemble of private models. Previous
works [14] [6] show that prediction uncertainty from DNN is correlated with
prediction error. We argue on similar lines and use drift in prediction uncer-
tainty as a proxy for detecting concept drift. We use Shanon entropy to evaluate
the uncertainty over different c class labels.

Then any change detection algorithm such as ADWIN can be employed to
detect drifts using this uncertainty measure. We chose ADWIN as it works well
with real-valued inputs. The flowchart of the methodology is shown in Fig. 2.
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Fig. 2: Flowchart drift detection using ensemble of ∆-Integrally Private Models

Algorithm 1 Algorithm to generate k ∆-Integrally private DNNs for training
data D. The algorithm return an ensemble of k private models

Inputs: D - Training data
Output: returns k integrally private models
Algorithm:
N - Size of subsamples
∆ - Privacy parameter
S = Generate subsample(D, N) ▷ Generate n disjoint subsamples of size N
ModelList = [[]]
while Si ← S do ▷ For all samples in S

Mi ← Train DNN on Si

present ← False
if Mi is utmost ∆ distance apart from models in ModelList then

Put Mi in the same bucket
present ← True

end if
if present is False then

Append Mi in ModelList ▷ Create a new bucket with Mi

end if
end while
Returns mean of top k recurring models from ModelList

First k integrally private models are computed from the initial available train-
ing data. With incoming data instances, we predict the output and input the
prediction uncertainty from each of the k private models to ADWIN. If drift has
been detected, true labels are requested and the training data must be updated
with new instances. Here, our methodology does not require true labels to detect
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Algorithm 2 Drift detection using ∆-Integrally private models

Inputs: D - Dataset
Algorithm:
training data = Initial data(D) ▷ Initial Data to train private DNNs
Private Models = Algorithm 1(training data)
while D has elements do ▷ While stream has incoming data

Receive incoming data xt

pred, uncertainty ← Private Models.predict(xt)
Add uncertainty to ADWIN
if ADWIN detects drift then

Request true labels yt for xt

Update training data with xt, yt
Private Models = Algorithm 1(training data)

end if
end while

concept drift. New private models are computed from the updated training data.
If the training data exceeds the threshold, records are removed on a first-come,
first-served basis. In case there is no drift, then the prediction for new instances
continues.

Algorithm 1 describes the computation for k private models. First, samples
(i.e., sets of records) are generated from the training data in such a way that pairs
of samples have empty intersection (i.e., they do not share any record). Models
for these samples are computed using the same initialization. Models within ∆
distance apart are kept in the same bucket. Buckets are sorted in descending
order according to the number of models in each bucket. The algorithm then
returns the mean of the top k recurring set of models as an ensemble of k
integrally private models.

Algorithm 2 describes how to detect drifts privately. First, it uses initial
available data as training data and computes private models using Algorithm 1
on the training data. Predictions on new incoming instances are used to compute
the uncertainty measure and to see if the drift is detected using ADWIN. If the
drift is detected, true labels must be requested, then training data must be
updated and the private models are recomputed on a new training data. This
process continues as long as the new data is available for prediction.

3.1 Theoretical Analysis

In this section, we present the probabilistic analysis for the recurrence of DNNs.
DNNs are trained using mean samplers such as SGD, Adam etc. This analysis is
inspired by the forgeability analysis done in [11]. The analysis in [11] computes
the probability of forging a single minibatch while we focus on probabilistic anal-
ysis of learning the same model parameters after learning from different training
data. Let us consider a set of disjoint datasamples,D1,D2, ...,Dm, i.i.d. (indepen-
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8 A. K. Varshney et al.

dent and identically distributed) sampled from a given N -dimensional datasetD with some distribution. Here, each of the Di is composed of b minibatches
x̂ = x1, x2, ..., xb. M1,M2, ...,Mm be the DNN models we want to train which
have the same initialization. The update rule looks like g(w, x̂) = 1

b ∑b
i=1 g(w,xi).

The update rule g(w,x) can be seen as a random variable with mean µ and σ2

(= ∑N
i=1 σ2

i , where σ
2
i is the covariance of the ith component of a random variable

x sampled with distribution D) as the trace of the covariance matrix. The mean
sampler for the batch x̂, g(w, x̂) is still µ ( 1

b ∑b
i=1 g(w,xi) = 1

b
∗bµ) but individual

variance will get the 1
b
i.e. now the trace of the covariance matrix is 1

b
σ2.

Since the data samples are i.i.d sampled from D and each xi is i.i.d sampled
from data samples, then xi follows the same distribution of D. Then by Markov’s
inequality we can say that,

P (∣g(w, x̂) − µ∣2 ≥∆) = P (∣g(w, x̂) − µ∣22 ≥∆2) ≤ E(∣g(w, x̂) − µ∣22)
∆2

(2)

Fig. 3: Two models Mj ,Mk

at most ∆2 distance apart
from µ with probability de-
fined in Eq. (5)

Here the first equality is true by the prop-
erty of monotonicity of squares and the second is
Markov’s inequality. Note that E(∣g(w, x̂) − µ∣22)
is just the trace of the covariance matrix ( 1

b
σ2).

Then, we can write:

P (∣g(w, x̂) − µ∣22 ≥∆2) ≤ σ2

b∆2

⇒ P (∣g(w, x̂) − µ∣22 ≤∆2) ≥ 1 − σ2

b∆2
(3)

Let us consider two models Mj and Mk,
training on data samples Dj and Dk with x̂j , x̂k.
From Eq. (5), we can say P (∣g(w, x̂j)−µ∣22 ≤∆2) ≥(1 − σ2

b∆2 ) and P (g(w, x̂k) − µ∣22 ≤∆2) ≥ (1 − σ2

b∆2 )
at ith epoch

As demonstrated in Fig. 3, if g(w, x̂j), g(w, x̂k)
are in the ∆2 ball of µ with probability defined

in Eq. (5) then with probability ≥ (1 − σ2

b∆2 )2 we
can say both models are utmost 2∆2 distant. I.e.

P (∣g(w, x̂j)−g(w, x̂k)∣ ≤ 2∆2) ≥ (1− σ2

b∆2 )2. Then,
the probability that out of m models there exists two models which are in the
∆2 ball of µ would be:

P (∣g(w, x̂j) − g(w, x̂k)∣22 ≤ 2∆2) ≥ m∑
r=2(

m

r
)(1 − σ2

b∆2
)r ( σ2

b∆2
)m−r (4)

This is equivalent to having at least 2 models out of m in the 2∆2 ball of µ.
The probability that m models are in the 2∆2 ball of µ would be:

60



Concept Drift Detection using Ensemble of Integrally Private Models 9

P (∣g(w, x̂j) − g(w, x̂k)∣22 ≤ 2∆2) ≥ (1 − σ2

b∆2
)m (5)

Equation (6) and (7) represents the probability of weights updating in the
2∆2 ball of µ for a single epoch. For T iterations, the probability that there exists

a model having weight updates in the 2∆2 ball of µ is at least (∑m
r=2 (mr )( σ2

b∆2 )m−r(1−
σ2

b∆2 )r)T . After T epochs, the probability of m models to be in the 2∆2 ball of

µ will be at least ((1 − σ2

b∆2 )m)T .
So, for samples sampled i.i.d. from some dataset, we can conclude that the

lower bound for the probability that there exists recurrent models within 2∆2

ball is at least (∑m
r=2 (mr )( σ2

b∆2 )m−r(1− σ2

b∆2 )r)T . In addition, the probability that

all the m models are in the 2∆2 ball of µ is at least ((1 − σ2

b∆2 )m)T . From this
discussion, we have the following theorems.

Theorem 1. If D1,D2, ...,Dm are i.i.d samples from the dataset D with some
distribution and b is the number of minibatches used for training in each of T
epochs. Then under similar training environment i.e. same initialization, learn-

ing rate, etc. with probability greater than (∑m
r=2 (mr )( σ2

b∆2 )m−r(1 − σ2

b∆2 )r)T , the
model will recur.

Theorem 2. With the above mentioned properties, a model satisfies k-anonymous

integral privacy with probability atleast (∑m
r=k (mr )( σ2

b∆2 )m−r(1 − σ2

b∆2 )r)T
Proof: See Eq. (6) for proof. k-Anonymity integral privacy is equivalent to having
at least k models out of m in the ∆ ball of µ.

Remark on the choice of ∆,m: In order to generate higher k-Anonymity
integrally private models, from theorem 2 we can say that increasing the num-
ber of i.i.d samples (m), b (Number of batches used in each epochs) and ∆ (the
distance value) increases the probability of getting recurrent models.

Role of initialization: The probabilistic analysis presented here gives you
the lower bound that the model will recur from the samples having similar
distribution. The probability can further improve when models are initialized
with the same weight as the learning from similar dataset would result in the
similar learning for the models.

4 Experiments

In this section, we present the experimental results for our proposed methodol-
ogy. We will show that our methodology performs well with Categorical, Real,
and Integer data with arbitrary number of classes. We perform our experiments
on 3 real-world datasets namely Cover type (CovType), Electricity, and Susy
dataset [15]. We also run our experiments on artificially generated Sine data and
Insects data with abrupt, gradual and incremental drifts [16]. Table 1 shows the
number of instances and other details of these datasets.
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10 A. K. Varshney et al.

Dataset # instances # attribute Data type # classes

CovType 581012 54
Categorical
Integer

7

Electricity 45312 8
Real

Integer
2

Susy 5000000 18 Real 2
Sine 200000 4 Real 2

Insects ab 52848 33 Real 6
Insects grad 24150 33 Real 6
Insects incre 57018 33 Real 6

Table 1: Details of the used Datasets

For our experiments, we have randomly considered a NN with a single hidden
layer (10 neurons) architecture (We will call this architecture ANN) and a three
hidden layer NN architecture with 10-20-10 number of neurons (we will call it
DNN). For our experimental purpose we have chosen ∆ = 0.01 and ADWIN
parameter, δ = 0.001. For all the datasets, we have initially trained ANN and
DNN over 10% of the dataset, and then stream is evaluated with 2% of the
dataset at each time instance.

We compare our results (Integrally private drift detection, IPDD) with No re-
training (No retrain), ADWIN with unlimited label availability (ADWIN unlim),
and ADWIN with limited labels (ADWIN lim). We have used three levels of dif-
ferentially private models: high privacy (ϵ = 0.1) under limited label availability
(DP 01), moderate privacy (ϵ = 0.5) under limited label availability (DP 05)
and low privacy (ϵ = 1.0) under limited label availability (DP 10). All the re-
sults have been computed for ANN as well as DNN. The No retraining model
approach does not check for drifts, it trains the model with initial data once and
only does the prediction for the rest of the data stream. For ADWIN unlim we
assume it has access to all the true labels of the incoming data stream and it
detects drifts using the true labels only. The ADWIN lim can have true labels
upon request but detect the drifts using uncertainty through the ADWIN model.
Similar settings were assumed for DP 01, DP 05, DP 10 and IPDD.

We can observe that our methodology IPDD has better or comparable accu-
racy score for both ANN and DNN. Table 2 provides the accuracy of the learned
models. IPDD performs better than its counterparts for CovType and Electric-
ity datasets, it has comparable accuracy score for Insects ab and comparable
results with ADWIN unlim method. Table 3 provides the results for Mathews
correlation coefficient (mcc) in the range [−1,1] (higher the better). MCC is
a reliable statistical rate which assigns high value to a classifier if it performs
good in all four confusion matrix categories. In comparison with differentially
private models, IPDD performs much better than all three levels of differential
privacy for all datasets except Insects grad and Insects incre. For ANN, IPDD
performs performs better for CovType dataset and has comparable mcc rate
with the rest. In case of DNNs, IPDD performs better than its counterparts for
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Electricity, Susy and Insects ab datasets; and performs comparable results for
the rest of the datasets. Table 4 shows the score for the area under the curve
(auc score). Auc score is the probability that a model ranks a random positive
instance higher than a random negative instance. Table 4 highlights that auc
score for IPDD’s ANN and DNN performs better than its counterparts in case
of all the datasets except Insect grad and Insect incre dataset.

 

       
 

 

 

 

 

 

 
 

 

 

 

 

 

Fig. 4: Drift detected by dif-
ferent ϵ-differentially private
models

We observed that with the addition of noise
DP models may struggle to detect drifts. Ta-
ble 5 shows the number of drifts detected by
each method. It highlights that DP models at
times may detect very few drifts because of the
noise. On the other hand, IPDD detects compa-
rable drifts to ADWIN unlim and ADWIN lim
for both ANN and DNN. Table 5 also highlights
that proposed IPDD does not detect unnecessary
drifts i.e. IPDD does not necessary detect any
drift when there is none (counterparts of IPDD
does not detect any drift). As expected when the
noise for DP models decreases, more drifts were
detected by DP models as shown in Fig. 4.

In most of the cases, differentially private
models does not perform as good as IPDD mod-
els even when the ϵ is very high (very low privacy). This is shown in Fig. 5. It
compares the accuracy score between DNN model of DP and IPDD for all the
datasets. Fig. 5a, 5b, 5c, 5d, 5e, and 5f highlights that even though the accuracy
score improves for DP models, IPDD still performs better than DP. Only in case
of Fig. 5g the DP model has slightly better accuracy score than IPDD even in
case of high privacy.

Section 3.1 shows the probabilistic analysis on the lower bound of the re-
currence of Integrally private models. As discussed in the remarks of Section
3.1, the higher the value of ∆ the higher the number k-anonymity in integrally
private models. For models with same initialization trained on 100 i.i.d samples
(D1,D2, ...,D100) from Sine dataset, the k in k-anonymity Integral privacy has
been plotted against increasing ∆ in Fig. 6a. As can be seen increasing the ∆
value leads to the higher value of k in k-anonymity Integral privacy. Similarly, we
can see in Fig. 6b that for a fixed ∆ = 0.01, increasing the number of i.i.d samples
leads to a higher value of k in k-Anonymity integral privacy. It is important to
highlight the distinction between k-anonymity and ensemble of k models cho-
sen with k-anonymity Integral privacy. Simply, in k-Anonymity integral privacy,
there exists a bucket which has at least k models while we require an ensemble
of k such buckets.

We observe in Fig. 7a that for a fixed ∆ = 0.01, increasing the number of
i.i.d samples also leads to the higher k in k-Anonymity integral privacy. In cases
where all the models are clustered to only one IP model, generating an ensemble
of such models can be tricky. An easier way to avoid this problem is to generate
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(g)

Fig. 5: Comparison of the accuracy score between differential privacy and in-
tegral privacy: (a) CovType (b) Electricity (c) Susy (d) Sine (e) Insect ab (f)
Insect grad (g) Insect incr.
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Fig. 6: K-anonymity integral privacy against (a) increasing ∆ (b) increasing the
number of i.i.d samples
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(c)

Fig. 7: Number of integral private models in an ensemble against (a) increasing
the number of i.i.d samples (b) increasing the number of different initialization.
(c) k-anonymity against different initialization
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Concept Drift Detection using Ensemble of Integrally Private Models 15

an ensemble of k-anonymity models using different initializations. The reason for
this could be attributed to the comparable learning process when using similar
training data. For 100 i.i.d samples of Sine data, in Fig. 7b, x-axis shows the
number of different initialization and y-axis shows the number of different IP
models in an ensemble. It is important to note here that for 100 samples if the
number of IP models increases in an ensemble, k-anonymity of each IP model
will decrease as depicted in Fig. 7c.

4.1 Limitations of our approach:

The analysis of our method as well as our experiment permits us to state the
following.

1. Generating k-anonymous integrally private models requires training on large
number of samples which is a time consuming process. The proposed IPDD
methodology has running time as the cost of privacy.

2. As shown in Section 3.1, the generation of integrally private models is a
probabilistic approach and depends on the samples selected. That is, different
runs can provide different results.

5 Conclusion and Future work

In this paper we have presented a private drift detection methodology called
’Integral Privacy Drift Detection’ (IPDD). Our methodology detects drifts us-
ing an ensemble of k-anonymity integrally private models. Simply, we generate
an ensemble of k models which are recurring from multiple disjoint datasets.
Our methodology does not require the ground truth to detect concept drift but
assumes they are available for retraining. We find that our methodology can
successfully detect concept drifts while maintaining the utility of non-private
models. It is useful in generating models which have comparable (better in some
cases) accuracy score, mcc score and auc score against ADWIN with unlimited
label availability and limited label availability. In comparison with its differ-
entially private counterpart, IPDD perfoms significantly better in most of the
cases.

As shown above different parameters can lead to different levels of privacy.
It can also affect the number of drifts detected and the utilty of the model.
Fine-tuning of these parameters for each application is an interesting direction
for future work. Furthermore, extension of our work for non-i.i.d. samples would
be an interesting future direction.
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[4] I. Žliobaitė, M. Pechenizkiy, and J. Gama, “An overview of concept drift appli-
cations,” Big data analysis: new algorithms for a new society, pp. 91–114, 2016.

[5] A. Bifet and R. Gavalda, “Learning from time-changing data with adaptive win-
dowing,” in Proceedings of the 2007 SIAM international conference on data min-
ing, SIAM, 2007, pp. 443–448.
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k-IPfedAvg: k-Anonymous Integrally Private
Federated Averaging with Convergence Guarantee

Ayush K. Varshney , Student Member, IEEE, Vicenç Torra , Fellow, IEEE

Abstract—Federated Learning (FL) has established itself as a
widely accepted distributed paradigm. Without sharing data, it
may seem like a privacy-preserving paradigm, but recent studies
have revealed vulnerabilities in weight sharing which results
in information disclosure. Hence, privacy-preserving approaches
must be incorporated during aggregation to avoid disclosures.

In the literature of FL, not much focus has been given on gener-
ating generalized models which can be generated by multiple sets
of datasets thus avoiding identity disclosure. Integrally private
models are the models which recur frequently from different
datasets. So, in this paper we focus on generating the integrally
private global models proposing k-Anonymous Integrally Private
Federated Averaging (k-IPfedAvg), a novel aggregation algorithm
which clusters similar user weights to compute a global model
which can be generated by multiple sets of users. Convergence
analysis of k-IPfedAvg reveals a rate of O( 1

T
) over training

epochs. Furthermore, the experimental analysis shows that k-
IPfedAvg maintains a consistent level of utility across various
privacy parameters in contrast to existing noise based privacy-
preserving mechanisms. We have compared k-IPfedAvg with
classical fedAvg and its differentially private counterpart. Our
results shows that k-IPfedAvg has comparable accuracy score
with baseline fedAvg and outperforms DP-fedAvg on iid and
non-iid distributions of MNIST, FashionMNIST and CIFAR10
datasets.

Index Terms—Data privacy, federated learning, integral pri-
vacy, generalized models.

I. INTRODUCTION

IN recent years, artificial intelligence (AI) and machine
learning (ML) have undeniably revolutionized a multitude

of disciplines, ranging from healthcare [1] and finance [2]
to arts and communication [3] and many others. These tech-
nologies can uncover patterns from large information, perform
predictive studies, and even simulate human decision-making
processes due to their ability to learn from data and powerful
computing resources. The widespread use of AI and ML
applications across a range of industries not only highlights
the tools’ disruptive potential but also necessitates a thor-
ough analysis of their techniques, ramifications, and ethical
implications. The crucial issue of data privacy is integral to
these factors. This issue becomes even more pronounced when
one considers the vast quantities of data available to these
models. Traditional machine learning models were trained in
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an environment where data is aggregated on a single server or
cluster which poses significant data privacy risks.

Federated learning (FL) [4] framework has emerged as a
feasible paradigm which allows multiple users to train a shared
model without requiring them to share their raw sensitive data.
This makes FL, the most sought distributed machine learning
framework. McMahan et al. [4] introduced federated averaging
(fedAvg) which is the first and perhaps the most widely used
algorithm to aggregate the models trained on user data. Fedavg
has been shown to be communication efficient and converges
on iid as well as non-iid1 data. FL framework involves a central
server and can have any number of participating users. Central
server first distributes a global model to the users. Users
then optimize in parallel the global model using stochastic
gradient descent (SGD) or its variants on their local data. The
central server aggregates the model parameters of the users to
construct a new global model. This process is repeated until a
well performing model is obtained. Unlike the traditional ML,
only the model parameters are transmitted between server and
users.

Since, the FL server does not have access to the users
local data, the problem of heterogeneity (non-iid) is a big
challenge. With data heterogeneity, the training data across
multiple devices does not belong to a single distribution. User
data can come from various distributions. Some users may
have data that follow a common distribution, while other users
may have data following other different distributions. In such
cases, the global model can diverge considerably with the one
we would infer from user data, and due to this divergence,
the construction of the model may exhibit slow convergence.
Apart from this, FL has its own privacy challenges, the weights
exchanged between the server and the user encodes the private
information of the users local data which bears the risk of
privacy leakage using attacks such as model inversion attacks
[5], membership inference attacks [6], data poisoning attacks
[7] and many more. Such leakage is very costly and thus
ensuring user’s privacy is critical to increase the impact of
federated learning in day-to-day life.

Recent works have started employing privacy-preserving
mechanisms in FL framework to overcome the privacy chal-
lenges. Privacy models such as k-anonymity [8], differential
privacy (DP) [9] and their variants have dominated most of the
research in the literature. In a FL environment, k-Anonymity
can safeguard the local data on users’ devices. Specifically,
before training the global model, users can protect their data by
aggregating each data instance with the closest k−1 instances.

1Throughout the paper, ”non-iid” means data is not identically distributed.
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While this method is beneficial for publishing data without
disclosing individual data instances, there currently exists no
approach in the literature that protects user identities during
the aggregation of user weights in federated averaging. The
differentially private approaches clip the model updates and
add artificial noise in order to prevent information leakage. The
differentially private solutions [10] offer theoretically sound
privacy but have practical limitations. Due to heterogeneity of
the data, clipping the model weights across all the layers may
imply a significant information loss. If the noise is added in
each training step, the privacy budget will accumulate causing
the explosion of the total privacy budget.

Considering the drawbacks of the existing privacy mecha-
nism, in this paper we explore Integral privacy as an alternative
to k-Anonymity and DP to generate high utility, privacy-
preserving models. A machine learning model is considered to
be integrally private if it recurs from multiple disjoint datasets.
Previous work shows [11] a methodology for generating an
integrally private solution and provides [12] a probabilistic
analysis for the recurrence of the models. The private models
generated have comparable utility with non-private models
however the recurrence of the models is probabilistic. It has
been shown [13] [14] that, given a similar training environment
and a large batch size, models trained on data sampled from
certain distributions will likely have their gradient updates
separated by only a small distance (say ∆), with a probability
close to 1. This gives no guarantee on the number of models
that can be in the range of ∆ i.e. the precise number of
times a model recurs is not known. In this work, we remove
this drawback by considering k-nearest distant models as
recurring models (since ∆ << 1). This allows us to define
a privacy-preserving aggregation mechanism for FL, which
we call k-anonymous integrally private federated averaging
(k-IPfedAvg). In k-IPfedAvg, the server identifies the clusters
of the nearest k models. The server randomly picks a model
from each cluster and aggregates them in order to generate
the global model for the next round. Since the models in
the cluster are at most ∆ distant apart, the global model k-
IPfedAvg is also at most ∆ distance apart. With the assumption
of ∆ being small, we prove that the global model from k-
IPfedAvg converges on iid as well as non-iid data. The main
contributions of this paper are summarized as follows:

• We propose a novel k-anonymous integrally private fed-
erated average algorithm which protects the identity dis-
closure of the clients participating in the training.

• We provide theoretical analysis for the convergence of k-
IPfedAvg algorithm. We find that k-IPfedAvg has O( 1

T )
convergence rate, where T represents the total number of
training epochs.

• We compare our results on 3 well known datasets:
MNIST, CIFAR10, FashionMNIST. Our results find that
k-IPfedAvg outperforms its existing counterparts.

• We find that k-IPfedAvg has a marginal effect on utility.

The rest of the paper is organized as follows. Section
II describes the background for the proposed aggregation
methodology. Section III describes our proposed work. Section
IV gives the experimental analysis. The paper finishes with

some conclusions and future work in Section V.

II. BACKGROUND AND RELATED WORKS

A. Related works

Federated learning proposed by McMahan et al. [4] is a
type of collaborative learning without collecting users data. In
the literature of FL, most of the work is focused on efficient
communication and data privacy. Our work focuses on the data
privacy issue of FL.

Privacy attacks in FL. Although the FL framework does
not require the local data, recent studies have found several
attacks that can lead to data breaches. Typical FL attacks are:
Data reconstruction attack (reconstruct training records based
on the model weights) [15], membership inference attack (infer
whether a data record participated in the training) [6] and data
poisoning attacks (several malicious participants manipulate
the model weight in order to get desired inference) [7].

Privacy models in FL. k-Anonymity, by Samarati et al.
[8], is employed to safeguard a dataset prior to its release
by ensuring that each data record in the dataset is indistin-
guishable from at least k-1 other records. k-Anonymity and
its variants (such as l-diversity [16] and t-closeness [17])
provides defense against membership inference attacks and
reconstruction attacks. For example, in [17], discriminative
attributes were identified and anonymized on the local devices
before syntactic learning at the server. In [18] based on the
degree of privacy, each client decides the amount of data
to be shared with the server, in [19] a hierarchical structure
was given where the server communicated with clients who
in turn have sub-clients based on the distance measure and
many others. On the other hand, differential privacy [9] and
its variants (such as local-DP [20], client-level DP [10]) offer
privacy guarantee by adding noise. In FL, in each iteration
DP is often guaranteed by adding noise from a Laplacian or
Gaussian distribution during training on local devices with an
assumption of a trusted server which aggregates their results
and this continues for a fixed number of rounds. The issue of
non-trusted servers can be resolved by taking a decentralized
approach in the DP-FL literature. For example, in [21], a
peer-to-peer structure for FL is given, where the aggregation
is handled by each node participating in the communication
round, in [22] for each training iteration a master node is
selected at random which aggregates the global model and
send it to all the devices. Further updates in the DP-FL
literature can be found in [23]. However, the privacy budget for
DP-FL steadily increases with each round of communication
between server and users which may lead to budget explosion
for DP-FL. Apart from this, DP-FL approaches in literature
provably can not achieve the data anonymization and de-
identification required in the regulations such as GDPR and
HIPAA [24].

Convergence of fedAvg. Convergence of fedAvg has been
proved in several works, e.g. in [25] convergence of distributed
SGD was proved under the assumption that the data are iid and
all the users participate in a single round of communication,
in [26], the convergence assuming the all devices participate
in a single round of communication was given, convergence
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in case of non-iid data and partial participation was proved in
[27]. Our convergence analysis is inspired from the work in
[25] and [27].

B. Federated Learning

This section provides an overview of a well recognized fed-
erated learning (FL) framework [4]. FL is a type of distributed
learning that accounts for non-identical and independently
distributed (non-iid) data. The typical FL optimization at the
server looks like:

min
w

{
F (w) ≜

N∑

l=1

plFl(w)

}
(1)

where N is the total number of user devices communicating
model weights, pl (pl ≥ 0 and

∑N
l=1 pl = 1) represents the

weight of the lth user and the function Fl(w) is the local
objective function. The local objective function Fl(w) with
the model weights w aims to minimize the loss (represented
by the loss function, l()) on the local data. Assuming the lth

user has nl training instances ((x1, y1), (x2, y2)...., (xnl
, ynl

)).
Then, Fl(w) is defined as

Fl(w) ≜
1

nl

nl∑

i=1

l(w;xi, yi) (2)

Algorithm 1 Federated averaging (fedAvg)

Server side
Initialize global model w0

for t = 1, 2, ..., ⌊ TE ⌋ do ▷ communication rounds
Disseminate wt to the user devices
for each user l = 1, 2, .., N do

wl
t+1 = UserUpdate (wt)

end for
wt+1 =

∑N
l=1 plw

l
t+1 ▷ Weighted Aggregation

end for
UserUpdate(wt)
Consider w = wt as initial weight
for local epochs e = 1, 2, .., E do

w ← w − ηt∇Fl(w, ξ
t+e
l )

end for
return w

In a typical federated learning setup, a central server initial-
izes the global model. During each round of communication,
this global model is sent to the active clients. The clients then
train the model with their own data for some epochs and send
their updated models back to the server. The central server
then combines these updated models from the clients. This
cycle is repeated over a specified number of communication
rounds. When all clients in the network are involved in training
the global model in each round, it is known as full-device
participation. On the other hand in partial-device participation,
only a set of random users participate to train the global
model. The federated averaging (fedAvg) algorithm for full-
device participation, where all N clients participate, is outlined
in Algorithm 1. For partial-device participation, the model is

communicated to selected few clients and only their updates
are considered for aggregation. In Algorithm 1, T represents
the total number of SGD steps, N is the number of users, E is
the number of local epochs, ηt is the learning rate during tth

communication round, and ξt+e
l is a sample randomly chosen

from lth client’s data.

C. Integral Privacy

Integral privacy [11][28] is a privacy model focused on ad-
dressing model comparison attacks and membership inference
attacks. Integrally private models are the models which recur
from multiple sets of disjoint datasets. For deep learning mod-
els, the number of weights are huge and generating precisely
the exact same weights with disjoint datasets is challenging.
The authors in [11] introduced a flexible ∆-Integral privacy
(∆-IP) for DNNs which considers two models similar even
when they are ∆ distance apart. A model is k-anonymous ∆-
integrally private if there exists at least k − 1 other similar
models. Formally ∆-IP is defined below.
∆-Integral Privacy Let D represent the population, S∗ ⊂

D be the background knowledge, and M ⊂M be the model
generated using algorithm A on an unknown dataset X ⊂ D.
Then, let Gen∗(M,S,∆) represent the set of all generators
consistent with background knowledge but not including S∗

and model M or models at most ∆ distant. Then, k-anonymity
∆-IP holds when Gen∗(M,S,∆) has at least k-elements and

⋂

S∈Gen∗(G,S∗,∆)

S = ∅. (3)

III. PROPOSED WORK

In this section we present our k-anonymous integrally
private federated averaging along with its convergence analysis
for strongly convex and smooth functions.

k-IPfedAvg. In k-anonymous integrally private fedAvg, we
cluster the weights according to some distance measure. The
server randomly selects one participant from each cluster as
their representative and aggregate them to get global model
parameters. In our case the optimization problem looks like:

min
w



F (w) :=

|C|∑

c=1

pcFc(w)



 (4)

where |C| = ⌊Nk ⌋ is the number of clusters, k is the privacy
parameter, pc =

∑
i∈Cc

pi and Fc(w) is the local objective
function of the randomly selected participant in cluster Cc.

Fig. 1 shows the framework for k-IPfedAvg. In a typical
round of communication (say t-th) in k-IPfedAvg, a server
broadcasts the latest model, wt to all the user devices. The
devices then train the wt for E epochs on their local data.
All the devices have similar training environment i.e., they
have similar learning rate for each round (ηt), fixed E, similar
optimizer (SGD in our case) and so on. After local training,
the server clusters the received local models into |C| clusters
based on some distance measure (say dist(wi

t+1, w
j
t+1)), each

cluster has between [k, 2k] number of local models. In the end,
the server randomly choses a representative of the cluster and
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Users

Server

Aggregation t+1

Fig. 1: Generic k-Anonymous Integrally Private Federated
Averaging framework

aggregates the representative to produce a new global model
wt+E i.e.,

wt+E :=

|C|∑

c=1

pcw
rc
t+E (5)

where wrc
t+E is a randomly selected parameter from each

cluster.
When the models are clustered such that the distance

between them is small then according the definition of ∆-
Integral privacy (see section II-C), we can call such models as
integrally private i.e. in a given cluster C, if dist(wi

t, w
j
t ) ≤

∆ ∀i, j ∈ C. Algorithm 2 provides the formal algorithm for
k-Anonymous Integrally Private Federated Averaging where
the parameter k is a privacy parameter which determines the
number of clusters and the number of weights in each cluster.
The server has a predefined value of k, then in each round of
communication it broadcasts the global model to all the clients,
clients in turn train the received model on their local data and
communicate the updated model back to the server. The server
clusters the model weights, then it randomly chooses a model
from each cluster as its representative and aggregates them.
This process continues for a given number of communication
rounds or until the convergence is obtained.

A. Theoretical Analysis

In this section, we focus on the convergence analysis of
proposed k-IPfedAvg. We will prove that just like fedAvg, k-
IPfedAvg also has convergence rate of O( 1

T ). We cluster the
weights from each clients based on some distance measure and
aggregate representatives from each cluster to generate global
weights. Our work is similar to the one of Li et al. [27]. In our
work, however, in each round of communication, users who
are chosen as a cluster representative participate to generate a
global model.

Algorithm 2 k-Anonymous Integrally Private Federated Av-
eraging (k-IPfedAvg)

Server side
Initialize global model w0

for t = 1, 2, ..., ⌊ TE ⌋ do ▷ communication rounds
Broadcast wt to the clients
for each client l = 1, 2, .., N do

wl
t+1 = ClientUpdate (wt)

end for
Compute clusters C = C1, C2, ...C⌊N

k ⌋
wt+1 =

∑|C|
c=1 pcw

rc
t+1 ▷ Aggregate randomly chosen

models
end for
ClientUpdate(wt)
Consider w = wt as initial weight
for local epochs e = 1, 2, .., E do

w ← w − ηt∇Fl(w, ξ
t+e
l )

end for
return w

Let N be the number of user devices participating in each
round for federated averaging by a trusted server. Let T be the
total number of iterations for SGDs on all the user devices, E
be the number of local iterations of SGDs on each user device.
F1, F2, ..., FN be the local objective functions on each device.
Let F ∗, F ∗

l be the minima for the global and local objective
functions. Let Γ = F ∗ −∑N

l=1 plF
∗
l represent the degree of

non-iid [27]. We consider the following assumptions in our
work:

Assumption 1. F1, F2, ..., FN are all L-smooth i.e., ∀ x, y :
Fl(x) ≤ Fl(y) + (x− y)T∇Fl(y) +

L
2 ∥x− y∥22

Assumption 2. F1, F2, ..., FN are all µ- strongly convex
i.e., ∀ x, y : Fl(x) ≥ Fl(y) + (x− y)T∇Fl(y) +

µ
2 ∥x− y∥22

Assumption 3. Let ξ be uniformly sampled at random
from the l-th device’s local data. Then, for each device l,
the variance of SGD is bounded i.e. there exists σl such that
E∥∇F ξ

l (w
l
t)−∇Fl(w

l
t)∥2 ≤ σ2

l .
Assumption 4. In all the communication rounds, for each

device, the expected squared norm of SGD is bounded i.e.,
E∥∇F ξ

l (w
l
t)∥2 ≤ G2.

Assumption 5. For a given batch size b and a large N there
exists at least k samples (ξ) in each of the non-iid distributions.
Then, as a consequence we assume that for each cluster c ∈ C,

E|∇F ξ
r (w

rc
t )| =

∑

l∈C

pl
pc
∇Fl(w

l
t).

Assumptions 1 and 2 are typical assumptions in machine
learning literature for convergence analysis. While Assump-
tions 3 and 4 were considered especially for convergence anal-
ysis of federated averaging in [25] and [27]. For Assumption 5,
we consider a set of M non-iid distributions (D1,D2, ...,DM )
and each device draws all samples from any (but only one)
of these distributions. When we have a large number of user
devices then we have enough samples following a similar
distribution. This assumption is needed in a proof later. In
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particular, Assumption 5 implies

E|
|C|∑

c=1

pc∇F ξ
r (w

rc
t )| =

|C|∑

c=1

pcE|∇F ξ
r (w

rc
t )|

=

|C|∑

c=1

pc
∑

l∈C

pl
pc
∇Fl(w

l
t)

=

N∑

l=1

pl∇Fl(w
l
t) (6)

Intra-cluster weight distance: We define intra-cluster
δc (c = 1, 2, .., |C|) as the maximum distance between the
group average and user weights for a given cluster (say Cc) in
a single round of communication in k-IPfedAvg. Mathemati-
cally,

δtc = max
l′∈Cc

∥∥∥∥
∑

l∈Cc
pl

pc
∇F ξ

l (w
l
t)−∇F ξ

l′(w
l′
t )

∥∥∥∥
2

(7)

Hence, for any member (say r) of the cluster Cc,
pc∇F ξ

r (w
r
t ) ≥

∑
l∈Cc

pl∇F ξ
l (w

l
t) − pcδ

t
c, or pc∇F ξ

r (w
r
t ) ≤∑

l∈Cc
pl∇F ξ

l (w
l
t) + pcδ

t
c holds. The inter-cluster distance

between the distance is defined as.

δt =

|C|∑

c=1

pcδ
t
c (8)

Let IE be the set synchronization step for the global model
i.e. server only performs the aggregation when t ∈ IE . Let
vlt+1 represent the immediate result for one step of SGD. i.e.
vlt+1 = wl

t− ηt∇F ξ
l (w

l
t) (∇F ξ

l (w
l
t) is the gradient on sample

ξ for the user l) and wl
t+1 be the weight for lth user after its

communication with the server i.e.,

wl
t+1 =

{
vlt+1, if t+ 1 /∈ IE
∑|C|

c=1 pcv
rc
t+1 otherwise

where vrct+1 is the intermediate result for the client randomly
selected from each cluster. We also define two virtual se-
quences such as in [25], [27], vt =

∑|C|
c=1 pcv

rc
t and wt =∑|C|

c=1 pcw
rc
t . For the sake of convenience we also define,

gt =
∑N

l=1 pl∇Fl(w
l
t) and gt =

∑|C|
c=1 pc∇F ξ

r (w
rc
t ). Then,

vt+1 = wt − ηtgt and under Assumption 5, in a cluster the
user’s gradients are similar i.e. E|gt| = gt (Equation 6).

Lemma 1. Under Assumption 3, the following holds:

E∥gt − gt∥2 ≤
∑

l

p2l σ
2
l

Proof. Using the definition of gt and gt in the left hand side

of the inequality, we get:

E∥gt − gt∥2 = E∥
N∑

l=1

pl∇Fl(w
l
t)−

|C|∑

c=1

pc∇F ξ
rc(w

rc
t )∥2

= E∥
|C|∑

c=1

pc
∑

l∈C

pl
pc
∇Fl(w

l
t)−

|C|∑

c=1

pc∇F ξ
rc(w

rc
t )∥2

= E∥
|C|∑

c=1

pc

(∑

l∈C

pl
pc
∇Fl(w

l
t)−∇F ξ

rc(w
rc
t )

)
∥2

= E∥
|C|∑

c=1

pc

(∑

l∈C

pl
pc
∇Fl(w

l
t)−

∑

l∈C

pl
pc
∇F ξ

l (w
l
t)

)
∥2

= E∥
|C|∑

c=1

pc
∑

l∈C

pl
pc

(
∇Fl(w

l
t)−∇F ξ

l (w
l
t)
)
∥2

= E∥
|C|∑

c=1

∑

l∈C

pl

(
∇Fl(w

l
t)−∇F ξ

l (w
l
t)
)
∥2

=

|C|∑

c=1

∑

l∈C

p2lE∥∇Fl(w
l
t)−∇F ξ

l (w
l
t)∥2

=

|C|∑

c=1

∑

l∈C

p2l σ
2
l =

N∑

l=1

p2l σ
2
l

(9)

Lemma 2. Under Assumption 4 and non-increasing ηt such
that ηt ≤ 2ηt+E ∀ t ≥ 0, we find:

E

[
N∑

l=1

pl∥wt − wl
t∥2
]
≤ 4η2t (E − 1)2G2

Proof. The proof follows the proof of Lemma 3 from [27].
In our algorithm we are clustering the models and then
selecting at random a model rc from each cluster c in C.
Nevertheless, similar to [27], we are also communicating at
each E steps. Therefore, as in [27], for any t ≤ 0, there exists
a t0 ≤ t such that t − t0 ≤ E − 1 and wl

t0 = wt0 . Also, we
have ηt non-decreasing and ηt0 ≤ 2ηt. Then,

E
N∑

l=1

pl∥wt − wl
t∥2 = E

N∑

l=1

pl∥(wl
t − wt0)− (wt − wt0)∥2

Then, using E∥X − EX∥2 ≤ E∥X∥2 (observe that wt is
the mean of wl

t using the rc for c ∈ C),

E
N∑

l=1

pl∥wt − wl
t∥2 ≤ E

N∑

l=1

pl∥(wl
t − wt0)∥2

Using Cauchy-Schwarz Inequality for sequences
i.e. ||∑E

i=1 ai||2 ≤ E
∑E

i=1 ||ai||2 and wl
t =
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wt0 +
∑t−1

t=t0
∇F ξ

l (w
l
t).

E
N∑

l=1

pl∥wt − wl
t∥2 ≤

N∑

l=1

pl

t−1∑

t=t0

(t− t0)η
2
tE∥∇F ξ

l (w
l
t)∥2

≤
N∑

l=1

pl

t−1∑

t=t0

(E − 1)η2tE∥∇F ξ
l (w

l
t)∥2

≤
N∑

l=1

plη
2
t0(E − 1)2G2 ≤ 4η2t (E − 1)2G2

(10)

Lemma 3. Under Assumption 1 and 2, If ηt ≤ 1
4L then,

E∥vt+1 − w∗∥2 ≤ (1− µηt)E∥wt − w∗∥2 + η2tE∥gt − gt∥2

−1

2
ηtE(F (wt)− F ∗) + 2ηtL

N∑

l=1

plE∥wt − wl
t∥2

Proof. Since vt+1 = wt − ηtgt. We have,

E∥vt+1 − w∗∥2 = E∥wt − ηtgt − w∗∥2 (11)

Subtracting and adding ηtgt in Eq. (11)

E∥vt+1 − w∗∥2 = E∥wt − ηtgt − w∗ − ηtgt + ηtgt∥2
= E∥wt − w∗ − ηtgt∥2 + η2tE∥gt − gt∥2

+2ηtE|⟨wt − w∗ − ηtgt, gt − gt⟩|
(12)

Since E|gt| = gt by our Assumption 5 (see Equation 6),
the last term in Eq. (12) equates to 0 i.e. 2ηtE|⟨wt − w∗ −
ηtgt, gt − gt⟩| = 0. We only need to focus on bounding the
first two terms of Eq. (12). Then, for the first term we have:

∥wt − w∗ − ηtgt∥2 = ∥wt − w∗∥2 + η2t ∥gt∥2 − 2ηt⟨wt − w∗, gt⟩
(13)

where, η2t ∥gt∥2 = η2t
∑N

l=1 pl∥∇Fl(w
l
t)∥2. Due to L-

smoothness of Fl,

∥∇Fl(w
l
t)∥2 ≤ 2L

(
Fl(w

l
t)− F ∗

l

)

Then,

η2t ∥gt∥2 ≤ 2Lη2t

N∑

l=1

pl
(
Fl(w

l
t)− F ∗

l

)
(14)

Now, let us consider −2ηt⟨wt − w∗, gt⟩, we know gt =∑N
l=1 pl∇Fl(w

l
t) then we have,

−2ηt⟨wt − w∗, gt⟩ = −2ηt
N∑

l=1

pl⟨wt − w∗,∇Fl(w
l
t)⟩

= −2ηt
N∑

l=1

pl⟨wt + wl
t − wl

t − w∗,∇Fl(w
l
t)⟩

= −2ηt
N∑

l=1

pl⟨wl
t − w∗,∇Fl(w

l
t)⟩

−2ηt
N∑

l=1

pl⟨wt − wl
t,∇Fl(w

l
t)⟩. (15)

Since Fk(.) follows µ-strong convexity, then the first term
in Eq. (15) can be written as:

−⟨wl
t − w∗,∇Fl(w

l
t)⟩

≤ −
(
Fl(w

l
t)− F (w∗)

)
− µ

2
∥wl

t − w∗∥2. (16)

Similar to [25], using 2⟨a, b⟩ ≤ ηt∥a∥2+η−1
t ∥b∥2, for ηt >

0 for the second term of the inequality in Eq. (15). We get:

−2⟨wt − wl
t,∇Fl(w

l
t)⟩

≤ 1

ηt
∥wt − wl

t∥2 + ηt∥∇Fl(w
l
t)∥2. (17)

Then, by smoothness of F and similar to Equation (14),

−2⟨wt − wl
t,∇Fl(w

l
t)⟩ ≤

1

ηt
∥wt − wl

t∥2 + 2Lηt(Fl(w
l
t)− F ∗

l ).

(18)

Applying these expressions from Equations (14), (15), (16),
(17) back in Equation (13), we get,

∥wt − w∗ − ηtgt∥2 ≤ ∥wt − w∗∥2 + 2Lη2
t

N∑

l=1

pl(Fl(w
l
t)− F ∗

l )

−2ηt
N∑

l=1

pl
[
(Fl(w

l
t)− F ∗) +

µ

2
∥wl

t − w∗∥2
]
+

N∑

l=1

pl
[
∥wt − wl

t∥2 + 2Lη2
t (Fl(w

l
t)− F ∗

l )
]
.

(19)

Applying the Jensen inequality and after rearranging the
terms, we get:

∥wt − w∗ − ηtgt∥2 ≤ (1− µηt)∥wt − w∗∥2 +
N∑

l=1

pl∥wt − wl
t∥2

+4Lη2
t

N∑

l=1

pl(Fl(w
k
l )− F ∗)− 2ηt

N∑

l=1

pl(Fl(w
l
t)− F ∗

l ).

(20)

From [27], we find that the term 4Lη2t
∑N

l=1 pl(Fl(w
∗) −

F ∗
l ) − 2ηt

∑N
l=1 pl(Fl(w

l
t) − F ∗

l ) is bounded by 6Lη2tΓ +∑N
l=1 pl∥wl

t − wt∥2 with Γ = F ∗ −∑N
l=1 plF

∗
l under the

Assumptions 1-4.
Now we can put all the variables in Eq. (12). We get:

E∥vt+1 − w∗∥2 ≤ (1− µηt)E∥wt − w∗∥2 + η2tE∥gt − gt∥2

+6Lη2tΓ + 2

N∑

l=1

plE∥wt − wl
t∥2

Theorem 1. Let L, µ, σl, T,G be defined as above. Then,
if the Assumptions 1-5 hold, for κ = L

µ , γ = max(8κ,E), the
IPfedAvg with N devices satisfies the following:

E[F (wT )− F ∗] ≤ κ

(γ + T )

(
2Z

µ
+

µ(γ + 1)

2
E∥w1 − w∗∥2

)

where Z =
∑N

l=1 p
2
l σ

2
l + 6LΓ + 8(E − 1)2G2.

Proof. Irrespective of the number of iterations, we always
find wt+1 = vt+1. Let ∆t = E∥wt − w∗∥ then from Lemma
3 we get,
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∆t+1 = (1− ηtµ)∆t + η2tE∥gt − gt∥2

+6Lη2tΓ + 2

N∑

l=1

plE∥wt − wl
t∥2 (21)

Using Lemma 1, we have E∥gt − gt∥2 ≤ Z0 with
Z0 =

∑N
l=1 p

2
l σ

2
l . Also, from Lemma 2, we have

E
[∑N

l=1 pl∥wt − wl
t∥2
]
≤ 4η2t (E − 1)2G2. Putting these

values in Eq. (21), we get

∆t+1 ≤ (1− ηtµ)∆t + η2tZ0 + 6Lη2tΓ + 8η2t (E − 1)2G2

which implies ∆t+1 ≤ (1− ηtµ)∆t + η2tZ where Z = Z0 +
6LΓ + 8(E − 1)2G2.

For step size ηt = α
t+γ , for some α > 1

µ , γ > 0 so
that η1 ≤ min{ 1µ , 1

4L} = 1
4L and ηt ≤ 2ηt+E . Similar to

the convergence proof in [27], we will also prove ∆t ≤
b

γ+t where b = max{ α2Z
αµ−1 , (γ + 1)∆1}

We will prove this using induction over t. For t = 1, it is
easy to see that ∆1 ≤ b

γ+1 to be true. We assume it is true
for some t as well then for some t+ 1, we find:

∆t+1 ≤ (1− ηtµ)∆t + η2tZ

≤ (1− αµ

t+ γ
)

b

t+ γ
+

α2Z

(t+ γ)2

=
t+ γ − 1

(t+ γ)2
b+

[
α2Z

(t+ γ)2
− αµ− 1

(t+ γ)2
b

]

≤ t+ γ − 1

(t+ γ)2
b

Since a−1
a2 = a−1

a2−1+1 = a−1
(a−1)(a+1)+1 ≤ a−1

(a−1)(a+1) =
1

a+1 . Then,

∆t+1 ≤
b

(t+ γ + 1)

Hence, using induction we have proved ∆t ≤ b
γ+t . Now,

using L-smoothness of F and using ∆t ≤ b
γ+t ,

E[F (wT )− F ∗] ≤ L

2
∆T ≤

Lb

2(γ + T )
(22)

Now, for α = 2/µ, γ = max{8Lµ , E} − 1, κ = L/µ. Then

v = max{ α2Z

αµ− 1
, (γ + 1)∆1} ≤

α2Z

αµ− 1
+ (γ + 1)∆1

≤ 4Z

µ2
+ (γ + 1)∆1.

Putting these values in Eq. (22),

E[F (wT )− F ∗] ≤ κ

(γ + T )

(
2Z

µ
+

µ(γ + 1)

2
∆1

)
.
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Fig. 2: The average different distance measures (max, avg, co-
sine) between model weights in each round of communication
for k-IPfedAvg under sevaral ks (2,4,6,8,10): (a) MNIST-iid
(b) FashionMNIST-iid (c) CIFAR10-iid (d) MNIST-noniid (e)
FashionMNIST-noniid (f) CIFAR10-noniid.

IV. EXPERIMENTAL SECTION

In this section, we present the experimental setup and
analysis for k-IPfedAvg. In this work, we have simulated the
FL environment on a local machine. We have randomly chosen
50 users and 50 communication rounds. In a given round of
communication, each user trains the global model for 3 epochs
on their local data and then communicate its model updates
back to the server. The global model consists of two convo-
lution layers (each with 10 filters and (3, 3) as kernel size)
and a dense layer (32 neurons) as hidden layers. The input
and output layers of the global model depends on the number
of channels and output classes in each dataset. Table I shows
the details of our experimental setup. We have compared the
performance of k-IPfedAvg with baseline fedAvg [4] and DP-
fedAvg [10]. To show the effectiveness of k-IPfedAvg, we have
considered various ks (2, 4, 6, 8, 10) against several noise mul-
tipliers (0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1) in DP-fedAvg
(lower the noise multiplier, lower the noise addition and poorer
the privacy).

We have shown our results on three benchmark datasets
MNIST [29] (60k training and validation images, 10k test
images), FashionMNIST [30] (60k training and validation
images, 10k test images), and CIFAR10 [31] (50k training and
validation images, 10k test images) to validate the performance
of k-IPfedAvg. All three datasets have ten output classes. They
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Fig. 3: The test accuracy in each round of communication
for k-IPfedAvg under sevaral ks (2,4,6,8,10) using various
distance measures (max, avg, cosine): (a) MNIST-iid (b)
FashionMNIST-iid (c) CIFAR10-iid (d) MNIST-noniid (e)
FashionMNIST-noniid (f) CIFAR10-noniid.

have been considered in the iid as well as non-iid manner to
validate the performance in heterogeneous FL setting.

In k-IPfedAvg, as soon as the server receives the weight
from the users, it clusters the users based on some distance
measures. We considered three distance measures, namely
Cosine, Avg and Max, to compare model weight. Consider
two models M i,M j trained on ith, jth user’s local data with
L number of layers with N1, N2, ..NL number of neurons in
them. Then, the three distance measures are:

Parameters Values Deescription

Users 50 Number of users in each
round of communication

Global Server 1 Server aggregate the local models
Algorithms compared 3 fedAvg, k-IPfedAvg, DP-fedAvg

k in k-IPfedAvg 2,4,6,8,10 Determines the number of
users in each cluster

Noise multiplier 0.2,0.4,0.5,0.6
0.7,0.8,0.9,1.0,1.1

Determines the amount of noise
needed while training

Datasets MNIST, CIFAR10,
FashionMNIST

iid & non-iid distribution
of these datasets

Local Epochs 3 Number of local training
iterations in each round

Global rounds 50 Number of communications
between server and uses.

Distance Measures Cosine, Maximum,
Average

Distance measure to
compare two models.

TABLE I: Experimental setup.

1) Cosine = MiṀj

||Mi|||̇|Mj ||
2) Avg = 1

L

∑L
l=1

1
Nl

∑Nl

n=1 ||M i
ln −M j

ln||22
3) Max = maxl=1,...,L;n=1,...,Nl

||M i
ln −M j

ln||22)
The average distances in each round of communication for

various values of k (k = 2, 4, 6, 8, 10) for the iid and non-
iid distributions is given in Fig. 2. As expected, the Max
distance measure which computes the maximum Euclidean
distance between corresponding neurons in the same layer of
two different models has the highest average distance between
model weights. Fig. 3 presents the test accuracy score using
the above mentioned distance measures. Although, all three
distance measures have comparable test accuracy on the used
datasets, a closer look suggests Max distance measure has
the worst performance. Considering this, we chose the Max
distance measure for further experiments to show that k-
IPfedAvg performs as good as the baseline fedAvg while
preserving privacy.

Fig. 4 shows the training accuracy over the number of
communication rounds on iid and non-iid distributions of
MNIST, FashionMNIST and CIFAR-10 datasets. A closer
look at Fig. 4 suggests that higher k has marginally negative
impact on the accuracy of the global model i.e. k-IPfedAvg’s
performance does not degrade much with improvement in
the privacy. On the other hand, DP-fedAvg’s performance
drops significantly with the increase in the noise in the noise
multiplier i.e. DP-fedAvg’s performance degrades significantly
with an increase in the privacy level. In case of DP-fedAvg, the
perturbation during training affects its performance, the higher
the privacy the poorer the performance as can be clearly seen
in the CIFAR10 case (see Fig. 4c and Fig. 4f).

Fig. 5 shows the training loss for k-IPfedAvg, fedAvg and
DP-fedAvg. Here as well, even with various values of k, k-
IPfedAvg’s training loss overlaps with the training loss of
fedAvg and outperforms its DP counterparts with various noise
multipliers. DP-fedAvg’s training goes haywire in case of
CIFAR10 (see Fig. 5c and Fig. 5f). We can observe the similar
trend in Fig. 6 which shows the test accuracy of k-IPfedAvg,
fedAvg and DP-fedAvg. k-IPfedAvg has baseline comparable
test accuracy as well while its counterpart DP-fedAvg has
poorer performance with an increase in the privacy level.

From Fig. 4, 5, 6 we can see some small accuracy
drops specially for non-iid distribution of datasets (see for
FashionMNIST-noniid and CIFAR10-noniid results). This is
probably due to poor selection of the model weights during
training. Further analysis required to overcome this gap.

V. CONCLUSION

In this paper, we have presented a novel k-Anonymous
integrally private federated average algorithm (k-IPfedAvg)
which protects the identity disclosure of the clients partici-
pating in the training. In k-IPfedAvg, the server clusters the
user weights based on the privacy parameter and randomly
selects one weight from each cluster randomly to protect
the identity disclosure of the participating user. We have
also presented convergence analysis of k-IPfedAvg. Just like
fedAvg, k-IPfedAvg also has convergence rate of O( 1

T ),
where T represents the total number training epochs. Through
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Fig. 4: The training accuracy of k-IPfedAvg under sevaral ks (2,4,6,8,10), fedAvg and DP-fedAvg under several noise multiplier
(0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1) for: (a) MNIST-iid (b) FashionMNIST-iid (c) CIFAR10-iid (d) MNIST-noniid (e)
FashionMNIST-noniid (f) CIFAR10-noniid.
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Fig. 5: The training loss of k-IPfedAvg under sevaral ks (2,4,6,8,10), fedAvg and DP-fedAvg under several noise multiplier
(0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1) for: (a) MNIST-iid (b) FashionMNIST-iid (c) CIFAR10-iid (d) MNIST-noniid (e)
FashionMNIST-noniid (f) CIFAR10-noniid.
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Fig. 6: The test accuracy of k-IPfedAvg under sevaral ks (2,4,6,8,10), fedAvg and DP-fedAvg under several noise multiplier
(0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1) for: (a) MNIST-iid (b) FashionMNIST-iid (c) CIFAR10-iid (d) MNIST-noniid (e)
FashionMNIST-noniid (f) CIFAR10-noniid.

rigorous experimental analysis, we find that k-IPfedAvg has
comparable accuracy score with fedAvg for iid as well as
non-iid distributions of MNIST, FashionMNIST and CIFAR10
datasets. On the other hand, it performs significantly better
than its DP counterparts with various levels of noise.

Our methodology has marginal effect of privacy parameter
on utility but may have small accuracy drops because of
the poor randomly chosen model(s). An interesting future
direction can be to avoid such drops between communications.
The k-IPfedAvg uses fedAvg as baseline, but can be used with
other aggregation algorithms for federation such as fedProx
[32]. Another interesting direction can be personalization [33]
in k-IPfedAvg.
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