UMEA UNIVERSITY

Towards Self-Driving Microservices

Mohammad Reza Saleh Sedghpour

DocToraL THESIS, MAY 2023
DEPARTMENT OF COMPUTING SCIENCE
UMEA UNIVERSITY
SWEDEN

Department of Computing Science
Umea University
SE-901 87 Umea, Sweden

https://people.cs.umu.se/msaleh/
msaleh@cs.umu.se

Copyright (C) 2023 by authors

Except Paper I, (©) IEEE Press, 2022
Paper II, (© ACM Press, 2022
Paper III, (©) ACM Press, 2021

ISBN: 978-91-8070-022-1 (print)
978-91-8070-023-8 (digital)

ISSN: 0348-0542

UMINF: 23.04

Cover illustration by Ida Aberg.

The papers in this thesis have been re-typeset to match the overall style of the
thesis with permission granted by the copyright holders.

Printed by Cityprint i Norr AB, Umea, 2023

https://people.cs.umu.se/msaleh/

”In the name of the God of rainbows.”
In remembrance of Kian Pirfalak.

Abstract

In recent years, microservice architecture has become a popular method for
software system design and development. This involves creating applications
with multiple small services, each with multiple instances, operating as indepen-
dent processes. Due to the distributed nature of microservices, communication
between services presents a challenging task that becomes increasingly complex
as the number of services grows. This complexity can even lead to short-term
failures that can degrade application performance. Therefore, the auto-tuning
of inter-service communication is necessary to prevent such failures. Service
meshes were introduced to offer the necessary technical capabilities that can be
employed in such scenarios. In essence, a service mesh is an infrastructure layer
that includes a set of configurable proxies integrated into microservices. This
enables the provision of traffic management policies such as circuit breaking
and retry mechanisms to enhance microservice resilience against transient fail-
ures. However, static configuration or misconfiguration of these mechanisms is
unsuitable for the dynamic environment of microservices and can lead to serious
issues and performance problems, such as retry storms.

The goal of this thesis is three-fold. First, it aims to investigate the impact
and effectiveness of service traffic management on application reliability and
availability in the presence of transient failures. Second, it focuses on auto-
tuning of service traffic management to increase carried throughput and maintain
carried response time. Third, this research aims to propose measures that can
improve research reproducibility in the area of distributed systems ensuring
that the findings can be independently verified by others. In this thesis, we aim
to offer detailed guidelines on best practices for implementing research software.

To achieve these goals, this thesis delves into the current state-of-the-art in
service meshes and eBPF-powered microservices, identifying current challenges
and potential future directions. It analyzes the effects of circuit breaker and retry
mechanisms on microservice performance and proposes adaptive controllers for
both. The results show the need for such controllers that increase throughput
while maintaining the tail response time of the application. Additionally, it
proposes a microservice benchmark generator to enable systematic microservice
benchmark generation and improve reproducibility. It also provides recommen-
dations for improving artifact evaluation in distributed systems research by
compiling all existing recommendations.

Sammanfattning

Mikrotjanster har de senaste aren blivit en popular arkitekturmodell for pro-
gramvara. Modellen innebar att man skapar applikationer med flera sméa
tjanster, var och en med flera instanser som fungerar som oberoende pro-
cesser. Mikrotjansters distribuerade natur gér kommunikationen mellan tjénster
mer utmanande. Denna komplexitet kan &ven ge upphov till tillfélliga fel pa
grund av lastobalans eller 6verbelastning och dven forsdmra applikationers
prestanda. Av denna anledning &r dynamisk konfiguration av kommunikationen
mellan mikrotjanster nédvandig. En service mesh &r en teknikplattform for
att hantera hur mikrotjanster kommunicerar, med funktioner for att enkelt
kryptera kommunikation mellan tjanster, méata prestanda och finkorningt styra
kommunikationsfloden. En service mesh implementeras ofta som en uppséttning
konfigurerbara proxies. Detta mojliggor trafikhanteringspolicies baserade pa
mekanismer som kretsbrytning och omséndningar. Statisk konfiguration av dessa
mekanismer kan dock ge allvarliga prestandaproblem sasom lag genomstrémning
och/eller omfattande omsandningar.

Denna avhandling har tre mal. For det forsta underséker den hur trafikhanter-
ing for mikrotjanster paverkar tillforlitligheten och tillgangligheten for app-
likationer vid tillfalliga storningar. For det andra fokuserar den pa adaptiv
reglering av trafikhantering av mikrotjanster for att oka genomstréomningen
och samtidigt bibehalla acceptabla svarstider. For det tredje syftar den till att
forbattra reproducerbarheten i forskning inom distribuerade system och se till
att forskningsresultat enklare kan verifieras av oberoende.

For att uppna dessa mal underséker avhandlingen den tekniska frontlinjen
inom service mesh och mikrotjanster driva av eBPF-tekniken. Avhandlingen
analyserar vidare hur anvindandet av kretsbrytare och omsdandningsmekanismer
paverkar mikrotjansters prestanda. Adaptiva reglersystem for att hantera
konfiguration av bada dessa mekanismer foreslas och utvérderas i omfattande
experimentent. Resultaten visar att sadana regulatorer &r nédvéndiga for att oka
genomstromningen och samtidigt bibehalla (hégre percentiler av) applikationers
svarstider. Adaption &ar sarskilt viktigt da faktorer som totala trafikméngden,
applikationers prestanda, tillfalliga fel, etc. kan forandras snabbt.

Avhandlingen introducerar &ven ett verktyg for att generera godtyckliga
testapplikationer for att kunna genomfora mer heltdckande utvarderingar av
olika typer av forskningsprogramvara som hanterar mikrotjanster. Avhandlingen
bidrar &ven till reproducerbarhet genom att studera hur programvaru-artefakter
bést bor utvarderas inom forskningsomradet distribuerade system. Detta sker
genom att sammanstélla, och uttka, befintliga rekommendationer inom omradet.

vii

Preface

The main goal of the thesis is to enhance the resiliency of microservices and
enable them to be self-driving, particularly in case of transient failures. The
aim is to make microservices more robust and able to recover from failures
quickly and independently, without the need for manual intervention by a
human operator. To achieve this goal, the thesis includes six papers that
explore different aspects of microservices resiliency that are listed below:

Paper I

Paper 11

Paper 11T

Paper IV

Paper V

Paper VI

M. R. Saleh Sedghpour and P. Townend. Service Mesh and
eBPF-Powered Microservices: A Survey and Future Directions.
Proceedings of the 2022 IEEE International Conference on Service-
Oriented System Engineering (SOSE, 2022), IEEE, pp. 176-184,
2022.

M. R. Saleh Sedghpour, C. Klein, and J. Tordsson. An Em-
pirical Study of Service Mesh Traffic Management Policies for
Microservices. Proceedings of the 2022 ACM/SPEC on Inter-
national Conference on Performance Engineering (ICPE, 2022),
ACM, pp. 17-27, 2022.

M. R. Saleh Sedghpour, C. Klein and J. Tordsson. Service Mesh
Circuit Breaker: From Panic Button to Performance Management
Tool. Proceedings of the 1st Workshop on High Availability and
Observability of Cloud Systems (HAOC, 2021), ACM, pp. 4-10,
2021.

M. R. Saleh Sedghpour, D. Garlan, B. Schmerl, C. Klein, and J.
Tordsson. Breaking the Vicious Circle: Self-Adaptive Microservice
Circuit Breaking and Retry. Submitted, Umea University, 2023.

M. R. Saleh Sedghpour, A. O. Duque, X. Cai, B. Skubic, E.
Elmroth, C. Klein and J. Tordsson. HydraGen: A Microservice
Benchmark Generator. Submitted, Umea University, 2023.

M. R. Saleh Sedghpour, C. Klein, A. V. Papadopoulos, and J.
Tordsson. Artifact Evaluation for Distributed Systems: Current
Practices and Beyond. Submitted, Umea University, 2023.

ix

In addition to the papers included in this thesis listed above, the following pre-
sentations arose from work conducted by Mohammad Reza during his doctoral
studies:

Talk T M. R. Saleh Sedghpour. Tune your Service Mesh. ServiceMesh-
Con at KubeCon + CloudNativeCon EU, 2022.

Talk IT M. R. Saleh Sedghpour, S. I. Ulfsparre. Integration of Research
software into the EOSC infrastructure: Lessons learned from Com-
puter science. European Open Science Cloud Symposium (EOSC
Symposium, 2022), 2022.

This work was partially supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg
Foundation, and some works supported by the Google Cloud Research Credits
program.

Acknowledgements

It is with great gratitude and appreciation that I extend my sincerest thanks to
those who have helped me along the way, guiding me through the twists and
turns of my academic journey. I am honored to have had their support and
would like to express my sincere appreciation.

Firstly, I would like to express my gratitude to Johan Tordsson, my supervi-
sor, for his unwavering support, guidance, mentorship, and, most importantly,
his patience throughout my academic journey. Johan’s insightful perspectives,
constructive feedback, and constant encouragement have played a vital role
in shaping my research and enabling me to achieve my academic objectives.
Johan’s unrelenting dedication to my success, and his willingness to go the extra
(Swedish) mile to provide assistance and support, have been truly remarkable.
I consider myself fortunate to have had such a committed and experienced
mentor who has demonstrated a genuine interest in my academic and personal
growth. I am grateful for the numerous opportunities that Johan has provided
me with, and I intend to apply the knowledge and skills that I have gained from
his mentorship throughout my life. Once again, thank you, Johan, for your
invaluable contributions to my academic journey.

Secondly, I would like to express my heartfelt appreciation to my co-
supervisor, Cristian Klein, for his invaluable contribution to my academic
journey. Throughout our collaboration, Cristian has been a source of inspi-
ration, guidance, and support, helping me to navigate the challenges of my
research. Cristian’s teaching has been transformational; he has helped me to
develop a more robust and analytical approach to solving technical problems.
I will always cherish our conversations on various technological advancements
that have been both enlightening and fun.

During my time in Umea, I was fortunate to have the opportunity to
collaborate with a group of highly intelligent and talented individuals. Paul
Townend, my first collaborator, has been an exceptional mentor who offered
me the chance to co-author a paper with him. In addition, he provided me
with training on academic evaluations, and I had the privilege of assisting him
in courses. Under his guidance, I have gained a wealth of knowledge, and
his support has been immeasurable. One of my primary collaborators was
Aleksandra Obeso Duque, a fellow Ph.D. student, with whom I worked for more
than a year to actually make an impact. Along with Aleksandra, I had the

xi

pleasure of collaborating with Erik Elmroth, Bjérn Skubic, and Xuejun Cai, who
all brought unique perspectives and insights to the project. In addition, I was
privileged to meet Alessandro Vittorio Papadopoulos, who offered me invaluable
guidance and support. Alessandro’s extensive knowledge and expertise were
invaluable in helping me develop my research skills and improve the quality
of my work. Finally, I had the honor of collaborating with David Garlan
and Bradley Schmerl from Carnegie Mellon. Working with these experienced
researchers, I learned to think outside the box and approach problems from
new angles. Their support and guidance were instrumental in helping me to
overcome some of the most challenging obstacles in my research.

I would like to express my gratitude to all current and former members of
ADSLab for their invaluable support and contribution to my academic journey.
First, our lab leader, Erik Elmroth, deserves special thanks for creating such
an exceptional lab. I am especially thankful to Ali and Javad, who embarked
on this journey with me, engaging me in insightful conversations and helping
me learn a lot. Petter provided me not only with a comfortable living space
during my initial days in Umea but also offered valuable advice that helped me
transition smoothly. Abel and Chanh’s positive attitudes and sense of humor
brought a welcoming energy to our lab, for which I am grateful. Antonio, as
a senior researcher, inspired me with his amazing talks and encouragement,
while Sourasekhar and Anindya were fantastic lab mates with whom I shared
enjoyable moments. Charlie’s extensive vocabulary and willingness to teach
always fascinated me, and Monowar and P-O’s valuable insights inspired me
to experiment with new ideas. I would also like to express my gratitude to
Simon for the fun times we shared. Lastly, I am grateful to Lars, Xuan-Son,
Lidia, Jon, Tobias, Atakan, Adil, Magdalena, Sagar, Oliver, Obaidullah, Pim,
and Yashwant for their valuable insights and contributions to our lab. Lastly,
I would like to extend a special thanks to Tomas for his exceptional technical
support, even during holidays, for which I am deeply grateful.

I would like to acknowledge and thank several individuals from the Depart-
ment of Computing Science who have supported and contributed to my academic
journey, including Paolo, Lili, Kai-Florian, Michele, Maarten, and Anne-Lie. I
express my deep appreciation to Reza Berangi and Hamid Faragardi, whose
help was instrumental in enabling me to come to Sweden as a Ph.D. student
and start my academic journey. Additionally, I am grateful to the individuals
who co-founded the Open Science Community, including Olivia, Birgitte, and
particularly Sanna Isabel, whose insights and knowledge have been invaluable
to me during our conversations and collaborations.

I am deeply grateful to my family, starting with my parents, Bahram and
Nazi, who laid the foundation for everything I am today and supported me with
unwavering patience throughout all of my decisions. I would also like to thank
my sister, Farnaz, and my brother, Alireza, who have always believed in me
and my potential. And a special thanks to my super smart nephew, Hosna.

Last but not least, I would like to express my deepest gratitude to my wife
and partner, Fateme. With her by my side, as my best friend, I know that

xii

anything is possible, even eternity. We have shared the journey of our Ph.D.
studies together, supporting each other with love and having fun along the way.

I want to extend my heartfelt gratitude to everyone who has helped me along
this journey, and I am incredibly happy with where I am. In every meaningful
way, I feel that we did it together, and for that, I am truly grateful.

Mohammad Reza Saleh Sedghpour
Umea, May 2023

xiii

Contents

1.6 Improving Resilience of Microservices|
I1.7 Research Goals and Objective].
Illzi llls:”i !2 lllillsi

[2_Service Meshes|

2.1.1 Observability]
....................
2.1.3 Extensibility|
2.1.4 Trathc Management|
[2.1.5 Resiliency Patterns|.
2.2 Service Mesh Architectures

2.3 Service Mesh Implementations|

Autonomic Computing)

3.1 Properties of Selt-Managing Systems|
3.2 The Autonomic Computing Reterence Architecture|
3.3 Approaches to Autonomic Computing|
8.3.1 Knowledge-Driven Approach|
8.3.2 Data-Driven Approach|.
8.3.3 Hybrid Apporach|.
3.4 Auto-Tuning for Cloud Environments|

Reproducibility in Distributed Systems Research|

4.1 FAIR Principles|.
4.2 Reproducible Research Software|.
4.3 Microservice Benchmarking|

XV

© 00 1 =g Ut U i W =

11
12
13
13
14
14
16
18

23
24
25
27
27
28
29
30

|5 Summary of Contributions|

EI_Outlines of Contributions « v v v v v v e e
...............................
5.3 PaperIIl
5.4 Paper Ill}

Pap V| e
6 Paper V|

Paper VI

Pap |
Pan v
Dan V

Xvi

39
39
43
44
45
46
47
48

49
50

53

63

89

119

137

167

199

Chapter 1

Introduction

Today, software is an essential tool that has transformed the way we work, com-
municate, and perform our daily tasks, largely due to remarkable advancements
in hardware and undeniable progress in software engineering practices. These
practices enable the timely production of high-quality computing products,
further contributing to the widespread adoption and impact of software in
various domains.

Software is however a victim of its own success. The evolution of soft-
ware technology has brought a new level of complexity to software systems,
which makes them more prone to vulnerabilities, errors, and malfunctions.
The software systems of today are constantly exposed to new and demanding
requirements, such as the need for high availability, reliability, security, scal-
ability, and observability. This puts great pressure on software development
and operation teams, making it more challenging to produce and maintain
software systems that meet these requirements. In particular, the maintenance
of software systems is becoming increasingly difficult and time-consuming due
to their complexity and interdependence with other systems. These challenges
have resulted in a growing demand for innovative practices and tools that can
address the complexities and ensure the continuous delivery of software-based
services. This has led to the emergence of DevOps, which seeks to integrate
development and operations to improve the software development lifecycle [1].

DevOps is a software engineering approach that emphasizes collaboration and
communication between software development and operations teams. It aims
to facilitate the continuous delivery, deployment, and maintenance of software
applications. DevOps combines practices such as agile software development,
continuous integration, continuous delivery, and automated testing to provide
a unified and streamlined approach to software lifecycle management [2] (see
Figure [1.1). By implementing DevOps practices, organizations can achieve
faster delivery of high-quality software, increased efficiency in development and
deployment, reduced development costs, and improved collaboration between
teams.

Figure 1.1: DevOps lifecyclelT]

The design and construction of any complex software system, apart from its
lifecycle, entail another crucial aspect, its architecture. This refers to the set of
structures needed to reason about the system that comprises software elements,
relations among them, and properties of both . Over the past three decades,
there has been a growing interest in software architecture, that has become a
significant subfield of software engineering . A well-structured architecture
plays a significant role in ensuring that a system meets its critical functional and
quality requirements, such as performance, reliability, portability, scalability,
and interoperability. On the other hand, a poorly designed architecture can
have disastrous consequences [3].

In software architecture, an architectural style is a collection of guidelines
and patterns that direct the arrangement and development of a software system.
In essence, the fundamental idea behind an architectural style is that it specifies
the vocabulary of components and connectors that can be used in instances of
that style, accompanied by a set of constraints on how they can be combined .
The most common architectural style is the layered architectural style. A
layered architecture is a design approach that separates an application into
different horizontal layers, with each layer having a specific role within the
application. By separating the application into distinct layers, changes to one
layer can be made without affecting the others, making it easier to maintain
and update the application. Additionally, the layered architecture pattern
promotes code reusability, as modules can be reused in other applications or
in different layers of the same application @ While the layered architectural
style does not prescribe a specific quantity or category of layers necessary
for its implementation, a majority of layered architectures commonly include
the presentation, business, persistence, and database layers (see Figure .
The most commonly recognized instances of layered architecture styles are the
layered communication protocols [7].

Tmage by Kharnagy, licensed under CC BY-SA 4.0, modified by author. Original image
available at https://commons.wikimedia.org/w/index.php?curid=51215412

https://commons.wikimedia.org/w/index.php?curid=51215412

Presentation Layer

Business Layer

Persistence Layer

I

Database Layer

Figure 1.2: The most common layered architecture.

1.1 Monolithic Architectures

A common option in traditional software development for implementing the
layered architectural style is monolithic architecture. A monolithic application
is a software application that comprises a single and indivisible executable unit,
where all the components are tightly integrated [8]. One of the main advan-
tages of monolithic architecture is that it offers a simple and straightforward
development process. Because all the components are developed as a single
unit, it is easier to manage dependencies and ensure that the system is working
as a whole. In addition, the monolithic architecture allows for easier debugging
and testing, as the entire system can be tested at once rather than testing
individual components in isolation. This architecture is still widely used in many
applications, particularly in small to medium-scale projects where simplicity
and ease of development are prioritized over scalability and flexibility. For
instance, some projects have found that the complexity of managing a system
with multiple components outweighs the benefits and have migrated back to
monolithic architectures [9].

On the other hand, the scalability of a monolithic application is usually
limited as the life cycle, resource allocation and security configuration are shared
for the whole application. As a result, increasing the inbound requests of the
application requires the creation of new instances of the same application, making
the allocation of new resources inconvenient for certain modules. Moreover,
monolithic applications tend to have dependency issues that make it challenging
to identify and fix bugs in scale, and adding new features can be difficult due
to the tightly coupled nature of the components [10].

3

In addition, monolithic applications require the rebooting of the entire
application whenever any change is made to a module. This process can result
in considerable downtimes, making it difficult to test, develop, and maintain
the project. Deploying monolithic applications is also challenging due to the
conflicting resource requirements of the constituent models, which can result in
sub-optimal deployment. Furthermore, as development teams scale or release
frequency increases, monolithic applications can become increasingly difficult
to manage and deploy, leading to longer release cycles and higher risks of errors
or bugs. This can ultimately hinder the project’s growth and scalability.

Additionally, monolithic applications tend to create a technology lock-in for
developers, as they are bound to use the same language and frameworks used
in the original application. This lock-in makes it difficult to switch to newer
and better technologies that may offer better performance and features. As a
result, developers may be unable to take full advantage of the latest and best
tools available for developing software.

1.2 Service-Oriented Architectures

To mitigate the drawbacks of monolithic architecture, Service-Oriented Ar-
chitectures (SOAs) were introduced in the late 1990s. They strive to employ
services as basic building blocks in the development of applications. These ser-
vices are characterized as self-contained, reusable, and transferable, promoting
swift, cost-effective, secure, and dependable distributed applications [11], [12].
Each service is responsible for a range of functions, from simple requests to
complicated processes, and can expose its interface through standard protocols
to be invoked. SOAs became a popular approach for developing complex and
distributed software systems back in the early 2000s. The use of SOA enables
organizations to create more complicated software systems [13]. SOAs have
several benefits, including reduced development time, cost, and complexity, and
improved flexibility and scalability of the system [14]. In monolithic application
development, building a large and complex system requires extensive planning,
design, and development time that can result in delays, higher costs, and a
rigid system that is difficult to change or update. In contrast, SOAs enable
developers to focus on building smaller, reusable services that can be combined
to create more complex applications. This modular approach to development
can significantly reduce the time and effort required to build a system.

However, the widespread adoption of SOA was hindered by technical chal-
lenges, particularly with the use of the Simple Object Access Protocol (SOAP)
as the standard for communication between services [15]. These challenges
included the need for extensive customization, high development, and main-
tenance costs, and difficulty in integrating with existing systems. As a result,
many organizations turned away from SOA in the mid-2000s, seeking alternative
approaches that were less complex and more flexible [8]. These alternative

4

approaches include Representational State Transfer (REST) and microservices
architectures.

1.3 Microservice Architectures

Microservices, take the idea of SOA a step further by breaking down the
application into services that can be deployed and scaled independently [16].
In microservices, services are typically smaller, more lightweight, and highly
independent, whereas in SOA, services tend to be larger and more tightly
coupled. This enables developers to build complex applications using loosely
coupled services that can be developed and deployed independently, leading to
greater agility, scalability, and fault tolerance [8]. This approach offers several
advantages over SOAs and traditional monolithic applications, such as easier
maintenance and updates, more flexibility in terms of technology selection, and
better resource utilization by scaling only the necessary services. The design of
microservices encourages modularity, which facilitates the isolation and testing
of individual services, making maintenance and updates easier to implement.
Additionally, the use of lightweight services allows for greater flexibility in terms
of technology selection, as services can be developed and deployed independently
with minimal dependencies. The fault-tolerant nature of microservices is a result
of their distributed and decoupled design, which enables individual services
to fail without impacting the overall system, ultimately leading to improved
overall system reliability.

1.4 Challenges of Microservices

Microservices architecture has become increasingly popular in recent years due
to its ability to simplify the development and deployment of service-oriented
architectures. It enables organizations to create and manage large-scale appli-
cations by breaking them down into smaller, independent services that can be
developed and deployed separately. However, microservices come with certain
challenges that must be carefully considered, particularly in terms of operational
challenges during runtime.

One of the primary operational challenges of microservices is that they
introduce a constantly evolving infrastructure landscape of software components
that are ephemeral and may change location and communicate with each other
in non-intuitive ways. The combination of this dynamic environment with
the DevOps approach can be difficult to manage and monitor, especially for
human operators who may struggle to keep up with the pace of change. As
the deployment of new software releases to production environments can occur
very frequently, with thousands of deployments per day reported [17], |18], the
challenge of managing and monitoring a large number of independent services
can quickly become complex and require specialized tools and skills.

Figure 1.3: Topologies of microservices at Netflix. Used with permission from
AWS re:Invent 2015

Furthermore, to ensure the reliability, availability, and security of a microser-
vices system can also be challenging, particularly as the number of services and
instances grows. And as the number of microservices in a system increases, so
does the complexity of their interactions. This complexity can result in issues
such as service and/or system downtime, increased latency, and reduced system
performance, all of which can have a significant impact on end users and overall
system goals.

One of the popular approaches to DevOps is the use of container runtimes
and orchestration platforms such as Kubernetes . Containers provide a
lightweight and portable environment that can be easily deployed and scaled,
making it an ideal solution for managing microservices. Kubernetes as de
facto standard provides a framework for managing containers at scale, allowing
developers to deploy, manage, and scale microservices with ease. Additionally,
Kubernetes provides features such as service discovery, load balancing, and
rolling deployments that simplify the management and operation of microser-
vice

3The terms of use for this figure are available at https://aws.amazon.com/events/terms/|

4To promote clarity and brevity, the terms microservice, container, and service will
henceforth be used interchangeably throughout this thesis. This choice is made due to the
close relationship between these terms and their frequent use in the context of software
development and deployment.

https://aws.amazon.com/events/terms/

1.5 Rise of Cloud-Native

Cloud-native is a term used to describe a set of practices and technologies
that enable the development and delivery of applications in modern, cloud-
based environments. At its core, cloud-native is about building and running
applications that leverage the capabilities of cloud computing platforms, such
as elasticity, scalability, and high availability, to deliver business value more
efficiently and effectively [20].

Cloud-native architecture takes the DevOps and microservices approach
further, by leveraging cloud-based services and infrastructure to enable a more
dynamic and agile approach to build and operate software systems. Cloud-
native applications often consist of numerous microservices. As an example,
Figure shows an overview of the microservices that constitute Netflix [21].
Building and operating at such a scale could be a challenging task for human
operators. Moreover, these microservices may be developed using different
programming languages, belong to multiple teams within the same organization,
and have thousands of constantly changing service instances. This can, upon
fault and outages, lead to increased Mean Time To Repair (MTTR) due to
the complex service dependencies, and the potential for services to become
temporarily unavailable to their consumers. Furthermore, effective traffic
management is crucial for the runtime operation of microservices, as the behavior
of individual microservices can be impacted by the flow of traffic between
them, ultimately affecting the performance of the entire application [22]. As
a result, managing communication and traffic between microservices in such
dynamic environments can be complex. To address this complexity and facilitate
management, observability, and communication, service meshes were introduced.
Essentially, a service mesh comprises an infrastructure layer that is integrated
directly into the microservices as a collection of configurable proxies. This
abstraction of the network allows for a single point of network interaction for
each service [23].

1.6 Improving Resilience of Microservices

The distributed nature of microservices makes them susceptible to various issues
such as service failures, network latency, and resource overutilization, which
can lead to degraded application performance and reduced user satisfaction.
Such failures can be transient or permanent. Failures in a system can be
classified as either transient or permanent. Transient failures are temporary
issues that can be resolved by retrying the operation, such as network glitches or
timeouts. In contrast, permanent failures are more severe and require fixing the
underlying issue. These can include bugs in the code, incompatible dependencies,
or database inconsistencies. It’s important to note that certain operational
conditions, such as long-term overload, may also be considered permanent
failures if they cannot be resolved by simply retrying the operation. However,

7

the severity of such conditions may vary depending on the specific context and
may require different types of solutions, such as autoscaling or optimizing the
system architecture.

There are various studies for mitigating permanent failures in a microservice
architecture such as auto-scaling horizontally or vertically [24]. These approaches
have been shown to improve the availability and resilience of microservice-based
applications.

Despite the recent interest in microservices both in academia and industry,
few studies have investigated microservice resiliency during transient failures.
There are various well-known resiliency patterns that are designed to help
microservices to recover from transient failures, minimize the impact of failures,
and continue to operate effectively in the face of changing conditions. The service
mesh in cloud-native architecture is responsible for providing various resiliency
patterns for microservices, including circuit breaking and retry mechanisms, to
enhance the applications’ robustness and resilience towards network failures or
dependent services. Circuit breaking helps to protect the latency of incoming
requests at the cost of availability, making it possible to respond more quickly to
overloads and load spikes than through capacity auto-scaling. On the other hand,
the retry mechanism limits the maximum number of times a service attempts
to connect to another service after the initial call fails. The interval between
retries prevents the called service from being overwhelmed with requests [25].

Misconfiguration of circuit breakers and retry mechanisms in a microservice
architecture can lead to disastrous performance issues. If the circuit breaker
is not configured correctly, it may fail to drop the incoming requests when a
service becomes unavailable or unresponsive, resulting in a cascading failure
that can bring down the entire application. On the other hand, if the circuit
breaker is too aggressive and drops requests too frequently, it caps throughput
at a level below the service capacity. And if the retry mechanism is being used,
it can lead to unnecessary retries and increased latency, negatively impacting
performance. This can create a vicious circle where excessive retries cause the
circuit breaker to trigger, which in turn triggers more retries, further increasing
latency and reducing system performance. Similarly, if the retry mechanism is
not configured correctly, it can lead to increased load on the system, resulting
in decreased performance and potentially overloading the system. Therefore, it
is essential to properly configure these mechanisms to ensure optimal system
performance and avoid potential disasters.

1.7 Research Goals and Objective

This thesis investigates the management of inter-communication among microser-
vices in this context to enhance the performance and resilience of microservice-
based applications. To accomplish this, service meshes were employed as they
are an emerging technology that provides a cohesive approach for managing
inter-communication and security aspects of microservice-based applications,

and contain all the necessary mechanisms for traffic management. Thus, this
research aims to understand the impact and effectiveness of different traffic
management policies provided by service meshes on application reliability and
availability in the presence of transient failures.

Furthermore, this research seeks to propose measures to enhance research
reproducibility in the area of distributed systems. Reproducibility is a funda-
mental aspect of scientific research that ensures that the results obtained can
be independently verified by others. In this thesis, we aim to provide detailed
descriptions of best practices for providing research software in the distributed
systems community.

These perspectives are reflected in the following research objectives:

RO1 To improve the availability and reliability of a microservice-based appli-
cation.

RO2 To manage the microservice inter-communication autonomously.

RO3 To study the impact of microservice architecture and improve the repro-
ducibility of distributed systems research.

1.8 Thesis Outline

The thesis is structured as follows: Chapter 2 provides an overview of service
mesh and its potential for improving the performance of microservices. Chapter
3 presents autonomic computing as a promising approach for automating main-
tenance operations. Chapter 4 focuses on the importance of reproducibility in
distributed systems research by presenting the recent efforts in research software
and research data. Chapter 5 summarizes the contributions of the scientific
works included in the thesis, presents the results of empirical studies conducted,
and discusses the insights gained from these studies. Finally, Chapter 6 con-
cludes the thesis with a discussion of the implications of the findings presented
in the thesis, and proposes ideas for future research.

Chapter 2

Service Meshes

The advent of microservice technology has undoubtedly improved the efficiency
and agility of software service delivery. However, this progress has come at a
cost: the operational complexity of modern applications has increased manifold.
To alleviate this complexity, service mesh has been introduced, which adds an
infrastructure layer between microservices [26]. At a glance, a service mesh
infrastructure comprises two planes - the data plane and the control plane.
The data plane is made up of a set of configurable proxies, which are typically
deployed as sidecars [27] (as depicted in Fig. 2.1)). The sidecar proxy abstracts
the microservice design from underlying network infrastructures and provides a
common set of functionalities needed to connect distributed components, such
as authentication and discovery. This approach aims to spare microservice
developers from having to rewrite this commonly required functionality and
provide a single interface through which all this functionality can be configured.

From another perspective, the control plane governs and configures the
proxies for traffic routing. It also configures corresponding components to
enforce policies and gather telemetry. The control plane, therefore, manages
and controls the service mesh. By separating concerns between the data and
control planes, the service mesh can provide improved observability, security, and
reliability. Furthermore, it can enable granular control over the communication
between microservices, allowing for better performance and more streamlined
management of the system.

2.1 Service Mesh Features

In general, a service mesh is designed to provide a set of fundamental features
that can be managed with the centralized control plane. This makes it easier
for administrators to manage these features and ensures consistency across
the entire microservices architecture. The application transparently benefits

11

/ Control Plane \

Egress
traffic

I 3!
traffic

Service B

k Data Plane /

Figure 2.1: Service mesh architecture: The data plane uses proxies deployed as
sidecars to control communications between microservices.

from these features, which include observability, security, extensibility, traffic
management, and resiliency patterns.

2.1.1 Observability

The observability provided by a service mesh enables developers to gain visibility
into their microservices and the interactions between them, which is essential
for monitoring performance, troubleshooting problems, and detecting issues
before they become serious .

Service meshes typically offer features such as distributed tracing, logging,
and metrics to help understand the behavior of microservices. Distributed
tracing involves tracking the flow of requests as they move through a distributed
system, in order to identify and diagnose issues with latency or errors. Service
mesh platforms can provide detailed tracing information, including tracing spans
that link various microservices, enabling the quick identification of bottlenecks
and errors.

Logging refers to the practice of capturing and storing information about
events that occur within a system and it is another essential feature of ob-
servability provided by service mesh, as logs provide a detailed record of what
is happening within microservices, allowing developers to troubleshoot prob-
lems quickly. Service mesh platforms typically offer centralized logging, which
provides easy access to all the logs generated by microservices.

12

Metrics are quantitative measurements of various aspects of a system’s per-
formance, such as response time, throughput, error rates, or resource utilization.
Service mesh platforms offer metrics collection, enabling developers to monitor
the behavior of their microservices and quickly detect issues.

2.1.2 Security

Service mesh provides a variety of security features that help ensure the con-
fidentiality, integrity, and availability of microservices [29]. One of the most
important security features of a service mesh is mutual Transport Layer Security
(mutual TLS or mTLS), which provides encryption and authentication between
microservices. With mutual TLS, each microservice is required to have a valid
certificate to establish a secure connection with another microservice. This
prevents unauthorized access to microservices and protects in case the network
is untrusted, such as when stretching the service mesh across data centers.

Service mesh also provides fine-grained access control policies to manage
traffic between microservices. With access control policies, administrators can
specify which microservices can communicate with each other and under what
conditions. This helps prevent unauthorized access to sensitive data and ensures
that only authorized microservices can access critical resources.

2.1.3 Extensibility

Service meshes are designed to be extensible and easily customizable to meet the
specific needs of an organization’s microservices architecture [30]. One approach
to extending a service mesh is through the use of WebAssembly (Wasm). Wasm
is a binary instruction format that is designed to run in a variety of environments,
including web browsers and server-side environments |31]. Service mesh vendors
are leveraging Wasm as a way to extend the functionality of their service meshes
without requiring changes to the underlying infrastructure [32].

With Wasm, developers can create custom extensions to service meshes that
can be run in a sandboxed environment within the service mesh data plane.
These extensions can be written in any language that can be compiled to the
Wasm format, such as C, C4++, Rust, or AssemblyScript. This flexibility allows
developers to use their preferred language and development tools when creating
extensions for the service mesh.

Wasm extensions can be used to add new functionality to the service mesh,
such as custom traffic routing, load balancing, or telemetry. They can also be
used to integrate with third-party systems, such as security tools or observability
platforms. Additionally, Wasm extensions can be used to implement custom
policies and filters for traffic management, enabling administrators to enforce
specific rules for traffic routing or modify traffic in real-time based on specific
conditions.

The use of Wasm for extending service meshes offers several benefits. It
provides a standardized way of extending the functionality of a service mesh

13

that is agnostic to the underlying infrastructure. This allows developers to
create extensions that can be easily deployed across different service mesh
implementations. Additionally, because Wasm extensions run in a sandboxed
environment, they are isolated from the service mesh control plane and other
extensions, providing an added layer of security and reliability.

2.1.4 Traffic Management

Service meshes offer a variety of traffic management features that provide greater
control over the flow of traffic between microservices [33]. One of the most
fundamental traffic management features is load balancing, which distributes
incoming traffic across multiple instances of a microservice, ensuring that the
service can handle increased traffic volumes without becoming overloaded. With
load balancing, administrators can specify policies for traffic distribution, such
as round-robin or least connections, and can also configure the load balancing
algorithm to adjust automatically based on traffic patterns.

Another traffic management feature of service meshes is traffic splitting,
which allows administrators to send a percentage of traffic to different versions
of a microservice. This feature is particularly useful for canary testing, where
a small percentage of traffic is directed to a new version of a microservice to
test its performance and reliability before rolling out the new version to all
users [34].

2.1.5 Resiliency Patterns

Service meshes also provide a range of resiliency patterns that are the main
focus of this thesis, to ensure the reliability and availability of microservices.
One such pattern is fault injection, which allows administrators to deliberately
introduce faults into the network to test the resilience of the microservices.
This can help identify potential failure points and ensure that the system can
recover gracefully from unexpected errors [35]. This thesis mainly discusses two
resiliency patterns that are supported by service meshes: retrying and circuit
breaking.

Circuit Breaker Pattern

The circuit breaker is a widely used design pattern in software development
that serves to identify failures and encapsulate the logic of preventing recurring
failures during maintenance, temporary external system outages, or unexpected
system difficulties. This enables the system to fail faster. The Hystrix library [36]
is one of the initial implementations of circuit breakers, which involves wrapping
Java code in a procedure that can be regulated by the circuit breaker. Service
meshes provide the same benefits but without requiring modifications to the
application code. There are various implementations for this pattern in service
meshes like Istio and the most important ones are:

14

e Maximum connections: In circuit breaker configuration, one important
parameter is the maximum number of TCP connections that can be
allowed to a specific service. This parameter is crucial because it helps
prevent overloading of the service and ensures that the service is available
to handle requests within its capacity. By setting a maximum number of
connections, the circuit breaker can limit the traffic sent to a service and
prevent it from being overwhelmed with requests. This helps maintain the
overall performance of the system and prevents downtime due to service
failures [37].

e Maximum pending requests: This parameter limits the number of
requests that are allowed to be waiting and queued for a response from a
downstream service. This parameter is designed to prevent the overloading
of service and to ensure that resources are used efficiently. When the
maximum number of pending requests is reached, the circuit breaker trips,
and any new requests are rejected, returning an error to the caller. This
allows the upstream service to gracefully degrade and avoids cascading
failures [37].

e Maximum requests: Maximum requests refer to the maximum number
of requests per second that are allowed to pass through the circuit breaker
to the service. This is an important parameter because allowing too many
requests to pass through a failing service can lead to an overload of the
service, causing it to crash or slow down further. By setting a maximum
number of requests, the circuit breaker can limit the amount of traffic
going to the failing service, giving it time to recover or allowing requests
to be redirected to other healthy instances [37].

Retry Mechanism

Retry is a common resiliency pattern in service mesh that enables automatic
retries of failed requests to downstream services. With retry, if a request fails due
to a temporary issue such as network latency or unavailability of a microservice,
the request is automatically retried after a configurable delay period. This helps
improve the availability of microservices and reduces the impact of temporary
failures on end-users [38]. There are two main configuration parameters for
retries:

o Attempts: The parameter determines how many times a sidecar proxy
will attempt to establish a connection to a service if the initial call fails [39).

e Timeout per attempt: Specifies a timeout per retry attempt including
the initial attempt [39].

Both the circuit breaker and retry mechanisms are essential for ensuring
the resilience and availability of microservices. However, misconfiguring these
mechanisms can result in significant performance issues. The circuit breaker

15

is designed to protect against latency issues by dropping the requests between
microservices when there are repeated failures. This protects the system from
resource depletion but at the expense of availability. On the other hand, the
retry mechanism is designed to improve availability by retrying failed requests,
which can lead to increased latency. When these mechanisms are misconfigured
in a large-scale microservice application, the system may experience disastrous
performance issues. For example, if the circuit breaker threshold is set too
low, it may drop requests prematurely and reduce availability unnecessarily.
Similarly, if the retry mechanism is configured to have a high number of retry
attempts, it may result in increased latency and reduced performance or even
retry storms. It is, therefore, essential to tune these mechanisms to ensure
desired performance and prevent issues in large-scale microservice applications.

2.2 Service Mesh Architectures

Service meshes offer a solution for managing the complexity of modern applica-
tions by introducing an abstracted communication layer between microservices.
One approach to building a service mesh is the sidecar proxy model, where
each microservice instance has a proxy running alongside it in the same Pod. A
Pod is the smallest deployable unit that consists of one or more containers with
shared storage and network, and represents a logical host for those containers.
The sidecar proxy in the same Pod is responsible for managing communication
between microservices, providing traffic management, service discovery, and se-
curity policy implementation. While this model is flexible and can be integrated
with existing applications, it has some drawbacks, particularly with respect to
traffic routing.

As illustrated in Figure[2.2(a)] when an inbound packet arrives, it first passes
through the host TCP/IP stack to reach the Pod’s network namespace via a
virtual Ethernet connection. This involves multiple layers of the host operating
system’s network stack, adding extra overhead to the process. Then, the packet
goes through the Pod’s network stack to reach the proxy, which forwards the
packet via the loopback interface to the application. This path adds complexity
to the packet’s journey, leading to increased latency, especially when handling
high volumes of traffic or in latency-sensitive applications [40].

Another drawback of the sidecar proxy model is that traffic has to flow
through a proxy at both ends of the connection. This results in additional latency
compared to non-service mesh traffic, which can adversely affect application
performance. The increased complexity of the packet’s path and added latency
can negatively impact the performance of the application.

To improve the performance of service meshes, the community is moving
towards the per-Node proxy model. A Node is a physical or virtual machine in
this context and provides the underlying computing resources. In this model, a
single proxy is deployed per Node instead of per microservice instance. This
means that the proxy manages communication between all the microservices

16

Cluster Node
ﬂpplication Pod \

fepteaton

’ Socket ‘ ’ Socket ‘ ‘ Socket ‘

,, : [

‘ TCP/IP ‘ ‘ TCP/IP ‘ ‘ TCP/IP ‘ ‘ TCP/IP ‘
N N i) \ o \ o \

{ Ethernet } { Ethernet } { Ethernet } { Ethernet J { Ethernet }
[eth0] veth J(—*{ veth J [Loopback }
A \ /

\ 4
Egress
Traffic

—

(a) The route that each inbound packet should traverse to reach the application when there is
a sidecar proxy per Pod.

Cluster Node / N

Application Pod

fepteaten

[” Socket ‘ ‘ Socket ‘ ‘ Socket ‘
‘ TCP/IP ‘
Ethernet
eBPF

eth0

§

\ 4

Egress
Traffic

(b) The route that each inbound packet should traverse
to reach the application using the proxy per Node and
eBPF.

Figure 2.2: Different service mesh architectures.

17

running on that Node, simplifying the deployment process and reducing the
number of proxies needed. However, this model can be less flexible than the
sidecar proxy model.

The extended Berkeley Packet Filter (eBPF) is an in-kernel virtual machine
for packet filtering. eBPF introduces various architectural improvements in
comparison with BPF to improve performance. When an event or hook is
triggered, the eBPF application is executed with extremely low overhead. A
more recent architecture for service meshes is the eBPF-based model, which
leverages eBPF technology to provide a more efficient and flexible way of
managing network traffic between microservices (see Figure . The eBPF-
based model enables fine-grained control over network traffic and can be easily
integrated with existing applications. It is also more lightweight and scalable
than other service mesh architectures. However, implementing this model
requires more technical expertise and may not be suitable for all use cases [40].
Moreover, because eBPF operates at such a low level in the networking stack,
it can be challenging for users to reason about how their custom code will
affect the behavior of the system as a whole. Instead of thinking in terms of
high-level networking abstractions like layers 2 and 3 of the OSI model, iptables
rules, or routing tables, users need to think in terms of how their code will
modify or replace the lower-level kernel functions that handle packet processing.
This can require a different mental model and a deeper understanding of the
networking stack than is typically needed for configuring network policies using
more traditional tools.

2.3 Service Mesh Implementations

There are various implementations of service meshes available, each with its own
unique features and functionality. Some of the most popular implementations are
listed below. These implementations use different architectures and technologies
to provide features.

e Istio: Istio is an open-source service mesh that provides a powerful and
flexible platform for managing microservices. It was originally developed
by some of the most famous cloud providers and is now maintained by the
Cloud Native Computing Foundation (CNCF). Istio provides a range of
features including traffic management, service discovery, load balancing,
and security making it a popular choice for organizations with diverse
technology stacks. Istio offers both sidecar proxy and proxy per Node
model. In sidecar proxy, each microservice has an Envoy Proxy [41]
alongside it, and in per Node model, each Node has two proxies, one
for the layer 7 tasks (Waypoint proxy) and one for the layer 4 tasks
(ztunnel). This allows Istio to provide fine-grained control over network
traffic and implement complex policies, while also abstracting the network
infrastructure from the application. Additionally, Istio integrates with

18

a range of tools and platforms, including Kubernetes and Prometheus,
making it a powerful and flexible option for managing microservices [27].

Linkerd: Linkerd is an open-source service mesh that is designed to
be lightweight, fast, and easy to use. It is built on top of the Rust
programming language and leverages the Kubernetes platform to provide
features such as service discovery, load balancing, and traffic management.
Linkerd is often praised for its simplicity and ease of use, as it can be
easily installed and configured without requiring any major changes to
the underlying infrastructure. Additionally, Linkerd is often considered a
good option for organizations with smaller service mesh deployments or
those who are just starting to explore the world of service meshes [42].

Consul: Consul Service Mesh is a popular implementation of a service
mesh that provides features such as service discovery, traffic management,
and security policies. It is built on top of the Consul service discovery and
configuration tool, which allows it to provide a high level of integration
with other Consul features. Consul Service Mesh uses a sidecar proxy
model, with each microservice instance having a proxy deployed alongside
it. The proxies communicate with the central Consul server to enable
features such as service discovery and traffic routing. Consul Service Mesh
also provides a dashboard for monitoring and managing the mesh, as well
as integration with popular observability tools such as Prometheus and
Grafana [43].

AWS App Mesh: AWS App Mesh is a service mesh implementation
provided by Amazon Web Services (AWS). It is designed to simplify the
management of microservices in cloud-native applications by providing a
way to control and monitor the communication between services. AWS
App Mesh uses Envoy Proxy as the data plane for managing traffic
between services. It also provides a centralized control plane for managing
service discovery, routing, and security policies. AWS App Mesh is mainly
compatible with other AWS services but it can also be used with other
container orchestration platforms such as Docker and Kubernetes running
on-premises or on other cloud platforms [44].

Traefik Mesh: Traefik Mesh is another open-source service mesh built on
top of Traefik, a popular cloud-native edge router, and load balancer. It
provides a lightweight and easy-to-use solution for managing microservices
communication within a Kubernetes cluster. Traefik Mesh offers features
such as automatic service discovery, traffic management, and observabil-
ity, all while minimizing the amount of configuration and maintenance
required. Traefik Mesh is a promising option for organizations looking to
adopt a service mesh solution without a steep learning curve or extensive
infrastructure requirements [45].

19

e Kuma: Kuma is an open-source service mesh that is designed to simplify
the management of service-to-service communication in modern appli-
cations. Kuma is built on top of the Envoy proxy and supports both
Kubernetes and non-Kubernetes environments. It offers features such as
traffic routing, service discovery, and security policies, as well as a flexible
architecture that allows users to customize the mesh to their specific needs.
Kuma also includes a control plane that provides a centralized interface
for managing and monitoring the service mesh [46].

e Open Service Mesh: Open Service Mesh (OSM) is an open-source ser-
vice mesh that provides a lightweight, scalable, and flexible way of manag-
ing microservices in a distributed system. Developed mainly by Microsoft,
OSM is built on top of Kubernetes and leverages standard Kubernetes
primitives, making it easy to integrate with existing Kubernetes-based
applications. OSM offers features such as traffic management, service
discovery, security policies, and observability, providing a comprehensive
solution for managing microservices [47].

e Cilium: Cilium is a popular open-source service mesh implementation
that uses eBPF technology to provide network security and observability
for microservices. It offers a range of features such as HT'TP and gRPC
proxying, service discovery, and application-aware network security policies.
Cilium also has a powerful networking stack that provides fast and efficient
communication between microservices. Additionally, it can be integrated
with Kubernetes and other container orchestration platforms, making
it a popular choice for organizations that are already using these tools.
Cilium’s eBPF-based approach allows it to scale easily and handle high
volumes of traffic with low latency, making it well-suited for large-scale
deployments [48].

Table summarizes different service mesh implementations. The thesis
primarily relies on Istio for conducting experiments due to its widespread usage
as a service mesh, active and large community, and its status as a CNCF
Incubating project. Therefore, the findings and conclusions of this thesis can be
extended to other service meshes that exhibit comparable resilience patterns.

20

ou sak sk STILW
ou sok sok uoryoaluy jmne;g
sok S0k A noawr, 723 K119y
SoA pouuerd SoA Supyesag noar)
sok ou poutrerd sak Surnoa syyedy,
sok S0k sok Suryydg oygedy,
sok sk sok sof Suuereg peory
sok sok sok sok paIeoquseq
To8oer unydiz To80e[1080r(upydiz
BUeID rURRI) MQMOG—VJ BURIRIN) SN jomor g Ao X SMV rueyern) hOMOﬁW :OHGNH.M@U:H
STIOJOWOL] . vuRjRIY) ’ e : vuRRID) :
snetjemorJ B BUELRElL e | BUCLIEEL (e | 7
SNOJRUIOI SOOI
Sok ou S04 SoA sok S04 ou S0k uorjesousr) 307 SS90y
epqure]
s 0 e
S91OUIIN Y] SOjOUIDAN Y] SINA SOjOUIDAN Y] SINA oyesing $93OUION S SjOUIDAN Y] woyyerq
SojOUIDAN Y] peuwoyN .
sajeuIaqUY SOE
Adge yyua - . . . - 8 apoy 1od £xo1g
Jopout opoy 10d Axoig opowt £xo1d 1eooprg | [epowr Axoxd 1eooptg | [ppou apoN 1od Ax01 | [opowt Axoid 1eooprg | [ppour Axoxd 1eosplg | [ppowt £xoid resapig Jopott £xo1d 1esopig 2IN30991YPIY
Ddus Ddus Ddus Ddus Ddus Ddus Ddus DJus
¢/dLIH ¢/dLin ¢/dLin ¢/dLIH ¢/dLIH ¢/dLiH ¢/dLLH ¢/dLIH s1000301 porroddng
+UT/dLLH +1'1/dLLH +1UT/dLLH +U'T/dLLH +UT/dLLH +UT/dLLH +UT/dLLH +U'T/dLIH
dDL dDL dDL dDL dDL dOL dDL dDL
- - . N . N . d[qeasurRYOXd . N . . .
£x01 KoAugy Ax01g Koaugy Axo1g Koaugy Ax01 Nyord], fxo1g forug Axo01 Koaugy Axoxd-gpaoyury Axoxg Koaugy Ax01g 991AI0G
Wiy 1JOSOIDIN Suoy] sqer] yordly, diopryseyq SMV yuedong YAT ‘INd] ‘918005 Aq pajyenruy
01 aroedy 07 o1 orpedy 0°g oS T ayoedy (' osuaorT ayoedy O] R[[IZOJN 90IN0G Paso[) (' osuaorT aypedy 0 oS T ayoedy 9suadIT
wniy USoJA 901AI9g uadQ ewnyy USOIN Nyoedy, [nsuo) ysoN ddy SMV paesuIy onyst aanyeaq

"SOY[SOUI 9JTAISS JO SUOIYRIULUWIAAWI JULISPIP Jo Arewruing :1°g 9[qel,

21

Chapter 3

Autonomic Computing

Autonomic computing is a paradigm that has been widely explored in the
area of distributed systems to achieve self-management, self-configuration, self-
optimization, and self-healing of complex software systems. The autonomic
computing approach has become increasingly relevant due to the ever-growing
scale and complexity of modern software systems, particularly those based
on microservices architecture. In this chapter, we explore the relevance of
autonomic computing in this context and how it can contribute to addressing
the challenges related auto-tuning of resources in the cloud environment.

In 2001, IBM coined the term autonomic computing to describe a computer
system that can adapt to changes as a new paradigm for computing [49].
Autonomic computing represents a promising paradigm that addresses the
challenge of rapidly increasing software complexity [50]. This challenge poses
significant challenges for both industry and academia, as the deployment,
management, and maintenance of these systems become increasingly difficult
for IT staff. Consequently, the cost of management also increases, and if
not appropriately and timely managed, the performance of the system may
decline or even result in system failure. In addition, increasing complexity
redirects attention from improving the system and developing new innovative
applications to handling management issues. Therefore, it seems reasonable to
develop autonomic computing solutions that enable systems to self-manage and
self-tune, thus reducing the burden on human operators and allowing them to
focus on more value-added tasks.

Autonomic computing was inspired by the autonomic nervous system, which
constantly regulates and protects our bodies subconsciously [51], allowing us to
focus on other tasks. Similarly, autonomic computing aims to create systems
that are aware of their environment, continuously monitor themselves, and
adapt with minimal human interventions. Human administrators would only
need to specify high-level policies that define the general behavior of the system.
This approach would reduce the cost of management, improve performance, and
enable the development of new innovative applications. Autonomic computing

23

Self-configuration Self-healing

i

v

Self-protection

(4]

Self-optimization

Figure 3.1: Basic properties of a self-managing system.

is not intended to replace human administrators entirely, but rather to enable
systems to automatically adjust and adapt themselves to reflect evolving policies
defined by humans.

Moreover, in the context of transient failures, autonomic computing ap-
proaches can be highly effective. As they enable us to detect, diagnose, and
automatically repair and/or even prevent such failures. They also reduce the
need for manual intervention and improve system availability and reliability. In
addition, these approaches can enable systems to adapt to changing conditions
and evolving requirements, helping to ensure that they remain robust and
resilient over time.

3.1 Properties of Self-Managing Systems

IBM introduced a set of principles that an autonomic system should possess
to be able to self-manage effectively. These properties are often referred to as
self-* properties and there are four main properties identified by IBM shown in

Figure [3.1]

e Self-configuration: An essential characteristic of an autonomic system is
the ability to self-configure based on the current environment and available
resources. Such a system should possess the capability to continuously
reconfigure itself and adapt to changes. This property is commonly referred
to as self-configuration and enables the system to respond to variations
in its operating environment dynamically. With self-configuration, the
system can identify and allocate resources appropriately, optimize its
performance, and maintain a high level of service quality.

e Self-optimization: An autonomic system should have the ability to
monitor itself continuously and tune its performance automatically, en-

24

suring that it operates at optimal levels of performance and cost. This
property is known as self-optimization, and it involves collecting data
from various sources, analyzing it to identify performance metrics, and ad-
justing system settings accordingly. Self-optimization helps to reduce the
cost of management and improves the overall performance of the system.
This property is particularly important in large-scale systems that involve
many components, where manual optimization can be time-consuming
and error-prone. By continuously tuning itself, the autonomic system can
adapt to changes in the environment and avoid performance degradation,
thus ensuring that it meets the requirements of the user.

Self-healing: Self-healing is another crucial property of a self-managed
system that ensures the system’s ability to detect and recover from failures
without human intervention. The system must be equipped with mecha-
nisms to detect and diagnose failures and to automatically take corrective
actions to restore the system to a functional state. These actions may
include restarting failed components, reconfiguring the system to avoid
the cause of the failure, or reallocating resources to ensure the system’s
continued operation. The ultimate goal of self-healing is to minimize
downtime and maintain the system’s availability and performance levels.

Self-protection: Self-protection for a self-managing system involves the
ability to detect, identify, and respond to security and system attacks. It
is essential to ensure the security and integrity of the system, especially
in the face of increasing cyber threats. A self-managed system should
be able to continuously monitor itself and its environment for any signs
of security or system breaches. Once detected, the system should take
immediate action to isolate and mitigate the damage caused by the attack.
This property requires a combination of reactive and proactive measures
to ensure the system’s protection. Reactive measures include mechanisms
to detect and respond to known attacks, while proactive measures involve
anticipating potential threats and implementing preventative measures to
mitigate them. Self-protection is critical to ensure the resilience of the
system and maintain its availability, integrity, and confidentiality.

3.2 The Autonomic Computing Reference Ar-

chitecture

IBM has proposed a reference model for autonomic control loops, known as
the MAPE-K (Monitor, Analyze, Plan, Execute, Knowledge) loop, to attain
autonomic computing [52]. This model, as depicted in Figure is increasingly
being used to communicate the architectural aspects of autonomic systems and
to classify the work being done in this field.

In the MAPE-K autonomic loop, the managed element refers to any software

or hardware resource that is granted autonomic behavior by linking it with an

25

Autonomic Element

Knowledge

oG

Autonomic Manager x

Sensors Effectors

-

Figure 3.2: IBM’s MAPE-K (Monitor, Analyse, Plan, Execute, Knowledge)
reference model for autonomic control loops.

autonomic manager. This means that the managed element can take various
forms, such as a web server or a database, a particular software component in
an application like the query optimizer in a database, the operating system,
a group of machines in a cloud environment, a set of hard drives, a wired or
wireless network, a CPU, or a printer, etc.

Sensors, probes, or gauges gather data about the managed element. For
instance, the information collected about a web server may include response
time to client requests, CPU and memory usage, and network and disk usage.

Effectors and actuators are responsible for implementing changes to the
managed element, which can range from old-fashion coarse-grained actions such
as adding or removing servers from a web server cluster , to the gradual
deployment of services to the cloud .

The Autonomic Manager: It uses data collected by sensors to monitor
the managed element and perform changes via effectors and acutators. It is
a software component that can be configured by human administrators with
high-level goals. It utilizes the monitored data from sensors and the internal
knowledge of the system, often an architectural model of the managed element,
to plan and execute low-level actions that are necessary to achieve the goals.
The goals are usually expressed through event-condition-action (ECA) policies,
goal policies, or utility function policies . ECA policies follow the format
“when an event occurs and a condition is met, then execute an action”, such

26

as “when the response time of 95% of web servers exceeds 100 milliseconds and
resources are available, increase the number of active servers”. In a MAPE-K
loop, each function in the autonomic manager is defined as:

e The monitor function involves gathering, consolidating, refining, and
presenting information, such as metrics and topologies, obtained from a
managed resource.

e The analyze function includes mechanisms for correlating and modeling
complex situations, such as time-series forecasting and queuing models.
These mechanisms enable the autonomic manager to learn about the IT
environment and make predictions about future situations.

e The plan function is responsible for devising the necessary actions to
achieve set goals and objectives. This is achieved through the use of policy
information to guide its work.

e The erxecute function encompasses the mechanisms that oversee the im-
plementation of the plan while taking into account dynamic updates.

e The knowledge source serves as an implementation of a registry, key-
value store, or database that provides access to management data with
architected syntax and semantics, such as symptoms, policies, requests
for change, and change plans. The knowledge source is accessed through
interfaces prescribed by the architecture. By storing this knowledge in a
knowledge source, it can be shared among different autonomic managers.

3.3 Approaches to Autonomic Computing

Various approaches have been proposed for autonomic computing by both
industry and academia. Each approach has its own strengths and weaknesses,
and its suitability depends on the specific requirements of the system and
the environment in which it operates. In this context, this thesis provides
a comprehensive overview of the three high-level approaches to autonomic
computing, their main characteristics, and their applications.

3.3.1 Knowledge-Driven Approach

The knowledge-driven approach to autonomic computing is based on the idea
of encoding expert and pre-existing knowledge in the form of rules or heuristics.
These rules are then used to make decisions about system behavior and control.
In this approach, the system is designed to understand the relationships between
the different components and their behaviors and to use this understanding to
make decisions about how to respond to different situations. The goal is to
create a system that can make intelligent decisions without requiring human
intervention.

27

This approach can be quite useful to manage the complexity of the distributed
nature of microservices and the cloud. For instance, in a microservice-based
application, the number of components and services that make up a system can
be very large, and the interactions between these components can be complex.
By encoding expert knowledge about these interactions in the form of rules or
heuristics, the system can make decisions about how to respond to different
situations without requiring human intervention.

One application of this approach for microservices is in the area of load
balancing and resource allocation. There may be a large number of services
running in parallel, each with different resource requirements and utilization
patterns. By encoding knowledge about these requirements and patterns in the
form of rules, the system can make decisions about how to allocate resources
to different services in order to optimize overall system performance. This can
be particularly important in cloud environments where resources are typically
shared across multiple tenants.

Another application of this approach in this context could be in the area
of fault detection and recovery. In such a dynamic and distributed environ-
ment, failures can occur at any system level, from individual services to entire
applications. By encoding knowledge about these failure modes in the form of
rules, the system can detect when failures occur and take appropriate actions
to recover from them. For example, the system might automatically restart a
failed service or migrate it to another Node in the cluster.

As an example of this approach, a recent study introduces a framework that
enables the development of scalable IoT applications that comply with a specific
set of rules defined by both the users and the deployment environment [56].

An example of this approach is demonstrated in Paper III, which proposes
an auto-tuning mechanism for configuring a circuit breaker in a single-service
application based on existing domain knowledge.

3.3.2 Data-Driven Approach

A data-driven approach to autonomic computing utilizes data analytics tech-
niques such as machine learning to make decisions and take actions based on
data collected from the system. This approach is characterized by the use of
large amounts of data, often in real time, to improve the performance, reliability,
and security of the system. In the context of microservices or cloud computing,
data-driven autonomic computing has become an important research area due
to the complexity and dynamic nature of these systems.

In large-scale and distributed systems, data-driven autonomic computing
offers several advantages, including its ability to handle the complexity and
variability of such environments. These systems typically consist of a large
number of interconnected components that can vary in their performance and
behavior over time. By collecting and analyzing data from these components,
data-driven autonomic systems can make informed decisions about how to

28

manage and optimize the system, such as scaling resources, load balancing, and
fault tolerance.

Moreover, data-driven autonomic computing can adapt to changing con-
ditions and environments. The data collected by the system can be used to
detect changes in the system and adjust it accordingly. For example, if a sudden
increase in traffic is detected, the system can automatically scale up resources to
meet the demand, and then scale them back down when the demand subsides.

In microservices or cloud environments, data-driven autonomic computing
has numerous applications. For instance, in a microservices architecture, data-
driven autonomic computing can be used to optimize resource allocation and
scheduling, reduce latency and response time and increase system availability
and reliability. At the infrastructure level, data-driven autonomic systems can
be utilized to optimize resource utilization and reduce costs, enhance security
by detecting and preventing attacks, and ensure compliance with service level
agreements (SLAs).

As an example of this approach, a recent study proposed a manager vertical
elasticity of Docker containers [57]. This manager uses IBM’s autonomic
computing MAPE-K principles and scales up and down both CPU and memory
assigned to each container based on the application workload. If there are
not enough resources on a host, the manager migrates the target container to
another host. The main motivation of this work is to improve the performance
of the application.

3.3.3 Hybrid Apporach

The hybrid approach to autonomic computing combines the strengths of both
knowledge-driven and data-driven approaches. The knowledge-driven approach
relies on pre-defined rules and policies to make decisions, while the data-driven
approach uses machine learning algorithms to derive insights from data. The
combination of both approaches can lead to more effective decision-making and
improved system performance.

In the context of microservices and cloud computing, the hybrid approach
can be applied to enhance the scalability, reliability, and security of the system.
The knowledge-driven approach can be used to define policies for resource
allocation, load balancing, and fault tolerance. For example, policies can be
defined to ensure that the microservices are allocated sufficient resources based
on their requirements and usage patterns. Policies can also be defined to ensure
that the system can handle unexpected failures and recover quickly.

On the other hand, the data-driven approach can be used to gather and
analyze data from the system in real-time to detect and predict anomalies and
performance issues. Machine learning algorithms can be used to learn patterns
and trends in the data, and use this knowledge to make decisions and take
actions. For example, machine learning algorithms can be used to predict the
expected load on the system based on historical data, and automatically scale
up or down the resources to ensure optimal performance.

29

The hybrid approach to autonomic computing can also be used to improve
the security of microservices and cloud systems. The knowledge-driven approach
can be used to define security policies and rules, such as access control and
authorization. The data-driven approach can be used to detect and prevent
security attacks and threats, by analyzing network traffic and user behavior.
Machine learning algorithms can be used to learn from past attacks and incidents,
and use this knowledge to identify and prevent future attacks.

There are various works employing this approach. A recent study proposed
Gru, an approach for incorporating autonomic capabilities into microservices
without requiring any changes to their implementation [58]. The approach
involves the use of a single Gru agent on each physical or virtual host, which is
responsible for making horizontal cloud decisions for the microservices running
on that host.

Furthermore, Paper IV employs this approach by performing a sensitivity
analysis to get insights about the direction of impact of different parameters for
both circuit breaker and retry mechanisms on the performance of microservice
applications. It then proposes an auto-tuning mechanism to control these two
mechanisms for different microservice applications.

3.4 Auto-Tuning for Cloud Environments

Dynamic performance management in cloud environments has received signifi-
cant attention, with several reviews of the literature focusing on autoscaling [59],
scheduling [60], and the field in general [61]. Zhou et al. proposed the DAGOR
overload control system for microservices, which uses the average waiting time
of requests in the pending queue to profile the load status of a server [62]. Qui
et al. proposed a framework that leverages machine learning to detect the
root causes of Service Level Objective (SLO) violations before taking action to
mitigate those causes via dynamic reprovisioning [63].

Several notable individual studies have contributed to the field of dynamic
performance management in clouds. For instance, Tu et al. proposed a load-
shedding technique to discard information, which resulted in reduced delay
violations in a database system [64]. Babcock et al. proposed a load-shedding
technique for data streaming systems [65].

A recent study provides a comprehensive survey of recent literature on
resource management in cloud environments, covering over 250 publications [61].
It highlights the challenges posed by the scale, heterogeneity, and unpredictabil-
ity of cloud resources, and the diverse objectives of actors within the cloud
ecosystem. The authors present a conceptual framework for cloud resource
management and use it to structure their state-of-the-art review. Based on
their analysis, they identify five key challenges for future research, including
achieving predictable performance for cloud-hosted applications, enabling global
manageability of cloud systems, designing scalable resource management sys-

30

tems, understanding economic behavior and pricing in the cloud, and addressing
the mobile cloud paradigm.

In the context of service meshes, autonomic computing approaches offer a
promising solution to automate the maintenance and tuning of service meshes.
Autonomic computing can leverage the observability and management capa-
bilities of service meshes to provide automated and intelligent management of
the service infrastructure, thereby ensuring optimal performance and reducing
the burden on human operators [26]. By employing autonomic computing ap-
proaches, it is possible to achieve the goal of self-driving microservices, where the
service mesh automatically adjusts to changing conditions in the environment
and ensures the desired level of availability and reliability.

Both Paper III and IV in this thesis leverage the observability and re-
siliency pattern capabilities of service meshes. They propose controllers based
on existing domain knowledge and insights extracted from analysis. The pro-
posed controllers perform auto-tuning for both the circuit breaker and retry
mechanisms for all services in the microservice applications.

31

Chapter 4

Reproducibility in
Distributed Systems
Research

To validate the hypothesis, this thesis extensively utilized experimentation.
However, reproducing these experiments, particularly in the field of distributed
systems, presents challenges. This chapter discusses the reproducibility gaps in
distributed systems and how they relate to the thesis.

In the scientific process, repeatability and reproducibility are crucial factors
as they ensure the accuracy and validity of reported findings, prevent flawed
results from being disseminated, and foster trust in scientific research [66].
However, these terms have been defined differently by various authors [67]—(70].
Repeatability refers to the ability to replicate an experiment using the same
procedure on a system that is either identical or comparable to the original one
and obtain similar results |[71]. On the other hand, reproducibility entails the
ability to confirm a scientific hypothesis independently by a different research
team [71).

It is essential to note that although these concepts are closely related, they
differ in their level of rigor and the conditions required to satisfy them. In
computer science, where reproducibility is more challenging to achieve due to the
complexity of systems, algorithms, and software, it is necessary to distinguish
between these concepts explicitly. Nonetheless, studies have shown that many
research findings cannot be reproduced, indicating a reproducibility crisis [72],
|73]. Furthermore, peer-review processes alone are inadequate in ensuring the
reproducibility and repeatability of research findings [66], [74], [75].

An effective strategy to improve the reproducibility and repeatability of
research is to provide researchers with incentives to publish their findings
with evidence of reproducibility [76]. To this end, several conferences and
journals have implemented a systematic process for artifact assessment and

33

badging, known as the artifact evaluation track, to emphasize the importance
of reproducibility in experimental research [77]. This process was introduced
in 2011 and is now widely adopted by conference organizers [77], [78]. The
process requires that all research artifacts pass a rigorous audit [76]. In this
context, an artifact is defined as a digital item developed by the authors of
a publication that was either used in the authors’ study or generated during
their experiments. Based on our study in Paper VI, this approach has gained
popularity over the years, with the number of submitted artifacts growing from
a mere 8 across the field of computer science in 2015 to 614 in 2021.

There are various reasons why researchers choose to submit their artifacts
for evaluation. For some, artifacts serve as supplementary material that provide
evidence to reviewers that the reported results were obtained in good faith,
particularly in cases where data collection infrastructure is unavailable to most
other researchers. For others, artifacts are seen as a means to accelerate research
by enabling the reuse of old artifacts in new experiments, similar to how a
software library can be utilized to speed up future software development projects.
Moreover, there is anecdotal evidence that articles that include an evaluated
artifact receive greater attention from the scientific community (79|, [80].

The field of distributed systems research faces unique challenges in achieving
reproducibility due to the complex and dynamic nature of distributed systems
and the difficulty in replicating experiments across different environments. To
address these challenges, this thesis aims to contribute to the improvement
of reproducibility in distributed systems research by following the existing
best/better practices in open science and current guidelines in artifact evaluation
tracks. To this end, we begin by introducing the FAIR principles for research
software. Then the most important lessons learned regarding reproducible
research software are presented.

The subsequent section focuses on microservice benchmarking, highlighting
the limitations of existing benchmarks in terms of their topology and limited
scalability. Furthermore, the need for a benchmark generator is discussed, and
our approach to achieving this is presented.

4.1 FAIR Principles

The FAIR principles were introduced in 2016 as a set of guiding principles for
scientific data management and stewardship [81] The acronym FAIR stands for
Findable, Accessible, Interoperable, and Reusable, and the principles are
designed to help researchers make their data more discoverable and usable, as
well as to promote collaboration and data reuse across disciplines and research
communities. The FAIR principles have been implemented by several publicly
accessible archival repositories such as Zenodo [82], FigShare [83], or Dryad [84].

The first principle of FAIR data is findability, which means that data
should be easily discoverable by both humans and machines. This includes

34

providing sufficient metadata and persistent identifiers to ensure that datasets
can be located and accessed over time.

The second principle, accessibility, emphasizes the importance of making
data openly available, either through public repositories or other mechanisms
that ensure that datasets can be accessed by anyone who needs them.

The third principle of FAIR data is interoperability, which requires that
data be formatted and described in a way that allows it to be easily combined
and analyzed with other datasets. This includes the use of common standards
and protocols for data exchange, as well as the provision of clear and consistent
metadata that accurately describes the data and its provenance.

Finally, the fourth principle of FAIR data is reusability, which emphasizes
the importance of ensuring that data can be used and repurposed for different
purposes over time. This requires the use of standard and open licenses, as well
as the provision of clear and complete documentation and metadata that allows
others to understand the context and potential uses of the data.

Research software or artifact can be considered a type of data as it often
contains information that is critical for reproducing the research results [85].
Therefore, the FAIR principles, which are designed to improve the Findability,
Accessibility, Interoperability, and Reusability of data, can be applied to research
artifacts and software to enhance their reproducibility and reuse. By making
research software and artifacts FAIR, researchers can ensure that their work is
more easily discoverable, accessible, and interoperable with other research. This,
in turn, enables researchers to build upon previous work, accelerating the pace
of scientific progress while increasing the transparency and rigor of research.
Furthermore, applying FAIR principles to research software and artifacts can
help ensure that they are preserved over time, providing a valuable resource for
future researchers who wish to build upon or replicate the original research.

4.2 Reproducible Research Software

Reproducibility is a fundamental principle of scientific research, and it plays an
essential role in ensuring the reliability and validity of research findings. One
of the key aspects of reproducibility is the ability to reproduce experimental
results using the same data and methods. In this context, research software or
artifacts used to analyze data are a critical component of experimental methods.
Therefore, ensuring the reproducibility of research software is essential to
ensure the reproducibility of research findings. Despite the increasing focus
on reproducibility in academic research, there remains a wide variation in the
practices followed by researchers. This can make it difficult to evaluate and
reproduce research findings.

During the course of this thesis, the author played the dual roles of artifact
evaluator and artifact author. This gave him a unique perspective on the
challenges faced by both parties in ensuring reproducibility. Based on his
experiences, the author identified a number of best practices that were missing

35

in the current approach to ensuring reproducibility. These insights could be
valuable for researchers looking to improve their own reproducibility practices
(Paper VI).

4.3 Microservice Benchmarking

In cloud computing research, it is crucial to evaluate the performance and
efficacy of the proposed systems and methods. One common approach for eval-
uating cloud systems is through the use of application benchmarks. However,
with the increasing popularity of microservices as an application architecture, it
has become important to develop benchmarks specifically tailored for microser-
vices. Microservices present unique challenges and characteristics, such as their
distributed nature and complex dependencies, which may not be adequately
captured by traditional application benchmarks. Therefore, to ensure that new
cloud research artifacts are rigorously evaluated and tested, it is essential to
develop microservice benchmarks that accurately reflect the characteristics and
requirements of microservice-based applications. By using appropriate microser-
vice benchmarks, researchers can more effectively evaluate the performance and
scalability of their proposed methods and systems and make more informed
decisions about their design and implementation [86]. They use a wide range of
microservice benchmarks such as [87]-|94]. However, these benchmarks have
limited complexity in terms of their architectural scale and communication
topology, and hence their applicability is restricted to simpler scenarios.

For comprehensive and fine-grained performance sensitivity analysis, it is
crucial to modify benchmark characteristics such as communication patterns,
topological architectures, and resource usage characteristics. This approach
can help identify potential bottlenecks affecting inter-service communication
performance and understand how different topological architectures influence the
optimal tuning of certain resource management policies. By adjusting resource
usage characteristics, it is also possible to gain a deeper understanding of how
proposed resource management methods perform under various conditions.

There are various benchmarking tools that were created to provide a simple
and easy way for users to gain experience with cloud-native platforms. They
are generally related to e-commerce use cases, such as TrainTicket [88], [95],
SockShop [89], OnlineBoutique [90], and DeathStarBench-HotelReservation
191],[96]. However, many of these tools have a basic topology comprising only a
few microservices and are designed as demo examples serving computationally
simple applications, e.g., Bookinfo, CloudSuite [93], [94], [97], TeaStore [98], |99],
JPetStore [100], PetClinic |[101], AcmeAir [102], SpringCloudDemo [103], BiFrost
[104]. More elaborate benchmarks, such as DeathStarBench, pSuite [92], [105],
and CloudSuite, allow experimentation with various canonical architectures. Of
the single and suite benchmarks, only TrainTicket and DeathStarBench enable
experimental evaluation of performance impact at a larger scale. However, they

36

are designed with a fixed architecture topology that is difficult to customize,
especially if the benchmark’s source code is not openly accessible.

By utilizing a configurable architecture benchmark, researchers can validate
a broader range of hypotheses by systematically generating benchmarks with
varying computational complexities and topologies. This allows for the gener-
ation of customized microservice-based applications and facilitates thorough
and systematic experimental evaluations of performance and scalability implica-
tions, including diverse application topologies, computational complexities, and

inter-service complexities for cloud-native resource management mechanisms
(Paper V).

37

Chapter 5

Summary of Contributions

This chapter provides a comprehensive overview of the papers included in this
thesis, highlighting their relevance to the research goal and objectives. Initially,
an outline of the overall framework is presented, followed by papers in order of
their relevance to the research objectives, including a detailed description of
the author’s contributions.

5.1 Outlines of Contributions

As outlined in Chapter [1} the research objectives of this thesis are aimed at
achieving the goal of enhancing the resilience of microservice-based applications,
advancing our knowledge of autonomic microservice inter-communication man-
agement, and promoting the reproducibility of distributed systems research. To
this end, the following research objectives have been identified:

RO1 To improve the availability and reliability of a microservice-based appli-
cation.

RO2 To manage the microservice inter-communication autonomously.

RO3 To study the impact of microservice architecture and improve the repro-
ducibility of distributed systems research.

Figure [5.1] illustrates the specific problems addressed by each paper in this
thesis. The figure provides a clear visual representation of how the various
papers contribute to achieving the research objectives.

Paper I contributes to achieving RO1 by highlighting the challenges and
opportunities of using service meshes as a networking solution for microservices.
The paper discusses how service meshes can help improve the availability and
reliability of microservice-based applications by providing a set of configurable
proxies that are responsible for the management, observability, and security
of microservices. However, the paper also acknowledges that service meshes

39

Paper | Paper Il
Paper V Paper Vi

Paper Il Paper IV

Figure 5.1: Mapping of the contents of the included paper to the research
objectives.

introduce overhead into a system, which can be significant for low-powered edge
devices. This highlights the need for addressing performance issues caused by
service mesh proxies, which is crucial for achieving the goal of enhancing the
resilience of microservice-based applications.

Paper II presents a set of experiments aimed at investigating the impact
of traffic management policies such as circuit breaking and retries on the
performance and robustness of a microservice application deployed in a service
mesh cluster. The empirical results reveal effective configurations of circuit
breakers and retries.

By identifying effective configurations of traffic management policies, Paper
IT contributes to achieving RO1 by improving the availability and reliability of
microservice-based applications. The findings presented in the paper can be used
by engineers to configure such traffic management policies more systematically,
allowing them to enhance the resilience of their microservices and improve
the overall availability and reliability of their applications. Additionally, the
paper proposes research on autonomic traffic management for microservices,
providing insights into the impact of traffic management policies on microservice
performance and robustness.

Paper III proposes an adaptive circuit-breaking mechanism that enhances
the resilience of microservice-based applications by addressing the RO1 of
improving the availability and reliability of such applications using service
meshes. The mechanism is implemented through an adaptive controller that not
only avoids overload and mitigates failure but also keeps the tail response time
below a given threshold while maximizing service throughput in comparison to
static configuration.

40

Furthermore, Paper III’s proposal of an adaptive controller also contributes
to the RO2 of achieving autonomous management of the inter-service com-
munication. The adaptive controller is designed to automatically adjust the
circuit breaker configuration based on the observed traffic patterns, thereby
reducing the need for manual intervention in configuring microservice traffic
management.

Paper I'V makes significant contributions to achieving the first two research
objectives of this thesis. Firstly, the paper proposes a controller that dynami-
cally adjusts the number of retry attempts and retry intervals to improve the
throughput of microservice-based applications. This approach addresses RO1
by enhancing the availability and reliability of microservices through improved
throughput.

Secondly, the paper evaluates the proposed retry controller alongside the
circuit breaker controller proposed in Paper III. Through multiple experiments
involving different applications and traffic scenarios, the paper demonstrates that
employing both controllers significantly improves the throughput and response
times of the entire microservice application. This evaluation addresses RO2 by
promoting the autonomous management of inter-service communication, as the
controllers enable the system to self-adapt and self-heal in the event of transient
failures or noisy neighbors.

Paper V contributes to RO1 by proposing HydraGen, a tool that enables
researchers to systematically generate microservice benchmarks with different
computational complexities and topologies. By doing so, the tool allows for
more realistic and flexible evaluations of resource management mechanisms
for microservice-based architectures. This could potentially lead to improved
availability and reliability of microservice applications as cloud researchers can
now evaluate the performance and scalability of their management mechanisms
at scale with a focus on inter-service communication.

Paper V also contributes to RO2 by demonstrating how HydraGen can
enrich the evaluation of cloud management systems. By generating benchmarks
with different topologies, researchers can use HydraGen to evaluate how different
cloud management systems handle traffic engineering in a microservice-based
architecture. This could potentially lead to the development of more autonomous
cloud management systems that can dynamically adjust to changes in the
system’s traffic patterns.

Finally, Paper V is mainly contributing to RO3 by highlighting the lim-
itations of current microservice benchmarks, including static computational
complexity, limited architectural scale, and fixed topology. The paper provides
a tool that can help address these limitations and improve the reproducibility
of distributed systems research. Additionally, HydraGen’s open-source nature
makes it more accessible to other researchers and potentially contributes to the
development of a more standardized approach to microservice benchmarking.

Paper VI makes a significant contribution to RO3 by addressing the
challenge of improving the reproducibility of distributed systems research. The
paper highlights the importance of repeatability and reproducibility and the

41

growing concern over a reproducibility crisis. In particular, the paper points
out that distributed systems research lags behind other computing disciplines in
terms of artifact evaluation procedures and guidelines, and argues that current
artifact assessment criteria are insufficient for the unique challenges of this
field. To address these challenges, Paper VI examines the current state of the
practice for artifacts and their evaluation in distributed systems research and
provides recommendations for artifact authors, reviewers, and track chairs.

42

5.2 Paperl

M. R. Saleh Sedghpour and P. Townend. Service Mesh and eBPF-Powered
Microservices: A Survey and Future Directions. Proceedings of the 2022 IEEE
International Conference on Service-Oriented System Engineering (SOSE, 2022),
IEEE, pp. 176-184, 2022.

Paper Contributions

This paper provides a comprehensive survey of the use of service meshes as
a networking solution for microservices and the integration of service meshes
with eBPF. This paper discusses the challenges of this movement, explores its
current state, and provides insights into future opportunities for microservices.

The paper introduces the concept of service meshes as an infrastructure layer
built directly into microservices or the Nodes of orchestrators. Service meshes
consist of configurable proxies that manage, observe, and secure microservices.
However, the paper also acknowledges that the use of service meshes can
introduce overhead into a system, especially for low-powered edge devices. To
mitigate this issue, the industry is exploring the integration of service meshes
with eBPF for faster and more efficient responses.

The paper proposes that the integration of service meshes with eBPF is the
next key trend in the evolution of microservices. This integration will enable
the use of service meshes as a full networking solution for most of the required
features by the industry. The paper highlights the challenges of this movement,
explores its current state, and discusses future opportunities in the context of
microservices.

Author’s Contributions

Mohammad Reza defined the problem and conducted the literature review and
analysis, gathering and organizing the relevant research materials, and drafting
the initial manuscript. Paul provided guidance and direction throughout the
research process, and helped to edit and review the final manuscript.

43

5.3 Paper I1

M. R. Saleh Sedghpour, C. Klein, and J. Tordsson. An Empirical Study of
Service Mesh Traffic Management Policies for Microservices. Proceedings of the
2022 ACM/SPEC on International Conference on Performance Engineering
(ICPE, 2022), ACM, pp. 17-27, 2022.

Paper Contributions

This paper provides a systematic analysis of the impact of traffic management
policies on microservice performance and robustness within a service mesh
environment. The complexity of microservice architecture, with its numerous
loosely coupled services and multiple instances, is acknowledged. To manage
this complexity, service meshes offer a range of traffic management policies,
such as circuit breaking and retry mechanisms, which enhance the resilience of
communication between microservices. However, there is a lack of systematic
studies exploring the impact of these mechanisms on microservice performance,
and the exact effects of tuning parameters for circuit breaking and retries remain
unclear.

To address these issues, a large number of experiments were conducted using
a representative microservice benchmark in a service mesh cluster. The results
reveal optimal configurations of circuit breakers and retries that are effective
in protecting microservices against overload and enhancing their robustness.
The findings have practical implications for engineers who aim to configure
service meshes in a more systematic manner and also create new opportunities
for research in the area of service meshes for (autonomic) microservice resource
management. Thus the results of this paper were presented as a set of practical
guidelines for engineers and service mesh users in ServiceMeshCon EU, 2022.

Author’s Contributions

The problem was identified by Mohammad Reza, in collaboration with Cristian
and Johan. Mohammad Reza was responsible for implementing the entire
testbed setup, including experiment automation, conducting all experiments,
and writing the paper. Throughout the process, Cristian and Johan provided
feedback at each stage of experimentation to paper writing.

44

5.4 Paper III

M. R. Saleh Sedghpour, C. Klein and J. Tordsson. Service Mesh Circuit
Breaker: From Panic Button to Performance Management Tool. Proceedings
of the 1st Workshop on High Availability and Observability of Cloud Systems
(HAOC, 2021), ACM, pp. 4-10, 2021.

Paper Contributions

The paper presents a solution to the limitations of circuit breaker technologies
in large and dynamic distributed systems. The proposed approach involves a
dynamic controller that adjusts circuit breaker queue-length thresholds based
on performance metrics like response times to protect the tail response time of
services. The paper extensively evaluates the proposed dynamic controller and
compares it to the traditional static circuit breaker through multiple experiments
in an isolated environment. The results demonstrate that the dynamic controller
outperforms the static circuit breaker in terms of response time and throughput
during overload conditions.

The contributions of the paper are significant in addressing the limitations
of existing circuit breaker technologies and proposing a novel approach to
performance management in microservices architecture. The dynamic controller
can be seamlessly integrated with service mesh technologies such as Istio and
Linkerd to enhance service performance in large and dynamic systems. The
paper’s findings can provide valuable insights to practitioners and researchers
in the field of microservices architecture and performance management for
distributed systems.

Author’s Contributions

Mohammad Reza, Cristian, and Johan collaborated to identify and address the
problem. Mohammad Reza was responsible for implementing the testbed setup
and conducting experiments. All three authors worked together in writing the
paper, with Cristian and Johan providing valuable feedback throughout the
process, from the early experimentation stages to the final paper writing.

45

5.5 Paper IV

M. R. Saleh Sedghpour, D. Garlan, B. Schmerl, C. Klein, and J. Tordsson.
Breaking the Vicious Circle: Self-Adaptive Microservice Circuit Breaking and
Retry. Submitted, Umea University, 2023.

Paper Contributions

The paper begins by examining the impact of tuning parameters for the retry
mechanism in microservice architectures using a sensitivity analysis approach.
The authors recognize the limitations of static configurations and propose an
adaptive controller for the retry mechanism. The controller is designed to address
the dynamic nature of microservice environments by continuously monitoring
and adapting to changes in workload and resource availability. The proposed
controller is evaluated under various scenarios, including transient overload and
noisy neighbors, to assess its effectiveness in improving system performance. The
results show that the adaptive controller can improve throughput and maintain
response time even under challenging conditions. This study contributes to
the development of adaptive solutions for managing microservices in dynamic
environments, where traditional static configurations may be insufficient.

The results of this study suggest that the proposed adaptive controller for
retry mechanisms can be easily integrated with service mesh technologies like
Istio and Linkerd, thereby improving service performance in large and dynamic
systems. These findings are highly relevant to practitioners and researchers
working in the field of microservices architecture and performance management
for distributed systems, providing them with valuable insights and potential
solutions to manage the challenges of dynamic environments.

Author’s Contributions

Mohammad Reza collaborated with Cristian and Johan to identify the problem.
Mohammad Reza took charge of implementing the entire testbed setup, includ-
ing experiment automation, conducting all experiments, and writing the paper.
David, Bradley, Cristian, and Johan were actively involved throughout the pro-
cess, providing feedback at every stage, from the early stages of experimentation
to paper writing.

46

5.6 Paper V

M. R. Saleh Sedghpour, A. O. Duque, X. Cai, B. Skubic, E. Elmroth, C.
Klein and J. Tordsson. HydraGen: A Microservice Benchmark Generator.
Submitted, Umea University, 2023.

Paper Contributions

The paper emphasizes the significance of realistic and adaptable microservice
benchmarks for evaluating enhanced resource management mechanisms in
large-scale software systems. However, current benchmarks have limitations in
terms of their computational complexity, architectural scale, and fixed topology.
Furthermore, they mainly concentrate on typical online tasks in the e-commerce
domain, which fails to capture the intricacy of several real-world applications.

In response to these limitations, the paper introduces HydraGen, a tool that
overcomes the shortcomings of existing microservice benchmarks by allowing
researchers to generate benchmarks with varying computational complexities
and topologies systematically. HydraGen’s main objective is to facilitate the
experimental evaluation of performance at scale for web-serving applications,
particularly in terms of inter-service communication.

HydraGen is tailored to support the experimental evaluation of the perfor-
mance and scalability of cloud management systems. The paper demonstrates
how HydraGen can accurately reproduce an existing microservice benchmark
while preserving its architectural properties. The authors also provide a case
study related to traffic engineering to demonstrate how HydraGen can enhance
the evaluation of cloud management systems.

Author’s Contributions

Mohammad Reza and Aleksandra collaborated to formulate and solve the
problem. They jointly designed and developed HydraGen, established the
testbed setup, performed the experiments, and wrote the entire paper. According
to their agreement, credit for the paper’s first authorship is evenly divided
between Mohammad Reza and Aleksandra.

Cristian and Johan provided valuable feedback from the initial experimen-
tation phase to the paper-writing stage. Xuejun, Bjorn, and Erik offered
guidance and direction throughout the study and assisted in reviewing the final
manuscript.

47

5.7 Paper VI

M. R. Saleh Sedghpour, C. Klein, A. V. Papadopoulos, and J. Tordsson.
Artifact Evaluation for Distributed Systems: Current Practices and Beyond.
Submitted, Umea University, 2023.

Paper Contributions

The paper analyzes the current status of artifact evaluation in distributed
systems research and notes its inferior position compared to other computing
disciplines. Furthermore, it recognizes the unique challenges posed by distributed
systems research, which are currently not adequately addressed by existing
artifact assessment criteria.

To address these issues, the paper offers recommendations for improving
the quality and quantity of submitted artifacts. The authors hope that these
recommendations will initiate a discussion among the community and enhance
the overall quality of artifacts over time by providing a crucial starting point
for researchers to tackle this problem.

The paper’s primary contribution lies in compiling recent artifact evaluation
procedures and guidelines, which serve as a valuable resource for researchers
aiming to enhance the quality of their artifacts. Moreover, the authors emphasize
the need for a more unified and coordinated approach to artifact evaluation in
distributed systems research, which may lead to improved repeatability and
reproducibility of results. The main results of this paper were presented as a set
of best practices in computer science that could be integrated with European
Open Science Cloud infrastructure in EOSC Symposium, 2022 [106].

Author’s Contributions

Mohammad Reza, Cristian, Alessandro, and Johan worked together to formu-
late and solve the problem. Mohammad Reza took charge of compiling and
organizing all the artifact evaluation guidelines from recent years. Meanwhile,
Cristian, Alessandro, and Johan provided feedback starting from the early
stages all the way to the writing of the final paper.

48

Chapter 6

Conclusion

In the last few years, there has been a growing trend toward microservices
architecture as it offers a streamlined approach to developing and implementing
service-oriented architectures. This approach allows companies to handle com-
plex applications by dividing them into separate, self-contained services that
can be developed and deployed independently. A microservice architecture may
consist of hundreds or even thousands of individual services. On the other hand,
the integration of the microservice approach with the DevOps methodology
has led to faster development and deployment of each service. As a result, the
software infrastructure landscape is constantly evolving with ephemeral software
components that may change location and communicate with each other in
ways that are not immediately apparent. The dynamic nature of microservices
environments makes managing communication and traffic between services a
complex task. To simplify this process and enhance management, observability,
and communication, service meshes were introduced as a solution. A service
mesh is essentially an infrastructure layer that is integrated directly into the
microservices as a set of configurable proxies. This abstraction of the network
enables each service to interact with a single point of the network, resulting in
improved network communication and traffic management [23].

Service meshes offer various traffic management policies, including circuit
breaking and retry mechanisms, which can enhance the resilience and robustness
of applications against transient failures of dependent services or network issues.
Circuit breaking is a traffic management policy that rejects incoming requests to
protect latency at the expense of availability. A retry mechanism, on the other
hand, specifies the maximum number of times a sidecar proxy will attempt to
connect to a service if the initial call fails. The interval between retries prevents
the server-side proxy from being overwhelmed with requests.

It’s crucial to properly configure circuit breakers and retry mechanisms in a
microservice architecture to avoid disastrous performance issues. Misconfigura-
tions in these policies can lead to cascading failures that bring down the entire
application, resulting in significant financial losses.

49

The main goal of this thesis was to utilize an autonomic computing approach
to self-configure the tuning parameters of resiliency patterns in a microservice
architecture. The focus was on adapting the configuration parameters of these
patterns dynamically to enhance the throughput and latency of the microservice
application. The proposed approach aimed to optimize the performance of
the microservices by automatically adjusting the configuration of the circuit
breaker and retry mechanisms based on real-time system feedback. By doing
so, the system could adapt to changing network conditions and unpredictable
failures, maintaining the overall reliability and performance of the microservice
application.

In order to accomplish the main objective, the approach taken in this the-
sis involved several studies. The first paper focused on exploring the current
state-of-the-art in-service meshes and their integration with eBPF technology.
The second paper involved an empirical investigation into the impact of circuit
breaking and retrying on the performance and resilience of a microservice appli-
cation. In the third paper, an adaptive controller was proposed for the circuit
breaker pattern to ensure a specific response time for a single service application.
The fourth paper proposed a retry controller based on a sensitivity analysis of
these patterns and evaluated the effectiveness of adaptive retrying and adaptive
circuit breaking when used together. Throughout the first four papers, the need
for a systematic microservice benchmark generation became apparent, and thus
an open-source microservice benchmark generator (HydraGen) was developed
in the fifth paper to address this issue and improve the reproducibility of dis-
tributed systems research. Finally, in the sixth paper, existing best practices
for research software (artifact) were studied and compiled into guidelines, while
considering the limitations of distributed systems, in order to further enhance
the reproducibility of research in this field.

6.1 Outlook

Looking at service meshes from an industrial standpoint, it appears that they
are becoming more like complete networking solutions. While there are still
discussions about the architecture of service meshes, the different architectures
available each have their own use cases. For example, the combination of eBPF
and a proxy per node model appears to be promising for edge computing.

On the other hand, from an academic perspective, service meshes are seen
as providing observability benefits without any additional burden. This has
resulted in increased adoption of service meshes in research. With service
meshes providing a standard way of handling microservices communication,
researchers can focus on the performance and resiliency aspects of microservice
applications. This, in turn, can lead to better insights and new ideas for
improving microservice architectures.

With the rapid growth of microservices and distributed systems, there is an
increasing demand for intelligent and adaptive solutions that can automatically

50

optimize system performance and resilience in dynamic and complex environ-
ments. As such, autonomic computing has the potential to play a vital role
in the development and management of resilient microservice applications. In
the future, we can expect to see more research and development focused on
autonomic computing approaches for resiliency patterns and service meshes
as service meshes provide the observability themselves. This may include the
development of more sophisticated and adaptive controllers, the integration
of machine learning techniques, and the exploration of novel approaches for
managing and optimizing the performance of distributed systems. Additionally,
as the use of service meshes continues to grow, we may see more standardiza-
tion and consolidation in the industry, with a move towards more unified and
interoperable solutions.

Apart from the pure system contribution of this thesis, the importance of
reproducibility and open science has been widely recognized in the research
community. As research becomes more complex and data-intensive, the need
for a rigorous and transparent evaluation of research artifacts is becoming
increasingly important. The future of artifact evaluation and reproducibility is
likely to involve a greater emphasis on open data, open-source software, and
open standards for research artifacts. This will require researchers to adopt best
practices for software engineering and data management, as well as to provide
detailed documentation of their research processes and results. In addition, the
development of new tools and platforms for sharing and evaluating research
artifacts is likely to facilitate more collaborative and transparent research
practices. Ultimately, the goal is to create a culture of open science where
researchers are encouraged and supported to share their research data and
methods, leading to more reproducible and impactful research outcomes.

51

Bibliography

[1]

[10]

P. Lalanda, J. A. McCann, and A. Diaconescu, Autonomic computing:
principles, design and implementation. Springer Science & Business

Media, 2013.

L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, “A survey of
DevOps concepts and challenges,” ACM Computing Surveys (CSUR),
vol. 52, no. 6, pp. 1-35, 2019.

P. Clements, D. Garlan, R. Little, R. Nord, and J. Stafford, “Document-
ing software architectures: Views and beyond,” in 25th International
Conference on Software Engineering, 2003. Proceedings., IEEE, 2003,
pp. 740-741.

D. Garlan, “Software architecture: A travelogue,” in Future of Software
Engineering Proceedings, 2014, pp. 29-39.

D. Garlan and M. Shaw, “An introduction to software architecture,”
in Advances in software engineering and knowledge engineering, World
Scientific, 1993, pp. 1-39.

M. Richards, Software architecture patterns. O'Reilly Media, Incorporated
1005 Gravenstein Highway North, Sebastopol, CA ..., 2015, vol. 4.

G. R. McClain, Open systems interconnection handbook. McGraw-Hill,
Inc., 1991.

N. Dragoni, S. Giallorenzo, A. L. Lafuente, et al., “Microservices: Yester-
day, today, and tomorrow,” in Present and Ulterior Software Engineer-
ing, Cham: Springer International Publishing, 2017, pp. 195-216. DOI:
10.1007/978-3-319-67425-4_12.

N. C. Mendonca, C. Box, C. Manolache, and L. Ryan, “The monolith
strikes back: Why Istio migrated from microservices to a monolithic
architecture,” IEEFE Software, vol. 38, no. 05, pp. 17-22, 2021.

D. Merkel, “Docker: Lightweight Linux containers for consistent devel-
opment and deployment,” Linuz J., vol. 2014, no. 239, Mar. 2014, 1SSN:
1075-3583.

53

https://doi.org/10.1007/978-3-319-67425-4_12

[11]

[12]

Y. Wei and M. B. Blake, “Service-oriented computing and cloud comput-
ing: Challenges and opportunities,” IEFE Internet Computing, vol. 14,
no. 6, pp. 72-75, Nov. 2010, 18SN: 1089-7801. por: 10.1109/MIC.2010.
147.

M. P. Papazoglou, “Service-oriented computing: Concepts, characteristics
and directions,” in Proceedings of the 7th International Conference on
Properties and Applications of Dielectric Materials (Cat. No.03CHS7417),
IEEE Comput. Soc, 2003, pp. 3-12, I1SBN: 0-7695-1999-7. DOI: |10.1109/
WISE.2003.1254461.

W. Binder, D. Bonetta, C. Pautasso, et al., “Towards self-organizing
service-oriented architectures,” in 2011 IEEE World Congress on Ser-
vices, IEEE, 2011, pp. 115-121.

C. Pautasso, O. Zimmermann, M. Amundsen, J. Lewis, and N. Josuttis,
“Microservices in practice, part 1: Reality check and service design,” IEFE
software, vol. 34, no. 01, pp. 91-98, 2017.

E. Wolff, Microservices: flexible software architecture. Addison-Wesley
Professional, 2016.

P. Jamshidi, C. Pahl, N. C. Mendonca, J. Lewis, and S. Tilkov, “Mi-
croservices: The journey so far and challenges ahead,” IEEFE Software,
vol. 35, no. 3, pp. 24-35, May 2018, 15SN: 0740-7459. po1: [10.1109/MS|
2018.2141039.

L. Chen, “Continuous delivery: Huge benefits, but challenges too,” IEEE
software, vol. 32, no. 2, pp. 50-54, 2015.

J. Jenkins, Velocity culture, Velocity 2011, 2011. [Online]. Available:
https://www.youtube.com/watch?v=dxk8b9rSKOo,

Kubernetes Community, Kubernetes: Production-grade container orches-
tration. [Online]. Available: https://kubernetes.io/.

Cloud-Native Computing Foundation, Cloud native definition, 2023.
[Online]. Available: https://www.cncf.io/about/who-we-are/.

D. Hahn, A day in the life of a Netfliz engineer using 37% of Internet,
AWS re:Invent, 2015.

A. Jindal, V. Podolskiy, and M. Gerndt, “Performance modeling for
cloud microservice applications,” in ICPE 19, USA: ACM, 2019, pp. 25—
32.

K. Ponomarev, “Attribute-based access control in service mesh,” in
Dynamics ’19, Russia: IEEE, 2019, pp. 1-4.

K. Rzadca, P. Findeisen, J. Swiderski, et al., “Autopilot: Workload au-
toscaling at Google,” in Proceedings of the Fifteenth European Conference
on Computer Systems, 2020, pp. 1-16.

J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, no. 2, pp. 74-80, 2013.

54

https://doi.org/10.1109/MIC.2010.147
https://doi.org/10.1109/MIC.2010.147
https://doi.org/10.1109/WISE.2003.1254461
https://doi.org/10.1109/WISE.2003.1254461
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1109/MS.2018.2141039
https://www.youtube.com/watch?v=dxk8b9rSKOo
https://kubernetes.io/
https://www.cncf.io/about/who-we-are/

[26]

[31]

[32]

W. Li, Y. Lemieux, J. Gao, Z. Zhao, and Y. Han, “Service mesh: Chal-
lenges, state of the art, and future research opportunities,” in 2019

IEEE International Conference on Service-Oriented System Engineering
(SOSE), 2019, pp. 122-1225.

Istio Community, Simplify observability, traffic management, security,
and policy with the leading service mesh. [Online]. Available: https :
//Istio.io/.

D. Cha and Y. Kim, “Service mesh based distributed tracing system,”
in 2021 International Conference on Information and Communication
Technology Convergence (ICTC), 2021, pp. 1464-1466.

R. Chandramouli, Z. Butcher, et al., “Building secure microservices-based
applications using service-mesh architecture,” NIST Special Publication,
vol. 800, 204A, 2020.

A. El Malki and U. Zdun, “Guiding architectural decision making on
service mesh based microservice architectures,” in Software Architecture:
18th European Conference, ECSA 2019, Paris, France, September 9-13,
2019, Proceedings 13, Springer, 2019, pp. 3—-19.

A. Haas, A. Rossberg, D. L. Schuff, et al., “Bringing the web up to
speed with WebAssembly,” in Proceedings of the 38th ACM SIGPLAN

Conference on Programming Language Design and Implementation, 2017,
pp- 185-200.

A. O. Duque, C. Klein, J. Feng, X. Cai, B. Skubic, and E. Elmroth,
“A qualitative evaluation of service mesh-based traffic management for
mobile edge cloud,” in 2022 22nd IEEE International Symposium on
Cluster, Cloud and Internet Computing (CCGrid), IEEE, 2022, pp. 210—
219.

A. Khatri and V. Khatri, Mastering Service Mesh: Enhance, secure, and
observe cloud-native applications with Istio, Linkerd, and Consul. Packt
Publishing Ltd, 2020.

A. Tarvo, P. F. Sweeney, N. Mitchell, V. Rajan, M. Arnold, and I.
Baldini, “CanaryAdvisor: A statistical-based tool for canary testing,” in
Proceedings of the 2015 International Symposium on Software Testing
and Analysis, 2015, pp. 418-422.

N. Mendonca and C. Aderaldo, “Towards first-class architectural connec-
tors: The case for self-adaptive service meshes,” in Brazilian Symposium
on Software Engineering, 2021, pp. 404—409.

Netflix, Hystrix: Latency and fault tolerance for distributed systems, 2023.
[Online]. Available: https://github.com/Netflix/Hystrix/.

Envoy Community, Circuit breaking / Envoy documentation, 2023. [On-
line]. Available: https://www.envoyproxy.io/docs/envoy/latest/
intro/arch_overview/upstream/circuit_breaking)

55

https://Istio.io/
https://Istio.io/
https://github.com/Netflix/Hystrix/
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/upstream/circuit_breaking
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/upstream/circuit_breaking

[38]

R. R. Karn, R. Das, D. R. Pant, J. Heikkonen, and R. Kanth, “Auto-
mated testing and resilience of microservice’s network-link using Istio
service mesh,” in 2022 31st Conference of Open Innovations Association
(FRUCT), 2022, pp. 79-88.

Istio Community, Istio / Virtual service - HTTPRetry. [Online]. Avail-
able:https://Istio.io/latest/docs/reference/config/networking/
virtual-service/#HTTPRetryl

Cilium Community, Try eBPF-powered cilium service mesh. [Online].
Available: https://cilium.io/blog/2021/12/01/cilium-service~
mesh-beta/|

Envoy Proxy Community, Envoy Prozy. [Online]. Available: https :
//www.envoyproxy.io/l

Linkerd Community, The world’s lightest, fastest service mesh. [Online].
Available: https://linkerd.io/|

Consul Community, Service mesh on Consul. [Online]. Available: https:
//developer.hashicorp.com/consul/docs/connect.

Amazon Web Services Inc., AWS App Mesh. [Online]. Available: https!
//aws.amazon.com/app-mesh/.

Traefik Labs, Traefik Mesh - The simplest service mesh. [Online]. Avail-
able: https://traefik.io/traefik-mesh/|

Kuma authors, Kuma - the universal Envoy service mesh for distributed
service connectivity. [Online]. Available: https://kuma.io/.

Open Service Mesh Authors, Open Service Mesh. [Online]. Available:
https://openservicemesh.io/.

Isovalent, Cilium service mesh beta. [Online]. Available: https://github,
com/cilium/cilium-service-mesh-beta.

P. Horn, “Autonomic computing: IBM’s perspective on the state of
information technology,” 2001.

Y

J. O. Kephart and D. M. Chess, “The vision of autonomic computing,’
Computer, vol. 36, no. 1, pp. 41-50, 2003.

P. Van Roy, S. Haridi, A. Reinefeld, J.-B. Stefani, R. Yap, and T. Coupaye,
“Self management for large-scale distributed systems: An overview of the
SELFMAN project,” in Formal Methods for Components and Objects: 6th
International Symposium, FMCO 2007, Amsterdam, The Netherlands,
October 24-26, 2007, Revised Lectures 6, Springer, 2008, pp. 153-178.

IBM, “An architectural blueprint for autonomic computing,” Tech. Rep.,
2006, pp. 1-37.

B. Schmerl and D. Garlan, “Exploiting architectural design knowledge to
support self-repairing systems,” in Proceedings of the 14th international
conference on Software engineering and knowledge engineering, 2002,
pp. 241-248.

56

https://Istio.io/latest/docs/reference/config/networking/virtual-service/#HTTPRetry
https://Istio.io/latest/docs/reference/config/networking/virtual-service/#HTTPRetry
https://cilium.io/blog/2021/12/01/cilium-service-mesh-beta/
https://cilium.io/blog/2021/12/01/cilium-service-mesh-beta/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://linkerd.io/
https://developer.hashicorp.com/consul/docs/connect
https://developer.hashicorp.com/consul/docs/connect
https://aws.amazon.com/app-mesh/
https://aws.amazon.com/app-mesh/
https://traefik.io/traefik-mesh/
https://kuma.io/
https://openservicemesh.io/
https://github.com/cilium/cilium-service-mesh-beta
https://github.com/cilium/cilium-service-mesh-beta

[57]

[58]

[63]

J. L. da Silva, M. M. Assis, A. Braga, and R. Moraes, “Deploying privacy
as a service within a cloud-based framework,” in 2019 9th Latin-American
Symposium on Dependable Computing (LADC), IEEE, 2019, pp. 1-4.

J. O. Kephart and W. E. Walsh, “An artificial intelligence perspective
on autonomic computing policies,” in Proceedings. Fifth IEEE Interna-
tional Workshop on Policies for Distributed Systems and Networks, 2004.
POLICY 2004., IEEE, 2004, pp. 3-12.

E. Goynugur, G. de Mel, M. Sensoy, K. Talamadupula, and S. Calo, “A
knowledge driven policy framework for Internet of Things,” in Proceedings
of the 9th International Conference on Agents and Artificial Intelligence,
vol. 2, 2017, pp. 207-216.

Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Autonomic ver-
tical elasticity of Docker containers with ELASTICDOCKER,” in 2017
IEEE 10th International Conference on Cloud Computing (CLOUD),
2017, pp. 472-479. DOI1:{10.1109/CLOUD. 2017 .67,

L. Florio and E. D. Nitto, “Gru: An approach to introduce decentralized
autonomic behavior in microservices architectures,” in 2016 IEEE Inter-
national Conference on Autonomic Computing (ICAC), 2016, pp. 357—
362. DOI: [10.1109/ICAC.2016.25.

T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A review of
auto-scaling techniques for elastic applications in cloud environments,”
Journal of Grid Computing, vol. 12, no. 4, pp. 559-592, Oct. 2014. pDOL:
10.1007/s10723-014-9314-7.

A. Arunarani, D. Manjula, and V. Sugumaran, “Task scheduling tech-
niques in cloud computing: A literature survey,” Future Generation
Computer Systems, vol. 91, pp. 407-415, 2019, 1ssN: 0167-739X. DOI:
https://doi.org/10.1016/j.future.2018.09.014.

B. Jennings and R. Stadler, “Resource management in clouds: Survey
and research challenges,” Journal of Network and Systems Management,
vol. 23, no. 3, pp. 567-619, 2015.

H. Zhou, M. Chen, Q. Lin, et al., “Overload control for scaling WeChat
microservices,” in Proceedings of the ACM Symposium on Cloud Com-
puting, ser. SoCC 18, Carlsbad, CA, USA: Association for Computing
Machinery, 2018, pp. 149-161, 1SBN: 9781450360111. DOI: |10 . 1145/
3267809.3267823l

H. Qiu, S. Banerjee, S. Jha, Z. Kalbarczyk, and R. Iyer, “Firm: An intel-
ligent fine-grained resource management framework for SLO-oriented mi-
croservices,” in Proceedings of the 14th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2020, USENIX Association,
2020, pp. 805-825.

57

https://doi.org/10.1109/CLOUD.2017.67
https://doi.org/10.1109/ICAC.2016.25
https://doi.org/10.1007/s10723-014-9314-7
https://doi.org/https://doi.org/10.1016/j.future.2018.09.014
https://doi.org/10.1145/3267809.3267823
https://doi.org/10.1145/3267809.3267823

Y.-C. Tu, S. Liu, S. Prabhakar, and B. Yao, “Load shedding in stream
databases: A control-based approach,” in VLDB ’06, Seoul, Korea: VLDB
Endowment, 2006, pp. 787-798.

B. Babcock, M. Datar, and R. Motwani, “Load shedding for aggregation
queries over data streams,” in Proceedings. 20th International Conference
on Data Engineering, IEEE, 2004, pp. 350-361.

C. Collberg and T. A. Proebsting, “Repeatability in computer systems
research,” Commun. ACM, vol. 59, no. 3, pp. 62—69, Feb. 2016, 1SSN:
0001-0782. por: [10.1145/2812803.

A. Abedi, A. Heard, and T. Brecht, “Conducting repeatable experiments
and fair comparisons using 802.11N MIMO networks,” ACM SIGOPS
Operating Systems Review, vol. 49, no. 1, pp. 41-50, 2015.

C. Drummond, “Replicability is not reproducibility: Nor is it good
science,” in Proceedings of the Evaluation Methods for Machine Learning
Workshop at the 26th ICML, National Research Council of Canada
Montreal, Canada, vol. 1, USA: ACM, 2009.

D. G. Feitelson, “From repeatability to reproducibility and corroboration,”
ACM SIGOPS Operating Systems Review, vol. 49, no. 1, pp. 3-11, 2015.

B. R. Jasny, G. Chin, L. Chong, and S. Vignieri, Again, and again, and
again. .. 2011.

J. Vitek and T. Kalibera, “Repeatability, reproducibility, and rigor in
systems research,” in Proceedings of the Ninth ACM International Con-
ference on Embedded Software, ser. EMSOFT ’11, Taipei, Taiwan: Asso-
ciation for Computing Machinery, 2011, pp. 33-38, 1SBN: 9781450307147.
DOI: 10.1145/2038642.2038650.

M. McNutt, “Reproducibility,” Science, vol. 343, no. 6168, pp. 229-229,
2014. poI: [10.1126/science. 1250475,

M. Baker, “1,500 scientists lift the lid on reproducibility,” Nature, vol. 533,
no. 7604, pp. 452-454, May 2016, 1SsN: 1476-4687. DOI: 10 . 1038/
533452al

S. Krishnamurthi and J. Vitek, “The real software crisis: Repeatability
as a core value,” Commun. ACM, vol. 58, no. 3, pp. 34-36, Feb. 2015,
ISSN: 0001-0782. DOI: 10.1145/2658987.

D. Delling, C. Demetrescu, D. S. Johnson, and J. Vitek, “Rethinking
experimental methods in computing (dagstuhl seminar 16111),” Dagstuhl
Reports, vol. 6, no. 3, D. Delling, C. Demetrescu, D. S. Johnson, and
J. Vitek, Eds., pp. 24-43, 2016, 1SSN: 2192-5283. DOI: |[10.4230/DagRep.
6.3.24.

ACM, Artifact review and badging version 1.1, Online, Aug. 2020. [On-
line]. Available: https://www.acm.org/publications/policies/
artifact-review-and-badging-current.

58

https://doi.org/10.1145/2812803
https://doi.org/10.1145/2038642.2038650
https://doi.org/10.1126/science.1250475
https://doi.org/10.1038/533452a
https://doi.org/10.1038/533452a
https://doi.org/10.1145/2658987
https://doi.org/10.4230/DagRep.6.3.24
https://doi.org/10.4230/DagRep.6.3.24
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

[77]

78]

S. Krishnamurthi, “Artifact evaluation for software conferences,” ACM
SIGSOFT Software Engineering Notes, vol. 38, no. 3, pp. 7-10, 2013.

B. R. Childers, G. Fursin, S. Krishnamurthi, and A. Zeller, “Artifact
evaluation for publications (dagstuhl perspectives workshop 15452),” in
Dagstuhl Reports, vol. 5, Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2016, pp. 29-35.

B. R. Childers and P. K. Chrysanthis, “Artifact evaluation: Is it a real
incentive?” In 2017 IEEE 18th international conference on e-science
(e-Science), IEEE, USA: IEEE, 2017, pp. 488-489.

R. Heumiiller, S. Nielebock, J. Kriiger, and F. Ortmeier, “Publish or
perish, but do not forget your software artifacts,” Empirical Software
Engineering, vol. 25, no. 6, pp. 4585-4616, 2020.

M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, et al., “The FAIR
guiding principles for scientific data management and stewardship,” Sci-
entific data, vol. 3, no. 1, pp. 1-9, 2016.

Zenodo, Zenodo - research. shared. 2022. [Online]. Available: https !
//zenodo.org/.

Figshare, Figshare - credit for all your research, 2022. [Online]. Available:
https://figshare.com/.

Dryad, Dryad - publish and preserve your data, 2022. [Online]. Available:
https://datadryad.org/.

A.-L. Lamprecht, L. Garcia, M. Kuzak, et al., “Towards FAIR principles
for research software,” Data Science, vol. 3, no. 1, pp. 37-59, 2020.

A. Detti, L. Funari, and L. Petrucci, “uBench: An open-source factory
of benchmark microservice applications,” IEEE Transactions on Parallel
and Distributed Systems, vol. 34, no. 3, pp. 968-980, 2023. DOI1:|10.1109/
TPDS.2023.3236447.

Istio Community, Istio / Bookinfo application, 2022. [Online]. Available:
https://Istio.io/latest/docs/examples/bookinfo/l

X. Zhou et al., “Benchmarking microservice systems for software engi-
neering research,” in Proceedings of the 40th International Conference on
Software Engineering: Companion Proceeedings, ICSE 2018, Gothenburg,
Sweden, May 27 - June 03, 2018, USA: ACM, 2018, pp. 323-324. DOI:
10.1145/3183440.3194991.

Weaveworks, Sock Shop: A microservices demo application, 2022. [Online].
Available: https://github.com/microservices-demo/microservices-
demo.

Google Cloud Platform, Online Boutique: A cloud-first microservices
demo application, Last checked: 2023-02-26, 2023. [Online]. Available:
https://github.com/GoogleCloudPlatform/microservices-demo.

59

https://zenodo.org/
https://zenodo.org/
https://figshare.com/
https://datadryad.org/
https://doi.org/10.1109/TPDS.2023.3236447
https://doi.org/10.1109/TPDS.2023.3236447
https://Istio.io/latest/docs/examples/bookinfo/
https://doi.org/10.1145/3183440.3194991
https://github.com/microservices-demo/microservices-demo
https://github.com/microservices-demo/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo

[91]

[92]

[93]

[101]

Y. Gan et al., “An open-source benchmark suite for microservices
and their hardware-software implications for cloud & edge systems,”
in ASPLOS ’19, Providence, RI, USA: ACM, 2019, pp. 3-18, ISBN:
9781450362405.

A. Sriraman and T. F. Wenisch, “uSuite: A benchmark suite for mi-
croservices,” in 2018 IEEFE International Symposium on Workload Char-
acterization (IISWC), USA: IEEE, 2018, pp. 1-12. DOI: |10.1109/IISWC|
2018.8573515

M. Ferdman, A. Adileh, O. Kocberber, et al., “Clearing the clouds: A
study of emerging scale-out workloads on modern hardware,” SIGPLAN
Not., vol. 47, no. 4, pp. 37-48, Mar. 2012, 1SSN: 0362-1340. DO1:[10.1145/
2248487 .2150982.

T. Palit, Y. Shen, and M. Ferdman, “Demystifying cloud benchmarking,”
in 2016 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), USA: IEEE, 2016, pp. 122-132. DOI:
10.1109/ISPASS.2016.7482080.

X. Zhou et al., Train Ticket: A benchmark microservice system, 2022.
[Online]. Available: https://github.com/FudanSELab/train-ticket.

Y. Gan et al., Deathstarbench: Open-source benchmark suite for cloud mi-
croservices, 2022. [Online]. Available: https://github.com/delimitrou/
DeathStarBenchl

M. Ferdman et al., Cloudsuite: A benchmark suite for cloud services,
Last checked: 2022-10-10, 2022. [Online]. Available: https://github.
com/parsa-epfl/cloudsuite.

J. von Kistowski, S. Eismann, N. Schmitt, A. Bauer, J. Grohmann, and
S. Kounev, “TeaStore: A micro-service reference application for bench-
marking, modeling and resource management research,” in 2018 IEEE
26th International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS), 2018, pp. 223—
236. DOI: |10.1109/MASCOTS.2018.00030

U. of Wiirzburg, Teastore: A micro-service reference test application,
Last checked: 2023-02-27, 2023. [Online]. Available: https://github)
com/DescartesResearch/TeaStore.

R. Jung and M. Adolf, “The JPetStore suite: A concise experiment setup
for research,” Softwaretechnik-Trends, vol. 39, no. 3, pp. 40-42, Nov.
2019, (Proceedings of the 9th Symposium on Software Performance (SSP
2019)), 1sSN: 0720-8928.

Spring, Spring PetClinic: Distributed version of Spring Petclinic built
with Spring Cloud, Last checked: 2023-02-27, 2023. [Ounline]. Avail-
able: https://github.com/spring-petclinic/spring-petclinic—
microservicesl

60

https://doi.org/10.1109/IISWC.2018.8573515
https://doi.org/10.1109/IISWC.2018.8573515
https://doi.org/10.1145/2248487.2150982
https://doi.org/10.1145/2248487.2150982
https://doi.org/10.1109/ISPASS.2016.7482080
https://github.com/FudanSELab/train-ticket
https://github.com/delimitrou/DeathStarBench
https://github.com/delimitrou/DeathStarBench
https://github.com/parsa-epfl/cloudsuite
https://github.com/parsa-epfl/cloudsuite
https://doi.org/10.1109/MASCOTS.2018.00030
https://github.com/DescartesResearch/TeaStore
https://github.com/DescartesResearch/TeaStore
https://github.com/spring-petclinic/spring-petclinic-microservices
https://github.com/spring-petclinic/spring-petclinic-microservices

[102]

[103]

[104]

[105]

[106]

Acme Air sample and benchmark, Last checked: 2023-02-27, 2023. [On-
line]. Available: https://github.com/acmeair/acmeair.

Spring Cloud example project, Last checked: 2023-02-27, 2023. [On-
line]. Available: https: //github . com/kbastani /spring- cloud -
microservice-example.

Bifrost microservices sample application, Last checked: 2023-02-27, 2023.
[Online]. Available: https://github.com/sealuzh/bifrost-microservices-
sample—-application.

A. Sriraman and T. F. Wenisch, pSuite: A benchmark suite for mi-
croservices, Last checked: 2022-10-10, 2022. [Online|. Available: https:
//github.com/wenischlab/MicroSuite,

M. R. Saleh Sedghpour and S. I. Ulfsparre, Integration of research
software into the eosc infrastructure: Lessons learned from computer
science, EOSC Symposium 2022, 2022.

61

https://github.com/acmeair/acmeair
https://github.com/kbastani/spring-cloud-microservice-example
https://github.com/kbastani/spring-cloud-microservice-example
https://github.com/sealuzh/bifrost-microservices-sample-application
https://github.com/sealuzh/bifrost-microservices-sample-application
https://github.com/wenischlab/MicroSuite
https://github.com/wenischlab/MicroSuite

	Introduction
	Monolithic Architectures
	Service-Oriented Architectures
	Microservice Architectures
	Challenges of Microservices
	Rise of Cloud-Native
	Improving Resilience of Microservices
	Research Goals and Objective
	Thesis Outline

	Service Meshes
	Service Mesh Features
	Observability
	Security
	Extensibility
	Traffic Management
	Resiliency Patterns

	Service Mesh Architectures
	Service Mesh Implementations

	Autonomic Computing
	Properties of Self-Managing Systems
	The Autonomic Computing Reference Architecture
	Approaches to Autonomic Computing
	Knowledge-Driven Approach
	Data-Driven Approach
	Hybrid Apporach

	Auto-Tuning for Cloud Environments

	Reproducibility in Distributed Systems Research
	FAIR Principles
	Reproducible Research Software
	Microservice Benchmarking

	Summary of Contributions
	Outlines of Contributions
	Paper I
	Paper II
	Paper III
	Paper IV
	Paper V
	Paper VI

	Conclusion
	Outlook

	Bibliography
	Paper I
	Paper II
	Paper III
	Paper IV
	Paper V
	Paper VI

