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Abstract

This thesis employs material distribution-based topology optimization for wave
propagation problems. In the material distribution approach, we define a ma-
terial indicator function that models the presence and absence of material in
a design domain. By placing material inside the design domain, the aim is to
design a device that maximizes the output power or transmission of the sys-
tem. The time-harmonic linear wave propagation problem is modeled using the
Helmholtz equation. The governing equation is solved using the finite element
method, and an artificial boundary condition is used to truncate the domain.
Moreover, a gradient-based algorithm, the method of moving asymptotes by
Svanberg, is used to solve the optimization problem. An adjoint method effi-
ciently computes the gradients of the objective function with respect to design
variables.

This thesis considers two types of wave propagation problems: acoustic
(Papers I–III) and electromagnetic wave propagation (Papers IV–V). In Papers
I–II, we consider a bandpass design of a subwoofer. The aim of Paper I is to
reduce the computational time required to evaluate the performance of a given
subwoofer layout. To accomplish this, we develop a computationally efficient
hybrid 2D–3D model. A full 3D model, as well as a lumped model, validate
the hybrid model’s results. Paper II focuses on optimizing the topology of a
subwoofer using the computationally efficient hybrid model from Paper I for
single as well multiple frequencies. In Paper III, we design a highly efficient
uni-directional linear acoustic waveguide. Moreover, we also challenge the use
of the term acoustic diode for such uni-directional linear acoustic waveguides
in literature. Paper IV deals with the design of a microwave frequency dividing
multiplexer, which splits the incoming signals into two frequency bands and
delivers them to their respective output ports. In Paper V, we use the adjoint
method to perform the sensitivity analysis of a coupled plasmonic problem
where a Helmholtz equation is coupled to the Poisson equation. We validate
the sensitivities computed using the adjoint method with the finite difference
approach.
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Sammanfattning p̊a svenska

Denna avhandling använder materialdistributionsbaserad topologioptimering
för v̊agutbredningsproblem. I materialdistributionsbaserad definierar vi en in-
dikatorfunktion för material som modellerar närvaron och fr̊anvaron av material
i en designdomän. Genom att placera material inom designdomänen är syftet
att designa en enhet som maximerar utg̊angseffekten eller överföringen av sys-
temet. Det tidsharmoniska linjära v̊agutbredningsproblemet modelleras med
hjälp av Helmholtz-ekvationen. Den styrande ekvationen löses med finita ele-
mentmetoden, och ett artificiellt gränsvillkor används för att trunkera domänen.
Dessutom används en gradientbaserad algoritm, metoden för rörliga asymp-
toter av Svanberg, för att lösa optimeringsproblemet. En adjoint metod beräknar
effektivt gradienterna för m̊alfunktionen med avseende p̊a designvariabler.

Denna avhandling behandlar tv̊a typer av v̊agutbredningsproblem: akustiska
(Artikel I-III) och elektromagnetisk v̊agutbredning (Artikel IV-V). I Artikel I-
II betraktar vi en bandpassdesign för en subwoofer. Syftet med Artikel I är att
minska beräkningstiden som krävs för att utvärdera prestandan hos en given
subwooferlayout. För att åstadkomma detta utvecklar vi en beräkningseffektiv
hybrid 2D–3D-modell. En fullständig 3D-modell, s̊aväl som en sammanla-
gen modell, validerar hybridmodellens resultat. Artikel II fokuserar p̊a att
optimera topologin hos en subwoofer med hjälp av den beräkningseffektiva
hybridmodellen fr̊an Artikel I för s̊aväl enstaka som flera frekvenser. I Ar-
tikel III designar vi en mycket effektiv enkelriktad linjär akustisk v̊agledare.
Dessutom utmanar vi ocks̊a användningen av termen akustisk diod för s̊adana
enkelriktade linjära akustiska v̊agledare i litteraturen. Artikel IV handlar om
konstruktionen av en mikrov̊agsfrekvensdelande multiplexer, som delar upp de
inkommande signalerna i tv̊a frekvensband och levererar dem till deras respek-
tive utg̊angsportar. I Artikel V använder vi adjoint-metoden för att utföra
känslighetsanalysen av ett kopplat plasmoniskt problem där en Helmholtz-
ekvation är kopplad till Poisson-ekvationen. Vi validerar känsligheterna som
beräknas med hjälp av adjoint-metoden med finita differensmetoden.

v





List of papers

The thesis is based on the following papers:

Paper I A.H. Bokhari, M. Berggren, D. Noreland, and E. Wadbro. A com-
putationally efficient hybrid 2D–3D subwoofer model. Scientific
Report 11, 255 (2021).

Paper II A.H. Bokhari, M. Berggren, D. Noreland, and E. Wadbro. Topol-
ogy optimization of a subwoofer. Submitted manuscript (2022).

Paper III A.H. Bokhari, A. Mousavi, B. Niu, and E. Wadbro. Topology op-
timization of an acoustic diode? Structural and Multidisciplinary
Optimization 63, 2739–2749 (2021).

Paper IV A.H. Bokhari, E. Hassan, and E. Wadbro. Topology optimiza-
tion of a microwave frequency dividing multiplexer. Submitted
manuscript (2022).

Paper V A.H. Bokhari and E. Wadbro. Sensitivity analysis of a coupled
plasmonic problem. Technical report UMINF 22.04 (2022).

vii





Acknowledgments

First and foremost, I would like to thank my supervisor, Eddie Wadbro. His
advise and support helped me through all stages of my PhD. Even during his
busy schedule, he was always available for guidance. Second, I would like to
thank Martin Berggren for his advice and direction during my Ph.D.

I thank all my colleagues in Computing Science Department, UMIT Reseach
Lab, and Design Optimization Group for providing a pleasant working environ-
ment. Special thanks to Emadeldeen Hasan, Juan Carlos Araujo-Cabarcas,
and Abbas Mousavi for all the discussions, support, and advice.

I am extremely grateful to my parents for all their love, care, and support.
Finally, I would express my gratitude to my wife for her unwavering support
and understanding.

ix





Contents

1 Introduction 1

2 Topology Optimization 3
2.1 The Material Distribution Method . . . . . . . . . . . . . . . . 4
2.2 Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Topology Optimization for Wave

Propagation Problems . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Alternate Methods for Topology

Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Summary of Papers 9
3.1 Subwoofer, Papers I–II . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Mathematical Modeling . . . . . . . . . . . . . . . . . . 10
3.1.3 Optimization Problem . . . . . . . . . . . . . . . . . . . 12
3.1.4 Selected results . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Acoustic Diode, Paper III . . . . . . . . . . . . . . . . . . . . . 15
3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Mathematical Modeling . . . . . . . . . . . . . . . . . . 15
3.2.3 Optimization Problem . . . . . . . . . . . . . . . . . . . 16
3.2.4 Selected Results . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Frequency Dividing Multiplexer, Paper IV . . . . . . . . . . . . 19
3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Mathematical Modeling . . . . . . . . . . . . . . . . . . 19
3.3.3 Optimization Problem . . . . . . . . . . . . . . . . . . . 20
3.3.4 Selected Results . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Sensitivity Analysis of a Coupled Plasmonic Problem, Paper V 23
3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.2 The Model Problem . . . . . . . . . . . . . . . . . . . . 23
3.4.3 The Plasmonic Problem . . . . . . . . . . . . . . . . . . 26

xi





Chapter 1

Introduction

Our goal when designing a component or a system is to get the best performance
out of it. The decision-making process of selecting the best design that meets
the requirements is called optimization. In simple words, optimization is doing
the best with available resources. In engineering, design optimization is a
methodology that uses a mathematical formulation to solve this task. The
purpose of this methodology is to obtain an optimal design relative to a defined
criteria. The optimal design is obtained by extremizing an objective function
subject to constraints. The objective function can be a measure of, for example,
efficiency, power, compliance, fatigue, stress, or cost.

Design optimization is commonly used for structural mechanics problems,
and it can be classified into three categories: sizing, shape, and topology opti-
mization. In sizing optimization, the design variable is, for example, the thick-
ness or cross-section of the structure (truss or beam). An optimal thickness
minimizes compliance (or deflection) of the structure subject to constraints. In
shape optimization, the boundary of the structure can be varied to minimize
or maximize an objective function. Finally, topology optimization is the most
general technique. In topology optimization, we vary the layout of the material
in a given domain to minimize or maximize an objective function subject to
constraints. Unlike sizing and shape optimization, topology optimization al-
lows the design to assume any configuration in the given domain to maximize
or minimize an objective function without being constrained by predefined con-
figurations.

Topology optimization allows better material utilization by decreasing the
structure’s weight, and hence, its cost. Moreover, it aids the designers to dis-
cover novel designs. This method has been successfully used to design struc-
tures, such as bridges [37], modern vehicle chassis [12], and airplane wings [3]
and fuselages [68]. Over the last two decades, researchers have made efforts
to extend this method to other fields such as fluid flow, heat transfer, and
wave propagation problems. In this thesis, we deal with the design of wave
propagation problems using topology optimization.
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Chapter 2

Topology Optimization

Topology optimization is a technique for determining the optimal material lay-
out in a given domain. The topology optimization method was first introduced
to minimize the compliance of a linear elastic structure. Compliance is a mea-
sure of structure’s deflection (or deformability) subject to static loading. In
1977, Prager and Rozvany [44] presented the optimal layout theory for gril-
lages based on an earlier work on trusses [38]. A decade later, Bendsoe and
Kikuchi [9] applied the homogenization method for structural design optimiza-
tion, and proposed an interpolation scheme based on a power-law to improve
convergence to a black and white design. Researchers [39, 65] later termed
this interpolation scheme the SIMP (solid isotropic material with penalization)
method. SIMP is now widely used to solve compliance problems [7, 20, 46, 48].
The existing strategies for topology optimization of structures are summarized
in a review by Rozvany [45]. In addition, the monograph by Bendsoe and Sig-
mund [10] discusses in detail the topology optimization of structural problems,
as well as its extension in other fields, such as fluid flow, wave propagation,
and non-linear problems.

For compliance minimization problems, topology optimization techniques
are well established, and reliable tools are available to handle them. Educa-
tional articles that solve 2D compliance problems like 88-line [6] and 99-line [47]
MATLAB codes are good for educational and research purposes. In addition,
the Python code [69] by Zuo and Xie allows solving 3D topology optimization
problems with complex geometries, as it can read data from CAD files. Another
3D code [36] can be used to solve compliance and heat conduction problems.
Today, topology optimization tools for structural mechanics problems are also
available in CAE (computer-aided engineering) software such as COMSOL [29],
Solidworks [49], and ALTAIR [56]. However, the range of problems they can
handle is still limited.

Topology optimization has become an important tool for engineering de-
sign in the automotive [12, 64] and aerospace [3, 68] industries. The methods
for structural design optimization have matured over the last three decades.
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Therefore, researchers have attempted to extend topology optimization tech-
niques to other fields, such as fluid flow [4, 11, 17], heat transfer [15, 16, 66],
and wave propagation problems. Early research on topology optimization for
wave propagation problems was carried out in 1999 by Dobson and Cox [18].
The aim was to maximize the band gaps in photonic crystals and the Helmholtz
equation was used to model time-harmonic wave propagation. The method was
later applied to the design of acoustic problems such as improving transmission
efficiency of an acoustic horn [58] and an acoustic lens [60], noise reduction in
room [19], and a sound muffler [33]. Moreover, the topology optimization tech-
nique has gained popularity in the last decade for the design of electromagnetic
problems such as waveguide filters [1], electric and magnetic resonators [2], and
metallic antennas [25, 61].

2.1 The Material Distribution Method

The so-called material distribution approach is most commonly used for topol-
ogy optimization. This approach models the presence of material by a material
indicator function α, where α(x) = 1 and α(x) = 0 represent two materials
(solid and air). For the computer implementation of this approach, we use a
raster representation for a 2D setup and a voxel representation for a 3D setup.
More precisely, a fixed domain (also referred to as the design domain) is divided
into elements. The optimization problem consists of finding the element val-
ues αi ∈ {0, 1} to extremize a given performance measure (objective function)
subject to constraints.

Numerical methods, such as the finite difference [31], finite element [32],
or finite volume [40] method are used for the discretization of the governing
PDE. The finite element method is widely used as a PDE solver for topol-
ogy optimization problems. However, the finite volume and finite difference
methods are often preferred for fluid flow problems [17, 21] and the time-
domain problems such as Maxwell’s equations [25, 41], respectively. For the
wave propagation problems in this thesis, the finite element method is used.

By discretizing the governing equation using the finite element method, we
assemble a state equation of the form

A(α)u = b, (2.1)

where the matrix A depends on the governing equation (such as the Poisson
or Helmholtz equation) and boundary conditions (such as Dirichlet, Neumann,
or absorbing boundary condition), u is a state vector (such as displacement or
pressure), vector α specifies the design variables, and vector b is the forcing of
the system.
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Using the definitions above, the optimization problem is written as

min
α

J(α)

such that A(α)u = b

αi ∈ {0, 1}, i = 1, 2, . . . , N,

(2.2)

where J is the objective function, αi is the element value of design variable,
and N is the number of elements in the design domain.

2.2 Relaxation

The approach presented above ending in expression (2.2) uses a discrete pa-
rameterization of the design problem, in which αi can either be a 0 or 1. This
class of problems is computationally expensive, particularly when dealing with
large-scale optimization problems involving millions of design variables. To
make this problem tractable, we allow the material indicator function to be
continuous, that is, αi ∈ [0, 1]. This relaxation enables us to use gradient-
based optimization algorithms like the optimality criteria (OC) [8, 47] and the
method of moving asymptotes (MMA) [53]. These algorithms require gradients
of the objective function with respect to design variables, which are efficiently
computed using the adjoint variable method [22]. The optimization problem
for the relaxed material indicator function can be written as

min
α

J(α)

such that A(α)u = b

0 ≤ αi ≤ 1, i = 1, 2, . . . , N.

(2.3)

However, the intermediate values of material indicator function are not desir-
able. We want elements to either hold material or void. Thus, we employ
a combination of filtering and penalization methods to suppress intermediate
values of material indicator function and impose size control on geometrical
features of design.

For compliance minimization problems, the most common method for pe-
nalizing the intermediate values of design variables is the SIMP method. A
volume constraint is added to obtain an optimal design; otherwise, SIMP pe-
nalizes all the elements toward solid material. The SIMP interpolation scheme
for the filtered design vector F(α) is defined as

A
(
F(α)p

)
=

N∑
i=1

(
αmin + (1− αmin)F(α)pi

)
Ai, (2.4)

where p > 1 is a penalty parameter, αmin > 0, and Ai is the element stiffness
matrix for the compliance minimization problem. A zero lower bound on design
variables (αmin = 0) makes the rows in state matrix A vanish, resulting in a
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singular matrix. To obtain a unique solution, the SIMP interpolation scheme
avoids this issue by choosing αmin as a small positive constant, for example
αmin = 10−3.

The optimization problem with filtering, SIMP penalization, and a volume
constraint V is

min
α

J
(
F(α)p

)
such that A

(
F(α)p

)
u = b

1

N

N∑
i=1

αi ≤ V

0 ≤ αi ≤ 1, i = 1, 2, . . . , N.

(2.5)

If we use a value of p large enough the intermediate values of α are suppressed.

2.3 Topology Optimization for Wave
Propagation Problems

For acoustic wave propagation problems, we employ a material distribution
approach that is analogous to the standard approach used for the compliance
problem. More precisely, the material indicator function acts directly on the
domain integrals, where α(x) = 1 represents air and α(x) = ε represents solid.
Using α = 0 as the lower bound of the design variables again causes the state
matrix A in expression (2.1) to be singular. To solve this problem, we use
α ∈ [ε, 1]. For the acoustic problems in this thesis, we use ε = 10−3. This
method can at least be traced back to the study of an acoustic horn [58] by
Wadbro and Berggren. Moreover, for this approach, there exists a proof [30]
that the problem with ε as the lower bound of the design variable converges
linearly in ε to the problem with the exactly modeled scatterer in the air
domain.

As stated earlier, we employ a combination of penalization and a nonlinear
filtering method to suppress intermediate values of design variables and impose
size control on the design. For the penalization of design variables, we do not
use SIMP for the wave propagation problems. Instead, for the acoustic wave
propagation, we add an explicit term to the objective function for penalization,
as proposed by Allaire and Kohn [5]. Furthermore, we do not impose a volume
constraint, allowing the optimizer to place as much material as it wants to
achieve the best design.

For the filtering of design variables, we use the fW -mean filtering framework
by Wadbro and Hägg [59]. We approximate morphological operators like erode
and dilate, using the non-linear harmonic mean filters [54]. The harmonic
erode and dilate operators, which act on the design vector α, are defined in
the discrete setting as follows:

Er,β(α) = f−1
Eβ
(
W rfEβ (α)

)
and Dr,β(α) = f−1

Dβ
(
W rfDβ (α)

)
, (2.6)
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where the weight matrix W r implicitly defines the neighborhood Ni of element
i. The filter radius r determines the neighbourhood size where for element i,

Ni = {j : ‖xi − xj‖ < r}, j ∈ {1, 2, . . . , N}, (2.7)

where xi and xj are the centroids of element i and j, respectively. More pre-

cisely,W r = D−1Gr, where the diagonal matrixD = diag
(
|N1|, |N2|, . . . , |NN |

)T
and the neighborhood matrix Gr with entries, gij = 1 if j ∈ Ni, else gij = 0.

Moreover, fEβ =
[
fEβ (α1), fEβ (α2), . . . , fEβ (αN )

]T
and fDβ =

[
fDβ (α1),

fDβ (α2), . . . , fDβ (αN )
]T

with entries fEβ (αi) = (αi + β)−1 and fDβ (αi) =

fEβ (1 − αi), i = 1, 2, . . . , N , respectively. Similarly, entries of f−1
Eβ and f−1

Dβ
are f−1

Eβ (αi) and f−1
Dβ (αi), respectively, which are the inverse of fEβ (αi) and

fDβ (αi). Here, β > 0 is a parameter that controls the properties of nonlinear
filtering. Thus, we refer to it as nonlinearity parameter.

We define harmonic close by using harmonic erode and dilate in a series

Cr,β(α) = Er,β
(
Dr,β(α)

)
, (2.8)

and finally, we define the filtering vector

F(α) = ε+ (1− ε) Cr,β(α), (2.9)

which holds element values of filtered design variables.
The optimization problem with a quadratic penalization term, filtering of

design variables, and ε as a lower bound is stated as

min
α∈A

J
(
F(α)

)
+
γ

N
(αT − ε)(1−α)

such that A
(
F(α)

)
x = b,

(2.10)

where γ denotes the penalty parameter and the set of admissible designs is

A =
{
α ∈ RN | ε ≤ αi ≤ 1

}
. (2.11)

We employ MMA, a gradient-based algorithm, to solve optimization prob-
lems in this thesis. To avoid being early caught in a bad local minimum, we use
a continuation approach for γ and β. To this end, we start the optimization
with a small penalization value and linear filtering of design variables by con-
trolling both the parameters. This is to ensure that the penalization of design
variables and nonlinear filters for size control does not affect the optimization
in the initial stage. More precisely, we start the optimization with a small value
of the penalty parameter since penalization is almost negligible when the limit
γ → 0. Similarly, we start the optimization with a large value of the nonlinear-
ity parameter because the filtering is essentially linear when the limit β → +∞.
The optimization terminates, when the convergence criteria of MMA algorithm
is met. In the next step, we provide the optimizer with the optimized design
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from the previous step as an initial guess. Moreover, the penalty parameter is
increased while the nonlinearity parameter is decreased. The quadratic term
in objective function (2.10) becomes large as the limit γ → +∞, penalizing
the design variables towards ε and 1. Moreover, the filtering behavior becomes
nonlinear as the limit β → 0, and the morphological operators impose size
control on the design. We stop the optimization when we achieve a black and
white design with size control and the optimizer’s convergence criteria is met.

2.4 Alternate Methods for Topology
Optimization

Another important approach for topology optimization is the level set method.
This method has been successfully used for structural optimization [62]. The
level set method determines the geometry of structure by defining an interface
of material and void. It is also suitable for optimization of structural problems
with geometric uncertainties [13, 24]. Level set methods have the disadvantage
of being sensitive to the initial guess, which limits the final design. Furthermore,
gradients of level set functions near the boundary have a significant impact on
the convergence.

Earlier work [5, 9, 52] on topology optimization of structures was based
around the homogenization method. For this approach, the topology optimiza-
tion problem is defined as finding the ideal porosity of a porous medium by
using an optimality criteria. A material model with micro-scale voids is em-
ployed. This approach can create designs with extremely fine microstructures
that are sometimes impossible to manufacture. Different ways have been used
to overcome this problem, the most common of which being SIMP, which penal-
izes intermediate values of design variables. For details on the homogenization
method, see the review [26] and book [27] by Hassani and Hinton.

The topology optimization problem is defined using discrete values of design
variables in expression (2.2). Therefore, it appears natural to solve the problem
using a discrete optimization approach. Few problems have been solved using
this approach [51, 55] because it is computationally expensive, and convergence
is difficult to achieve. However, a recent study [43] by Picelli et al. presents an
efficient method to use discrete design variables for topology optimization by
solving compliance problems for multiple load cases.

8



Chapter 3

Summary of Papers

Wave propagation is an intriguing physical phenomenon. A wave can be re-
garded as an energy-carrying disturbance in a medium or a vacuum. Sound,
light, water ripples, and earthquakes are some of the most familiar examples
of waves we encounter in our daily lives. Moreover, modern electronic devices
like mobile phones, televisions, and sound systems include loudspeakers, mi-
crophones, and antennas (e.g., Bluetooth, WiFi, cellular), which use acoustic
and electromagnetic wave propagation. Hence, designing efficient devices is of
interest to engineers and physicists, which motivates efforts to make topology
optimization for wave propagation problems as successful as it is for structural
mechanics problems. This thesis employs a material distribution approach
for the topology optimization of wave propagation problems. The layout of
this thesis is such that Papers I–III deal with topology optimization of acoustic
wave propagation problems, while Papers IV–V deal with electromagnetic wave
propagation problems.

3.1 Subwoofer, Papers I–II

3.1.1 Introduction

Separate transducers (or drivers) are utilized to generate low, mid, and high
frequencies in a loudspeaker system. All signals are received via a crossover sys-
tem, which divides them across different transducers based on their frequency
range. A subwoofer is a type of loudspeaker that reproduces low frequencies
in a loudspeaker system. Here, we present a bandpass design of a subwoofer.
The bandpass design, as the name implies, enables a specific frequency range
to pass while rejecting all frequencies outside of that range. In a bandpass
subwoofer design, the transducer is housed in a sealed chamber and it radiates
in a ported front chamber.

In Paper I, the aim is to reduce the computational time it takes to evaluate
the performance of a given subwoofer layout. To this end, we develop a compu-
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Γs

Γp

Figure 3.1: 3D model. Left: Front view of the subwoofer where the output port is divided
into rectangular panels for impedance boundary condition. Right: Cross-section view of the
subwoofer.

tationally efficient hybrid 2D–3D model. The results of the hybrid model are
validated by a full 3D model as well as a lumped model. Paper II deals with
the topology optimization of a subwoofer using the computationally efficient
2D–3D hybrid model.

3.1.2 Mathematical Modeling

Wave propagation inside the subwoofer cabinet and in the exterior is governed
by the Helmholtz equation

∆p+ k2p = 0, (3.1)

where the wave number is k = ω/c, in which ω is the angular frequency and c
is the speed of sound, and p is the complex pressure amplitude.

The finite element method is used to discretize the Helmholtz equation
inside the subwoofer cabinet, while the interaction of the subwoofer with the
exterior through an output port is modeled using the boundary element method
solving exterior Helmholtz problems. The walls of the subwoofer cabinet are
assumed to be soundhard, which implies that

∂p

∂n
= 0. (3.2)

The amplifier receives an input voltage to actuate the transducer’s electromag-
netic coil, which moves the cone to generate sound. A lumped element model
is used for modeling electromagnetic and mechanical parts of the transducer.

3D model

Consider the subwoofer setup illustrated in Fig. 3.1, where Γp and Γs denote
the output port and the soundhard walls, respectively. In the 3D model, the
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Upper box
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γs
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Figure 3.2: Hybrid model: Cross-section view of subwoofer.

subwoofer cabinet is divided into a front and a back chamber by the trans-
ducer and the baffle. We employ a full 3D model for the front and the back
chamber, as well as the subwoofer exterior. Moreover, we use an impedance
boundary condition to model the interaction of the subwoofer cabinet with the
exterior. We use the concept of acoustic impedance to implement this bound-
ary condition. The acoustic impedance provides a complete wave response to
any external stimuli. In addition, it can be evaluated at a physical boundary
between two mediums or a fictitious boundary such as the output port. It is
defined as the ratio of complex pressure amplitude p to the velocity u,

Z =
p

u
, (3.3)

where both p and u are dependent upon the frequency.

To implement an impedance boundary condition [42, 57], we truncate our
domain at Γp. The boundary Γp is divided into Np rectangular panels, as illus-
trated in Fig. 3.1 (left). To model the interaction of the subwoofer cabinet with
the exterior, we assemble an Np×Np matrix Zp

3D using an impedance relation
that relates pressure and velocity at these panels. Impedance matrix Zp

3D is
assembled column-wise by setting a unit velocity at each panel and solving an
exterior Helmholtz problem for each panel using the boundary element method.
Impedance boundary condition allows the exterior problem to be solved inde-
pendently of the interior problem. Thus, this allows us to divide our acoustic
problem into two sub-problems, which can be solved independently. We pay
a one-time cost by computing the impedance matrix for the output port, and
then we evaluate the performance of various subwoofer layouts by simply solv-
ing the interior problem. A detailed description on the implementation of the
impedance boundary condition is presented in Paper I.
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Hybrid 2D–3D model

Consider the subwoofer setup, illustrated in Fig. 3.2, where γp and γs denote
the output port and the soundhard walls, respectively, and γt divides the upper
and the lower box. The lower box is modeled in 2D while the upper box and
the exterior are modeled in 3D. We assume planar symmetry in the lower box
due to long wavelengths and hence, use a 2D model. However, due to the
transducer, 3D effects in the upper box are unavoidable.

For the computational efficiency, we divide our acoustic problem into three
sub-problems by using the impedance boundary condition. The three sub-
problems are: the lower box, the upper box including the transducer, and the
exterior. We assemble a (N t + 1)× (N t + 1) matrix Zt to model the response
of the upper box. We divide γt into depth-wise panels and the impedance
matrix Zt is assembled columnwise by setting a unit velocity at these panels.
In addition to these panels, the effect of the transducer’s cone is also taken
into consideration by setting a unit velocity at the cone. While a unit velocity
is set at each panel and cone in succession, we compute the voice coil current
and average pressure at each panel. Similarly, the response of the exterior has
already been computed by assembling an impedance matrix for the 3D model.

The use of impedance boundary conditions allows us to pre-compute the
response of the exterior and the upper box. Another advantage is that we can
use different methods to solve different sub-problems. We use the finite element
method to compute the response of the upper box, while we use the boundary
element method to compute the response of the exterior. This modular ap-
proach makes the hybrid model computationally efficient. There is a one-time
computational cost to pre-compute impedance matrices for the exterior and
the upper box. Once, these matrices are computed, we efficiently evaluate the
performance of different subwoofer layouts. Moreover, the hybrid model is also
computationally feasible to be used in an optimization loop.

3.1.3 Optimization Problem

The hybrid model is used to optimize the subwoofer’s cabinet, with the lower
box serving as the design domain. By placing material inside the design do-
main, the objective is to maximize the subwoofer’s output power for the target
frequencies. We evaluate the subwoofer’s radiated power P through the output
port by integrating the acoustic intensity,

P =

∫
γp

p up, (3.4)

where p denotes the complex pressure amplitude inside the lower box and up

denotes the normal velocity at the output port. In Paper II, the subwoofer’s ra-
diated output power is maximized for both single as well as multiple frequencies.
The objective function that optimizes for the set of frequencies f1, f2, . . . , fm
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Figure 3.3: The SPL, 1m in front of the output port, is computed as the function of fre-
quency. Left: Frequency response of the subwoofer with empty lower box. Right: Frequency
response of subwoofer with a horizontal wall in the lower box.

is written as

J(F(α)) =

m∑
i=1

ln
(
Pfi
)

(3.5)

where F(α) denotes the filtered design vector and m denotes the number of
frequencies. Moreover, the sound pressure level (SPL) is measured 1 m in front
of the output port to evaluate the performance of the subwoofer. It is a log-
arithmic scale measured in dB. To compute SPL for all the designs, 1 V is
applied as the input voltage to the amplifier.

3.1.4 Selected results

In Paper I, we consider two layouts in the subwoofer’s lower box to validate the
hybrid model, an empty lower box as well as a horizontal wall inside the sub-
woofer’s lower box. Fig. 3.3 (left) illustrates that the results of the hybrid and
3D model closely match each other for the first layout. Moreover, the results
of a lumped model also follow the same trend. Fig. 3.3 (right) illustrates that
the results of the hybrid and 3D model again closely match each other for the
second layout. For the second subwoofer layout, we do not use a lumped model
because they require modifications for each new subwoofer layout. Hence, they
are not suitable for evaluating the performance of complex material layouts in
the subwoofer’s lower box.

In addition, we perform 20 simulations to compare the computational times
of the 3D and hybrid models. For each simulation, we consider 21 frequencies
in the range 20 − 120 Hz for the time analysis. The mean times for the 3D
model and the hybrid models for a given subwoofer layout are 19 minutes 12
seconds and 44.1 seconds, respectively. The difference in computational times
is significant, which indicates that the 3D model is not suitable for use in an
optimization loop. Therefore in Paper II, we employ the hybrid model for
optimizing the material layout in the subwoofer’s lower box.
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Figure 3.4: Single Frequency Optimization. Top: Optimized designs. Bottom: The SPL,
1m in front of the output port, is computed as the function of frequency.
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Figure 3.5: Multi Frequency Optimization: Top: Optimized designs. Bottom: The SPL,
1m in front of the output port, is computed as the function of frequency.
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In Paper II, we compare the frequency response of the optimized designs
with the frequency response of an empty lower box, which serves as a reference.
The optimized designs along with the frequency responses for single target
frequencies 30 Hz, 60 Hz, and 70 Hz are shown in Fig. 3.4. For 60 Hz, the
optimizer does not place any material in the lower box, and the frequency
response overlaps the reference curve, indicating that 60 Hz is the resonance
frequency of the empty lower box. For the other two designs, the frequency
responses show a peak at 30 Hz and 70 Hz, respectively. Here, the lower box
acts as a Helmholtz resonator, and the optimizer tunes each frequency under
consideration as the resonance frequency of the Helmholtz resonator.

We use octave bands of various widths for multi-frequency optimization. In
the octave band, the highest frequency is double that of the lowest. For the
numerical experiments, we consider single, one-and-a-half, and double octave
bands. The multi-frequency optimization designs along with their frequency
responses are presented in Fig. 3.5. All the designs show a distinct bandpass in
their respective frequency response. Furthermore, the optimizer adds a wall to
all of the designs, effectively resulting in a cascade of two Helmholtz resonators.

3.2 Acoustic Diode, Paper III

3.2.1 Introduction

An acoustic diode, as the name suggests, is a device that only enables acoustic
waves to travel in one direction while preventing them from flowing in the
opposite direction. Uni-directional acoustic waveguides have application in
many biomedical devices such as ultrasonic imaging [35] and lithotripsy [34].
Thus, designing a passive one-way acoustic waveguide is of interest to physicist
and engineers. Researchers have used linear [28, 50, 63, 67] as well as non-linear
models [14, 23] to design acoustic diodes. The nonlinear models suffer from low
transmission efficiency, which motivates efforts to design a linear device. To this
end, we employ material distribution based topology optimization to design a
uni-directional waveguide based on time harmonic linear wave propagation.

3.2.2 Mathematical Modeling

Consider the axisymmetric setup illustrated in Fig. 3.6, where ΩD is our design
domain, and ΩW denotes the left and right waveguides. The left and right
waveguides are truncated at ΓL and ΓR by a Dirichlet to Neumann (DTN)
type boundary condition. We consider waves traveling towards ΩD as incoming
waves and waves traveling away from ΩD as outgoing waves.

The wave propagation inside Ω is governed by the Helmholtz equation for
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Figure 3.6: Computational domain for two dimensional axi-symmetric setup. Γsym denotes
the axis of symmetry and Γs denotes the soundhard walls. ΓL and ΓR denote the boundaries
of artificially truncated waveguides at left and right, respectively.

the cylindrical coordinates. Thus, the state equation reads:

−∇ · (r∇p)− k2rp = 0, in Ω, (3.6)

∂p

∂n
= 0, on Γs ∪ Γsym, (3.7)

∂p

∂n
−DtN(p) = gL, on ΓL, (3.8)

∂p

∂n
−DtN(p) = gR, on ΓR, (3.9)

where gL and gR are the incoming waves in the left and right waveguides,
respectively.

3.2.3 Optimization Problem

To design a uni-directional waveguide, we consider the following two cases:

Case 1: An incoming planar wave in the left waveguide traveling towards ΩD.

Case 2: An incoming planar wave in the right waveguide traveling towards ΩD.

The objective of this study is to maximize the power transmission to the
right for Case 1 and minimize the power transmission to the left for Case
2. We use scattering parameters, SXiYj , to define power (reflection and trans-
mission) in left and right waveguides, where X ∈ {L,R}, Y ∈ {L,R}, and
i, j = 0, 1, . . . ,Mp. Here, the left and right waveguides are denoted by L and
R, respectively, and the number of propagating modes is denoted by Mp. The
definition of SXiYj is

SXiYj =
Output power of mode j at ΓY

Input power of only mode i at ΓX
. (3.10)

Based on definition of scattering parameters, we define the objective function
as

J
(
F(α)

)
=

N f∑
n=1

Mp∑
m=0

(
SL0Rm(F(α), ωn) + SR0Lm(F(α), ωn)

)
, (3.11)
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Figure 3.7: Optimized design that only allows uni-directional acoustic flow (left to right)
for frequency range 8–9 kHz

where we optimize for a set of angular frequencies ω1, ω2, . . . , ωN f .

3.2.4 Selected Results

For the numerical experiments, we choose the width of left and right waveg-
uides such that they only allow the planar and first non-planar modes to prop-
agate. We optimize this setup for the target frequency range 8–9 kHz. Fig. 3.7
illustrates the optimized design that only allows acoustic waves to travel in
one direction (from left to right) for planar incoming waves. Fig. 3.8 presents
graphs of transmission and reflection for an incoming planar wave at left and
right waveguides. The graph for Case 1 indicates that the optimized design in
Fig. 3.7 converts nearly all the power of the planar incoming wave at the left
waveguide to the first non-planar wave at the right waveguide. For all frequen-
cies in the range 8–9 kHz, more than 99.8 % of the power is transmitted to the
non-planar mode at the right waveguide. Furthermore, for the target frequency
band 8-9 kHz, there is approximately no reflection, as SL0L0 < 5.4× 10−4 and
SL0L1 < 9.0 × 10−4, respectively, and nearly no transmission at the planar
mode, as SL0R0

< 2.2× 10−3.
The graph for Case 2 indicates that the optimized design in Fig. 3.7 reflects

back nearly all the power of the planar incoming wave at the right waveguide.
For all frequencies in the range 8-9 kHz, more than 99.5 % of the power is
reflected back to the planar mode at the right waveguide. Furthermore, for
the target frequency band 8-9 kHz, there is approximately no transmission,
as SR0L0

< 2.2 × 10−3 and SR0L1
< 4.2 × 10−4, respectively, and nearly no

reflection at the first non-planar mode, as SR0R1
< 2.3× 10−3.

The wave propagation in Case 1 and Case 2 is essentially in one direction,
from left to right, for the target frequency band. Here, mode conversion is
used to generate uni-directional acoustic flow, and our waveguide setup seems
to behave as an acoustic diode for an incoming planar wave at the left and
right waveguides. Now, we define two more cases to test our optimized design
illustrated in Fig. 3.7 with the first non-planar mode as an incoming wave:

Case 3: First non-planar mode as incoming wave in the left waveguide traveling
towards ΩD.
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Figure 3.8: Normalized power plotted vs the frequency. Left: Planar incoming wave in the
left waveguide. Right: Planar incoming wave in the right waveguide

Case 4: First non-planar mode as incoming wave in the right waveguide traveling
towards ΩD.

Fig. 3.9 presents graphs of transmission and reflection for the first non-
planar mode as an incoming wave. The graph for Case 3 shows that nearly
all the power of incoming first non-planar mode is reflected back. For all
frequencies in the range 8-9 kHz, more than 99.7 % is reflected back to the
first non-planar mode at left waveguide. Moreover, there is approximately no
transmission, as SL1R0 < 4.2× 10−4 and SL1R1 < 9.9× 10−4, respectively, and
nearly no reflection at the planar mode, as SL1L0

< 9.0 × 10−4, for the target
frequency band 8-9 kHz.

The graph for Case 4 shows that nearly all the power of incoming first non-
planar mode at left waveguide is converted to the planar mode at right waveg-
uide. For all frequencies in the range 8-9 KHz, more than 99.6 % is transmitted
to the first non-planar mode at left waveguide. Moreover, there is approxi-
mately no reflection, as SR1R0 < 2.3 × 10−3 and SR1R1 < 5.4 × 10−4, respec-
tively, and nearly no transmission at the planar mode, as SR1L1 < 9.9× 10−4,
for the target frequency band 8-9 kHz.

The results indicate that the optimized design does not act as an acoustic
diode for all four cases. Moreover, in order to achieve a uni-directional acoustic
flow, the planar mode is converted to the first non-planar mode and vice versa.
In fact, all the linear diodes in the literature are mode converters. To design a
real acoustic diode, which is a non-linear device, we need to break reciprocity.
However, it is possible to design a highly efficient uni-directional waveguide
using the linear model when relying on mode conversion.
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Figure 3.9: Normalized power plotted vs the frequency. Left: First non-planar mode as
incoming wave in the left waveguide. Right: First non-planar mode as incoming wave in the
right waveguide.

3.3 Frequency Dividing Multiplexer, Paper IV

3.3.1 Introduction

A frequency dividing multiplexer (FDM) is a device that divides the incoming
signal into multiple non-overlapping frequency bands and delivers them to their
respective output port. This device allows system miniaturization by using a
single input port for multiple signals. We employ the material distribution
based topology optimization to design an FDM that operates at microwave
frequencies. By placing a metallic material within the design domain, the aim
is to design a passive device that splits the incoming signal into two frequency
bands and transmit them to their respective output ports. The design of metal-
lic FDM using the topology optimization presents two challenging issues. The
first issue is that the intermediate values of design variables are associated
with Ohmic losses, which makes the optimization problem self penalizing. The
second issue is the dependency of optimization results on the formulation of
the objective function and the initial design. We solve the self penalizing is-
sue by employing a filtering method and a continuation approach. To solve
the second issue, we derive a power balance expression of the device. Using
the power balance expression, we formulate three successive objective function,
each with an additional parameter. We study the impact of each parameter on
the optimization results.

3.3.2 Mathematical Modeling

Consider the three-port setup illustrated in Fig. 3.10. The three waveguides
and the design domain ΩD constitute the computational domain Ω. Moreover,
Γ1, Γ2, and Γ3 denote the boundaries of three artificially truncated waveguides,
and the boundary ΓPEC represent the perfect electric conductor.

We consider the time harmonic Maxwell’s equation for the electric field E.
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Figure 3.10: Computational domain for three-port frequency dividing multiplexer. The
boundary ΓPEC is a perfect electric conductor. Γ1, Γ2, Γ3 indicate port-1, port-2, and port-3,
respectively.

Moreover, we assume that the electric field is polarized normal to the plan,
that is, E = (0, 0, u), which provides us the Helmholtz equation for u. The
metallic boundaries are assumed to be perfect electric conductors and a first-
order absorbing boundary condition is used to truncate the domain at Γm.
Hence, the state equation reads:

−∆u− k2

(
εr − i

√
µ0

ε0

σ

k

)
u = 0 in Ω, (3.12)

u = 0 on ΓPEC, (3.13)

∂u

∂n
+ iKu = 2iKgmAm on Γm, (3.14)

where the wavenumber k = ω/c, the speed of light c =
√

1/µ0ε0, in which
µ0 and ε0 are the permeability and permittivity in free space, respectively, σ
is the electrical conductivity, εr is the relative permittivity, K is the reduced
wavenumber, Am is the complex amplitudes of incoming waves at port-m, and
function gm is the mode at port-m.

The width of the ports only allow the first non-planar mode to propagate
and all higher modes are evanescent. Expression (3.14) for the first-order ab-
sorbing boundary condition allows us to set the amplitude of the incoming
wave. Furthermore, the governing equation (3.12) along with the Dirichlet
condition (3.13) and the first-order absorbing boundary condition (3.14) is dis-
cretized using the finite element method.

3.3.3 Optimization Problem

We define Pmn to compute the power of transmission, reflection, and cross-
coupling in the waveguides. The following expression computes Pmn when
only port-n is excited

Pmn =
Output power at port-m

Input power at port-n
m, n = 1, 2, 3. (3.15)
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Figure 3.11: Optimized design and its frequency response with the first objective function.
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Figure 3.12: Optimized design and its frequency response with the second objective func-
tion.

By setting the amplitudes of incoming waves A1 = 1, and A2 = A3 = 0, the
power balance for the device can be written as

P11 + P21 + P31 + Ohmic losses = 1. (3.16)

The aim of this study is to maximize P21 for frequency band-1 and maximize
P31 for frequency band-2.

3.3.4 Selected Results

For the numerical experiments, we use 9.0–9.2 GHz as frequency band-1 and
10.0–10.2 GHz as frequency band-2. As stated earlier, we use power bal-
ance (3.15) to formulate our objective functions. For the first objective func-
tion, we simply consider transmission, that is, P21 for frequency band-1 and P31

for frequency band-2. The objective function for the transmission is formulated
as

J1(F(α)) =

Q1∑
q=1

(
1− P21(F(α), kq)

)
+

Q1+Q2∑
q=Q1+1

(
1− P31(F(α), kq)

)
, (3.17)
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where we optimize for the set of wavenumbers k1, k2, . . . , kQ1+Q2 , and Q1 and
Q2 denote the number of frequencies in frequency band-1 and frequency band-
2, respectively. Here, we minimize J1 to maximize P21 for frequency band-1
and P31 for frequency band-2. The resulting design, illustrated in Fig. 3.11,
shows a good multiplexing effect with J1 = 1.1987 compared to an initial value
of J1 = 12.2225 with an empty design domain. We evaluate J1 to compare all
the resulting designs, as it provides a measure of transmission.

We only provide information about transmission to the first objective func-
tion. For the second objective function, we add a cross-coupling term to the
objective function. More precisely, we add P31 for the frequency band-1 and P21

for the frequency band-2 to the objective function. To this end, we formulate
the following objective function

J2(F(α)) =

Q1∑
q=1

(
P31(F(α), kq)

)
+

Q1+Q2∑
q=Q1+1

(
P21(F(α), kq)

)
. (3.18)

Hence, for the second study, we minimize the sum of J1 and J2. The final
design together with its frequency response is presented in Fig. 3.12. Moreover,
the value of J1 = 0.9583, which indicates an improved multiplexing effect
compared to the first objective function. For the third objective function,
we add information about reflection as well. To do so, we define the following
objective function that includes P11 for both frequency bands

J3(F(α)) =

Q1∑
q=1

(
P11(F(α), kq)

)
+

Q1+Q2∑
q=Q1+1

(
P11(F(α), kq)

)
. (3.19)

Similarly, for the third study, we minimize the sum of J1, J2, and J3. The
resulting design and its frequency response are identical to the results of the
second objective function. Moreover, the value of J1 = 0.9524 is slightly better
than the second objective function, which indicates that adding information on
reflection does not improve the results significantly in this case.

The results discussed above were obtained using an empty design domain
as an initial design. However, we also performed numerical experiments with
different initial designs such as different sizes of triangles, circles, and square
shapes. The results indicate that there are multiple good local minima, and
we can achieve a good multiplexing effect by selecting a good initial design.
Fig. 3.13 illustrate the optimized design with a circle-shaped initial design. In
this case, the frequency response for frequency band-1 is flat, and the value of
J1 = 0.5370 suggests that the multiplexing effect is much better compared to
earlier designs.
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Figure 3.13: Optimized design with and its frequency response with the second objective
function and a circle shaped initial design.

3.4 Sensitivity Analysis of a Coupled Plasmonic
Problem, Paper V

3.4.1 Introduction

In material distribution-based topology optimization, we define a material in-
dicator function to model the presence and absence of material. Usually, a
gradient-based algorithm is used to solve the topology optimization problem.
The adjoint method is used to efficiently compute gradients with respect to the
design variables. In this study, we perform a sensitivity analysis of a coupled
plasmonic problem using the adjoint method. More precisely, a TE-polarized
Helmholtz equation is coupled to the Poisson equation. The coupled plas-
monic problem poses several challenges due to the complex solution of the TE-
polarized Helmholtz equation. Here, we handle these issue by first considering
a simple model problem with Poisson-Poisson coupling. By only considering
the Poisson problems, we avoid the complex solution of Helmholtz equation.
Thus, after examining the model problem, we perform a sensitivity analysis of
the coupled plasmonic problem and highlight the main differences.

3.4.2 The Model Problem

Consider the setup, illustrated in Fig. 3.14, for the model problem. The first
Poisson problem is

−∇ · η∇u = 1 in Ω,

u = 0 on ΓD,

n · ∇u = 0 on ΓN,

(3.20)
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Figure 3.14: Computational domain Ω for the model problem

In the second Poisson problem, η times the square of the solution of first prob-
lem (3.20) enters as a forcing term, that is,

−∇ · κ∇T = η u2 in Ω,

T = 0 on ΓD,

n · ∇T = 0 on ΓN.

(3.21)

A variational form of the first Poisson problem (3.20) is:

find u ∈ V such that∫
Ω

η∇u · ∇v =

∫
Ω

v ∀ v ∈ V,
(3.22)

where V = {q ∈ H1(Ω)
∣∣ q|ΓD ≡ 0}. The variational form of the Poisson prob-

lem (3.21) is:
find T ∈ V such that∫

Ω

κ∇T · ∇q =

∫
Ω

η u2q ∀ q ∈ V.
(3.23)

In the model problem, the objective function is the integral over Ω.

J =

∫
Ω

T. (3.24)

To perform sensitivity analysis, we first consider design perturbation δη for
the objective function (3.24), and variational forms (3.22) and (3.23), respec-
tively. Given a design perturbation δη, the corresponding first-order perturba-
tion of J is

δJ =

∫
Ω

δη u2 z(1) −
∫

Ω

δη∇u · ∇z(2), (3.25)
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Figure 3.15: The relative absolute difference in gradients of the objective function with
respect to η for the model problem, evaluated using the adjoint and the finite difference
method, is plotted against the finite difference h for all four elements in the computational
domain Ω.

where the two ajoints z(1) and z(2) solve the following two adjoint equations

find z(1) ∈ V such that∫
Ω

κ∇v · ∇z(1) =

∫
Ω

v, ∀ v ∈ V,
(3.26)

and
find z(2) ∈ V such that∫

Ω

η∇q · ∇z(2) = 2

∫
Ω

η u z(1) q, ∀ q ∈ V,
(3.27)

respectively.
Secondly, we consider design perturbation δκ and the corresponding first-

order perturbation of J is

δJ = −
∫

Ω

δκ∇T · ∇z(1), (3.28)

where the adjoint equation for this problem is similar to Eq. (3.26) for z(1). So,
it is sufficient to solve two ajoint equations to obtain sensitivities with respect
to η and κ.

For the model problem, we consider a minimal example with just four ele-
ments in Ω. We employ the finite difference method to validate our gradients
obtained using the adjoint method. The gradients of J with respect to per-
turbed κ are standard and well known. Therefore, we only validate gradients
of J with respect to perturbed η. The absolute relative difference between
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Figure 3.16: Computational domain Ω for the (Left) Plasmonic and (Right) Poisson prob-
lem.

the gradients computed using the adjoint and the finite difference approaches
converges linearly, as seen in Fig. 3.15.

3.4.3 The Plasmonic Problem

We assume that the wave propagation is governed by the time harmonic Maxwell’s
equation for magnetic field H. In this case, we use H = (0, 0, u) for which the
Maxwell equations reduces to the following Helmholtz equation

−∇ ·
(

1

ε
∇u
)
− k2u = 0, (3.29)

where ε is the complex permittivity, k = ω/c is the wavenumber, ω is the
angular frequency, and c is the speed of light. Moreover, the total field u is a
combination of incoming and outgoing waves

u = uin + uout, (3.30)

where we assume uin = e−ikx.
Substituting u from equation (3.30) in equation (3.29), we obtain

∇ ·
(

1

ε
∇uout

)
+ k2uout = −

(
1

ε
− 1

)
∇ · ∇uin. (3.31)

In our problem setup, illustrated in Fig. 3.16, parts of ΩD are occupied by
silver with a permittivity εAg = −5.0012+0.1295i and the rest of R2 is occupied
by air with a permittivity εair = 1. Moreover, the size of ΩD is 100 × 100 nm
and thickness of Ωair is 60 nm. For the outgoing waves, we add a PML region of

26



sufficient thickness d = 40 nm around Ωair. The variational form of the above
equation with PML for outgoing wave uout is:

find uout ∈ H1(Ω) such that

k2

∫
Ω

ζuoutv −
∫

Ω

(D∇uout) · ∇v −
∫

ΩD

η∇uout

= −
∫

ΩD

η∇uin · ∇v, v ∈ H1 (Ω) , (3.32)

where η(x) = 1
ε(x) − 1.

We aim to study the temperature in the target region ΩT of size 10×10 nm,
with an incoming wave in ΩD at 413 nm. To this end, we couple the Helmholtz
equation (3.31) to a Poisson equation of the form

∇ · κ∇T = Im(ε)uū in Ω, (3.33)

T = T∞ on ΓD, (3.34)

where T is the temperature, T∞ is the ambient temperature, and κ is the ther-
mal diffusivity of the medium. The variational form of Poisson equation (3.33)
with boundary condition (3.34) is:

Find T ∈ V such that∫
Ω

κ∇T · ∇q =

∫
Ω

Im

(
1

η + 1

)
uū q, q ∈ V.

(3.35)

The objective function to study the temperature integrated over ΩT is

J =

∫
ΩT

T. (3.36)

Similarly, as the model problem, we consider design perturbation δη for the
objective function (3.36)

δJ =

∫
ΩT

δT, (3.37)

variational forms (3.32) and (3.35)

k2

∫
Ω

ζδuoutv −
∫

Ω

(D∇δuout) · ∇v −
∫

ΩD

η∇δuout · ∇v

=

∫
ΩD

δη∇uout · ∇v −
∫

ΩD

δη∇uin · ∇v, v ∈ V, (3.38)

and∫
Ω

κ∇δT · ∇q =

∫
ΩD

δ Im

(
1

η + 1

)
uū q

+

∫
ΩD

Im

(
1

η + 1

)(
δuout ū+ u δūout

)
q ∀ q ∈ V, (3.39)
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Figure 3.17: Left: The relative absolute difference in gradients of the objective function
with respect to η for the plasmonic problem, evaluated using the adjoint and the finite
difference method, is plotted against the finite difference h for ten randomly selected elements
in the ΩD. Right: Placement of ten randomly selected elements in ΩD.

respectively.

We similarly select the first adjoint z(1) as the problem:

find z(1) ∈ V such that∫
Ω

κ∇v · ∇z(1) =

∫
ΩT

v, ∀ v ∈ V.
(3.40)

In the following equation, we select z(2) analogous to the model problem in
Eq. (3.27):

find z(2) ∈ V such that

k2

∫
Ω

ζ q z(2) −
∫

Ω

(D∇q) · ∇z(2) −
∫

ΩD

η∇q · ∇z(2)

=

∫
ΩD

Im

(
1

η + 1

)(
q ū+ u q̄

)
z(1). (3.41)

Unlike the model problem, there is no z(2) that solves the above equation. In
general, to deal with δuout and δūout in Eq. (3.39), we need two additional
adjoint equations. To handle δuout and δūout, we select two adjoints z(2) and
z(3) in the following two expressions:
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find z(2) ∈ V such that

k2

∫
Ω

ζ q z(2) −
∫

Ω

(D∇q) · ∇z(2) −
∫

ΩD

η∇q · ∇z(2)

=

∫
ΩD

Im

(
1

η + 1

)
q ū z(1), ∀ q ∈ V. (3.42)

and

find z(3) ∈ V such that

k2

∫
Ω

ζ̄ p z(3) −
∫

Ω

(D∇p) · ∇z(3) −
∫

ΩD

η̄∇p · ∇z(3)

=

∫
ΩD

Im

(
1

η + 1

)
p u z(1), ∀ p ∈ V, (3.43)

respectively. As z(1) is real, thus z(2) = z̄(3), which means that we do not need
to compute the third adjoint. Thus, the following expression provides the first
order perturbation of objective function (3.36) with respect to perturbed δη,

δJ =

∫
ΩD

δ Im

(
1

η + 1

)
uū z(1) + 2

∫
ΩD

Re
{
δη∇

(
uout− uin

)
· ∇z(2)

}
. (3.44)

By using the finite element method, we discretize the computational domain
into 40,000 elements. For the validation of gradients with the finite difference
approach, we randomly select ten elements. Furthermore, as shown in Fig. 3.17,
the absolute relative difference between gradients computed using the adjoint
and finite difference techniques converges linearly.
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