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Abstract

An effective strategy in dense linear algebra is the design of algorithms as tiled
algorithms. Tiled algorithms that express the bulk of the computation as matrix–
matrix operations (level-3 BLAS) have proven successful in achieving high
performance on cache-based architectures. At the same time, tiled algorithms
interoperate with dynamic data-driven execution models such as task parallelism
and promise good parallel scalability.

This thesis applies the concept of tiled algorithms and task-centric execution
to algorithms related to the computation of eigenvectors for the dense, non-
symmetric eigenvalue problem. First, a standard algorithm for computing
eigenvectors from the Schur form is recast such that all computational steps are
rich in matrix–matrix operations. Second, inverse iteration on the Hessenberg
matrix as an alternative approach to computing eigenvectors is addressed. An
existing algorithm is revised to express the computationally most expensive
step with matrix–matrix operations. Third, a task-parallel, tiled triangular
Sylvester equation solver is amended to solve a larger class of problems. All
algorithms have an enhanced performance, which is demonstrated through
numerical experiments.
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Enkel sammanfattning på
svenska

Egenvärden och egenvektorer spelar en roll i ett stort antal discipliner som till
exempel finansiell matematik, mekanik, statik och reglerteknik. Kunskap om
egenvärden och egenvektorer kan ge en bättre först̊aelse av applikationernas fysi-
kaliska egenskaper. Egenvärden och egenvektorer gör det möjligt att exempelvis
analysera dynamiska system. För att konstruera jordbävningssäkra byggnader
används ofta databaserad egenvärdesanalys. Ett praktiskt angreppssätt är därför
att skapa matematiska modeller, ställa upp ekvationssystem och analysera ma-
trisens egenvärden och egenvektorer. Beräkning av egenvärden och egenvektorer
är ett klassiskt problem i numerisk linjär algebra.

Denna avhandling best̊ar av tv̊a delar. Den första delen vidareutvecklar
och förbättrar tv̊a existerande algoritmer för numerisk beräkning av egenvek-
torer när matrisen är reellvärd och osymmetrisk. De reviderade algoritmerna
beräknar egenvektorerna p̊a ett mer effektivt, parallellt sätt p̊a datorsystem
med en minneshierarki. Den första algoritmen beräknar egenvektorerna av en
matris utg̊aende fr̊an dess reella Schurfaktorisering. Algoritmen uttrycker alla
beräkningssteg som blockoperationer, i synnerhet matrismultiplikationer, och
n̊ar därmed en förbättrad effektivitet och skalbarhet. Den andra algoritmen
utg̊ar fr̊an en Hessenbergmatris. Givet att egenvärdena är kända kan de asso-
cierade egenvektorerna approximeras med inversiteration. I de flesta fall n̊ar
inversiteration konvergens redan efter en iteration, s̊a att ett skiftat linjärt
Hessenbergsystem löses för varje egenvektor. Den nya algoritmen reviderar
den s̊a kallade RQ-metoden för att lösa ett skiftat Hessenbergsystem s̊a att
den beräkningsintensiva delen utförs för flera egenvektorer samtidigt och med
blockoperationer. Förbättringarna jämfört med de ursprungliga algoritmerna
visas med numeriska experiment.

Den andra delen behandlar den triangulära Sylvesterekvationen. Den tri-
angulära Sylvesterekvationen är ett delproblem när algoritmen av Bartels och
Stewart används för att lösa den allmänna Sylvesterekvationen. Sylvesterekvatio-
ner spelar en roll exempelvis inom reglerteorin. Denna avhandling förbättrar en
existerande parallell blockbaserad lösare för den triangulära Sylvesterekvationen
genom åtgärder som undviker flyttalsöversvämning. Detta medför att klassen
av de lösbara problemen förstoras. Numeriska experiment visar att den nya
lösaren n̊ar ungefär samma effektivitet som den ursprungliga implementationen.
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Populärwissenschaftliche
Zusammenfassung

Eigenwerte und Eigenvektoren haben eine Bedeutung in einer Vielzahl von Ge-
bieten wie der Finanzmathematik, der Mechanik, der Statik oder der Regelungs-
technik. Die Analyse der Eigenwerte und Eigenvektoren kann Aufschluss über
physikalische Eigenschaften der Anwendung geben. So spielen Eigenwerte und
Eigenvektoren beispielsweise eine Rolle bei der Stabilitätsanalyse dynamischer
Systeme oder der Analyse von Gebäuden bezüglich ihrer Erdbebensicherheit.
Eine etablierte Vorgehensweise ist daher die Erstellung eines mathematischen
Modells und die Analyse dessen mit Hilfe von Eigenwerten und Eigenvektoren.
Die Berechnung der Eigenwerte und Eigenvektoren ist ein klassisches Problem
der numerischen linearen Algebra. Diese Promotionsschrift beschäftigt sich
mit dem speziellen Fall, dass die Systemmatrix des mathematischen Modells
reellwertig und nicht symmetrisch ist.

Der erste Beitrag dieser Arbeit ist die Verbesserung zweier existierender Al-
gorithmen zur numerischen Berechnung von Eigenvektoren. Die überarbeiteten
Algorithmen ermöglichen eine effizientere, parallele Berechnung auf Rechner-
systemen mit einer Speicherhierarchie. Der erste Algorithmus berechnet die
Eigenvektoren einer Matrix ausgehend von deren reellen Schur-Zerlegung. Er
erreicht eine höhere Performanz und bessere Skalierbarkeit, indem alle Be-
rechnungsschritte als Blockoperationen, insbesondere Matrizenmultiplikationen,
ausgedrückt werden. Der zweite Algorithmus geht von der Hessenbergmatrix
aus. Unter der Annahme, dass die Eigenwerte bekannt sind, können die zu-
gehörigen Eigenvektoren durch inverse Iteration approximiert werden. In den
meisten Fällen erreicht das Verfahren der inversen Iteration Konvergenz nach
einer Iteration, sodass pro Eigenvektor lediglich ein lineares Hessenbergsystem
mit Shift gelöst wird. Der neue Algorithmus revidiert den RQ-Ansatz für das
Lösen eines linearen Hessenbergsystems mit Shift, sodass trotz Shift-spezifischer
RQ-Zerlegungen der berechnungsintensive Teil des Algorithmus für mehrere
Eigenvektoren gleichzeitig und mit Blockoperationen berechnet werden kann.
Die Verbesserung gegenüber den originalen Algorithmen wird durch numerische
Experimente nachgewiesen.

Der zweite Beitrag dieser Arbeit beschäftigt sich mit der triangulären Syl-
vestergleichung. Diese ist ein Teilproblem, welches in der Lösung der generellen
Sylvestergleichung mittels des Bartels-Stewart-Algorithmus erscheint. Sylves-

v



tergleichungen haben Bedeutung zum Beispiel in der Kontrolltheorie. Diese
Arbeit erweitert einen parallen, blockbasierten Löser für die trianguläre Sylves-
tergleichung, sodass die Klasse lösbarer Probleme vergrößert wird. Numerische
Experimente weisen nach, dass die Kosten dieser Erweiterung vernachlässigbar
sind und die Performanz des originalen Ansatzes nicht signifikant beeinträchtigen.

vi



Preface

This thesis is based on the following papers.

Paper I Carl Christian Kjelgaard Mikkelsen, Angelika Beatrix
Schwarz and Lars Karlsson. Parallel robust solution of tri-
angular linear systems. In Concurrency and Computation:
Practice and Experience, e5064, Wiley Online Library, 2018.

Paper II Angelika Schwarz and Lars Karlsson. Scalable Eigenvector
Computation for the Non-Symmetric Eigenvalue Problem. In
Parallel Computing, volume 85, 131–140, Elsevier, 2019.

Paper III Angelika Schwarz, Carl Christian Kjelgaard Mikkelsen and
Lars Karlsson. Robust parallel eigenvector computation for
non-symmetric eigenvalue problem. In Parallel Computing,
volume 100, 102707, Elsevier, 2020.

Paper IV Angelika Schwarz. Robust level-3 BLAS Inverse Iter-
ation from the Hessenberg Matrix. Technical report
arXiv:2101.05063, 2021.

Paper V Angelika Schwarz, Carl Christian Kjelgaard Mikkelsen. Ro-
bust Task-Parallel Solution of the Triangular Sylvester Equa-
tion. In Parallel Processing and Applied Mathematics, Lecture
Notes in Computer Science, vol 12043, Springer, 2020.

vii



viii



Funding and Resources

Financial support for the papers I, II, III and V is provided by the European
Union’s Horizon 2020 research and innovation programme under grant agree-
ment No 671633 (NLAFET). Support has also been received by eSSENCE, a
collaborative e-Science programme funded by the Swedish Government via the
Swedish Research Council (VR). The author is grateful to the Department of
Computing Science at Ume̊a University for providing financial support during
the work on Paper IV.

The computational experiments were enabled by resources by the Swedish
National Infrastructure for Computing (SNIC) at High Performance Computing
Center North (HPC2N), Ume̊a, partially funded by the Swedish Research
Council through grant agreement no. 2018-05973. SNIC provided compute
hours under the grants SNIC 2017/1-617 (Paper II), SNIC 2018/5-41 (Papers I,
III, V), SNIC 2018/3-624 (Paper I, III), SNIC 2018/5-6 (Paper I), SNIC 2019/5-
29 (Paper IV) and SNIC 2019/3-311 (Paper IV).

ix



x



Acknowledgements

Finally, my doctoral studies under the supervision of Lars Karlsson, Bo K̊agström
and Carl Christian Kjelgaard Mikkelsen end. It has been a long journey. I am
grateful to all of you who provided encouragement, constructive criticism, or
friendly advice. I thank my reference person Martin Berggren for his guidance
during my studies.

This final stage would not have been reached without the assistance by
numerous people. I thank my colleagues for creating an amazing working envi-
ronment. Without you, my time in Ume̊a would have looked totally differently.
I will smile when I think back of the cheerful moments with you. Special thanks
go to Eddie Wadbro for providing unconditional support and invaluable advice.

I thank my parents for their patience and immeasurable support throughout
my studies.

xi



xii



Contents

1 A Motivational Example 1

2 High-Performance Linear Algebra Software 5

3 Eigenvector-Related Computations 9
3.1 Eigenvectors for the Standard Eigenvalue Problem 9
3.2 Robust Solution of the Sylvester Equation 15

4 Summary of Contributions 19
4.1 Paper I 19
4.2 Paper II 19
4.3 Paper III 20
4.4 Paper IV 20
4.5 Paper V 20

5 Bibliography 23

Appendix 29

xiii



xiv



Chapter 1

A Motivational Example

Eigenproblems occur in numerous fields including mechanics, finance, data
science and control theory. This very first chapter aims at highlighting the
value and insights that eigenvalues and eigenvectors can provide with a concrete
example, a damped vibrating system.

We study the mechanical vibrations of the mass-spring-damper system
depicted in Figure 1.1. The system comprises two masses m1 and m2. The mass
m2 is connected by a spring k2 and a damper c2 to the mass m1. The mass
m1 is attached to a fixed point by a spring k1 and a damper c1. The masses
are assumed to move without friction only in the horizontal direction. Hence,
the (time-dependent) position coordinates of the two masses x1 and x2 fully
describe the motion of the system and are the two degrees of freedom of this
system. The analysis of this example loosely follows [18, Sec. 6.7.2, Sec. 6.8.2].

The equations of motion can be obtained by applying Newton’s second law of
motion to each of the masses. The corresponding free body diagram is shown in
Figure 1.2. The spring k1 is under tension for a positive value of x1; the spring

m1 m2

k1 k2

c1 c2

x1 x2

Figure 1.1: Simple model of a mass-spring-damper system with two degrees of
freedom (x1, x2).
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m1 m2

x1, ẍ2 x2, ẍ2

k1x1

c1ẋ1

k2(x2 − x1)

c2(ẋ2 − ẋ1)

Figure 1.2: Free body diagram corresponding to Figure 1.1.

k2 is under tension whenever (x2 − x1) is positive. The resulting equations are

m1ẍ1 = k2(x2 − x1) + c2(ẋ2 − ẋ1)− k1x1 − c1ẋ1
m2ẍ2 = −k2(x2 − x1)− c2(ẋ2 − ẋ1).

Here xj = xj(t) is the displacement, ẋj = ẋj(t) = dxj/dt is the velocity and
ẍj = ẍj(t) = d2xj/dt

2 is the acceleration for j = 1, 2.
This set of two second-order ordinary differential equations is converted into

a first-order system. We define u =
[
x1 ẋ1 x2 ẋ2

]T
and obtain




u̇1
u̇2
u̇3
u̇4




︸ ︷︷ ︸
u̇

=




0 1 0 0
−(k1 + k2)/m1 −(c1 + c2)/m1 k2/m1 c2/m1

0 0 0 1
k2/m2 c2/m2 −k2/m2 −c2/m2




︸ ︷︷ ︸
A




u1
u2
u3
u4




︸ ︷︷ ︸
u

.

(1.1)

The assumption that a solution to (1.1) has the form u = veλt, where λ is an
eigenvalue and v 6= 0 is an eigenvector of the matrix A, leads to the standard
non-symmetric eigenvalue problem Av = λv. Eigenvalues and eigenvectors give
insight into properties of the mass-spring-damper system as we will demonstrate
with a concrete example.

Suppose m1 = 10 kg, m2 = 2.5 kg, k1 = 400 N/m, k2 = 200 N/m, c1 =
10 kg/s, c2 = 5 kg/s. Moreover, the initial displacements are x1(0) = 0.5 m
and x2(0) = 1 m, and the initial velocities are ẋ1(0) = ẋ2(0) = 0 m/s. The
corresponding matrix is

A =




0 1 0 0
−60 −1.5 20 0.5

0 0 0 1
80 2 −80 −2


 .

Using the Matlab command eigs(A), we compute the eigenvalues and eigen-
vectors of A. We observe that the four eigenvalues of A occur in two com-
plex conjugate pairs. If we confine us to those eigenvalues with a positive
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Figure 1.3: Displacement of the masses m1 and m2 over time.

imaginary part λj = −aj + ibj , j = 1, 2, we obtain the eigenvalue matrix
Λ = diag(−0.3596 + 5.3516i,−1.3904 + 10.4546i) and the eigenvector matrix

V =




−0.0066 0.0045
0.5302 −0.3620
−0.0103 −0.0116
0.8279 0.9274


+




−0.0986 0.0340
0 0

−0.1540 −0.0872
0 0


 i

satisfying

AV = V Λ. (1.2)

The eigenvalues give insight into the oscillatory motion of the mass-spring-
damper system. The imaginary part bj provides information about the damped
natural frequency. For our system, there are two damped natural frequencies,
5.3516 rad/s (0.8517 Hz) and 10.4546 rad/s (1.6639 Hz). The real part −aj
represents the decay rate and leads to the damping ratio ζj = −aj/ωj , where
ωj = |λj |. The damping ratios are 0.0670 and 0.1318, respectively, and reveal
that the system is underdamped. This is reflected in Figure 1.3, where the
system dissipates energy with every overshoot such that the oscillations tend to
zero.

The eigenvectors provide information about the movement of the masses.
Recall that the first and the third component of u are the displacements of
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m1 and m2. Hence, we focus on the first and the third row of the eigenvector
matrix V . The comparison of the real part and the imaginary part of v11 =
−0.0066−0.0986i and v31 = −0.00103−0.1540i (corresponding to the eigenvalue
−0.3596 + 5.3516i) shows that the real parts have identical signs and that the
imaginary part is norm-wise larger than the real part. The physical meaning
is that the masses move in phase. Based on visual inspection, this oscillation
mode is excited in Figure 1.3. Regarding the eigenvalue −1.3904 + 10.4546i, the
eigenvector components v12 = 0.0045 + 0.0340i and v32 = −0.0116 − 0.0872i
have opposite signs. This suggests that the masses move out of phase.

This example has demonstrated how eigenvalues and eigenvectors can provide
insight into the properties of a model system. Naturally, mass-spring-damper
systems with more components generate larger matrices, which can be analyzed
by means of the underlying eigenvalues and eigenvectors. Larger matrices imply
an increased computational demand, which motivates the usage of efficient and
parallel routines.

In this example, the eigenproblem was solved with the Matlab command
eigs, which hides how the eigenproblem is solved internally. This thesis focuses
on algorithms related to the eigenvector computation. The presented algorithms
could be used for obtaining the eigenvectors as one of the subproblems that
eigs solves.

4



Chapter 2

High-Performance Linear
Algebra Software

The previous chapter showed that eigenvalues and eigenvectors can provide
valuable information to domain experts. Domain experts can, in addition,
benefit from library software, which in the previous chapter was hidden under
the command eigs. Library software promises the use of well-optimized,
reliable routines as back end. As a result, domain experts can focus on the
underlying science rather than spending time on developing and tuning all code
by themselves.

The concept of library software is established in the domain of numerical
linear algebra. Numerous libraries like for instance LAPACK [2], SLICOT [5],
and libflame [44] aim at providing high-quality implementations of linear algebra
routines. A library targeting the solution of non-symmetric eigenproblems is
StarNEig [38].

BLAS. An important library in dense linear algebra is the BLAS (Basic
Linear Algebra Subprograms). Originally, the BLAS were a collection of vector-
vector operations (level-1 BLAS) [36]. Later on, the BLAS was extended to
matrix–vector operations (level-2 BLAS) [14] and matrix–matrix operations
(level-3 BLAS) [13, 6]. The use of level-3 BLAS promises attaining high per-
formance. Level-3 BLAS operations process O(n3) operations on O(n2) data.
The O(n) ratio of computation/data allows level-3 BLAS operations to be
implemented such that data is reused. By reusing data in the cache, the latency
of main memory accesses can be hidden. A particularly important level-3
BLAS operation is the matrix–matrix product (xGEMM). An effective strategy
to increase the performance has been the redesign of algorithms such that the
bulk of the computation corresponds to matrix–matrix multiplications [33].
As a consequence, the algorithms can benefit from the performance of highly
optimized implementations of xGEMM available in, for example, OpenBLAS [39],
oneMKL [28] and Atlas [47].

Parallel Computing. A desirable property of linear algebra library software
is the support of parallelism and, naturally accompanying, good parallel per-
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formance [9]. Parallel computing has become increasingly important since the
uni-processor design faces the so-called power wall, the difficulty of increasing
the clock frequency due to power dissipation limits [3, p. 1]. The power wall
suggests that (future) performance gains primarily arise from an increase of
the number of processors rather than a performance improvement of a single
processor [3, p. 3]. A parallel execution uses multiple processing units for solving
a problem. For this purpose, the problem is divided into smaller chunks that
can be executed concurrently such that the total execution time is reduced.
This leads to parallel performance as a measure of how efficiently software runs
in parallel. In the ideal case, the parallel speedup is proportional to the amount
of processing units in use.

Parallel computations require the involved processing units to cooperate.
The cooperation includes the exchange of information between processing units.
This exchange of information can be realized with shared memory or message
passing. In shared memory, the processing units share the view on global
memory. All processing units asynchronously read and write to the shared
memory. Hence, there is no explicit communication of data. Mechanisms such
as locks are needed to control memory accesses, for example, to ensure the
correct memory access order when the outcome requires a specific order of read
and write accesses. In message passing, the processing units have their own local
data. Data is exchanged explicitly through passing messages. The processing
units can reside on the same compute component or can be distributed across
physically separated compute components. This parallel programming model is
also known as a distributed memory model.

In parallel computations, the processing units may not be equal. This
is particularly true for a CPU–GPU system. The involved processing units
have different capabilities in processing certain tasks. Preferably, a parallel
computation takes into account the different compute capabilities. An efficient
hybrid computation requires load balancing and minimizes synchronization
and communication overhead. A numerical library that targets heterogeneous
CPU–GPU systems is MAGMA [12, 43].

Parallelism and BLAS in numerical libraries. Many numerical libraries
have reformulated algorithms in a loop-based, recursive or hybrid way such
that the algorithms are rich in matrix–matrix multiplications [15]. A common
pattern, for example encountered in LAPACK, is the alternating repetition of
a panel factorization and a trailing matrix update. The panel factorization
processes a small part of the matrix, the so-called panel, and often relies on
level-2 BLAS operations. The transformations computed during the panel
factorization are accumulated. The trailing matrix update then applies the
accumulated transformations to the remaining matrix using level-3 BLAS
operations. Overall, the computation is rich in level-3 BLAS operations. The
panel computation can be difficult to parallelize efficiently. The usage of parallel
BLAS, however, trivially introduces parallelism to the trailing matrix updates.
Then the computation alternates sequential panel factorizations and parallel
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trailing matrix updates in a so-called fork-join execution pattern.
Since the panel factorization can be a bottleneck in a parallel computation,

libraries such as PLASMA [10] and libflame [44, Sec. 5.5] increase the level
of parallelism by partitioning the matrices into tiles1. Tasks define chunks
of work that operate on tiles. The computation is expressed as a Directed
Acyclic Graph (DAG), whose nodes represent tasks and whose edges represent
dependences between tasks. The DAG is processed task by task. Tasks with
satisfied input dependences can be executed in parallel and asynchronously.
The order in which tasks are executed is up to the scheduler of the executing
runtime system. Based on the scheduling decisions, the runtime system handles
the actual execution of the tasks and maintains data consistency.

The partitioning of a matrix into tiles leads to the notion of task granularity,
the computational load per task. The task granularity influences the scheduling
overhead, the efficiency at which each single task can be executed, and how
many tasks are available for a parallel execution. Suited task granularities can
be found by tuning. Tuning promises attaining high parallel performance while
maintaining portability across different computer systems.

This thesis contributes algorithms related to the computation of eigenvectors.
All these algorithms aim at rearranging the computation such that computation
benefits from more efficient usage of the available computational resources.

1 A synonym used in literature is block. This thesis calls larger contiguous submatrices
related to matrix partitionings tiles in order to avoid confusion with 1-by-1 or 2-by-2
blocks occurring as structure in the algorithms in Section 3.1 and onwards.
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Chapter 3

Eigenvector-Related
Computations

In Chapter 1 eigenvalues and eigenvectors were computed with the Matlab
command eigs. This chapter details algorithms that can be used for the
computation of the eigenvectors of the standard eigenvalue problem.

3.1 Eigenvectors for the Standard Eigenvalue Problem

The standard eigenvalue problem concerns finding eigenpairs (λ`, x`) that satisfy

Ax` = λ`x` (3.1)

for a general matrix A. In the case that A ∈ Rn×n is non-symmetric, the
eigenvalues λ` are real or complex. An eigenvector x` 6= 0 corresponding to λ`
is, in accordance, real or complex. Despite potentially complex eigenvalues and
eigenvectors, solutions to the standard eigenvalue problem can be computed
using solely real arithmetic. Real arithmetic saves memory and floating-point
operations (flops) compared to complex arithmetic, but makes the computation
more complicated.

Equation (3.1) concerns only right eigenvectors. A left eigenvector satisfies
yT` A = λ`y

T
` . Hence, a left eigenvector of A is same as the transpose of a right

eigenvector of AT and therefore AT y` = λ`y`.
When many eigenpairs are sought, (3.1) can be written as the matrix

equation

AX = XΛ. (3.2)

In complex arithmetic, Λ is a diagonal eigenvalue matrix, in other words, Λ =
diag(λ1, λ2, . . .). The columns of the complex matrix X are the corresponding
right eigenvectors. If the computation is executed in real arithmetic, the matrix
Λ is block diagonal with 1-by-1 or 2-by-2 blocks on the diagonal. A 1-by-1
block corresponds to a real eigenvalue; a 2-by-2 block corresponds to a complex
conjugate pair of eigenvalues. The eigenvector matrix can be stored using real
numbers if the complex eigenvectors are stored in interleaved storage, i.e., the

9



real and the imaginary parts of a complex vector are stored as two adjacent
columns.

Example: Eigenvalue equation in real arithmetic

Equation (1.2) from Chapter 1 can be expressed in real arithmetic as

A




−0.0066 −0.0986 0.0045 0.0340
0.5302 0 −0.3620 0
−0.0103 −0.1540 −0.0116 −0.0872
0.8279 0 0.9274 0


 =




−0.0066 −0.0986 0.0045 0.0340
0.5302 0 −0.3620 0
−0.0103 −0.1540 −0.0116 −0.0872
0.8279 0 0.9274 0







−0.3596 5.3516
−5.352 −0.3596

−1.390 10.45
−10.45 −1.390


 .

Each complex eigenvalue appears as a 2-by-2 block in the block diagonal
matrix. The first two columns of the eigenvector matrix correspond
to the real and the imaginary part of the first eigenvector. The other
two columns interleave the real and the imaginary parts of the second
eigenvector.

We focus on the case when the non-symmetric A is dense. A standard method
for computing all eigenvalues of A is the QR algorithm. In real arithmetic, the
QR algorithm reduces A to the real Schur form T = QTAQ. Here, the matrix T
is upper quasi-triangular, i.e., it is block upper triangular with 1-by-1 or 2-by-2
blocks on the diagonal. The matrix Q is orthogonal. LAPACK 3.9.0 computes
the real Schur decomposition through a two-step procedure. In the first step, A
is reduced to upper Hessenberg form H = QT0 AQ0 with an orthogonal matrix
Q0. In the second step, H is reduced to the real Schur form T = QT1HQ1 using
the QR algorithm. Here, the matrix Q1 accumulates all orthogonal similarity
transformations applied in the iterative QR algorithm. The QR algorithm
has been revised several times; a modern implementation is the multi-shift
QR algorithm with aggressive early deflation [7, 8]. Multi-shift iterations and
aggressive early deflation are two techniques that improve the convergence speed
of the QR algorithm.

In the following, we address the computation of eigenvectors. There are
two standard approaches, namely the computation of eigenvectors from the
Schur form and the computation of eigenvectors from the Hessenberg matrix.
Both approaches involve backward substitution, which is known to be prone to
floating-point overflow. Hence, a mechanism to avoid overflow is necessary and
discussed first. Afterwards, the eigenvector computations are presented.

Overflow. A common floating-point format for numerical computations is
the binary 64 bit floating-point representation (“doubles”) defined in the IEEE-
754-2008 standard. The 64 bits decompose into 1 bit for the sign, 11 bit for the
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I(1)

I(2)

I(nb)

...

...

...

...

1
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ξ−11

ξ−12
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Figure 3.1: Mapping between index ranges I defined by tile indices 1, . . . , nb

and global indices 1, . . . , n. The vector segment with indices I(j) is associated
with a local scaling factor ξj .

exponent and 52 bits for the mantissa. A normalized number is of the form

(−1)sign(1.b52 . . . b1)2 · 2e−1023,

where the smallest biased exponent is e = 1 and the largest biased exponent
is e = 2046. The largest biased exponent determines the overflow threshold as
Ω = 21023. Overflow occurs when an exponent is too large to be represented in
the exponent field. In this case, the number is replaced with infinity (inf). As
a consequence, the exact value is lost.

The solution of triangular systems Tx = b is a key component in the compu-
tation of eigenvectors. Here T is a triangular matrix and b is a vector. Scaling
both sides does not guarantee an overflow-free computation as demonstrated
in [11, p. 9]. Anderson [1] therefore approaches an overflow-free computation
through the solution of the scaled triangular linear system Tx = γb. By virtue
of the scaling factor γ ∈ (0, 1] a computation that would otherwise overflow
can be executed without infinities. This leads to robust algorithms. We call an
algorithm robust if overflow cannot occur at any point during the computation.
A robust algorithm for the solution of triangular systems computes the solution
as the scalar γ and the vector x representing γ−1x such that no entry in x
is inf. For this purpose, the vector x is scaled whenever an operation could
exceed the overflow threshold. Once rescaled, the operation can be executed
safely.

Anderson’s approach to the robust solution of a triangular system with one
right-hand side is realized in the LAPACK 3.9.0 routine xLATRS. The routine
xLATRS evaluates based on upper bounds if overflow cannot occur during the
computation. If so, the problem is reduced to the solution of Tx = b and solved
with xTRSV, the non-robust counterpart of xLATRS. If, however, overflow can
occur, Tx = γb is solved such that overflow is avoided by dynamic scaling. The
routine xLATRS is slower than xTRSV, but guarantees a result free of inf.
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Example: Overflow (Paper I Sec. 8)

The system




1 −2
1 −2

. . .
. . .

1 −2
1







x1
x2
...

xm−1
xm




=




0
0
...
0
1




(3.3)

has the exact solution

x =




2m−1

2m−2

...
21

20



. (3.4)

The component-wise relative condition of a linear system is given by
Skeel’s condition number [27], which is 2m− 1 for (3.3). If m = 1025,
the representation of the solution in double-precision arithmetic is

x =




inf
21023

...
21

20



. (3.5)

The first entry of x overflows. For (3.5), a scaled, overflow-free represen-
tation is

x =

(
1

2

)−1




21023

21022

...
20

2−1



. (3.6)

Kjelgaard Mikkelsen and Karlsson [34] extend the robust solution of trian-
gular systems to many right-hand sides. Each right-hand side is associated with
a scaling factor. Hence, the scaled system TX = BΓ is solved, where Γ is a
diagonal matrix of scaling factors. The algorithm is designed such that the
level-3 BLAS potential is preserved and the overhead from scaling events due to
overflow avoidance is reduced. For this, each right-hand side is partitioned into
segments. Each segment is associated with a local scaling factor. Figure 3.1
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illustrates a tiled vector with local scaling factors. The usage of local scaling
factors delimits scaling due to overflow avoidance. Scaling is applied only to
those tiles that are involved in an operation rather than to the entire column.
The global scaling Γ is computed in a postprocessing step. The global scaling
factor γ for a solution x corresponds to the smallest local scaling factor. The
vector segments are rescaled with respect to this global scaling factor, which
yields a consistently scaled solution.

Example: Consistency scaling

The consistency scaling transforms the segment-wise scaled vector into
a consistently scaled final solution.

(
1
4

)−1


x1
x2
x3




(
1
2

)−1


x4
x5
x6




(
1
1

)−1


x7
x8
x9




⇒
(
1
4

)−1




x1
x2
x3
1
2x4
1
2x5
1
2x6
1
4x7
1
4x8
1
4x9




Overflow avoidance is required for the robust computation of eigenvectors.
The next paragraphs discuss two standard approaches to computing the eigen-
vectors of a non-symmetric, dense matrix. For clarity, the ideas of the algorithms
are discussed assuming complex arithmetic. Details relevant for executing the
computation in real arithmetic are given separately.

Eigenvectors from the Schur form. Eigenvectors can be computed from
the Schur decomposition A = QTQH through a backward substitution followed
with a backtransform [20, Sec. 7.6.4]. In complex arithmetic, the backward
substitution phase computes a scaled eigenvector γ−1y = [γ−1y1, 1, 0]T that
satisfies



T11 t12 t13
0 λ t23
0 0 T33





γ−1y1

1
0


 = λ



γ−1y1

1
0


 .

The purpose of the scalar γ ∈ (0, 1] is the avoidance of overflow. In complex
arithmetic, T11 is upper triangular and a solution to (T11 − λI)y1 = −γt12 can
be obtained by robust standard backward substitution. Under the assumption
that the backtransform computes x = Q(γ−1y) without overflow, the obtained
vector x is an eigenvector of A.
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In real arithmetic, T11 is upper quasi-triangular. The backward substitution
requires a variation of backward substitution that can handle 2-by-2 blocks on
the diagonal of T11. In case of a complex conjugate pair of eigenvalues given as

the 2-by-2 block

[
a b
c a

]
on the diagonal of T , the system




T11 t12 t13 T14
a b tT24
c a tT34

T44





γ
−1




u1 v1
u2 v2
u3 v3
0 0





 =


γ
−1




u1 v1
u2 v2
u3 v3
0 0






[

a
√
|bc|

−
√
|bc| a

]

is solved for a scaled complex eigenvector γ−1x = γ−1(u+ iv). The scalars u2,
v2, u3 and v3 are set mutually dependent on each other and the system given
by the first block row is solved. The storage of the real and the imaginary parts
of a complex eigenvector as adjacent columns allows the linear updates and the
backtransform to be executed entirely in real arithmetic.

When several eigenvectors, real or complex, are computed simultaneously,
data can be reused, which introduces level-3 BLAS potential. The backward
substitution then solves T (XΓ−1) = (XΓ−1)Λ. Here Λ is block diagonal with
1-by-1 or 2-by-2 blocks and represents the eigenvalues. The eigenvectors X, one
per eigenvalue block, are stored in interleaved storage. The diagonal matrix of
scaling factors Γ avoids overflow such that the real and the imaginary part of
complex eigenvectors are scaled alike.

Example: T (XΓ−1) = (XΓ−1)Λ in real arithmetic

The illustration shows the structure of the matrices when computing
one eigenvector per block of a matrix T that has two 2-by-2 blocks and
otherwise 1-by-1 blocks on the diagonal.





=







Eigenvectors from the Hessenberg matrix. Eigenvectors can be com-
puted from the Hessenberg matrix by inverse iteration, see [20, Sec. 7.6.1] or

[29, Sec. 2.2]. Assuming that good approximations λ̂ to the true eigenvalues
are available, inverse iteration approximates an eigenvector y by solving

(H − λ̂I)y(k) = s(k)y(k−1), k ≥ 1. (3.7)
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The scalar s(k) normalizes the iterate y(k) and y(0) is a given starting vector.
Inverse iteration commonly computes only a single iteration of (3.7) because of
two reasons. First, the starting vector can be chosen such that a single iteration
most frequently leads to convergence [45, 40]. Second, the residual can grow by
doing additional iterations [29, Sec. 4.1]. Hence, if y(1) meets the convergence
criterion, it is accepted as an eigenvector. Otherwise, a new starting vector
orthogonal to previous choices is tried. This strategy is, for example, realized
in the LAPACK 3.9.0 inverse iteration routine DLAEIN.

Standard approaches to the solution of (H − λ̂I)y(1) = s(1)y(0) are an LU
or an RQ decomposition. The LU decomposition employed by DLAEIN factors
H − λ̂I into a lower unit triangular matrix L and an upper triangular matrix
U with partial pivoting through a permutation matrix P and computes

P (H − λ̂I) = LU, Lz = Py(0), Uy(1) = γz, y ← s(1)y(1).

The scalar γ ∈ (0, 1] serves the avoidance of overflow. DLAEIN chooses the
starting vector implicitly as y(0) = P−1Le, where e is the vector with all
ones. Thereby the computation reduces to the solution of Uy(1) = γz through
backward substitution. The RQ approach introduced by Henry [26, 25] factors

H − λ̂I into an upper triangular R and an orthogonal Q and computes

H − λ̂I = RQ, Rz = γy(0), y(1) ← QT z, y ← s(1)y(1).

As before, the scalar γ ∈ (0, 1] serves the avoidance of overflow. Henry transforms
H − λI into a triangular R by eliminating the subdiagonal entries of H − λI
from right to left through a series of Givens rotations. Each Givens rotation
annihilates a subdiagonal entry of H − λI. The accumulation of the Givens
rotations yields Q. As soon as a column of R is available, it is immediately
used in a column-oriented backward substitution and then discarded. If H is
not overwritten with R, a single column suffices as workspace. Furthermore,
due to the intertwined execution of the transformation to triangular shape and
the backward substitution, the matrix H is traversed only once.

3.2 Robust Solution of the Sylvester Equation

A linear matrix equation occurring in, for example, control theory, image
processing or model reduction is the general Sylvester equation

AX −XB = C. (3.8)

Here, A ∈ Rn×n, B ∈ Rm×m, C ∈ Rn×m are given and X ∈ Rn×m is the
solution that is sought.

The Sylvester equation and the eigenvalue problem are closely related. A
unique solution to (3.8) exists if and only if A and B do not have any eigenvalues
in common. Moreover, the eigenvalue equation AX −XΛ = 0 is a special case
of the Sylvester equation. Small Sylvester equations are solved in eigenvalue
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problems. This includes, for example, eigenvalue reordering in the real Schur
form [35] or the computation of eigenvectors from the Schur form. The latter is
addressed in Paper II and III. Furthermore, the sensitivity of the solution X in
(3.8) is related to the separation of A and B [46],

sep(A,B) = min
X 6=0

‖AX −XB‖F
‖X‖F

.

The separation of two matrices is relevant to the measurement of invariant
subspace sensitivity [20, Sec. 7.2.4], [27, p. 313], of which the eigenvector
sensitivity is a special case [20, Sec. 7.2.5].

Two standard approaches to solving (3.8) are the Hessenberg-Schur method
[19] and the Bartels–Stewart method [4]. Both methods are similar in the sense
that they approach the solution by transforming (3.8) into a form that is easier
to solve.

Bartels–Stewart method. The Bartels–Stewart method [4] reduces both
coefficient matrices to real Schur form, Ã = UTAU and B̃ = V TBV . Here,
the matrices Ã and B̃ are quasi-triangular and U and V are orthogonal. The
application of the computed orthogonal transformations transforms the general
Sylvester equation (3.8) into a triangular Sylvester equation

UTAU︸ ︷︷ ︸
Ã

UTXV︸ ︷︷ ︸
Y

− UTXV︸ ︷︷ ︸
Y

V TBV︸ ︷︷ ︸
B̃

= UTCV.︸ ︷︷ ︸
C̃

(3.9)

The triangular Sylvester equation can be solved by a variation of backward
substitution that can handle four cases arising from 1-by-1 or 2-by-2 blocks on
the diagonal of Ã and B̃. Then the solution to (3.8) is given by X = UY V T .

Hessenberg–Schur method. The Hessenberg–Schur method [19] is struc-
turally similar to the Bartels–Stewart method, but reduces only one coefficient
matrix to real Schur form. The Hessenberg–Schur method therefore solves (3.8)
by reducing A only to Hessenberg form, H = UTAU , and B to real Schur form,
S = V TBV . The matrices U and V are again orthogonal. When the orthogonal
transformations are applied to (3.8), the system is transformed into

UTAU︸ ︷︷ ︸
H

UTXV︸ ︷︷ ︸
Y

− UTXV︸ ︷︷ ︸
Y

V TBV︸ ︷︷ ︸
S

= UTCV︸ ︷︷ ︸
C̃

,

which can be solved with a column-oriented variant of backward substitution.
The solution to (3.8) can be recovered by X = UY V T .

Robust Solution of the Triangular Sylvester Equation. The triangular
Sylvester equation (3.9) occurs as a computational step in the Bartels–Stewart
method. It is a well-studied problem and many library solvers exist. These
include the LAPACK solver DTRSYL, the Fortran library RECSY [21, 30, 31, 32],
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which approaches the solution with recursion, and its distributed memory
extension scasy [21, 22, 23, 24], and the tiled task-parallel solver FLASH Sylv
[41] part of libflame.

The triangular Sylvester equation (3.9) can be solved with a variation of
backward substitution. Since backward substitution is prone to overflow, robust
solvers for the triangular Sylvester equation introduce a scaling factor γ ∈ (0, 1]
and solve the scaled triangular Sylvester equation ÃY − Y B̃ = γC̃. Since the
scaling factor is associated with the entire solution matrix, frequent scaling
events can incur significant overhead if the solution matrix is kept consistently
scaled throughout the computation.

Chapter 4 summarizes the contributions of the papers included in this thesis
to each topic discussed in this chapter. The papers are grouped by topic and
concern robustness (Paper I), the eigenvector computation (Paper II – IV) and
the robust solution of the triangular Sylvester equation (Paper V).
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Chapter 4

Summary of Contributions

4.1 Paper I

This summary is a condensed version of the summary found in the author’s
licentiate thesis [42, Sec. 2.2].

Paper I concerns the task-parallel robust solution of triangular systems with
many right-hand sides TX = BΓ. By virtue of the diagonal matrix of scaling
factors Γ, the scaled triangular system can be solved for XΓ−1 such that the
floating-point overflow threshold is not exceeded. The robust tiled backward
substitution algorithm follows a standard pattern of tiled backward substitution:
When a tile of the solution has been solved through a small backward substi-
tution, this solution is used in a linear tile update. Paper I utilizes overflow
protection logic that leads to a robust small backward substitution and a robust
linear tile update. The robust linear tile update is designed such that it can
benefit from an efficient implementation of DGEMM. The resulting task-parallel
tiled algorithm attains a reasonable fraction of the peak performance in all
numerical experiments.

The author’s contributions: Collective experiment design, conducting the
experiments and plotting the results, describing the test environment, reading
and commenting on the manuscript.

4.2 Paper II

This summary is a condensed version of the summary found in the author’s
licentiate thesis [42, Sec. 2.1].

Paper II concerns the simultaneous computation of several eigenvectors from the
real Schur form T = QTAQ of a non-symmetric matrix A. The eigenvectors can
be computed through backward substitution on T , followed by a backtransform
with Q. The LAPACK 3.9.0 routine DTREVC3 [17, 16] uses level-2 BLAS
in the backward substitution and level-3 BLAS in the backtransform if all
eigenvectors are sought. Paper II introduces level-3 BLAS to the backward
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substitution by expressing the computation as tiled algorithms. Thereby most
of the computation corresponds to matrix–matrix multiplications. Paper II
evaluates the performance and parallel scalability attained by the new set of
algorithms. Since the presented algorithms are not robust, the analysis can be
viewed as a scalability study under ideal conditions.

The author’s contributions: Joint development and improvement of the
presented algorithms, programming, joint analysis of bottlenecks, writing of the
first draft, revising the draft jointly, designing and conducting the experiments,
joint analysis and presentation of the numerical results.

4.3 Paper III

Paper III renders the eigenvector computation from the real Schur form robust.
For this purpose, the overflow protection scheme from Paper I is applied to the
algorithms of Paper II. The resulting algorithms can solve the same class of
problems as the LAPACK 3.9.0 routine DTREVC3. In contrast to Elemental’s
solver TriangEig [37], also quasi-triangular matrices are supported. Paper III
investigates the performance and parallel scalability of the robust algorithms.
In the numerical experiments, the robust eigenvector routines are 15-20% slower
than their non-robust counterparts, but have a similar parallel scalability.

The author’s contributions: Improving the algorithms, idea presented in
Sec. 5.3, programming, authoring the first draft, conducting and analyzing the
experiments, joint revision.

4.4 Paper IV

Paper IV revises the RQ approach for computing eigenvectors from the Hes-
senberg matrix by inverse iteration. The original RQ approach [26, 25] factors
(H − λ`I) = R`Q`, where H is upper Hessenberg, R` triangular and Q` orthog-
onal. Since distinct shifts λ` have distinct RQ decompositions, the approach of
computing the RQ decomposition and then (possibly simultaneously) solving
the triangular system on R` through backward substitution has limited level-3
BLAS potential. Paper IV rearranges the computation so that in spite of
distinct shifts the backward substitution phase mostly comprises matrix–matrix
multiplications. The speedup is demonstrated in experiments.

4.5 Paper V

This summary is a condensed version of the summary found in the author’s
licentiate thesis [42, Sec. 2.3].
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Paper V concerns the solution of the scaled triangular Sylvester equation
AX − XB = γC. Here A and B are upper quasi-triangular, C is a general
matrix and the scalar γ ∈ (0, 1] serves the avoidance of overflow. To the best of
the authors’ knowledge, the algorithm devised in Paper V is the first robust, tiled,
level-3 BLAS based, task-parallel solver for the triangular Sylvester equation.
By adding robustness, the computational gap between existing non-robust tiled
task-parallel solvers such as Flash Sylv [41] part of libflame 5.1.0-58 [44] and
the class of problems solvable by, for example, LAPACK’s DTRSYL is closed.
The new algorithm attains a similar performance as Flash Sylv if overflow
protection is not necessary to solve the problem. If overflow protection is
necessary and numerical scaling is triggered, the overhead is roughly a constant
fraction of the performance and does not impede the parallel scalability.

The author’s contributions: Derivation and programming of the algorithm,
writing the draft, joint design of the experiments, conducting the experiments,
interpretation and presentation of the numerical results, joint revision.
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