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Abstract

In natural language processing, the syntaz of a sentence refers to the words
used in the sentence, their grammatical role, and their order. Semantics con-
cerns the concepts represented by the words in the sentence and their relations,
i.e., the meaning of the sentence. While a human can easily analyse a sentence
in a language they understand to figure out its grammatical construction and
meaning, this is a difficult task for a computer. To analyse natural language,
the computer needs a language model. First and foremost, the computer must
have data structures that can represent syntax and semantics. Then, the com-
puter requires some information about what is considered correct syntax and
semantics — this can be provided in the form of human-annotated corpora of
natural language. Computers use formal languages such as programming lan-
guages, and our goal is thus to model natural languages using formal languages.
There are several ways to capture the correctness aspect of a natural language
corpus in a formal language model. One strategy is to specify a formal language
using a set of rules that are, in a sense, very similar to the grammatical rules of
natural language. In this thesis, we only consider such rule-based formalisms.

Trees are commonly used to represent syntactic analyses of sentences, and
graphs can represent the semantics of sentences. Examples of rule-based for-
malisms that define languages of trees and graphs are tree automata and graph
grammars, respectively. When used in language processing, the rules of a for-
malism are normally given weights, which are then combined as specified by the
formalism to assign weights to the trees or graphs in its language. The weights
enable us to rank the trees and graphs by their similarity to the linguistic data
in the human-annotated corpora.

Since natural language is very complicated to model, there are many small
gaps in the research of natural language processing to address. The research
of this thesis considers two separate but related problems: First, we have the
N -best problem, which is about finding N € N top-ranked hypotheses given
a ranked hypothesis space. In our case, the hypothesis space is represented
by a weighted rule-based formalism, making the hypothesis space a weighted
formal language. The hypotheses themselves can for example have the form
of weighted syntax trees. The second problem is that of semantic modelling,
whose aim is to find a formalism complex enough to define languages of semantic
representations. This model can however not be too complex since we still want
to be able to efficiently compute solutions to language processing tasks.

iii



This thesis is divided into two parts according to the two problems in-
troduced above. The first part covers the N-best problem for weighted tree
automata. In this line of research, we develop and evaluate multiple versions
of an efficient algorithm that solves the problem in question. Since our algo-
rithm is the first to do so, we theoretically and experimentally evaluate it in
comparison to the state-of-the-art algorithm for solving an easier version of the
problem. In the second part, we study how rule-based formalisms can be used
to model graphs that represent meaning, i.e., semantic graphs. We investigate
an existing formalism and through this work learn what properties of that for-
malism are necessary for semantic modelling. Finally, we use our new-found
knowledge to develop a more specialised formalism, and argue that it is better
suited for the task of semantic modelling than existing formalisms.
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CHAPTER 1
Introduction

While computers are strict rule-followers, humans are not — at least not when
it comes to our use of language. For example, consider the sentence “They
scratch the dog with the stick.” Do they scratch the dog using a stick or
does the scratched dog have a stick? How should a computer interpret this
ambiguous sentence? First, we take a look at how these two interpretations
can be represented in a computer. A sentence is a sequence of words, or a string
of words. As we have seen, a sentence is not in itself a good representation of
its own intended interpretation; we need more information, such as how the
words are related. For this, we use analyses in the form of syntaz trees.

A tree is a structure of nodes connected by edges. Each node is connected
to at most one parent node and to an arbitrary number of child nodes; a
node without a parent is a root, and a node without children is a leaf. In a
(constituent) syntax tree for a sentence s, every node has a label; the leaves
of the tree are labelled with the words in s, and the remaining node labels
are syntactic roles. The edges show how the roles work together. First, each
word-labelled node is assigned a parent in the form of a node labelled with
the syntactic role of the word: N marks a noun, V marks a verb, P marks a
preposition, Det marks a determiner, and so on. These are then combined into
larger entities such as a noun phrase (NP), a verb phrase (VP), a prepositional
phrase (PP), and finally a complete sentence (S), which is the root of a syntax
tree representing an entire sentence.

Here, we depict nodes as their labels and edges connecting two nodes as
lines between the nodes. Moreover, the parent of a node n is drawn above
n, and the children of n are drawn below n. In Figure 1.1 we see the syntax
tree for the interpretation that the stick was used for scratching the dog, and
Figure 1.2 portrays the interpretation that the dog has the stick. In our case,
the syntax trees each represents one interpretation, or semantics, but there can
be different syntax trees that represent the same semantics (e.g., the syntax
trees for “the dog’s stick” and “the stick of the dog” are different but mean the
same thing).

Now, which of the two interpretations is more likely to be the correct one?
If the example sentence is found in a book about someone who is very afraid
of dogs, then the first interpretation might be the likeliest, but if the sentence
came from an interview with an old person living alone with their dog, then
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S
/\
NP VP
| ) T
N A% NP PP
/\ /\
Det N P NP
/\
Det N

| |

They scratch the dog with the stick

Figure 1.1: Analysis of “They scratch the dog with the stick” representing the
interpretation that the stick is used for scratching the dog.

S
/\
NP VP
‘ /\
N A% NP
/\
NP PP
/\ /\
Det N P NP
/\
Det N

| |

They scratch the dog with the stick

Figure 1.2: Analysis of “They scratch the dog with the stick” representing the
interpretation that the scratched dog has a stick.
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the second one is perhaps more likely. Given the context of the sentence, we
can learn which interpretation has the highest probability. This is exactly what
machine learning is for: teaching a model to value sentence analyses based on
the contexts of the sentences. Using machine learning to generate a model
reduces to assigning weights to various components of the model. Common
models are neural networks and rule-based formalisms; the latter are the focus
of this thesis. Finding the best possible way of performing the actual machine
learning would require an entire thesis in itself, which is why we assume that
we have already trained models that can tell us the ranking of the various
interpretations or analyses. This assumption lets us focus on the problem of
finding the highest ranked analyses given a pre-trained model.

Rule-based models such as automata and grammars define formal languages,
i.e., languages that a computer can understand. In natural language processing,
formal languages are used to approximate natural languages — languages that
humans use. In this thesis, we are particularly interested in the weighted tree
automata (wta) formalism. A wta is a system that assigns weights (or ranks)
to trees, and it is useful since an analysis of a sentence can, as we have seen,
be represented as a tree. Using rule-based models for language processing
requires algorithms that solve various problems for these models. Solving the
N -best problem for wta consists of extracting the N trees of lowest (or highest,
depending on our optimisation criterion) weight according to the wta. Thus,
N-best trees extraction is useful for returning the top sentence analyses from
a wta-based language model.

Every wta defines a potentially infinite weighted tree language, which means
that a wta can be seen as a compact representation of its weighted tree lan-
guage, since its set of weighted transition rules is finite. Given an input tree,
a wta applies transition rules to it until the entire tree is processed, and then
outputs a weight. The application of transition rules to the tree forms a run
on the tree whose weight is the sum of the weights of its transition rules. For
deterministic wta, there is only one run corresponding to each tree, and the
weight of the tree is defined to be the weight of its run. If we instead have
nondeterministic wta, there are several runs for each tree — there can in fact
be an exponential number of runs relative to the size of the tree. The tree is
then assigned the lowest (or highest) weight over all of its runs!. Solving the
easier IN-best runs problem is an alternative solution to extracting the N best
trees. It is however only guaranteed that the list of IV trees corresponding to
the output list of N runs is free from duplicates if the input wta is determin-
istic. In Part One of this thesis, comprising Papers I, II, IIT and IV, we solve
the N-best trees problem for wta and compare it to algorithms that solve the
N-best runs problem.

1 For general wta, the weight of a tree is actually the sum of the weights of all its runs, and
the weight of a run is the product of the weights of the transition rules used to produce
the run, but for the sake of simplicity, we ignore this for now.
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(a) The interpretation that (b) The interpretation that “them”
“them” refers to “the host”. refers to some other person or group
of people.

Figure 1.3: Two semantic graph representations, each showing one interpreta-
tion of “The host asks the guests to ignore them.”

Sometimes we need more than a syntax tree to distinguish between different
semantics. For example, the sentence “The host asks the guests to ignore them”
says nothing about who “them”? refers to: it could be the host who wishes to
be ignored, or it could be a person or a group of people who are to be ignored
(but hopefully not the cockroaches crawling all over the place). Forming a
syntax tree does not help us distinguish between interpretations in this case,
because all we would learn from the syntax tree is that “them” is a (pro)noun
and its links to the rest of the sentence — not more semantic information. This
semantic phenomenon of referencing the same concept in different places within
a single sentence or over sentence borders is called coreferencing and demands
a more complex representation.

A common solution is to model the semantics as a graph. A graph is a
structure consisting of nodes and edges, just as trees but without the constraint
in which each node can have at most one parent. This means that we have
to indicate the relation between the connected nodes in some other way than
drawing them above or below one another; here, we use directed edges pointing
from the parent to the child. Figure 1.3 shows two graphs that each represent
a different interpretation of the example sentence “The host asks the guests
to ignore them.” The nodes are depicted as ellipses with their label inscribed,
and the directed edges are drawn as arrows. The edges also have labels: arg0
indicates that the child is the agent of the parent verb and arg1 that the child
is its patient. To interpret the graph, we start at the root in which we have the
word “asks”. By following the arg0 edge, we find the person who asks, namely
the host. Next, we want to know what the host is asking for, so we follow
the argl edge and arrive at “ignore”. The ones who are asked to ignore are
the guests, given by the outgoing arg0 edge. Now we have arrived at the sole
point of difference between these two graphs. In Figure 1.3(a), the argl edge
departing from “ignore” arrives at “host”, indicating that the host is the one
to ignore, but in Figure 1.3(b), “them” is a node of its own and not connected

2 Note that “they” and “them” can be used as both a singular and a plural pronoun.
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to anything we have already seen in this particular sentence, meaning that
“them” is a concept different from what we already have. If we had more data,
we could probably say more about to whom “them” actually refers.

Note that semantics can be expressed in several ways using syntax trees or
sentences. For example, the semantics of Figure 1.3(a) can also be expressed
as the sentence “The host asks to be ignored by the guests,” which gives rise to
a syntax tree that differs from the one for “The host asks the guests to ignore
them.” To achieve a semantic representation that is unique for every piece
of semantics, we must disregard the syntactic information that is specific to
the particular manner in which that piece of semantics is expressed in natural
language. This is exactly what the semantic graphs are meant to do: they
model concepts (nodes) and their relation (edges), rather than specific natural
language objects. For example: a word is a natural language object, and it
can have different meanings depending on its context. Each distinct meaning
of the word defines a concept. For every concept defined in this way, there are
most likely other words that express the same meaning, namely synonyms.

The use of graphs for semantic representation is not as well-researched as the
use of trees for syntactic representation. To represent weighted tree languages,
we used weighted tree automata. In the graph case, we need a more powerful
formalism since we can express more complex dependencies with graphs. In our
work, we use contextual hyperedge replacement grammars (CHRGSs) to describe
semantic graph languages. To model a semantic graph language with a CHRG,
we must be able to answer the question “Is the graph G in the graph language
defined by the CHRG G?” This question is central because we need to be
able to decide if a graph can be handled by our model or not. The question
is answered by solving the membership problem, and we say that an algorithm
parses G with respect to G if it solves this problem and provides a witness if the
answer is “yes”. A witness is a computation within the model that shows that
the model can express G. If both the graph and the grammar are considered
as input, the problem is uniform, otherwise it is non-uniform, meaning that
the graph is the only input to the problem.

Parsing of CHRGs is generally difficult: unless P = NP, there is no algo-
rithm that solves their uniform membership problem in polynomial time. As
is common in language modelling, adding power and expressibility to the for-
malism makes it more difficult to efficiently solve computational problems. In
our work, we define a restricted version of CHRG that allows for polynomial
parsing, and we show that the restricted formalism can express a large variety
of semantic graphs. Semantic modelling using CHRGs constitutes Part Two of
this thesis, and the papers included in this part are Papers V and VI.
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1.1 OQutline

Part One of this thesis handles the N-best problem and has the following
outline: Chapter 2 establishes the theoretical foundation needed to formally
define and discuss the N-best problem, Chapter 3 provides the background of
the problem in the form of related work, and Chapter 4 concludes Part One by
summarising the in this thesis included papers on the N-best problem.

The topic of Part Two is semantic modelling with contextual graph gram-
mars and is outlined as follows. Chapter 5 comprises both related work that
uses rule-based formalisms for semantic modelling and their accompanying for-
malisms, and Chapter 6 summarises the contributions of this thesis to the field
of semantic modelling.



Part One

The N-Best Problem






CHAPTER 2
Theoretical Foundation

The N-best problem consists in extracting the N best hypotheses from a ranked
hypothesis space. As we have seen, common hypothesis types for the analysis
of language are strings and trees — we call the hypothesis type the structure.
Then, we have the rule-based formalisms such as automata and grammars
that compactly define hypothesis spaces; we refer to these representations as
devices. Finally, there has to be something that ranks the structures, some
criterion that decides if a structure is better than another, and this is where
weights and semirings enter the picture. Let us now provide formal definitions
for each of these components, starting with weights and semirings.

2.1 Weights and Semirings

When developing an algorithm that operates on a weighted structure or device,
we should take care to choose appropriate weight operations, so that we can
prove that the algorithm is correct. A semiring is, informally, a set of values (or
weights) and operations defined on them. Proving correctness of an algorithm
often requires us to prove that it is compatible with a certain semiring or
family of semirings. For example, Dijkstra’s greedy algorithm for finding the
shortest path in a weighted directed graph [Dij59] assumes weights from R
(non-negative reals), and uses the operations ‘4+’ and ‘min’: + combines weights
along a path and min picks the smallest-weighted path over all paths in the
graph. The min operation makes it possible to find the shortest path without
considering all possible paths, and is therefore central to the correctness and
efficiency of Dijkstra’s algorithm. Another example is given by Mohri [Moh02]
who generalises the work of Dijkstra by developing a shortest-path algorithm
that works for not only one, but a family of semirings. In short, Mohri’s
algorithm requires that the semiring used is such that the path weights cannot
be decreased by traversing cycles in the input graph, a condition that is trivially
fulfilled by the preconditions of applying Dijkstra’s algorithm but also works for
other combinations of weights and operations. As is common when generalising
to a richer domain, Mohri’s algorithm is less efficient than Dijkstra’s.

Below follows the formal definition of a semiring, which is based on the
notion of monoids.
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Definition 2.1 A monoid is a tuple (K, ¢, e) where K is a set, ¢ is a binary
operation, and e € K is the identity element (of ©). Furthermore, the first two
conditions in the list below must hold for a, b, c € K.

1. (aob)oc=ao(boc). (Associativity)
2. ave=ecoa=a. (Identity)
3. aob=boa. (Commutativity)

If the third condition also holds, the monoid is commutative.

Definition 2.2 A semiring is a tuple K = (K, ®, ®, 0, 1) such that the follow-
ing conditions hold.

* (K, ®,0) is a commutative monoid.
* (K, ®,1) is a monoid.
* 0®a=a®0=0 for all a € K; we call 0 an annihilator for ®.

* ® distributes over @, that is, a® (bdc) = (a®b) D (a®c) and (bdc)®@a =
b®a)® (¢c®a) for all a,b,c € K.

We call & semiring addition and ® is the semiring multiplication. If the
monoid (K, ®,1) is commutative, then we say that K itself is commutative.
Another property is idempotency which requires that a @ a = a for all a € K.
Similarly, a semiring is extremal if a & b € {a,b} for all a,b € K. Note that
an extremal semiring is always idempotent whereas an idempotent semiring is
not necessarily extremal (e.g., when the weights are vectors over Ry and @ is
element-wise min). For an idempotent semiring &, we can define the natural
order <k of K to be the partial order given by a <x b <= a®b = a for
a,b € K. A semiring is finitely generated if there is a finite subset S of K whose
elements can form all of the elements of K by applying the operations @& and
® to the elements in S.

An example of a common semiring is the Boolean semiring which is de-
fined as ({TRUE, FALSE}, V, A, FALSE, TRUE). Since TRUE V TRUE = TRUE and
FALSE V FALSE = FALSE, the Boolean semiring is idempotent; it is also extremal
since the V operation always returns either TRUE or FALSE. Moreover, the
commutative operation A is its semiring multiplication, which implies that the
Boolean semiring is also commutative. Another common idempotent, extremal
and commutative semiring is the tropical semiring.

Definition 2.3 The tropical (or min-plus) semiring is the semiring 7 =
(R+ U {OO}, min, +, 0o, 0)

This semiring is the one used in Dijkstra’s algorithm, and it is also used in
the N-best trees algorithm that has been developed as part of this thesis work.
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2.2 Structures and Devices

Here we define all structures and devices (computational models) that are rel-
evant to the work on the N-best problem covered in this thesis.

Let S be a set, and let |S| denote the cardinality of S; the set operator W
denotes the disjoint union of sets. A string over S is a finite sequence s7 . .. s, of
symbols s1,...,8, € 5, and |s1 ... s,| = nis its length. When n = 0, we obtain
the empty string A\. Furthermore, S* and S™ denote the set of all strings over
S and the set of all strings over S of length n, respectively, and ST = S*\ {\}.
A ranked alphabet ¥ = 4, .y X is a finite set of symbols with rank (o) = k for
o € 3. A (ranked) tree labelled over a ranked alphabet ¥ is a string ¢ defined
recursively as follows:

* t =0 for o0 € ¥ is a tree consisting of a single node labelled by o, and

* t = oft1,...,t] where o € 3, and t; are trees over ¥ for i = 1,...,k is
a tree. (The square brackets and commas in ¢ are delimiters that are not
allowed to be elements of X.)

Let v denote the node labelled by ¢ in the tree t above. We say that ¢ is rooted
in v and that ¢1,...,ty are (direct) subtrees of t. Furthermore, the roots of
t1,...,t, are children of v, and v is their parent. A leaf is a node without
children. For convenience, we may refer to a node by its label when there is no
risk of confusion.

Now that we have defined the structure types for which we are discussing the
N-best problem, namely strings and trees, we move on to defining the devices
that operate on them, starting with two device types that handle strings.

Definition 2.4 A context-free (string) grammar (cfg) is a quadruple G = (N,
¥, S, R) where

* N is a finite set of nonterminals,
* X with XN N = () is a finite set of symbols or terminals,
* S € N is the start nonterminal, and

* R is a finite set of production rules on the form A — « with A € N and
a € (N UX)*; the substring of nonterminals of « is denoted by nt(«).

Applying a production rule r = (A — a) € R to a string s1Ass is done by
replacing A (the left-hand side of r) by « (the right-hand side of r), yielding
s1ase. We write s1Asy = siass to denote that we applied a rule from R to
the first string to derive the latter, and =* denotes the reflexive and transitive
closure of =. The language defined by G is L(G) = {s € ¥* | S =* s}, and
we say that s can be derived from S (in G) or generated by G. A derivation in
G of a string s € L(G) is a tree whose nodes are labelled by production rules
from G such that the result of applying the production rules is s, and the root
must be labelled with a production rule that has the left-hand side S.

11
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Adding weights to a cfg can be done in various ways. Here, we assign a
weight w from a semiring (K, @, ®,0,1) to each production rule r = (4 — «)
and denote this addition by r = (A % ). To get the weight of a derivation
d, we apply ® to the weights of all rules in d, and the weight of a string s in
L(G) is computed by applying @ to the weights of all of the derivations in G
that result in s.

Definition 2.5 A weighted finite string automaton (wsa) over a semiring
(K,®,®,0,1) is a quintuple M = (X, Q, 6, g0, Q) such that

* X is a finite set of symbols, or the alphabet,
* () is a finite set of states,

* 0: Q X X x Q — K is the transition function,
* qo € @ is the initial state, and

* Q5 C Q is the set of final states.

We write (¢,0) = ¢’ to represent the transition given by 6(q,0,q') = w. In
practice, it is common to only store elements (g, o) — ¢’ for which w # 0; i.e.,
transitions that have non-zero weight. Thus, the absence of a transition from
the stored part of § should be interpreted as it having weight 0. (Formally, this
turns J into a partial function §: @ x ¥ x @ — K\ {0}.) For simplicity, we let
0 denote the set of transitions given by the domain @ x X x @, including those
with zero weight.

Let M be a wsa and let s be an input string s = o01...0, € ¥*. A run p
of M on s is a string of states p(s) = qo . ..q, where g is the initial state of
M, q €Qand ((¢;_1,0;) =% ¢;) €6 fori € {1,...,n}. The run is accepting if
qn € Q. The weight of p(s) is given by

wi(p(s)) = @ wi
i=1
and the weight of s assigned by M is

M(s) = P (wt(p(s))) -

p

That is, we multiply the weights of the used transitions to get the weight of a
run, and add the weights of all runs on s to get the weight of s in M.

Note that the cfg and the wsa are not equally powerful formalisms: wsa
defines weighted regular string languages whereas cfgs defines weighted context-
free string languages. A consequence of this is that the runs are, as we have
seen, represented differently: a run of a wsa can be represented with a string
whereas we need the more expressive tree structure to represent a derivation
of the more powerful cfg.

Next, we define a formal device that defines weighted tree languages.
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Definition 2.6 A weighted tree automaton (wta) over a semiring (K, ®, ®,0,1)
is a quadruple M = (Q, %, 6, Q) where

*x ¥ = lH,cn 2k is a ranked alphabet,
* @ with Q N'X = () is the set of states,
* 0: QF x ¥ x Q — K is the transition function,

* Qr C @ is the set of final states.

In analogy with the notation for wsa, we write olqi, ..., qx] — ¢ to denote
the transition given by d(¢1,...,qk,0,9) — w, and we let § denote the set of
transitions defined for the domain Q* x ¥ x Q.

To make the next definition simpler, we turn ¢ into a ranked alphabet by
setting rank(o[q1, ..., qx] — q) = rank(c). Thus, we are now free to treat the
rules as symbols.

Definition 2.7 A run p of M on a tree ¢ labelled over ¥ is a relabelling p(t)
of t with symbols from 6. The relabelling p(t) of a tree t rooted in a node v
labelled by o € ¥ is defined recursively as follows.

1. If t = 0, i.e, v is a leaf node, then v can be relabelled by any (o = ¢) € 6,
yielding p(t) = (¢ = q).

2. Ift =o[p(t1), ..., p(tr)] and the root of p(t;) is for i € {1,...,k} labelled
by oilgiy, - - - ,qiki] 2y ¢; where o; is the label of ¢;, k; is the rank of o;
and ¢;; € Q for j € {1,...,k;}, then v can be relabelled by any (o[q1,

k] = q) €6, yielding p(t) = (o[q1, ... k] — @)lp(t1), - - -, p(tr)].

If the right-hand side of the root of p is in Q¢, then p is an accepting run
of M on t. An example run of the wta in Figure 2.1 can be seen in Figure 2.2.

The weight of a run p is denoted by wt(p) and given by the multiplication
of the weights of the transition rules labelling p. A tree ¢t can have several runs,
and we define the weight of the tree t in M, M(t), as the sum of the weights of
all runs of M on ¢t. Under the assumption that the wta in Figure 2.1 is weighted
over the tropical semiring (R4 U {00}, min, 4, 00,0), the weight of the run in
Figure 2.2 is 5, and since ¢ € @y, it is accepting. The example run is however
not minimal: there is another accepting run on the same tree that yields the
weight 4, implying that the weight of the tree in Figure 2.2 assigned by the
wta in Figure 2.1 is 4.

A wta defines a weighted regular tree language, and wta is thus equivalent
to weighted regular tree grammar (wrtg, see e.g. [MKO06]). Analogous to how
a finite string automaton can be represented as a directed graph in which the
nodes encode the states and the transitions are encoded by the edges, both wta
and wrtg can be represented as hypergraphs. Hypergraphs are usually seen as
structures but can also, as in this case, model devices.

13
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Q={q0,q1,qr}, Qr ={ar}, Xo=0QU{a,b}, X2 = {f}, X3 ={g},

0 1 0 1 0
6:{a_>q07 a — q1, b_>q0u b_>Qh f[CIl7(I1]_>Qf7

1 1 1
flao, @] = az, flar,ar]l = a5, 9lao, a1, 9] = a5}

Figure 2.1: Example wta.

Tree: f Run: flay. ar) L qf
f 0 1
g flas a1) = a5 9lq0,q1,90] = qr
b a a a b bi>q1 ai>q1 agqo ai>q1 bgqo

Figure 2.2: Left: A graphic representation of the tree f[f[b, al, g[a, a, b]]. Right:
An example run for the wta given in Figure 2.1 on the tree to the left.

Definition 2.8 A weighted hypergraph over a semiring (K, ®,®,0,1) with
edge labels from a ranked alphabet L (for short: hypergraph) is a quintuple
G = (V, E, att,labg, wtg) where:

* V is a finite set of nodes.
* F is a finite set of hyperedges.
* att: E — VT is the attachment of hyperedges.

* labg: F — Y with rank(labg(e)) = |att(e)| — 1 for all e € E is the
labelling of hyperedges.

* wta: E — K is the assignment of weights to hyperedges.

Moreover, for e € E we distinguish the first element of att(e), denote it head(e)
and call it the head of e; the remaining elements comprise the tail of e and are
denoted by tail(e). We write |e| to abbreviate |tail(e)| = |att(e)| — 1.

Definition 2.9 A derivation of a node v in a hypergraph G is a tree d = e[dy,
..., dj¢)] where e € E with att(e) = vvy---v|| and d; is a derivation of v; for
i €{1,...,]el}. Thus, if |e| = 0, the derivation consists of a single node, d = e.
The weight of d is defined by

lel

wt(d) = wtg(e) @ ®wt(di) .

i=1
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To access the node at the top of the derivation d = e[dy, ..., d|e‘], i.e., head(e),
without having to explicitly access e, we write root(d). The tree labelled over
Y that results from a derivation d = e[dy,...,d||] is given by result(d) =
labg(e)[result(dy), ..., result(d)].

The weighted tree language defined by a set of nodes Vo C V in G is a
mapping from trees ¢ for which there exists at least one derivation d such that
result(d) = t and root(d) € Vy in G, to the sum of the weights of all such
derivations of ¢ in G.

For the purpose of showing that wta and hypergraphs are equivalent devices,
we define the construction of a hypergraph given a wta and vice versa.

Definition 2.10 Given a wta M = (Q,%,,Qy), we construct a hypergraph
Gy = (V, E, att, labg, wtg,, ) in the following way:

* for every state ¢ € @, add a node v, to V, and

x for every transition rule r = (o[q1,...,q] — q) € 8, add a hyperedge
er to E with att(e,) = v4vq, -..vq,, labg(e,) = o, rank(c) = k and
wta,, (er) = w.

Definition 2.11 Given a hypergraph G = (V, E, att,labg, wtg), we construct
awta Mg = (Q,%,6,Qy) as follows:

* for every node v € V, add a state ¢, to @, and

* for every hyperedge e € E with att(e) = ¢uqu, - - @, and wtg(e) = w,
add a transition rule 7. = (labg(€)[qu,, - - - » Qo] — @u) tO 8.

We define the homomorphism h from trees labelled over § to trees labelled
over E as h(r[p1,...,pk]) = er[h(p1),...,h(pk)].

Theorem 2.12 Let M be a wta and Gy its corresponding hypergraph. Then,
p is a run of M on a tree t if and only if h(p) is a derivation of Gy with
wt(p) = wt(h(p)) and result(h(p)) =t.

Proof. In the following, let p be a run of a wta M on a tree t. If ¢ consists
of a single node labelled o, then p is by Definition 2.7 a single node labelled
with some transition rule r = (0 = ¢), and applying h to p yields h(p) = e,..
Moreover, e, is by Definitions 2.9 and 2.10 a derivation of v, with wt(h(p)) =
w = wt(p) and result(h(p)) = 0 = t. Now assume for the sake of induction that
Theorem 2.12 holds for runs pi,..., px on trees ti,...,tg, respectively. Then,
for the run p = rp1, ..., px] With r = (olq1,...,qx] — q) on t = olt1,..., tx],
we have h(p) = e [h(p1),...,h(pr)]. Since h(p1),...,h(px) are derivations of
Ugys - - -, Ugy, Tespectively, then — again by Definitions 2.9 and 2.10 — e, [A(p1),
..., h(pr)] is a derivation of vy in Gy with wt(e,[h(p1),...,h(pr)]) = w®
wt(p1)®- - -@wt(pr) = wt(p) and result(e.[h(p1), ..., h(pr)]) = olresult(h(p1)),
..y result(h(pg))] = oft1, ..., tk] = .
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Conversely, let d be a derivation in a hypergraph G of a node v € V.
First, consider the case when d = e, i.e., d consists of a single node labelled
by the hyperedge e. By Definitions 2.9 and 2.11, there is a transition rule
re = (labp(e) = q,) of Mg with wt(d) = wtg(e) = w, and also att(e) = v and
result(d) = labg(e). Defining a run p = r. and a tree t = labg(e) = result(d)
yields h(p(t)) = e = d and wt(p(t)) = w = wt(d). Again, we make use of in-
duction: For the case when d = e[d;, . .. ,d|e|}7 assume that Theorem 2.12 holds
for derivations dy,...,d|, of nodes v1,..., v in Mg, respectively. By Defini-
tion 2.9, we have att(e) = vv1 ... v, wt(d) = wtg(e) @ wt(d1) ® - - - @ wt(d)e)),
and result(d) = labg(e)[result(d;),...,result(d|.|)]. By Definition 2.11, there
is a rule 7. = (labg(e)(qu,,---, Q] = qu) in Mg such that w = wtg(e)
and g, corresponds to v; for i € {1,...,|e|}. According to the induction hy-
pothesis, there are p; and t; such that h(p;(t;)) = d;, wt(p;(t;)) = wt(d;) and
t; = result(d;) for i € {1,...,|e|}. Defining p = r.[p1,...,pj] and

t =labg(e)[t, ..., t)¢] = result(d)

yields h(p(t)) = elh(p1), ..., h(pe))] = eld1,...,d|e] = d and wt(p(t)) = w ®
wt(p1) @ - @ Wt(pje]) = wta(e) @ wt(dy) @ -+ - @ wt(d|e|) = wt(d). O

Theorem 2.13 Let Lg" be the weighted tree language of G given by the node
set Vo consisting of all nodes v, for which the corresponding state q in Mg is in
Q. Furthermore, let Ly, be the weighted tree language defined by Mq. Then,
L = L{.

Proof. From Theorem 2.12, we know that a run p in Mg of weight w has exactly
one equivalent derivation d in G — also of weight w. Since Vj is given by the set
of final states in M, the derivations ending in nodes of Vj correspond exactly
to the set of final runs of Mg. Thus, the sum of the weights of all derivations
d for which result(d) = ¢ equals to Mg(t). O

2.3 General Problem Statement

For devices that define weighted formal languages, the variant of the N-best
problem that has minimisation as its optimisation criterion is formulated as:

Definition 2.14 Given a device A and a positive integer N, the N -best problem
amounts to computing a list of N elements z1,...,xy such that
1. all elements in the list are pairwise distinct,

2. the weights assigned by A to the elements in the list are non-decreasing
going from position 1 to IV, and

3. there is no element z distinct from x1,...,zy in the language defined by
A with smaller weight than x .
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The input device can for example be a wta M over the tropical semiring.
The elements are then either runs or trees, giving rise to the N-best runs
problem and the N -best trees problem, respectively. (Note that choosing A = M
means that we still consider the minimisation version, since minimisation is
the optimisation criterion used for computing M (¢) for a tree ¢.) First, let us
consider the case when the elements are runs. We make the observation that
a computation of a run of M only uses the semiring’s ® operator (here +).
In other words, we would only have to sum up the transition weights of the
individual run to compute its weight — the weight of a run is deterministically
determined regardless of whether M is deterministic (i.e., has exactly one run
per tree). If the elements we want to extract are instead trees, then we must in
addition to ® use the semiring’s @ operator to find the weight M(t) of a tree t.
This is because of the possibility of M being nondeterministic (i.e., there can be
more than one run on ¢ in M). Since @ is in this case the min operator, we do
not have to consider all of the runs that result in ¢ to find M (¢), but we might
have to discard duplicate trees that come from runs p(t) with wt(p(t)) > M (¢).

In our above instantiation of the general problem, the & operator of the
semiring is extremal, which is why the N-best trees problem is, while not as
straightforward as the N-best runs problem, still manageable. In contrast,
suppose that @ is not extremal; then it does not suffice to discard duplicates.
Instead, we have to find all runs p on ¢ in M and apply the @ operator to all
of them to compute M (t).

Here, we instantiated the N-best problem for wta with respect to both best
runs and best trees extraction. In Chapter 3 we will see additional instances
of the N-best problem.
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Related Work

To start our review of research on the N-best problem, we go back to 1977 when
Knuth [Knu77] presented an algorithm that finds the best (smallest) derivation
for a weighted context-free grammar (cfg, Definition 2.4). Recall that in order
to make a cfg G = (N, %, S, R) weighted, we assign weights from R to each of
its production rules. Knuth, however, takes a more general approach: Every
production rule r = (A — «) is assigned a function f.. The variables of f,
are given by nt(a) = {z1,...,Zjnt(a)|}, and if nt(a) = 0, f, is constant-valued.
The weight of a derivation of s € L(G) is the result of recursively applying the
functions for every production rule used in the generation of s. Moreover, f,
has to fulfil the superiority property, meaning that f, is non-decreasing in every
variable and that f.(xq,... ,x‘nt(a)‘) cannot be smaller than any individual
value z;. In other words: applying a rule cannot decrease the total weight of
the derivation. Using a function that sums up all variables and adds a constant
representing the production cost for every production rule, as we have chosen to
do here, certainly fulfils the superiority criterion. This is naturally less general,
but sufficient for the purpose of reviewing the algorithm developed by Knuth.

Algorithm 1 shows the pseudocode for Knuth’s algorithm. The algorithm
is based on the observation that for nonterminals A that occur in productions
A % o with nt(a) = ), it holds that A = «. Furthermore, the a that
minimises the rule weight w over all production rules (A - a) € R with
nt(a) = A is optimally derived from its corresponding nonterminal A. Due to
the superiority property of the production rules, there cannot be an o’ # « for
which A = o' with smaller weight than the minimal w. Thus, w can be stored
as a result in the array res[A] (given that the nonterminals can be internally
represented as integers, we allow that arrays are indexed using nonterminals).
To mark that the weight of A’s best derivation has now been determined, A is
added to the formerly empty set D. Now knowing the best derivation for the
nonterminal in D, we are no longer restricted to rules that have only terminals
in their right-hand sides, but these can now also contain the nonterminal in
D since its smallest weight is already determined. This allows us to pick the
smallest-weighted derivation for a new nonterminal in the same way as we did
before. We do this iteratively and when D contains all nonterminals, we are
done, and we return res containing the result.
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Algorithm 1 An algorithm that given a weighted cfg G = (N, %, S, R) with
the superiority property produces a string of smallest weight in £(G).

LD+ > defined nonterminals
2: K <+ QUEUE-EMPTY() > create priority queue
3: res < [] > array for storing the results
4: for A€ N do

5: A.weight + oo

6: QUEUE-ENQUEUE(K, A, A.weight)

7. end for

8: while |D| < |N| do

9 for Ac NN D do

w

10: m < min{w + Y pcyres[B] | (A — a) € R, nt(a) C D}
11: if m < A.weight then

12: A.weight <+ m

13: QUEUE-INCREASE-PRIORITY (K, A, A.weight)

14: end if

15: end for

16: A <+ QUEUE-DEQUEUE(K)

17: res[A] < Aweight
18: D+ DU{A}
19: end while

Note that since the operations used are min and +, and the weights are from
R, the algorithm specified here uses the tropical semiring (Definition 2.3). The
time complexity of Knuth’s algorithm is O(|R|log |N| + t) where ¢ is the total
length of all elements in R.

In practice we often want to know not only the smallest weights, but also
the actual derivations, which we can keep track of during the computation
of the weights. The 1-best derivation is then the derivation corresponding to
res[S] (which also yields the best string in £(G)).

In the rest of this chapter, we summarise papers that solve the N-best
problem for N > 1, and these are divided into two groups: those that find
the N best runs (or derivations) (Section 3.1) and those that find the N best
strings or trees (Section 3.2). Finally, we review applications of the N-best
trees problem, and related problems (Section 3.3).

3.1 The Best Runs Problem

Huang and Chiang [HC05] present an algorithm that solves the N-best deriva-
tions problem for a finite hypergraph (see Definition 2.8). As shown in Theo-
rem 2.13, this is equivalent to solving the N-best runs problem for wta.

In the original paper, each hyperedge has its own weight function that
takes the weights of the tail’s nodes to a weight that is then assigned the head
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node. Moreover, those weight functions have to be monotonic in the sense that
increasing one of the tail weights does not decrease the head’s weight. (This is
similar to the superiority property of [Knu77], but Huang and Chiang call it
monotonic since they formulate it as a property of the hypergraph.) Using an
idempotent and commutative semiring such as the tropical semiring is therefore
less general in what weight relations we can have, but fulfils the requirements
and lets us compare this algorithm to similar ones in a clearer manner.

The input to Huang and Chiang’s algorithm is a triple (G, v, N) where
G = (V,E, att,labg, wtg) is a hypergraph, vg € V is the target node, and
N € N°*°. The goal is to solve the N-best problem (see Definition 2.14) to
extract derivations for the node vy in G.

The algorithm builds on the idea that if we have the 1-best derivation, then
we can build the 2-best derivation from that using the information given by
the hyperedge connections. Generally: the N-best derivation can be built from
the N’-best derivation for some N’ < N. The best derivations for a node v are
saved in a list res[v], and cands is an array of heaps of candidates; cands|v]
contains the candidates for the next best derivation for v. New candidates are
built based on the derivations in res by exchanging each direct subderivation d’
(which is thus in res[root(d)]) with the derivation following d’ in res[root(d)].
If an element in res that is not yet present is needed for building new candidate
derivations, the algorithm computes it recursively. The best candidate for v is
then picked by extracting the minimal element from the heap cands[vg], which
unlocks new candidates.

To facilitate the algorithm presentation, the operation index(d) on a deriva-
tion d gives us the index of d in res[root(d)]. If d is not in res[root(d)], index(d)
is undefined; therefore, we use index(d) exclusively on elements that we know
are in res[root(d)].

The algorithm in its entirety is outlined in Algorithm 2. Line 3 can be
performed in O(|E|) time using the Viterbi algorithm (see [HCO05] for a short
description), if we consider the rank of the alphabet used a constant. The
time complexity of the algorithm is in total O(|F| + dmax N log N) where dypax
denotes the length of the longest derivation out of the N results.

A factor that limits the Huang and Chiang algorithm is that the Viterbi
algorithm requires the input hypergraph to be acyclic. However, Huang and
Chiang conjecture that their algorithm excluding the Viterbi procedure works
for cyclic hypergraphs — a conjecture that has since been proven to be correct,
as we shall now see.

Biichse et al. [BGSV10] generalise the Huang and Chiang algorithm by

1. using labelled hypergraphs,

2. exploiting the call-by-need lazy evaluation in the functional programming
language Haskell,

3. allowing for structured weight domains, and

4. explicitly handling cyclic hypergraphs.
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Algorithm 2 Compute N € N> derivations rooted at vo € V = {1,...,|V|}
of minimal weight according to a hypergraph G = (V, E, att,labg, wtg).

1: procedure HUANGCHIANG(G, vo, N)
2: res[v] < LIST-EMPTY() for all v € V
3: L1ST-ADD(res[v], the 1-best derivation of v in G) for all v € V
4: BESTDERIVATIONS(vg, N)
5: for d € res[vg] do
6: OutpuT(d)
7 end for
8: end procedure
9:
10: procedure BESTDERIVATIONS(v, c)
11: if |res[v]| > ¢ then
12: return
13: end if
14: if cands[v] is undefined then
15: l < Sorr({e[d1,...,d] | head(e) = v; d; are 1-best runs; i =1,...,e[})
16: cands[v] < HEAP-IFY(I[1]...I[N])
17: LisT-ADD(res[v], HEAP-EXTRACT-MIN(cands(v]))
18: end if
19: while Li1sT-S1ZE(res[v]) < ¢ and HEAP-SIZE(cands[v]) > 0 do
20: s < LIsT-S1ZE(res(v])
21: d < L1sT-GET(res[v], s) > the s-best derivation of v
22: NEXTBEST(cands(v], d) > build new candidates from d
23: LisT-ADD(res[v], HEAP-EXTRACT-MIN(cands(v]))
24: end while
25: end procedure
26:
27: procedure NEXTBEST(vcands,d = e[ds, ..., d||])
28: fori<1,...,|e| do
29: list + res[root(d;)]
30: ¢ <+ index(d;) + 1
31: BESTDERIVATIONS(root(d;), ¢') > make sure list has ¢’ < N elements
32: if ¢/ < List-SizE(list) then
33: d; + LisT-GET(list, ')
34: d,<—6[d1,...,d§,...,d|e|]
35: if d’ ¢ vcands then
36: HEAP-INSERT (vcands, d')
3T end if
38: end if

39: end for
40: end procedure

22



Related Work

We present the reasoning behind each of the generalisations, but leave out an
in-depth presentation of the Biichse et al. algorithm since it is very similar to
the one by Huang and Chiang.

The first generalisation is the labelling of the hypergraphs which is moti-
vated by the need to represent tree-based language models such as weighted
tree automata. This generalisation simply adds labels to the hyperedges, and
does not require any changes to the algorithm itself. Similarly, the use of
the programming language Haskell and its lazy evaluation scheme (the second
generalisation) does not change the algorithm other than expressing it in a func-
tional programming setting — the Huang and Chiang algorithm is already lazy
by only doing recursive calls to construct a derivation when ready to output it.

Third, there is the generalisation to structured weight domains such as
vectors over Ry . This is done by requiring a linear pre-order = on the weights,
and by extension, on the derivations. Let ¢ = e[cy,...,cg] and d = e[dy, ...,
dje|] be any two derivations with identical roots. A linear pre-order 3 is a
binary relation that is reflexive, transitive and linear, the latter meaning that
if not ¢ X d (c is better than d), then d =X ¢ (d is better than ¢). Two more
properties have to be fulfilled by =:

di Zdforie{l,..., le|} (3.1)
c3dife; 3d; forie{l,...,|e|} (3.2)

To compare this approach with the one of Huang and Chiang, recall that
Huang and Chiang require that each of the weight functions that are connected
to the hyperedges is monotonic in every parameter; this fulfils the criteria for
applying Knuth’s algorithm for computing the 1-best derivation, and corre-
sponds to properties 3.1 and 3.2 above. The resulting derivation weights are
then compared using a total ordering on R,. The Biichse et al. approach is
thus a generalisation in that they require only reflexivity and transitivity (not
antisymmetry) which ensures that structured weight domains can be used.

Finally we have the explicit handling of cycles in the hypergraph. As pre-
viously mentioned, Huang and Chiang conjecture that their second phase (i.e.,
the part that exploits the pre-computed 1-best runs to compute the N best
runs) works on cyclic hypergraphs. Bilichse et al. prove this claim. Even be-
fore the proof of Biichse et al., this claim was experimentally supported by the
fact that the wta toolkit TIBURON [MKO06] implements the Huang and Chiang
algorithm but with the Viterbi algorithm exchanged for Knuth’s algorithm —
which works for cyclic graphs.

Since the first three generalisations do not alter the algorithm by Huang
and Chiang, the main contribution of Biichse et al. is showing that cycles can
in fact be handled by Huang and Chiang, given that we use Knuth’s algorithm
to compute the 1-best derivations, and that more general weights can be used.
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3.2 The Best Trees Problem

Mohri and Riley [MRO2] consider the N-best problem (Definition 2.14) for
string extraction from weighted string automata (wsa, Definition 2.5) over the
tropical semiring. Since strings are monadic trees, this is a special case of the
N-best trees problem.

The algorithm of Mohri and Riley is based on an on-the-fly determinisation
of M = (3,Q,0,q0,Qy), i.e., they create the equivalent wsa M’ = (X,Q’, ¢, ¢,
Q') with a single run per input string such that M’(s) = M(s) for all s € X*.
Not all weighted automata are determinisable (i.e., their determinisation create
infinite automata), but since only the portion of M’ that is used in the N best
computation needs to be created, this does not pose a problem here.

The determinisation of M creating M’ is done as follows: The initial state
of M’ is defined by ¢, = {(¢0,0)} where 0 is a remainder weight. Next, we
iteratively create new transitions (¢,, ) — g; where

* ¢, = {(¢i,7i) | 0 < i< n}is the current state,
*x w' =min{r; +w|0<i<n, (¢,0) = ¢ €5} is the transition weight,

* and g; = {(¢,7") |0 < i <n, (¢,0) 2 g €6, 7 =min (r; +w—w')} is
the next state,

and add them to ¢§’. If ¢; was previously unseen, we add it to ), and also to
' if any ¢' € q;, is in Q.

The pseudocode of the algorithm (in which the on-the-fly determinisation
is implicit) can be seen in Algorithm 3. K is a priority queue that holds the
partial runs that have already been explored. The format of the runs is (g, s, ¢)
where ¢ is the current state, s is the string that has been processed this far, and
c is the cost of the partial run. A list L is used for storing output entries; these
have the same format as the partial runs with the difference that the state is
final. While K is not empty, the algorithm dequeues an element, checks if the
state is final, and if so, adds that run to the output. Moreover, it expands the
search space by adding one new partial run to K for each (deterministic) next
step that can be taken by applying a rule in 7. When N accepting runs have
been found, L is outputted, and because of the determinisation, the outputted
runs correspond to distinct trees.

The trick that makes this algorithm extra efficient is hidden in the priority
queue K. The priority is not only decided by the weight of the partial run,
but also by the weight of the smallest-weighted partial run that takes us from
the current state to a final state. In other words, the partial runs in K are
sorted according to the sum of the weights of the current partial run ending
in ¢ and another partial run that takes us from ¢ to a final state in the least
weight. The computation of the latter weight can be done as a preprocessing
step on M, and then those weights are translated to be expressed in terms of
M’ during the run of the algorithm.
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Algorithm 3 An algorithm that given a wsa M weighted over the tropical
semiring produces N distinct strings of smallest weight.

1: L« LisT-EmMPTY()

2: K + QUEUE-EMPTY()

3: QUEUE-ENQUEUE(K, (q), A, 0))

4: while “QUEUE-IS-EMPTY(K) do

5 (¢, w, ¢) + QUEUE-DEQUEUE(K)
6 if ¢ € @} then

7: LisT-ADD(L, (g, w, ¢))

8 if LisT-S1ZE(L) = N then

9: return L

10: end if

11: end if

12: if LisT-S1zE(L) < N then

13: for (q,0) L¢ ed do

14: d—c+t

15: QUEUE-ENQUEUE(K, (¢, wo, ¢'))
16: end for

17: end if

18: end while

Bjorklund et al. [BDZ15] solve the N-best trees problem for tree automata
that are weighted over the tropical semiring (wta, Definition 2.6). Their algo-
rithm is an extension of the N-best strings algorithm of Mohri and Riley to
the tree domain. We from here on refer to this algorithm as BEST TREES Vv.1.

To facilitate the description of the algorithm, the input wta M = (@, X,
0,Qy) is split into two wtas given a state ¢ € Q: M? = (Q, %, 9, {q}) which

defines all runs of M that end in ¢, and M, = (Q,X W {0}, ¥ {0 9, q},Qy)
which defines all runs of M starting at ¢ and ending at a final state of M. The
symbol OJ of rank 0 is merely a placeholder for some subtree given by M?. A
tree labelled over ¥ U {J} with exactly one occurrence of O is a context. Thus,
finding a tree ¢ that minimises M (¢) is now a question about finding a tree t
and a context ¢ that together minimise M, (c) + M(t) over all ¢ € Q. The best
context for a state ¢ is a context ¢, that minimises M,(c) over all contexts c.
Since ¢4 only depends on the input wta, ¢, can be pre-computed for all ¢ € Q
using Knuth’s algorithm. What remains is minimising M, (cq)+M9(t) for some
t and ¢, which can be done using dynamic programming, as we shall see.
Consider the pseudocode in Algorithm 4. The algorithm uses a set T' of
trees that have been processed by the algorithm and a priority queue K that
contains trees that are (potentially) unseen. On line 5, K is initialised with
the trees o for which there are rules o > ¢ (i.e., rules of rank 0) in M. The
procedure PRUNE takes T" and K and makes sure that the total number of
trees that can reach ¢ does not exceed N in those structures for all ¢ € Q.
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If the number is exceeded by ¢, then the ¢ trees with the highest weights are
removed from K. The main loop is entered at line 7. In each iteration, a
tree t is dequeued from K and considered for output. Then, the search space
is expanded by exploring the trees that can now be built using ¢. For this,
the algorithm by Eppstein [Epp98] for finding the N shortest paths in a graph
is used (for more details, see [BDZ15]). Then, the trees found by Eppstein’s
algorithm are inserted into K, which is in its turn constantly kept pruned.
When N trees have been output or K is empty, the algorithm terminates.

Algorithm 4 An algorithm that given a wta M weighted over the tropical
semiring produces N distinct trees of smallest weight.

LT+ 0 > seen trees
2: K <+ QUEUE-EMPTY() > priority queue
3: counter < 0 > counter for outputted trees
4: for o € ¥y do > initialisation
5 PRUNE(T, QUEUE-ENQUEUE(K, 0, Hélclgl{’w + Mi(c,) | (6 = q) € R}))
6: end for !
7: while counter < N A “QUEUE-Is-EMPTY(K) do
8: t < QUEUE-DEQUEUE(K)
9 T+ TU{t}
10: if M(t) = HéiS{MQ(t) + M9(cy)} then
q
11: OuTtprUT(?)
12: counter < counter + 1
13: end if
14: for r = (o[q1, ..., qx] — q) do
15: E <+ EPPSTEIN(r,t, N) > the N best instantiations of r that use ¢
16: for t' € F do
17: M(t') <= My(t') + M(cq) > note that ¢ is fixed by r
18: PRUNE(T, QUEUE-ENQUEUE(K, t', M (t')))
19: end for
20: end for

21: end while

As mentioned, wtas and the finite hypergraphs used by Huang and Chiang
are interchangeable representations of problem instances. Thus, Bjorklund et
al. solve the N-best trees problem for wtas whereas Huang and Chiang solve the
N-best runs problem for hypergraphs. If the input device is deterministic, the
two problems essentially coincide. Otherwise, there can be up to an exponential
number of derivations for one tree (measured in the size of the tree), which
illustrates why the N-best trees problem is potentially a more difficult one.
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3.3 Applications

To motivate the research on the N-best trees problem, we review applications
in which N-best lists are extracted. All of the applications mentioned here use
algorithms that extract (the trees corresponding to) the N best runs instead of
the trees themselves directly. This can lead to duplicate trees in the N-best list,
unless the input device is deterministic. Since duplicates do not contribute with
more information, they do not contribute to increased result quality. Instead
extracting the best trees would guarantee that the resulting N-best list is free
from duplicates and thereby contains more information.

Socher et al. [SBMN13] introduce the compositional vector grammar (cvg)
which performs syntactical language analysis. The cvg is built on top of a stan-
dard probabilistic context-free grammar (pcfg) model which is then combined
with a recursive neural network (RNN). First, the pcfg is trained on the input
data, then the top 200 derivations are extracted and input into the RNN which
then outputs the final result in the form of a weighted syntax tree. The RNN
performs a type of re-ranking of the trees, with the exception that the output
tree of the RNN can be distinct from any of the input trees. Training a pcfg
or a similar model and then extracting the top derivations is a common way of
propagating partial results to the next step of the language processing pipeline,
and Socher et al. show that it is useful to start out with a basic formal method
even in a deep learning setting.

Zhao et al. [ZZT18] generalise the cvgs of Socher et al.; they use grammars
in which each nonterminal has sub-nonterminals that are given by points in a
vector space, creating latent vector grammars (lvegs). Thus, there is no upper
limit as to how many sub-nonterminals can be modelled. The rules are however
formulated in terms of nonterminals and not their subtypes. Each rule of the
grammar has a weight function which assigns a weight to all possible combi-
nations of subtypes of the nonterminals involved. As a part of their pipeline,
they extract the 200 best derivations and propagate them, just as Socher et al.
do. Zhao et al. find that while cvgs do not allow for dynamic programming to
be used for inference, it can be done for other classes of lvegs such as the in
the same paper proposed Gaussian mixture lvegs. (Where dynamic program-
ming is not applicable, one has to resort to greedy or beam search, which only
provides approximate results.)

Knight and Graehl [KG05] note that despite the popularity of probabilis-
tic finite-state string transducers (fsts) in natural language processing, fsts are
not always suitable for natural language processing tasks due to their limita-
tion to strings. Therefore, Knight and Graehl investigate whether it would be
possible to instead use probabilistic tree transducers to allow for tree repre-
sentations of language. The study consists in looking at existing string-based
methods and exploring the literature to find replacement tree transducer types
and algorithms that work for the tree case.

Pipelines for natural language processing tasks often consist of a number
of fsts and end in a finite-state string acceptor (fsa) that represents and ranks
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the output strings. Knight and Graehl consider several possible replacements
for fsts in the form of different kinds of tree transducers. Their conclusion is
that there are in fact tree transducers that could be employed in every use case
considered. Next, probabilistic regular tree grammars (prtgs) are mentioned
as suitable replacements for fsas. In connection with this, Knight and Graehl
write that one of the bottlenecks for replacing string formalisms by their tree
counterpart is the lack of an efficient algorithm for best trees extraction for
prtgs. Since prtgs correspond to wta, this is a request for the exact N-best
trees algorithm presented in this thesis.

Finkel et al. [FMNO6] develop an alternative method for finding good sam-
ples to propagate in natural language processing pipelines. Instead of extract-
ing the N best runs, they model the entire pipeline as a Bayesian network and
consider every step as a variable. This allows them to take alternative labels
from each prior step into consideration when choosing what labels to propagate
in the current step. They claim this model to be both simpler to implement
and faster than N best runs extraction. The motivation of Finkel et al. for
conducting this work on N-best sample propagation is that the N-best lists
algorithms that are available are insufficient since they do not extract N dis-
tinct hypotheses but N distinct runs. To support this motivation, they run the
Stanford parser, extract the N = 50 best runs and observe that about half of
the output trees are actually duplicates — enough to affect the outcome of the
language model pipeline. Thus, extracting the best trees instead of the best
runs is not only theoretically better, but also of practical significance.



CHAPTER 4
Contributions

This chapter outlines the contributions of the papers in this thesis and puts
them in the context given by the related work of Chapter 3.

Paper I: Finding the N Best Vertices in an Infinite Weighted
Hypergraph

Paper I presents a generalised and abstract algorithm for N-best extraction.
The device is a hypergraph (see Definition 2.8) that is acyclic and possibly
infinite, and the goal is to compute N vertices (or nodes) that are optimal
with respect to a mice semiring. A nice semiring is a semiring that is finitely
generated, idempotent and that has 1 as its smallest element. The generali-
sation is done with respect to the BEST TREES V.1 algorithm (Bjorklund et
al. [BDZ15]) which only covers wta over the tropical semiring: this algorithm
covers all devices whose computations can be modelled as a hypergraph, and
the algorithm is proven to work for a family of semirings instead of a single
one. The abstraction consists in having to implement a number of unimple-
mented functions that depend on the input of the instantiating algorithm. For
example, when instantiating the algorithm for N-best trees extraction given a
wta, one of the functions we need to provide is a function that finds the best
contexts for every state, as defined in Section 3.2.

By considering the hypergraph a computation graph of a wta, we show that
the BEST TREES V.1 algorithm is an instantiation of the hypergraph version.
An obstacle is that the tropical semiring used in BEST TREES V.1 is not finitely
generated. However, considering only the weights that are actually used in the
computation makes it finitely generated from the set of transition weights.

The paper also contains an experimental evaluation of the BEST TREES V.1
algorithm; BEST TREES V.1 is compared to itself but with the pruning turned
off. The purpose of this evaluation is to find out how much the pruning improves
the algorithm’s performance in practice, and the result was according to the
theoretical expectation, although slow in absolute numbers.
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Paper Il: A Comparison of Two N-Best Extraction Methods
for Weighted Tree Automata

In Paper II, we compare BEST TREES V.1 with the state-of-the-art algorithm
of Huang and Chiang [HCO05] for extracting the best runs. The latter is imple-
mented in TIBURON [MKO06] — a toolkit for tree automata. In preparation for
the comparison, the implementation of BEST TREES V.1 was improved. The
comparison was done by using TIBURON to extract as many runs as needed to
find N distinct trees and comparing its running time to the running time of
BEST TREES V.1 for finding N trees (file handling excluded). The wta files used
were artificially created to model increasing amounts of nondeterminism, i.e.,
the wta languages had increasingly many duplicates. As expected, the conclu-
sion is that TIBURON is faster on wtas with small amounts of nondeterminism,
whereas BEST TREES V.1 is better when there is more nondeterminism.

Paper Ill: Faster Computation of N-Best Lists for Weighted
Tree Automata

In Paper 111, we develop a new and more efficient version of BEST TREES V.1,
which we call BEST TREES. The two versions both use a priority queue of
trees that prioritises a tree ¢ that is in the state ¢ based on the sum of ¢’s
current weight at ¢ and the best context weight of ¢ (see Section 3.2). However,
BEsT TREES additionally uses a second level of priority queues, one for each
transition rule of the input wta, which allows us to prune the tree candidates
with respect to the transitions. The second-level priority queues are in fact
elements in the main priority queue, and they are prioritised based on their
top element — the currently highest-prioritised tree for the corresponding rule.
New tree candidates are created as in the Huang and Chiang algorithm [HCO05]:
For every tree ¢t that is dequeued from the main queue via the rule queue
corresponding to the rule r = (o[qy,...,qx] — q), we successively exchange
each direct subtree ¢’ of ¢ that thus is in some state ¢; for i € {1,...,k} by the
next best tree for ¢;, yielding as many candidates as the rank of r, namely k.
(We might have seen some of the candidates before for the rule queue of r, and
in that case, the already seen candidates are disregarded.) When a tree ¢ is
dequeued from a rule queue, only that particular rule queue has to be updated
with new candidates. If a candidate cannot be instantiated immediately since
at least one of its direct subtrees has not been dequeued from the main queue
yet, the candidate is marked as pending. For the remaining rule queues, we only
have to instantiate the pending candidate trees that ¢t has now made available
and add them to their corresponding rule queues.

The time complexity of BEST TREES is O(Nm(logm + r? 4 rlog (N7)))
where m is the number of transition rules in the input wta and r is the maximum
rank over all of its transitions.
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BEST TREES is implemented as BETTY! (named after Betty Holberton who
was a mathematician and one of the famous six ENTAC programmers). BETTY
can solve not only the N-best trees problem but also the N-best runs problem
by ignoring the equality tests made by BEST TREES on trees before saving
them for use in further computation.

Paper IV: A Comparative Evaluation of the Efficiency of N-
Best Algorithms on Language Data

Paper IV consists of an experimental evaluation of BEST TREES in relation to
both the previous version BEST TREES V.1 and the Huang and Chiang algo-
rithm [HCO5] in the form of TIBURON [MKO06] — just as in Paper II. However,
this time we do not only use artificial data for the sake of investigating the
effect of nondeterminism, but first and foremost we use wta that represent nat-
ural language data. We let BETTY solve both the best trees and the best runs
problem, and let TIBURON solve the best runs problem. BETTY outperforms
TIBURON for the best runs task on every one of the 2269 input wtas except
one. The exception is a controlled wta for Latin with more than a million tran-
sitions which produces many very small trees with low weights. This shows
how extreme a situation we need to provoke the case where the computation of
the best contexts actually creates a significant overhead. Furthermore, using
BETTY for solving the best trees task yields only slightly worse running times
than using BETTY for the best runs task. The exception here is the artificial
corpus with exponentially many duplicates for each tree (in the size of the tree):
it slows BETTY down significantly in absolute numbers when used for best trees
extraction. As a result, we had to shrink the test domain for this particular
experiment. Fortunately, the asymptotic behaviour displayed by BETTY for
this test case is well-aligned with the asymptotic analysis of BEST TREES.

Moreover, we evaluate the theoretical differences between the algorithms
in more detail. The time complexity of the Huang and Chiang algorithm is
O(m + dimax N log N) where diax is the size of the largest outputted run. In
their time complexity proof, they consider the rank a constant. Doing the
same for BEST TREES yields a time complexity of O(Nm(logm + log N)) =
O(Nmlogm + Nmlog N). The upper bounds of the two algorithms only differ
by a factor max{N log m,m}, which is surprising considering that BEST TREES
solves a more difficult problem — a problem that can potentially require pruning
away an exponential number of duplicate runs that are all valid outputs for the
best runs task.

Previously, we reported that the running time of BETTY is relatively large
in absolute numbers on a corpus displaying exponential nondeterminism; we
explain this phenomenon as follows. Since the size of a tree is the exponent that
decides the number of duplicate runs for the tree, there are more duplicates for
larger trees than smaller ones. This together with the fact that BEST TREES

! https://github.com/tmilajn/betty
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builds larger trees from smaller ones to find more candidate output trees means
that the larger the N, the larger the difference between the size of the Nth tree
and the Nth run. This in turn means that the size of the output is in total
much larger for best trees extraction than for best runs extraction on this
corpus. Thus, best trees extraction requires more memory and thereby causes
a quicker exhaustion of the computer’s resources.

We argue that the success of BEST TREES is due to both the best context
weights and the two levels of priority queues. This is supported by a diagnostic
experiment where we removed the best contexts procedure. The result was that
the number of candidates in the second-level priority queues was increased by
roughly a factor 10. The exact effect of the various parts would however have
to be investigated more thoroughly to be entirely certain.
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Semantic Graph Grammars
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CHAPTER 5

Background

In this chapter, we review central work on rule-based formalisms, such as graph
grammars, that can be used to specify semantic graph languages. A semantic
graph language is a set of graphs over a domain of concepts and relations that
convey meaning. Recall the two semantic graphs in Figure 1.3. Their domain
consists of the concepts host, guests, them, asks and ignore, and the relations
argO and argl. Using these concepts and relations, we can create many more
graphs that represent sensical meanings. A nonsensical meaning that can be
created from the same domain is for example the meaning of “Ignore asks
them to guests.” Therefore, a formalism is needed to decide whether graphs
over a certain domain represent valid semantics or not. We begin the review
by introducing and summarising work on semantic graphs. Then we proceed
to review formalisms (mainly grammars) that can represent semantic graph
languages. First, let us recall some basic notation from Chapter 2.

For a set S, the cardinality of S is denoted by |S|, and for two sets S and
S’, 8w S denotes the disjoint union. A string over S is a finite sequence of
symbols from S, and S* is the set of all strings over S. Moreover, S™ is the
subset of S* of strings of length n € N, and A denotes the empty string (of
length 0). An alphabet ¥ is a finite set of symbols, and X is ranked if every
symbol o € ¥ is assigned a rank by rank(c). Previously, we saw that trees can
be ranked, meaning that a symbol ¢ can only label a node v if the number of
children of v is rank (o). In a similar manner, graphs can also be ranked, and in
the following, we will see formalisms using both ranked and unranked graphs.

5.1 Semantic Graphs

The Penman language system [Pen89] is a large natural language generation
system that handles hundreds of semantic features (e.g., if a sentence is in active
or passive form). However, for many applications, a subset of the features are
sufficient. This means that a programmer using Penman in their application
may have to handle all of the features when ten of them suffice for the appli-
cation at hand. To make the use of Penman more practical, Kasper [Kas89]
develops the sentence plan language (SPL) that can be used for describing sen-
tences at different abstraction levels with a varying amount of detail. Entering
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(e / en route
:destination.r (p / port :name Skelleftehamn)
ractor (s / ship
:name Tudor
:home p)
:tense past)

Figure 5.1: Sentence plan for “The Tudor was en route home to Skelleftehamn.”

a sentence plan into the Penman system allows the system to extract the avail-
able information without the programmer having to specify all of the semantic
features. The syntax of SPL is expressed using production rules on Backus—
Naur form (see [Kas89] for these production rules). An example sentence plan
that represents the sentence “The Tudor was en route home to Skelleftehamn”
can be seen in Figure 5.1. The / operator defines a variable: for example, e
is a variable that represents an instance of the concept en route. Moreover,
the : operator denotes an attribute of the variable. For example, e has an
actor named s which is a ship whose name is Tudor (name is an attribute of
s). Note that the variable p occurs twice: as the destination and as Tudor’s
home. Sentence plans are in fact directed graphs in which the concepts are node
labels and the attributes are edge labels. It is important to keep in mind that
although graphs can represent semantics, they are syntactic objects.

Definition 5.1 A (node- and edge-labelled directed) graph over an alphabet
Y =Yy WXgis atuple G = (V, E,src, tar, laby, labg) where

* V is a finite set of nodes,

* F is a finite set of edges,

* src: B — V is the assignment of source nodes to edges,
* tar: ' — V is the assignment of target nodes to edges,
* laby: V — Xy is the labelling of nodes, and

* labg: E — X g is the labelling of edges.

Langkilde and Knight [LK98] present the software Nitrogen that maps from
semantic representations to word lattices, which can in their turn be used
to generate natural language sentences. They use a semantic representation
that is a developed version of Kasper’s sentence plan: the abstract meaning
representation (AMR).

Fifteen years after the development of Nitrogen, Banarescu et al. [BBC'13]
present an updated version of the AMR with the intent of fuelling work on se-
mantic representations in natural language processing. Therefore, their AMR
is specifically designed to be appropriate for creating corpora of semantic data.
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(f / f£ind-01
targ0 (d / dog)
rargl (t / toy
:poss (a / amr-unknown)))
(a) SPL/AMR format. (b) Graph format.

Figure 5.2: The semantics of “Whose toy did the dog find?” expressed in two
different formats. The poss relation marks possession.

We use an example AMR as a basis for discussing the changes, and as is com-
mon, the nodes of a graph are depicted as circles with their label inscribed,
and directed edges are arrows with edge labels next to them that point from
the source node to the target node of the edge. In Figure 5.2 we see two differ-
ent ways of expressing the AMR for the semantics described by the sentence
“Whose toy did the dog find?” Comparing this to the example sentence plan
in Figure 5.1, the syntax is similar, but all labels are now taken from Prop-
Bank [PGKO05]. PropBank defines semantic roles labels for every word interpre-
tation, which is why some concepts are numbered (e.g. £ind-01). Moreover,
the attributes are now called relations and are defined relative to the concept
from which they originate. Here, arg0 denotes the agent of £ind-01 and argl
denotes its patient. The special concept amr-unknown indicates that we do not
know the owner (indicated by poss) of t (an instance of toy), marking the
AMR as a question. Banarescu et al. write that a more detailed specification
can be found at the AMR specification page®, which states that AMRs are
acyclic — a property that is central to some suggested semantic graph language
models, as we shall see in the next section.

Corpora are important for the development of language processing algo-
rithms, but it also requires that we are able to evaluate the quality of the
output. Letting human experts evaluate the output is, although highly re-
liable, very expensive. Therefore, automatic evaluation of natural language
output is vital for an efficient development process. In the case where the
output is a string, the metric Bleu by Papineni et al. [PRWZ02] can be used.
Bleu is a similarity score for pairs of sentences and was developed for auto-
matic evaluation of machine translation results. It is based on n-grams, which
means that a window of n € N sentence parts (e.g., words or morphemes) is
evaluated at a time, and that the window is shifted iteratively by one step until
all n-grams of a sentence have been evaluated. The output score is a weighted
logarithmic average of the precisions of the n-grams. Papineni et al. show that
Bleu scores correlate well with human judgements. For automatic semantic
graph evaluation, the state-of-the-art method has for some time been to use

! https://github.com/amrisi/amr-guidelines/blob/master/amr.md (visited April 2021).
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Smatch, a metric introduced by Cai and Knight [CK13]. Simply put, Smatch
greedily calculates the overlap between two semantic structures, but can get
stuck in local optima when performing its greedy step. Recently, Song and
Gildea [SG19] extended Bleu from strings to graphs in SemBleu, allowing for
the evaluation of semantic graphs in terms of a Bleu score. They report that
SemBleu does not only correlate better with human judgement than Smatch
but is also significantly faster, making SemBleu the new state-of-the-art for
automatic semantic graph evaluation.

5.2 Modelling Semantic Graph Languages

Chiang et al. [CDG™18] investigate the AMR, corpus of Banarescu et al. with
the goal of characterising the AMRs and thereby facilitating the development
of a model for semantic graph languages. They arrive at the conclusion that
AMRs can be seen as either singly-rooted and possibly cyclic directed graphs,
or as multiply-rooted directed acyclic graphs (dags). Adopting the latter point
of view, Chiang et al. themselves choose a dag automata formalism as a base
for their continued study. Their definition of dag is based on the graph type in
Definition 5.1, which allows multiple edges between two nodes. Before provid-
ing the definition, we must introduce the concept of directed cycles in graphs:
A directed cycle in a dag G = (V, E, src, tar, laby, labg) is a sequence of edges
e1...e, € E™ for which there are vertices vy, ...,v, € V with src(e;) = v;_1,
tar(e;) = v; and vg = vy, for 1 <i <n and i,n € N.

Definition 5.2 Let ¥ = Xy WX g be an alphabet. A dag over X is a graph over
Y that does not contain any nonempty directed cycle. The set of all nonempty
and connected dags is denoted by Dy, and a dag language is a subset of Dsy;.

The dag automata used by Chiang et al. are a simplified version of the
dag automata of Quernheim and Knight [QK12b]. The Quernheim and Knight
formalism was developed with semantic modelling in mind, after having judged
the classical dag automata by Kamimura and Slutzki [KS81] unsuitable for
semantic graph generation. Quernheim and Knight investigate properties of
their dag automata and later implement a toolkit for their formalism called
Dagger [QK12a]. The simplified version used by Chiang et al. is defined below.
Note that in their version, the edge labels of dags are dropped, i.e., |Xg| =1,
but since edge labels can be modelled by an intermediate node in between two
edges, this is not a severe restriction.

Definition 5.3 A weighted dag automaton is a system M = (3, Q, §,K) where
* X is an alphabet of node labels,
* () is a finite set of states,

* K= (K, ®,®,0,1) is a semiring of weights, and
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* 0: © = K\ {0} is a transition function that assigns weights to a finite
set © of transitions of the form

/
{ql,...,qm}&{rl,...,rn}
where 0 € X, w € K, and {q1,...,qn} and {ry,...,r,} are multisets of

elements from Q.

Let in(v) = {e € F | tar(e) = v} and out(v) = {e € E | src(e) = v} be the
incoming and outgoing edges of a node v € V, respectively. Similarly, |in(v)]|
is the in-degree of v and |out(v)| is the out-degree of v. A run of A on a dag
G = (V, E,src, tar,laby,labg) is a mapping p: E — @ such that R contains
the rule
plin(v) < plout(v))
for every v € V', where the application of p to a set is done element-wise. The
processing of a dag can, as indicated by the double arrow in the rule syntax,
be done in either a top-down or a bottom-up fashion.

When studying rule-based formalisms, it is common to investigate the prop-
erties of their languages, which is facilitated by removing their weights. Re-
moving the weights from the dag automaton in Definition 5.3 results in a dag
automaton (@, X, R) where R is now the set of rules on the form

{ql,...,qm}é{rl,...,rn}.

Let M be such an unweighted dag automaton, and let G be a dag. If there
exists a run of M on G, then M accepts (or recognises) G, and the language
accepted (recognised) by M is the set L(M) of all such dags G in D, accepted
by M. Chiang et al. show that the problem of deciding whether £(M) is empty
is decidable in polynomial time for an unweighted dag automata M, and that
the paths of the dags in £(M) form a regular string language. The latter is
a desirable property for formalisms used for modelling natural language since
natural language cannot contain more complex linguistic structures than the
ones expressible by a formalism with a regular path language.

While investigating the Banarescu et al. corpus, Chiang et al. make two
further observations about the AMRs in the corpus: the first one regards the
treewidth of the AMRs, and the second one is about the node degrees of the
AMRs. We shall consider both of these observations and how they were used
by Chiang et al. to develop algorithms for and extensions of their semantic
graph model, starting with the one regarding treewidth.

The treewidth is, informally put, a measure on how tree-like a graph is —
we provide the formal definition below.

Definition 5.4 A tree decomposition of a graph G = (V, E, src, tar, laby, labg)
is a tree T consisting of bags (nodes) and arcs (edges). The label of a bag b is
a subset of V' denoted by cont(b). T must satisfy the following conditions.

* For every v € V, there is a bag b such that v € cont(b).
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* For every e € E, there is a bag b such that {src(e), tar(e)} C cont(b).

* For every v € V, the subgraph of T" induced by the bags containing v is
connected.

The width of T is the maximum value of |cont(b)| — 1 over all bags b of T. The
treewidth of G (denoted by tw(G)) is the minimum of the widths over all its
tree decompositions.

For the AMRs in the Banarescu et al. corpus, the treewidth is at most 4,
meaning that algorithms that depend exponentially on the treewidth of the
input graph could be feasible in practice. With this in mind, Chiang et al.
develop an algorithm that given an input graph G and an ordering of its edges
returns the sum of the weights of all runs of a fixed weighted dag automaton
M on G. Informally, the algorithm processes the input graph in an order
determined by a tree decomposition and merges nodes, assigning the merged
nodes combined weights, until there is only one node left, carrying the resulting
weight. The time complexity of the algorithm is shown to depend exponentially
on the treewidth, something that was consciously allowed in the light of the
empirical investigation of AMRs.

A central problem for all unweighted automata is the membership problem:;
it is stated for dag automata below.

Definition 5.5 The membership problem for (unweighted) dag automata asks
the question: Given a dag automaton M and a dag G, does M accept G?

It is common to consider two distinct versions of the membership problem:
the uniform membership problem that takes both M and G as input, and the
non-uniform membership problem that only takes G as input and considers
M to be constant. The existence of an efficient algorithm that solves the
membership problem is central to the usability of a rule-based formalism in
natural language processing applications: if we cannot efficiently check if a
fragment of natural language is correct according to our model, then our model
is unlikely to be of practical use. Since the algorithm by Chiang et al. solves a
problem that is more general than the membership problem for dag automata,
their result holds for the the membership problem of dag automata as well.
In general, the non-uniform membership problem for dag automata is NP-
complete (and so is the uniform membership problem, being strictly harder but
still in NP), but the result of Chiang et al. shows that when G has bounded
treewidth, the membership problem can be solved in polynomial time.

The second observation about the AMR corpus made by Chiang et al. is that
even though the in- and out-degrees of nodes are generally low, there are nodes v
for which |in(v)|+|out(v)| = 17. This implies that handling an unbounded node
degree is desirable for a semantic graph model. For this reason, they extend
weighted dag automata to allow for unbounded node degrees: in the extended
version, the left- and right-hand sides can be restricted regular expressions
that are expressible by an m-automaton (see [CDG'18] for its definition and
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further results). For these extended weighted dag automata, the emptiness and
finiteness problems are decidable, and the path language is — as for the non-
extended weighted dag automata — regular. Solving the membership problem
for a graph GG and a fixed extended unweighted dag automaton M has the time
complexity O(|E|(|Qm2(tw(@)+2) 4 m3¢tw(@+1)) where m is, informally put,
the maximum number of states of the m-automata that describe the left- and
right-hand sides of the transitions of M.

Blum and Drewes [BD16, BD19] work on the same type of (unweighted)
dag automata as Chiang et al. and prove properties of the resulting languages.
The class of reqular dag languages (RDL) comprises all dag languages that are
accepted by dag automata. Blum and Drewes however place one restriction on
the dags: they can no longer contain parallel edges. Formally, the requirement
is expressed as follows for a dag G = (V, E, src, tar, laby, labg): For a string s,
let [s] denote the smallest set .S such that s € S*. Then, for every edge e € E,
there is exactly one pair (u,v) € V x V such that e € [out(u)] N [in(v)]. Given
this slight modification, Blum and Drewes prove the following statements for
RDL and a dag automaton M:

* RDL is closed under union and intersection, but not under complement.
* There is a pumping lemma for RDL.

* It is decidable in polynomial time whether £(M) is finite, and whether
L(M) is empty.

* Unfolding M creates an automaton that defines a regular tree language;
also, the path language of M is a regular string language.

* It is decidable in polynomial time whether two deterministic dag au-
tomata are equivalent.

Next, we survey the work on semantic graph modelling using grammars
that operate on graphs. Hyperedge replacement grammars (HRGs) were intro-
duced simultaneously and independently by Habel and Kreowski [HK86] and
Bauderon and Courcelle [BC87], and have since been shown useful in natural
language processing. Overviews of results for the HRG formalism can be found
in [Hab92] and [DKH97]. In the following, let ¥ = 3y W Xg W X be an al-
phabet where ¥y are the node labels, X are the hyperedge labels and Y are
the nonterminal labels. We require that a function arity: ¥p & Xy — 25V is
defined on these sets, which in effect makes the alphabet ¥ ranked. Moreover,
for a set .9, let S® denote the set of strings over S with no repeated symbols,
and for a function f: S — S’, let f*: S* — S’ denote its extension to strings
defined by f*(s1...sn) = f(s1)... f(sn) for s1,...,8, € S and n € N.

Definition 5.6 A hypergraph labelled over ¥ (hypergraph, for short) is a tuple
G = (V, E, att,laby, labg) where

* V is a finite set of nodes,
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* F is a finite set of hyperedges,
*x att: B — V@ is the attachment of hyperedges,
* laby : V — Xy is the labelling of nodes, and

x labg: E — X with labj, (att(e)) € arity(labg(e)) for all e € E is the
labelling of hyperedges.

We define the rank of a hyperedge e € E to be |arity(labg(e))|. A hyperedge
whose label comes from X is called a nonterminal. The removal of a hyperedge
e from a hypergraph G is denoted by G — e. Given two hypergraphs G and H,
an isomorphism m: G — H is a pair of bijective functions (my: Vg — Vg,
mpg: Eg — Epg) that preserve the labels and the attachments of the edges.
Formally: for every v € Vg and e € Eg, it holds that laby,, (my (v)) = laby, (v),
labg, (mg(e)) = labg, (e) and attg(mg(e)) = mi (attg(e)). If m exists, we
say that G and H are isomorphic. Henceforth, we do not distinguish between
isomorphic hypergraphs.

In Chapters 2 and 3, we considered hypergraphs to be devices, and showed
how they can be used as rule-based formalisms. Here, we instead see them
as structures, which is the more common perspective. Given a hypergraph
containing one or more nonterminals, we can apply a hyperedge replacement
rule to it to generate a new hypergraph.

Definition 5.7 A context-free (hyperedge replacement) rule over a labelling
alphabet X is a pair (L, R) of hypergraphs L, R over ¥ such that

* the left-hand side L consists of a single nonterminal e; and the nodes
attached to it, and

* the right-hand side R is any supergraph of L — ey

Definition 5.8 Let r = (L, R) be a rule over X for which ey, is the nonterminal
in L labelled by some A € ¥, and let G € G be a hypergraph that contains
a nonterminal e also labelled by A. Then the application of r to G is done as
specified in the below list.

1. Remove e from G, yielding G — e.
2. Disjointly add R to G —e.
3. Finally, identify the nodes in L — ey, with the corresponding nodes in R.

The resulting graph is denoted by H = Gle/R], and we write G = H to
indicate that H was derived from G (by the application of r).

An example context-free rule can be found in Figure 5.3 and an application
of that rule to a hypergraph is shown in Figure 5.4. Hyperedges are depicted
using squares with the label inscribed; for nonterminal labels, we exclusively
use capital letters. The attachment of a hyperedge to nodes is shown using



Background

argl

2 o arg0

Figure 5.3: A context-free rule adding the control verb “try” to an already
existing semantic graph containing the concepts “persuade” and “host”. For
appropriate usage, the rule requires that host is the agent of try.

argl

argl
arg0

arg0 argl arg0 argl

Figure 5.4: An application of the rule in Figure 5.3 to a semantic graph, result-
ing in the addition of a verb that requires subject control. The relation arg2
marks the action asked for by the persuader. The resulting graph can be read
as “The host tries to persuade the guests to believe them.”

lines drawn between the square and the nodes, and the attachment order of
the nodes is indicated using numbers incident to the lines — these numbers are
however left out when it is clear from the orientation of the nonterminal how
the rule should be applied. Binary hyperedges labelled from X are equivalent
to ordinary directed edges and are therefore drawn as such. To separate the
left- and right-hand sides, the symbol ::= is used.

A set of context-free rules together with a fixed hypergraph form a hyperedge
replacement grammar.

Definition 5.9 A hyperedge replacement grammar (HRG) is a tuple I' = (X,
R, Z) where

* X is a finite labelling alphabet,
* R is a finite set of context-free rules, and
* Z € Gy is a start hypergraph.

Let =* denote the reflexive and transitive closure of =-. The language
generated by an HRG T is defined by L(I') = {G € Gs\x, | Z =* G}, i.e., the
set of graphs that can be derived from Z in G and are free from nonterminals.
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In Definition 5.5, we defined the membership problem for dag automata. The
membership problem for graph grammars such as HRG is defined analogously.
Below, we define a slightly stronger variant of the membership problem, namely
the parsing problem which in addition to answering “yes” or “no” must provide
a derivation of the input graph using the formalism in case the answer is “yes”.

Definition 5.10 Given a graph grammar I" and a graph G, the parsing problem
asks if there is a derivation of G in I' (which would imply that G € L(T')).

Analogous to the membership problem, the non-uniform parsing problem
takes only GG as input whereas both I' and G are inputs to the uniform variant.
To emphasise its importance, we again state the fact that efficient membership
checking (or parsing) is vital for practical usability since it lets us check if,
e.g., a semantic graph is in the language of our model. It is well-known that
there are NP-complete hyperedge replacement languages, meaning that unless
P = NP, there is no efficient parsing algorithm for HRGs. The only chance of
achieving efficient parsing is restricting the HRG formalism in ways that prevent
the construction of NP-complete languages. This road has been travelled on
multiple occasions, and here we review a number of restricted HRG formalisms.

Lautemann [Lau90] proves by the construction of an algorithm that uniform
parsing of an HRG I' can be done in polynomial time if either of the two
sufficient conditions listed below is met:

1. The removal of s nodes from a graph G = (V, E, att,laby,labg) in £(T")
never creates more than O(log|V|) connected components, where the s is
the maximum rank of nonterminal hyperedges in I". (This is a generalisa-
tion of the commonly seen condition that the graphs generated by I' have
to be connected and of bounded degree to allow for efficient parsing.)

2. For every graph G € L(T') and nonterminal e with att(e) = vy,...,v,
and labg(e) = A € Xy, G can be derived from e if and only if the
graph induced by G on C U {v1,...,v,} can be derived from e for every
connected component C of G\ {v1,...,v,}. In other words: every graph
G € L(T") has component-wise derivations.

The parsing algorithm by Lautemann based on the first condition is refined
by Chiang et al. [CABT13] to make it more suitable for natural language pro-
cessing tasks, and in particular for the parsing of AMRs. The refined algorithm
is implemented in the HRG toolkit Bolinas.

Similarly, Drewes et al. make use of restrictions to develop two polynomial-
time parsing algorithms for HRG languages: predictive top-down (PTD) pars-
ing [DHM15] and predictive shift-reduce (PSR) parsing [DHM17, DHM19b].
The PTD and PSR parsing algorithms are extensions to HRGs of LL(1) and
LR(1) string parsers, respectively. The difference between LL and LR parsers
is that an LL parser begins at the start nonterminal and attempts to generate
the string in a top-down fashion, whereas the LR parser starts with the string
and aims to build the derivation bottom-up, and is successful if it reaches the
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start nonterminal. Both the PTD algorithm and the PSR algorithm require
an initial analysis of the input HRG to verify that it fulfils a set of require-
ments that ascertain that the algorithm can be applied to it. The exact sets
of requirements differ between the two algorithms and the PSR algorithm re-
quirement set is slightly easier to check, but none of the requirement sets can
be easily verified by, e.g., inspection of the rules of the HRG. In addition, both
parsing algorithms require that an order is specified on the input nonterminals
for every right-hand side; the order is used by the algorithms to decide in what
order to expand nonterminals. If the requirements are fulfilled, a parser for
the particular input HRG is constructed. For PTD, the time complexity of the
(non-uniform) parsing itself is quadratic; for PSR, it is linear. In conclusion,
the PSR parsing algorithm is more efficient and has an easier requirement check
than the PTD algorithm.

Bjorklund et al. [BDE16] also develop uniform polynomial parsing for a
subset of HRGs, but in the form of dag languages; they call it parsing for
restricted dag (rdag) grammars. The precondition for applying their parsing
algorithm is that the rules of the input grammar are written on a specific
format — an rdag grammar normal form. Moreover, Bjorklund et al. generalise
their rdag grammars to order-preserving HRGs (OPHGs) [BDES21] by allowing
more general rule types in an extended normal form while maintaining uniform
polynomial (in fact, quadratic) parsing. A second extension is made to their
parsing algorithm by generalising it to weighted OPHGs [BDE19]. In contrast
to the PTD and PSR parsing algorithms by Drewes et al., the normal forms
used by Bjorklund et al. make it easier to decide whether the corresponding
parsing algorithm can be applied to a particular input grammar.

When modelling semantic graph languages, we want to be able to express
all semantic graphs over a domain of concepts and relations that represent a
sensical meaning. At the same time, we want to have the ability to leave out
semantic graphs with nonsensical meaning. A strength of hyperedge replace-
ment is that it provides the structural control that some language constructions
require. To exemplify this, again consider Figure 5.3 which depicts a context-
free rule that defines the addition of the verb “try” to a semantic graph. The
verb “try” requires what linguists call subject control, i.e., it needs access to
not only the concept that is to be tried, but also the agent of that concept. In
other words, the one doing the trying should do the thing that is to be tried
as well. For example “The host tries that their pet persuades the guests to be-
lieve the host” does not make any sense. Similarly, the verb “persuade” (also
in the example) requires object control: the guests have to be the ones doing
the believing. Figure 5.4 shows the application of the rule in Figure 5.3 to an
existing semantic graph with one nonterminal that marks the verb that “try”
should refer to as well as the agent of that verb, i.e, the one who is to try.

The weakness of hyperedge replacement is that there is no possibility of
relaxing the structural control in cases when it is not needed. For example,
when adding a non-control verb such as “believe”, it does not matter who
does the believing — the resulting semantic graph will be sensical as long as

45



Chapter 5

4 5

Cuanty - CwantD

Figure 5.5: A context-free rule that adds another want concept to a semantic
graph already containing the concepts want, guests, believe and host.

5
argO

Figure 5.6: A context-free rule that adds outgoing edges from a want concept
in a semantic graph to other concepts in the graph.
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Figure 5.7: A derivation that adds a verb that does not require any control. The
derivation applies the context-free rule in Figure 5.5 followed by the context-
free rule in Figure 5.6. The top-most hypergraph can be interpreted as “The
guests want to believe the host” and the bottom-most reads “The guests want
to believe the host and the host wants the guests to believe them.”
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the believer is a creature with consciousness. Figures 5.5 and 5.6 portray
two context-free rules; in Figure 5.7, they are used to derive a new semantic
representation from an existing one by adding the concept want. Note that any
choice of target of argl would have created a valid semantic representation, and
for arg0, any node representing one or more persons could have been chosen.
In this case, we have depicted the case where the nodes host and believe are
chosen as the targets of arg0 and argl, respectively. However, to cover all of
the possible correct semantic representations that can be created in this way,
we would need a rule for every combination of arg0 and argl targets. The dag
automata we reviewed earlier have the ability to add structures without any
control, but then also completely lack structural control.

A formalism that provides structural control while allowing free addition of
structures is the contextual hyperedge replacement grammar (CHRG) developed
by Drewes et al. [DHM12, DH15]. CHRG is a generalisation of HRG by the
addition of what its creators call contextual rules. Below, we provide formal
definitions for the new rule type and its formalism.

Definition 5.11 A contextual (hyperedge replacement) rule over a labelling
alphabet X is a pair (L, R) of hypergraphs L, R over 3 such that

* the left-hand side L consists of a single nonterminal ey, its attached
nodes, and any number of contextual nodes that are nodes not connected
to er, and

* the right-hand side R is any supergraph of L —ep,.

The difference between a context-free and a contextual rule is thus that the
left-hand side of a context-free rule is connected whereas the left-hand side of
a contextual rule can contain these isolated, contextual nodes.

Definition 5.12 A contezxtual hyperedge replacement grammar (CHRG) is an
HRGT = (%, R, Z) that allows R to contain both context-free rules and con-
textual rules.

Figure 5.8 contains two rules of which the right-most is contextual. The
application of a contextual rule is done exactly as for a context-free rule: Fig-
ure 5.9 shows the application of the two rules in Figure 5.8 to a semantic graph.
Note that the example semantic graph is exactly the example we looked at for
context-free rules to demonstrate how HRG forces the usage of structural con-
trol regardless of whether it is needed. The current example illustrates how the
addition of contextual rules allows us to let go of the control of nodes and still
access them at a later stage purely based on their label. We see that the rules
needed to achieve this behaviour are simpler and contain fewer nonterminals
than when only context-free rules were allowed. It is not surprising that the
addition of contextual rules create a more powerful formalism, but as we shall
see, not too powerful for efficient parsing of non-trivial subclasses of CHRG
languages. (The comments on the suitability of CHRGs for semantic represen-
tations are largely taken from Paper V, which is summarised in Chapter 6.)
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Figure 5.8: Two semicolon separated rules. To the left: a context-free rule. To
the right: a contextual rule whose left-hand side contains two contextual nodes
(believe and host).
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Figure 5.9: The same derivation as in Figure 5.7 but this time using the rules
from Figure 5.8: The first derivation step corresponds to the application of the
context-free rule, and in the second step, the contextual rule is applied.

arg0
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Drewes et al. extend their PSR parsing algorithm for HRG to the recently
introduced CHRG [DHM19a]. The approach is the same: First, an analysis is
performed on the input grammar, and if it passes the analysis, the grammar
is parsable and a parser is created for it. Next, the created parser is used to
parse the input hypergraph — still in linear time. Furthermore, a recent study
by Drewes et al. show that their PTD parsing algorithm can also be extended
to the contextual case [DHM21].

Recall that hyperedge replacement was first introduced by two independent
groups of researchers. The formalism presented here is based on how hyper-
edge replacement was described by Habel and Kreowski [HK86]. In contrast,
Bauderon and Courcelle [BC87] use the approach of Mezei and Wright [MW67],
namely evaluating a tree from a regular tree language using operations from
an algebra. An algebra is, informally, a domain of elements together with op-
erations defined on those elements, and Bauderon and Courcelle were the first
to use an algebra over graphs for graph generation. In Paper VI, we extend
the rewriting system by Bauderon and Courcelle with contextuality to achieve
a formalism with non-uniform polynomial parsing that can be used to model
semantic graph languages (see Chapter 6 for an extended summary).

5.3 Mapping Between Language Representations

In the previous section, we considered various formalisms representing graph
languages and their membership or parsing problem. Another important prob-
lem in natural language processing is the mapping between different language
representations. For example, given a sentence, we might want to map it to a
syntax tree (performing a syntactic analysis of the sentence) or to a semantic
graph (conducting a semantic analysis). Mapping sentences to syntactic or
semantic structures is commonly referred to as “parsing”, but here we use the
term “mapping” to avoid the frequent confusion over the two diverging usages
of the word “parsing” in formal language theory on the one hand and natural
language processing on the other hand. Parsing, as defined in the previous
section, is in fact used for solving the mapping task, as we shall see.

Even though the papers included in this thesis do not handle the mapping
problem, it is interesting to review its literature since the mapping task is as
important as the parsing task, and methods for doing one might be interesting
for the other. In other words, the solutions used overlap.

Braune et al. [BBK14] create a corpus of pairs of English strings and their
corresponding semantic graphs in the form of AMRs. The strings are chosen
to make the semantic graphs highly reentrant, meaning that the proportion of
nodes with several incoming edges is high. Reentrancies are interesting since
they are what separates graphs from trees, and thus what makes problems on
graphs more difficult to solve than their tree counterpart. In Figure 5.4, both
hypergraphs contain two reentrant nodes, namely the ones labelled host and
guests. The purpose of creating this corpus is to promote research on AMRs,
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and to lead by example, Braune et al. make a study of their own in which
they compare three ways of mapping between the AMRs and the strings. The
compared mapping methods use some hitherto unseen concepts that must be
at least informally introduced before the methods themselves can be presented.

A transducer is a device that takes one structure as input and outputs
another structure; the output structure can have another type than the input
structure. For example, a tree-to-graph transducer takes a tree as input and
outputs a graph, and for a string-to-string transducer, both the input and
output are strings. The yield of a tree is its sequence of leaves; the syntax trees
in Figures 1.1 and 1.2 have the same yield, namely “They scratch the dog with
the stick” (which is also the sentence that is being syntactically analysed in the
figures). Now we are ready to review the three device-based methods that are
used by Braune et al. for mapping between AMRs and strings.

1. A synchronous HRG (SHRG) that generates a string and a graph in
parallel using the same rule set. The SHRG can thus easily be used for
mapping in both directions.

2. A composition of two devices: a bottom-up dag-to-tree transducer (d2t)
that creates a tree from the AMR, and a top-down tree-to-string trans-
ducer (LNT) that takes the yield of the tree to extract the English string.

3. A composition of four devices: a d2t as in the previous composition, two
extended tree-to-tree transducers — one that introduces verbs and one
that introduce pronouns — and finally an LNT, again for extracting the
yield of the resulting tree.

They compare each of the methods on two tasks: (1) natural language gen-
eration, which produces a string given an AMR and is therefore evaluated
using Bleu, and (2) natural language understanding, which maps a string to its
corresponding AMR by applying the methods backwards and is consequently
evaluated using Smatch. The results show that the two compositional methods
outperform the SHRG method for (1), but that the roles are reversed for (2).
This is not very surprising since the SHRG holds all information to directly
map from a string to its semantic graph, while the two other methods are
specialised in forming a syntactically correct string given a semantic graph.
An alternative formalism that can map syntactic trees to semantic graphs is
the tree-to-graph transducer t2g developed by Bjorklund et al. [BCDS20]. The
t2g formalism is based on Z-automata, which are tree automata for unranked
trees, such as dependency trees. A dependency tree is a tree showing the
relations of the syntactic roles in a natural language sentence, but different
from a constituent syntax tree as seen in Chapter 1. Given a dependency tree,
t2g transforms it into a corresponding semantic graph in polynomial time.
Next, we consider the mapping from a string in one natural language (the
source language) to a string in another (the target language), commonly known
as machine translation. Jones et al. [JAB112] develop a machine translation
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pipeline based on SHRGs. We have seen that an SHRG is an HRG that gener-
ates a string and a graph in parallel. This is achieved by having two right-hand
sides for each of the rules of the SHRG: one that works on a string and another
that works on a graph. Taking only the right-hand sides that work towards gen-
erating a string, we get the string projection of the SHRG; the graph projection
is defined analogously.

The main idea of the translation pipeline is the following: Create an SHRG
each for the source and target language, convert the input string to a derivation
in the source SHRG, find the corresponding derivation in the target SHRG, and
convert that derivation to an output string. To create these SHRG, data in the
form of semantic graphs with corresponding strings in each language is needed.

Given a corpus of string-graph pairings in a single language (e.g., the Braune
et al. AMR corpus for English), the first step is to align the concepts of the
semantic graphs with the words in the string. For this alignment, Jones et al.
develop an algorithm they call DEPDEP. Next, they must extract SHRG rules
from the set of aligned string-graph pairings. Two approaches are developed for
this purpose: CANSEM and SYNSEM. CANSEM specifies a set of template rules
in advance that enables the immediate discovery of a derivation tree of a graph
in the corpus, and then the rules needed for deriving the string-graph pairs of
the corpus are acquired. SYNSEM works directly on the graph, processing it in
such a way that its structure is reflected in the nonterminals of the resulting
SHRG. For the purpose of comparing CANSEM and SYNSEM, Jones et al. create
two SHRGs per language, one per rule extraction method, although only one
SHRG per language can be used at a time in the actual translation. All of
these SHRGs are then assigned weights, making them probabilistic. With the
SHRGs being finished, the translation can start.

The source language string — the one we want to translate into a string
in the target language — is first transformed into a corresponding semantic
graph using the SHRG of the source language: the string is parsed with the
string projection of the grammar yielding a derivation, and then the graph
corresponding to the derivation is created. Then, the graph is transformed
into an output string in the target language by parsing the graph with respect
to the graph projection of the target SHRG — the resulting derivation is used
together with the string projection of the SHRG to produce a string.

Their results contain an experimental evaluation of their resulting machine
translation system. As part of the evaluation, they compare CANSEM to
SYNSEM and DEPDEP to a standard alignment technique created by IBM.
To summarise the comparison result: for the alignment, DEPDEP scores better
in precision but worse in recall than the IBM method, and according to the
Bleu score, CANSEM clearly outperforms SYNSEM for the translation task.

Peng et al. [PSG15] introduce an SHRG based approach for transforming
strings into AMRs. This approach should be considered a variant of the method
Jones et al. [JAB'12] use as part of their machine translation system for turning
their input strings into semantic graphs. In contrast to Jones et al., Peng et al.
base the creation of the SHRG from a corpus on top-down sampling [CFGS14]
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and take the concepts and relations from PropBank. Moreover, Peng et al. use
the Earley parsing algorithm together with cube pruning [Chi07] for the string-
to-graph mapping itself whereas Jones et al. use standard CKY parsing for the
same purpose. The experimental results of the two approaches are however not
comparable since the corpora used in the evaluations differ.



CHAPTER 6
Contributions

Here, the papers on semantic modelling included in this thesis are summarised
and related to the work in Chapter 5.

Paper V: Contextual Hyperedge Replacement Grammars for
Abstract Meaning Representations

In Paper V, we investigate whether CHRGs are a good formalism for repre-
senting semantic graph languages, and in particular AMR languages. We show
that the context-free rules give us precise control over the appearance of the
surrounding structure when adding a node to a hypergraph — provided that
we keep structural information about previously added nodes accessible by at-
taching a nonterminal to them. In addition, we show that we can easily allow
nodes and hyperedges to be added without any other control than what can
be achieved via the node labels. In terms of AMRs, this means that we can
handle concepts that require subject and object control while the contextual
rules give us the freedom to attach new relations to concepts with the concept
label being the only controlling factor.

To illustrate our findings, we build an example CHRG that generates an
AMR language of dags (that may have multiple roots). In our CHRG, the
concepts try and persuade exemplify verbs that need subject and object con-
trol, respectively, whereas the concepts want and believe represent verbs that
do not require any structural control. The example CHRG builds the dags
bottom-up and generates one node at a time, and the node currently being
generated is said to be active. To ensure acyclicity of the resulting graphs,
only the active node can be assigned new outgoing edges. Similarly, the CHRG
is defined in such a way that the graphs are kept connected. The rules of
the CHRG are fewer and in total there are fewer nonterminals with a smaller
number of attached nodes on average than a corresponding HRG.
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Paper VI: Polynomial Graph Parsing with Non-Structural Reen-
trancies

Paper VI is a continuation of the work in Paper V; based on our observations
from the latter, we develop a formalism that is less powerful than CHRG, but
still exploits the advantage that contextual rules embody. Our motivation for
developing the formalism was the desire to describe semantic languages that
have an efficient parsing algorithm, which is why we aimed for a formalism less
powerful than the CHRG.

Our formalism is called graph extension grammar and extends hyperedge
replacement as defined by Bauderon and Courcelle [BC87] with contextuality.
A graph extension grammar first uses a regular tree grammar to generate a
derivation tree in a top-down fashion, and then applies the extension operations
contained in the tree to build a graph bottom-up. This technique allows us to
refer to the parts of the graph that are already generated (but not to the parts
that are yet to be generated). Furthermore, outgoing edges from a node can
only be added when the node is created. Thus, graph extension grammars
generate (possibly) multiple-rooted dags. Moreover, we present an algorithm
for polynomial non-uniform parsing, but we also present conditions on the
grammar under which the parsing can be done uniformly in linear time. We
show that an example graph extension grammar that generates semantic graphs
over a small domain of concepts and relations is parsable in cubic time.

To compare our formalism with the ones summarised in Section 5.2: Graph
extensions constitute a context-free version of contextual rules, referring to the
fact that we can only contextually access the part of the graph that is al-
ready generated, i.e., the nodes reachable by the currently generated node. We
noted earlier that dag automata have the problem that they cannot implement
the control needed for control verbs. CHRGs solve this, but at the price of
introducing dependencies between otherwise independent sub-derivations that
create nodes and other sub-derivations that use those nodes as context. If the
latter sub-derivation in turn creates nodes that the first uses as context, we
have a cyclic dependency, and a deadlock occurs. Parsing thus has to make
sure that apparently correct derivation trees which contain such cyclic depen-
dencies are dismissed. The graph extension grammar formalism implements
structural control without introducing potential deadlocks. However, since the
contextual aspect of the graph extensions is not as powerful as the contextual
rules of general CHRG, there may exist semantic constructions that cannot
be generated in this way. What types of semantic graphs can and cannot be
generated by this formalism remains to be investigated.



References

[BBC*13] Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu,

[BBK14]

[BC8Y]

[BCDS20]

[BD16]

[BD19]

[BDE16]

[BDE19]

Kira Griffitt, Ulf Hermjakob, Kevin Knight, Philipp Koehn, Martha
Palmer, and Nathan Schneider. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguistic Annotation
Workshop and Interoperability with Discourse, pages 178-186, 2013.

Fabienne Braune, Daniel Bauer, and Kevin Knight. Mapping be-
tween English strings and reentrant semantic graphs. In Proceedings
of the Ninth International Conference on Language Resources and
Evaluation, pages 4493-4498, 2014.

Michel Bauderon and Bruno Courcelle. Graph expressions and
graph rewritings. Mathematical Systems Theory, 20(1):83-127,
1987.

Johanna Bjorklund, Shay B. Cohen, Frank Drewes, and Giorgio
Satta. Bottom-up unranked tree-to-graph transducers for transla-
tion into semantic graphs. Theoretical Computer Science, 2020.

Johannes Blum and Frank Drewes. Properties of regular dag lan-
guages. In 10th International Conference on Language and Au-
tomata Theory and Applications, 2016.

Johannes Blum and Frank Drewes. Language theoretic properties
of regular DAG languages. Information and Computation, 265:57 —
76, 2019.

Henrik Bjorklund, Frank Drewes, and Petter Ericson. Between a
rock and a hard place — parsing for hyperedge replacement DAG
grammars. In 10th International Conference on Language and Au-
tomata Theory and Applications, 2016.

Henrik Bjorklund, Frank Drewes, and Petter Ericson. Parsing
weighted order-preserving hyperedge replacement grammars. In
Proceedings of the 16th Meeting on the Mathematics of Language,
pages 1-11, Toronto, Canada, July 2019. Association for Computa-
tional Linguistics.

55



References

56

[BDES21]

[BDZ15]

[BGSV10]

[CAB*+13]

[CDG18]

[CFGS14]

[Chi07]
[CK13]
[DH15]

[DHM12]

[DHM15]

Henrik Bjorklund, Frank Drewes, Petter Ericson, and Florian
Starke. Uniform parsing for hyperedge replacement grammars.
Journal of Computer and System Sciences, 118:1-27, 2021.

Johanna Bjorklund, Frank Drewes, and Niklas Zechner. An efficient
best-trees algorithm for weighted tree automata over the tropical
semiring. In Proc. 9th Intl. Conf. on Language and Automata The-
ory and Applications (LATA 2015), volume 8977 of LNCS, pages
97-108, 2015.

Matthias Biichse, Daniel Geisler, Torsten Stiiber, and Heiko Vogler.
n-best parsing revisited. In Proceedings of the 2010 Workshop on
Applications of Tree Automata in Natural Language Processing,
pages 46-54, Uppsala, Sweden, July 2010. Association for Com-
putational Linguistics.

David Chiang, Jacob Andreas, Daniel Bauer, Karl Moritz Hermann,
Bevan Jones, and Kevin Knight. Parsing graphs with hyperedge
replacement grammars. In Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 924-932, 2013.

David Chiang, Frank Drewes, Daniel Gildea, Adam Lopez, and
Giorgio Satta. Weighted DAG automata for semantic graphs. Com-
putational Linguistics, 44(1):119-186, March 2018.

Tagyoung Chung, Licheng Fang, Daniel Gildea, and Daniel
Stefankovi¢. Sampling tree fragments from forests. Computational
Linguistics, 40(1):203-229, March 2014.

David Chiang. Hierarchical phrase-based translation. Computa-
tional Linguistics, 33(2):201-228, 2007.

S. Cai and K. Knight. Smatch: an evaluation metric for semantic
feature structures. In Proceedings of ACL, 2013.

Frank Drewes and Berthold Hoffmann. Contextual hyperedge re-
placement. Acta Informatica, 52(6):497-524, 2015.

Frank Drewes, Berthold Hoffmann, and Mark Minas. Applications
of Graph Transformations with Industrial Relevance: 4th Inter-
national Symposium, Revised Selected and Invited Papers, chapter
Contextual Hyperedge Replacement, pages 182-197. 2012.

Frank Drewes, Berthold Hoffmann, and Mark Minas. Predictive
top-down parsing for hyperedge replacement grammars. In Proceed-
ings of the 8th International Conference on Graph Transformation,
pages 19-34, 2015.



References

[DHM17]

[DHM19a]

[DHM19b)]

[DHM21]

[Dij59]

[DKH97]

[Epp98]

[FMNO6]

[Hab92]

[HCO5)

[HKS6]

Frank Drewes, Berthold Hoffmann, and Mark Minas. Predic-
tive shift-reduce parsing for hyperedge replacement grammars. In
Proc. 10th Intl. Conf. on Graph Transformation (ICGT’17), Lec-
ture Notes in Computer Science, pages 106-122, 2017.

Frank Drewes, Berthold Hoffmann, and Mark Minas. Extending
predictive shift-reduce parsing to contextual hyperedge replacement
grammars. In Esther Guerra and Fernando Orejas, editors, Graph
Transformation, pages 55-72, Cham, 2019. Springer International
Publishing.

Frank Drewes, Berthold Hoffmann, and Mark Minas. Formalization
and correctness of predictive shift-reduce parsers for graph gram-
mars based on hyperedge replacement. Journal of Logical and Al-
gebraic Methods in Programming, 104:303-341, 2019.

Frank Drewes, Berthold Hoffmann, and Mark Minas. Rule-based
top-down parsing for acyclic contextual hyperedge replacement
grammars. In Proc. 14th Intl. Conf. on Graph Transformation
(ICGT’21), Lecture Notes in Computer Science, 2021. To appear.

Edsger W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1(1):269-271, 19509.

Frank Drewes, Hans-Jorg Kreowski, and Annegret Habel. Hyper-
edge replacement graph grammars. In Handbook of Graph Gram-
mars and Computing by Graph Transformation, pages 95-162.
World Scientific Publishing Co., Inc., 1997.

David Eppstein. Finding the k shortest paths. STAM J. Computing,
28(2):652-673, 1998.

Jenny Rose Finkel, Christopher D. Manning, and Andrew Y. Ng.
Solving the problem of cascading errors: Approximate Bayesian in-
ference for linguistic annotation pipelines. In Proceedings of the
2006 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 618-626, Sydney, Australia, July 2006. Association
for Computational Linguistics.

Annegret Habel. Hyperedge replacement: grammars and languages,
volume 643. Springer Science & Business Media, 1992.

Liang Huang and David Chiang. Better k-best parsing. In Proceed-
ings of the Conference on Parsing Technology 2005, pages 53-64.
Association for Computational Linguistics, 2005.

Annegret Habel and Hans-J6rg Kreowski. May we introduce to you:
Hyperedge replacement. In Graph-Grammars and Their Applica-
tion to Computer Science, pages 15-26. Springer, 1986.

57



References

58

[JABT12] Bevan Jones, Jacob Andreas, Daniel Bauer, Karl Moritz Hermann,

[Kas89]

[KGOS]

[Knu77]

[KS81]

[Lau90]

[LK93]

[MKO6]

[Moh02]

[MR02]

[MWG67]

[Peng9]

and Kevin Knight. Semantics-based machine translation with hy-
peredge replacement grammars. In Proceedings of COLING 2012:
Technical papers, pages 1359-1376, 2012.

Robert T. Kasper. A flexible interface for linking applications to
Penman’s sentence generator. In HLT ’89: Proceedings of the work-
shop on Speech and Natural Language, pages 153-158. Association
for Computational Linguistics, 1989.

Kevin Knight and Jonathan Graehl. An overview of probabilistic
tree transducers for natural language processing. In International
Conference on Intelligent Text Processing and Computational Lin-
guistics, pages 1-24. Springer, 2005.

Donald E. Knuth. A generalization of Dijkstra’s algorithm. Infor-
mation Processing Letters, 6:1-5, 1977.

Tsutomu Kamimura and Giora Slutzki. Parallel and two-way au-
tomata on directed ordered acyclic graphs. Information and Con-
trol, 49(1):10-51, 1981.

Clemens Lautemann. The complexity of graph languages generated
by hyperedge replacement. Acta Informatica, 27(5):399-421, 1990.

Irene Langkilde and Kevin Knight. Generation that exploits corpus-
based statistical knowledge. In Proceedings of the 36th Annual
Meeting of the Association for Computational Linguistics and 17th
International Conference on Computational Linguistics - Volume 1,
pages 704-710, 1998.

Jonathan May and Kevin Knight. Tiburon: A weighted tree au-
tomata toolkit. In International Conference on Implementation and
Application of Automata, pages 102—-113. Springer, 2006.

Mehryar Mohri. Semiring frameworks and algorithms for shortest-
distance problems. Journal of Automata, Languages and Combina-
torics, 7(3):321-350, 2002.

Mehryar Mohri and Michael Riley. An efficient algorithm for the
n-best-strings problem. In Proceedings of the Conference on Spoken
Language Processing, 2002.

Jorge Mezei and Jesse B. Wright. Algebraic automata and context-
free sets. Information and Control, 11:3-29, 1967.

Penman. The Penman Documentation and User Guide. The Pen-
man project, USC/Information Sciences Institute, Marina del Rey,
California, 1989.



References

[PGK05] Martha Palmer, Daniel Gildea, and Paul Kingsbury. The proposi-
tion bank: An annotated corpus of semantic roles. Computational
Linguistics, 31(1):71-106, March 2005.

[PRWZ02] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu.
Bleu: a method for automatic evaluation of machine translation.
In Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics, pages 311-318, Philadelphia, Pennsyl-
vania, USA, July 2002. Association for Computational Linguistics.

[PSG15] Xiaochang Peng, Linfeng Song, and Daniel Gildea. A synchronous
hyperedge replacement grammar based approach for AMR pars-
ing. In Proceedings of the Nineteenth Conference on Computational
Natural Language Learning, pages 3241, Beijing, China, July 2015.
Association for Computational Linguistics.

[QK12a] Daniel Quernheim and Kevin Knight. Dagger: A toolkit for au-
tomata on directed acyclic graphs. In 10th International Workshop
on Finite State Methods and Natural Language Processing, page 40,
2012.

[QK12b] Daniel Quernheim and Kevin Knight. Towards probabilistic ac-
ceptors and transducers for feature structures. In Proceedings of
the Sixth Workshop on Syntaz, Semantics and Structure in Statis-
tical Translation, pages 76-85, Jeju, Republic of Korea, July 2012.
Association for Computational Linguistics.

[SBMN13] Richard Socher, John Bauer, Christopher D Manning, and An-
drew Y Ng. Parsing with compositional vector grammars. In Pro-
ceedings of the 51st Annual Meeting of the Association for Compu-
tational Linguistics, volume 1, pages 455-465, 2013.

[SG19] Linfeng Song and Daniel Gildea. SemBleu: A robust metric for
AMR parsing evaluation. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pages 45474552,
Florence, Italy, July 2019. Association for Computational Linguis-
tics.

[ZZT18]  Yanpeng Zhao, Liwen Zhang, and Kewei Tu. Gaussian mixture la-
tent vector grammars. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics, ACL 2018, Volume
1: Long Papers, pages 1181-1189, 2018.

59



60






Department of Computing Science
Umea University, SE-901 87, Umed, Sweden

Www.Cs.umu.se

UMEA U

IVERSITY

ISBN 978-91-7855-522-2 (pdif)
ISBN 978-91-7855-521-5 (print)
ISSN 0348-0542

UMINF 21.04



