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Abstract

Over the last decade, cloud computing has realized the long-held dream of
computing as a utility, in which computational and storage services are made
available via the Internet to anyone at any time and from anywhere. This has
transformed Information Technology (IT) and given rise to new ways of designing
and purchasing hardware and software. However, the rapid development of
the Internet of Things (IoTs) and mobile technology has brought a new wave
of disruptive applications and services whose performance requirements are
stretching the limits of current cloud computing systems and platforms. In
particular, novel large scale mission-critical IoT systems and latency-intolerant
applications strictly require very low latency and strong guarantees of privacy,
and can generate massive amounts of data that are only of local interest. These
requirements are not readily satisfied using modern application deployment
strategies that rely on resources from distant large cloud datacenters because
they easily cause network congestion and high latency in service delivery. This
has provoked a paradigm shift leading to the emergence of new distributed
computing infrastructures known as Mobile Edge Clouds (MECs) in which
resource capabilities are widely distributed at the edge of the network, in close
proximity to end-users. Experimental studies have validated and quantified
many benefits of MECs, which include considerable improvements in response
times and enormous reductions in ingress bandwidth demand. However, MECs
must cope with several challenges not commonly encountered in traditional
cloud systems, including user mobility, hardware heterogeneity, and considerable
flexibility in terms of where computing capacity can be used. This makes it
especially difficult to analyze, predict, and control resource usage and allocation
so as to minimize cost and maximize performance while delivering the expected
end-user Quality-of-Service (QoS). Realizing the potential of MECs will thus
require the design and development of efficient resource allocation systems that
take these factors into consideration.

Since the introduction of the MEC concept, the performance benefits
achieved by running MEC-native applications (i.e., applications engineered
specifically for MECs) on MECs have been clearly demonstrated. However, the
benefits of MECs for non-MEC-native applications (i.e., application not specifi-
cally engineered for MECs) are still questioned. This is a fundamental issue that
must be explored because it will affect the incentives for service providers and
application developers to invest in MECs. To spur the development of MECs,
the first part of this thesis presents an extensive investigation of the benefits that
MECs can offer to non-MEC-native applications. One class of non-MEC-native
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applications that could potentially benefit significantly from deployment on an
MEC is cloud-native applications, particularly micro-service-based applications
with high deployment flexibility. We therefore quantitatively compared the
performance of cloud-native applications deployed using resources from cloud
datacenters and edge locations. We then developed a network communication
profiling tool to identify aspects of these applications that reduce the benefits
derived from deployment on MECs, and proposed design improvements that
would allow such applications to better exploit MECs’ capabilities.

The second part of this thesis addresses problems related to resource allo-
cation in highly distributed MECs. First, to overcome challenges arising from
the dynamic nature of resource demand in MECs, we used statistical time
series models and machine learning techniques to develop two location-aware
workload prediction models for EDCs that account for both user mobility and
the correlation of workload changes among EDCs in close physical proximity.
These models were then utilized to develop an elasticity controller for MECs.
In essence, the controller helps MECs to perform resource allocation, i.e. to
answer the intertwined questions of what and how many resources should be
allocated and when and where they should be deployed.

The third part of the thesis focuses on problems relating to the real-time
placement of stateful applications on MECs. Specifically, it examines the
questions of where to place applications so as to minimize total operating
costs while delivering the required end-user QoS and whether the requested
applications should be migrated to follow the user’s movements. Such questions
are easy to pose but intrinsically hard to answer due to the scale and complexity
of MEC infrastructures and the stochastic nature of user mobility. To this
end, we first thoroughly modeled the workloads, stateful applications, and
infrastructures to be expected in MECs. We then formulated the various costs
associated with operating applications, namely the resource cost, migration cost,
and service quality degradation cost. Based on our model, we proposed two
online application placement algorithms that take these factors into account to
minimize the total cost of operating the application.

The methods and algorithms proposed in this thesis were evaluated by
implementing prototypes on simulated testbeds and conducting experiments
using workloads based on real mobility traces. These evaluations showed that
the proposed approaches outperformed alternative state-of-the-art approaches
and could thus help improve the efficiency of resource allocation in MECs.
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Sammanfattning

Under det senaste årtiondet har datormoln förverkligat den långvariga drömmen
att tillhandahålla datorkapacitet som en tjänst, där beräknings- och lagringstjän-
ster är tillgängliga via Internet till vem som helst, när som helst och från var
som helst. Detta har förändrat informationsteknik (IT) och givit upphov till
nya sätt att designa och köpa hårdvara och mjukvara. Den snabba utvecklingen
av Internet of Things (IoTs) och mobila teknologier har lett till en ny våg av
innovativa applikationer och tjänster vars prestandakrav tänjer på molntjänsters
och plattformars nuvarande begränsningar.

Nya, storskaliga och uppdragskritiska IoT-system och latenskänsliga app-
likationer kräver låg latens och starka garantier för integritet och kan generera
massiva mängder data som enbart är av lokalt intresse, nära där de genererades.
Dessa krav är svåra att uppfylla då moderna moderna strategier för driftsättning
av applikationer används, då dessa ofta baseras på resurser belägna i stora
avlägsna datacenter som ofta orsakar övertrafikerade nätverk och hög latens
vid leverans av tjänster. Detta har orsakat ett paradigmskifte som har lett
till framväxten av ny infrastruktur för distribuerade system känd som Mobile
Edge Clouds (MECs), där resurser kan distribueras till kanten av nätverket, i
nära anslutning till slutanvändare. Experimentella studier har validerat och
kvantifierat många fördelar med MECs, inklusive avsevärda förbättringar i
responstider och enorma reduceringar i bandbreddskrav. MECs måste däremot
hantera flera utmaningar som vanligtvis inte stöts på i vanliga molnsystem,
inklusive användarmobilitet, hårdvaruheterogenitet och avsevärd flexibilitet var
beräkningskapacitet kan användas. Detta gör det speciellt svårt att analysera,
förutsäga och kontrollera resursanvändning och allokering för att minimera
kostnader och maximera prestanda samtidigt som den förväntade Quality-of-
Service (QoS) levereras. Att realisera MECs potential kräver därför design och
utveckling av effektiva resursallokeringssytem som tar hänsyn till dessa faktorer.

Sedan introduktionen av MEC-konceptet har presetandafördelar med att
köra MEC-native applikationer (d.v.s. applikationer konstruerade specifikt för
MECs) på MECs tydligt påvisats. Fördelar av MECs för icke-MEC-native
applikationer (d.v.s. applikationer som inte är speciellt konstruerade för MECs)
går däremot fortfarande att ifrågasätta. Detta är ett fundamentalt problem
som måste utforskas då det kommer påverka incitament från tjänsteleverantörer
och applikationsutvecklare att investera i MECs. För att sporra utvecklingen av
MECs presenterar första delen av denna avhandling en omfattande utredning av
fördelarna som MECs kan erbjuda för icke-MEC-native applikationer. En klass
av icke-MEC-native applikationer som potentiellt skulle kunna dra fördel av
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driftsättning på ett MEC är cloud-native applikationer, i synnerhet microservice-
baserade applikationer med hög driftsättningsflexibilitet. Vi utförde därför en
kvantitativ jämförelse av prestandan hos cloud-native applikationer som var
driftsatta med resurser i molndatacenter och platser belägna på nätverkets
utkant. Vi utvecklade därefter ett profileringsverktyg för nätverkskommunika-
tion för att identifiera aspekter hos dessa applikationer som minskar fördelarna
erhållna vid driftsättningen på MECs, och föreslog designförbättringar som
tillåter sådana applikationer att bättre nyttja MECs potential och möjligheter.

Andra delen av denna avhandling adresserar problemet med resursallokering
i högt distribuerade MECs. För att överkomma de utmaningar relaterade till
den dynamiska karaktären hos MECs resursefterfrågan, använde vi statistiska
tidsseriemodeller och maskininlärningstekniker för att utveckla två platsmed-
vetna modeller för att förutsäga arbetsbelastningen hos datorresurser vid kanten
av nätverket som tar hänsyn till användarmobilitet och korrelationen mellan
förändringar i arbetsbelastningen mellan nära belägna datorresurser. Dessa
modeller används sedan för att utveckla en elasticitetsregulator för MECs. I
huvudsak hjälper regulatorn MECs att utföra resursallokering, d.v.s. att besvara
de sammanflätade frågorna om vilka och hur många resurser som ska allokeras
och när och var de ska driftsättas.

Den tredje delen av denna avhandling fokuserar på problem som relat-
erar till placering, i realtid, av MEC-applikationer som kräver att information
om användarens session sparas mellan dess interaktioner. Den undersöker
särskilt frågorna var applikationer ska placeras för att minimera de totala
driftkostnaderna samtidigt som efterfrågad QoS upprättshålls och huruvida the
efterfrågade applikationerna ska migreras för att följa användarens förflyttningar.
Sådana frågor är lätta att ställa men fundamentalt svåra att besvara på grund
av MEC-infrastrukturens storskalighet och komplexitet och den stokastiska
karaktären hos användarmobilitet. För detta ändamål utformade vi modeller
för arbetsbelastningar, applikationer samt hårdvara som kan förväntas i MECs.
Därefter formulerade vi olika kostnader associerade med applikationsdrift, näm-
ligen resurskostnader, flyttkostnader och kostnader för försämrad av servicenivå.
Baserat på vår modell, föreslår vi två online applikationsplaceringsalgoritmer
som tar hänsyn till dessa faktorer för att minimera de totala driftkostnaderna
för applikationen.

De föreslagna metoderna och applikationerna i denna avhandling har utvärder-
ats genom att implementera prototyper på simulerade testbäddar och genomföra
experiment med arbetsbelastning baserade på riktiga mobilitetsdata. Dessa
utvärderingar visade att de föreslagna tillvägagångssätten överträffar alternativa
moderna tillvägagångssätt och kan således hjälpa till att förbättra effektiviteten
för resursallokering i MECs.
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Preface

This thesis includes a brief introduction to Mobile Edge Clouds (MECs), a
discussion on the challenges and problems of resource allocation in MECs, a
summary of the contributions made in the five included papers, and some
suggestions for future research directions. The contributions of this thesis are
presented in detail in the following five included papers†:

Paper I Chanh Nguyen, Amardeep Mehta, Cristian Klein, and Erik Elm-
roth. Why Cloud Applications Are not Ready for the Edge (yet). In
Proceedings of the 4th ACM/IEEE Symposium on Edge Computing
(SEC’19), ACM, pp. 250-263, 2019.

Paper II Chanh Nguyen, Cristian Klein, and Erik Elmroth. Location-
aware load prediction in Edge Data Centers. In Proceedings of the
2nd International Conference on Fog and Mobile Edge Computing
(FMEC), IEEE, pp. 25-31, 2017.

Paper III Chanh Nguyen, Cristian Klein, and Erik Elmroth. Multivariate
Long Short-term Memory based Location-aware load prediction
in Edge Data Centers. In Proceedings of the 19th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing
(CCGRID), IEEE, pp. 341-350, 2019.

Paper IV Chanh Nguyen, Cristian Klein, and Erik Elmroth. Elasticity
Control for Latency-Intolerant Mobile Edge Applications. In
Proceedings of the 5th ACM/IEEE Symposium on Edge Computing
(SEC’20), ACM, pp. 70-83, 2020.

Paper V Chanh Nguyen, Cristian Klein, and Erik Elmroth. State-aware
Application Placement in Mobile Edge Clouds. Submitted for
journal publication, 2021.

†The included articles have been reformatted to comply with the thesis layout.
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In addition to the papers included in this thesis, the following article has
been produced during the doctoral studies:

• Thang Le Duc, Chanh Nguyen, and Per-Olov Östberg. Towards
Proactive Resource Allocation for Large-Scale Applications in Cloud-Edge
Computing Environments. Submitted for journal publication, 2021.

This work was supported by the Wallenberg AI, Autonomous Systems and Soft-
ware Program (WASP) funded by the Knut and Alice Wallenberg Foundation.
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Chapter 1

Introduction

1.1 Background and Research Motivation

Modern cloud platforms that can provide configurable computing resources (e.g.,
servers, storage, applications, and networks) on-demand with rapid provisioning
and release have liberated application owners and companies from the need
to plan resource provisioning far in advance and also relieved them of the
burden of system administration and operation. In cloud computing platforms,
cloud resources are packaged with a certain degree of abstraction in virtualized
forms ranging such as virtual machines (VMs) and containers using specialized
hardware and software. These cloud resources are typically centralized in a
relatively small number of large datacenters located far from end-users. Since
the cloud computing concept was first introduced and rigorously defined by the
National Institute of Standards and Technology (NIST) in 2011 [MG11], many
organizations have exploited its potential to increase IT efficiency and business
agility by migrating and deploying many types of applications to the cloud,
and by offloading applications or their components to cloud platforms. These
applications include mobile interaction applications, parallel batch processing
programs, data analytics tools, and extensions of compute-intensive desktop
applications [Fox+09]. Most of them rely on highly available large datacenters
to host large datasets and can be executed in parallel using hundreds of distinct
compute resources. Such applications can tolerate moderate network delays
and jitter on the order of hundreds of milliseconds, with tails of up to several
seconds [Li+10]. They are therefore well suited to the centralized deployment
paradigm. However, a new wave of emerging applications and services have
much more stringent latency and jitter requirements.

More recently, the development of the Internet of Things (IoT) and ad-
vances in mobile technologies and artificial intelligence (AI) have resulted in
the emergence of a new wave of disruptive applications for domains including
health care [Isl+15], intelligent transportation [Bag+16], industrial process
control [Jes+17], and everyday leisure [PM17]. Unlike traditional cloud appli-
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cations, these new IoT applications are highly sensitive to network jitter and
the variation in latency inherent to any multi-hop network. Moreover, they can
generate vast quantities of data that are only of local interest but which require
significant computational capabilities for processing and to ensure the necessary
level of privacy [Elm+17]. Current application deployment mechanisms in
which application-hosting nodes are located in centralized datacenters far from
end-users are clearly not optimal for such applications.

For example, the quality and performance of state-of-the-art human-computer
applications such as virtual reality (VR) and augmented reality (AR) applica-
tions or interactive online games are greatly reduced by high response times. A
compelling AR system must support High Dynamic Range to ensure that the
appearance of its virtual objects is spatially and temporally consistent with the
real world, which requires a latency below 10 ms [Lin17]. These applications
also require rapid processing of large volumes of data using complex technolo-
gies such as 3D rendering and machine vision. However, recent measurements
indicate that typical latencies between end-users and public cloud datacenters
are at least 20−40 ms over high-quality wired networks, and up to 100−250 ms
over a 4G wireless network connection [Ska+18]. Obviously, these latencies are
too high for such highly interactive human-computer applications to deliver
instantaneous responses that appear natural to end-users. Accordingly, mul-
tiple studies have shown that current deployment strategies using centralized
cloud infrastructures are sub-optimal for such applications because of the high
latency and poor connectivity caused by long-distance communication [Che+17;
Hu+16].

The same is true for edge content services such as YouTube Live, Facebook
Live, and video surveillance systems, which generate large volumes of high
definition video data (e.g., live streams of sporting events). Technologies that rely
on centralized datacenters architecture to process and deliver content to millions
of users are inefficient for such services for many reasons. First, forwarding
such large amounts of data over the Internet to a centralized datacenter places
considerable pressure on the core network. Second, in some cases the aggregated
latency between the distant datacenter and the end-users may cause a poor
quality of service. Third, there is a high risk of violating regulations on local
network privacy policies due to a lack of location awareness and data privacy
protection [KL10].

Large scale and industrial IoT systems (such as those used in smart cities
or oil pipeline systems with millions of network-connected sensors) also gener-
ate vast streams of data that must be transferred to and processed by online
analytics systems to enable real-time decision making. The International Data
Corporation has predicted [SM20] that there will be around 41.6 billion con-
nected IoT devices (e.g., cameras and sensors) by 2025, generating almost 79.4
zettabytes of data annually. Industrial IoT applications are expected to be
responsible for a significant proportion of this. Most of the data generated
by IoT devices is local in scope, i.e., it is needed only for local purposes such
as coordinating the movements of self-driving cars at specific traffic hotspots,
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Figure 1.1: Different stage traversal for centralized cloud deployed applications’
traffic.

evaluating gas transmission pipeline state information, or enabling intelligent
control of an industrial process in a smart factory. It is therefore extremely
costly and inefficient to host the data processing services on distant centralized
nodes because doing so necessitates long-distance transfer of very large amounts
of data that are only relevant in the local context. Additionally, transmitting
such large quantities of data can easily cause congestion in the network if the
aggregate demand exceeds the network capacity, and the network’s latency and
jitter may adversely affect the user experience or, worse, cause damage to people
and/or the environment in the case of industrial process control systems.

The hype surrounding fifth generation wireless network technology (5G
networks) has been building for years, and their potential has recently started to
be realized. According to Ericsson [Jon+20], 15% of the world’s population lived
in an area with rolled out 5G coverage by the end of 2020. The worldwide number
of subscriptions to 5G services is estimated to stand at 220 million as of the time
of writing, and is expected to increase rapidly in the near future. 5G networks
have several valuable attributes including extremely high throughput (up to 20
Gbps), ultra-low latency (round-trip latencies can be as low as few milliseconds
from the end-user to the closest cellular base station), superior reliability, and
massive network capacity [Ass15]. Consequently, they are likely to be central to
the adoption and success of the emerging application ecosystem discussed above.
However, the capabilities of 5G alone are insufficient to overcome the previously
mentioned problems with deploying these emerging applications on centralized
datacenters; indeed, the inclusion of 5G devices could potentially impose great
pressure on network links if managed incorrectly. The key attributes of 5G, i.e.
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its high coverage and bandwidth capacity, enable vast increases in the volume
of data traffic originating from the network edge. Partly because of this, it
has been predicted that approximately 75% of enterprise-generated data will
originate from the network edge by 2025 [GR17]. Using current application
deployment paradigms based on centralized datacenters, the traffic associated
with cloud applications would have to traverse three different network parts, as
shown in Figure 1.1:

• The last-mile: the first link from the end-user’s premises to the outside
world, via which the end-user directly transmits data to and receives data
from their Internet Service Provider (ISP). The distance spanned by this
layer is typically less than one mile.

• The aggregation layer : the link between the edge network and the point at
which the ISP hands off the aggregated traffic to various network points
of other providers.

• The core network : where off-premises or cloud datacenters are situated.

The last-mile is a vulnerable weak link because it can suffer congestion
during peak hours depending on usage. This can be alleviated by adopting
higher bandwidth network solutions such as 5G. Similarly, the aggregation
layer and core network will suffer congestion if the aggregate demand exceeds
their available bandwidth capacity. This slows down data transmission and
significantly reduces users’ QoE (quality of experience), especially for latency-
intolerant applications. Unfortunately, modern telecom networks are too fragile
to handle the enormous and rapidly varying capacity demands associated with
next-generation cloud and IoT applications.

One way to mitigate the problems arising from the limited ingress bandwidth
of centralized cloud infrastructures and improve the performance of web-based
applications was introduced in early 1999, when Akamai developed content
delivery networks (CDNs) to solve the proximity problem [Dil+02]. A CDN
utilizes resources from servers deployed at the network edge in close physical
proximity to end-users to cache static web content (e.g., images and documents).
This improves applications’ accessibility, reduces load times, and significantly
reduces bandwidth consumption due to content replication. However, CDNs
can only accelerate read-intensive applications such as those based on video
streaming and web content.

The success of the CDN concept demonstrated the value of deploying certain
applications, data, or application components in close proximity to their end
users. However, for mobile and IoT applications that process data rather than
merely transmitting it to the user, it is not sufficient to merely cache static
content; instead, one needs a dispersed deployment of servers that are located
in close proximity to end-users and data sources but which can also execute
arbitrary code and perform data processing in the same way as would be done
in a conventional centralized datacenter. Therefore, recent years have seen
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a transition towards a new type of computing infrastructure called Mobile
Edge Clouds (MECs) in which substantial computing and storage resources
are distributed at the edge of the network, close to end-users [Hu+15]. This
wide geographical distribution of resources allows MECs to complement existing
large-scale cloud platforms, making it possible to perform computation and data
processing both at centralized datacenters and at the network edge. In other
words, MECs move processing capabilities and intelligence closer to end-users
and data generating systems. Computation and processing at the network
edge is achieved by exploiting the compute capacity of small servers or micro
datacenters – referred to as Edge Data Centers (EDCs) – that are equipped or
collocated with edge networking elements such as radio base stations or access
points [Liu+18]. A range of terms have been used in the literature to describe
concepts similar to MECs; examples include Cloudlets [Sat+13], Fog Computing
[Bon+12; VR14], Mobile Edge Computing [Nun+15], and Telco Clouds [Bos+11;
Soa+15]. These dispersed computing platforms were all designed to support
future applications that require low latency and bandwidth scalability.

1.2 Characteristics of Mobile Edge Clouds

Figure 1.2 depicts a MEC system in which EDCs with heterogeneous scales and
costs are distributed in close proximity to end-users in a wireless access network.
In reality, MEC infrastructure may include tens of large datacenters and thou-
sands of small ones collocated with cell towers and separated by distances of less
than 10 miles [SBD18]. This allows MECs to provide computation and storage
capabilities with higher bandwidth and lower latency than would be possible for
a centralized cloud. MECs also offer other benefits, such as the ability to run
locally-targeted, context-aware services on EDCs that are closely-coupled to the
radio network. This is particularly valuable for services that require guaranteed
robust or low-latency communication, send a lot of data from end-user devices,
or require analysis of enormous amounts of data immediately after its capture.
It also allows network operators to provide additional value-added services
and improve the experience of end users while alleviating security and privacy
concerns. MECs have the following key characteristics [Liu+18]:

Ultra low latency. Because MEC resources are in close proximity to end
users, applications can be deployed on EDCs, ignoring the rest of the network
path to the distant cloud and therefore delivering low end-to-end application
response times. With the capabilities of 5G networks, MECs can achieve
extremely low latencies (on the order of several milliseconds). Additionally,
network jitter between application-hosting nodes (i.e., EDCs) and end-users is
minimized because the number of hops (i.e. transfers of data from one network
segment to the next) is low.

Highly distributed and heterogeneous resources. The Edge Data
Centers of MECs are distributed in different geographical locations within
the wireless access network (i.e., at cellular base stations and access points).
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Figure 1.2: An illustrative MEC platform showing the association between
client and service entities.

Furthermore, unlike centralized datacenters, EDCs vary in scale and in terms
of their processing and storage resources as well as their level of network
connectivity and bandwidth.

Support for mobility. MECs’ clients are diverse; they include human
beings with smartphones, IoT devices, sensors, and autonomous cars, among
others. Therefore, the terms ”end-user” and ”client” can be used interchangeably
in this context. All of them have a key common behavior, namely mobility, and
are identified by a common attribute – location. In essence, they typically access
MECs and often change their points of attachment to the network. Therefore,
mobility support is critical for MECs.

Interplay with centralized clouds. MECs complement traditional cen-
tralized clouds. Because their resources are distributed in the vicinity of the
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end-users, MECs can provide localized processing with context awareness and
low latency. Conversely, more distant centralized clouds have much greater
computing and storage capabilities while also being less costly than MECs
because they are located in more sparsely-populated areas with access to cheap
electricity and cooling. Many applications and services may need to exploit the
resources of both MECs and centralized clouds.

Local network status awareness and local user context awareness.
Since MECs’ resources are deployed at the edge of the network, they can access
real-time wireless network and channel information. Applications deployed
on MECs rather than conventional clouds can thus leverage location and user
context data to provide a better service that is more accurately targeted to
the end-user’s circumstances (e.g., traffic assistance applications can give more
accurate and helpful information about traffic at a hotspot to specific end-users
close to that hotspot).

1.3 Research Problems and Objectives

MECs have been put forward as novel computing platforms that can overcome
barriers to the success of future application types that are latency-sensitive,
bandwidth-hungry, and compute-intensive. Experimental studies have validated
and quantified the benefits of MECs, showing that considerable improvements in
applications’ end-to-end response times can be achieved by performing computa-
tion tasks at a nearby EDC rather than a distant cloud server. Processing large
amounts of data at edge locations close to its point of origin greatly reduces
ingress bandwidth demand. Additionally, edge servers located in the vicinity of
end-users can serve as privacy firewalls, allowing end-users to dynamically and
selectively control sensitive information from sensors [Sat+09]. In the decade
since the MEC concept was first proposed, its importance and advantages have
been widely acknowledged.

The development of MECs has been spurred by the potential power and util-
ity of novel applications designed to benefit from their capabilities. Applications
of this type generally will not perform satisfactorily if not deployed on MEC
platforms. The success of such applications thus depends mutualistically on
that of MECs, and we describe applications of this type as being “MEC-native”.

However, it is unrealistic to expect MECs to become successful based on
these applications alone because MEC-native applications are unlikely to be
developed extensively before MECs become widely available. MEC providers
must therefore focus on the benefits MECs can offer to existing and widely
used non-MEC-native applications. A promising class of applications that
could benefit greatly from deployment on MECs are cloud-native applications,
particularly microservice-based applications with high deployment flexibility.
Therefore, the first research objective of this thesis, RO1, is to answer the
following two research questions:
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1. Can cloud applications benefit from latency reduction when deployed on
MECs?

2. How should cloud applications be engineered to maximize these benefits?
Because MECs are designed to provide low-latency services and reduce

network traffic to the central cloud, they basically offer end-users with resources
from physically nearby EDCs. Therefore, the resource demand at each EDC de-
pends heavily on the mobility behavior of nearby users. The number of end-users
concurrently requiring services from a specific EDC may vary considerably. This
user mobility together with the resource heterogeneity and wide geographical
distribution of the infrastructure create new kinds of challenges in resource
allocation. An important problem in the management of MECs is how to decide
where the computation for each user should be performed, what resources should
be allocated, and how much of each resource is needed, taking into account the
unpredictability of user mobility behavior and the dynamic properties of the
network. When a user requests a cloud service, that service may run either in
the centralized cloud or in a MEC. Additionally, there may be multiple servers
or datacenters within the centralized cloud or within individual MECs. It is
therefore necessary to identify the optimal combination of resources to run the
service. Moreover, the user may move between geographical areas, so it is also
important to decide whether and where to migrate the service as the user’s
location and/or the network state change. The time taken to select and enact
these resource allocation actions is important for two reasons: 1) resource usage
is likely to vary rapidly in MECs, and 2) most applications deployed on MECs
will be latency-intolerant, i.e. extremely sensitive to even very small delays.
Sluggishness in resource scale-up or failure to allocate sufficient resources to
meet demand can cause increased delays due to service waiting times, resulting
in a bad user experience.

Given these challenges, MECs require autonomous resource allocation sys-
tems that can continuously monitor workload dynamics and adapt to changes
by continuously optimizing resource allocations. The acquired resources must
be transparently provisioned and ready to use so as to meet users’ expecta-
tions. Consequently, the second research objective, RO2, is to understand the
characteristics of MEC workloads and anticipate the likely variation in EDC
workloads based on user mobility behavior. An efficient workload prediction
model will help the resource management operator to pro-actively identify and
make important management decisions. The research question pertaining to
this objective is thus:

How can an efficient model for predicting MEC workloads be developed?
Elasticity is the ability of a system to automatically adapting resource

provisioning to handle variation in load; it is a property that MECs must
exhibit in order to become mature computing platforms. Within a given time
window, a MEC attempts to provision resources such that the current demand
is matched as closely as possible. However, achieving elasticity in a MEC is
difficult for the reasons mentioned above. Therefore, the third research objective,
RO3, is to develop methods and tools to help MECs overcome these challenges
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through automatic pro-active resource scaling. The research question associated
with this objective is thus:

How can methods for efficiently auto-scaling MECs resources to meet the
current demand be developed?

Answering this question made it possible to achieve objective RO3 by
developing an elasticity controller that allows MECs to pro-actively determine
the proper amount of resources to allocate at each EDC.

Finally, because of the limited coverage area of base stations and the dynamic
mobility of end-users, the problem of application placement in MECs is very
challenging to solve, especially for stateful applications. As the user moves, the
application should be migrated with them to ensure sufficient QoS and minimize
bandwidth consumption due to the application’s traffic. However, migrating
too often may cause bandwidth wastage due to state migration traffic. The
system must therefore decide in real-time where to place each application so as
to minimize the total operating cost. To this end, the fourth research objective,
RO4, is to address the following questions:

1. How can the workload, applications, and infrastructures be modeled?
What are the various costs associated with operating applications on MECs?

2. Where should applications be placed among the available EDCs, and
should an application be migrated as its user moves around so as to minimize
the total operating cost?

The overall goal of RO4 is to answer these questions in a practical manner
by developing efficient real-time placement strategies for stateful applications
in MECs.

To summarize, the main research objectives of this thesis are:

RO1 To quantify the benefits MECs can provide to non-MEC-applications.

RO2 To develop workload prediction algorithms.

RO3 To develop an efficient elastic control framework for MECs.

RO4 To develop a real-time stateful application placement strategy for MECs.

1.4 Research Methodology
The research presented in this thesis was conducted using the constructive
research method (CR) [Crn10] (also known as Design Science Research), which
is a primary research method commonly used in the field of computer science. In
essence, the output of a research project following this method is a solution that
addresses a domain-specific practical problem, which is captured in an artifact
such as an algorithm, model, or framework. The general process involves the
following steps: 1) identifying a central research problem of practical relevance,
as presented in Section 1.3; 2) obtaining a comprehensive understanding of
the problem by undertaking a literature review, as presented in Chapter 2 and
Chapter 3; 3) designing and developing applicable solutions to the problem such
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as the models, algorithms, and techniques to improve the efficiency of resource
allocations in MECs, whose scientific contributions are presented in Section 1.5;
and 4) demonstrating the efficiency and feasibility of the solutions, and linking
the results obtained back to the research problem. In the works presented here,
this step was accomplished by experimentally evaluating the performance of
the proposed contributions and comparing them to alternative state-of-the-art
solutions. Detailed information on the experimental setups and the approaches
used for performance evaluation is presented in the experimental sections of
each included paper.

1.5 Contributions of This Thesis

 The Development and Adoption of MECs

Efficient Resource Allocation

RO2: Workload Prediction 
(Paper II, III)

RO3: Elasticity Control
(Paper IV)

RO4: Application Placement 
on MECs (Paper V)

User Mobility
Location-aware
Service Level Agreement
Auto-Scaling
Pro-active
Load Balancing

Stateful Application
Cost Model
Online Placement Strategy
Migration

Micro-service application
Deployment
Latency
Network Communication Profiling
Software Design

Quantify MECs Benefits
RO1: MECs Benefits to 
non-MEC Applications 

(Paper I) 

Figure 1.3: Thesis’s main contribution.

MECs are still in their infancy, and their infrastructure configurations have
yet to be standardized. As such there are many ongoing studies seeking to
accelerate the adoption of MECs. This thesis contributes to these efforts in the
following ways (as depicted in Figure 1.3):

• To spur MEC development, the first part of the thesis extensively quantifies
the benefits of MECs can offer to non-MEC-native-applications (Paper I).
One promising class of such applications are cloud-native applications, in
particularmicro-service-based applications with high deployment flexibility.
We therefore quantify the performance of cloud-native applications deployed
using resources from both cloud datacenters and edge locations. We then
develop a network communication profiling tool to identify the aspects of
these applications that reduce the benefits they derive from deployment
on MECs. Finally, we propose design improvements that would allow such
applications to better exploit MECs’ capabilities.

• The second part of the thesis addresses problems relating to resource
allocation in highly distributed MECs. First, to overcome the challenges
arising from the dynamic nature of resource demand in MECs, we make
use of statistical time series models (Paper II) and machine learning
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techniques (Paper III) to develop two location-aware workload prediction
models for EDCs that account for both user mobility and the correlation of
workload changes among EDCs in close physical proximity. Most existing
approaches for workload prediction in the context of centralized clouds do
not consider the impact of user mobility or information on the locations
of datacenters. Therefore, they disregard potentially valuable inputs for
improving the accuracy of workload prediction. Conversely, we leverage
the cross-correlation of the workloads of nearby EDCs to achieve better
predictions.

The workload prediction model is then utilized to develop an elasticity
controller for MECs (Paper IV). The proposed controller treats all EDCs
located in close physical proximity as a group. Each group is managed
by a group-level controller, which is responsible for three functions: 1)
Predicting workload arrival at EDCs in the group; 2) Pro-actively deter-
mining how many resources to allocate at each EDC; and 3) Configuring
load-balancers to direct requests from under-provisioned EDCs to EDCs
within the group that have available resources. In essence, the elasticity
controller helps MECs to perform resource allocation, i.e., to address the
intertwined questions of what and how many resources to allocate, and
when and where to deploy them.

• The third part of the thesis focuses on problems relating to placement of
stateful applications on MECs (Paper V). This includes both questions of
where to place applications, whether the requested applications should
migrate with the user’s movement so as to minimize the total operating
cost while simultaneously guaranteeing sufficient end-user Quality of
Service (QoS). These questions are easy to pose but intrinsically hard to
answer due to the scale and complexity of MEC infrastructures and the
stochasticity of user mobility behavior. To this end, we first thoroughly
model the workloads, applications, and infrastructures to be expected in
MECs. We then formulate the various costs associated with operating the
application, namely the resource cost, migration cost, and service quality
degradation cost. Based on our model, we propose two efficient online
application placement algorithms that take these factors into account to
minimize the total cost of operating the application.

The contributions of the thesis are described in more detail in Chapter 4.

1.6 Thesis Outline
The rest of this thesis is organized as follows. Chapter 2 briefly reviews the
benefits of deployment on MECs for MEC-native applications, cloud-native
applications, and legacy applications. Chapter 3 provides an overview of the
main challenges and problems facing MECs, and presents a literature review
focusing on previous efforts to solve the problems examined in this thesis.
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Chapter 4 summarizes the contributions of the scientific works included in the
thesis. Finally, chapter 5 briefly discusses ways of extending and building on
the work presented here, and proposes some ideas for future research that could
spur the development and adoption of MECs.
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Chapter 2

Benefits of Mobile Edge
Clouds for Various
Application Types

It is clear that the wide geographical distribution of MECs’ resources allows them
to provide services with higher bandwidth and lower latency than current cloud
computing platforms can deliver. As a result, MECs are promising platforms for
hosting future applications with strong requirements for (extremely) low latency,
high bandwidth, and strong computational capabilities. Such applications are
referred to as MEC-native applications; it is expected that they will only perform
optimally on MECs. Applications of this sort have recently attracted immense
industrial and academic interest, spurring the development and adoption of
MECs. However, it is unrealistic to expect MECs become successful based solely
on MEC-native applications. Therefore, MEC providers and advocates should
also focus on the benefits MECs can offer to non-MEC-native applications that
are not specifically engineered for MECs but whose design and engineering are
likely to make them suitable for deployment on MECs. Legacy applications and
cloud micro-service applications are prime example of applications that might
fall into this category. This chapter presents some illustrative examples from
literature review of empirical studies on the potential benefits of deploying such
applications on MECs.

2.1 MEC-native Applications

Some key demonstrators of the potential of MECs are latency-sensitive IoT-
based applications such as augmented reality and wearable cognitive assistance
systems. To evaluate the performance of such applications in terms of end-
to-end response times, Zhou et al.[Che+17] conducted empirical experiments
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using 7 different cognitive assistance applications covering a wide variety of
assistant tasks. Similarly, Hu et al.[Hu+16] examined the benefits of edge
deployment in terms of response time and energy consumption by offloading
different interactive mobile applications to the edge. Their results showed that
the performance of these applications was maximized by offloading to MECs
rather than running on a centralized cloud.

Similarly, Lin et al.[LS16] used resources in the vicinity of end-users to offload
graphics rendering tasks for a Massively Multiplayer On-line Game (MMOG).
This reduced the remote cloud’s ingress bandwidth consumption, increased user
coverage, and reduced response latency.

Real-time video analytics is a killer app of MECs, with uses ranging from
face recognition in video surveillance systems to geo-distributed video analytics
infrastructure for tracking traffic on roads. These systems generate large volumes
of data that must be processed in real-time, and thus require considerable
computational resources. Wang et al. [Wan+17] presented an open-source face
recognition system combining video analytics with real-time denaturing for
privacy. Using MEC resources, the system was able to maintain high accuracy
while also achieving full frame rate speeds when deployed across a large number
of cameras. Similarly, Mangiante et al. [Man+17] used resources from edge
locations to enable 360◦ VR video streaming, yielding immediate bandwidth
savings.

2.2 Cloud-native Applications

Modern cloud applications are increasingly architected as collections of micro-
services [LF14]. The micro-service philosophy advocates constructing software
applications as collections of small, independently deployable services that com-
municate with each other via light-weight mechanisms [New15]. An appealing
property of micro-service-based cloud applications is their flexible deployment:
they can be deployed in various configurations, combining resources in both
centralized datacenters and edge locations. Figure 2.1 depicts a cloud applica-
tion benchmark, namely Web Serving with three components deployed using
resources from both an edge location and a centralized cloud datacenter.

In Paper I [Ngu+19], we quantified the benefits that an MEC can offer
micro-service-based cloud applications by performing an empirical study using
two popular benchmarks. The results obtained showed that deployment on
an MEC did not significantly improve end-to-end latency even when most
application services were deployed at the edge location because there were many
transactions between application services when processing end-user requests.
The number of transactions together with the network delay between the edge
and the remote centralized cloud caused response times to increase dramatically.
We proposed some ways to modify the engineering of cloud-native applications
that could eliminate the adverse performance impact of latency between the
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Figure 2.1: Illustration of an emulated MEC showing the network latencies
between clients, an edge datacenter, and the centralized cloud with the Web
Serving benchmark [Fer+12] deployed using resources from both an edge location
and a centralized cloud.

edge location and the remote datacenter, thereby allowing the applications to
benefit from deployment on MECs.

2.3 Legacy Applications

Legacy applications, for example those applications originally developed for
personal computing environments that remain valuable today. Important ex-
amples include Adobe Photoshop and the Microsoft Office Suite. Mahadev
et al.[Sat+20] investigated the potential for such legacy applications to bene-
fit from deployment on MECs by introducing an edge-based virtual desktop
infrastructure (EdgeVDI) that is used with customized virtual desktop infras-
tructures such as VMware or XenDesktop. EdgeVDI allows virtual desktops
to be migrated on-demand from on-premise resources to an EDC close to a
mobile user, ensuring the consistent low latency and high bandwidth required
by remote desktop protocols. This approach allows end-users to access legacy
applications on virtual desktops (deployed on nearby EDCs) using lightweight
internet-connected devices with low computational power such as tablets or
smartphones rather than having to carry comparatively heavy and cumbersome
laptops.

The examples discussed above show that in addition to their proven benefits
for MEC-native-applications, MECs could offer significant advantages for other

15



type of applications. However, full exploitation of these advantages will require
some design customization in the case of cloud micro-service applications, or
middleware to support deployment on MECs in the case of legacy applications.
Additionally, given the highly distributed and heterogeneous resource capability
of MECs as well as the limited resources of EDCs, MECs need effective resource
management operators that take application characteristics into account when
making decisions about resource allocation.
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Chapter 3

Resource Allocation in
Mobile Edge Clouds

Reflecting the fact that MECs are currently in a very early stage of development,
most studies on MECs have primarily focused on the concept of the MEC, its
characteristics, and application scenarios that warrant further development of
MECs [AA16; Por+18; You+19]. As discussed in Chapter 1, the characteristics
of MECs differ from those of traditional clouds. However, they both have
the same core challenge – how to efficiently provide resources (computation,
bandwidth, and storage capabilities) and services to end-users while fulfilling
the objectives of both infrastructure providers and application providers, which
typically include maximizing energy efficiency, achieving service level objectives,
and optimizing operating costs, among others [BB10; You+10; Che+18].

To promote the development of MECs and their maturation as computing
platforms, this thesis investigates methods and approaches for helping MECs
to manage resources and services efficiently. Accordingly, this chapter begins
by describe the challenges associated with resource allocation in MECs. It is
critical to understand the stakeholders who directly impact and are impacted
by the resource management decisions in MECs. Therefore, we also identify
key MEC stakeholders and the goals (i.e., core metrics) that each stakeholder
aims to achieve. We then discuss the modeling of the key components and
performance-affecting factors of an MEC – its infrastructure, the applications
it hosts and their workload, and its end-users. Finally, we present a literature
review highlighting state-of-the-art studies that have sought to address these
challenges by developing resource allocation mechanisms for MECs.

3.1 Challenges

The key disruptive transformation of the MEC concept is the decentralization
of the compute, storage, and networking resources of a cloud system and
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their redistribution towards the edge of the network, closer to the end-users.
This is beneficial because it reduces latency and mitigates congestion in the
network core, unlocking the potential of new application types including IoT
applications, autonomous vehicle systems, and AR/VR applications [PM17;
Mah+18; Shi+16]. However, the combination of the intrinsic characteristics of
MECs with the inherent characteristics of clouds creates several challenges for
resource management operators:

Highly Distributed and Heterogeneous Resource Capacity. The
benefits MECs gain by moving computing resources toward the edge of the
network are clear. However, the highly distributed and heterogeneous nature
of MECs introduces difficult challenges in resource management. The new
platform infrastructure may feature tens of large data centers and thousands of
micro datacenters of various sizes collocated with radio base stations separated
by 1 to 10 km. As a result, centralized strategies for monitoring system behavior
and workload dynamics, and for resource allocation, may perform poorly in
MECs despite being very efficient in centralized clouds.

User Mobility. To deliver low latency services and direct network traffic
away from the central cloud, MECs seek to provision each end-user with
resources from EDCs located in their vicinity. The resource demand at each EDC
therefore depends heavily on users’ mobility behavior. The number of end-users
concurrently requiring services from a specific EDC may exhibit large temporal
fluctuations, causing load variation. The users’ mobility behavior together
with the inherent resource heterogeneity of MECs and the wide geographical
distribution of the infrastructure create new challenges for resource management
operators. The fundamentally intertwined questions of how many resources to
allocate, where to place different application services among the available EDCs,
and when to activate various resource management actions are inherently difficult
to solve due to the scale, complexity, and dynamics of both infrastructure and
applications.

More Flexibility in Deploying Software. Modern cloud applications
are increasingly engineered as sets of multiple loosely-coupled fine-grained soft-
ware components, each requiring different resources. To maximize the benefits
of MECs, these components can be deployed on diverse resources ranging from
centralized datacenters to edge locations. However, such deployment flexibil-
ity introduces significant challenges in analyzing, predicting, and controlling
resource allocations to optimize cost and energy efficiency while delivering the
expected end-user Quality of Service.

3.2 Stakeholders of MECs and Their Goals

Resource allocation is the process of allocating, scheduling, and planning re-
sources to maximize resource usage efficiency while guaranteeing that the
predefined service level objectives are met. In the MEC ecosystem, the in-

18



frastructure provider and end-user are stakeholders who both impact and are
impacted by resource allocation decisions.

• The main goals of the infrastructure provider are to maximize average
resource utilization and maintain system stability.

• The main goal of end-user is to be served with the greatest possible quality
of the service.

Therefore, a resource management operator must guarantee that all decisions
concerning resource allocation and provisioning take these core metrics into
account. Unfortunately, these metrics may be in conflict under certain condi-
tions. For example, increasing resource utilization may increase the rejection
ratio, resulting in a poor quality of experience for users. Therefore, an ideal
management operator should strike a balance between these metrics and ad-
just their prioritization depending on the situation at hand. For example,
the resource allocation for latency-intolerant mission-critical applications may
prioritize reducing the rejection ratio over maximizing resource utilization.

The performance of resource allocation tools and approaches can be mean-
ingfully and quantitatively evaluated using a set of system- and user-oriented
metrics recommended by the Standard Performance Evaluation Corporation
(SPEC) [Her+16]. These metrics include: under- and over-provisioning accuracy,
which measure the deviation between resource demand and resource supply;
under- and over-provisioning timeshare, which measure the proportion of the
total time during which the system is under- or over-provisioned; and instability,
which indicates whether the supply curves change in the same direction as the
demand curve.

3.3 Modeling MEC Components
The primary inputs that an MEC resource management operator requires to
make decisions about management actions are information on the key compo-
nents of the MEC system, namely the infrastructure of the MEC, the applica-
tions it runs and their workloads, and its users. Figure 3.1 shows the system
components relevant to resource management in MECs.

3.3.1 Infrastructure Modeling
Academic and industrial groups have attempted to develop unified standards
for MEC infrastructure [CPS17; Yu16]. It is very likely that most MEC
infrastructures will have a hierarchical tree topology similar to that of mobile
core and access networks [Bed14]. The resources of a distributed MEC are the
compute and storage capabilities of its datacenters and the bandwidth capacity
and throughput of the network links connecting these datacenters. From the
MEC infrastructure provider’s perspective, a key resource management objective
is to minimize the total operating cost of providing services. It is therefore
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Figure 3.1: The primary components relevant to resource allocations in MECs.

essential to develop robust cost models for these resources. These cost models
must capture the heterogeneity of MEC resources, which can be expressed in
terms of generalized measures of capacity and capability such as compute and
bandwidth units [Meh+16; Tär+17]. Cost models can also be dynamic, allowing
them to take into account the law of supply and demand [Moo25] as well as the
impact of economy-of-scale effects on energy and maintenance costs [NKE].

In our work, we model MEC infrastructures in various ways depending on
the research objective in focus. For example, when investigating the relation-
ship between neighboring EDCs (location-awareness), we model a MEC as a
hexagonal grid with each EDC located in each cell that is distributed over an
area [LKE17] and also examine a hypothetical MEC whose EDCs are collocated
with cellular towers in their real geographical positions within a real-world land-
scape (e.g., the San Francisco bay area or Rome) [NKE19; NKE20]. Conversely,
when investigating the application placement problem, we model a MEC as
a hierarchical tree architecture [NKE] with EDCs having different resource
capacities and costs.

3.3.2 Application and Workload Modeling

A wide range of different applications with differing resource requirements could
be deployed on MECs to leverage their resources. For example, a deployed
application could be a single component service or a multi-component application
in which each component has distinct resource requirements. Additionally, the
application could either be stateless or stateful; in the latter case, it will be
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necessary to manage its state when deploying the application or migrating it
over the MEC’s resources.

An application model must capture the application’s resource demand,
including the demand of each individual component in the case of a multi-
component application as well as the demand associated with state data for
stateful applications. Resource demand can be quantified as the average resource
requirement over time unit per request with respect to the consumed resource
types. Depending on the nature of the application, each request may consume
a large amount of compute resources compared to bandwidth resource or vice
versa. The nature of the application in this respect can be defined based on
its compute-intensity-to-bandwidth-usage-ratio [Meh+16]. The more detailed
the application model, the better the understanding of how the provisioning of
resources and capacity in response to its requests will affect its key performance
indicator (e.g., the expected application response time) at any given time.

Our application workload models allow for variation in the number of requests
both in time and between locations [NKE20]. This is especially important in
MECs due to the stochasticity of user mobility and the wide distribution of
MEC resources.

3.3.3 User Modeling

As mentioned in Chapter 1, MECs users (or subscribers) may be human beings,
IoT devices, or cameras, among other things. These users are characterized by
high mobility, so their locations will change periodically. The stochastic nature
of mobility is a major challenge when deciding how to allocate resources at
EDCs. It is therefore desirable to model the variation of users’ locations and
requested services over time. Because the development of MECs is still in its
early stages, there are no publicly available datasets of MEC end-user behavior
and workloads. Therefore, many studies rely on real-world user mobility traces
to simulate synthetic user behavior and workload in MECs [BG20; Urg+15].
Accordingly, we use the mobility traces of taxis in specific real-world locations
(Rome and the San Francisco Bay area) to simulate user mobility. The main
reason we chose these taxi traces is that they cover the same geographic area
as the data used to generate the geographic distribution of our emulated MEC
infrastructures.

3.4 A Literature Review on Resource Allocation
in Mobile Edge Clouds

The main goal for a mature computing platform is to ensure that services are
provided with the greatest possible reliability and availability while meeting per-
formance targets and minimizing costs and energy consumption. In MECs, the
challenges mentioned above make traditional centralized resource management
strategies that rely on human intervention impractical [Tär+15; AS07]. It will
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Figure 3.2: An MAPE-K loop resource management system in a MEC.

therefore be important to develop autonomic resource management strategies in
which both the system’s behavior and its workload dynamics are continuously
monitored, and the monitoring data are used to automatically adjust resource
allocations (in terms of both size and type) and the system’s behavior.

In essence, an autonomic system is a system with a hierarchy of self-
governing components, each consisting of multiple interacting autonomous
components [KC03]. For example, Figure 3.2 shows a MAPE-K loop-based
autonomic resource management system for a MEC. Here, the MEC resource
management system continuously adapts the resource allocation and provision
behaviour to achieve predefined goals using an intelligent loop with 5 com-
ponents: monitor (M), analyze (A), plan (P), execute (E), and knowledge
(K).

• The monitor component periodically gathers different metrics relating to
the MEC and the current state of the hosted applications such as their
workload, resource usage (e.g., CPU utilization per VM, memory usage,
etc.) to facilitate analysis of the system and early detection of anomalies.
The gathered data is stored in the form of time series, i.e., streams of
timestamped values representing the same metric and the same set of
labeled dimensions in the knowledge database for further processing and
analyzing by other components.

• The analyze component applies different complex data analysis mecha-
nisms such as statistical models, time series models, and machine learning
techniques to capture the static and dynamic characteristics of the MEC’s
resources and the hosted applications, as well as the behavior of the real
workload that MEC processes.
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• The plan component is responsible for planning mitigation actions that
will allow the MEC to adapt to predicted changes. Using results generated
by the analyze component together with predefined target performance
indicators relating to variables such as throughput and response times, the
autonomic manager structure actions (e.g., admission control, resource
allocation, migrations) to ensure the MEC meets its performance target
while minimizing costs and energy consumption.

• The execute component is responsible for scheduling and performing the
planned adaptation actions. The execution of the plans also involves
updating the knowledge database that can be used by all components of
the autonomic manager.

• The knowledge component stores data with an architected syntax and
semantics, such as topological information, historical logs, policies, change
requests, and change plans. In a complete loop, knowledge from other
components is also stored. For example, the monitor component generates
knowledge about recent activities by logging the notifications it receives
from the MEC. Similarly, the execute component might update the knowl-
edge base with records of action taken in response to the output of the
analysis and plan components, making it possible to trace the actions’
effects on the system.

While the fundamental principles of autonomic systems are relatively well
understood, the extreme scale, complexity, and dynamics of MECs makes the
practical implementation of those principles very difficult [Car+18].

This section reviews the efforts that have been made to address these chal-
lenges and develop solutions that facilitate efficient resource allocations in MECs.
We first consider research on Workload Prediction, which is essential for any
management operator. Understanding and accurately predicting how a system’s
workload will change can improve the quality of resource management decisions
in MECs. We then examine the Capacity Sizing problem, which requires the
resource management operator to decide what type and quantity of resources
should be reserved to meet an application’s Quality of Service requirements.
Finally, we review work on the Application and Workload Placement problem,
which is the problem of deciding where and when to deploy a service within the
heterogeneous resource pool of a MEC to ensure that the required Quality of
Service is delivered while minimizing operating costs.

3.4.1 Workload Prediction

Understanding and modeling workload behavior is essential for efficient man-
agement of cloud system resources. Consequently, many published studies have
focused on modeling and predicting workloads in cloud datacenters.

Many researchers have proposed workload prediction models that use dif-
ferent classical statistical models (e.g., Markov models, Bayesian models, or
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time series), or machine learning techniques such as artificial neural networks or
deep learning. For example, Khan et al. [Kha+12] clustered repeated workload
patterns among VMs into different groups, then used a Hidden Markov Model
to explore temporal correlations and variation in workload patterns. Similarly,
Sheng et al. [DKC12] used a Bayesian model to perform both short- and long-
term mean load prediction. On the basis of experiments using real traces from
Google, they claimed that the proposed method outperform alternatives based
on time series and filters. Approaching the problem from another perspective,
Kumar et al.[KS18] used a neural network and a differential evolution algorithm
to develop a workload prediction tool for cloud datacenters. This model is
capable of learning and extracting workload patterns, and achieves substan-
tially lower prediction errors than alternative models. Similarly, Zhang et
al.[Zha+18b] built a deep learning model based on the canonical decomposition
to predict cloud workloads. The proposed model achieves a better performance
when performing with the complex workload data.

The heterogeneity of MECs and the complexity of their workloads makes
it difficult to fully capture the characteristics of their workloads using a single
predictive tool. Therefore, some researchers have proposed hybrid approaches
that combine multiple tools. For example, Chen et al.[Che+15] proposed
an ensemble prediction model that uses multiple base predictors and a fuzzy
neural network to improve predictive accuracy. Unfortunately, the complexity
of this model means that it must perform multiple computational steps per
prediction interval, preventing its use in real-time systems. Conversely, Liu et al.
[Liu+17] presented an adaptive categorical workload prediction framework that
categorizes workloads based on their characteristics (e.g., the speed of workload
change and the priority of the jobs) and uses a different predictive model for
each workload category. Experiments using workload traces from a real cloud
showed that the proposed model outperformed alternative time series-based
predictive methods.

User mobility and the wide geographic distribution of EDCs in MECs present
new challenges in workload prediction. Unfortunately, the techniques mentioned
above only take into consideration information on individual server or application
workloads, and therefore may not work efficiently in the context of MECs. In
Paper II [LKE17] and Paper III [NKE19], we proposed two location-aware
workload prediction tools for EDCs that use a vector autoregressive model and
a multivariate long short-term memory network, respectively. The proposed
models exploit the correlation of workloads between nearby EDCs to forecast
the future workload of each EDC, and were shown to outperform alternative
state-of-the-art methods.

3.4.2 Capacity Sizing

One critical challenge facing the operators of any computing infrastructure is
to consistently meet end-users’ expectations while minimizing operational costs.
The intertwined questions of what and how many resources to allocate to each
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hosted application are not trivially answered. This is especially true for MECs,
whose infrastructure makes this challenge much more severe than in conventional
cloud systems. To solve this problem, it is necessary to think outside the box
and employ concepts from multiple disciplines including feedback control loops,
data analytics, and optimization techniques. A recent literature review [YLL18;
Che+18] highlighted the vast efforts that have been made in both academia
and industry to solve the resource allocation problem.

Yin et al. proposed a task scheduling and resource allocation tool for delay-
sensitive and high-concurrency applications in fog computing systems that is
based on container technology [YLL18]. This tool uses the delay constraints
of the managed tasks to schedule and allocate resources from edge nodes or a
centralized data center based on the objective of ensuring that the response times
of the managed tasks remain below predefined thresholds. Chen et al. [Che+18]
proposed a framework consisting of a computation offloading mechanism and
a joint communication and computation resource allocation method for the
network operator. Based on predefined user ranking criteria, this framework
ensures satisfaction of performance guarantees for the managed applications.

Another effort to address the capacity sizing problem was presented by
Mehta et al. [Meh+18], who developed a two-tier scheduler for allocating run-
time resources to industrial IoT applications in MECs. A high-level scheduler is
responsible for application admission and migration to meet long-term perfor-
mance goals, while a low-level scheduler decides which application will occupy
the runtime resources in the next execution period.

Using the concept of the MAPE feedback loop, Cardellini [Car+18] proposed
a hierarchical decentralized resource allocation framework for data stream
processing applications. The framework is based on a two-layered approach
in which timescale-related issues are handled separately from other concerns.
The lower layer is responsible for controlling the adaptation of data stream
processing operators by means of scaling and migration actions, while the higher
layer is a centralized component that oversees general application performance.

Most applications deployed on MECs will be latency-intolerant and ex-
tremely sensitive to small delays. Furthermore, due to the limited availability
of compute resources at the network edge, the resource costs are expected to be
more expensive than that of centralized cloud. Therefore, allocating resources
exceeding the demand leads to inefficient operation and costly resource wastage.
All in all, resource allocation in MECs must be more rigorous in terms of
speed and precision than those in centralized cloud datacenters. With this in
mind, Paper IV [NKE20] presents an elasticity controller that helps MECs to
automatically adapt resource provisioning to handle variation in the arrival
workload. We used queueing theory techniques to build a performance model
that estimates the number of resources that should be provisioned to EDCs in
order to meet predefined Service Level Objectives (SLOs) while maximizing
resource utilization. The controller also incorporates a group-level load balancer
that is responsible for redirecting requests among EDCs during runtime so as
to minimize the request rejection rate.

25



3.4.3 Application and Workload Placement

Cloud applications are increasingly engineered as sets of interacting components,
each of which may require different kinds and quantities of resources to perform
well. The increased deployment flexibility offered by MECs could in principle be
very beneficial for such applications because their individual components could
be deployed at different resource levels (ranging from centralized data centers to
edge data centers) provided that the application’s overall performance goals are
met. For example, a typical face recognition application will have face detection,
image processing, feature extraction, and face recognition components. The face
detection component is deployed on the end-user’s device, the image processing
and feature extraction components could be deployed at the edge data center,
while the face recognition component could be deployed on the centralized
distant data center. This distribution of components over available resources is
a solution to the service placement problem for this hypothetical application.
In general, the service placement problem is the problem of deciding where an
application’s services should be placed (and executed) within the hierarchy of
the data center or cloud system; in the case of an MEC, each component of
a cloud application could be placed anywhere from a centralized distant data
center to an EDC near the user. The service placement problem in MECs is
complicated by several factors that do not affect conventional clouds, including
the limited coverage area of base stations, the dynamic nature of mobile users,
and network background traffic. Nevertheless, this problem must be solved well
because poor solutions can adversely affect the Quality of Service experienced by
end users, potentially causing significant costs for both the application provider
(due to unnecessary use of expensive resources) and the resource provider (as a
consequence of repeatedly performing replacement actions due to poor initial
placement decisions).

Tong et al. [TLG16] attempted to solve the mobile workload placement
problem in the hierarchical architecture of an edge cloud. They first designed a
hierarchical edge cloud architecture that enables the aggregation of peak loads
across various tiers of the edge cloud servers. An analytical model was then
created to compare the efficiency of resource utilization between such hierarchical
designs and a flat infrastructure. Additionally, to minimize the average program
execution delay, the authors developed an optimization algorithm that adaptively
decides which edge cloud server a program should be deployed on and how much
compute capacity should be allocated to it. Tarneberg et al. [Tär+17] presented
a holistic algorithm for dynamically placing applications in MEC infrastructures.
To minimize global system costs, the algorithm takes account of factors including
the network link capacity, user expectations in term of latency, user mobility,
and server provisioning costs. Taking a social Virtual Reality application as a
potential “killer app” for emerging MECs, Wang et al. [Wan+18] introduced
ITerative Expansion Moves (ITEM) to solve the combinatorial optimization
problem for service entity placement. In another notable study [WZL17],
Wang et al. modeled users, a multi-component application, and physical
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MEC resources as graphs and considered service placement based on a linear
application graph with the goal of minimizing peak resource utilization for
both compute resources and network links. To achieve this goal, the authors
proposed online approximation algorithms for lacing tree application graphs
onto tree physical graphs. Taking into account stochastic user mobility, Ouyang
et al. [OZC18; Var+19] proposed efficient heuristic algorithms to optimize long-
term time-averaged migration costs. The same research group subsequently
proposed a novel mobility-aware online service placement framework to achieve
a desirable balance between user latency and migration cost [OZC18], as well
as a joint service placement and routing algorithm designed to minimize total
service placement costs [Var+19].

We realize that most of the studies on application placement in MECs con-
sider only stateless applications. However, many envisioned MEC applications
are stateful. Technically, a stateful application has a user state (or application
state) to store the context and history of the previous transaction so that the
next transaction can perform with the context of previous transactions. For
example, artificial reality applications must store generated meshes, world data,
generated textures, etc. This stateful architecture causes more challenges for
MECs to decide where to place such applications. Employing stateless place-
ment algorithms for stateful applications risks introducing unnecessary costs
due to wastage of the bandwidth required to migrate user state from one EDC
to another. To this end, in Paper V [NKE], we address the problem of placing
stateful applications in MECs. First, we thoroughly model the workloads,
applications, and infrastructures to be expected in MECs. We then formulate
the various costs associated with operating an application, namely resource
cost, migration cost, and service quality degradation cost. Finally, we propose
two efficient online placement algorithms: Follow-me and Gale-Shapley-based
algorithm. Our experimental results show that both of these algorithms can
help MECs rapidly decide where to allocate capacity for applications, achieving
total operating costs that are no more than 8% higher than the approximate
global optimal.
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Chapter 4

Summary of Contributions

This chapter summarizes the papers comprising this thesis and shows how they
relate to the targeted research objectives. First we present an overall outline of
the contributions of this work. This is followed by more detailed discussions of
the five included papers in chronological order, with descriptions of the author’s
contributions.

4.1 Outline of Contributions

This thesis focuses on four research objectives that were addressed in three parts.
The first is the potential for improving the performance of cloud applications
by deploying them on MECs. MECs have emerged as distributed platforms
that can complement existing cloud systems to overcome barriers to the success
of MEC-native applications (e.g., IoT applications and autonomous vehicles).
Much of the literature in this area focuses only on ”killer apps” that could
drive investment in MECs, such as IoT applications and augmented reality
systems. However, given that the adoption of traditional clouds was fostered by
legacy, non-cloud-native applications, we argue that MECs must also provide
benefits to non-MEC-native applications. Failing to do so risks creating a
deadlock whereby infrastructure investment is slow due to a lack of MEC-native
applications and development of MEC-native applications is postponed until
more MECs become available. Paper I addresses this issue by testing the
potential for cloud applications to leverage the strengths of MECs to improve
their performance in terms of end-to-end response time.

The second part of this thesis addresses problems relating to resource
allocations in MECs. Although there have been many studies on workload
modeling and prediction in the context of cloud datacenters, there remains a
lack of reliable tools for workload prediction in MECs. The wide distribution of
EDCs and user mobility behavior present new challenges for workload prediction
in MECs. Because state-of-the-art workload prediction techniques only take into

29



consideration knowledge of individual server or application workloads, they may
not work efficiently in the context of MECs. We therefore used statistical time
series models and machine learning techniques to develop efficient workload
prediction models that take these factors into account. Papers II and III
introduce two location-aware workload prediction models for EDCs that account
for both user mobility and the correlation of workload changes among EDCs
in close physical proximity. Paper IV describes the use of these workload
prediction models in an elasticity controller for MECs that was developed to
manage resource allocation for latency-sensitive applications.

The third part of the thesis addresses the problem of placing stateful ap-
plications in MECs. To ensure optimal QoS while minimizing bandwidth
consumption due to application traffic, applications should be migrated in paral-
lel with the movements of their users. However, migrating too often may cause
bandwidth wastage due to state migration traffic. To address this problem,
we first thoroughly model the workloads, applications, and infrastructures to
be expected in MECs. We then formulate the various costs associated with
operating the application, namely resource cost, migration cost, and service
quality degradation cost. Finally, we propose two efficient online placement
algorithms which can help MECs rapidly decide where to place allocate capacity
for applications, achieving total operating costs that close to the approximate
global optimal.

In the following sections, we present a summary of each paper.

4.2 Paper I
Chanh Nguyen, Amardeep Mehta, Cristian Klein, and Erik Elmroth. Why
Cloud Applications Are not Ready for the Edge (yet). In Proceedings
of the 4th ACM/IEEE Symposium on Edge Computing (SEC’19), pp. 250-263,
ACM, 2019.

Paper Contributions

In Paper I [Ngu+19], we address RO1 by quantifying the benefits of deploying
cloud-native applications on MECs. Two commonly cited potential benefits
of MECs are lower latencies and lower core network bandwidth consumption.
In this work we focus on latency because many end-user-facing cloud-native
applications need low end-to-end response times; several studies have identified
negative correlations between response times and revenues.

To determine the impact of MEC deployment on latency, we emulated
an MEC infrastructure with a distant datacenter and an edge datacenter.
We focused on micro-service-based applications because of their flexibility
in deployment. Using two popular cloud benchmarks, SockShop and Web
Serving, we empirically measured performance – specifically, end-to-end latency
– under different deployment configurations, using resources from both distant
datacenters and edge locations. Extensive experimentation revealed that against
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conventional wisdom, end-to-end latency does not improve significantly even
when most services are deployed in an edge location.

To explain these findings, we developed a network communication profiling
tool and applied it to the two benchmarks to determine why they do not benefit
from MEC development. It was found that these cloud-native applications tend
to make many transactions between the user services and the corresponding
database services when responding to end-user’s requests. Consequently, deploy-
ing these services separately in different MEC layers causes poor application
performance. This is an intrinsic problem that restricts the scope for migrating
such cloud-native applications to highly distributed environments such as MECs.
We also investigated the communication patterns of current cloud-native ap-
plication architectures to identify potential design improvements that would
make it possible to take advantage of MECs. We addressed this problem at two
levels: the application level and the network communication protocol level.

Authors Contributions

I was the main author who contributed to the formulation of the problem,
conducted the experiments, and wrote all the main parts of the paper. Amardeep
Mehta helped design the Web Serving experiments and add paragraphs regarding
dealing with the Web Serving results. Cristian Klein and Erik Elmroth had
advisory roles that included discussions about the problem formulation, methods,
experiments, and the presentation of the results.

4.3 Paper II
Chanh Nguyen, Cristian Klein, and Erik Elmroth. Location-aware load
prediction in Edge Data Centers. In Proceedings of the 2nd IEEE Interna-
tional Conference on on Fog and Mobile Edge Computing (FMEC), pp. 25-31,
IEEE, 2017.

Paper Contributions

In MECs, the operator’s ability to perform capacity adjustment and planning
is complicated by the bounded coverage radius of the base station, the limited
capacity of each EDC, and the mobility of users. It would therefore be highly
desirable to develop a self-managed system for MECs efficiently decides how
much scaling is needed, when it should be activated, and where to place and
migrate services. However, such a system would require an accurate and reliable
method of predicting the characteristics of the MEC’s workload, including its
variation in time and space.

In Paper II [LKE17], we address RO2 by proposing a location-aware work-
load prediction tool. The fact that EDCs are located in the near vicinity of users
means that changes in the workloads of nearby EDCs may be strongly correlated
(for example, when a user moves from the area served by one EDC to an area
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served by another, the first EDC’s workload will decrease while that of the
other will increase). This information could in principle be exploited to improve
the accuracy of load prediction in MECs. The developed tool therefore predicts
the load of each individual EDC based on its own historical load time-series (as
is done for centralized clouds) as well as those of its neighboring EDCs. This
is done using the Vector Auto Regression (VAR) Model, which exploits the
correlations between the load time-series of adjacent EDCs.

To evaluate our approach, we used real world mobility traces for taxis in San
Francisco, USA to simulate the load in each EDC. We emulated a MEC platform
consisting of a cellular infrastructure of 37 cells arranged in a hexagonal grid
covering the area of San Francisco. Each cell contained one EDC providing
services to all end-users within that cell. Our proposed algorithm achieved an
average accuracy of 93% in the experiments, outperforming the state-of-the-
art alternative by 4.3%. Given the scale of MECs, such an improvement in
predictive performance could yield significant gains in the efficiency of resource
allocation, and thus substantial cost savings.

Authors Contributions

I was the main author who contributed to the problem formulation, proposed
and implemented the proposed algorithm, conducted the experiments, and wrote
the first draft of the paper. Cristian Klein and Erik Elmroth had advisory roles
that included discussions regarding problem formulation, methods, experiments,
and presentation of results.

4.4 Paper III

Chanh Nguyen, Cristian Klein, and Erik Elmroth. Multivariate Long Short-
term Memory based Location-aware load prediction in Edge Data
Centers. In Proceedings of the 19th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid), pp. 341-350, IEEE/ACM, 2019.

Paper Contributions

Paper III [NKE19] also addresses part of RO2 by building on the tool proposed
in Paper II, which uses the correlation between the workload fluctuations of
neighboring EDCs to improve predictive accuracy. An alternative location-aware
workload prediction tool for EDCs that uses Long Short-Term Memory (LSTM)
networks is presented. In essence, LSTM networks are special recurrent neural
networks that incorporate integrated multiplicative nonlinear gate units with a
linear dependence between memory cell states. They can capture the temporal
dependencies of time series and have a high rate of learning per time step,
making them well suited for predicting the workload of EDCs. To predict the
workload of individual EDCs, we built an LSTM-based network that takes as

32



input the multivariate workload time series of the EDCs in the vicinity of the
predicted EDC.

Although the background and problem definition of this paper are identical
to those for Paper II, the new method offers superior predictive accuracy to
that reported in the earlier paper. Additionally, the new method differs from
the earlier one in three important ways: 1) it relies a neural network-based
technique, 2) it was tested in an extensive series of experiments using two
real mobility traces to simulate the workload of EDCs, together with data on
the real geographical locations of network base stations (emulating an MEC
infrastructure in which the locations of the EDCs match those of the real
network base stations); and 3) its predictive performance was validated using
an input-shaking approach.

In evaluations based on the first of the real mobility traces mentioned above,
the normalized root mean square error (NRMSE) observed with the neural
network-based method proposed in Paper III was 17% lower than that for the
location-aware method presented in Paper II and 44% lower than that for a
location-unaware method previously reported in the literature; the corresponding
values in evaluations using the second real mobility trace were 12% and 41%,
respectively. Additionally, sensitivity analyses using different input shaking
techniques clearly demonstrated that the neural network-based method is stable
and robust.

Authors Contributions

I was the main author who contributed to the problem formulation, conducted
the experiments, and wrote the paper. Cristian Klein and Erik Elmroth had
advisory roles that included discussions regarding problem formulation, methods,
experiments, and presentation of results.

4.5 Paper IV
Chanh Nguyen, Cristian Klein, and Erik Elmroth. Elasticity Control for
Latency-Intolerance Mobile Edge Applications. In Proceedings of the
5th ACM/IEEE Symposium on Edge Computing (SEC’20), pp. 70-83, ACM,
2020.

Paper Contributions

Elasticity is a key property required for MECs in order to become mature
computing platforms hosting software applications. It is the ability to automat-
ically adapt resource provisioning as required to handle variation in load. In
MECs, the elastic resource allocation controller must be even more rigorous
in terms of speed and precision than those in centralized cloud infrastructures
for the following main reasons: 1) Most application deployed on MECs are
latency-sensitive, which is sensitive to even very small delays. Sluggishness in
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resource scale-up or failure to allocate sufficient resources to meet demand (i.e.,
under-provisioning) can cause delays by increasing service waiting time, results
in a bad user experience; 2) The limited availability and high cost of resources
at the network edge mean that allocating resources exceeding the demand (i.e.,
over-provisioning) leads to inefficient operation and costly resource wastage;
3) The stochastic nature of user mobility means that resource demand at the
network edge is characterized by frequent transient changes.

In Paper IV [NKE20], we address RO3 by proposing a location-aware elastic
controller for MECs. The proposed controller takes advantage of the correlation
of workload variation in physically neighboring EDCs to predict the request
arrival rate at EDCs. These predictions are then used as inputs to estimate
service demand and the number of resources that will be desired at each EDC.
Additionally, to minimize the request rejection rate, we develop a group-level
load balancer to redirect requests among EDCs during run-time.

We evaluate the performance of the proposed using various core elasticity
metrics (as presented in Chapter 3). Experiments using an emulated MEC over
a metropolitan area (San Francisco area), and simulated application workloads
from a real mobility trace (San Francisco taxi trace) show that the proposed
controller delivers significantly better scaling behavior than a state-of-the-art
re-active controller and also improves the efficiency of resource provisioning.
The proposed elastic controller helps MECs maintain resource utilization and
request rejection rates that satisfy predefined requirements while maintaining
system stability.

Authors Contributions

I was the main author; I contributed to the formulation of the problem, con-
ducted the experiments, and wrote the paper. Cristian Klein and Erik Elmroth
had advisory roles that included discussions regarding problem formulation,
methods, experiments, and presentation of results.

4.6 Paper V

Chanh Nguyen, Cristian Klein, and Erik Elmroth. State-aware Application
Placement in Mobile Edge Clouds. Submitted for journal publication,
2021.

Paper Contribution

Many envisioned MEC applications are stateful. Placement of such stateful
applications on MECs is challenging due to the stochastic nature of user mo-
bility. Employing stateless placement algorithms for stateful applications risks
introducing unnecessary costs due to wastage of the bandwidth required to
migrate user state from one EDC to another.
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In Paper V [NKE], we address RO4 by proposing two online state-aware
application placement algorithms for MECs, named Follow-me andGale-Shapley-
based algorithms. We start by thoroughly modeling the costs incurred by stateful
applications on MECs, namely the resource cost (consisting of computing cost
and application bandwidth cost), QoS degradation cost, and migration cost. The
two proposed online placement algorithms aim to minimize the total operating
cost, i.e. the sum of these three individual costs.

We evaluate these proposed algorithms using an MEC topology consisting
of base stations geographically distributed across the San Francisco area. User
mobility is modeled using real mobility traces of taxis in San Francisco. Fi-
nally, users’ transition between applications are modeled based on a Markov
model. Our results show that the two proposed online placement algorithms
can efficiently decide where to place applications among EDCs, reaching a
total operation cost only 8% below the approximate global optimal placement
provided by the clairvoyant offline algorithm. Of the two online algorithms,
the Gale-Shapley-based algorithm achieves better optimal solutions than the
Follow-me algorithm, reducing operating costs by up to 17% while helping
MECs to effectively balance workloads to mitigate resource scarcity.

Authors Contribution

I was the main author; I contributed to the formulation of the problem, con-
ducted the experiments, and wrote the paper. Cristian Klein and Erik Elmroth
had advisory roles that included discussions regarding problem formulation,
methods, experiments, and presentation of results.

4.7 Limitations

MECs still in their infancy, and their infrastructure configuration has yet to be
standardized. Therefore, the work presented in this thesis primarily involved
experiments on emulated and simulated systems, which made it necessary to
apply some simplifying assumptions. Based on the research problems under
investigation, we chose to exclude some aspects of real MECs that were expected
to present complications.

Because the main objective of the study presented in Paper I was to quantify
the latency reduction achieved when deploying existing applications using MEC
resources, we configured an emulated MEC and studies the network delays
between end-users, edge locations, and a distant centralized datacenter.

In Papers II, III, and IV, we focused on the correlation of workload changes
in EDCs located in close physical proximity to one-another. To this end,
we emulated MECs with multiple topologies – one in which the EDCs were
distributed over an area with a hexagonal topology (Paper II) and another
in which the distribution of EDCs was based on the real-world geographical
distribution of cellular base stations in San Francisco (Papers II and IV).
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Paper V examined an MEC with a hierarchical topology in which the
EDCs in the lowest layer were collocated with real cellular base stations in San
Francisco.

These assumptions may limit the direct applicability of the results presented
here in certain real world scenarios. Consequently, the developed tools and
algorithms require further testing and may need to be extended based on the
outcomes of that testing.
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Chapter 5

Future Research Directions

In this thesis, we propose techniques and methods to address different fun-
damental resource management challenges associated with MECs, including
workload modeling and prediction; resource provisioning and allocation; and
workload and application placement. The works pertaining to this thesis is
expected to continuously evolve along with the development of Mobile Edge
Clouds platforms, where the challenges and issues continuously evolve and need
further investigations. In spite of the significant contributions of the current
thesis, there are many open research challenges that need to be addressed in
order to further advance the area. This chapter outlines several open issues
that are promising unexplored pathways for future research.

5.1 Decentralized Control Plane

As discussed in Chapter 2, one of the major challenges facing potential MEC
operators is their heterogeneous resource distribution, which makes centralized
resource management strategies impractical because they introduce single points
of failure and do not scale well with the number of users and applications or
the size of the infrastructure. Decentralized autonomic strategies are thus
preferable. A better approach is to design a decentralized control plane with a
local controller at each edge cloud location that manages local resources within
the cluster. Because many edge cloud orchestration tasks require at least partial
information from controllers in their vicinity, a robust way to share information
among these controllers is needed.

5.2 Incorporating Last-mile Bandwidth

Servers in traditional clouds are typically connected via very high speed networks
– typical network speeds in datacenters range from 10 Gbps to 100 Gbps, giving
the hosted cloud applications abundant network resources. Conversely, in MECs,
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users will share the air interface by multiplexing over a limited set of frequencies.
Connection bandwidth is thus likely to be a bottleneck. Incorporating network
bandwidth considerations into scaling and placement decisions is thus another
key issue that must be addressed.

5.3 Application Development for MECs
The historical development and adoption of traditional clouds shows that it
was important for existing applications to benefit from cloud deployment,
we conclude in [Ngu+19] that: ”without applications benefiting from clouds,
cloud providers would have been reluctant to invest in infrastructure, and the
lack of cloud infrastructure would have made application providers reluctant
to develop for the cloud ”. Therefore, to increase momentum towards MEC
adoption and development, it will be necessary to investigate the software
architectures needed to develop and customize applications that perform well
when deployed on MECs. An MEC programming model that simplify developing
of geo-spatially distributed, large-scale, and latency-sensitive applications is
necessary to investigate [Hon+13; Ha+14].

5.4 Multi-tenant MECs
The resources of MECs are virtualized and allocated to multiple users simulta-
neously. However, there is a lack of studies on multi-tenant support in MECs
in the current literature. For example, there is a need to investigate ways of
efficiently scheduling multiple tasks and applications on MECs’ resources while
taking their SLOs into account.

5.5 Energy-efficient MECs
Sustainability will be essential for the realization and acceptance of MECs
as a future computing platform. Modern centralized data centers consume a
lot of energy, emit a lot of carbon dioxide, and generate significant electronic
waste [KÅN20]. There has been little research on optimizing energy usage in
MECs, but their sustainability could potentially be improved by investigating
techniques for consolidating EDCs by migrating tasks/applications from one
EDC to another. In addition, optimal strategies for task migration must be
developed.

5.6 Trustworthiness of MECs
The distributed nature of MECs will probably give them a larger attack surface
than centralized cloud systems. Therefore, building robust MECs that can
remain functional in the presence of malicious attacks is essential. Further,
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EDCs will likely function in part as distributed storage systems for local data.
Therefore, it is important to develop tools that ensure the security of data
sources and preserve the user privacy at the edge [Zha+18a; Wan+19].
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