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Abstract—Power budgeting is a commonly employed solution
to reduce the negative consequences of high power consumption
of large scale data centers. While various power budgeting
techniques and algorithms have been proposed at different levels
of data center infrastructures to optimize the power allocation to
servers and hosted applications, testing them has been challenging
with no available simulation platform that enables such testing
for different scenarios and configurations. To facilitate evaluation
and comparison of such techniques and algorithms, we introduce
a simulation model for Quality-of-Service aware power budgeting
and its implementation in CloudSim. We validate the proposed
simulation model against a deployment on a real testbed, show-
case simulator capabilities, and evaluate its scalability.

I. INTRODUCTION

The carbon footprint of large-scale data centers has been
actively studied for the past decade. In 2016, it has been
estimated that the total data center power consumption in the
US alone is equivalent to the power consumption of around
6.4 million average American homes [1]. With the rise of
mega-scale data centers that sometimes consume the power
equivalent of thousands of homes, many researchers considered
how to improve the efficiency and efficacy of server power
consumption. For data center operators, the economical and
environmental impact due to the increased cost of electric and
power infrastructure needed, and the increase in the power
consumption, has sparked interest in new techniques and
mechanisms to help reduce or eliminate these impacts. In
addition, current trends of increasing the size of data centers,
with the goal of building exascale computing facilities in
the near future, exacerbate the problem of controlling power
consumption and makes it more critical [2].

In parallel to the growth in data centers infrastructures,
recent advances in server power management, virtualization,
and new hardware technologies have helped reduce the overall
growth of data center power consumption [1]. However, it is
still important to continue the development of new techniques
that reduce the power consumption across the entire computing
stack to make sure that data centers carbon footprint does not
significantly increase [1]. These techniques should span better
software development [3], better hardware [4], and better server
power management [5].

While previous work has looked at different aspects of
controlling data center power consumption, the reduction of
CPU power consumption has received special attention. It is

estimated that up to 42% of all the power consumed in a data
center are used by the CPUs [6]. Techniques such as dynamic
voltage and frequency scaling (DVFS) [7], per-core power
gating [8], and scheduling for CPU deep sleep [9] have been
proposed as possible mechanisms to control the CPU power
consumption.

Another popular solution to reduce the overall data center
power consumption, including that consumed by the CPUs,
is power budgeting, an approach to reduce the negative
consequences of high power consumption by limiting the
peak power consumption of a data center facility [10]. Power
budgeting techniques have gained popularity due to their
practicality, and are currently being used in many large scale
data centers [10].

However, limiting the power consumption of servers during
periods of high workloads comes at a cost. Typically, power
budgeting can result in performance degradation of the hosted
applications in the data center, specially under workload
pressure. Applications can start experiencing slow downs,
thrashing, or become totally unresponsive if they are not
allocated enough effective power. For this solution to be viable,
data center operators have to minimize the impact of limiting
power consumption on application performance. Today, no tools
exist that enable data center operators to navigate the impact
of power budgeting on the hosted applications without actually
running this in real deployments.

In this work, we tackle the problem of how to evaluate
optimization algorithms for application performance aware
power budgeting at multiple levels of data center infrastructure
(server, cluster, whole data center). We propose a framework to
model and simulate data center infrastructures with limited
power budgets, together with algorithms for server power
capping, cluster power shifting and adjusting the data center
power budget. We have implemented the proposed framework
as an extension to the CloudSim simulator [11]. To achieve the
application performance awareness, we have added server power
models, application power-performance models, performance-
cost models, and electricity cost models. Our solution can
simulate the peak power and total energy consumption of
the facility, the performance of hosted applications, track the
application Quality-of-Service (QoS) violations, and calculate
data center operational costs.



II. BACKGROUND AND STATE OF THE ART
A. Power-Aware Modeling of Cloud Computing Servers

In data centers, power consumption of computing nodes
is mostly determined by the CPU, memory, disk storage and
network interfaces [12]. Processors are the elements responsible
for the largest part of energy consumption [13]. The workload
and the frequency of a CPU have a considerable impact on its
power usage. The lower a processor’s frequency, the slower it
computes but also the less energy it consumes [14]. It has been
shown that the nodes power consumption can be described by
a linear relationship between the power consumption and CPU
utilization [13].

For computer systems energy consumption, power models
are normally divided into two components, static and dynamic
power. Static power is the power consumption when the node
is powered on and idle. Dynamic power depends on the current
utilization of the CPU [13].

For environments which experience only few idle periods,
such as HPC infrastructures, Dynamic Voltage and Frequency
Scaling (DVFS) appears as an alternative to switching off
machines [14]. DVFS technique temporarily decreases voltage
supply level at the expense of lowering processing speed
according to the application workload [12].

B. Data Center Power Budgeting
In order to decrease the adverse effects of high power

consumption, power budgeting emerges as a solution to limit
the peak power consumption of data center infrastructures [15].
Below, we introduce approaches that take advantage of this
technique.

Power Capping allows limiting the power consumption
of a single server. Traditionally, DVFS was used to reduce
CPU power consumption. Other techniques, such as CPU
pinning [16] and Forced Idleness [17], were also utilized to
achieve that goal. More recently, Running Average Power Limit
(RAPL) [18] has been proposed as an alternative, that enables
direct control over the power consumption of CPU and memory
of a single server.

Power Shifting facilitates dynamic reconfiguration of power
limits among multiple servers to match the workload levels
and priorities of hosted applications. Felter et al. [19] define
this technique as the capability of sharing a system’s power
budget among its infrastructure.

Data Center Power Budget Adjustment enables reduction
of operational expenditures through utilizing dynamic pricing
of electricity [20] or reduction of environmental impact by
adapting the data center total power consumption according to
the availability of renewable energy sources [21].

C. Power-Aware Cloud Simulation
CloudSim [11] is a discrete event simulator that provides

a virtualization ecosystem with features for modeling the
management of virtual machines in a data center, includ-
ing policies for provisioning of virtual machines to hosts,
scheduling of resources of hosts among virtual machines,
scheduling of tasks in virtual machines, and modeling of costs
incurring in such operations. Energy-aware extensions have
been developed and incorporated into CloudSim, e.g., power
models [22], DVFS modeling [23] and ACPI Global/Sleep
states [24]. These extensions enhanced CloudSim’s original

abstraction for representing power consumption over distributed
cloud computing infrastructures.

Since we are interested in simulating infrastructures that
provide power budgeting capabilities and none of the above
mentioned simulators offer them, we have decided to extend the
existing simulator, namely the DVFS version of CloudSim [23],
with these features.

III. SIMULATION MODEL
In order to simulate the QoS-aware power budgeting, we

first need to define what metrics we are interested in, which
infrastructure entities and their configurations have an influence
on these metrics, and what are the relations among all these
parameters. Therefore, in this section, we explain how we
model the data center system including servers and their power
budgets, applications and their performance, as well as how
we calculate the data center operational costs.

We consider a data center with operational costs depending
on the total energy consumption, peak power consumption,
and QoS violation penalties. The data center houses servers
that support power capping technologies and host diverse
applications. Applications have a fixed placement over the
servers and the application performance depends on the power
budget allocated to the host server. Both the data center power
budget and the server power budgets may be over-subscribed—
the sum of theoretical maximal power consumption of all the
hosted applications can exceed the data center and/or server
power budget. This leads to a control problem where data
center operators, in times of high workloads, have to choose
between increased electricity costs or to dynamically adjust the
data center power budget and distribute it among the servers
and applications.
A. Data Center Infrastructure

The data center consists of I servers and hosts J applica-
tions. The power consumption of a server is denoted by P server

and is a sum of a static part P server
static and a dynamic part P server

dynamic,
i.e., P server = P server

static + P server
dynamic.

We assume that applications consume the whole assigned
power budget. Therefore, the dynamic part of the server power
consumption is equal to a sum of power budgets of applications
hosted on the server, P server(i)

dynamic =
∑J

j=1

(
P app(j)

budgetz
j
i

)
,where zji

is the placement of application j (equal to 1 if the application
j is hosted on the server i and 0 otherwise).

The power consumption of the data center is a sum of
power consumption of all I servers, P dc =

∑I
i=1 P

server(i).

The power consumption of data center infrastructure com-
ponents is limited by hard constraints P server

limit for servers and
P dc

limit for the whole data center. The nature of the limits is
physical, e.g., a power breaker limit of the power delivery
infrastructure or the amount of heat that the cooling system
may transfer. Power consumption is constrained by budgets
P dc

budget and P server
budget. Their nature is financial, e.g., reduction of

the electricity costs, or results from the decisions of the power
shifting controller, which prioritizes one server over another.
B. Application Performance and Cost

We use the application performance and QoS violation
models introduced in ALPACA [25]. The performance models
define two application classes: applications with gradual perfor-
mance degradation that continue running with a limited power



budget, and applications with abrupt performance degradation
that effectively fail if the power budget is below a certain
threshold.

For applications with a gradual performance degradation
we model the relation between the application power budget
P app

budget and the application performance papp using one of the
following functions: linear (Eq. 1), exponential (Eq. 2), or
sigmoid (Eq. 3).

papp = max
(
0,min

(
1, a · P app

budget + b
))

, (1)

papp = max
(
0,min

(
1, a · eb·P

app
budget + d

))
, (2)

papp = max

(
0,min

(
1,

a

1 + e−b·(P
app
budget−c)

+ d

))
, (3)

where a, b, c, and d are application specific parameters
determined using linear regression for the linear model and
nonlinear least squares for exponential and sigmoid models.

For applications with an abrupt performance degradation, we
use the following model of the relation between the application
power budget P app

budget and the application performance papp:

papp =

{
0, if P app

budget < P app
min ,

papp
target, otherwise,

where P app
min is the minimal power budget needed to run the

application.

Each application has a defined target performance constraint
papp

target and a threshold when the application becomes unusable
papp

unusable. A violation of a performance constraint results in
a penalty. The performance degradation of an application with
actual performance papp can be defined in various ways, e.g.:

papp
degr =


papp

target−p
app

papp
target−p

app
unusable

, linear,(
papp

target−p
app

papp
target−p

app
unusable

)2
, quadratic,

A exp
(

papp
target−p

app

papp
target−p

app
unusable

)
−A, exponential,

where A = 1
exp(1)−1 .

The cost of QoS violations of an application with a perfor-
mance degradation papp

degr is then defined as follows:

capp
q =


0, if papp ≥ papp

target,

λapp, if papp ≤ papp
unusable,

λapppapp
degr, otherwise,

where λapp is the cost of QoS violation for the studied
application.

C. Electricity Costs
The electricity cost consists of two parts:

• the cost of energy consumed by the data center over
the billing period T , ce = ε

∑
t∈T P

dc(t), where ε is
a unit cost per Wh; and

• an additional cost proportional to the peak power
draw by the data center during that period, cp =

πmaxt∈T P
dc(t), where π is a unit cost per W of

peak power consumption [26].

The total cost of electricity equals cE = ce + cp.

D. Optimization

Finally, we formulate the optimization model as follows:

minimize
J∑

j=1

cjq + cE (4)

subject to P dc ≤ P dc
limit (5)

∀iP serveri ≤ P serveri
limit , (6)

where cjq is the QoS cost for application j.

The goal of the optimization is to minimize the sum of QoS
violation costs aggregated over all J hosted applications and the
electricity cost (Eq. 4). While, the power consumption of the
data center cannot exceed the data center power limit (Eq. 5)
and the power consumption of each server cannot exceed the
server power limit (Eq. 6).

IV. MODEL IMPLEMENTATION IN CLOUDSIM

After defining the requirements for the QoS-aware power
budgeting models in the previous section, we have analyzed the
models available in the original CloudSim and identified what
needs to be extended in order to simulate intended metrics.

A. Limitations of the Original CloudSim Models
The original CloudSim provides an abstract power con-

sumption implementation (PowerModel), which allows its
extension to support different power consumption models [11].
DVFS extension applied Linear power model [23] and in
recent releases, CloudSim incorporates more energy models,
such as: Square, Cubic, Square root and Linear
interpolation [27].

Although CloudSim supports the development of custom
application service models (by extending Cloudlet), its
original implementation provides a type of application which is
assigned with a pre-configured processing capability, in MIPS
(million instructions per second) [11], following the batch
job model. Hence, simulation of application at request-level,
more specifically latency-sensitive services, are not supplied
by default.

For power budgeting simulation, we extend infrastructure
power and application performance models, as well as, opti-
mization capabilities.

B. Data Center Infrastructure
Extensions to the original CloudSim infrastructure

power models cover three levels of the infrastructure: CPUs
(PowerModelRapl), servers (PowerHostWithBudget),
and the whole data center (PowerDatacen-
terWithBudget). At CPU level, we add support for
modelling RAPL capabilities. Power limits are specified at
data center and server level. Power budgets are supported at
all levels.



C. Application Performance and Cost
The extended simulation model adds application perfor-

mance awareness by allowing characterization of a wider
range of application types, capturing power budget, application
performance, and QoS violation cost relationships.

PowerPerformanceAwareCloudlet extends the
original Cloudlet with capabilities to model applications
with varying workload and limited power budget.

PowerPerformanceModel calculates the application
performance based on the captured application models. Appli-
cation performance degradation can be modelled using various
functions: step, linear, exponential, and sigmoid,
using appropriate model parameters (P app

min , a, b, c, d).

PerformanceCostModel computes QoS violation cost
based on the previously calculated application performance
level papp, user-defined performance thresholds indicating the
target papp

target and unusable papp
unusable performance levels, as well

as, the penalty value λ. Various functions are available to
model the dependency between the application performance
degradation and QoS violation cost: linear, quadratic,
and exponential.
D. Optimization Algorithms

In our model, we support three power budget techniques:
server power capping, power shifting and data center power
budget adjustment. The model provides abstract classes, which
can be extended in order to implement a specific algorithm
to be evaluated. To showcase the simulator capabilities, we
have implemented multiple algorithms for all these techniques,
details are presented in Section V-A.

ServerPowerCappingController allows
distribution of a given power budget among hosted
cloudlets. ClusterPowerShiftingController enables
distribution of a given power budget among servers.
DataCenterPowerBudgetController is used for
adjusting the power budget of the whole data center. Moreover,
our implementation supports tracking the optimization time
for future analysis, e.g., of the algorithm scalability.
E. Model Validation

Before using the simulator to evaluate power budgeting
algorithms, we validate our simulation model against a real
deployment on a small scale testbed. We perform the validation
using three servers with Intel Xeon E5-2620 v2 processor, which
supports RAPL and consists of 2 CPU sockets, each with 6 CPU
cores. The idle CPU socket consumes approximately 17.5 W.
We note that both the original CloudSim and our extension
allow modeling and simulation of heterogeneous infrastructures,
but in this validation we use only one CPU model.

Simulated application performance metrics depend on the
application type. For the batch jobs, the most important
characteristic is the completion time, while for the latency-
sensitive services the tail response time is crucial. Below, we
describe the model validation method and results for both types
of applications.

Batch Job Model. To evaluate the batch job simulation
model, we run the following experiment on our testbed and in
the simulator. We execute five instances of SysBench, a CPU
intensive application that performs prime number computations.
In this experiment we verify which numbers up to 100 000 are
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Fig. 1. Power consumption of five SysBench instances in testbed and in
simulation. Power consumption values are stacked on each other.

prime numbers using six simultaneous threads. Each SysBench
instance is pinned to a different CPU socket and initially all
sockets are assigned an equal power budget of 22 W. The
first SysBench instance is initiated after 15 s and subsequent
instances are started with a delay of 10 s. At time 85 s the
socket power budgets are changed to different levels (22, 25,
27, 30, and 35 W), what affects their execution times. We
record the power consumption of each CPU socket using
RAPL monitoring capabilities and register job completion times.
The experiment is completed when the last instance finishes.
Figure 1a shows the power consumption over the testbed
run. Next, we model and simulate this scenario in CloudSim.
Figure 1b shows the simulated experiment. Finally, we compare
the simulated execution times and power consumption against
the testbed run. The average error for execution time is 4%
and the error for the total power consumption is 5%.

Latency-Sensitive Service Model. For validation of the
latency-sensitive service model we use Web Search benchmark
application from CloudSuite that builds on the Apache Solr
search engine framework. Since in the simulation we directly
use PowerPerformanceModel to obtain the application
performance level, here we validate the precision of the
captured model. During each experiment run, we pin the server
application to a single CPU socket, set the power budget
of that socket, and execute the benchmark. We repeat the
experiment for 10 power budget levels between 22 and 31 W.
Figure 2 shows how the application performance and socket
power consumption change with the power budget. We model
the application performance using an exponential model and
the power consumption using a piece-wise linear model. The
average difference for response time is 0.04 s and the mean
error for power consumption is 3%.

V. EVALUATION OF THE SIMULATOR
This section evaluates some aspects of the simulator

extension. It also demonstrates how the extended simulator can
be used by researchers and data center operators to evaluate
and compare various power budgeting strategies.

A. Algorithms for Power Budgeting
First, we describe a set of algorithms for power budgeting

that we have used to present the capabilities of the proposed
CloudSim extension. The algorithms support single server
power capping, power shifting among servers, and adjusting
the data center power budget.
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Fig. 2. Models of Web Search (a) performance and (b) power consumption.
Circles represent the observed values and lines show the derived models.

Power Capping. For single server power capping we use
three algorithms: even distribution that gives each application
identical power budget: P app

budget ←
P server

budget

J server ; proportional distri-
bution that divides the server power budget considering the
requested application power budget: P app

budget ←
P server

budget

Rserver
budget

Rapp
budget;

and ALPACA that minimizes the server operational costs (QoS
violations and electricity costs): min

∑J server

j=1 cjq + cE.

Power Shifting. For data center power shifting we use three
algorithms: even distribution that gives each server identical
power budget: P server

budget ←
P dc

budget

J ; proportional distribution that
divides the data center power budget considering the requested
server power budget (sum of the requested power budget of
all hosted applications): P server

budget ←
P dc

budget

Rdc
budget

Rserver
budget; and Power

Shepherd that minimizes the data center operational costs (QoS
violations and electricity costs): min

∑I
i=1 c

i
q + cE.

Adjusting Data Center Power Budget. For this showcase
we use an algorithm that sets the data center power budget
at a fixed value based on the power limit P dc

limit and a given
constant α, i.e. P dc

budget ← αP dc
limit. More sophisticated algorithms

can be used for adjusting the data center power budget over the
experiment time in response to the varying electricity prices or
based on the historical statistics regarding the electricity usage
and workload predictions, e.g., using Cumulative Distribution
Functions (CDFs) of power consumption.

B. Simulator Capabilities
To show the capabilities of the extended simulator, we

model and execute a scenario with a mix of latency-sensitive
applications and batch jobs. We simulate application execution
optimized with various algorithms: a) even power capping
and even power shifting, b) proportional power capping and
power shifting, and c) ALPACA for power capping and Power
Shepherd for power shifting. The extension is capable of
recording varying metrics over the experiment time, as well
as, calculating aggregated metrics summarizing the whole
experiment.

Figure 3 shows the power budget assigned to each cloudlet
by the optimization algorithms (top row), the cloudlet per-
formance achieved at the given power budget level (middle
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Fig. 3. Selected cloudlet metrics recorded over the simulation time. Values
of power budgets assigned to each cloudlet shown in the top row are stacked,
while the cloudlet performance and application cost metrics are presented as
absolute values.

TABLE I
SELECTED METRICS SUMMARIZING THE SIMULATION RUN

Metric Even Proportional ALPACA + PS

Peak Power [W] 70.0 67.9 68.3
Total Energy [Wh] 1.29 1.17 1.30

QoS Cost [$] 2043 1559 417
Electricity Cost [$] 71 69 70

Total Cost [$] 2114 1628 487

row), and the application cost (bottom row). These kinds of
visualizations help to understand the behaviour of applications
in response to the optimization actions.

In Table I we show some of the aggregated metrics that are
reported by the simulator. They are part of the simulation model
introduced in Section III and show elements that contribute
towards the data center operational costs. These kinds of
summaries help to evaluate the effectiveness of optimization
strategies and compare different strategies against each other.

C. Simulator Scalability
Finally, we evaluate the scalability of the extended simulator

by performing the following experiment. We simulate a data
center consisting of 10–10 000 servers with 4–8 applications
hosted on each server (each application is deployed in a separate
virtual machine).

For each data center size we simulate the execution of
applications optimized with various algorithms: a) even power
capping and power shifting, b) proportional power capping and
power shifting, and c) ALPACA for power capping and Power
Shepherd for power shifting. The amount of simulated work is
constant within each data center size, but the time elapsed in
simulation varies between 66 and 143 seconds, depending on
the number of applications and optimization method.

In order to ensure that our implementation handles different
data center configurations, several experiments were conducted
using the simulation platform, focusing on addressing proposed
power budget algorithms. These algorithms were tested for
different number of servers and VMs, as depicted in Table II.
Each VM receives only one application instance to execute and
has one CPU (Processor Element) to run it.



TABLE II
SCALABILITY EVALUATION OF THE EXTENDED SIMULATOR

Servers Apps Total Execution Time [s] Optimization Time [s]

Even Prop. A + PS Even Prop. A + PS

10 40 0.08 0.07 7.08 0.01 0.01 7.01
10 80 0.21 0.20 81.66 0.01 0.01 81.55

100 400 0.36 0.37 46.11 0.01 0.01 45.82
100 800 1.12 1.15 825.52 0.01 0.01 824.75

1000 4000 3.12 3.28 429.11 0.02 0.01 426.41
1000 8000 13.42 13.82 7570.08 0.02 0.02 7557.92

10000 40000 339.43 339.04 4650.94 0.13 0.13 4309.31
10000 80000 1115.81 1114.12 – 0.15 0.12 –

Table II shows the scalability of the extended simulator. For
each combination of data center size (defined by the number
of servers and the number of applications) and optimization
method, we report the total execution time and optimization
time. Optimization time is the accumulated time that the
simulator spent on running algorithms for power capping and
power shifting. We did not manage to obtain results for the
biggest instance with ALPACA and Power Shepherd due to
memory and time constraints (the simulation of one minute
experiment will take approximately 22 hours). It is worth
noting that the total time spent performing Even and Prop.
optimizations was less than 1% of total execution time, and
A+PS was 98%, on average. However, the simulation execution
follows the sequential execution and in real deployment the
power capping algorithms will be running on all servers in
parallel. Moreover, we report times for the initial step of
simulation when we run power capping algorithm for every
server. In a long-lasting scenario, the optimization will not be
executed at every server at the same time, but only in response
to change of the server power budget or application workload.

VI. SUMMARY

In this paper, we have proposed a model for QoS-aware
power budgeting and implemented it in a well-established cloud
simulator–CloudSim. We have validated the simulation model
against the real testbed and achieved high precision with the
error not exceeding 5% for both application performance and
power consumption. We have also shown the capabilities of the
simulator by comparing multiple algorithms for power capping
and power shifting. The scalability evaluation has shown that
the extended simulator can handle large-scale experiments in
a reasonable time. We believe that the proposed extension
will be useful for development, evaluation, and comparison of
various power budgeting strategies.
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