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Abstract

Part 1. Topology optimization is the most general form of design optimization in
which the optimal layout of material within a given region of space is to be deter-
mined. Filters are essential components of many successful density based topology
optimization approaches. The generalized f1W/-mean filter framework developed
in this thesis provides a unified platform for construction, analysis, and implemen-
tation of filters. Extending existing algorithms, we demonstrate that under special
albeit relevant conditions, the computational complexity of evaluating generalized
fW-mean filters and their derivatives is linear in the number of design degrees of
freedom. We prove that generalized f1¥/-mean filters guarantee existence of solu-
tions to the penalized minimum compliance problem, the archetypical problem in
density based topology optimization. In this problem, the layout of linearly elastic
material that minimizes the compliance given static supports and loads is to be de-
termined. We formalize the connection between mathematical morphology and the
notion of minimum length scale of a layout of material and thereby provide a theoret-
ical foundation for imposing and assessing minimum length scales in density based
topology optimization. Elaborating on the fact that some sequences of generalized
fW-mean filters provide differentiable approximations of morphological operators,
we devise a method capable of imposing different minimum length scales on the two
material phases in minimum compliance problems.

Part II. The notion of Friedrichs systems, also known as symmetric positive systems,
encompasses many linear models of physical phenomena. The prototype model
is Maxwell’s equations, which describe the evolution of the electromagnetic field
in the presence of electrical charges and currents. In this thesis, we develop well-
posed variational formulations of boundary and initial-boundary value problems of
Friedrichs systems on bounded domains. In particular, we consider an inhomoge-
neous initial-boundary value problem that models lossless propagation of acoustic
disturbances in a stagnant fluid. Galbrun’s equation is a linear second order vector
differential equation in the so-called Lagrangian displacement, which was derived to
model lossless propagation of acoustic disturbances in the presence of a background
flow. Our analysis of Galbrun’s equation is centered on the observation that solu-
tions to Galbrun’s equation may be formally constructed from solutions to linearized
Euler’s equations. More precisely, the Lagrangian displacement is constructed as the
solution to a transport-type equation driven by the Eulerian velocity perturbation.
We present partial results on the well-posedness of Galbrun’s equation in the partic-
ular case that the background flow is everywhere tangential to the domain boundary
by demonstrating mild well-posedness of an initial-boundary value problem for lin-
earized Euler’s equations and that our construction of the Lagrangian displacement
is well-defined. Moreover, we demonstrate that sufficiently regular solutions to Gal-
brun’s equation satisfy an energy estimate.



Popularvetenskaplig sammanfattning

Del 1. Malet med topologioptimering ar att bestimma den béasta utformningen av
ett givet material. Ett klassiskt exempel, illustrerat i Figur 1a, gar ut pa att fran en
given mangd stal utforma en sa styv konsolbalk som mojligt.

Ett mojligt, men mycket resurskravande, tillvigagangssatt for att hitta en "bra” ut-
formning ar att tillverka en stor uppsattning konsolbalkar av ritt mangd stal, men
med olika utformningar, och sedan experimentellt bestimma vilken som ar bast, det
vill sdga styvast. Processen kan sedan upprepas med en ny uppsittning konsolbal-
kar, som utformats med utgangspunkt i foregdende omgéangs vinnande utformning,
tills det att prestandan ér tillfredstéllande eller att resurserna tagit slut.

En annan mojlighet ar att nyttja matematiska berakningsmodeller och datorsimu-
leringar for att utvirdera virtuella utformningar av konsolbalkar. Annu béttre blir
det om vi inte bara anvdnder den matematiska modellen till att utvardera virtuella
utformningar, utan aven till att systematisk foresla prestationsforbattrande forand-
ringar av givna virtuella utformningar. Denna virtuella designprocess som innefat-
tar matematiska berdkningsmodeller, optimeringsalgoritmer och datorsimulering-
ar kan kallas berakningsbaserad konstruktionsoptimering.

Innan konsolbalkens utformning kan optimeras av en dator med begransade re-
surser maste problemet diskretiseras, sa att antalet upptinkliga utformningar be-
gransas. Antalet utformningar begransas vanligen genom att det gra omradet i Fi-
gur la indelas i ett rutndt med andligt antal rutor som antingen kan innehalla stal
eller vara tomma, sa som illustreras i Figurerna 1b och 1c. Malet med optimeringen
blir da helt enkelt att bestimma vilka rutor som ska innehalla stél och vilka som ska
vara tomma.

Vad héander da om rutnitet forfinas? Jo, antalet upptéankliga utformningar vixer
mycket snabbt med antalet rutor i rutnatet. Och allt som oftast konvergerar inte den
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Figur 1: (a) I vart exempel efterfragas den optimala utformningen av en konsolbalk som ar fast
vid en vigg i ena dnden och belastad i motstdende dnde. (b) For att kunna optimera konsolbal-
kens utformning med hjélp av en dator, diskretiseras problemet med hjalp av ett rutnit sa att
malet med optimeringen blir att bestimma vilka rutor som skall innehalla stal. (c) Exempel
pa utformning av en konsolbalk dar rutor innehallande stal svartfargats.
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240 x 160 = 38 400 rutor 360 x 240 = 86 400 rutor
480 x 320 = 153 600 rutor 600 x 400 = 240000 rutor

Figur 2: En f6ljd konsolbalksutformningar som optimerats med samma férutsattningar men
med allt finare rutnat. Som tidigare indikeras stal av svartfirgade rutor. Notera sarskilt att
finare rutnat leder till att det uppkommer fler och mindre detaljer i den optimerade utform-
ningen.

optimerade utformningen, utan varje forfining av rutnétet leder till uppkomsten av
finare strukturer och urtag, s som illustreras i Figur 2.

Bristen pa konvergens belyser ett fundamentalt problem med den ursprungliga
formuleringen av optimeringsproblemet, ndmligen att det saknas losningar. Situa-
tionen ar inte helt olik den som uppstar nar man stiller upp problemet:

(i) Vilket dr det minsta talet pd tallinjen som dr stérre dn 0?

Svaret dr att det inte finns nagot sadant tal, eftersom det givet ett tal som ar storre
an 0 alltid gér att hitta ett mindre—det ar bara att ta talet som ligger mittemellan 0
och det givna talet pa tallinjen. Pa facksprak sdger man att problemet ar felstallt. For
att komma vidare maste vi helt enkelt omformulera problemet. Vi har i huvudsak att
valja mellan féljande formuleringar:

(ii) Vilket dr det minsta talet pd tallinjen som dr stérre dn eller lika med 0?
(iii) Vilket dr det minsta talet pd tallinjen som dr stérre dn eller lika med 1?

Notera att valet av talet 1 i formulering (iii) ar helt godtyckligt, men ju mindre tal
(storre an 0) vi valjer, desto ndrmre kommer vi den ursprungliga formuleringen (i).
Formulering (ii) r en sa kallad relaxering av den ursprungliga formuleringen (i),

vi



(iii)
(i) e
(D) o

0 1 2 3 4 5 6 7 8 9 10

Figur 3: Illustration av de tre formuleringarnas mangder av mojliga 16sningar. Fylld cirkel
indikerar att &ndpunkten ingar, ofylld att den ej ingar. Formulering (ii) ar en relaxering av
formulering (i) medan formulering (iii) 4r en restriktion.

medan formulering (iii) ar en restriktion. Vid relaxering utvidgas mangden i vilken
16sningen soks, medan restriktionen innebar att mangden av mojliga 16sningar istél-
let begransas. Figur 3 visar grafiskt hur de tre formuleringarnas mangder av méj-
liga 16sningar forhaller sig till varandra. Vi finner att 16sningen till formulering (ii)
ar 0, vilken inte ingar i den ursprungliga formuleringens mangd av méjliga 16sningar.
Losningen till formulering (iii) ar 1, vilken ingdr i den ursprungliga formuleringens
mangd av mdjliga 16sningar. [ det har enkla exemplet spelar det kanske inte sa stor
roll att 0 inte ingar i den ursprungliga mangden av mojliga I6sningar, men i vart kon-
solbalksoptimeringsproblem skulle en relaxering resultera i att mangden av majli-
ga losningar utdkas med utformningar som ar i det nirmaste omojliga att tillverka
eftersom de innehaller mikrostrukturer. Vi valjer darfor att gora en restriktion av
konsolbalksoptimeringsproblemet genom att introducera ett filter, vars roll ar att
begransa mangden upptankliga utformningar.

[ denna avhandling anvands filter som harmar sa kallade morfologiska operatorer
som forst utvecklades for bildbehandling. Dessa begransar hur sma strukturer och
urtag som tillats i konsolbalkarna oberoende av rutornas storlek. Pa sa satt forhind-
ras uppkomsten av for sma strukturer eller urtag nir rutnéatet forfinas. Anvandning-
en av filter som harmar morfologiska operatorer kan liknas vid effekten av att endast
anvanda pennor med en viss storlek for att rita utformningarna. Pennstorleken kon-
trollerar utformningarnas detaljrikedom—en tunn penna kan rita finare detaljer 4n
vad en tjock penna kan. Dock leder en begransning av antalet detaljer, det vill sdga
en stdrre penna i var liknelse, till simre prestanda i form av minskad styvhet vilket
illustreras i Figur 4. For topologioptimeringsproblem finns det alltsa anledning att

100 % styvhet 99 % styvhet 98 % styvhet

Figur 4: Konsolbalksutformningar som optimerats med 768 x 512 = 393 216 rutor och filter
som hiarmar morfologiska operatorer. De bla cirkelskivorna indikerar den minsta storleken pa
strukturer och urtag som tillats av filtren. Styvheten anges relativt den vanstra utformningens
styvhet.
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vaga utformningarnas prestanda mot deras komplexitet vid valet av "penna”, det vill
saga filter.

I avhandlingens forsta del introduceras ramverket for generaliserade 1/ -medel-
vardesfilter, som erbjuder en plattform for enhetlig analys av savil nya som en ma-
joritet av redan existerande filter. Nedan presenteras ett urval av resultaten fran av-
handlingens forsta del.

¢ Vi ger ett matematiskt bevis for att restriktionen med hjilp av generalisera-
de fW-medelvardesfilter av konsolbalksoptimeringsproblemet och liknande
topologioptimeringsproblem &r losbara.

¢ Vi presenterar och utvecklar berdkningseffektiva filtreringsalgoritmer for ge-
neraliserade fW-medelsvardesfilter som ar lampade for storskaliga topologi-
optimeringsproblem.

¢ Vi klargor kopplingen mellan morfologiska operatorer och den minsta storle-
ken pa en utformning.

« Vi presenterar en metod for konsolbalksoptimeringsproblemet och liknande
topologioptimeringsproblem som oberoende begransar de minsta storlekar-
na pa strukturer och urtag i utformningarna med hjélp av generaliserade fV-
medelvardesfilter som harmar morfologiska operatorer.

¢ Videmonstrerar anvandbarheten av ramverket for generaliserade f1W-medel-
vardesfilter i utmanande, realistiska problem genom att utveckla en filterstra-
tegi for topologioptimering av en koaxial-vagledar-dvergang.

Del 2. I del 1 stotte vi pa begreppet felstillt problem som naturligt vacker fragan
om vad som &r ett rdttstdllt problem? Enligt Jaques Hadamard, som introducerade
begreppet rittstilldhet i bérjan av nittonhundratalet, ar ett problem rattstallt om
det finns en unik l6sning som inte dndras oberadkneligt vid sma férandringar av for-
utsdttningarna (problemformuleringen). Den typ av problem vi har i dtanke i del 2
handlar om att forutspa fysikaliska skeenden fran givna forutsittningar. Den del av
Hadamards karaktarisering av rattstalldhet som handlar om 16sningens kanslighet,
paverkar mojligheten att noggrant l6sa problemet med hjilp av en dator. Innan pro-
blemet kan 16sas med hjélp av en dator med dndliga resurser maste det diskretiseras,
precis som i fallet med konsolbalksoptimeringsproblemet. Det diskreta problemet ar
oftast l6sbart, men diskretiseringen innebar nastan oundvikligen att forutsattning-
arna (problemformuleringen) dndras, sd om det ursprungliga problemet inte ar ratt-
stallt, ar det troligt att den berdknade 16sningen ar mer eller mindre oanvandbar. Det
ar darfor onskvart att, om mojligt, forsakra sig om att problemet ar rattstallt innan
det diskretiseras och l6ses med hjalp av en dator.

Mdanga ekvationer som beskriver fysikaliska skeenden kan formuleras som sa kal-
lade Friedrichssystem. Som exempel kan ndmnas Maxwells ekvationer som beskri-
ver det elektromagnetiska faltet, eller ekvationerna som beskriver ljudutbredning
i luft. Ljud bestar som bekant av fértunningar och fortdtningar som propagerar ge-
nom luften. Oftast antas att ljudutbredningen sker i stillastaende luft, men den som
lyssnat pa en utomhuskonsert i byiga vindar har sakerligen inte undgatt att notera
vindens paverkan pa ljudet. I borjan av 1930-talet formulerade fransmannen Henri
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Galbrun en ekvation som modellerar ljudutbredningen med hénsyn till vinden, till
exempel vid utomhuskonserter eller i narheten av flygplan eller vindkraftverk. Det
ar intressant att veta att Galbruns ekvation dven tillimpas pa nagot sa utomjordiskt
som vagrorelser i solen.

Galbruns ekvation, som egentligen utgors av ett system av tre ekvationer, harleds
fran Eulers sex ekvationer, som beskriver vétskor och gasers rorelser. Som standar-
dalternativ till Galbruns ekvation finns lineariserade Eulers ekvationer. Det finns,
forutom reduceringen fran sex till tre ekvationer, ett antal skal till att Galbruns ek-
vation ar intressant. Ett dr att 16sning av Galbruns ekvation inte direkt ger oss ljud-
faltet, utan det sa kallade Lagrangeiska forskjutningsfaltet, fran vilket alla delar av
ljudféltet kan berdknas. Ett annat skal ar att formuleringen i det Lagrangeiska for-
skjutningsfaltet forenklar hanteringen av randvillkor. Randvillkor ar sadana villkor
som lésningen maste uppfylla vid de ytor, dven kallade rdnder, som begrinsar berak-
ningsomradet. Vissa randvillkor ar av fysisk karaktar, till exempel vid vaggar, golv
och tak i ett rum som reflekterar ljudet, medan andra ar mer artificiella, till exem-
pel de som satts i en dorréppning dar man antar att ljudet obehindrat kan passera
ut ur rummet utan att reflekteras. Syftet med de artificiella rainderna ar att begran-
sa berdkningsomradet och darigenom berdkningskostnaden. For Friedrichssystem i
allmanhet ar hanteringen av randvillkor komplicerad. Ndgra allmanna resultat anga-
ende rattstalldheten av Galbruns ekvation finns inte i den vetenskapliga litteraturen,
och de resultat som finns berdr i huvudsak olika utvidgningar dar ekvationen modifi-
erats. Kant ar dock att naiva forsok att diskretisera och sedan 16sa Galbruns ekvation
med hjalp av en dator har misslyckats.

Den andra delen av denna avhandling analyserar rattstélldhet for ett antal Fri-
edrichssystem, i synnerhet system som modellerar ljudutbredning. Nedan presen-
teras ett urval av resultaten fran andra delen.

o Vi utvecklar rattstillda variationsformuleringar? for tre olika exempel pa Fri-
edrichssystem, bland andra ett system som modellerar ljudutbredning i stilla
luft.

« Vi presenterar en alternativ hirledning av Galbruns ekvation, i vilken det Lag-
rangeiska forskjutningsfaltet definieras fran en losning till lineariserade Eu-
lers ekvationer. Harledningen belyser pa sa satt mojligheten att konstruera
l16sningar till Galbruns ekvation fran l6sningar till lineariserade Eulers ekva-
tioner.

» Vipresenterar delresultat angaende rattstilldheten av Galbruns ekvation i fal-
let dd vinden inte korsar berdkningsomradets rander, genom att visa att line-
ariserade Eulers ekvationer ar rattstéllda och att var konstruktion av det Lag-
rangeiska forskjutningsfaltet ar valdefinierad.

2Variationsformuleringar anvinds ofta for att generera diskretiseringar som lampas for 16sning med
hjalp av datorer.
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Notations and conventions

Measure symbols are omitted from integrals whenever the type of measure (volume,
surface, or line measure) is evident from the domain of integration.

R = RU {—00, 0} denotes the extended real numbers.

Let M C R4

ME = R4 \ M denotes the complement of M.

rM = {x € R¢ | r~'z € M} denotes the scaling of M by r # 0.

r+ M = {x € RY| m — x € M} denotes the translation of M by z € R

x m denotes the indicator function of M, that is,

1 ze M,
0 x=¢ M.

xum(z) =

If M is Lebesgue measurable, then | M| :/XM denotes the Lebesgue measure of M.

Rd

For f : [0,1] = Rand p = (p1,p2,.-.,pn)T € [0,1]" C R", we define f : [0,1]" —
R" by f(p) = (f(p1), f(p2),- -, fF(pu))T

1, =(1,1,....,1)T e R,






Part 1
The f1V-mean Filter Framework
for Topology Optimization






1. Computational design optimization

Successful hardware designs strike a balance between functionality and aesthetics,
adhere to hardware specifications, and are producible at reasonable costs. In case
there are many possible designs that satisfy the hardware specifications, it is natu-
ral to strive for one that is optimal in some desirable sense. This thesis focuses on
design problems where the desired performance is measured by an objective func-
tion, which may depend explicitly or implicitly on some design defining parameters.
In particular, we consider so-called computational design optimization problems for
which the performance of the considered device can be accurately predicted and
optimized by numerically evaluating and extremizing the objective function with re-
spect to the design parameters.

The strategy of most optimization algorithms is to improve the performance grad-
ually by iteratively updating the design. In fact, design optimization methods are
often classified by the complexity of their update. Sizing optimization is the simplest
form of design optimization in which the sizes of the constituent parts of a given con-
figuration are optimized. A design optimization method that does not only optimize
the sizes of the constituent parts of a given device but also their shapes is classified
as boundary shape optimization. In this thesis, we consider topology optimization,
which by far is the most general form of design optimization, in which the size, shape,
and connectedness of the device are subject to optimization.



2. Density based topology optimization

The aim of topology optimization algorithms is to find a layout of material that maxi-
mizes a given performance measure. Over the years, different topology optimization
approaches that result from different ways of representing the layout of material
have been proposed [23, 54].

In this thesis, we consider density based topology optimization in which the layout
of a single material in a given design domain 2 C R? is represented by the material
indicator function

p:Q—{0,1}, (2.1)

as illustrated in Figure 5. Density based topology optimization of linearly elastic

Figure 5: In density based topology optimization the layout of material is represented by the
indicator function p : Q@ — {0, 1}.

structures has its roots in the work of Bendsge & Kikuchi [3], and a comprehensive
account of the subject is given in the monograph by Bendsge & Sigmund [4]. The
standard approach used to discretize topology optimization problems is to partition
the design domain €2 into n € N elements using a Cartesian grid and introduce a
design vector p € {0,1}"™ that indicates the presence or absence of material at each
element. For 2D design domains, it is customary to visualize the design vector as
a binary image by interpreting each element ¢ as a pixel, which is either black or
white depending on the value of p;. The approximate solution to the design problem
satisfies the integer optimization problem

min J(p) subjectto C(p) < 0, (2.2)
pe{0,1}"

where J : {0,1}" — R is the (discretized) objective function! and C : {0,1}" —
R™ encodes m > 0 constraints on the design vector. In the applications considered
in this thesis, the objective function is evaluated by computer simulations. Unfortu-
nately, problem (2.2) is computationally intractable for most realistic design prob-
lems as the number of design variables n > 1, even more so if the design problem

Ut is standard practice to employ a minimization formulation of the design problem, but note that a
maximization formulation could be obtained by changing J to —J.



should be solved to global optimality. If the (discretized) objective and constraint
functions extend to differentiable functions on [0, 1]™, problem (2.2) may be relaxed
by allowing design vectors with intermediate values p € [0,1]",

min J(p) subjectto C(p) < 0, (2.3)
pEe[0,1]™

where J and C now refer to the extended objective and constraint functions. In
this context, it is common to refer to the relaxed design vector as the density. The
relaxed optimization problem (2.3) has the advantage that it often can be (approx-
imately) solved by employing gradient based optimization algorithms, which can
be constructed to efficiently handle many design variables. However, in most cir-
cumstances, the relaxation comes at a cost. Namely, at convergence of the optimiza-
tion algorithm, the design vector is likely to be non-binary and only locally optimal.
There are techniques intended to prevent the optimization algorithm from converg-
ing to badly performing local optima. In general, non-binary designs are difficult
to interpret and may even be unphysical. Nevertheless, in some cases, intermedi-
ate values can be shown to represent the effective behavior of materials with mi-
crostructures. This thesis, however, considers only methods that attempt to min-
imize the amount of intermediate values p; € (0, 1) by implicit or explicit penal-
ization. Unfortunately, the (approximate) solutions to the penalized-relaxed opti-
mization problem typically depend strongly on the particular partition of the design
domain and fail to converge when the partition is refined. It is important to note that
such mesh-dependence is also present in the original binary topology optimization
problem (2.2). A number of different strategies have been devised to counter the
issue of mesh-dependence [14]. The most popular strategy has been to introduce a
regularizing (density) filter operator

F:[0,1]" — [0,1]" (2.4)

and replace the extended objective and constraint functions with J o F and C o F,
respectively. We note that the effect of replacing the extended objective and con-
straint functions is similar to that of restricting the design vectors to be in the image
F(]0,1]™). In general, the quantity F'(p) is preferably used as the manufacturing
blueprint and is therefore often referred to as the physical design in the literature.



3. The minimum compliance problem

The prototype problem in density based topology optimization is to determine the
layout of a linearly elastic structure of given volume, which is subject to static sup-
ports and loads, so that the compliance is minimized. Although the precise definition
of compliance will be given later, we note that compliance is an inverse measure of
stiffness, so minimizing the compliance is a way of maximizing the stiffness of the
structure.

Elastic materials deform under loads but resume their unloaded form when the
load is removed. Many solid construction materials are linearly elastic for small de-
formations, that is, load-induced deformations depend linearly on the applied load.
The linear relationship between deformation and stress is expressed in Hooke’s law

o = Fe, (3.1)

where ¢ denotes the symmetric second order stress tensor, E the fourth order elas-
ticity tensor, and ¢ the symmetric second order (infinitesimal) strain tensor. The
elasticity tensor obeys the symmetries [32, § 29]

Eijri = Ejir = Eijjie = B (3.2)
Given the stress tensor, the force that acts on any part ) of a linear elastic body in
static equilibrium is given by
f =— /Jn, (3.3)
a0

where n denotes the outward unit normal to the boundary 9. The infinitesimal
strain tensor measures the local deformation and is given by the formula

1
€= §(Vu + Vaul), (3.4)

where u denotes the displacement vector field, which is such that x 4 u(x) gives the
location in the deformed body of material located at x in the undeformed body.

The equilibrium displacement field u of a finite linearly elastic body 2 C R¢ that
is clamped along the boundary part I', satisfies the variational equation

a(u,v) = /e(v) : Ee(u) = /v b+ /v -t =:1(v), (3.5)
Q =o(u) Q OO\T'p

where v is any sufficiently regular vector field that vanishes on I'p, €(v) : o(u) =
o(u):e(v) = >, 0i5(u)ei;(v), and band ¢t are the volume and surface force densities
of the forces acting on the body, respectively. Equation (3.5) is a variational form of
the static equilibrium equations, expressing balance of forces for any sub-body, suit-
able for mathematical analysis and computation. In fact, equation (3.5) will be the
basis for defining the equilibrium displacement field. To that end, we assume that
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the region occupied by the (unloaded) body  C R? is open, bounded, connected,
and lies locally on one side of its Lipschitz continuous boundary 92, I'p, C 09 is
nonempty and open, and we introduce the Hilbert space of kinematically admissi-
ble displacement fields

U={ue H Q) |u=00nTp}, (3.6)

equipped with the norm || - || := [ - | 1 (). To make the integrals in equation (3.5)
well-defined for u, v € U, we assume that F is essentially bounded, b € LQ(Q)d, and
t € L?(0Q\ I'p)?. Moreover, we assume that E is positive definite in the sense that
there exists a constant C; > 0 such that, for any symmetric constant second order
tensor S,

S:ES > (1S : S almost everywhere in (2. (3.7)

Since F is essentially bounded and positive definite (3.7), it follows from Korn’s in-
equality [22, Thm. 6.15-4] that the bilinear form a : &/ x U — R in expression (3.5)
is bounded and coercive. That is, there are constants Cy and C'5 > 0 such that, for
any u,v € U,

la(u, v)| < Callullulvlu, (3.8)
a(u,u) > Cslull. (3.9)

Moreover, the assumptions on b and ¢ imply that the (load) linear form [ : &/ — Ris
bounded; that is, there is some constant Cy such that, for any u € U,

1(w)] < Cyllulfe- (3.10)

Employing the Lax-Milgram lemma [22, Thm. 6.2-1], we conclude that the equilib-
rium displacement u is well-defined as the solution to the following variational prob-
lem.

Find u € U such that equation (3.5) holds for all v € U. (3.11)

The compliance of a linearly elastic structure is defined as the total work per-
formed by the applied forces, {(u), where [ is the linear form defined by the expres-
sion in equation (3.5) and w the unique equilibrium displacement field defined as
the solution to the variational problem (3.11). By the definition of u (3.11), we find

l(uw) = a(u,u). (3.12)

That is, at equilibrium, the work I(u) of the applied forces is proportional the stored
elastic energy £a(u, u). Thus, minimization of the compliance is equivalent to mini-
mizing the stored elastic energy.

Here, we consider topology optimization of the layout of a fixed homogeneous
and isotropic linearly elastic material characterized by the elasticity tensor E;. We
introduce the set of relaxed indicator functions

D={pe L*(Q)]|0<p<1almosteverywhere in Q}, (3.13)

and note that the layout of the fixed material within 2 can be represented by some
p € D such that p € {0, 1} almost everywhere in €. To be precise, regions that are
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occupied with the fixed material correspond to the value p = 1, while void regions
correspond to p = 0. To facilitate the mathematical analysis and computation of
(approximate) solutions to the minimum compliance problem, we approximate void
with a very compliant material with elasticity tensor pF; for some 0 < p <« 1. The
effect of different designs p € D on the compliance is captured by introducing the
parametrized elasticity tensor

E(p) = (p+ (1= p) P(p) Ex (3.14)

in equation (3.5). The rationale behind the penalty operator P : D — D introduced
in expression (3.14) will be described later, and for now we may ignore its effect by
letting P to be the identity operator on D. Note that F(p) is essentially bounded and
satisfies the positivity condition (3.7) for any p € D, since p > 0. Thus, variational
problem (3.11) is uniquely solvable and associates a unique displacement field v €
U toany p € D. Let G denote the corresponding mapping from D to U.

The set of feasible designs .A contains those elements in D that also satisfy addi-
tional constraints, that is,

A={peD|Ci(p) <0VieT} (3.15)

where Z numbers the constraint functionals C; : D — R. Here, we consider the
so-called volume?! constraint

Ci(p) = /p -V <o, (3.16)
Q

which imposes an upper bound V' > 0 on the amount of material within 2. Since
the compliance (3.12) decreases if material is added to a design, it is expected that
a solution p to the minimum compliance problem attains the volume bound V, that
is, C1(p) = 0. The amount of intermediate values p € (0, 1) can be controlled by
introducing the constraint

Ca(p) = /p(l —p) —c2 <0, (3.17)
Q

where ¢ > 0. Note that Cy(p) > —c for any p € D. Thus, if ca = 0, con-
straint (3.17) forces p € {0, 1} almost everywhere in 2. In the presence of the vol-
ume constraint (3.16), the amount of intermediate values may also be controlled by
invoking a penalty operator P in expression (3.14) that makes the contribution to
the stiffness of intermediate densities p € (0, 1) disproportionately small compared
to their contribution to the volume constraint (3.16). For instance, this effect may
be achieved by defining P : D — Dby P(p) = f, o p, where f, : R — R depends on
a real parameter p and whose restriction fy|(o,1] : [0,1] — [0, 1] is smooth, strictly
increasing, and satisfies f,(0) = 0, f,(1) = 1, and f,(s) < sforalls € (0,1). The
SIMP scheme (Solid Isotropic Material with Penalization), which is extensively used
in the literature, results from

fpl[O,l](S) =gP (318)

Lf p € {0, 1} almost everywhere in Q, fQ p gives the volume of the fixed material.




for some p > 1.

By introducing the objective functional J := [ o G : D — R, where, as before,
G : D — U maps any p € D to the corresponding equilibrium displacement v € U,
we may formulate the minimum compliance problem as follows.

Find p* € A suchthat J(p*) < J(p) forany p € A. (3.19)
The following is an alternative formulation of the minimum compliance problem.
Find v* € G(A) such thati(u") < I(u) for any u € G(A). (3.20)

Note that solutions to problem (3.19) exist if and only if solutions to problem (3.20)
exist.

If intermediate values are not penalized, then there are solutions to the minimum
compliance problem and the optimal equilibrium displacement is unique [4, § 5.2.1].
In 2D, this problem is known as the variable thickness sheet problem, since E(p) =
(p+ (1= p) p) Ex may be interpreted as the elasticity tensor corresponding to a
sheet with variable thickness p + (1 — p) p. However, if intermediate values are pe-
nalized (either by imposing constraint (3.17) or by using a suitable penalty operator
P), there are no solutions to the minimum compliance problem.

To resolve the ill-posedness of the penalized minimum compliance problem, we
may restrict the set of feasible designs [13]. Typically, the cost of restricting the set
of feasible designs is a degraded performance of the optimal solutions. In a broad
sense, restricting the problem by bounding the gradient of p is known to resolve the
ill-posedness [14]. A noteworthy example of that general technique is to restrict
the problem by imposing an upper bound on the total variation of the design field,
which bounds the perimeter of the design [48]. An alternative to directly bounding
the gradient of p is to restrict the design field to the image of a suitable filter operator
F : D — D by replacing the objective and constraint functionals with J o F and C; o
F'. Bourdin [16] demonstrated that applying a linear filter operator, defined as the
convolution with a positive, normalized, and compactly supported kernel, resolves
the ill-posedness of the SIMP-penalized minimum compliance problem. The main
theoretical result of Publication II is Theorem 1, which is an extension of Bourdin’s
result to (sequences of) nonlinear filters of the form

F(p) :==goW(fop), (3.21)

where f,g : [0,1] — [0,1] are continuous? and surjective, W : D — D is a linear
integral operator defined by

W(p)(x) = / w(z, y)p(y) dy, (3.22)
Q

where the kernel w :  x Q — R is measurable, non-negative, and normalized,

w > 0 almost everywhere in Q x €, (3.23)

/w(x, y)dy = 1 for almostall x € Q. (3.24)
Q

2In practice, f and g are required to be more regular.



We call filters of the form (3.21) generalized fW -mean filters. If g = f~*, we call
the resulting subclass of filters f1W-mean filters, since these are based on infinite di-
mensional versions of weighted quasi-arithmetic averages, also known as f-means.
Borvall & Petersson [15] suggest yet another strategy that guarantees the existence
of solutions to the penalized minimum compliance problem. Their strategy is to re-
place the constraint functional Cs in the constraint (3.17) by C3 o W, where W is
a linear (filter) operator of the form (3.22), constructed so that Cz(p) < Cy(Wp),
which guarantees proper penalization of intermediate values of the design field.
The standard approach used to discretize the minimum compliance problem is to
make a Cartesian partition of the design domain into n € N equally sized elements?,
and to restrict the relaxed indicator function p to be piecewise constant on the ele-
ments. The piecewise constant p may be represented by the design vector p € [0, 1]™
containing the values of the piecewise constant design field at each of the elements.
Here, we only consider penalization of intermediate values by a penalty operator P
defined via a suitable function f,, such as the function (3.18) that defines the SIMP
scheme. The preferred choice for discretizing the variational equation (3.5) is the fi-
nite element method. A conformal finite element approximation with N + M nodes
leads to the linear system
K(p)u=12b, (3.25)

where K (p) € RIVX4N s called the stiffness matrix, u € R the vector of nodal
displacements, and b € R%" the nodal load vector. The remaining M nodes are left
out of equation (3.25) since they are located on I' 5, where the nodal displacements
are known to vanish due to the clamping of the structure. The stiffness matrix can
be expressed as a sum of element contributions,

K(p) =3 _(p+ (1= p) fy(p) Ki, (3.26)

i=1

where K; gives the element stiffness matrix of element in the case that this element
is occupied with the fixed material. The symmetries (3.2) of the elasticity tensor, and
the coerciveness (3.9) of the bilinear form « in equation (3.5) imply that the stiffness
matrix is symmetric and positive definite.

The discrete analogue of the volume constraint (3.16) is given by

Ci(p) =Y h'pi—V =h"1Lp-V <0, (3.27)
i=1

where h¢ denotes the measure (volume or area) of an element in the Cartesian par-
tition. Letting
ju) =b"u (3.28)

be the discrete analogue of the compliance (3.12) and defining

J(p) =b"K(p)"'b(=b"u=j(u)), (3.29)

30ther types of partitions are possible. However, the Cartesian partition with equally sized elements
is often preferred as it imposes little prior bias on the designs and leads to simple and efficient computer
implementations.
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we may formulate the discretized penalized minimum compliance problem as

min J(p) = b" K (p)~'bsuchthat Cy (p) = h'1lp -V <0. (3.30)
pelo.1]n
We note that it is not necessary, nor advisable from a computational point of view,
to compute K (p)~!, as it suffices to compute u = K (p)~'b by solving the linear
system (3.25).

To generate (approximate) solutions to problem (3.30) by gradient based opti-
mization algorithms, derivatives of the objective and constraint functions with re-
spect to the design variables need to be computed. The derivatives of the constraint
function are found by differentiating the defining expression (3.27),

0C1 _ pa, (3.31)
dpi

In general, the adjoint sensitivity method [21, § 6.2.2] is the preferred method for
determining the gradient of an objective or constraint function that depends on p via
u, such as the compliance (3.29). Nevertheless, due to the very special structure of
the current problem, the gradient of the objective function (3.29) may be determined
by a more direct two-step procedure. First, using that J(p) = j(u) = b u, where
u = K (p)~'b, and that b is independent of p, we find

6] T 811/ T a'll/
=bp — = K 3.32
Ipi o T op (3:32)

where the substitution b* = u” K follows from equation (3.25) and the symmetry
of the stiffness matrix. Second, differentiating equation (3.25), we find

OK =~ g ou_ b _

= = 3.33
dpi wt dpi  Op; ( )
Thus, combining expressions (3.32) and (3.33), we obtain
aJ 70K
= — ) 3.34
Opi “ Ip; “ ( )
Differentiating expression (3.26), we find
0K
o (1= p)fh(pi) K, (3.35)

which is positive semi-definite by construction. Thus, combining expressions (3.34)
and (3.35), we reveal that

0J <0. (3.36)

Ip;

Thus, we cannot increase the compliance by increasing p;. This peculiarity is ex-
ploited in the so-called optimality criteria method [4, § 1.2.1], which is routinely
applied to compute (approximate) solutions to the compliance minimization prob-
lem (3.30). However, property (3.36) cannot be expected to hold for other den-
sity based topology optimization problems, which require general-purpose gradient-
based optimization algorithms such as the method of moving asymptotes [57, 58].
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Although there are no solutions to the infinite dimensional penalized minimum
compliance problem (3.19), there are always solutions to the discretized penalized
minimum compliance problem (3.30). However, the solutions may depend strongly
on the partition of the design domain and represent designs with details that get
smaller and smaller when the partition is refined. As already mentioned, a number
of different approaches have been proposed to resolve this mesh-dependency issue.
In this thesis, we consider replacing the objective and constraint functions (3.29)
and (3.27) with J o F and C; o F, where F : [0,1]" — [0, 1] is a filter operator to
be specified later. For now, we only note that the filter operators to be considered
are smooth and satisfy

OF; > 0. (3.37)
Op;
Applying the chain rule and expression (3.31), we find
9 "~ 4OF; OF
CioF =) hi—L =pd1] —. 3.38
Ipi e Z Ipi ™ Opi ( )

Similarly, the chain rule and expression (3.34) yields
9 jor——ut (2
8[% 5,0i

where w is the unique solution to (K o F)u = b. Moreover, the chain rule and
expression (3.35) yields

Ko F) u, (3.39)

OF;
Bpi ’

0 KoF =) (1-p)f,oFK,

P (3.40)

j=1

which is positive semi-definite by bound (3.37). Thus, combining expressions (3.39)

and (3.40), we reveal that

0 JoF <0. (3.41)
Ipi

Thus, the property that we cannot increase the compliance by increasing p; is pre-

served by the filter.

Bendsge & Sigmund [4, § 1.3.3] remark that complementing gradient based op-
timization algorithms with continuation approaches often lead to improved results.
The idea of a continuation approach is to solve (or approximately solve) a sequence
of optimization problems that approach (either approximately or exactly) the de-
sired, not so well-behaved, optimization problem, starting with some simple and
well-behaved optimization problem and initializing subsequent optimization prob-
lems with the solution of the previous problem. Hopefully, such strategy prevents
the gradient-based optimizer from converging to badly performinglocal optima. For
the minimum compliance problem, we may solve a sequence of optimization prob-
lems corresponding to an increasing sequence of the penalty parameter p in for-
mula (3.18), starting with p = 1, which corresponds to (an approximation of) the
variable thickness sheet problem. In this thesis, we employ continuation over the
penalty parameter p in formula (3.18), as well as over the filter parameters such as
a () introduced in Section 5.2. It should be noted that continuation is not always
successful [55].
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3.1 The minimum “heat compliance” problem

In the so-called minimum “heat compliance” problem, we want to find a layout in
Q) C R? of a heat conducting material that minimizes the average static equilibrium
temperature

l(u) = ‘ﬁl| /u, (3.42)
Q

when there is a uniform source of heat within €2, and 052 is thermally insulated, ex-
cept at the part I' p, which is held at zero temperature. In this case, the static equi-
librium temperature w satisfies the variational equation

a(u,v) = [ kVv-Vu=1[(v), (3.43)
/

where v is any sufficiently regular scalar field that vanishes on I'p, and & is the spa-
tially variable heat conductivity. We assume that €2 is open, bounded, connected,
and lies locally on one side of its Lipschitz continuous boundary 0€2. Moreover, we
assume that I'p C 02 is nonempty and open, and that 0 < x < kK < E < oo al-
most everywhere in Q. Defining the Hilbert space i/ = {u € H'(Q) |u =0onTp}
equipped with the norm ||-{|z; = ||-[| 1 (), we find that the bilinear forma : U xU —
R and linear form [ : &/ — R in equation (3.43) are bounded. Moreover, by the
Poincaré inequality [22, Thm. 6.5-2] and the positivity of «, the bilinear form « is
coercive. Thus, by the Lax-Milgram lemma [22, Thm. 6.2-1], the static equilibrium
temperature is the unique solution to the following variational problem.

Find u € U such that equation (3.43) holds for all v € U. (3.44)

Here we consider the layout of a fixed homogeneous (and isotropic) material with
thermal conductivity x; > 0. Introducing the parametrized thermal conductivity

k(p) = (p+ (1= p) P(p)) r1, (3.45)

we may proceed analogously as for the minimum compliance problem. However,
since temperature is a scalar field, the computational burden of the finite element
approximation is significantly less than that for the displacement vector field in elas-
ticity. We note that, for any 0 < p < 1, the minimum “heat compliance” problem
concerns the optimal layout of two materials, one with “high” thermal conductivity
%1 and one with “low” thermal conductivity kg := pr1 < k1.
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4. Imposing minimum size

The rationale behind imposing minimum sizes on some of the material phases in
design optimization is two-fold. From a manufacturing point of view, fine details are
expected to be difficult and expensive to manufacture. The other reason to impose
minimum sizes is of a more mathematical and computational nature. As described
in the previous section, unless some action is taken, the numerical solutions of the
discretized penalized minimum compliance problems may exhibit ever finer details
as the discretization is refined.

An intuitive and widespread characterization [16, 18, 30, 31, 53, 59] of a length
scale states that a region M C R? has a minimum length scale greater than or equal
tor > 0ifany point x € M belongs to some d-dimensional ball of radius r that is
completely contained in M. In Publication III, we formalize the intuitive characteri-
zation by defining the local length scale of an open set M at x € M as the radius of
the largest ball that contains « and is completely contained in M, and the minimum
length scale of M as the smallest local length scale, that is,

Rp(M) = in]fwsup{r>()| dmneMstzem+rBC M}, (4.1)
e

where 7B C R is the scaled open unit ball! B ¢ R¢. Other notions of minimum
length scale are briefly reviewed in Publication III.

The intuitive characterization of length scale is tightly connected to the dilation
operation

Dyp(M) = | (z+7rB). (4.2)
xeM

It is evident from definition (4.2) that, for any nonempty M C R¢, the minimum
length scale of D, g(M) is at least . The complementary operation of dilation is
called erosion,

Ep(M) = () (z+7B), (4.3)
rzeM
&rB (M)B =D;p (MC) . (4.4)

Dilation and erosion are two of the basic operations defined in mathematical mor-
phology, which is a branch of image analysis. Here, we provide only a condensed
presentation of mathematical morphology, and refer to Publication III, or the com-
prehensive review by Heijmans [36] for details. In the context of mathematical mor-
phology, rB is called the structuring element. The (morphological) open and close
operators are defined by composing the (morphological) dilate and erode operators,
thatis,

OrB = DrB [e] (5}3, (45)
C’[‘B = g'rB o D’I‘B7 (46)

INot necessarily the Euclidean unit ball.
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Figure 6: Illustration of morphological operators.

respectively. The open and close operators are idempotent and satisfy the ordering
OTB(OTB(M)) = OTB(M) CcCMC CTB(M) = CrB(CrB(M)) (4.7)

for any M C R Figure 6, which originates from Publication III, exemplifies the
different morphological operations.

Arigorous connection between the minimum length scale (4.1) and mathematical
morphology is established as a special case of Theorem 3 in Publication III, which
informally says that the minimum length scale R (M), of a nonempty region M C
RY, is the largest  such that M = O,5(M).

For functions p : RY — [0, 1] the dilation and the erosion are functions : R? —
[0, 1] defined by the expressions

Dyp(p)(x) = sup p(y), (4.8)
yex+rB
Ep(p)(x) = Inf p(y), (4.9)

respectively. Beware that the same symbol is used to denote morphological oper-
ations on functions and on sets; in any instance, the argument of the operator de-
termines which definition is implied. Definitions (4.8) and (4.9) for functions are
consistent with definitions (4.2) and (4.3) for sets in the sense that, forany M C R¢,

D,p(xm) = XD, 5(m) and E-p(X0r) = Xe, 5 (M)- (4.10)

The opening and closing of p : R — [0, 1] are defined by expressions (4.5) and (4.6),
and these operators are idempotent and satisfy the ordering

Orp(0rp(p))(2) = Orp(p)(x) < p(z) < Crp(p)(2) = Crp(Crp(p))(x)  (411)
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for any z € R4,

In computational topology optimization, it is natural to consider (relaxed indica-
tor) functions p : Q — [0, 1] on bounded and convex design domains 2 C R%. In
this case, definitions (4.8) and (4.9) cannot be applied directly since p is undefined
in Q€. To resolve this issue, we may apply definitions (4.8) and (4.9) on some exten-
sion 5 : R? — [0,1] of p : © — [0, 1]. As is discussed briefly in Publication III, it may
even be beneficial to tune the extension to the problem at hand. Another possibility
is to modify definitions (4.8) and (4.9) to directly handle p : Q — [0, 1],

Dis(p)(x) = sup  p(y), (4.12)
yE(z+rB)NQ

el = inf . 413

5(p)(@ ye(mgiBy“)p(y) (4.13)

In Publication III, we study operations (4.12)-(4.13), the corresponding operations
on sets M C 2, and introduce the minimum length scale

RE(M) = mlél{/[ sup{r >0|ImeMst.zec(m+rB)NQC M} (4.14)

for M C €. Formally, Rng(M) = Rp(M), where Rp(M) is defined by expres-
sion (4.1). The opening and closing of p : Q — [0, 1] are defined in analogy with
definitions (4.5) and (4.6), and these operators are idempotent and satisfy an order-
ing analogous to ordering (4.11). The main theoretical result of Publication III is
Theorem 3, which demonstrates that, for any nonempty M C (),

R%(M) =sup{r >0|xm = O?B(XM)}. (4.15)

Note that the condition xys = OS%;(xa) only holds for particular combinations
of sets M and radii r, in contrast to xy; < O?B(XM), which always holds. Char-
acterization (4.15) not only establishes a connection between the minimum length
scale (4.14) and the morphological operations (4.12) and (4.13), but also provides
a computational foundation for estimation of minimum length scales using morpho-
logical operators.

For the discretized topology optimization problem, we consider morphological
operations on design vectors p € [0, 1] defined by

D;(p) = N 4.16
(p) max pj (4.16)
Ei(p) = min p;, (4.17)

where the neighborhood of element i, with centroid z; € (), is defined as
N, ={j|z; —z; € rB}. (4.18)

To ease the notation, the dependence on the structuring element » B and the domain
2 of the morphological operations (4.16) and (4.17) has been suppressed. Note that
the symmetry r B = —r B implies that the collection of neighborhoods is symmetric,
that is, for any pair of elements i, j,

j € N, impliesi € NV;. (4.19)
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The opening and closing of p are defined in analogy with definitions (4.5) and (4.6),
and these operators are idempotent and satisfy an ordering analogous to ordering
(4.11). The dilation (4.16) and erosion (4.17) satisfy

which is analogous to complementarity relation (4.4). Moreover, any morphological
operator—dilate, erode, open, or close—maps p € {0,1}" to {0, 1}"™. Appealing to
expression (4.15), we say that the minimum length scale (relative B) of the material
phase represented by p; = 1 0f 0 # p € {0,1}" is atleastr > 0 if and only if

p=0(p). (4.21)

Similarly, we say that the minimum length scale (relative B) of the material phase
represented by p; = 00of 1,, # p € {0,1}" is atleastr > 0 if and only if

1, —p =01, - p), (4.22)
which by complementarity (4.20) is equivalent to
p=Clp). (4.23)

Thus the minimum length scale of each of the two phases of material of a design
p € {0, 1}" that satisfies 0 # p # 1,, is atleastr > 0 if and only if

O(p) =C(p). (4.24)

We note that it is possible to consider different minimum length scales on the two
phases of material by replacing expression (4.24) with

O.5(p) =Crp(p), (4.25)

where r' > 0 and B’ is the open unit ball of some norm on R<.

The idempotence of the open operator implies that condition (4.21) is fulfilled
if p = O(p) for some p € [0,1]", while the idempotence of the close operator
implies that condition (4.23) holds if p = C(p) for some p € [0,1]". In fact, it is
sufficient that p = D(p) or p = E(p) to guarantee fulfillment of condition (4.21)
or (4.23), respectively. Therefore, introducing F(p) = D(p) or F(p) = O(p) asa
filter in the formulation of a discretized density based topology optimization prob-
lem, such as the minimum compliance problem, imposes a minimum size on the
material phase represented by 1, while F(p) = E(p) or F(p) = C(p) imposes a
minimum size on the phase represented by 0. Unfortunately, formulations involv-
ing (exact) morphological operators, which are non-differentiable, are incompatible
with the efficient gradient-based optimization algorithms preferred to solve large-
scale design optimization problems. However, Sigmund—who appears to have been
the first to recognize the potential of mathematical morphology to impose minimum
length scales in (gradient based) topology optimization problems—avoids the issue
by introducing differentiable density filters that approximate morphological opera-
tors [53]. As can be seen in the next chapter, many filters introduced for topology op-
timization can be interpreted as differentiable approximations of morphological op-
erators. Note that, for the purpose of imposing minimum length scale, filters need to
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provide accurate approximation of morphological operators for binary p € {0,1}"
only. To ease the presentation of filters in the next chapter, we introduce the follow-

ing definition.

Definition 1. A parametrized family of filters F,, : [0,1]" — [0,1]", @ > Oisa
differentiable approximation on {0, 1}"™ of a morphological operator M if and only
if F,, is differentiable for each o > 0, and there is a filter F' : [0,1]" — [0, 1] such
that

F(p) = M(p) foreachp e {0,1}",

lim F,(p) = F(p) foreachp € [0,1]".

a—0

(4.26)
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5. Density filters

5.1 The linear filter

The simplest filter observed to resolve the mesh-dependency issue is the linear (den-
sity) filter
F(p) =Wp, (5.1)

where W = [w;;] € R"*" is a matrix containing non-negative normalized weights,

Wi, =1,, (5.2a)
wij €[0,1). (5.2b)

Note that condition (5.2b) excludes the trivial filter p — p. In topology optimiza-
tion, it is customary to first introduce a neighborhood shape R? > A > 0 that is
independent of the partition of the design domain, and define the neighborhood of
element i by

Ni={j|a; -z € N}, (53)

where z; denotes the centroid of element 7. Second, w;; are determined so that prop-
erties (5.2) hold and the neighborhood N; consists precisely of those elements j
such that w;; > 0. We note that for a given neighborhood shape, the behavior of
the weights can be chosen in a multiple of ways. Note also that if ' = rB, the
definitions (5.3) and (4.18) coincide. Unless otherwise stated, we assume that the
collection of neighborhoods is symmetric in the sense of property (4.19).

The linear filter (5.1), which was introduced in topology optimization by Bruns &
Tortorelli [18], is the core element of all filters used in topology optimization. Pop-
ular implementations of the linear filter have ball-shaped neighborhoods of a given
radius with weights that are uniform or decay linearly from the neighborhood cen-
ter. The radius of the ball-shaped neighborhoods is often referred to as the filter
radius. Intuitively, the linear filter handles the mesh-dependency issue by smearing
out details smaller than the neighborhood. The main drawback of the linear filter is
that it prevents sharp transitions between regions where p; = 0 and p; = 1. More
recently, mesh-independent designs with almost sharp transitions between regions
where p; = 0 and p; = 1 have been observed for a range of nonlinear filters [53, 59].

Before continuing with nonlinear filters, we describe a linear filtering algorithm
devised by Lazarov & Sigmund [41]. The solution F'(p) to the elliptic boundary value
problem

—a*AF(p)+ F(p)=p inQ,

5.4
n-VF(p)=0 ondQ, (>4

may be represented as the convolution of p with a positive and normalized Green’s
function, and where a # 0 controls the decay of the Green’s function. However,
instead of explicitly discretizing the convolution, which directly leads to an expres-
sion of the form (5.1), we evaluate the filter by solving a finite element (or finite
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volume) discretization of the boundary value problem (5.4). Note that the finite ele-
ment approximation of F'(p) will not be piecewise constant, even if p is assumed to
be piecewise constant.

5.2 Nonlinear filters

One of the main contributions of Publication I is the introduction of the class of gen-
eralized fWW-mean filters, which contains most filters in the literature on topology
optimization. Generalized f1¥-mean filters have the form

F(p) =g (W {f(p)), (5.5)

where f, g : [0,1] — [0, 1] are continuous and surjective. Note that expression (5.5)
is a discrete analogue of expression (3.21). Moreover, note that requiring [0, 1] to be
the range of f and the domain of g is superfluous. Indeed, let b > a, and assume
that f : [0,1] — [a,b] and § : [a,b] — [0,1] are continuous and surjective, then
f,9:[0,1] — [0, 1] defined by

f@) —a
g(z) = g((b —a)r + a)

are continuous and surjective, and

g(Wp) =3 (Wip) (5.7)

forany p € [0, 1]™. We define the fT¥-mean filters as the subclass of the generalized
fW-mean filters realized by requiring f to be bijective and g = 1,

F(p)=f""(Wf(p)). (5:8)

That is, F;(p) is a (weighted) quasi arithmetic mean [39, 45], also known as the
(weighted) f-mean,

Fi(p)=f" Y] wiif(py) | <= F(F(p) =D wijf(py)- (5.9)

JjEN; JEN;

In fact, to the best of our knowledge, only bijective f and g = h o f~!, where h :
[0,1] — [0, 1] is continuous, surjective and increasing, appear in the literature on
topology optimization; that is,

F(p)=h(f (WF(p)). (5.10)

The Heaviside filter [31], which consists of applying a particular approximation
of the Heaviside step function to the linear filter, is given by formula (5.5) with

f(z) ==,
1

5.11
g(x) = 10

—e BT L e Py,
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The parameter 5 > 0 controls the sharpness of the step. For 5 = 0 the Heaviside
filter is nothing but the linear filter (5.1), and when 8 — oo the Heaviside filter
approaches

(5.12)

Fi(p) = 0 ifp; =0forallje N,
P = 1 otherwise.

Wang et al. [62] introduced a different approximation of the Heaviside step func-
tion with variable step location € [0, 1] and thereby obtained a variation of the
Heaviside filter given by formula (5.5) with

f(z) ==,
o(z) = tanh(8n) + tanh (8(x — 7)) (5.13)
tanh(Bn) + tanh (B(1 — 7))

We refer to this variation of the Heaviside filter as the tanh-filter. Similarly as for
the Heaviside filter, the parameter 5 > 0 controls the sharpness of the step, and the
linear filter is retrieved in the limit 5 — 0, since g(z) in definition (5.13) tends to z.
When 8 — oo and 5y € (0,1), g(x) in definition (5.13) tends to

0 ife <mn,
1/2 ifz =n, (5.14)
1 ifz >n.

As pointed out by Sigmund [53], both the Heaviside filter (5.11) and the tanh-
filter (5.13) are differentiable approximations on {0, 1}" of the dilate operator (4.16)
in the limit 5 — oo (Definition 1 with « := 1/5).

The exponential dilate filter [53], which is given by formula (5.5) with

(5.15)

where 8 € (0,00), was introduced as a differentiable approximation of the dilate
operator (4.16), that is,

.1 Bp\ _
Blgr;@ Bln (WeP) =D(p) (5.16)

for any p € [0, 1]"™. Analogously, the exponential erode filter [53], which is given by
formula (5.5) with

f(ﬂ?) = efﬂa:’
1 5.17
g(x) = f )= —=lna, (517)
5
is a differentiable approximation of the erode operator (4.16), that is,
1
lim ——In (We #°) =& 5.18
Jim -2 n(We™°) = £(p) (5.18)
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for any p € [0, 1]™. Both the exponential dilate and the exponential erode filter ap-
proach the linear filter (5.1) when 8 — 0. The exponential dilate and exponential
erode filters satisfy

1 1
N -Bp\ | — = B(1n—p)
1, ( 61n (We )) Bln (We ) , (5.19)
which is the analogue of the complementarity relation (4.20).

In general, complementarity is a basis for generating new filters from existing fil-
ters [59]. Indeed, if F is the generalized fIW-mean filter (5.5) defined by f and g,
then the complementary filter

F(p) =1p — F(ln - P) (5.20)
is the generalized fW-mean filter (5.5) defined by f(z) = f(1 — ) and g(z) =
1—g(x), and _

1, — F(p) = F(1,, — p) (5.21)
by construction. Let F',, F', be parametrized families of filters that satisfy the com-
plementarity relation (5.21) for each a > 0. Then F',(p) — £(p) (D(p)) for some
p € [0,1]"as o — 0if and only if F,(1,, — p) = D1, — p) (E(1n — p)) as
a — 0. Therefore, the complementary filters (5.20) to the Heaviside-filter (5.11)
and the tanh-filter (5.13) are differential approximations on {0, 1}" of the erode op-
erator (4.17).

Svanberg & Svard [59] introduced filters based on the harmonic and geometric
means. The harmonic erode filter, defined by

1
f(z) = :
Tta (5.22)

1
_ -1 _ 1 _
g(l’) - f (37) - T «,
and the geometric erode filter, defined by
f(x) =In(z + ),
glz) = [l (z) =" —qa,

where o > 0, are differentiable approximations on {0, 1}" of the erode operator
(4.17). In the limit @ — oo, both the harmonic erode and geometric erode filters
approach the linear filter (5.1). The harmonic dilate and geometric dilate filters are
defined to be complementary (5.20) to the harmonic erode and geometric erode
filters, respectively.

New filters may also be constructed by composing existing filters [53]. In particu-
lar, by composing differential approximations of the dilate operator (4.16) and the
erode operator (4.17), we may obtain differential approximations of the open and
close operators. For instance, the exponential open and close filters [53] are formed
in this way by composing the exponential filters defined by the functions (5.15) and
(5.17). In an attempt to impose minimum length scales on both material phases, Sig-
mund [53] introduced the exponential open-close and close-open filters by compos-
ing the exponential open and exponential close. Although such filters have been ob-
served to provide designs with minimum length scales on both material phases [53],
this cannot be guaranteed in general [52].

(5.23)
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For each element 7 the bilateral density filter [63] is defined by
> wijd(|pi — pjl)p;
_JEN;

Fi(p) = gf wi; (| p; — pjl)

, (5.24)

where @ : [0,1] — (0, 00) is non-increasing and provides weighting depending on
the distance |p; — p;|, in contrast to w; ;, which provides weighting depending on the
distance between element centroids |x; — z;|. We note that the bilateral filter (5.24)
is not of the form (5.5).

Another type of filters not of the form (5.5) are so-called combination filters [53]

defined by

F(p) = 5 (Oulp) + Calp)). (5.25)
where O, and C,, denote differentiable approximations of the open and close opera-
tors, respectively. Note thatifa,b € [0,1] and (a +b)/2 € {0,1},thena = b € {0, 1}.
Thus, if F' is a combination filter (5.25) and p € [0, 1]™ is such that F(p) € {0,1}",
then O, (p) = C.(p) € {0,1}". Appealing to condition (4.24), we find that the com-
bination filters (5.25) are suitable candidates for providing minimum length scales
on both material phases.

It is interesting to compare the computational cost of the filter to that of solving
the linear system (3.25), which may be reduced to O(n) by applying a properly tuned
multigrid method. Since the functions f and g are applied pointwise, the computa-
tional complexity of evaluating any generalized f1¥/-mean filter is controlled by the
computational complexity of averaging over the neighborhoods. In fact, to evalu-
ate any of the filters presented in this section, we need to compute averages over
the neighborhoods, that is, to evaluate the linear filter (5.1). For a general set of
weights w;;, the computational cost of evaluating the linear filter is proportional to
Z?zl |N;|, where |N;| denotes the number of neighbors to element i. Recall that in
topology optimization, the neighborhoods are typically defined by a neighborhood
shape N that is independent of the partitioning of the design domain €. In this case
N; = O(n), and thus the computational cost of evaluating the linear filter is O(n?).
Nevertheless, for particular sets of weights and neighborhood shapes the computa-
tional cost can be reduced. If w;; = w(i — j), for some compactly supported non-
negative function w, the linear filter (5.1) corresponds to a convolution that can be
efficiently evaluated by the FFT (Fast Fourier Transform), which has (asymptotic)
computational complexity O(nlogn). To evaluate filters in topology optimization
by the FFT appears to have been first proposed by Lazaraov & Wang [42]. In case
the weights are uniform, w;; = |N;|~!, and the neighborhood shape is polytopal,
the linear filter can be evaluated in O(n) operations. This was first established in
the context of image analysis (d = 2) for octagonal neighborhoods by Glasbey &
Jones [28] and later extended to general polygonal neighborhoods by Sun [56]. The
basic idea behind the O(n) algorithms is to compute sums by an update scheme,

POEDIEED DL D DI (5.26)
keEN; k’ENj kEN;\N; kEN;\N;
which can be performed recursively since the facets of a (convex) d-dimensional

polytope are (convex) (d — 1)-dimensional polytopes. In Publication I, we present
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an O(n) algorithm for summation over rhombicuboctahedral neighborhoods in 3D.
Moreover, we demonstrate that the computational complexity, for a fixed Cartesian
partition of (), is essentially independent of the size of the rhombicuboctahedral
neighborhoods. In Publication II, we note that some non-uniformly weighted linear
filters can be constructed by sequentially applying uniformly weighted linear filters.
In particular, if the weight matrix W (5.2) encodes uniform weights on neighbor-
hoods defined by a convex neighborhood shape N 3 0, then W? encodes weights
that decay from the neighborhood center of neighborhoods defined by the neigh-
borhood shape 2A/. Note that the linear filter defined as a finite element solution
to boundary value problem (5.4) can be evaluated in O(n) operations by applying a
properly tuned multi-grid solver [41].

To apply gradient-based optimization algorithms to solve topology optimization
problems involving filters, we need to evaluate the filter gradients. By the chain
rule, the additional computational cost attributable to the filter (compare expres-
sion (3.40) with expression (3.35); (3.38) with (3.31)) corresponds to the evaluation
of

S0l (g, (5.27)
P Pj
for some v € R", where J = [0F;/0p;] € R"*" denotes the Jacobian of F. We
note that expression (5.27) may be interpreted as a linear filtering of v where the
weights are given by the transpose of the Jacobian. In Publication I, we demonstrate
that for (a sequence of) fI/-mean filters (5.8) with uniform weights over symmet-
ric polytopal neighborhoods, expression (5.27) can be evaluated by the same O(n)
algorithm used to evaluate the filter.

We conclude by noting that if F'is a fI¥-mean filter for some differentiable func-
tion f with f’ # 0, then by differentiating expression (5.8),

oF; —  f'(ps)
i

J'(Fi(p))

that is, property (3.41) holds. In fact, property (3.41) continues to hold if the filter
is given by expression (5.10) for some differentiable i with 2’ > 0, which is true for
all generalized fW-mean filters presented in this section.

> 0; (5.28)
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6. Design of coaxial-to-waveguide transitions

Coaxial cables and rectangular waveguides, which are routinely applied to trans-
mit electromagnetic signals between various devices, have fundamentally different
transmission characteristics. Therefore, transitions between coaxial cables and rect-
angular waveguides need to be carefully designed to assure proper transmission
of signals, without excessive reflections and losses, which may cause overheating.
Since it is well beyond the scope of this thesis to give a comprehensive review of the
literature on the design of electromagnetic devices, we refer the interested reader to
the dissertation by Hassan [33] and to the references therein. The presentation here
is tuned towards Publication IV, which demonstrates the applicability of the gener-
alized fW-mean filter framework in a challenging engineering design problem. We
note that the main contribution of Hagg to Publication IV concerns the construction
and implementation of the filters employed in the two-phase continuation approach
described below.

Figure 7 illustrates the setup considered in Publication IV for optimizing a so-
called end-launcher transition in which a coaxial cable is connected at the rear end
of a rectangular waveguide. The idea is to optimize the layout of (a very thin layer
of) conducting material (metal) in the planar design domain Q C R2, which is in
contact with the center conductor of the coaxial cable and sits on top of a low-loss
dielectric substrate that extends all the way to the rear wall of the waveguide, so that
proper transmission of signals is achieved for a band of frequencies. As described by
Hassan et al. [34], the resulting designs can be manufactured by photoengraving a
metal-coated dielectric substrate. Assuming that the coaxial cable and the rectangu-
lar waveguide contain only linear isotropic media, the evolution of the electric field
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Figure 7: End-launcher transition. A coaxial cable is connected at the rear end of a rectangular
waveguide. The layout of conducting material in (2 is to be determined so that signals are
properly transmitted.
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FE and the magnetic field H is modeled by Maxwell’s equations

OpH +V x E =0, (6.1a)
OieE+0FE -V x H=0, (6.1b)

where i, €, and o denote the local permeability, permittivity, and conductivity of the
medium. The inner conductor and shield of the coaxial cable, as well as the walls of
the rectangular waveguide, are assumed to be perfectly conducting. For computa-
tional reasons, the coaxial cable is truncated to finite length using a non-reflecting
boundary condition, which also provides a mean to introduce signals in the coaxial
cable, while the rectangular waveguide is truncated to finite length using a perfectly
matched layer. The band of frequencies for which the transition is optimized is cho-
sen between the first and second cutoff frequencies of the rectangular waveguide, so
that all modes, except for the so-called TE;; mode, are evanescent [37, § 8]. A total-
field/scattered-field technique is employed to introduce signals in the rectangular
waveguide.

The effect of different layouts of material within the design domain is captured
in equation (6.1b) by a heterogeneous conductivity distribution that is allowed to
take values in a prespecified range [¢,5] C (0,00). Similarly as for the minimum
compliance and the minimum “heat compliance” problems, we introduce a design
variable field p : Q@ — [0, 1] to parametrize the conductivity distribution®. To accom-
modate for the vastly different conductivities of bad compared to good conductors,
we introduce the parametrization

o(p) = ce?? within £, (6.2)

where v > 0 is a prespecified parameter. For instance, in Publication IV, ¢ =
1073S/mand v = 81n 10 are used, so 7 = ge” = 10°S/m.

We choose the finite-difference time-domain method (FDTD) to generate numeri-
cal solutions to Maxwell’s equations (6.1). The conductivity is then evaluated at the
edge-centers of so-called cubical Yee cells that constitute a Cartesian partition of the
computational domain. Therefore, similarly as in the previous chapters, it is natural
to represent the design by a design vector p € [0, 1], where n denotes the number
of Yee cell edges within the design domain 2.

For signals of finite duration, vanishing initial conditions, and for sufficiently long
integration times, we have the energy balance

I/I/vil’l,COaX + VVin,wg = out,coax + Wout,wg + I/1/10557 (6'3)

where Wiy coax and Wiy we denote incoming, and Wyg,coax and Wouewg outgoing en-
ergies in the coaxial cable and rectangular waveguide, respectively, and W), the
Ohmic loss in the dielectric substrate and in the design domain €2. To optimize the
design of the transition, Publication IV introduces the objective function

Wout,coax | Winwg >
],

6.4
Wout,coax | Win,coax ( )

J(p) = log(

1The reason to denote the design field by p, and not p, is to avoid confusion, as the latter often denotes
the distribution of electric charge in the context of electrodynamics.
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where Wout,coax | Wiy, @a0d Wout,coax| Wi, d€NOte the outgoing energies in the coaxial
cable when the system is fed through the waveguide or through the coaxial cable, re-
spectively. Thus, to evaluate the objective function (6.4), Maxwell’s equations (6.1)
need to be solved twice with different feeds. Beware that Publication IV employs
a maximization formulation, contrary to previous chapters that employ minimiza-
tion formulations. Hence, the objective function (6.4) captures the intuitive desire
to maximize the transmission (Wout,coax| Wi, ) Of @ signal fed through the waveguide
and minimize the reflection (Wout,coax| wi,.0r,) Of @ signal fed through the coaxial ca-
ble. Note that due to reciprocity, there is no need to consider the transmission when
the system is fed through the coaxial cable nor the reflection when the system is
fed through the waveguide. On the one hand, energy balance (6.3) reveals that max-
imizing Wout,coax\wmng for fixed Winwg and vanishing Wi, coax is equivalent to mini-
mizing the sum (Wou,wg + Wioss) Wi That is, the sum of the reflection and the
loss is minimized in this case. On the other hand, energy balance (6.3) also reveals
that minimizing Wout’coax\wimx for fixed Wipcoax and vanishing Wi, we is equivalent
to maximizing the sum (Woutwg + Wioss) |[Wineom That is, the sum of the transmission
and the loss is maximized in this case—with the apparent risk of promoting designs
with excessive loss. Nonetheless, the maximization of the combination of transmis-
sion and reflection embodied in objective function (6.4) was computationally found
to produce designs exhibiting low loss and being almost exclusively consisting of
the extreme conductivities ¢ and 7. This natural penalization of intermediate val-
ues of the design variables induced by the objective function has its explanation in
the fact that the limiting cases of a perfect electric conductor (¢ = oo) or a perfect
electric insulator (¢ = 0) are both lossless, and that the loss term W), for a given
layout of material with homogeneous conductivity typically achieves a maximum for
some value of the conductivity between the extremes ¢ and &. Contrary to the mini-
mum compliance and the minimum “heat compliance” problems, there is therefore
no need for explicit penalization of intermediate values of the design variables in
this case.

This natural penalization of intermediate values of the design variables has, un-
fortunately, a tendency to make gradient based optimization algorithms to quickly
converge to poorly performing local optima and may also prevent the transitioning
between the extreme conductivities ¢ and . To control the natural penalization,
Hassan et al. [35] restricted the design vector to the image of a linear filter of the
form (5.1) with disk-shaped neighborhoods of radius R > 0 by replacing occur-
rences of p in the problem formulation by F(p) = W p, which prevents sharp tran-
sitions between the extreme conductivities ¢ and . Employing continuation over
a sequence of decreasing filter radii, Hassan et al. [35] gradually removed the effect
of the filter and obtained better performing low-loss designs. However, as demon-
strated in Publication IV and seen in Figure 8a, the original continuation strategy of
Hassan et al. [35] may produce designs containing small features, which are undesir-
able as they may increase losses as well as demands on the manufacturing accuracy.
To counter also the formation of small features, Publication IV proposes a two phase
continuation approach involving both linear and nonlinear filters. The first phase
is a modification of the original continuation strategy of Hassan et al. [35] in which
the filter radius of a linear filter is gradually decreased to a prespecified minimum
radius R. The second phase employs continuation over a sequence of decreasing val-
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(@) (b)

Figure 8: Optimized designs of coaxial-to-waveguide transitions, where black represents the
layout of highly conducting material to be distributed on dielectric substrates that are approx-
imately 10 x 23 mm as illustrated by the bounding rectangles. (a) Design exhibiting undesir-
ably small features obtained by the original one phase continuation strategy. (b) Design free
of small features obtained by the proposed two-phase continuation strategy.

ues of the filter parameter « of a harmonic open-close filter with disk-shaped neigh-
borhoods of fixed radius R. Thus, the first phase is designed to control the natural
penalization, while the second phase should counter the formation of small features
while allowing for designs that are (almost) exclusively made of materials with the
extreme conductivities ¢ and . The computations in Publication 1V involving the
two phase continuation approach employs a streamlined implementation in which
the first phase employs a harmonic open-close filter with sufficiently large parame-
ter o to approximate a linear filter. Figure 8b displays an optimized design for which
the proposed two phase continuation strategy successfully prevented the formation
of small features.

As a measure to improve the performance of the optimized transitions further,
Publication IV extends the freedom of design by stacking multiple layers of dielectric
substrates supporting heterogeneous conductivity distributions that all are subject
to simultaneous optimization.
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7. Summary of publications: Part |

In Publication I, we introduce the class of generalized 1/ -mean filters (5.5), based
on the concept of quasi-arithmetic mean, and develop some basic properties of such
filters. Moreover, we demonstrate that there are O(n) algorithms, based on up-
dating scheme (5.26), for the evaluation of generalized fW -mean filters with uni-
form weights over polytopal neighborhoods. In particular, we explicitly provide an
O(n) algorithm for summing over rhombicuboctahedral neighborhoods, which can
be seen as an extension to 3D of previously known 2D summation algorithms. We
present numerical experiments to verify the claims on the computational complex-
ity, as well as to illustrate the potential loss of element-wise accuracy when the range
of numbers to be summed by the computer is large.

In Publication II, we prove existence of a global minimizer for an infinite dimen-
sional fWW-mean filtered penalized minimum compliance problem. We elaborate on
general requirements of filters F : [0,1]" — [0, 1]™, such as condition (3.37). More-
over, we demonstrate that non-uniform weighting on complex neighborhoods can
be achieved by sequentially applying linear filters with uniform weights on simple
neighborhoods. For instance, sequential application of two linear filters with uni-
form weights on square neighborhoods with a relative rotation of 45 degrees corre-
sponds to a linear filter with non-uniform weights on octagonal neighborhoods. Fur-
thermore, we build onto the framework of generalized fW-mean filters by detailing
how to efficiently evaluate derivatives of generalized fW-mean filters, in particular
for sequences of generalized f1/-mean filters. In the final part of Publication II, we
present numerical results for the penalized 2D minimum compliance and minimum
“heat compliance” problems employing the O(n) filtering algorithm for octagonal
neighborhoods presented in Publication I to evaluate harmonic open-close filters.

In Publication III, we review methods for imposing minimum length scales in topol-
ogy optimization. After a brief review on mathematical morphology on R?, we in-
troduce a minimum length scale for subsets of a bounded convex domain 2 C R4,
introduce morphological operators on such subsets, and establish the connection
between these morphological operators and the minimum length scale. We intro-
duce conditions (4.21) and (4.23) to control the minimum length scale on the mate-
rial phase represented by p; = 1 and p; = 0, respectively. Moreover, we introduce
quality measures that quantify the residuals in conditions (4.21), (4.23), and (4.24).
Inspired by the SIMP and RAMP approaches, we propose an approach for the mini-
mum compliance problem and minimum “heat compliance” problem that promotes
binary designs with minimum length scales on the two material phases by applying
filters that approximate the morphological opening and closing. We present numer-
ical results for both the minimum compliance problem and minimum “heat compli-
ance” problem, compare different continuation schemes for the filter and penalty pa-
rameters, and explicitly estimate the minimum length scales of both material phases
of the optimized designs.
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In Publication IV, we develop a density based approach for optimizing the design of
a transition that connects a coaxial cable to the rear end of a rectangular waveguide
operating over a wide band of frequencies. The design domain consists of a plane
(or a stack of a few separate planes) within the waveguide, located in the proximity
of and parallel to the rear wall, and on which the layout of conducting material is to
be determined as to achieve desirable performance. The idea of this setup is that the
design may be realized by photoengraving of metal-coated dielectric substrates. The
design optimization problem at hand suffers from two complications. First, thereisa
natural penalization of intermediate conductivities, which may lead gradient-based
optimization algorithms to quickly converge to poorly performing local optima. Sec-
ond, the optimized layouts may contain small features that are difficult to manufac-
ture and may lead to excessive heating of the device. In Publication 1V, these com-
plications are addressed by introducing suitable filters in the problem formulation
and employing a two-phase continuation strategy over filter parameters.
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Part 11
Analysis of Friedrichs Systems






8. Well-posedness of Friedrichs systems

In the beginning of the 20th century, Jacques Hadamard introduced the notion of
well-posedness. An initial-boundary value problem is said to be well-posed in the
sense of Hadamard if the following triad of properties holds [44, § 15.1]:

(i) The solution exists,
(ii) is unique, and
(iii) depends continuously on the data of the problem.

In property (iii), data collectively refers to initial data, boundary data, and source
data. For problems originating from mathematical physics, property (i) asserts con-
sistency of the model, (ii) reflects determinism of physical reality, and (iii) the fre-
quent observation that similar circumstances lead to similar behaviors. A problem
that lacks any of properties (i)-(iii) is said to be ill-posed. Despite the negative con-
notations, the study of ill-posed problems may nevertheless be interesting and rel-
evant, as exemplified by the design optimization problems presented in Part I. We
note that well-posedness, as characterized by properties (i)-(iii), depends on the
chosen solution concept and on the topology that defines continuity. Although the
solution to a well-posed problem depends continuously on data, the dependence can
be very sensitive; that is, small, albeit finite, changes in data may lead to vastly differ-
ent solutions. This sensitivity of the solution affects the expected accuracy of numer-
ical discretizations of the problem. The condition number quantifies the sensitivity
of the numerical solution, and discretized problems with small condition numbers
are said to be well-conditioned, while those with large condition numbers are said to
be ill-conditioned [60, § 12]. The somewhat arbitrary distinction between large and
small condition numbers has to be determined on a case-by-case basis. It is impor-
tant to note that well-posed problems may lead to ill-conditioned discrete problems,
while ill-posed problems always lead to ill-conditioned discrete problems.

In 1958 Kurt Otto Friedrichs [25] introduced so-called symmetric positive differ-
ential operators

T = A;0:+ BE, (8.1)

where 0; denotes partial differentiation with respect to the ith (space-time) coordi-
nate, each A; is a symmetric (sufficiently regular) real matrix field, and the symmet-
ric part of the (sufficiently regular) real square matrix field 2B — ). 9; A; is positive
definite, that is,

B+ B" =) 0;4; > 0. (8.2)

It should be noted that equations involving symmetric positive operators do not re-
spect the conventional, although far from exhaustive, classification of partial differ-
ential equations as either elliptic, parabolic, or hyperbolic. In fact, Friedrichs’ moti-
vation was the study of type-changing equations, such as those modeling transonic

31



flows. We will refer to systems of partial differential equations involving symmetric
positive operators (8.1) as Friedrichs systems. For the treatment of boundary value
problems on a bounded (sufficiently regular) domain @ involving symmetric posi-
tive operators (8.1), Friedrichs introduced so-called semi admissible homogeneous
boundary conditions

ME=0 ondQ, (8.3)

where M is a (sufficiently regular) real square matrix field that satisfies a particu-
lar positivity assumption. The positivity assumptions on the operator (8.1) and on
the boundary matrix (8.3) imply a so-called Friedrichs inequality; that is, there is a
constant C such that, for any ¢ € C'(Q) with M¢ = 0 on 9Q,

1€l < CIT¢, (84)

where €] = (fQ |§|2)1/2 denotes the norm on L?(Q). Note that here, initial con-
ditions are interpreted as boundary conditions on a space-time domain. Inequal-
ity (8.4) demonstrates that classical solutions to semi admissible boundary value
problems of the form

TéE=f inQ, (8.5a)
ME=0 ondQ, (8.5b)

where f € C(Q) is a given source term, are unique and depend continuously on the
data. As pointed out by Friedrichs, the formal adjoint (in the L?(QQ) inner product
&) = fQ £74)) of the symmetric positive operator (8.1) is given by

TE = — Z@i (Al) + BT¢ = — ZAiazf - (Z aiAz) £+ BT¢

(8.6)

= Z A;0: + BE.

By noting that A; = AT and
B+B" =Y 0,4, =T+T=B+B"-> 04, (8.7)

we find that the formal adjoint operator 7T is also symmetric positive. To the for-
mal adjoint operator (8.6), Friedrichs associated the semi admissible homogeneous
boundary condition
ME=0 ondQ. (8.8)
Note that boundary conditions (8.8) and (8.3) are in general different. Since the
formal adjoint operator (8.6) is symmetric positive and the boundary condition (8.8)
is semi admissible, there is a constant C such that, for any ¢ € C'*(Q) with MEe=0
on 0Q, 3
€]l < ClITE]. (8.9)

By inequality (8.9), Friedrichs deduced existence of weak solutions to the semi admis-
sible boundary value problem (8.5) with data in LQ(Q). That is, for any f € L?(Q)
there is £ € L?(Q) such that, for all n € C*(Q) with Mn = 0 on 9Q,

(Tn, &) = (n, f). (8.10)
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To complete the well-posedness triad (i)-(iii), it remains either to demonstrate ex-
istence of classical solutions, or uniqueness and continuous dependence on data of
weak solutions, depending on the desired solution concept. If a weak solution ¢ also
is a strong solution, that is, there is a sequence (£;)reny C C1(Q) with M&;, = 0 on
0Q such that &, — & and T¢, — f in L?(Q), the Friedrichs inequality (8.4) holds,
and thereby uniqueness and continuous dependence on data. Friedrichs treated
problems for which the boundary is not a characteristic surface of the differential
operator ) . A;0;, that is, problems for which the boundary matrix

A, = Z Ain; (8.11)

is invertible. In definition (8.11), n; denotes the ith component of the outward unit
normal field to the boundary. Moreover, to demonstrate that a weak solution satis-
fies the boundary condition (8.3) in a strong sense, Friedrichs required the boundary
conditions (8.3) and (8.8) to be strictly adjoint in a particular sense. Semi admissible
boundary conditions (8.3) and (8.8) that are strictly adjoint are said to be admissi-
ble. There are at least three equivalent characterizations of admissible boundary
conditions [1, 19]. For instance, they may be characterized by pairs of subspaces
N = {¢| M¢ = 0}and N = {¢ | M¢ = 0} that are defined point-wise on the
boundary and satisfy the point-wise properties

¢TA,¢ > 0forallé € Nand T A,6 <Oforallé € N, (8.12a)
N = (A4,N)tand N = (4,N)*, (8.12b)

where (4, N)+ = {¢ | €T A,n = 0 forally € N}, and analogously (4, N)+ = {¢ |
¢TA,m=0forallp € N}.

The existing literature on Friedrichs systems is extensive. Here, we briefly review
some contributions that are of particular relevance for this thesis.

Rauch [50] extends Friedrichs’ analysis to boundaries that are characteristic with
constant multiplicity; that is, the dimension of the null space of A,, is fixed on (each
connected component of) the boundary. In conjunction with operator (8.1), Rauch
introduces the graph space

W ={¢e L*(Q)| T¢ € L*(Q)} (8.13)

equipped with the so-called graph norm satisfying || - |%, :== || - ||> + || - ||*. Assum-
ing regularity of the coefficient matrices A; and B, the domain (), and its boundary
0Q, Rauch establishes density of C'! (Q) in the graph space and introduces boundary
traces that give precise meaning to boundary conditions of the form (8.3) and (8.8)
for elements in the graph space. Rauch demonstrates that any ¢ € W that satisfies
M¢E = 0on 0@ can be approximated to desired accuracy in the graph norm by a func-
tion ¢ € C(Q) that satisfies M = 0 on JQ, and thus that a weak solution satisfy-
ing the boundary condition (8.3) is a strong solution. Indeed, if ¢ € L?(Q) is a weak
solution, then equation (8.10) holds for all n € C3(Q), which demonstrates that
& € W by the definition of weak derivatives. Rauch completes the well-posedness
triad by demonstrating that, for each f € L?(Q), there is a constant C and a unique
u € L?(Q) that satisfies the equation T = f in @, the admissible boundary condi-
tion Mu = 0 on 9Q, and the Friedrichs inequality ||u| < C||Tu| = C||f|-
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The thesis of Jensen [38] provides an extensive and modern exposition of the the-
ory of Friedrichs systems and analyzes discontinuous Galerkin finite element meth-
ods for the discretization of these. General properties of graph spaces of first order
differential operators are developed; in particular, boundary trace operators on the
graph spaces are constructed and analyzed in detail. Jensen presents a number of
theorems addressing the well-posedness triad and remarks that the main techni-
cal difficulty in developing a theory for Friedrichs systems is the proper handling of
boundary traces and boundary conditions.

Ern, Guermond, & Caplain [24] present an abstract theory for Friedrichs systems
with an intrinsic characterization of admissible boundary conditions that is free from
boundary traces. In the abstract theory, L is a Hilbert space, D is a dense subspace
of L,and T, T : D — L are linear operators that satisfy the condition

(T, )1, = (¢, T¢), forall ¢4 € D, (8.14)

and the bound R
(T +T)é|le < Clléll. forallg e D (8.15)

for some constant C. For the classical setting of Friedrichs systems presented above,
we would consider L = L?*(Q) and D = C§(Q), and condition (8.14) states that T
and T are formally adjoint. Note that condition (8.14) implies that

(T £T)p, ), = (¢, (T £T)y), forallg,s € D. (8.16)

Thus, combining property (8.16) and bound (8.15), we find that T = (T — T) +
%(T + T) is the sum of a “formally skew-symmetric” operator and a “formally sym-
metric” bounded operator. The operators 7" and 7" extend! to bounded operators
L — W, where W denotes the dual space of Wy, where Wj is the completion of D
in the graph norm || - ||w = /|| - [|2 + ||T - ||5. We use the same symbols for the ex-
tended operators. The graph space W = {{ € L | T¢ € L} D Wy is a Hilbert space
in the graph norm. Ern, Guermond, and Caplain introduce the operator® : W — W’
by the expression

(DE )y = (TE W)L — (6, TY) L, (8.17)

where £,9 € W, and (-, -)w denotes the duality pairing on W’ x W. It turns out
that ker® = W, so the operator © may be interpreted as an abstract boundary
operator and expression (8.17) as an abstract integration-by-parts formula. Indeed,
in the classical setting, L = L?(Q) and therefore

/ BT ALE = (Te, ) — (6, ) = / WTTe / Ty (8.18)
oQ Q Q

forany £, € C’1~(Q). Abstract (admissible) boundary conditions are encoded in a
pair of spaces V, V' C W that satisfy the conditions

(DE, &)y > 0forallé € Vand (DE,€)y, <Oforallé € V, (8.19a)
V=@®V)tandV = (DV)*, (8.19b)

IThe extension process is detailed, for instance, by Antoni¢ & Burazin [1].
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where (DV)L = {¢p € W | (DE,¢)y, = 0VE € V},and (DV)E = {yp € W |
(D€,9Y), = 0VE € V}. Note the similarity of conditions (8.19) and (8.12). Ern,
Guermond, and Caplain consider the following abstract problem.

Given f € L, find £ € V such that T¢ = f. (8.20)

To demonstrate well-posedness of problem (8.20), they require in addition to condi-
tions (8.14), (8.15), and (8.19) that there is a positive constant C such that

(T +7T)$,6), > C|g|l; forany¢ e D. (8.21)

Note that identity (8.7) reveals that condition (8.21) corresponds to positivity (8.2)
in the classical setting.

Both the classical and abstract theories of Friedrichs systems above lead to space-
time formulations of initial-boundary value problems. Recently, Burazin & Erceg
[20] presented a theory for abstract initial-boundary value problems based on semi-
group theory. More precisely, they prove that the unbounded operator —T'|y, : V' C
L — Listhe generator of a strongly continuous semigroup of contractions (S(¢)):>o
on L. If, for some 7 > 0, f € C'([0,7],L) and & € V, then ¢ € C([0,7],L) N
C1((0,7),V) defined by

) =St)& + /0 S(t—s)f(s)ds (8.22)

is the unique solution to the abstract initial(-boundary) value problem [47, § 4.2
Cor. 2.5]

OE(t) = —TE() + f te(0,7), (8.23a)
£(0) =& (8.23b)

Moreover, recalling that (S(t)),>¢ in expression (8.22) is a family of contractions, we
find that

sup [|€(t)[|z < ||€I||L+/||f(8)|\L ds, (8.24)
tel0,7] A

which completes the well-posedness triad for problem (8.23). Bounds of the form
(8.24) are often referred to as energy estimates. Note that for f € L!((0,7),L)
and & € L, formula (8.22) defines & € C([0, 7], L) as the unique mild solution [47,
§ 4.2 Def. 2.3] to problem (8.23) satisfying bound (8.24). Therefore, problem (8.23)
is mildly well-posed.

Ern, Guermond, and Caplain’s proof of well-posedness of problem (8.20), relies
on the following characterization, attributed to Necas [46]. The problem (8.20) is
well-posed if and only if

T
(i) thereisan a > 0 such that, for each £ € V, sup W T, > al|¢]lv, and
vel ¥z

(ii) if ¢ € L satisfies (¢, T€) = 0 foreach £ € V, then ¢ = 0.
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We see that Necas’ characterization of well-posedness is centered on the bounded
bilinear form a : L x V' — R defined by a(¢, &) = (¢, T¢) . In fact, the abstract
problem (8.20) is equivalent to the following variational problem.

Given f € L, find § € V such thata(v, &) = l(¢) forally € L, (8.25)

where the bounded linear form [ : L — R is defined by I(¢)) = (¢, f)r. Note that
problem (8.25) displays the generic form of variational formulations in which the
forms @ and b are defined on a pair of linear spaces V' and L. In the context of varia-
tional formulations, V' is called the trial space and L the test space.

Variational formulations are at the heart of finite element methods, which are rou-
tinely applied to generate numerical approximations to initial-boundary value prob-
lems. In particular, specialized discontinuous Galerkin methods have been devel-
oped for discretizing Friedrichs systems, for instance, by Jensen [38]. Nonetheless,
it appears that variational formulations of Friedrichs systems are rarely analyzed in
the scientific literature. A notable exception is the variational least-squares treat-
ment by Azerad [2] of the linear transport equation

HE+[-VE=T, (8.26)

where f is a given vector field, and f a source. We note that least-squares formu-
lations, in which a quadratic residual is minimized, is a general source for varia-
tional formulations, as described, for instance, by Bochev & Gunzburger [7]. In the
particular case of transport equation (8.26), Azerad’s least-squares formulation cor-
responds to an equivalent second-order anisotropic diffusion problem that accord-
ingly leads to a variational formulation in which both the trial and test spaces are
contained in the graph space of the operator. This is in contrast to variational for-
mulation (8.25) as well as to the variational formulations developed in Publication
V for which the test space contains the graph space.

The particular variational formulation (8.25) and the other formulations given
above treat homogeneous boundary conditions that are included in the definitions
of the function spaces, such as, V" and f/; thus, inhomogeneous boundary conditions
need to be lifted to the interior and incorporated in the source term f. Although the-
oretically convenient, the lifting of an inhomogeneous boundary condition in prac-
tice requires solving a boundary value problem, which may be of similar complexity
as the original problem. Moreover, boundary conditions that are included in the
definition of the spaces often require special treatment in numerical solution proce-
dures. The variational formulations developed in Publication V are constructed to
treat inhomogeneous initial-boundary value problems without the need for lifting.
In Publication V, we assume that the source, the initial data, and the boundary data
belong to suitable L? spaces. Accordingly, the trial space is defined as a subspace of
the graph space that admits L? boundary? traces, and the trial space is chosen as a
tuple of L? spaces, which are used to independently enforce the equations, the initial
conditions, and the boundary conditions.

In the next chapter, we present Friedrichs systems that model linear acoustics, for
instance the propagation of sound in air. These provide a selection of the Friedrichs
systems studied in Publications V and VI.

2Recall that initial conditions may be regarded as boundary conditions on a space-time domain.

36



9. Linear acoustics

Linear acoustics is the study of small amplitude fluctuations of a medium. In this
thesis, we limit the discussion to fluid media whose motions are well-modeled by
Euler’s equations under isentropic conditions,

pDu + Vp = pp, (9.1a)
Dp+pV - -u=0, (9.1b)
Ds =0, (9.1¢)
p="2(p.s), (9.1d)

where u, p, p, s, and ¢ denote the flow velocity, pressure, density, (specific) entropy,
and volume force density fields, respectively, and D = 0; + u - V the material deriva-
tive. The equations (9.1a)-(9.1c) express conservation of momentum, mass, and
energy, respectively, and the equation of state (9.1d), which is of thermodynamic
origin, provides closure of the system. We assume that the domain is a sufficiently
regular space-time cylinder Q = Q x (0,7) C R? x R.

9.1 Linearized Euler’s equations

Introducing the linearization ansatz
u(x,t) = up(x,t) + du(z, t), (9.2)

where uq is a given background flow velocity field and du the so-called Eulerian per-
turbation of w, and analogous ansatzes for the other fields into Euler’s equations
(9.1), expanding and equating terms of like powers in the perturbations, we find to
zeroth order

poDouo + Vpo = powpo, (9:3a)
Dopo + poV - ug =0, (9-3b)
Doso = 0, (93C)
Po = X(po, 50), (9.3d)
and to first order
\Y
poDo S+ Vdp + po(du - V)yug — %«m = po b, (9.4a)
0
Do dp + poV - 6u+ (du - V)po + (V- ug)dp = 0, (9.4b)
Dy és+ (du-V)sg =0, (9.40)
6p = c2 5p + g I, (9.4d)

where Dy = 0; + ug - V denotes the material derivative with respect to the back-
ground flow velocity ug, ¢ = ¥ 1(po, so)! the squared speed of sound, and oy =

1S ; denotes the derivative of 3 with respect to the ith argument.
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¥ 2(po, So)- Thus, the background flow is also a solution to Euler’s equations (9.3),
and the perturbations satisfy the linearized Euler’s equations (9.4) to first order.
Note that it is assumed that the density and speed of sound are uniformly positive;
that is, there are constants pg, ¢y such that

po = po > 0andcy > co > 0in Q. (9.5)

For particular combinations of equations of state and background flows, the lin-
earized Euler’s equations are simplified and may even be reduced to a scalar wave
equation. For instance, if the medium is an ideal gas, the background flow is steady,
stagnant (ug = 0), and subject to a negligible volume force density (¢o = 0), then

Ot (poco 0u) + coVop = poco o, (9.62)
Ai0p+ V - (co(poco du)) = 0, (9.6b)

from which follows that the Eulerian pressure perturbation dp satisfies the inhomo-
geneous wave equation (compare with the derivation by Rienstra & Hirschberg [51,

§24])
D20p — YV - (2N dp) = —pociV - dp. (9.7)

If dp is a solution to wave equation (9.7), then the corresponding velocity perturba-
tion du is given by the following formula, which is deduced from equation (9.6a).

Su(x,t) = dur(x) +/ (&p(x,t’) — W) dt’, (9.8)
0

where du; denotes the initial velocity perturbation that satisfies
(9:0p)|i=0 = =V - (pocg dur). (9.9)
Note that equation (9.9), which is inferred from equation (9.6b), can be interpreted
as the initial condition on 0;dp. Similarly, equations (9.4c) and (9.4d), yield formulae
t
ds(z,t) = ds1(x) — / (du(z,t') - V)so(x)dt’, (9.10a)
0
op(z,t) — ap(x) ds(z, t)
co(z)2 ’
where ds1 denotes the initial entropy perturbation.

To connect to the presentation of Friedrichs systems in Chapter 8, we note that
system (9.6) is expressible as

T¢ = <v .‘?tCO ) Cgtv) (pof;; 5“) — <p008 5"’) = f. (9.11)

We note that T = —T is the formal adjoint of T in the regular L2(Q) inner product,
so T+ T = 0is bounded but not positive. However, let us identify the formal adjoint
of T in the weighted L?(Q) inner product (¢, €),, = jQ pT€, where

op(z,t) = (9.10Db)

p(z,t) = exp(—=At) (9.12)
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for some A > 0. Integrating by parts, we find

(TE,0), = (&, =Tt + M), = (&, Te), forany ¢, & € CL(Q), (9.13)

soT+T = M is bounded and positive, and therefore problem (9.11) is of Friedrichs
type. Another trick to incorporate the problem into the class of Friedrichs systems
is to note that, for any A > 0, problem (9.11) is equivalent to

pIE = pf; (9.14)

and the formal adjoint in the regular L?(Q) inner product of 7,, := uT is Tu =
A — Ty, 50 T}, + T, = Aul is bounded and positive. Yet another trick, which was
employed already by Friedrichs [25], is to consider &, := u£ as a new unknown in
problem (9.14), and noting that u7¢ = pT((1/p)pé) = A, + TE,. Thus, prob-
lem (9.11) is equivalent to

TE,+ M, = pif, (9.15)

and Ty := —T + M is the formal adjoint of T := T+ I in the regular L?(Q) inner
product, so T + T = 2XI is bounded and positive.

In the third example of Publication V, we develop a well-posed variational formu-
lation of an inhomogeneous initial-boundary value problem for system (9.6).

Publication VI treats the case of barotropic flows. Barotropic conditions hold for
elastic fluids, for which pressure is a function of density only, or when the conditions
are homentropic, thatis, s = s is uniform and constant. Then, in particular, o ds =
0, so the linearized equation of state (9.4d) reduces to

5p = c2 dp. (9.16)

With the aid of relation (9.16), equations (9.4a) and (9.4b) are expressible as a sys-
tem in du and dp, or Ju and dp. However, choosing the variables du and dp :== codp/po
(= 0p/(poco) =: dp) as suggested by Kreiss & Lorenz [40, § 8.3], we instead obtain
the system

( ) Vg Vpo 5 5
poDo \Y% PoCo o P U PoOPY
T¢ = +poco cho D%Oco = = f.(9.17)
pocoV-  poDo — 3 op 0
Po o

Note, to arrive at formulation (9.17), we used that for barotropic flows the equation
of state (9.3d) implies that Vpy = ¢3V pg. Mass conservation (9.3b) implies that, for
sufficiently smooth scalar fields ¢, 1,

O¢(po o) + V - (pouo @) = Vo (Orpo + V - (pouo)) + podi (V) + (pouo - V) (¢o)

=0

= poDo(1¢) = ¥ po Do + ¢ poDorp. (9.18)
With the aid of identity (9.18) and the divergence theorem, we find that
Do Vipco) (Vug)™  Vpo
. p PoC -
T | 77 N e | &0 po (9.19)
Vpo Docq
pocoV-  poDo - ——5
Po €0
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(z +w(x,t),t)

Advection by ug
Advection by u

Figure 9: The Lagrangian displacement w.

is the formal adjoint of 7" in L?(Q). For sufficiently regular background flows, T + T
is bounded, but not positive in general. Nevertheless, the same weighting tricks that
resolved the positivity issue for system (9.11) also work here.

In Publication VI, we develop a mildly well-posed formulation of an initial-bound-
ary value problem for the barotropic system (9.17). This system is of importance
in, for instance, aeroacoustics where it serves as a model of lossless propagation of
acoustic disturbances in the presence of a background flow.

9.2 The Lagrangian displacement and Galbrun’s equation

Traditionally, the Lagrangian displacement vector field w is defined as the displace-
ment of individual fluid particles, as illustrated in Figure 9 and detailed in Appendix
A of Publication VI. In particular, it follows that, to first order in w and du, the La-
grangian displacement satisfies

ou = Dow — (w - V)ug = (0 + L) w, (9.20)
where L, w = (ugp - V)w — (w- V)ug = —L,,ug denotes the Lie derivative of w with
respect to ug. Thus, the velocity perturbation is computable from the Lagrangian

displacement.

In 1931, Henri Galbrun [27, § 3] appears to have been the first of many to develop
alinear second order partial differential equation for the evolution of the Lagrangian
displacement. The following formulation of Galbrun’s equation is an adaptation to
our notation of the formulation derived by Gabard [26] in his dissertation.

poDgw =V (pocgV -w) + (Vpo)V - w — (Vw) Vg — po(w - V)ipo = po dp. (9:21)
One advantage of formulation (9.21) is that in frequency domain it naturally leads to

a variational formulation that contains no derivatives of the background flow quan-
tities other than Vpqy [12]. We have already seen that the velocity perturbation is
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computable from the Lagrangian displacement by formula (9.20). The derivation of
Galbrun’s equation (9.21), requires that the remaining perturbations satisfy

ép ==V - (pow), (9.22a)
0s = —(w - V)sg, (9.22b)
6p = —pocaV - w — (w - V)po = 2 dp + g s, (9.22¢)

where the last identity follows from Vpgy = ¢2V po + a9V s, which is a consequence
of state equation (9.4d). A tedious calculation demonstrates that if the Lagrangian
displacement satisfies Galbrun’s equation (9.21), then the perturbations given by
formulae (9.20) and (9.22) satisfy the linearized Euler’s equations (9.4). The conclu-
sion is that all perturbations are computable from the Lagrangian displacement.

The derivation of Galbrun’s equation presented in Gabard’s dissertation [26] em-
ploys a so-called Lagrangian linearization ansatz to Euler’s equations (9.1). The La-
grangian linearization ansatz involves Lagrangian perturbations

oru(z,t) = du(x,t) + (w(x,t) - V)ug(z,t) = u(x + w(z, t), t) — uo(x,t), (9.23)

and analogous expressions for the other fields. Brazier [17] presents a derivation
of Galbrun’s equation, attributed to Poirée [49], in which Euler’s equations are ex-
pressed and linearized in a Lagrangian (material) frame of reference before return-
ing to the Eulerian (fixed) frame of reference. Godin [29] develops Galbrun’s equa-
tion for an oscillatory displacement field and demonstrates that the oscillatory dis-
placement is equal to the Lagrangian displacement to first order. In Publication VI,
we present a derivation of Galbrun’s equation for barotropic background flows that
does not rely on Lagrangian perturbations and in which the Lagrangian displace-
ment is abstractly introduced as a solution to equation (9.20).

To the best of our knowledge, all derivations of Galbrun’s equation rely, explic-
itly or implicitly, on the so-called “no resonance” assumption that was formalized by
Godin [29]:

Let h depend linearly on some combination of du, 6p, op, s, w, and their derivatives.

If Doh = 0, then h = 0.

Indeed, by introducing formula (9.20) into equation (9.4b), we demonstrate in Pub-

lication VI that 5 v
Dy (/)-i-p(pow)> =0. (9.24)
0

Similarly, by formula (9.20), we obtain the identity du - Vsg = Dg(w - Vsg) + (w -
V) Dyso, which together with equations (9.3c) and (9.4c) demonstrates that

The required formulas (9.22a) and (9.22b) then follow from the “no resonance” as-
sumption. The term “no resonance” derives from the fact that h(z, t) = exp(iwt —
ik - x) is a non-trivial solution to Doh = 0 for uniform u, provided thatw = k - ug,
thatis, provided w and k are ‘in resonance’ with ug. In Publication VI, we exploit that
on a bounded domain @ = €2 x (0, 7), for a sufficiently regular background flow and
quantity h, the “no resonance” assumption is fulfilled if and only if 4 vanishes ini-
tially and on the space-time boundary part where the background flow is entering.
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On the one hand, if the “no resonance” assumption holds, and 4 is a scalar field that
is sufficiently regular to admit boundary traces on 0@, then h = 0 in @) implies that
h = 0 on 9Q. On the other hand, assume that h is a sufficiently regular scalar field
that satisfies Dyh = 0in () for some sufficiently regular background flow. The space-
time boundary 9@ of the space-time cylinder Q = 2 x (0, 7) is naturally partitioned
as 0Q = Qo UQ, U, where Qy = Q x {0}, Q, = Q x {r},and X := 9Q x (0, 7).
We further partition ¥ = ¥y U 3¥_ U X, into parts where the background flow is
tangential, entering or exiting, respectively. That is,

Yo = {(z,t) € | n(x) - ug(x, t) = 0},

Y= {(Z‘,t) € | n(l‘) ' UO(Z‘,t) < 0}’ (926)

YXp={(z,t) € | n(x) - up(z,t) > 0},
where n denotes the outward unit normal field to 0€2. To prove the claim, we exploit
identity (9.18) with ¢ = h and ¢ = —uh, where u(z,t) = exp(—At) for some A > 0.
Note that, since Dyph = 0 and Dyp = —Ap, we have that the right hand side of iden-
tity (9.18) with ¢ = hand v = —ph equals A\pg ith?. Thus, integrating identity (9.18)
with ¢ = h and ¢y = —ph over the domain @, employing the divergence theorem
and properties (9.26), we obtain the bound

)\/Po ph? = —/ [at (Po /ihz) +V- (Pouo MhQ)}

Q Q
=/Pouh2+/Po\n'uoth—/PoﬂhQ—/Po|n'uo|lth2
Qo P Qr S
< [t + [ ol ol i (9.27)
Qo P

which demonstrates that if Doph = 0 in ) and h vanishes on @)y and ¥_, then h
vanishes in Q.

In a uniform background flow, Galbrun’s equation (9.21) reduces to a convected
vector wave equation,

D2w — 2V (V - w) = dp. (9.28)
Berriri et al. [5, 6] propose a regularized formulation of equation (9.28),
Diw — 2V (V- w) + 2V x (V x w — ) = dp, (9.29)
where 1) satisfies
D3 =V x §p. (9.30)

Equation (9.30) is derived by applying the curl operator to equation (9.28) and in the
end replacing V x w with 9. Note that if ¢y = V x w, then equation (9.29) reduces
to the original convected wave equation (9.28). Equations (9.30) and (9.29) may be
solved in sequence, and in some cases there are even analytical expressions for ¢ [5].
Berriri et al. [5, 6] develop well-posed regularized initial-boundary value problems
for subsonic (Jup| < ¢o) background flows on an infinite 2D duct with rigid walls.
Appealing to the identity

—Aw=-V(V-w)+V x (V xw), (9.31)
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the regularized formulation avoids the need of a tailored functional setting for the
spatial operator (ug - V)? — ¢3V(V- ), which for ug # 0 is neither positive semi-
definite nor negative semi-definite but indefinite. To reconcile the regularized
formulation (9.29) with the original formulation (9.28), the initial-boundary value
problems considered by Berriri et al. [5, 6] include the additional boundary condi-
tion V x w = v on X. A stable scheme for discretizing the regularized formulation is
devised based on Lagrange finite elements for the spatial part and finite differences
for the temporal part of the operator. Due to the lack of H!-coerciveness, the pro-
posed scheme is found to be unstable when applied to the original convective vector
wave equation (9.28).

We note that regularized formulations of Galbrun’s equation (9.21) may be analo-
gously defined for general background flows. However, the resulting pair of equa-
tions generalizing equations (9.29) and (9.30) are then fully coupled. In fact, in-
spired by a similar approach to Maxwell’s equations, the regularized formulation
was first introduced to study time-harmonic solutions to the convected vector wave
equation (9.28), that is, Galbrun’s equation in a uniform background flow. Well-
posed boundary-value problems for regularized time-harmonic Galbrun’s equation
have been developed in the literature for a sequence of increasingly complicated two-
dimensional subsonic background flows [8, 9, 10, 11, 12]. Also in the time-harmonic
setting, naive discretizations of Galbrun’s equation (9.21) are known to be poorly
performing [43, 61].

In Publication VI, we analyze Galbrun’s equation for barotropic background flows
that are tangential to the boundary (X = ;). Formally, we construct solutions to
Galbrun’s equation from solutions to linearized Euler’s equations (9.17) by defin-
ing the Lagrangian displacement as a solution to an initial value problem for equa-
tion (9.20), where the initial datum has been tuned so that the “no resonance” as-
sumption holds. Unfortunately, the general case of background flows that are not
tangential to the boundary is not straightforward to analyze. First, the analysis of
linearized Euler’s equations is complicated by the fact that the boundary no longer
is a characteristic surface of constant multiplicity. Second, it appears that the bound-
ary condition on the part of the boundary where the background flow is entering the
domain, which is needed to make the Lagrangian displacement well-defined, cannot
be tuned to guarantee that the “no resonance” assumption holds.
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10. Summary of publications: Part Il

In Publication V, we develop well-posed variational formulations of inhomogeneous
initial-boundary value problems of Friedrichs’ type. In these formulations, the trial
spaces are subspaces of the graph spaces that admit L? boundary traces, while the
test spaces are tuples of L? spaces used to enforce the equations in the interior of
the domain, the initial conditions, and the boundary conditions, respectively. The
first example considered is the scalar advection-reaction equation

B-Vu+au=f, (10.1)

where the scalar field « is essentially bounded and uniformly positive, and the vector
field 5 and its gradient are essentially bounded. The second example

u+ Vp = fi, (10.2a)
p+V-u=fo (10.2b)

is a first order formulation of the second order diffusion-reaction equation
—Ap+p=-V-fit+f2 (10.3)

The third example is the acoustical system (9.6) modeling the sound propagation in
ideal stagnant media. To establish well-posedness in the form of Necas characteri-
zation, we rely on, among other things, density in the trial spaces of functions that
are smooth on the closure of the (space-time) domain.

In Publication VI, we analyze Galbrun’s equation for barotropic background flows
in bounded domains. Formally, we derive an equivalent formulation of Galbrun’s
equation from linearized Euler’s equations (9.4) by introducing the Lagrangian dis-
placement via equation (9.20) and invoking the “no resonance” assumption. For
steady background flows that are tangential to the boundary of the domain, we de-
velop a mildly well-posed initial-boundary value problem for linearized Euler’s equa-
tions (9.17) and demonstrate that the initial condition, which is needed to make
the Lagrangian displacement well-defined, may be tuned so that the “no resonance”
assumption holds. We demonstrate that sufficiently regular solutions to an initial-
boundary value problem for Galbrun’s equation satisfy an energy estimate, even for
unsteady tangential background flows. However, the possibly non-positive nature
of the zeroth order terms in equations (9.17) and (9.20) prevents us from excluding
the possibility that solutions grow exponentially with time.

44



Bibliography

(1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

N. Antoni¢ and K. Burazin. Intrinsic boundary conditions for Friedrichs sys-
tems. Communications in Partial Differential Equations, 35(9):1690-1715,
2010.

P. Azerad. Analyse des Equations de Navier-Stokes en Bassin peu Profond et de
I'Equation de Transport. PhD thesis, University of Neuchatel, 1996.

M. P. Bendsge and N. Kikuchi. Generating optimal topologies in structural de-
sign using a homogenization method. Computer Methods in Applied Mechanics
and Engineering, 71(2):197-224, 1988.

M. P. Bendsge and O. Sigmund. Topology Optimization. Theory, Methods, and
Applications. Springer, 2003.

K. Berriri. Approche analytique et numérique pour I'aéroacoustique en régime
transitoire par le modéle de Galbrun. PhD thesis, ENSTA ParisTech, 2006.

K. Berriri, A.-S. Bonnet-Ben Dhia, and P. Joly. Numerical analysis of time-
dependent Galbrun equation in an infinite duct. arXiv preprint math/0603546,
2006.

P. B. Bochev and M. D. Gunzburger. Least-squares finite element methods, vol-
ume 166. Springer Science & Business Media, 2009.

A.-S. Bonnet-Ben Dhia, E.-M. Duclairoir, G. Legendre, and ].-F. Mercier. Time-
harmonic acoustic propagation in the presence of a shear flow. Journal of Com-
putational and Applied Mathematics, 204(2):428-439, 2007.

A.-S.Bonnet-Ben Dhia, G. Legendre, and E. Lunéville. Analyse mathématique de
I'équation de Galbrun en écoulement uniforme. Comptes Rendus de I’Académie
des Sciences-Series IIB-Mechanics, 329(8):601-606, 2001.

A.-S.Bonnet-Ben Dhia, G. Legendre, and E. Lunéville. Regularization of the time-
harmonic Galbrun’s equations. In Mathematical and Numerical Aspects of Wave
Propagation WAVES 2003, pages 78-83. Springer, 2003.

A.-S. Bonnet-Ben Dhia, ]J.-F. Mercier, F. Millot, and S. Pernet. Alow-mach number
model for time-harmonic acoustics in arbitrary flows. Journal of Computational
and Applied Mathematics, 234(6):1868-1875, 2010.

A.-S. Bonnet-Ben Dhia, ].-F. Mercier, E. Millot, S. Pernet, and E. Peynaud. Time-
harmonic acoustic scattering in a complex flow: a full coupling between acous-
tics and hydrodynamics. Communications in Computational Physics, 11(2):555-
572,2012.

45



[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

46

T. Borrvall. Computational Topology Optimization of Elastic Continua by Design
Restriction. Licentiate thesis, Link6éping University, 2000.

T. Borrvall. Topology optimization of elastic continua using restriction.
Archives of Computational Methods in Engineering, 8(4):351-385, 2001.

T. Borrvall and J. Petersson. Topology optimization using regularized interme-
diate density control. Computer Methods in Applied Mechanics and Engineering,
190(37-38):4911-4928, 2001.

B. Bourdin. Filters in topology optimization. International Journal for Numeri-
cal Methods in Engineering, 50:2143-2158, 2001.

J.-Ph. Brazier. Derivation of an exact energy balance for Galbrun equation in
linear acoustics. Journal of Sound and Vibration, 330(12):2848-2868, 2011.

T. E. Bruns and D. A. Tortorelli. Topology optimization of non-linear elastic
structures and compliant mechanisms. Computer Methods in Applied Mechanics
and Engineering, 190:3443-3459, 2001.

K. Burazin. Prilozi teoriji Friedrichsovih i hiperbolickih sustava (Contribution
to the theory of Friedrichs’ and hyperbolic systems). PhD thesis, University of
Zagreb, 2008.

K. Burazin and M. Erceg. Non-stationary abstract Friedrichs systems. Mediter-
ranean journal of mathematics, 13(6):3777-3796, 2016.

P. W. Christensen and A. Klarbring. An introduction to structural optimization,
volume 153. Springer Science & Business Media, 2008.

P. G. Ciarlet. Linear and nonlinear functional analysis with applications. SIAM,
2013.

J. D. Deaton and R. V. Grandhi. A survey of structural and multidisciplinary
continuum topology optimization: post 2000. Structural and Multidisciplinary
Optimization, 49(1):1-38, 2014.

A. Ern, ].-L. Guermond, and G. Caplain. An intrinsic criterion for the bijectivity
of Hilbert operators related to Friedrich’ systems. Communications in Partial
Differential Equations, 32(2):317-341, 2007.

K. O. Friedrichs. Symmetric positive linear differential equations. Communica-
tions on Pure and Applied Mathematics, X1:338-418, 1958.

G. Gabard. Méthodes numériques et modéles de sources aéroacoustiques fondés
sur l'équation de Galbrun. PhD thesis, Université de Technologie de Compiegne,
2003.

H. Galbrun. Propagation d’'une onde sonore dans I'atmosphére et théorie des
zones de silence. Gauthier-Villars, Paris, 1931.

C. A. Glasbey and R. Jones. Fast computation of moving average and related fil-
ters in octagonal windows. Pattern Recognition Letters, 18(6):555-565, 1997.



[29]

(30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

0. A. Godin. Reciprocity and energy theorems for waves in a compressible in-
homogeneous moving fluid. Wave Motion, 25(2):143 - 167, 1997.

J. K. Guest. Topology optimization with multiple phase projection. Computer
Methods in Applied Mechanics and Engineering, 199(1-4):123-135, 2009.

J. K. Guest, J. H. Prévost, and T. Belytschko. Achieving minimum length scale in
topology optimization using nodal design variables and projection functions.
International Journal for Numerical Methods in Engineering, 61(2):238-254,
2004.

M. E. Gurtin. 4n introduction to continuum mechanics. Academic Press, 2003.

E. Hassan. Topology optimization of antennas and waveguide transitions. PhD
thesis, Umea University, Sweden, 2015.

E. Hassan, D. Noreland, E. Wadbro, and M. Berggren. Topology optimisation of
wideband coaxial-to-waveguide transitions. Scientific Reports, 7:45110, 2017.

E. Hassan, E. Wadbro, and M. Berggren. Topology optimization of metallic an-
tennas. [EEE Transactions on Antennas and Propagation, 63(5):2488-2500,
2014.

H.]. A. M. Heijmans. Mathematical morphology: A modern approach in image
processing based on algebra and geometry. SIAM Review, 37(1):1-36, 1995.

J. D. Jackson. Classical electrodynamics. Wiley, New York, 3. ed. edition, 1999.

M. Jensen. Discontinuous Galerkin Methods for Friedrichs Systems with Irregular
Solutions. PhD thesis, University of Oxford, 2004.

A. N. Kolmogorov. On the notion of mean. In A. N. Kolmogorov and V. M.
Tikhomirov, editors, Selected works of A.N. Kolmogorov. Vol. 1, Mathematics and
mechanics, pages 144-146. Kluwer, 1991. (Translation of: Kolmogorov A.N.:
Sur la notion de la moyenne. Atti Accad. Naz. Lincei 12, pp. 388-391. (1930).).

H.-0. Kreiss and ]. Lorenz. Initial-boundary value problems and the Navier-
Stokes equations. Academic Press, Boston, 1989.

B. S. Lazarov and O. Sigmund. Filters in topology optimization based on
Helmholtz-type differential equations. International Journal for Numerical
Methods in Engineering, 86(6):765-781, 2011.

B.S. Lazarov and F. Wang. Maximum length scale in density based topology op-
timization. Computer Methods in Applied Mechanics and Engineering, 318:826-
844, 2017.

G. Legendre. Rayonnement acoustique dans un fluide en écoulement: analyse
mathématique et numérique de I'équation de Galbrun. PhD thesis, ENSTA Paris-
Tech, 2003.

V. G. Maz'ja and T. O. Shaposhnikova. Jacques Hadamard : a universal mathe-
matician. American Mathematical Society, Providence, 1998.

47



[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

48

M. Nagumo. Uber eine Klasse der Mittelwerte. Japanese Journal of Mathematics,
7:71-79, 1930.

J. Necas. Sur une méthode pour résoudre les équations aux dérivées partielles
du type elliptique, voisine de la variationnelle. Annali della Scuola Normale
Superiore di Pisa, Classe di Scienze, 16(4):305-326, 1962.

A. Pazy. Semigroups of linear operators and applications to partial differential
equations, volume 44. Springer Science & Business Media, 2012.

J. Petersson. Some convergence results in perimeter-controlled topology opti-
mization. Computer Methods in Applied Mechanics and Engineering, 171:123-
140, 1999.

B. Poirée. Les équations de I'acoustique linéaire et non-linéaire dans un écoule-
ment de fluide parfait. Acta Acustica united with Acustica, 57(1):5-25, 1985.

J. Rauch. Symmetric positive systems with boundary characteristic of constant
multiplicity. Transactions of the American Mathematical Society, 291(1):167-
187, 1985.

S. W. Rienstra and A. Hirschberg. An introduction to acoustics. Revised and up-
dated version of reports IWDE 92-06 and IWDE 01-03, Eindhoven University
of Technology, 2004.

M. Schevenels and O. Sigmund. On the implementation and effectiveness of
morphological close-open and open-close filters for topology optimization.
Structural and Multidisciplinary Optimization, 54(1):15-21, 2016.

0. Sigmund. Morphology-based black and white filters for topology optimiza-
tion. Structural and Multidisciplinary Optimization, 33(4-5):401-424, 2007.

0. Sigmund and A. Maute. Topology optimization approaches. Structural and
Multidisciplinary Optimization, 48(6):1031-1055, 2013.

M. Stolpe and K. Svanberg. On the trajectories of penalization methods
for topology optimization. Structural and Multidisciplinary Optimization,
21(2):128-139, 2001.

C. Sun. Moving average algorithms for diamond, hexagon, and general polyg-
onal shaped window operations. Pattern Recognition Letters, 27(6):556-566,
2006.

K. Svanberg. The method of moving asymptotes—a new method for struc-
tural optimization. International Journal for Numerical Methods in Engineering,
24(2):359-373,1987.

K. Svanberg. A class of globally convergent optimization methods based on
conservative convex separable approximations. SIAM Journal on Optimization,
12(2):555-573, 2002.



[59]

[60]

[61]

[62]

[63]

K. Svanberg and H. Svard. Density filters for topology optimization based on the
Pythagorean means. Structural and Multidisciplinary Optimization, 48(5):859-
875, 2013.

L. N. Trefethen and D. Bau. Numerical linear algebra. SIAM, Society for Indus-
trial and Applied Mathematics, Philadelphia, 1997.

F. Treysséde, G. Gabard, and M. Ben Tahar. A mixed finite element method for
acoustic wave propagation in moving fluids based on an Eulerian-Lagrangian
description. The Journal of the Acoustical Society of America, 113(2):705-716,
2003.

F. Wang, B. S. Lazarov, and O. Sigmund. On projection methods, convergence
and robust formulations in topology optimization. Structural and Multidisci-
plinary Optimization, 43(6):767-784, 2011.

M. Y. Wang and S. Wang. Bilateral filtering for structural topology optimiza-
tion. International Journal for Numerical Methods in Engineering, 63(13):1911-
1938, 2005.

49



	Computational design optimization
	Density based topology optimization
	The minimum compliance problem
	The minimum ``heat compliance'' problem

	Imposing minimum size
	Density filters
	The linear filter
	Nonlinear filters

	Design of coaxial-to-waveguide transitions
	Summary of publications: Part I
	Well-posedness of Friedrichs systems
	Linear acoustics
	Linearized Euler's equations
	The Lagrangian displacement and Galbrun's equation

	Summary of publications: Part II
	Bibliography

