UMEA UNIVERSITET

MANAGING CLOUD
RESOURCE SCARCITY

Lars Larsson

DOCTORAL THESIS, OCTOBER 2020
DEPARTMENT OF COMPUTING SCIENCE
UMEA UNIVERSITY
SWEDEN

Department of Computing Science
Umed University
SE-901 87 Ume3, Sweden

https://people.cs.umu.se/ larsson/
larsson@cs.umu.se

Copyright (¢) 2020 by authors
Except Paper I, (¢) IEEE, 2009
Paper II, (¢) IEEE, 2011
Paper I1I, (¢) IEEE, 2016
Paper IV, (¢) IEEE, 2019
Paper V, (¢) John Wiley & Sons Ltd, 2020

ISBN (print): 978-91-7855-328-0
ISBN (digital): 978-91-7855-329-7
ISSN: ISSN-0348-0542

UMINF: UMINF 20.07

The papers in this thesis have been re-typeset to match the overall style
of the thesis with permission granted by the copyright holders.
Printed in Ume3, 2020.

https://people.cs.umu.se/~larsson/

“Hur det dn blir sd ska gndarna veta att det finns inga bojor
eller band som kan hindra mina tankar att fardas norrut pd
vdren, som en flygande and”

— Euskefeurat,
“Det ir hit man kommer nir man kommer hem”

111

Abstract

According to the Infrastructure-as-a-Service conceptualization of cloud
computing, Infrastructure Providers offer utility-like pay-as-you-go
access to computing resources (e.g., data processing, networks, and stor-
age) to Service Providers, who use those resources to host applications
for the benefit of end users. The quantity of resources available to In-
frastructure Providers at any given moment is limited, as is the quantity
of resources allocated to the applications of each Service Provider.

This thesis examines the management of cloud resource scarcity
from the perspectives of both Infrastructure and Service Providers,
with the aim of finding ways to ensure that the end user experience is
minimally affected.

We consider three main strategies for managing cloud resource
scarcity. First, we explore ways to efficiently construct collaborative
federations of autonomous and independent Infrastructure Providers
that allow local resource scarcity to be masked by extension using capac-
ity from remote sites. Second, we consider how scheduling both within
a cloud site and across a federation can be made aware of restrictions
imposed by Service Providers for, e.g., performance or legal reasons.
Third, we suggest ways of making applications conscious of resource
availability so that they can apply guality elasticity under resource con-
straints.

The thesis is the culmination of 11 years of work within academia
and industry. Based on the unique perspective granted by this long
experience, the introductory chapters present a historical view of each
subtopic mentioned above. Specifically, they discuss how cloud comput-
ing has evolved in conjunction with ways of developing applications to
the symbiotic benefit of both, leading to the emergence of cloud-native
software that allows Infrastructure Providers to use their infrastruc-
ture more efficiently and offer it more affordably while simultaneously
granting Service Providers improved availability and performance in
cloud-based environments.

Sammanfattning

I molnet (cloud computing), ur Infrastructure-as-a-Service-perspektivet,
ger infrastruktursleverantdrer tillgdng till datorresurser (sdsom data-
behandlings-, nitverks- och lagringskapacitet) med en [6pande betal-
ningsmodell till tjinsteleverantorer sd att dessa kan erbjuda applika-
tioner till fordel {6r slutanvindare. For infrastruktursleverantérer finns
det en begrinsning 1 mingden datorresurser som ar tillgingliga vid varje
givet tillfille. For tjdnsteleverantorer finns det en begrinsning 1 hur
manga sddana resurser som ar allokerade till deras applikationer.

Det 6vergripande malet med denna doktorsavhandling ir att studera
olika sitt att hantera resursbrister i molnet ur bade infrastrukturslever-
antorers och tjdnsteleverantorers perspektiv, s att slutanvindares up-
plevelse blir minimalt paverkad.

Vara ansatser till att hantera resursbrister 1 molnet kommer frin tre
huvudsakliga omridden. Forst utforskar vi federationer av autonoma
och oberoende infrastruktursleverantdrer, som mdojliggor att lokala
resursbrister kan maskeras genom att utéka och nyttja resurser fran
andra leverantorer. Dirnidst undersoker vi hur schemaliggning bade
inom och mellan molnsajter i en federation kan goras medveten om
begrinsningar som tjinsteleverantorer kriver av exempelvis prestanda-
eller legala skal. Slutligen foreslar vi olika sitt hur applikationer kan
gbras medvetna om nuvarande resurstillging och goras kvalitetselastiska.

Avhandlingen utgdr kulmen av 11 ars arbete inom akademins och
industrins virld. Baserat pa de unika mojligheter en sidan erfarenhet
ger presenteras dven ett historiskt perspektiv av dessa omraden i de in-
ledande kapitlen. I dessa kapitel diskuterar vi hur molnet har utvecklats
tillsammans med hur applikationer levereras till slutkunder och hur ett
symbiotiskt férhéllande uppstatt dem emellan. Resultatet ar mjukvara
som ir cloud-native, vilket mojliggor for infrastruktursleverantorer att
till hogre grad effektivt utnyttja sin infrastruktur och erbjuda tillgdng
till den pa ett mer kostnadseffektivt sitt, samt ger tjansteleverantorer
okad tillganglighet och prestanda i molnbaserade miljoer.

vil

Preface

The research goal of this thesis is to to explore methods for managing
cloud resource scarcity in a way that preserves both autonomy and
timeliness. The thesis addresses this goal from different perspectives and
consists of an introduction to the fields of cloud federations, scheduling,
and quality-elasticity together with the following papers:

Paper1

Paper 11

Paper IIT

Paper IV

Paper V

E. Elmroth and L. Larsson. Interfaces for Placement, Mi-
gration, and Monitoring of Virtual Machines in Federated
Clouds. Eighth International Conference on Grid and Coop-
erative Computing (GCC), IEEE, pp. 253-260, 2009.

L. Larsson, D. Henriksson, and E. Elmroth. Scheduling and
Monitoring of Internally Structured Services in Cloud feder-

ations. IEEE Symposium on Computers and Communications
(ISCC), IEEE, pp. 173-178, 2011.

D. Espling, L. Larsson, W. Li, J. Tordsson, and E. Elmroth.
Modeling and Placement of Cloud Services with Internal
Structure. [EEE Transactions on Cloud Computing, IEEE,
Vol 4, No 4, pp. 429-439, 2016.

L. Larsson, W. Tarneberg, C. Klein, and E. Elmroth. Quality-
Elasticity: Improved Resource Utilization, Throughput,
and Response Times via Adjusting Output Quality to Cur-

rent Operating Conditions. [EEE International Conference
on Autonomic Computing (ICAC), IEEE, pp. 52-62, 2019.

L. Larsson, W. Tirneberg, C. Klein, E. Elmroth, and M.
Kihl. L. Larsson, W. Tarneberg, C. Klein, E. Elmroth, and

X

Paper VI

Paper VII

M. Kihl. Software: Practice and Experience, John Wiley &
Sons Ltd, 2020.

L. Larsson, H. Gustafsson, C. Klein, and E. Elmroth. Decen-
tralized Kubernetes Federation Control Plane. Submitted,
2020.

L. Larsson, W. Tarneberg, C. Klein, M. Kihl, and E. Elm-
roth. Towards Soft Circuit Breaking in Service Meshes via
Application-agnostic Caching. Submitted, 2020.

In addition to the papers included in this thesis listed above, the
following publications and patents arose from work conducted by Lars
during his doctoral studies:

Paper VIII B. Rochwerger, C. Vazquez, D. Breitgand, D. Hadas, M.

Paper IX

Patent |

Patent II

Villari, P. Massonet, E. Levy, A. Galis, I. M. Llorente, R. S.
Montero, Y. Wolfsthal, K. Nagin, L. Larsson, and F. Galan.
An Architecture for Federated Cloud Computing. Clond
Computing: Principles and Paradigms, John Wiley & Sons,
Inc., pp. 393-411, 2011.

J. Ruuskanen, H. Peng, A. Akesson, L. Larsson and M. Kihl.
FedApp: Research Sandbox for Application Orchestration
with Kubernetes on the Next-Generation Cloud and Edge
Computing Infrastructures. Submitted, 2020.

E. Elmroth, P. Gardfjill, J. Tordsson, A. Aley El Din Has-
san, and L. Larsson. Method, Node and Computer Pro-
gram for Enabling Automatic Adaptation of Resource Units.
EP2904491B1, European Patent Office, 2017.

H. Gustafsson and L. Larsson. Kubernetes Decentralized
Cluster Federation. Filed, 2020.

Financial support for this work was provided in part by the Euro-
pean Community’s Seventh Framework Programme (FP7/2001-2013)
under grant agreements no. 215605 (RESERVOIR) and no. 257115 (OP-

TIMIS); the Swedish Government’s strategic research project eSSENCE;
and the Swedish Research Council under contract no. C0590801 (Cloud

Control).

X1

Acknowledgements

I am incredibly fortunate to have been in the cloud field almost since
its very beginning. Erik Elmroth, my main supervisor, has made that
journey possible in many ways — not just by obviously taking under
his wing a PhD student, but also letting me gain industry experience
in the company he and Johan Tordsson founded, Elastisys. I am so
thankful for the many opportunities you have given me, and for always
being both willing and solutions-oriented enough so we found ways of
working together, no matter what else we had going on in our lives.

As I write these words, my next career challenge is to act as branch
manager for the Elastisys office in Lund together with my co-supervisor
for this thesis, Cristian Klein. Thank you for your support, insights,
and how you have challenged me during these years! I very much look
forward to this next step. And with so many of our former colleagues
from the research group being employed by Elastisys in Umes, it feels
like we get to bring the best things with us, even if we have moved over
a thousand kilometers closer to a less harsh climate.

During my many years of being associated in one way or another to
the Department of Computing Science, I have made many friends and
have met some truly remarkable people along the way. Since Umea is
also where I studied for my undergraduate studies beginning in 2004,
and I started working at the department in 2006 as a teacher’s assistant
(amanuensis), the list of everybody I would like to name here is virtually
endless. Even “just” listing the members that the research group has
had over the years would be around 20 names! So while I may not write
out everybody’s names, I hope you know in your heart as much as I do
that you have all helped shape me, personally as well as professionally
(and to some extent physically, via fun floorball matches at IKSU).

X111

I would like to give a special thank you to my former office-mate
Daniel Bergstrom (formerly Espling and before that Henriksson) for all
the great times at home and abroad. And to my Elastisys office-mate,
Peter Gardfjill, who taught me not just a lot about life, but also about
being professional. P-O Ostberg is someone I have not yet shared an
office with, but instead of that, we have shared countless of great times
out on the town and talked about life, the universe, and everything —
you are one of my inspirations for choosing the academic path in the
first place. And my dear friend Ahmed Ali-Eldin, with whom I can
(and have!) talk for hours on end with about topics ranging from the
most spiritual to the down to earth ones, such as the many joys and
challenges of parenting. Thank you all, you have greatly impacted and
enriched my life, and will continue to do so for many years to come.

Even after life had taken me, my wife, and our three kids to south-
ern Sweden, and even after many years of work in the industry, Erik
Elmroth still made it possible for me to continue my PhD studies from
afar. Maria Kihl graciously invited me to have an office at the depart-
ment of Electrical and Information Technology as a visitor to her group.
And down here in the south, in the “academic farmer’s village” that
Carl von Linné called Lund, I met William Tarneberg. We immediately
found our extensive common ground and have collaborated on most
of my recent papers. Thank you for our long conversations about both
personal and professional topics, and for all the support we have given
each other. You inspire me. Further inspiration came via an internship
at Ericsson Research, where I was given the great opportunity to teach
a PhD-level cloud course together with Johan Eker, and discuss where
the industry is headed in edge computing with, among others, Harald
Gustafsson. Thank you to you and Joakim Persson for giving me this
great insight into the future as shaped by a company that is essentially
the innovation engine that keeps Sweden running smoothly.

With a large amount of friends rooting for me and cheering me
on to finish my PhD studies, my largest support nevertheless comes
from home. From my wonderful wife Anna and our exceptional and
incredible three children: Tina, David, and Samuel. You all give me love,
purpose, and direction in life. I don’t have words big and meaningful
enough to adequately explain how much you mean to me. My mother
Ursula and my sister Lisa, thank you for enabling, supporting, and

X1V

challenging me as I became interested in learning about computers
from an early age. None of this would have been possible if it were not
for you encouraging me, and for that I am forever grateful. To you I
definitely owe much of my work ethic and exploratory mindset, 1.e.
the key personality traits required to both start and finish an ambitious
project such as getting a PhD. Finally, I wish my father Bo was able to
celebrate this occasion together with us — may he rest in peace.

Thank you to everyone that believed in me and have helped me see
this whole process through. It’s been one heck of a ride, and from start
to finish it sure took a while, but I am so very happy to have finished it
all. In all the ways that truly matter, I feel like we did it together.

Lars Larsson
Lund, August 2020

XV

Contents

(1__Introduction| 1
1.1 Research Goal and Obyjectives|. 2
1.2 Historical Context] . « . oo v v oo i 3
(1.3 ThesisOutlinel 4

2 Cloud and Edge Computing 5
2.1 Utlity Computing: Vision and Implementation| 7

i ization of Resources| 8
2.3 Forklifting to Cloud-Native: Cloud |

| Paradigm Shifts| L 10
2.4 Cloud Perspectives: Everything as a Service|. 17
2.5 EdgeComputing 18
2.6 Research Methods in Cloud and Edge Computing| ... 21
2.7 Ethical Aspects of Cloud Computing|. 23

3 Federated Cloud Infrastructurel 27
3.1 Early Vision of Cloud Federations|. 29
3.2 Current Implementation of Cloud Federations| 31
3.3 Future Vision of Cloud Federations|. 33

4 Scheduling 35
4.1 Scheduling as an Optimization Problem|. 36
4.2 Co-development of Scheduling and Cloud Computing| 38
4.3 Scheduling Across Cloud Federations|. 41
4.4 Scheduling in Future Cloud and Edge Computing| ... 42

xVil

15 Quality Elasticity| 45
5.1 Approximate Computing Primer] 47
5.2 Eventual Consistency in Databases| 47
5.3 Adjusting Application Output Quality to Resource |
| Availability|. L 52
6 Summary of Contributions| 55
6.1 Outline of Contributions 55
6.2 Paper]l......... 59
63 PaperIl 60
6.4 PaperIIll. 62
6.5 PaperIV|. 64
6.6 PaperV|......... 66
6.7 Paper VI 68
6.8 Paper VIIo 70
7__Conclusionl 73
75

xXVill

Chapter 1

Introduction

Cloud computing is a nebulous term that is currently used to describe a
large array of computational services. Unless stated otherwise, we view
cloud computing through the Infrastructure-as-a-Service perspective,
in which an Infrastructure Provider owns one or more physical data
centers and rents parts of this infrastructure out to Service Providers
in such a way that each Service Provider has the illusion of accessing a
private and dynamically resizeable data center of their own, without the
operational costs and complexities associated with maintaining physical
hardware.

Infrastructure Providers market their services as offering access
to infinite, pay-as-you-go access to compute, storage, and network in-
frastructure capacity that is available to all and limited only by the
imagination —or credit card limits— of the Service Providers. Because
no resource, computational or otherwise, can really be infinite, such
marketing statements cannot be true. This thesis focuses on the region
where marketing claims collide with reality, and shows how this colli-
sion can be softened by using new methods for managing cloud resource
scarcity.

This is a collection of articles PhD thesis. The introductory chapters,
the kappa, present the context of the papers comprising the main con-
tent of the thesis. These chapters make the case that cloud computing,
as a technology, has evolved together with the expectations of cloud
users, and that their influence over each other has led to the emergence
of software that can truly be considered clond-native. Such software is

adapted to thrive symbiotically in cloud environments, able to benefit
from features of the cloud and work around its limitations while simul-
taneously offering leeway for cloud optimization (a more concise and
complete definition is provided on page [14).

1.1 Research Goal and Objectives

This thesis has a single research goal: to explore methods for manag-
ing cloud resource scarcity. This is achieved by (a) proposing ideas and
research directions in position papers, and (b) quantifying the efficiency
and/or applicability of novel concepts experimentally via simulation or
practical implementation. The problem of managing resource scarcity
is viewed through the complementary perspectives of Service and In-
frastructure Providers, depending on which party is responsible for
implementing the solution under consideration. These perspectives are
reflected in the following research objectives:

RO1 To explore ways in which Service Providers can adapt their ser-
vices such that they react to resource scarcity by adjusting output
quality and therefore their momentary resource needs.

RO2 To explore ways in which Infrastructure Providers can, through
collaboration or intelligent resource allocation, proactively avoid
subjecting Service Providers to resource scarcity.

Some of the work combines these two perspectives to offer solutions
based on collaboration between the Infrastructure Provider and Service
Provider, embodying the co-evolution that gave rise to cloud-native
software.

By achieving both these research objectives, the work presented here
meets the overall research goal. All of the solutions proposed herein
adhere to the following two guiding principles:

GP1 Preservation of autonomy: individual cloud Infrastructure Provi-
ders should be able to autonomously optimize use of their own
infrastructure based on objectives such as minimizing power con-
sumption or other operational expenditures.

GP2 Mitigation timeliness: resource scarcity mitigation, regardless of
which party initiates it, should either happen very quickly upon
detection of scarcity or be initiated ahead of time by predicting
potential problems before they materialize.

Building on the founding principles of cloud and edge computing]
the three pillars upon which the work in this thesis rests are:

(a) federations of autonomous but collaborating cloud and edge com-
puting sites;

(b) scheduling of service components onto resources within a cloud
or edge site and across a federation thereof; and

(c) quality-elasticity, in which service response quality is adjusted
based on the quantity of resources currently available.

1.2 Historical Context

This thesis has been many years in the making: I began work on it in
2009, practically at the dawn of cloud computing, and completed it in
2020. The research work presented herein was interspersed with work
in the industry as a cloud architect at both the startup company and
large enterprise level, and with an internship at Ericsson as a visiting
researcherf] These different perspectives have taught many lessons and
granted a rather unique perspective on the field’s evolution. The 11 year
duration is therefore an asset: the value of the earlier papers (published
between 2009 and 2016) to the cloud research community has been
proven by the test of time.

Readers of this kappa can therefore look forward to a personally ex-
perienced historical perspective on how technology has enabled change
in both software and the minds of cloud users, resulting in today’s

!For the purposes of this introduction, edge computing can be seen as a variant
of cloud computing in which data centers are physically closer to end users. See
Chapter 2|for details.

21t cannot be stated clearly enough that any views expressed in this thesis are those
of the author alone, and are not in any way indicative of those held by any past or
present employer or granter of internships.

3

cloud-native world where cloud applications are estimated to account
for 90% of all mobile traffic [VT16]).

1.3 Thesis Outline

The remainder of this thesis is structured as follows. Chapter |2 in-
troduces the reader to cloud and edge computing, and explains how
technological evolution helped shape the software design and deploy-
ment paradigms that we consider obvious today. It also introduces
the methodologies used to perform research in this field (Section|2.6)
and discusses the ethical ramifications of pervasive cloud computing
(Section[2.7). Chapters and5|describe the three pillars of this thesis
- federated cloud infrastructures, scheduling, and quality elasticity - in
sufficient detail to let the reader understand the context of the thesis.
They also demonstrate the co-evolution between cloud and software
that has happened within these fields from the dawn of cloud comput-
ing to the present day. A summary of the papers, their key scientific
contributions, and notes about authorship contributions to each is
given in Chapter|6l Chapter 7] presents some concluding thoughts; it is
followed by the seven papers included in the thesis (see the Preface for
additional papers and patents produced during the author’s studies).

Chapter 2

Cloud and Edge Computing

This chapter presents a general introduction to cloud computing, briefly
reviews its evolution from its inception in the early 2000s, and describes
the branching off into edge computing that began a few years ago. The
focus of the chapter is to show how software has evolved together with
the cloud, with evolutionary steps in each enabling further evolution in
the other, ultimately breeding software that can be deemed cloud-native.
Following a general discussion of what cloud and edge computing are,
we dive into selected topics related to cloud and edge computing, which
are presented in an introductory manner.

First, we examine the vision and implementation of Utility Com-
puting — the idea that computing power should be delivered in a fash-
ion similar to, e.g., electrical power, and that it should be possible
to let applications dynamically consume computing power according
to need and subsequently pay per use. Second, we briefly cover the
technological evolution in the area of virtualization that made cloud
computing possible. Third, we take a historical perspective and discuss
the paradigm shifts that have driven the co-evolution of the cloud itself
and the software deployed onto it. Fourth, we describe the different
perspectives through which cloud computing is commonly viewed, to
help set the reader’s expectations about the scope of this thesis. Fifth,
we discuss different methods commonly used within cloud computing
research. Sixth and finally, we briefly discuss some ethical ramifica-
tions of cloud computing because it has become a pervasive model for
performing computation today.

Cloud

computing

Stakeholders

Edge
computing

However, before getting into those topics, we must first establish a
common high-level understanding of what cloud computing is. The
US National Institute of Standards and Technology (NIST) succinctly
defines cloud computing as follows [MG11]]:

Cloud computing is a model for enabling ubiquitous, con-
venient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly pro-
visioned and released with minimal management effort or
Service Provider interaction.

In this thesis, we refer to the owners of the data centers that con-
stitute the “shared pool of configurable computing resources” from
the definition as Infrastructure Providers (IPs). Consumers of cloud
resources are Service Providers (SPs). They use and pay for the in-
frastructure to provide some service (or application) to their end users.
These terms denote the stakeholders and are used throughout the thesis.

Edge computing currently lacks a similarly broadly accepted def-
inition (but see the work of [[You+19] for a comprehensive survey
of proposed definitions and a very good new one). For the purposes
of this thesis, it is sufficient to note that edge computing is a form of
cloud computing that uses similar technology and satisfies the above
definition but with the following key differences: (a) edge data centers
are deployed closer to the network edge, i.e. closer to end users, and are
therefore more geographically dispersed, whereas cloud data centers
serve Service Providers on a continental scale; (b) there are orders of
magnitude more edge locations than centralized cloud locations; and
(c) resource availability is orders of magnitude lower at individual edge
locations than at individual cloud locations. Having established that
edge computing is an evolution of cloud computing, we can turn to
their shared history and the vision they both aim to implement: utility
computing.

2.1 Utility Computing: Vision and Implemen-
tation

From a high-level perspective, cloud computing is the most recent
implementation of the utility computing vision. John McCarthy is utilicy
quoted as having stated the following during his MIT Centennial speech ©™mPuting
in 1961 [Gar99]:

If computers of the kind I have advocated become the com-
puters of the future, then computing may someday be or-
ganized as a public utility just as the telephone system is a
public utility[...] The computer utility could become the
basis of a new and important industry.

Two aspects of public utilities are important to highlight as they
relate to cloud and edge computing: (a) utilities are typically provided
and managed by a third party, and (b) the payment model for utilities is
typically that you pay according to use. Economies of scale dictate that
the larger a utility provider, the lower the amortized average per-unit
cost. There is thus a clear incentive to offer the utility from the largest
possible source, much like fresh water purification is most economically
done at large plants serving entire cities rather than by using filters for
each individual cup of water. The same holds true for computer-related
utilities, which is why large cloud Infrastructure Providers operate large
data centers around the globe with millions of servers [[Yao+12].

Because some consumers require vastly more of a utility than oth-
ers, a flat rate is inappropriate: single-person households in apartments
and large families with swimming pools should pay fairly according
to their use of water. Like with water, very large consumers of utili-
ties often have special framework agreements in place with a utility
provider, giving them lower rates as an incentive to stay loyal to the pro-
vider. Cloud computing has a pay-as-you-go model for computational
resources, often now with a per-minute or per-second resolution, and
like with water, large consumers such as the streaming video service
Netflix will pay less per transferred byte than a more typical consumer.

At the core of cloud computing is a simple trade between a party that
owns computers and another party willing to trade money for access

7

to them. But that is not new — time-sharing systems have existed since
the dawn of large-scale computing itself [CMD62]]. What makes cloud
computing different from earlier ways of trading money for compute
power is in the underlying technology and the expectations that Service
Providers can reasonably have because of it.

Grid Before cloud computing, Grid computing was the predominant

computing implementation of the utility computing vision. Although early pa-
pers [[Fos02; Fos03; Fos+08]] were optimistic and likened Grid comput-
ing to the power grid with its “plug in and consume as needed” ease
of use, the reality was a cumbersome mishmash of technologies with
an overall user experience tolerated only by academics needing access
to high-performance computing (HPC) resources. Grid computing
implementations, true to their HPC heritage, primarily ran programs
in non-interactive batch mode with poor inter-process isolation. Pro-
grams had to be tailored specifically to the operating system and set of
libraries offered by the specific machines in a specific Grid. Attempting
to use non-standard libraries was cumbersome, to describe the user
experience mildly. Thus, in the vernacular of 2020, utility computing
as a field was ripe for disruption.

2.2 Virtualization of Resources

Rather than making applications conform to limitations imposed by the
underlying (Grid computing) platform, application developers wanted
to specify their own custom software installations, including the op-
erating system, supporting libraries, and specific applications. This
is precisely what (hardware) virtualization offers: it lets a computer
Virtual process simulate multiple “virtual machines” (VMs), allowing “guest”
machine operating systems to be installed and share access to the underlying
hardware via the host operating system. Despite the possible utility of
virtualization and the fact that it is an idea with a long history (dating
back to about the 1970s [[MS70]), its adoption was held back by poor
performance: it was simply too slow to simulate an entire machine in

software alone.
However, around 2005 and 2006, the major CPU vendors Intel
and AMD started offering CPUs with hardware-assisted virtualization

support. This enabled full-system virtualization with acceptable per-
formance degradation (in particular, I/O was slow at the time [[Dre08]];
later advances in hard- and software further reduced the degree of degra-
dation [[Gor+12)). Instead of running processes on a shared operating
system and suffering from poor isolation, virtualization allowed devel-
opers to provision virtual machines with full operating systems and
free choice of supporting libraries to suit their desires and needs.

Businesses benefited greatly from virtualization because it reduced
their operational expenditures, even before cloud computing became
commonplace. It is well-known that average server resource utilization
is typically in the 15-20% range [[Vog08; BHO7|]. Using virtualization
to consolidate several server functionalities onto a smaller quantity
of physical resources reduced the need to host, manage, and maintain
needlessly large private data centers. With the added ability to export
and import virtual machines from one physical computer to another,
resource use could be dynamically optimized. Because they are merely
abstract constructs in software, virtual machines could eventually be
migrated between physical machines even during active use [Nel09;
Jin+09; Sva+11]] (so-called live migration), making it possible to seam-
lessly migrate away virtual machines if the underlying hardware became
too overloaded or needed replacement.

These abilities were immense boons to productivity. Eventually,
businesses were able to offload even the reduced management of physi-
cal machines to large data centers that promised to do the menial tasks
more cheaply than in-house system administrators and I'T personnel.
Thus, the idea of the cloud was born. Virtualization and the on-demand
provisioning of virtual infrastructure that it enabled made cloud com-
puting “convenient” (see definition on Page[6), which was a key point
of differentiation from competing alternatives such as Grid computing.

Despite their convenience, virtual machines alone were not enough
to enable the cloud revolution to take off; efficient networking and
storage were also required. Virtualization played a key role here too.
Software-defined networking (SDN) is a form of virtualization for net-
working equipment [McK+08]], in which the control plane (the making
of logical decisions about how to route traffic) and data plane (the actual
physical traffic routing) are separated. Before SDN, networking equip-
ment typically embodied both functionalities and was not designed for

Migration of
VMs

Software-
defined

networking

Storage virtu-
alization

Forklifting

global optimization. In contrast, SDN enabled highly efficient virtual
networks that could adapt as virtual machines came into and out of
existence or migrated across physical machines [[JP13]].

Storage virtualization, whereby physical storage devices are pooled
into logical ones and made available across the network, enabled the
logical decoupling of data from the physical media on which it is stored.
Storage services thus made it possible to attach what appears to be a
physical block device to a virtual machine, when in reality the data is
served over the network from a fully redundant storage solution with
several backing devices. Such virtual block devices can be instantly
transferred from one virtual machine to another.

2.3 Forklifting to Cloud-Native: Cloud
Paradigm Shifts

With the basic technological building blocks in place thanks to vir-
tualization of computation, networks, and storage, cloud computing
was poised to revolutionize the way we perform computing at scale.
However, early adopters were still bound by old paradigms and thus
limited in their approach to the technology. Similarly, the technology
was limited by the prevailing expectations. Several paradigm shifts were
therefore needed to reach our current position.

Before the cloud, the most common solution to resource scarcity
problems was to get a faster machine with more memory and hope the
problem subsided. This was simultaneously expensive, complicated,
and time consuming because it involved physical machines that had
to be managed on-site. Because software at the time often mixed data
processing with data storage, this solution also seemed natural — high
resource requirements due to high levels of data processing or storage
were met by getting a newer, faster, and “bigger” computer.

The first major use case for cloud computing was what became
known as “forklifting” [[Var10] , in which a server that used to be de-
ployed and managed on-site by local system administrators was replaced
with a virtual machine provisioned at a cloud Infrastructure Provider.
Companies that did this saved money by not having to house or replace
physical hardware, and by making system administration easier to cen-

10

tralize and outsource because the virtual machines were accessed over
the Internet.

Like their old physical counterparts, forklifted virtual machines
were initially still regarded as special machines that were cared for,
managed, and maintained individually. But virtualization and the pay-
as-you-go pricing model offered other tantalizing new opportunities:
additional or larger virtual machines could be obtained with just an
API (Application Programming Interface) call, without having to go
through the week-long procurement procedures required for physical
hardware. Thus even the old approach to managing resource scarcity
— getting a larger virtual machine — was greatly accelerated. Doing
this with minimal service disruption became known as vertical elas-
ticity, and was initially achieved by shutting down and replacing the
old virtual machine while keeping its storage intact. Later, seamless
vertical elasticity became possible, using techniques such as memory
ballooning [[CLC13]]. This solution to the resource scarcity problem
did not make the best use of the cloud’s capabilities, but it was at least
faster than its physical counterpart. Also, benefits such as snapshots of
data stored in virtualized storage services helped system administrators
do their job.

However, a virtual machine cannot exceed in memory the size of
the physical machine upon which it is deployed without very obvi-
ous performance penalties due to factors such as memory swapping.
Consequently, there was and always will be a limit on the amount of
additional resources that can be granted to applications through vertical
elasticity. But the cloud offered an alternative way of scaling: obtaining
more virtual machines. To exploit this capability, software had to be de-
signed without strong coupling between data and its processing. With
applications designed in this way, resource scarcity could be solved by
obtaining more virtual machines for processing instead of growing a
select handful in size. Scaling out rather than up in this way became
known as horizontal elasticity. Figure2.1{shows the two ways of scaling
and the limitations of vertical elasticity.

By separating data from its processing and relying on the cloud to
supply seemingly infinite numbers of virtual machines, system admin-
istrators gained access to infrastructure that could grow and shrink
according to need. Rather than the replicated database systems of

11

Vertical
elasticity

Horizontal
elasticity

Pets vs.
cattle

Configuration
management

a0 B0 (E

Figure 2.1: Two types of scaling offered in cloud computing by using
virtualization, exemplified using a virtual machine that needs 4 times its
initial capacity. In vertical elasticity (leftmost server), a virtual machine
with 4 times the capacity of the original is requested. Scaling vertically
is therefore limited by the capacity of the physical server that hosts the
virtual machine. Horizontal elasticity (the four rightmost servers), on
the other hand, requests 4 virtual machines (possibly from different
servers), and scaling is thus limited only by the number of servers, of
which there could be millions [[Yao+12].

yesteryear that relied on active replication between a single primary
server and a number of secondary ones, peer-to-peer database systems
such as Cassandra and MongoDB could offer nearly linear scalability
(see Section5.2). The move to horizontal scaling with almost linear per-
formance improvement was the first step toward cloud-native software.

However, managing an orders of magnitude larger fleet of virtual
machines soon became cumbersome to system administrators. System
administrators also started questioning the value of managing individual
virtual machines and upgrading them in concert when virtual machines
could simply be terminated and replaced for the same financial cost
(paid to the cloud Infrastructure Provider). This led to the pets vs.
cattle paradigm shift [Bial6] whereby servers stopped being treated as
individuals that needed to be cared for (pets) and were instead seen as
mere numbered units worth only the function they presently provided
(cattle). Configuration management software, such as Puppet, Chef, and
Ansible, was developed to bring a newly started server to a designated
target state. This process could be initiated using a stock base image
with just a standard operating system install. However, this could be
lengthy and was only as bug-free as other software made by developers.

12

The process was significantly accelerated and made less error-prone
by using custom virtual machine images containing the initial hard
drive contents upon startup. In this way, servers were brought up
with known-good software versions in (mostly) ready-made virtual
machine images, requiring only runtime configuration to make the
virtual machines operational. Target state descriptions were expressed
in domain-specific and text-based languages, and could be stored in
version controlled repositories.

The simplification of (virtual) infrastructure management achieved
by decommissioning unsuitable VMs and replacing them with known-
good new instances together with the introduction of software tools
enabling infrastructure to be managed in a way that came naturally
to developers led to the commingling of development and operations,
which is now called DevOps. Tools for managing infrastructure in
this code-like fashion popularized the Infrastructure as Code movement,
which held that any manual system administration was a bad practice
(an anti-pattern) because it relied on individual expertise, and that re-
covering an entire system in case of disaster presented a high risk of
error due to human fallibility. Tools such as Terraform and Packer pro-
vided much-needed functionality enabling the implementation of the
Infrastructure as Code approach, especially as Service Providers started
using larger parts of the ever-growing infrastructure services offered
by Infrastructure Providers. These enabling functionalities included
domain name management, load balancing tools, and virtual private
networks.

The movement to configuration management of fleets of easily
replaceable virtual machines was the second large step toward making
software cloud-native. Because it made (subsets of) virtual machines
less unique, and hence much more replaceable, it gave Infrastructure
Providers an opportunity to use available resources more efficiently and
to optimize scheduling by terminating machines at will so as to optimize
the use of the infrastructure. This led to the emergence of spot instances,
ephemeral virtual machines that can be terminated with little warning
but are offered at a large discount. Extensive economic research has been
conducted to determine how best to use spot instances [MD11;|[YKA10;
YAK12; TYL12; KS15]], but without the supporting technology that
made it feasible in the first place, the concept of ephemeral virtual

13

DevOps

Infrastructure
as Code

Spot
instances

Stateful vs.
stateless

machines would never have seen the light of day. The intended use
cases and user expectations of spot instances differ markedly from those
of pet servers forklifted into the cloud. For Infrastructure Providers,
spot instances offered a way to recoup some of the losses incurred by
implementing the illusion of “infinite resource availability”, which
requires large amounts of spare capacity. Spot instances make profitable
use of this spare capacity when it would otherwise be idle, at essentially
no additional cost to the Infrastructure Provider.

A key driver of the paradigm shift in favor of replaceable virtual ma-
chines was the realization that the stateful components of an application
(e.g., databases) should be separate from its stateless (data processing)
components. Stateless components can then be independently and au-
tomatically scaled up or down based on need and resource availability.

Stateful components can be further subdivided into those requiring
strict consistency and those that merely require a state that is eventually
consistent in a quality-elastic way (Chapter[5). Lowering expectations
of state consistency when designing applications enables both the appli-
cations and the cloud to make better use of currently available resources
without causing errors or unacceptably poor performance.

Although the concept of cloud-native software has been discussed
extensively, it lacks a universally accepted definition. Definitions have
been proposed based on both experience [[Tof4+17]] and literature sur-
veys [KQ17]]. Building on the brief discussion of the co-evolution
of clouds and software in this section, we propose that cloud-native
software be defined as follows:

Definition 1 (Cloud-native software) Software that has adapted to the
cloud, and to which the cloud itself has adapted such that it displays (a) re-
silience to failures in hard- and software, and (b) elasticity in its ability to
scale according to resource demand by drawing on features of the underly-
ing virtualized cloud infrastructure; and (c) compartmentalization into
separate task-specific deployment units, enabling task-appropriate resilience
and elasticity operations to occur.

Definition [1| is consistent with previously suggested definitions
[Tot+17; KQ17]] and adds the explicit requirement that software should
be compartmentalized into task-specific units.

14

Industrial groups such as the Cloud Native Computing Foundation
and Red Hat have recently argued that compartmentalization technology
is a crucial aspect of cloud-native software [Red18; Com18]], specifi-
cally dictating the use of (software) containers over virtual machines.
Containers (specifically, Linux containers) leverage Linux cgroups to
provide a greater degree of inter-process isolation than was possible at
the operating system level in Linux [[Mer14]. Containerized processes
are executed by the host machine’s operating system kernel and enjoy
improved resource limiting, prioritization, and control [Ros14]. This
provides direct access to hardware without virtualization, eliminating
the overhead of virtualization [[Joy15]] (although it should be noted that
the magnitude of this overhead has been greatly reduced by improved
virtualization support in both hard- and software). According to our
definition, the specific compartmentalization technology used is not
really a key determinant of whether a given piece of software can be
considered cloud-native; it should not matter whether compartmen-
talization is achieved using a particular type of Linux container or a
VM.

Maturing cloud infrastructure and software let Infrastructure Pro-
viders invent new service delivery models, as exemplified by the intro-
duction of AWS Lambda in 2014. This model embodies the notion of
serverless computing , in which applications serving requests are logi-
cally split into two parts: (a) an ever-present API endpoint that listens
for incoming requests, and (b) any number of request processors that
are started on-demand to handle the requests. Requests that reach the
API endpoint are queued (if needed) before being routed to a request
processor. This model is described as serverless because Service Pro-
viders need not manage any of the underlying infrastructure required
to implement this functionality. Instead, it is the responsibility of the
cloud Infrastructure Provider to ensure rapid invocation of the request
processor software and to automatically (horizontally) scale the number
of such processors to meet current demand. Crucially, if there is no
demand, the number of request processors can be scaled down to zero.

Request processors are typlcally supplied as stateless functions, writ-
ten in whichever programmmg languages are supported by the under-
lying cloud runtime environment used by the cloud Infrastructure
Provider. Alternative open source implementations of similar tech-

15

Containers

Serverless

nologies, e.g., OpenFaa$, allow for any containerized software to be
supplied. Regardless of the underlying technology, successful imple-
mentation of the serverless or Function-as-a-Service (FaaS) paradigm
requires addressing the problem of cold starts: starting a new request
processor necessarily involves scheduling and instantiating the proces-
sor itself, both of which take time. A common technique for addressing
the cold start problem is to keep each request processor instantiated for
a while after it has served a request, based on the assumption that once
a function has been invoked, it may soon be invoked again [Man+18;
Wan+18; Moh+19].

As with the other enabling technologies discussed above, the con-
cept of starting a process upon receiving an incoming request is not
new. The UNIX Internet daemon (inetd) from 1986 and the Common
Gateway Interface (CGI) from 1993 were both popular and widespread
implementations of the same idea, albeit on a much smaller scale. What
makes the serverless model unique in cloud computing is that it lets the
cloud Infrastructure Provider both (a) accept responsibility for running
what are essentially processes, turning the cloud infrastructure into a
large operating system; and (b) support a large (or even larger) num-
ber of customers concurrently on the same hardware, because typical
servers and the services they host are only infrequently used [[Vog08]].
Infrastructure Providers thus gain another way to add value to “raw”
infrastructure, and to dynamically meet the resource needs of larger
numbers of Service Providers using existing infrastructure.

As shown by the preceding discussion, over the decade and a half of
its existence, we have seen the cloud evolve from a way to outsource
maintenance of a physical private data center to a major utility provider
into a foundation for performing computing at scale. The cloud has
enabled software to evolve in new ways to best make use of the available
infrastructure, and developments in software have in turn allowed cloud
infrastructure to evolve in new ways, for example by offering spot
instances. Many of the concepts involved — virtualization, eventual
consistency, and configuration management — were not new. However,
their confluence, the ways in which improvements in one were leveraged
by others, and the timing of their advances and improvements allowed
cloud-native co-evolution to occur.

16

2.4 Cloud Perspectives: Everything as a Ser-
vice

Cloud computing offers on-demand access to resources. But what is
a resource: virtual infrastructure, platforms upon which applications
can be built, or entire applications? Thanks to a combination of strong
marketing and the success of cloud computing in revolutionizing the
ways in which computational services are offered and consumed, all
three responses are (confusingly) valid.

Several perspectives have been used to clarify the overall concept of
cloud computing. The NIST cloud definition report highlighted the
following three [MG11]]:

e Infrastructure-as-a-Service (IaaS), in which Infrastructure Pro-
viders offer metered access to virtual infrastructure (computing,
networking, storage) to be consumed by Service Providers.

e Platform-as-a-Service (PaaS), in which metered access to soft-
ware platforms consisting of generic components such as databases,
message queues, or email sending services is offered. Service Pro-
viders leverage these to focus on developing their applications and
to reduce operational overhead otherwise required to maintain
these platform components.

e Software-as-a-Service (SaaS), in which metered access to entire
applications is offered to end users as in the case of Office365 and
Google’s G Suite.

In this thesis, we view cloud computing from the Infrastructure-
as-a-Service perspective. Research adopting this perspective typically
focuses on how to best offer infrastructure to Service Providers in order
to meet their expectations and enable new paradigms, and on how
to optimize the use of physical infrastructure [Fral2;|Fra+12; SH11;
Roy+15; Krz+18].

Developments in cloud and edge computing have led to the emer-
gence of new “as-a-Service” offerings, many of which can be considered
to represent niches of the original three perspectives. The widespread
use of containers rather than virtual machines has prompted some

17

TaaS
PaaS
SaaS

to question whether Service Providers should have to manage all the
virtual infrastructure required to host the clusters of computers upon
which containers are deployed. Containers-as-a-Service offerings such
as AWS Fargatdl| remove this burden, and thus occupy a niche some-
where between Infrastructure- and Platform-as-a-Service. Function-as-
a-Service offerings instead give Service Providers automatically scalable
and purpose-built Platform-as-a-Service environments tailored to the
needs and particularities of serverless computing. Service Providers
then only need to upload functions, mere snippets of code, and all in-
frastructure and connections to platform services are handled for them
by the Infrastructure Provider.

As shown in the previous section and discussed at greater length in
Chapter 4] the ability of Infrastructure Providers to optimize the use of
their infrastructure is increased by taking on a greater part of the respon-
sibility for deciding how applications are executed. It also means that
the value, and hence the price to be paid by Service Providers, increases.
We can therefore assume that more cloud-native service offerings will
appear as the profitability of offering cloud infrastructure increases.
Perhaps this is most clearly demonstrated by how telecommunication
companies are now getting into this area of business by offering edge
computing capabilities.

2.5 Edge Computing

Edge computing can be regarded as a “new generation” form of cloud
computing that uses similar technologies and business models. As
mentioned in the beginning of this chapter, there is no commonly
accepted definition of edge computing. In their comprehensive survey,
Yousefpour et al. regard edge computing as a proper subset of cloud
computing [[You+19, Figure 4].

What differentiates edge computing from cloud computing is that
computational resources are allocated closer to end user equipment
(mobile user equipment, computers, sensors, etc.) in networking terms:
they may be separated by only a single network hop to a base station

'https://docs.aws.amazon. com/AmazonECS/latest/userguide/
what-is-fargate.html

18

https://docs.aws.amazon.com/AmazonECS/latest/userguide/what-is-fargate.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/what-is-fargate.html

or an edge node deployed to service a group of households or a single
Industry 4.0 factory plant [[You+19].

This proximity has several effects when compared to general cloud
computing, where the data center may be half a continent away from
the end user: (a) last-mile latency to end users is reduced; (b) band- Edge comput-
width pressure on backbone networks is decreased by processing data 8 Properties
at the edge, which reduces the need to transfer raw data to centralized
clouds; (c) computational and storage resources are more scarce because
edge locations by definition are smaller than cloud data centers, which
increases per-resource costs to Service Providers; and (d) operational
costs for Infrastructure Providers may be higher because they cannot
exploit economies of scale when managing the underlying hardware as
efficiently as with large data centers.

By virtue of its proximity to end users, edge computing can offer
both lower latencies to end users and higher bandwidth availability than
centralized cloud infrastructure. This benefits use cases that cloud com- Edge
puting data centers struggle to properly support [MB17;|Shi+16]], such fl‘;‘e“g‘;zis"g
as autonomous vehicles [Bye17; (CJC19], augmented reality [[SRS17;
ES18]], collecting and processing massive amounts of data from Internet
of Things (IoT) applications [PDT18]] (Cisco estimates that IoT sen-
sors will number 23 billion by 2023 [Cis18]]), and computer-assisted
healthcare [Bye17]].

Edge computing encompasses infrastructure belonging to both
cloud and telecommunication providers. To get a sense of the numbers
involved from the point of view of a cloud provider, Google states that
as of June 2020, its infrastructure consists of 23 cloud regions (with
a total of 73 availability zones) and 144 edge cloud sitef} Amazon
Web Services has a similar size. On the other hand, in Germany alone,
Deutsche Telekom will reportedly have some 36,000 base stations na-
tionwide by 2021f] Whether all or just a fraction of these will offer
computational infrastructure as edge sites remains to be seen, but the
potential and sheer scale of these infrastructures makes it clear that
edge computing presents a new set of challenges and opportunities to
researchers and engineers.

Thttps://cloud.google.com/about/locations
*https://www.telekom.com/en/media/media-information/archive/
300-new-1lte-mobile-base-stations-574106

19

https://cloud.google.com/about/locations
https://www.telekom.com/en/media/media-information/archive/300-new-lte-mobile-base-stations-574106
https://www.telekom.com/en/media/media-information/archive/300-new-lte-mobile-base-stations-574106

Content deliv-
ery network

Split
deployment

The cost per resource unit is inherently higher in edge computing
than in centralized clouds, because edge computing is less able to make
use of large economies of scale at individual operating locations. How-
ever, these increased operational costs may be offset by the fact that
telecommunication networks, regardless of edge computing, require
base stations with a certain amount of hardware that must be main-
tained. Increasing the amount of physical hardware in edge locations
does not linearly increase the cost of operating it. Moreover, lower la-
tency and reduced backbone network traffic are so hugely desirable for
the aforementioned use cases and applications that higher per-resource
costs and resource scarcity are acceptable trade-offs.

Edge computing derives from cloud computing and thus shares
its historical roots. However, the concept of increased proximity to
end users has a unique history of its own. The oldest form of edge
computing is the content delivery network (CDN), which offered ge-
ographically dispersed static file hosting in proximity to end users.
CDNs thus combined storage and network resources. When dynamic
content became the norm for web pages, CDN providers such as Aka-
mai developed the Edge Side Includes standard in 2001 [Tsi+01]], which
allowed for a limited amount of conditional logic to be performed on
the edge to reduce the load on upstream (origin) web servers and avoid
needless backbone network traffic (e.g., to only show a certain part of
a web page to authenticated users). In more recent years, some CDN
providers including the current market leader (Cloudflare) have started
also offering general purpose computational resources at their edge
locations (e.g., Cloudflare Workers).

Edge and cloud computing are hence complementary rather than
competing technologies; high bandwidth and low latency data process-
ing at the edge will likely generate some results that must be stored and
processed centrally in the cloud. Therefore, effective combined use of
the edge and the cloud requires a software deployment that is mindful
of the interconnecting network and its impact on overall service perfor-
mance. Research has shown that choosing the right deployment split
between edge and cloud deployments is vital [Ngu+19; McC+19]].

The evolution of cloud and edge computing is important here be-
cause it affects all three pillars of this thesis: edge federations are several
orders of magnitude more numerous those of cloud Infrastructure Pro-

20

viders, edge computing enables schedulers to scale down to zero and
make rapid re-scheduling decisions, and quality elastic adaptations can
be used to overcome the inherent resource scarcity of edge locations.
These issues are all discussed at greater length in the upcoming chapters.

2.6 Research Methods in Cloud and Edge
Computing

As the previous sections show, cloud computing facilities come in many
different shapes and sizes, with different levels of resource availabil-
ity. Consequently, the cloud research community relies on a range of
common research methodologies to examine different research topics:

e Simulations, in which relevant parts of the cloud or edge infras-
tructure are simulated using some model. Experience shows that
such simulations are particularly common for exploratory work
in new fields because simulation makes it easier to focus on the
novel aspects of the scientific contribution without having to dive
deeply into implementation details. Alternatively, the systems
under study may simply not exist yet (for instance when examin-
ing future generation infrastructure or computing systems) even
though their properties are known or can be reasoned about in
advance. It may also be the case that large-scale infrastructure
is unavailable to researchers. Simulations are used in two of the
papers included in this thesis, Paper III and Paper IV.

e Data set or system trace analysis, in which a system of interest
has been deployed for a set of experiments or a period of time and
its behaviors are analyzed offline or used to gain insight into the
behavior of real-world applications. Google research typically
disseminates results based on systems that have been run in pro-
duction use for months or years, such as Map-Reduce [DGO08]],
Chubby [Bur06]], and Bigtable [[Cha+06]]. Additionally, some
public data sets are available to support reproducible research.
Two deeply influential data sets of this type originate from the
FIFA 1998 World Cup web site [[AJ99] and Google’s cluster usage

21

traces [RWH11; Wil11]] from 2011. Both have been used exten-
sively in cloud research, and the Google cluster-usage traces from
2019 [[W1l20a; W1l20b]] are sure to be similarly popular in the

coming years.

Private cloud implementations, in which the researcher has ac-
cess to a privately owned set of physical hardware and uses it to
conduct experiments. This has good and bad aspects: the gener-
ality of the results obtained may be questionable because every
physical hardware configuration is unique and they are rarely
well-documented, and differences in software configuration may
also profoundly affect results. These issues are discussed in Paper
V, which presents work done on a privately owned cloud that was
not operated by the authors, necessitating creativity in working
around issues arising from particularities of the cloud infrastruc-
ture. In more typical cases, where the entire physical hardware is
under the researchers’ control, the advantage of a private cloud is
that full-stack observability is possible. However, this comes with
a large additional system administration burden, and thus carries
an increased risk of mis-configured systems impacting research
results.

Public cloud implementations, in which experiments are de-
ployed on cloud or edge infrastructure belonging to public cloud
vendors, such as Amazon Web Services, Google Cloud Platform,
or Microsoft Azure. Public clouds present the opposite trade-off
to private ones: full-stack observability is not possible, but the re-
sults are more reproducible because other researchers have access
to the same experimental environment.

Many researchers have profiled the performance of public clouds

[[Ost+10; IYE11; Ios+11;|LC16]. These studies treat the public cloud
essentially like a black box, and observe it carefully in the same way that
anatural scientist would study a natural phenomenon. Work of this sort
is important because it informs business decisions about which cloud
vendor to use, and also helps researchers understand the systems upon
which their experiments are deployed. However, underlying changes
to hard- or software can hugely affect the contemporary validity of

22

such results [[Pro+18]]. To at least partially overcome this problem,
the Standard Performance Evaluation Corporation (SPEC) releases a
standardized cloud IaaS benchmark and publishes guidance on using it
to perform repeatable scientific measurements [Pap+19].

To circumvent the problem of performance variability entirely
(drawing inspiration from the difficulties described in Paper V), Paper
VII presents a different approach. Rather than focusing on performance
measurements, we instead count the number of messages transmitted
over the network. The latency per request and the speed of processing
requests are thus regarded merely as implementation-specific details.
This is a common approach in distributed systems research, where
algorithmic efficiency is evaluated based on how many messages need
to be transmitted.

2.7 Ethical Aspects of Cloud Computing

Given the massive success of cloud computing and its key role in much
of society’s digital evolution, it behooves everybody in the field to
consider the ethical ramifications of our technological advances. Al-
though cloud computing is a major technological enabler of our large
and increasing societal reliance upon pervasive computing, highly cited
works outlining cloud research agendas such as [BCR09; [Vou09; VB18§]]
do not discuss any ethical considerations, preferring instead to focus
on outstanding technological challenges. Some technological naiveté
can be excused in older works of this type: cloud computing has put a
previously unimaginable amount of data storage and processing power
into the hands of anyone with a sufficiently large budget. Before cloud
computing, nobody could reasonably believe that it could be econom-
ically viable to collect and process data in the way we do routinely
today. However, while we clearly can (and did) build globally accessible
software services and use cloud computing to process data from mobile
smartphones and myriad Internet of Things devices, that does not mean
that we unquestionably should.

Societal reliance on digital services has increased continuously in
parallel with their explosive growth, which began with digitalization in
the 1990s and was further fueled by the advent of smartphones in the

23

late 2000s. Additionally, while smartphone vendors make great efforts
to lock end users into a particular device family or line of operating sys-
tems, those users display stronger loyalty to the cloud-backed services
that they trust with their data [PSK15]]. This is because while a physical
device may be replaced every few years, an email address or social media
account will often survive several generations of devices used to access
them. Thus, as important as smartphones are in today’s society, the
cloud services that power them are arguably more important.

As end users actively entrust more of their personal information
to cloud Service Providers, questions regarding the legal jurisdictions
governing the storage, processing, and usage of said data remain poorly
explored and also poorly understood by many practitioners [KMZ15]].
Legislation may require that data storage and processing be done in a
certain country. But if either Infrastructure and Service Providers are
subject to, e.g., US law, can such a guarantee be convincingly made for,
e.g., German data?

Machine learning (ML) and artificial intelligence (AI) currently con-
sume large amounts of computational resources, and cloud computing
is often used to provide the infrastructure required to handle such work-
loads. Access to cheap computational resources has granted ML and
Al a new wave of popularity by breaking the resource scarcity barriers
that previously held them back [HK19]]. This access to vast amounts
of data processing power at relatively low cost, combined with ML
and Al tools for processing Big Data datasets, has significant ethical
ramifications and a profound societal impact for which we currently
lack suitable regulation [Pag+19; Bar+20; Flo+18]]. Companies have
seized on this state of affairs as a business opportunity, giving rise to
the surveillance economy, in which data about people is pervasively
collected, processed, and monetized for financial gain, e.g., through
advertising. Shoshana Zuboff states the following in her 2019 book
“The Age of Surveillance Capitalism” [Zub19]:

[Surveillance capitalism] unilaterally claims human expe-
rience as free raw material for translation into behavioral
data [which] are declared as a proprietary behavioral sur-
plus, fed into advanced manufacturing processes known
as “machine intelligence”, and fabricated into prediction

24

products that anticipate what you will do now, soon, and
later.

The drive for data is so strong that many startup businesses spend
investor money on implementing a loss-leader marketing strategy of
undercutting the competition, actively losing money per customer in
their initial phases to secure users’ loyalty and thus obtain their data
for future use [Ste20].

Once data is given to a company, users typically cannot influence
what is done with it or with whom it is shared. Data provenance,
i.e. tracking the points at which data may have been accessed and al-
tered, would provide this information, but remains poorly understood.
However, perhaps showcasing the engineer’s inherent desire to address
people problems with technological solutions, research in this field
typically proposes various supposedly tamper-proof ways of collect-
ing data and ensuring that modifications are attributed to the altering
party [Lia+17; KW 14; Sue+-13; Asg+12]], using encryption or other
techniques. Approaching the issue from another angle, laws such as the
EU General Data Protection Regulation (GDPR) force companies to
explicitly list all partners with whom data may be shared. However,
these lists are often so long and change so frequently in practice that a
user cannot realistically comprehend them or be expected to contact
all those companies to demand the deletion of all data they may have
collected about the user.

Cloud computing is projected to account for 95% of all data center
network traffic by 2021 and has become the technological foundation
upon which all kinds of services, both agreeable and disagreeable, are
built. On the more agreeable side of the spectrum, cloud computing
has been a boon to democratizing software delivery. Many public
cloud Infrastructure Providers offer free trials, and all that is required
to make use of them and build a scalable business is the ability to
start small and build from there with profitability in mind. As long
as an entrepreneurial Service Provider has a computer with Internet
access and a credit card, their physical location in the world and up-
front economic resources are immaterial: they could build a globally

*According to the no longer available Cisco(®) Global Cloud Index (2016-2021)
White Paper.

25

successful service on a shoestring budget with no initial investment in
physical hardware and without moving to a major tech hub. The cloud
is thus a means by which we can achieve our ends — whether those are
good or bad is up to us as Service Providers.

26

Chapter 3

Federated Cloud
Infrastructure

For certain use-cases such as services with geographically dispersed
(global) user bases, or simply for redundancy, a single cloud sitd'|is not
enough. A single cloud site may be insufficient for service deployment
because of the high latency-sensitivity of certain applications, legislative
concerns about data storage or processing, redundancy requirements
for fault-tolerance, or a need to achieve high availability. To support use-
cases requiring multiple cloud sites, collaborations can be established
between cloud sites belonging to a single cloud Infrastructure Provider
or even between different cloud Infrastructure Providers.

This chapter begins by defining key properties of cloud federations.
In accordance with the theme of this thesis, we show how federations
have evolved over time in parallel with Service Provider expectations
and cloud maturity, from the early days of the cloud (Section[3.1) to
current implementations in cloud and edge computing (Section 3.2).
Finally, we discuss the driving forces that have shaped cloud federations

and show how they may affect the future of the field (Section 3.3).

'We use generic terms such as cloud sites here to refer to either regions or avail-
ability zones, which will be described more explicitly in Section 3.2}

27

Independence

Autonomy

Multi-cloud
strategy

In this thesis, we define cloud federations as follows:

Definition 2 (Cloud federation) A collaboration, whether explicitly stip-
ulated in predetermined agreements or implicitly enabled via compatible
technology, between multiple (a) independent and (b) autonomous cloud
sites.

Independence (non-reliance upon others) is the first key property
according to our definition. Sites that are not independent of one-
another can be regarded as a single site from the standpoint of the
cloud even if they are separated geographically. Non-independence
implies that a single cloud management software system manages all
the physical hardware at the constituent sites.

Autonomy (freedom to make own decisions) is the second the key
property of our definition, and is so important to our work that preserv-
ing it is one of the guiding principles of this thesis (GP1). For reasons
including cost-efficiency, failure isolation, and scalability it is impera-
tive that each individual cloud site can self-optimize independently in
terms of how applications are deployed on its infrastructure (for more
details, see Chapter). This is particularly important if the cloud sites
belong to different (and possibly competing) business entities.

Note that we use the term federation in reference to a collaboration
between cloud sites that are maintained by Infrastructure Providers.
Service Providers need not be aware that such federations exist, or may
be only minimally aware. This increases the scope for Infrastructure
Providers to optimize the use of their own infrastructure and to use
that of other providers in the federation. In contrast, many Service
Providers have, aided by technology that makes doing so easier, adopted
a multi-cloud strategy that makes use of disparate cloud sites. While
such a strategy can help achieve goals such as deploying applications
closer to end users, failure isolation, and disaster avoidance, it falls
outside of our definition of cloud federations. The main determinant
of whether a collaboration can be considered a federation is thus whose
responsibility it is to spread an application deployment across multiple
cloud sites, and what it helps that party to achieve.

28

3.1 Early Vision of Cloud Federations

Since the dawn of cloud computing, it has been clear that a single cloud
site or provider cannot support all advanced use cases: the appearance
of infinite resource availability cannot realistically be offered to Service
Providers using the physical hardware of any single Infrastructure Pro-
vider. In addition, cloud federations offered interesting challenges and
avenues for both research and product and service development. Some
of these included the tantalizing possibility of making greater profits by
accepting more Service Providers than local resource availability could
support at peak usage, and offloading excess to other members of the
federation [[GGT10].

The EU-funded RESERVOIR FP7 project was an early pioneer
in this field [Roc+09a; Roc+09bj; Roc+11]], and it was within the
context of this project that the ideas motivating Paper I, Paper 1II,
and Paper III were conceived. In the early days of cloud federations,
Infrastructure Providers were focused on making federations possible
and efficient on a technical level (Paper I), and on exploring what
federation would mean for processes such as optimizing the scheduling
of virtual machines across multiple cloud sites (Paper II and Paper III).
Meanwhile, Service Providers were interested in using multiple cloud
sites or providers because of the potential for cost savings [[Tor+12]]
and to keep applications highly available [[Vil4-12]].

Cloud management software, i.e. software to turn physical hardware
into “a cloud” for private use within a company or for research at a
university, was an emerging field in the early days of cloud computing.
Notable examples included Eucalyptus [Nur+09]], CloudBus [BPVQ9)],
OpenNebula [MLM11]], OpenStack [SAE12]], and CloudStack [[SS13]].
These differed extensively under the proverbial hood and accordingly
also presented incompatible management APIs to Service Providers.

It must be noted that the cloud landscape at the time was utterly
dominated by Amazon Web Services. Private or research clouds us-
ing one of the cloud management software suites listed above existed
both at companies and universities, but “the cloud” was for most in-
tents and purposes entirely synonymous with Amazon Web Services.
Therefore, all cloud management software suites also offered some addi-
tional APIs for compatibility, most notably APIs that were more-or-less

29

Cloud
management
software

Vendor
lock-in

compatible with Amazon Web Services Elastic Compute Cloud (AWS
EC2). This supposed compatibility was merely superficial, and the
Service Provider often had to use compatibility tools such as Apache
JClouds [Ism+15]] to use the native management APIs of each cloud
Infrastructure Provider.

Superficial compatibility APIs aside, Service Providers at the time
understood that a VM that had been deployed to one Infrastructure
Provider would not easily be transferred to and work at another. This
became known as vendor lock-in , a strategy often used by vendors to en-
sure customer loyalty [Sat+13; SRC13;|OST14]]. Some open standards
were created to remedy this situation, such as the Open Virtualization
Format (OVF) developed by the Distributed Management Task Force,
but did not secure widespread adoption by big cloud Infrastructure
Providers. A particular challenge to researchers and builders of open
source cloud management software was therefore to make their soft-
ware suites truly compatible. Paper I sought to address this need by
providing an API that would allow cloud management software suites
at different cloud Infrastructure Providers to efficiently migrate VMs
between providers, possibly via a delegated chain of command spanning
non-overlapping sets of collaborating Infrastructure Providers.

The approaches taken in early international research projects such
as RESERVOIR and subsequent EU-funded projects such as OPTI-
MIS [[Fer+12]] and VISION Cloud [[Gog+12; |Gog+13[] were based
on the assumption that the number of cloud Infrastructure Providers
would be low and that federations could be managed by signing specific

Framework framework agreements across cloud sites. Such agreements stipulate the

agreement

amount of resources contributed by each individual site and at what
price. This was very much inspired by academic collaborations between
supercomputing centers at a few universities and industry collabora-
tions and partnerships, which typically involved only a few parties
that had been awarded a grant to collaborate on a research project. A
project on a completely different scale is the Worldwide Large Hadron
Collider Computing Grid [Bir+14]] (WLCG), which exemplifies how
a massive international inter-organizational collaboration with a fed-
erated Grid can be successfully deployed and used for several years.
The WLCG crosses organizational boundaries and the parties in the
federation collaborate according to their framework agreements.

30

3.2 Current Implementation of Cloud Fed-
erations

A new research frontier was established around the year 2015, focusing
on a new generation of edge and “fog” cloud computing infrastructured’
that are intrinsically reliant on inter-site collaboration. Several authors
have argued that while general cloud computing does not reguire feder-
ations, edge computing does [[YLL15; Leel6;|(CZS17; AZH18; PMA17;
Osa+17; Mou+18; PDT18; Kha+19; You+19)).

We argue that the benefits of cloud federations have not been over-
looked by large cloud Infrastructure Providers. However, their imple-
mentations of federations do not cross organizational boundaries at
all (contrary to early idyllic academic visions [BY V08;|SB10]]). Rather,
cloud Infrastructure Providers structure their cloud data centers as in-
dependent and autonomous cloud sites internally, to the benefit of both
themselves and their customers.

On a smaller scale, i.e. within a single cloud site belonging to a major
public cloud Infrastructure Provider, there are often multiple redun-
dant data centers with independent power supplies, storage arrays, and
network connections to the outside world. These are typically called
availability zones or something similar. They operate as autonomous
and independent entities, so a site with multiple such zones satisfies our
definition of a cloud federation (Definition 2). The availability zones
belong to what is commonly called a cloud region, and are thus designed
to serve end users in geographic proximity to the cloud site.

On a larger scale, i.e. between cloud regions, collaboration over
greater geographic distances is common in practice provided that the
cloud regions belong to a single cloud Infrastructure Provider. However,
interoperability on a technical level between different cloud Infrastruc-
ture Providers is rare outside of academia, because vendor lock-in is the
norm for business purposes [SRC13]]. Even within the context of a sin-
gle cloud Infrastructure Provider, cross-region functionality is typically

2The term fog computing was intended to be reminiscent of a dispersed cloud with
clear proximity to end users, and encompassed the entire spectrum of computation
from centralized clouds to edge data centers and end-user (Internet of Things) devices.
This thesis does not stretch as far as the fog around end users, so we will focus our
discussion on edge computing.

31

Availability
zone

Kubernetes

limited to ease of integration, e.g., via single-sign-on user contexts and
permission models that give access to equivalent resource types in dif-
ferent regions. However, cloud regions typically share very little data,
and assets such as virtual machine hard drive images must be uploaded
separately to individual regions with region-specific identifiers, even if
their content is identical on a byte level. Thus, Service Providers are
typically acutely aware that cloud regions are isolated from each other,
and have to modify their deployment strategies accordingly.
Meanwhile, there is clear evidence that Service Providers are increas-
ingly making use of multiple Infrastructure Providers in a multi-cloud
strategy, and with a substantially lower amount of friction than in the
early days of the cloud. This trend follows the same pattern as the other
evolutions we have discussed: an enabling technology emerges, and
co-evolution occurs between the cloud and the software used to operate
and utilize it. In the case of Service Providers making use of disparate
Infrastructure Providers, that enabling technology is containerized soft-
ware and Kubernetes. Kubernetes was developed by Google to dethrone
Amazon Web Services as the major and practically unchallenged public
cloud Infrastructure Provider. Drawing on lessons learned from its in-
ternal container orchestration system Borg [Ver+15]], Google released
Kubernetes as an open source product to level the technological playing
field and reduce barriers between cloud Infrastructure Providers. By
raising the level of abstraction such that Service Providers did not have
to target specific Infrastructure Providers anymore, it became perfectly
reasonable to split software deployments across multiple cloud Infras-
tructure Providers and thereby gain greater redundancy and a broader
global presence. Because Google was the underdog in the public cloud
Infrastructure Provider market at the time, this move made perfect
sense: Service Providers could, by basing their software delivery and
management around Kubernetes-specific abstractions rather than con-
crete cloud-specific concepts, ensure that their cloud applications were
more portable than ever before. However, this came at the cost of in-
creased complexity: now Service Providers had to essentially manage a
large number of Kubernetes-managed clusters at various Infrastructure
Provider cloud sites instead of just interacting with a single Infrastruc-
ture Provider. In contrast to a true cloud federation, this is a noticeable

32

backwards step and a shift of responsibility to Service Providers that
smaller organizations may struggle with.

For researchers in the field, relying on Kubernetes to abstract away
underlying technological differences between Infrastructure Providers
meant that the problems of incompatible cloud sites could be relegated
to the past. However, new problems arose. For example, how does
one manage a federation of Kubernetes clusters that may comprise
hundreds or thousands of edge sites? This question is addressed from
a technical perspective in Paper VI and in works such as [Kim+19]].
Another important problem is how to choose which sites to use when,
and to determine what benefits may be obtained. A new range of cloud
brokerage studies can help address these needs.

3.3 Future Vision of Cloud Federations

What will cloud federations of the future look like and what needs
will they address? While the future is by definition unknown, history
teaches us a few important lessons:

e Vendor lock-in is not going away. The major cloud Infrastructure
Providers are rightfully hesitant to deliberately destroy the forced
loyalty won by locking Service Providers into their platforms.
Google’s strategic open source play with Kubernetes to dethrone
Amazon Web Services has been further developed into a propri-
etary service offering called Google Anthog’} which promises to
leverage Kubernetes and other technologies to help enterprises
bridge the gap between private, edge, and public clouds. So while
other infrastructure may be used, Google will still get paid for
the underlying enabling technology, to which Service Providers

will be locked in.

e Service Providers care more about cross-provider federation than
Infrastructure Providers do. In part due to the point above about
vendor lock-in not going away, and because Service Providers

*https://cloud.google.com/anthos

33

https://cloud.google.com/anthos

stand to gain more from using multiple and competing Infras-
tructure Providers, more real and practically implementable in-
novation is happening in this space.

e The scale of federations is increasing dramatically. With some
industry leaders stating that practically every mobile base station
or factory in a fully Industry 4.0-based scenario may be an edge
site, we know that future federations will have to successfully
incorporate hundreds or thousands of sites.

e Resources will be heterogeneous among sites and scarce within
sites. Service Providers have become accustomed to cloud sites
(i.e. availability zones or regions) with large amounts of available
resources that can be treated as though they originate from a more-
or-less homogeneous pool. Future-generation federated cloud
and edge infrastructures will exhibit greater heterogeneity on a
technical level (e.g., they may use different CPU technologies),
and by definition, edge sites have far fewer available resources
than large centralized cloud data centers.

Based on these lessons, we predict that future-generation federations
will be (a) driven primarily by the needs of Service Providers; and (b) far
too complex for Service Providers to manage. Therefore, software or
brokerage services will be created to optimize application deployment
across multiple Infrastructure Providers, taking heterogeneity and dif-
ferences in pricing into account.

Perhaps the predominant “Infrastructure Provider” of choice in the
future will actually be a broker that enables smart access to disparate
resources across several Infrastructure Providers, rather than an actual
Infrastructure Provider with physical hardware to manage® There is
thus a clear need for research on optimizing the use of disparate pools
of available resources (Scheduling, Chapter [4), and on making the best
possible use of the resources currently available to Service Providers
(Quality elasticity, Chapter 5).

*After all, as Tom Goodwin noted [[Goo15]]: “Uber, the world’s largest taxi
company, owns no vehicles. Facebook, the world’s most popular media owner, creates
no content. Alibaba, the most valuable retailer, has no inventory. And Airbnb, the
world’s largest accommodation provider, owns no real estate.” Why would cloud
infrastructure offerings be any different?

34

Chapter 4
Scheduling

In cloud computing, scheduling is the process of determining how and Scheduling
when to allocate resources from available pools, and from which pools
resources should be allocated, in order to meet an application’s needs.
These pools may be physical hardware in a data center (e.g., physical
machines to host virtual ones), resources in a (virtual) machine to host
a containerized application (e.g., scheduling within a Kubernetes node
or cluster thereof), or remote cloud sites in a federation for hosting
applications that cannot be served using locally available resources. The
output is some kind of mapping between the entity requiring resources
(application) and the pool of available resources, showing when and
what resources will be allocated. Because resource availability is volatile,
scheduling is an iterative process. To the extent that the underlying
technology permits, scheduling decisions can be remade to make better
use of resource pools.

This chapter discusses scheduling as it relates to the overarching
topic of this thesis, i.e. managing cloud resource scarcity. By way of
introduction, we first note that scheduling is an optimization problem
for which we must often make do with approximate solutions (Sec-
tion [4.1). Next, we see how scheduling in cloud environments has
co-evolved with Service Provider expectations (Section[4.2). In particu-
lar, commitments have become shorter, giving Infrastructure Providers
more opportunities to optimize the use of their data centers via smart
scheduling. Because local resources may be insufficient to meet demand,
scheduling may also have to include other Infrastructure Providers in

35

Schedule and
Placement

Optimization
problem

a federation (Section [4.3). Based on experience and current research
directions, we conclude the chapter with a look toward the future of
scheduling in cloud and edge computing (Section [4.4).

4.1 Scheduling as an Optimization Problem

On an abstract level, a data center can be viewed as a set of physical
servers that each have different amounts of spare capacity, and appli-
cation instances can be seen as entities requiring capacity. In cloud
computing, schedulers are used to produce both task schedules and
service placements. Both are assignments of application instances to
(physical) servers, with the difference being that the runtime durations
of services are unknown when scheduling. Viewed this way, scheduling
is an optimization problem, i.e. one in which the goal is to find the
“best” schedule/solution among many possible ones. But what is “best”
in this situation?

Optimization problems are well-studied in mathematics, economics,
and computer science, and can be expressed using formal models that
leave no room for ambiguity or misinterpretation. The general process
of optimization involves finding inputs x € R that minimize an objective
function f(x) € R” — R for the given inputs x, subject to a set of
constraints g(x) that also depend on x (constraints are either inequality
constraints or equality constraints, < or = 0). These parts play together
nicely and let us express a multitude of problems in a generic way so that
solvers can find the best possible solution given our problem description.

For instance, when scheduling application instances to physical ma-
chines, we can express the maximum amount of available resources for
each physical machine (constraint), require that an application instance
be scheduled to at most one physical machine (constraint) and that all
application instances we know of must be scheduled somewhere (con-
straint), and state that solutions should be ranked based on the number
of powered-on servers, with solutions using fewer servers having higher
ranks (objective function).

Because virtual machines are typically not divided into fractions and
deployed across multiple physical machines, we can often express the
scheduling optimization problem as one that requires integer solutions,

36

which may be obtained using integer linear programming (ILP). Paper Integer lincar
IIT uses this formulation, as does the work of van den Bossche et al., ﬁfﬁlg;m'
which serves as an approachable introduction to the topic [VVB10]. In

ILP formulations, singular resources such as processing time on a CPU

core can be shared by dividing them into smaller units and assigning

integer quantities of these smaller units to the different application

instances. Kubernetes uses this approach: containers are assigned a

certain number of millicores (thousandths of a CPU core). Thus, a

container could be assigned 500 millicores, leaving the other half of the

CPU time available for some other container.

Much of the published work on cloud scheduling and data cen-
ter optimization uses an optimization problem formulation. These
works differ with respect to the components they include: they may
employ different constraints to model different aspects of the problem
domain or different objective functions that prioritize, e.g. consoli-
dating application instances onto fewer physical machines (to reduce
power consumption and operational expenditures), spreading applica-
tion instances out (to reduce performance interference and increase
resilience to individual physical server failures), or maximizing overall
performance and data center utilization.

Unfortunately, many scheduling optimization problem formula-
tions are very complex (in the NP complexity class [UIL75]]), so solving
them is very computationally expensive. Therefore, results are typi-
cally not guaranteed to be optimal but rather approximations informed
by heuristics (computationally cheap shortcuts leading to inexact but
reasonable solutions), because truly exhaustive testing of all possible so- Heuristics
lutions would be infeasible and highly questionable from a cost-benefit
analysis perspective: the cost in terms of time and resources of find-
ing more optimal solutions will outweigh that of using a sub-optimal
solution. Therefore, in practice, even approximate optimality can be
dismissed to reduce computational costs, and scheduling decisions are
often based on the results of rather simple greedy methods instead.
Solutions must still take constraints into account, and some effort is
typically made to choose a “good” (if not “best”) solution from a range
of possibilities.

Scheduling can be performed either by a central scheduling com-
ponent, or in a distributed manner [[TW84], e.g., by using auctioning

37

Decentralized
scheduling

protocols [[Wel+01; Att+06]] in which entities (cloud or edge sites, or
physical machines within a site) “compete” with each other by bidding
on application instance allocations. Decentralizing scheduling removes
bottlenecks and the single point of failure inherent in centralized sys-
tems, and can be made quite efficient [Hua+13]]. Paper VI proposes a
collaborative decentralized scheduling method for use in Kubernetes
federations.

4.2 Co-development of Scheduling and Cloud
Computing

A recurring theme of this kappa is that user expectations define what
technical solutions are possible, and technological advances can only
be made via circular co-evolution with changes in user expectations.
Scheduling is no different. In the early days of cloud computing, most
users expected forklifted virtual machines to replicate the properties
of machines in private data centers, so Infrastructure Providers offered
guarantees of always-on services with no downtime and no disturbance
from other cloud customers. Schedulers thus had to maintain the #//x-
sion that the Service Provider’s virtual machines had dedicated resources
at their disposal.

At best, Infrastructure Providers could i theory use virtual machine
migration to make new scheduling decisions, but even the largest public
Infrastructure Provider, Amazon Web Services, seemingly does not
do iff] Although great advances have been made in techniques for
performing seamless live migration across physical machines [Svi+11;
Voo+09; Xu+14; BKR10], their performance costs are apparently
deemed too great in practice.

However, offering dedicated resources represents a great missed
opportunity cost to Infrastructure Providers’] There has been extensive

As of June in 2020, Amazon Web Services customers will still receive notification
emails when the physical machine upon which their virtual machines are deployed
is due to be retired, stating that this will cause the forced termination of the virtual
machine. This implies that little has changed regarding the original decision to not
migrate virtual machines, even if customers are inconvenienced as a result.

2As of June 2020, the pricing scheme of the European cloud Infrastructure Provider
Scaleway shows that roughly equivalent dedicated bare metal servers cost about

38

research on how to safely perform over-booking, i.e. selling the same Over-booking
resources to multiple parties with the statistically backed hope that they
will not all actually require all of the sold resources at the same time (with
the provider paying a penalty on the off chance that this occurs) [BE11;
Vaz+13; TT13; TT14; TLE16]]. This practice is commonly used in
other fields - for example, airlines routinely over-book flights in the
knowledge that no-show travelers are common enough to safely sell a
number of additional seats per flight with the calculated risk of having to
ask travelers to take a later flight if seat availability is actually exhausted.
Seeking larger profit margins, cloud Infrastructure Providers saw an
opportunity to offer a tiered pricing model in the hope that a market to
exploit it would appear. This gave rise to virtual machines with burstable
performance profiles, where the machine accumulates performance Burstable
tokens at regular intervals (up to some limit), and will dynamically use Performance
them to operate at a higher than normal rate of performance. Once
the performance token pool is empty, the virtual machine operates at
its normal comparatively slow speed. This was an attractive option for
users who knew that their servers were only used to the 15-20% that
research has shown is common [[Vog08]]. The reasoning was that if the
server will only need its top performance mode a fraction of the time,
why pay for maximum capacity 4/l the time? Because virtual machines
with burstable performance profiles had different demands and user
expectations to regular virtual machines, they allowed schedulers to
make safer and more extensive over-bookings and thereby increase
profits.
Similarly, cloud Infrastructure Providers created spot instances, which
offered no uptime guarantee at all but were significantly cheaper than
other alternatives. These allowed schedulers to apply backfilling, a Backfilling
technique used extensively in parallel and high-performance comput-
ing [MFO1; Sr1+02; TEF07]] whereby gaps in schedules are filled with
small and preemptible workloads. This essentially allowed Infrastruc-
ture Providers to sell spare capacity that would otherwise have been
wasted at a low price and with clearly stated limitations. Thus, user ex-
pectations were adjusted and technology could be developed to exploit
these new capabilities. The adoption of batch systems with frequent

50% per month than virtual servers, which hints at the increased margins efficient
scheduling can offer in this space.

39

result checkpointing and systems focused around work queues enabled
Service Providers to do processing inexpensively. Economic models
have since been developed to clarify how spot instances can be ex-
ploited most effectively in specific use cases [Amb+19; Ali4-19; SAS19;
Irw+19]].

While many cloud workloads come and go, others are very long-
lived. Thus, scheduling decisions that are optimal at one point in time
may leave a physical machine powered on for a long time afterwards
to serve a single long-lived virtual machine. For example, company
e-mail servers can potentially have years of uptime, whereas a worker
node in a batch processing system may only exist for a few hours.
Unfortunately, when provisioning a virtual machine, an Infrastructure
Provider cannot know how the Service Provider intends to use it or
what its likely lifetime will be. This is a problem for cloud scheduling,
and leads to poor resource utilization for Infrastructure Providers.

As cloud-native technologies matured and software architecture
developed to more clearly separate stateless and stateful components,
virtual machines became more easily replaceable and short-lived. Thus,
scheduling commitments could also be shortened, allowing more opti-
mal resource usage. Additionally, spot instances enabled gap-filling in
schedules, and because the expectations of Service Providers had been
properly set by Infrastructure Providers, all parties were aware that
spot instances were ephemeral.

However, starting up a virtual machine s still a rather slow pro-
ces{’} so there has been a move to enable better scheduling and faster
implementation of new decisions by relying on significantly smaller
execution units such as containers and functions (see Section [2.3).

By clearly stating what is being offered and at what price, Infrastruc-
ture Providers can ensure that the expectations of Service Providers are
set accordingly. Moreover, technology has evolved to take advantage
of these offerings while avoiding their most serious pitfalls. By having
Service Providers clearly show which workloads may be long-lived and
which ones will certainly not be, Infrastructure Providers can mitigate
the ill effects of suboptimal long-term scheduling decisions by com-

3 As of June 2020, the AWS FAQ for the EC2 service still states that it can take up
to 10 minutes to start a virtual machine.

40

pensating and allocating many short workloads to achieve high overall
utilization and profitability.

4.3 Scheduling Across Cloud Federations

Perhaps the greatest selling point of cloud federations is the ability
for an Infrastructure Provider to meet current resource demand using
resources at another cloud site. Schedulers in cloud federations must
therefore at minimum be aware of the cost of using resources from
other sites in the federation. These costs may be the same as those paid
by any other customer or reduced by agreed-upon framework agree-
ments. Including such federated resources in an optimization problem
formulation is merely a matter of using an objective function that as-
signs different costs to local deployment (based on factors such as the
power and maintenance costs of the physical machines) and remote
deployment, with the latter being assumed to have a very large capacity.
In practice, two of the guiding principles of this thesis, independence
and autonomy, dictate that Infrastructure Providers cannot let each
other know their true resource availability at any given moment (com-
peting businesses would never disclose this information). This issue
aside, there is another important question to consider: assuming that
remote deployment is possible, can any virtual machine really be placed
elsewhere in a federation?

The answer is, of course, no. Some groups of virtual machines must
be deployed in close proximity to one-another to maintain acceptable
performance. In other cases, legal requirements may dictate that data
remain in a certain geographical area. Unfortunately, virtual machines
are essentially black boxes from the point of view of the Infrastructure
Provider. What then can be done to avoid making mistakes that might
breach these requirements?

Paper II and Paper III propose a solution to this problem, namely
to let the Service Provider explicitly express the “structure” of the de-
ployed application, along with placement constraints. These placement
constraints specify which components must be co-deployed (e.g., com-
ponents that need to communicate frequently), which ones should
never be co-deployed (e.g., replicas), and possible geographical restric-

41

Placement
constraints

tions. Similar approaches have been suggested by other authors such as
Kim et al. [Kim+19]].

Figure [4.1| exemplifies such placement constraints. The service
depicted in the figure is a typical three-tier web application, i.e. one in
which the front end web server, business logic processor, and database
service are separated each other. The database service is replicated such
that there is one primary database instance and multiple secondary
instances for redundancy purposes. The service structure is hierarchical,
and a top-level placement constraint states that all virtual machines
(instances) in the service have an affinity for Europe. They can thus be
placed anywhere in a federation, as long as the cloud site is in Europe.
An additional constraint stipulates that an internal network must be
available to all instances; therefore, if multiple cloud sites are used, the
cloud Infrastructure Provider must extend the internal network by
creating Virtual Private Networks (or similar) across cloud sites.

The Primary DB instance has an anti-affinity placement constraint
on the host (physical machine) level toward all Secondary DB instances.
Similarly, all Secondary DB instances have anti-affinity constraints
against each other on the host level. These placement constraints ensure
redundancy: if a physical server should halt and catch fire, it can at
worst take out one instance of the database service.

The placement constraints suggested in Paper II and Paper III thus
grant the Service Provider some influence over how the service is placed,
but not control over it. The Service Provider cannot demand that a
particular physical machine be used, as that would violate the autonomy
of the Infrastructure Provider.

4.4 Scheduling in Future Cloud and Edge
Computing

We believe that federations represent the future of cloud and edge com-
puting. This implies that cross-federation scheduling will be needed to
fully exploit resources at multiple sites, and to make smart choices on
behalf of users by taking costs into account and ensuring that geograph-
ical distances are kept reasonable given the structure of the deployed
application. We also believe that for the foreseeable future, Service

42

~ Three-tier Web Application

Affinity (instance): Europe

Internal Network

Front End Anti-affinity (type): Host

W . VL2 Anti-affinity
.) Primary DB > (instance): Host
External Block Block
Network Storage Storage
Secondary DB
Block
Storage
Block
Storage

Figure 4.1: Placement constraints of the type proposed in Paper II and
Paper III for a three-tier web application with a replicated database
service. The replicated database service ensures redundancy using anti-
affinity placement constraints.

Providers will have to own and refine the solutions that enable federa-
tion (see3.3). Infrastructure Providers cannot be relied upon to do this
because they are not generally interested in making it easier for their
customers to do business with their competitors.

lustrating the gradual movement towards scheduling tailored to
federations, Kubernetes now includes native support for inter-Pod affin-
ity and anti-affinity placement constraints similar to those proposed
in Paper II and Paper III. Additionally, the Kubernetes Special In-
terest Group is developing the kubefed federation controller to allow
scheduling across a federation to be guided by tags that could express
geographical locations. The designers of kubefed (who work for major

43

Infrastructure Providers) have stated that the software is intended to
handle federations consisting of dozens of sites. However, edge com-
puting may involve the use of federations that are multiple orders of
magnitude larger. Paper V therefore proposes a more scalable approach
to scheduling than that adopted in kubefed. By ensuring compatibility
with kubefed, our approach retains the ability to meet user expectations
relating to controls such as geographical location restrictions. We be-
lieve that we will see similar user-driven endeavors to make unfettered
use of technology, rather than accepting the restrictions imposed by
competing Infrastructure Providers.

Perhaps the future of scheduling will include dedicated businesses
whose operations revolve solely around offering smart federation and
brokerage services that draw on advances in research to solve the op-
timization problem so that Service Providers themselves do not have
to.

44

Chapter 5
Quality Elasticity

With a finite amount of resources and time, only a finite amount of
work can be done. In this chapter, we consider time limitations that
may be imposed by users who will lost interest if forced to wait for
too long [[Pog+14]] (web users are typically willing to wait no more
than 2 seconds [Nah03]]) or by technology, such as network connection
timeouts. As shown later in this thesis, resource limitations will always
exist, whether due to the Infrastructure Provider’s bounded capacity
or the Service Provider’s bounded budget.

This chapter makes the case that a growing number of researchers
and industry practitioners consider it better to do something (deliver
some service to some users) when facing resource scarcity rather than
to do nothing (provide no service to any users) because of problems
such as timeouts. This can be done by modifying applications to work
with momentarily imperfect data, which increases their scalability and
agility, allowing them to better cope with resource scarcity. The sec-
tions below present a brief introduction to approximate computing
(Section [5.1) and discuss examples of its practical use in databases that
reduce quality by relaxing guarantees and offering so-called eventual
consistency (Section[5.2) as well as in certain applications (Section[5.3).

Most modern software does not adapt itself to current operating
conditions and therefore becomes saturated in times of resource scarcity
[Kle+14a], i.e. unable to handle the current load with the available
resources. This results in rapidly increasing response times or, worse,
timeouts caused by failure to respond quickly enough. This is unsatis-

45

factory to both Service Providers and end users. However, a growing
body of research shows that this mode of operation can be avoided.

Suppose that software instead adapted to current resource availabil-
ity, for example by using a more computationally expensive algorithm
when CPU resources are abundant and a computationally cheaper one
when such resources are scarce. Paper IV introduces the term “quality
elasticity” to describe behavior of this sort; a modified definition of this
term is given below:

Definition 3 (Quality elasticity) The ability of software to adapt both
its mode of operation and its result output quality in response to current op-
erating conditions, achieved by reacting to both its (a) statically determined
runtime environment configuration and (b) dynamically determined
current resource availability.

In this definition, the term mode of operation encompasses vari-
ous methods discussed in this chapter, including relaxing consistency
requirements for databases [|[Chi+12]]. Adapting result output guality
entails adjusting the quality of the software’s output by, e.g., serving
a possibly stale cached response instead of generating a fresh one, or
by performing simpler database queries that generate mostly correct
results.

The runtime environment configuration is the amount of memory
and/or CPU allocated to the VM or container in which the software is
running. Information on the runtime environment could (for exam-
ple) cause the software to choose a more memory-intensive algorithm
rather than a CPU-intensive alternative (i.e. one that caches partial
results in preference to recalculating them) if the memory allocation
is greater than the CPU allocation. Finally, (dynamic) current resonrce
availability is the instantaneous resource availability, determined from
the most recent possible readings. While dynamic resource availability
readings are much more informative than static ones, and are there-
fore preferred, observing systems during runtime incurs a performance
penalty [[CP17]], necessitating a trade-off.

46

5.1 Approximate Computing Primer

As noted in Chapter[4] some problems are too hard to solve fully within
a reasonable time frame or with reasonable resource expenditure. In
such situations, solutions that are “good enough” (satisficing solutions
according to the terminology of Simon [[Sim56]]) may be deemed ac-
ceptable. While it can be argued that any floating point operation in
a computer is rounded off and therefore all such results are numerical
approximations [XMK16[], approximate computing as a field of study
came into its own in the 2000s [XMK 16; Mit16; HO13]]. Many highly
cited works on approximate computing focused on increasing energy
efficiency by minimizing the amount of computation required to get
“good enough” results.

This required application components to be designed from the
start to both accept approximate results from other components as
input, and to themselves be able to produce approximate results. If
applications are allowed to return inexact results to improve energy
efficiency or (drastically) reduce processing times, the quality of the
results must also be monitored to assess the degree of performance
degradation [[Yaz+17]], and there must be a way to decide when it is
appropriate to degrade quality because some parts of an application will
be more resilient to approximation than others [[Chi+13[]. For instance,
it may be appropriate to encode video at a lower quality (bit rate) if the
results will hardly be noticeable and doing so would conserve resources.
Frameworks have been developed to let Service Providers apply the
principles of approximate computing at scale [[Goi+15;|Quo+18]].

5.2 Eventual Consistency in Databases

The adage in computer science that “premature optimization is the root
of all evil” (attributed to Sir Tony Hoare and popularized by Donald
Knuth) helps us identify the critical paths of our applications [[CSK02]],
that is to say, the performance bottlenecks through which most key
operations must pass. For many applications, this bottleneck is the
database, which is used to store and retrieve results generated during the

application’s use. Databases thus contain the “truth” of an application.

Can such databases be made approximate?

47

Approximate
computing

ACID

Before directly addressing that question, let us first note that databases
are complex systems that essentially exist to enforce rules about the data
they store. Without guarantees that application developers can easily
understand (e.g., guarantees about what will happen if there are con-
flicting value updates), dependable applications would be exceedingly
difficult to produce. Common database software such as PostgreSQL
and MariaDB/MySQL makes very strong guarantees about how opera-
tions against data are performed:

Atomicity: operations against the data either happen in their
entirety or not at all;

e Consistency: operations on data cannot cause the database itself
to enter an erroneous state;

e Isolation: updates from several sets of operations do not interfere
with each other; and

e Durability: once a database commits to a set of updates, the new
state cannot be lost, even due to power failure or similar.

These guarantees are referred to as the ACID properties [HR83]]. Con-
siderable computational work and bookkeeping is performed to en-
sure these ACID properties are offered by database software, because
databases offer concurrent access to the stored data.

To make matters more complex, an application may outgrow the
performance or availability offered by a single database server, at which
point the database must become a replicated or otherwise distributed
service. When that happens, software designers have two choices. One
is to require their replicated database service to spend a lot of additional
computational effort to maintain the ACID properties and thereby
essentially hide the fact that the service is distributed across several
nodes. In this case it would, for instance, be forbidden to seemingly
“forget” a value update. Instead, once data has been written to the repli-
cated database service, any and all upcoming queries must immediately
thereafter get answers with the same data.

In a highly influential keynote presentation in 2000, Eric A. Brewer
argued that any shared-data system can achieve at most two of three key

48

CAP
theorem

properties — Consistency, Availability, and tolerance to network Parti-
tions [Bre0Q]. This became known as the CAP theorem. Intuitively,
the CAP theorem makes it impossible to design a shared-data system
(i.e., a replicated or otherwise distributed database) that simultaneously
ensures that all data is consistent at all times, data is always available,
and network outages (partitions) between replicas in the system can be
tolerated. The theorem has since been criticized as being insufficiently
nuanced [JAba12]], and it has been suggested that network partitions
may not be as problematic as was originally claimed [Bre12b]. A later
refinement by Abadi et al. [Aba12] states that during normal operation
(i.e. without network partitions), distributed database systems typically
have to favor either latency or consistency. However, the core message
remains valid: when harnessing the collaborative power of distributed
systems, some concessions must be made.

For instance, software designers may construct their systems such
that momentary inconsistencies can be accepted in the knowledge that
the system will have an eventually consistent view of the data. Updates
may thus not be reflected immediately across the entire database ser-
vice, but a behind-the-scenes state reconciliation process will ensure
that members of the service eventually agree on which values are the
current ones [[Bur14; BG13; SK17; GA02]. Databases can achieve this
by dropping the ACID properties entirely, or by instead offering the
so-called BASE guarantees:

e Basically Available - applying Brewer’s CAP theorem [[Bre00]],
the consistency property is relaxed to favor availability such that
the replicated database is always available to serve read and write
requests, even in the event of network partitions;

e Soft state - the state of underlying data can change without fur-
ther input (enabling reconciliation after operations have been
serviced); and

e Eventually consistent - the state of the system will eventually
be consistent, given enough time.

BASE systems drop expensive bookkeeping processes and instead favor
doing at least something right now, rather than spending resources to
satisfy the strict immediate correctness requirements of ACID. This

49

Eventual
consistency

BASE

CRDT

provides an immense performance and scalability boost [Bur14|], but be-
cause it sacrifices consistency (i.e. at least momentary “correctness”) for
performance, software designers must be aware of its pitfalls [Llo+14;
BD13; BT11]]. Eventual consistency can therefore be viewed as some-
thing akin to approximate computing in the context of databases. Soft-
ware developers became familiar with databases of this sort largely due
to the immense popularity of MongoDB and the “NoSQL” movement
in the early 2010s.

Of particular interest to us in this thesis is a particular kind of even-
tually consistent database, one that is designed from the start to avoid
the expensive bookkeeping needed to keep multiple database replicas
in sync, treating partitioning (and thus loss of availability) as a natu-
ral consequence of distributed systems [[Bre12a]]. Paper VI uses the
so-called Conflict-Free Replicated Data Types (CRDTs) introduced by
Shapiro et al. [Sha+11b;|Sha+11a]] in 2011 to implement a distributed
database underpinning a federation control plane for edge-scale Kuber-
netes federations.

Conflicts occur in distributed databases when members of the dis-
tributed system do not agree on what values are correct. Conflicts
can either be pessimistically assumed to be frequent and avoided by
using protocols such as multi-phase commit protocols, or optimistically
assumed to be rare and resolved when detected. CRDT-based databases,
and particularly those using convergent replicated data types (CvRDTs),
take a highly optimistic but non-naive approach: by only working with
data types that exhibit mathematical properties such as commutativity
or monotonicity in a semi-latticd!|they make conflicts provably impossi-
ble [[Sha+11b]. Members of a such a distributed database will maintain
their own local state and distribute it to all other members indefinitely.
Value updates will be made to the local state and merged with the data
received from other members such that all members eventually receive

'A semi-lattice is an algebraic structure (S,-), where - is called the semi-lattice
operation and is an infix binary operation and where the following identities hold:
associativity, i.e. x-(y-z) = (x-y)-z, commutativity, i.e. x-y =y-x, and idempotency,
.e. x-x = x. Importantly in the context of distributed systems, these properties
mean that the order of operations does not matter and that operations can be repeated
with idempotency, that is, without affecting the result “again” if repeated.

50

and merge the same updated state. The commutativity of operations
ensures that local states will end up being consistent.

Alternatively, one could have a database using commutative repli-
cated data types (CmRDTs), in which operations rather than internal
states are transmitted to other members of the distributed database.
These require that operations be commutative but not necessarily be
idempotent, which means that the underlying data distribution pro-
tocol must ensure that operations can neither be lost nor repeated.
As such, they require more complex data distribution protocols than
CvRDT-based systems, but the messages passed between members are
smaller. The use of less complex data distribution protocols is useful
when poorly inter-connected large-scale systems that span across large
geographical distances must be supported, as in edge computing. We
therefore focus the remaining discussion on database systems using
state-based CvRDTs rather than operation-based CmRDTs.

Some examples may be in order. Imagine a Boolean variable with
the initial value “false” along with a rule saying that if it ever gets set
to “true”, it must stay that way. Whenever a member of a distributed
system sees such an update from a client, no other member can refute
the value update by saying that the value should be “false”. Similarly,
setting it to “false” again has no effect — the value update is idempotent.
Next, imagine a vector of values with as many items in it as the number
of members in the distributed system, and an indexing rule that ties an
item in the vector to a particular member. Now add the rule that each
member can modify only “its own” value, but read all others. Members
can then modify the sum of the vector by modifying their own value
slots without risk of conflicting value updates.

CvRDT-based databases typically use an eventually consistent data
distribution protocol to spread local states between members. In one
such family of protocols known as Gossip [Dem+87; JHBO1; Bir07]],
data is permeated throughout the system using a method akin to gos-
siping among social peers. Parties acquire data updates passively by
continuously sending and receiving messages bearing the latest data
they are aware of, and by requesting updates specifically if it becomes
apparent that they may have fallen out of the loop and missed some-
thing.

51

Gossip

Self-adaptive
software

The massive scalability of CRDTs has been proven in practice [[Yul2;
Lv+17]], and while the underlying data types are chosen specifically
for compatibility with the mathematical properties required by the
databases, general-purpose data structures can be implemented on top of
them [Bie+12]], making CRDTs suitable for general-purpose databases
such as the “Riak KV” key-value store.

Paper VI argues that a distributed CRDT-based database is a suitable
eventually consistent data storage service on which to build a federation
control plane for edge-scale Kubernetes federations. Eventual consis-
tency matches the expectations that Service Providers already have of
Kubernetes, but the wide-area network performance and scalability
of CRDT-based databases far surpasses that of the etcd database that
Kubernetes uses on a per-cluster level.

5.3 Adjusting Application Output Quality
to Resource Availability

According to Definition 3| software that can adapt its output quality
to resource availability is quality elastic. The literature offers many
examples of reducing output quality based on resource scarcity, but
fewer of increasing quality when resources are abundant. This may be
because reducing output quality is seen as an action taken to handle an
emergency rather than a tool for application performance management.

A key property of quality elastic software is the ability to choose
between different code paths that offer similar functionality but have
different implementations and resource requirements, such as those
presented in [[DR97]] and [[Ans+09]. The use of computationally
less expensive code paths when resources are scarce has been success-
fully applied in web server systems for both static [AB99]] and dy-
namic [Phi+10] content. Software with this capability has been de-
scribed as self-adaptive [[Che+09; Kep05; KMO07]. The adoption of
self-adaptive software has not solely been motivated by a desire to adapt
to changes in resource availability; it has also been used for end user
classification [[Mer+11]] and to automatically determine usage patterns
and requirements [[Chi+12]].

52

The work presented in Paper IV was strongly influenced by Brown-
out [Kle+14a], which applied a conceptually very simple framework
for serving optional content and a more involved control theoretic
approach to determine when to serve with or without said optional
content. The motivating example of Brownout was an e-commerce site
in which product recommendations were considered optional content
when viewing a product detail page: showing recommendations ben-
efits the Service Provider because they increase sales [FHO07; FH09],
but they are not strictly necessary from the end user’s perspective. In
the original Brownout paper, a control theoretic approach was used
to decide to either generate or not generate responses with optional
content based on estimated response times. It thus enabled quality
elasticity by allowing for quality reduction if resource scarcity pre-
vented requests from being processed fully. Many subsequent works
have adopted goals and formulations similar to those of the original
Brownout study [Kle+14b; XB19]] and used them to optimize schedul-
ing [[Tom+14; [Pap+17; XDB16; XTB19]).

It is also important to consider what to do if resources are abundant.
In Paper IV, we argue that it would be useful to have additional more
computationally expensive code paths to take when resource availability
permits so as to ncrease output quality, rather than just providing it
at the normal or reduced levels. We therefore modified the Brownout
simulator to account for this possibility, and obtained promising results.

Unfortunately, retrofitting an existing application for quality elas-
ticity is time consuming. Caching is mainly used as a way to improve
application performance, and is not traditionally seen as a quality elas-
ticity tool in itself. However, basing computations on possibly stale
data constitutes a reduction in quality. In Paper VII, we quantify
the effects of dynamically caching inter-service communication in a
micro-service context. Rather than caching objects close to the end
user, where caching times are limited by the most frequently updated
data item, we instead employ fine-grained caching between application
components. This makes it possible to serve fresher data to end users
since even if only a part of the response is cached, inter-service requests
can be significantly reduced by caching data that changes only rarely.
Our caching infrastructure requires no application modification but re-

53

Brownout

Caching

duced the number of inter-service queries by 80% in a real micro-service
application.

54

Chapter 6

Summary of Contributions

This chapter summarizes the papers comprising this thesis and shows
how they relate to the overall research goal and research objectives, and
the guiding principles of the thesis. An overall outline is given first,
after which the papers are presented in more detail in chronological
order, with descriptions of the author’s contributions.

6.1 Outline of Contributions

The research goal of this thesis is to explore methods for managing
cloud resource scarcity. This was done from two perspectives: that of
a Service Provider and an Infrastructure Provider (RO2). The
tested approaches can be considered to have their roots in the three
pillars of this thesis: cloud infrastructure federations, scheduling, and
quality-elasticity. Figure|6.1|shows which papers address the problem
from which perspective and which approach was used. Note that Paper
V lies outside this figure because it is not tied to any of the three pillars:
it presents an experimental study on the adverse effects of resource
scarcity on the control plane and deployed applications in a cloud
environment rather than contributing solutions to these problems.
As Figure|6.1{shows, some of the papers span the divide between
Service and Infrastructure Providers, and propose collaborative solu-
tions. This approach is consistent with a central argument of this thesis,
namely that the cloud and the applications deployed onto it have co-
evolved, leading to the emergence of cloud-native software. Paper I

55

ROI v

(Service Provider) v
—————————————————— ol VII|---

RO2 : III

(Infrastructure Provider) VI

Federations
Scheduling

Quality-Elasticity

Figure 6.1: Mapping of the contents of the included papers to the re-
search objectives of this thesis (Section[L.1) and its three pillars. Note
that some papers span the Service/Infrastructure Provider divide be-
cause they explore collaborative solutions. Paper V is not tied to any
particular pillar because it highlights challenges and lessons learned
when performing experimental evaluations in complex cloud environ-
ments. However, its results strongly influenced the experimental strate-
gies adopted in other papers.

outlines how Infrastructure Providers can extend their own capacity by
renting that of others to create a collaborative cloud federation. This
may be done to ensure that Service Providers do not perceive resource
unavailability at their chosen cloud Infrastructure Provider. Unfortu-
nately, Service Providers might object to such an approach, possibly
because their cloud deployment has performance-sensitive components
that must be deployed in close proximity to each other. Alternatively,
there may be legal restrictions on where certain components can be
placed. Service Providers therefore need a way to specify such require-
ments. Paper II and Paper III provide a language for this purpose
(which constitutes the main focus of Paper II) and show that it is math-
ematically and practically feasible to take these additional constraints
into account during scheduling (the main focus of Paper III).

56

Paper V experimentally explores and evaluates the inability of core
components of Kubernetes, including its current scheduler, to function
in situations when resources are scarce (or at least not fast enough).
The results obtained show that even with careful preparation and a
solid understanding of how to perform load experiments against an
application, the underlying platform cannot be ignored. These findings
will help to guide future research by highlighting pitfalls and facilitating
their detection and avoidance. The experience gained during the work
presented in this paper directly influenced the experimental approach
applied in Paper VII, where algorithmic goodness was measured in
terms of numbers of bytes sent across the network rather than by using
raw performance metrics.

While the earlier papers focused on what Infrastructure Providers
can do, the later papers focused on ways for Service Providers to manage
cloud resource scarcity. Auto-scaling represents one possible solution
(and is addressed in Patent I, which is not part of this thesis), but it is a
coarse-grained approach that works on a timescale of several minutes
whereas end-user satisfaction can change on a sub-second timescale.
Therefore, faster responses to resource unavailability are needed. Paper
IV suggests that this can be achieved via automatic and voluntary quality
adjustments on the Service Provider’s side: the quality of results can be
increased when resources are plentiful and reduced when resources are
scarce.

The results of Paper IV are interesting and part of a subfield that
warrants more attention, but the approach it suggests places a heavy
burden on cloud application developers because it requires them to
implement complementary and quality-differentiating services. Paper
VII therefore suggests an alternative approach based on automated
response caching as a way to reduce the resource requirements of a
cloud application deployment. The goal is to avoid any need to change
the application itself by dynamically adjusting the amount of caching
done within the system.

Finally, Paper VI (along with Patent II, which is not part of the
thesis) revisits the problem domain of Paper I, but several years later and
with a different goal: to decentralize the entire control plane between
edge computing federations of massive scale with dynamic execution.

57

This is something that cannot possibly be achieved using approaches
built for mere handfuls of cloud Infrastructure Providers.

The research presented in this thesis has thus explored how both
cloud Infrastructure Providers and Service Providers can manage cloud
research scarcity issues that arise when current resource requirements
exceed resource availability. The later papers have gravitated toward
solutions that can be implemented by Service Providers because the au-
thor’s professional experience indicates that Service Providers are more
strongly incentivised to address momentary cloud resource scarcity
than Infrastructure Providers.

58

6.2 Paper I

E. Elmroth and L. Larsson, “Interfaces for Placement, Migration, and
Monitoring of Virtual Machines in Federated Clouds”, Eighth Interna-
tional Conference on Grid and Cooperative Computing (GCC), Lanzhou,
Gansu, 2009, pp. 253-260.

Paper I introduced the notion of an inter-cloud API that allowed
one cloud to delegate VMs to another and also enabled VMs
be migrated directly in one step from the source cloud to the ultimate
destination cloud in the event of multi-step delegation (GP2). The
paper thus relates to and the overall research goal in that a cloud
Infrastructure Provider could, for instance, decide to delegate a set
of VMs to a collaborating Infrastructure Provider to compensate for
resource scarcity.

This work was conducted in the context of the RESERVOIR EU
FP7 project on federated cloud infrastructures, and the work done
within that project on inter-cloud interfaces inspired the Open Cloud
Computing Interface (OCCI), a vendor-neutral cloud API[}

Author contributions Lars authored the paper in its entirety, with
key invaluable feedback from Lars’ then sole supervisor, Erik Elmroth. It
should be noted that when this paper was written, our research group listed
anthors alphabetically, so the author list does not reflect the magnitude of
each author’s contribution.

"https://occi-wg.org/about/specification/ has links to all documents in
the OCCI specification suite

59

https://occi-wg.org/about/specification/

6.3 Paper II

E. Elmroth and L. Larsson, “Scheduling and Monitoring of Internally
Structured Services in Cloud federations”, 2011 IEEE Symposium on
Computers and Communications (ISCC), Kerkyra, 2011, pp. 173-178.

Paper II introduced a language that lets Service Providers tell Infras-
tructure Providers which components of their application are related
to each other, and whether they have an affinity or anti-affinity to-
ward each other. These (anti-)affinities constitute placement constraints.
Placement constraints can affect service deployment on different levels,
e.g., “this component must never be placed on the same host as another
instance of the same component” (for redundancy), “this component
must be placed in the same cloud as this other component” (for efficient
networking), or “these components may never be placed outside of
country X” (for legal reasons).

A crucial aspect of this contribution is that the Service Provider
cannot dictate exactly how the cloud Infrastructure Provider(s) should
place resources (GP1); instead, the Service Provider’s requirements
serve as inputs for the Infrastructure Provider’s placement optimization
algorithms. Thus, the Infrastructure Provider is still free to optimize
within their data center. Paper II addresses objectives RO1|and [RO2)
because the Service Provider is granted influence, but not control, over
the Infrastructure Provider.

Nothing comparable to the proposed placement hints was offered
by cloud Infrastructure Providers when the paper was written, but
similar functionality has since appeared, notably in the form of AWS
Placement Groups|and Kubernetes Pod affinity specificationf|

Author contributions Lars and Daniel Henriksson co-formulated
the core idea of representing service structure in the manner described in the
paper. The monitoring framework mentioned in the paper was Lars’ idea
entirely. Lars then anthored the vast majority of the paper. Credit, as agreed
between Daniel and Lars, should be split evenly, and joint first anthorship

"https://docs.aws.amazon.com/AWSEC2/1atest/UserGuide/
placement-groups.html

’https://kubernetes.io/docs/concepts/scheduling-eviction/
assign-pod-node/

60

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

for the papers was implemented by assigning first author position to one
for Paper II and to the other for Paper II1.

61

6.4 Paper III

D. Espling, L. Larsson, W. Li, J. Tordsson, and E. Elmroth, “Modeling
and Placement of Cloud Services with Internal Structure”, in IEEE
Transactions on Cloud Computing, vol. 4, no. 4, pp. 429-439, 1 Oct.-
Dec. 2016.

Paper III extends upon Paper II by showing both (a) how an in-
teger linear programming (ILP) formulation can be derived from the
placement constraints proposed in Paper II (GP1), and (b) under what
circumstances the additional placement becomes too much of a compu-
tational burden for a placement optimization algorithm (GP2). Simi-
larly, it addresses the overall research goal via both research objectives
(RO1/and RO2).

The results provide two main insights. The first is that the number
of placement constraints affects the scheduler’s ability to find a satis-
fying placement more severely than general background load. This is
unsurprising because background load “only” makes the size of the
knapsacks smaller (recall Section [4) while still letting the solver use
them all as it sees fit.

The second is that for a high number of hosts with low capacity,
component affinity is the dominant factor affecting ability to find a
solution. This too is unsurprising because one would intuitively expect
affinity to mean that larger items (e.g. two VMs with affinity) must be
accommodated in a single knapsack, whereas anti-affinity just means
that two specific components cannot be co-placed. Anti-affinity thus
reduces the set of possible solutions slightly, which does not make the
actual scheduling decision much more difficult to process.

Author contributions As with the sibling paper (Paper I1), Daniel
(then with the last name Espling) and Lars co-formulated the core idea
and co-implemented the translation of placement constraints into solver
inputs. Lars then authored the majority of the paper. Crucial support
and guidance on ILP was provided by Wubin L, the group’s expert on
formulating scheduling in the form of an ILP problem. It should also
be noted that the paper required submission to several conference venues
and journals; this work (with slight modifications on each occasion) was
done by Daniel Espling. As stated previously, it was agreed that overall

62

credit for Paper II and Paper III should be shared equally between Daniel
and Lars. The supervisors Joban Tordsson (Wubin’s supervisor) and Erik
Elmproth provided key feedback in the process of shepherding the paper to

publication.

63

6.5 Paper IV

L. Larsson, W. Tarneberg, C. Klein, and E. Elmroth, “Quality-Elasticity:
Improved Resource Utilization, Throughput, and Response Times via
Adjusting Output Quality to Current Operating Conditions”, 2019
IEEE International Conference on Autonomic Computing (ICAC), Umea,
Sweden, 2019, pp. 52-62.

Paper IV addresses the research goal from the point of view of the
Service Provider: if momentary resource scarcity is inevitable, how
should such a situation be dealt with? Currently, software does not
adjust itself in this situation — if a system is overloaded, programs
simply run slower because there is more resource contention. This
leads to a slower response, or, in the worst case, failure to respond
within a predefined time frame, causing a timeout.

In Paper IV, we extend the ideas of Brownout [Kle+14a]]. Brownout
proposed adding a circuit breaker-like functionality to services that in-
troduces a binary choice about whether to serve “optional content”.
In this context, optional content is content that is valuable for some
reason (in the case of Brownout, product recommendations shown on
product detail pages at an e-commerce site, which are known to increase
sales [[FHO7; FHQ9])) but not strictly necessary.

Rather than the binary choice offered by Brownout, we propose a
more granular approach: choosing not just whether to serve optional
content, but also how it should be generated. Is there perhaps al-
ready cached content that can be used? Alternatively, can we offer
less computationally intensive product recommendations by making
cheaper database queries? And if resources are plentiful, can we per-
haps choose computationally more expensive alternatives to generate
higher-quality responses? Such decisions should be based on current

conditions and resource availability, providing timely mitigation on

a per-request timescale (GP2), and handled completely by the Service
Provider (ROT).

Using the same simulator as Brownout, we introduce these new
options and show that throughput is significantly increased, response
times are accordingly lowered, and that more requests are served with
at least some optional content rather than none. Obviously, the output
quality of some of the served optional content is reduced to achieve these

64

results, but if serving optional content increases profitability [[FHO7;
FHO9||, overall profits should be higher even in these cases than they
would be otherwise.

Author contributions Lars performed the software and experimen-
tal design, implemented the simulator, conducted the experiments, and
authored the paper. Lars had the core idea, and it was discussed extensively
with William Tarneberg. William’s continuous feedback and encourage-
ment, along with that of the supervisors Cristian Klein and Erik Elmroth,
greatly improved the paper.

65

6.6 Paper V

L. Larsson, W. Tarneberg, C. Klein, E. Elmroth, and M. Kihl, “Im-
pact of etcd Deployment on Kubernetes, Istio, and Application Perfor-
mance”, in Software: Practice and Experience, 2020.

Paper V is an experience paper that presents lessons learned while
conducting a large number of experiments in a cloud environment.
The key takeaway message is that the cloud software constituting the
platform upon which applications are deployed is also complex and
can suffer from resource scarcity. If that happens, even application
performance can suffer. Thus, researchers must view the entire stack as
the system under test, not just their application.

The etcd database is a key component of Kubernetes — every control
plane decision is recorded in it, and it is under heavy I/O pressure due
to a consistent and high-volume stream of requests. To ensure data
durability, etcd makes heavy use of its backing hard drive storage. If
the hard drive is “too slow” (whatever that means for a particular size
of cluster and data churn level), etcd will operate too slowly, and in the
worst case, there will be timeouts. These timeouts may be interpreted
as failures by the Kubernetes control plane components, which can
cause compounded failures. To understand why, we briefly explain
some aspects of Kubernetes’ functionality.

If a Kubernetes Pod fails its liveness tests, it should be replaced with
a new Pod instance. When that happens, the new Pod instance should
be listed as an Endpoint to the Service it belongs to, once readiness tests
have been passed. Network requests to a Service can only be delegated
to its listed Endpoints.

In this work, we created an application that could easily be over-
whelmed by too many concurrent requests. Thus, when the request
volume is sufficiently high, an application instance (Pod) will exhaust
its memory allocation, causing it to be killed by the Linux kernel’s
out-of-memory (OOM) process killer. With the process killed, its cor-
responding liveness test will naturally fail. The Pod should then be
replaced, as outlined above.

Thus, in the event of a high request volume (and thus a high load
on a Service), rapidly replacing the failed Pod is vital to ensure that
sufficient Endpoints are available to handle the overall load.

66

We found that if the backing storage of the etcd component is
also under high load, the Pod replacement process fails to occur in a
timely manner, which greatly affects the application’s performance
and (auto-scaling) behavior. Application performance and behavior in
experiments where the etcd database was deployed with a (very slow)
networked file system as its hard drive differed significantly from that
observed when it stored its data on a (very fast) RAM-disk.

The takeaway message from this experience paper is that we must
be aware of how our increasingly complex cloud platform software
behaves and is deployed. Measuring only raw application performance
can therefore be misleading if the platform is not also taken into account.
This lesson informed the approach used for system evaluation in Paper
VII, where instead of measuring only, e.g., network response times, we
instead focused on counting messages and bytes sent across the network.
This minimized non-deterministic disturbances due to control plane
deployment.

Author contributions Lars performed the vast majority of the work
on this paper, including conceiving the initial idea, design, implementation,
conducting experiments, and anthorship. The work was performed in close
collaboration with William Tarneberg, with whom the methodology and
results were discussed thoroughly and over many iterations. William
authored the paper’s formal description of how quening theory could be
used to conduct performance testing. Valuable feedback was provided by
the supervisors.

67

6.7 Paper VI

L. Larsson, H. Gustafsson, C. Klein, and E. Elmroth, “Decentralized
Kubernetes Federation Control Plane”, submuitted 2020.

In Paper VI, we return to the topic of federated cloud infrastruc-
tures (the subject of Paper I). In particular, we target geographically
dispersed and numerous infrastructures at the network edge — the
foundational infrastructures of edge computing. The problem domain
differs from that of Paper I with respect to the sheer scale of the federa-
tions under consideration: the number of collaborating sites is orders
of magnitude larger. Deploying applications to hundreds or thousands
of Kubernetes clusters requires a more scalable control plane than that
which currently exists.

In this position paper, we argue that a decentralized control plane is
required to deal with the scale required for edge computing. To avoid
problems relating to concurrent control plane updates caused by varia-
tion in resource availability over a massive federation, we propose the
use of Conflict-free Replicated Data Types (CRDTs, recall Section
in a distributed database that spans the entire federation. All member
clusters of the federation can independently volunteer to claim part
of the overall required deployment, updating the shared tally in the
distributed database. In this way, autonomy is preserved (GP1), and
because the overall resource requirements are known on the global level
of the system, scheduling can be done in parallel across all clusters,
which should result in good distributed scheduling performance (GP2).

The proposed ideas would have to be implemented by Infrastructure
Providers because we consider it unfeasible for Service Providers to
maintain a list of all sites in a federation with hundreds or thousands of
edge computing sites. Edge computing infrastructure must be managed
by Infrastructure Providers; consequently, this paper relates to

The ideas presented in this position paper were and still are in very
early developmental stages, and various possible implementations are
being considered. This work was conducted while Lars was visiting
Ericsson Research in Lund as a visiting researcher, and also resulted in
Patent II.

68

Author contributions Harald and Lars, as co-authors of the patent,
believe that credit for the original idea should be split equally between them.
Lars was given full responsibility for authorship of the academic position
paper, and his supervisors Cristian and Erik provided valuable feedback.

69

6.8 Paper VII

L. Larsson, W. Tarneberg, C. Klein, M. Kihl, and E. Elmroth, “To-
wards Soft Circuit Breaking in Service Meshes via Application-agnostic
Caching”, submitted 2020.

While the results of Paper IV were very promising, implementing
them in practice would be rather labor-intensive and require the de-
velopment and maintenance of several different implementations of
specific functionalities with different resource requirements. Practically
speaking, development costs would likely prohibit this for all but the
most valuable business-critical systems.

Paper VII presents a more practical general solution in the form of
a caching infrastructure that seamlessly and without requiring applica-
tion modification can dynamically estimate how long cached previous
responses will remain valid. Caching is rarely used in inter-service
communication, which is surprising, given that the micro-service archi-
tecture design encourages separation of concerns and data ownership,
potentially leading to frequent inter-service calls to obtain data that
may not have changed since it was last used (see Section [5.3).

We evaluate the proposed system and the associated cache valid-
ity time estimation algorithms using two suites of experiments. First,
we identify algorithm parametrizations that reduce the number of
network requests without introducing too many errors due to data
staleness. Second, we show that a real third-party application (Hipster
Shop by Google Cloud Platform) can be deployed onto our caching in-
frastructure without modification, and that the identified conservative
algorithm parametrizations manage to cache about 80% of requests,
reducing total network traffic by 40%.

These results support our vision of seamlessly offering this type
of functionality in service meshes as a “soft circuit breaker”, i.e. one
that does not just allow or disallow traffic between services but can
reduce service load by using cached data where possible (GP2). This
would greatly benefit edge computing, as research has shown that both
poor data locality [[Ngu+19; McC+19]] and resource contention are
hindrances to its adoption.

This work relates to research objectives RO1{and [RO2|in that the
proposed solution could be offered as a networking feature in a service

70

mesh by the Infrastructure Provider, or be used directly by the Service
Provider. Because caching in the manner described does not require
application modification, both options are potentially viable.

Author contributions The vast majority of the work was performed
by Lars, including software and conceptual design, implementation, ex-
periments, and authorship of the paper. Again, the work was conducted in
collaboration with William Tarneberg, with whom the methodology and
results were discussed thoroughly and over many iterations. Supervisors

provided valuable feedback.

71

Chapter 7

Conclusion

This thesis has a single research goal: to explore methods for managing
cloud resource scarcity. This goal was addressed from two perspectives,
resulting in two research objectives: to explore ways in which Service
Providers and Infrastructure Providers can mitigate the adverse effects
of resource scarcity on application or platform performance. The
solutions presented in the papers following the kappa rest on three
pillars: collaboration in inter-cloud federations, intelligent scheduling
within and across federations, and making applications adapt to current
resource availability.

On the basis of extensive literature reviews and personal experience
gained over the many years spanned by this thesis (2009-2020), we
have made the case that the cloud and the software deployed onto it
have co-evolved over time and bred a new line of software that can
truly be called cloud-native. This software has evolved to exploit the
unique resource offerings of the cloud, turning what would previously
have been seen as weaknesses of shared and dynamic infrastructure into
strengths. Cloud-native software, by embracing the dynamic nature
of cloud infrastructure, thus also helps Infrastructure Providers offer
their services cost-efficiently.

The long period of time over which this thesis was written grants
us the privilege of hindsight: we can see evidence of the older papers’
impact on the research community and possibly also the cloud com-
puting industry. Paper I has been cited over 85 times according to
Google Scholar. The work done within the RESERVOIR project on

73

the API that the author worked on directly and elaborated upon in
Paper I influenced a multi-cloud compatibility API called Open Cloud
Computing Interface (OCCI), which was subsequently standardized
by the Open Grid Forum and has continued to evolve.

Regarding Paper II and Paper III, it is noteworthy that industry
giants such as Amazon Web Services and Microsoft now offer a language
to express cloud component affinity and anti-affinity rules today, but
they did not before those papers were published. The more recent cloud-
native container orchestrator Kubernetes also offers such a language and
functionality. It is impossible to say whether any of these developments
were (in-)directly influenced by our work — perhaps we just tapped into
the Zeitgeist of the federated cloud computing field, but did so a few years
before it had matured enough to be offered by public cloud vendors.
Since RESERVOIR and its successor project OPTIMIS both deeply
influenced EU research on cloud computing together with industry
partners such as IBM and SAP, some influence should perhaps not be
immediately excluded.

We expect that the complementary approaches presented in this
thesis could be combined to further deepen the collaboration between
Service Provider and Infrastructure Provider in delivering cloud-native
applications to end users in ways that allow efficient sharing of resources
and delivery of applications. Taken as a whole, the implementation of
the ideas presented in this thesis would result in applications that can
be efficiently scheduled and migrated across clouds (Paper I and Paper
VI) without violating requirements relating to service structure or data
locality (Paper II and Paper III), and that make better use of available
resources wherever they are deployed (Paper IV and Paper VII). We
have also shared our experience of conducting scientific research on
cloud computing infrastructure (Paper V), which suggests that control
plane software should perhaps also be able to adapt to current resource
availability. Thus, our contributions have helped pave the way to more
efficient use of available resources. Overall, the main conclusion drawn
from the work presented herein is that cloud resource scarcity is best
managed in a collaborative manner that respects both the autonomy
and independence of all parties, as all parties benefit when optimal use
can be made of the resources at our shared disposal.

74

Bibliography

[AB99]

[Abal2]

[AJ99]

[Ali+19]

Tarek F Abdelzaher and Nina Bhatti. “Web content adap-
tation to improve server overload behavior”. In: Com-
puter Networks 31.11 May 17, 1999), pp. 1563-1577.
ISSN: 1389-1286. DOI: 10 . 1016 / 51389 - 1286(99)
00031 -6. URL: http://www. sciencedirect . com/
science/article/pii/S1389128699000316 (visited
on June 9, 2020).

Daniel Abadi. “Consistency Tradeoffs in Modern Dis-
tributed Database System Design: CAP is Only Part of
the Story”. In: Computer 45.2 (Feb. 2012). Conference
Name: Computer, pp. 37-42. ISSN: 1558-0814. DOI: 10.
1109/MC.2012.33.

Martin Arlitt and Tai Jin. Workload Characterization of
the 1998 World Cup Web Site. HPL-1999-35(R.1). Internet
Systems and Applications Laboratory, HP Laboratories
Palo Alto, Sept. 1999.

Ahmed Ali-Eldin, Jonathan Westin, Bin Wang, Pra-
teek Sharma, and Prashant Shenoy. “SpotWeb: Running
Latency-sensitive Distributed Web Services on Transient
Cloud Servers”. In: Proceedings of the 28th International
Symposium on High-Performance Parallel and Distributed
Computing. HPDC *19. Phoenix, AZ, USA: Association
for Computing Machinery, June 2019, pp. 1-12. ISBN:
978-1-4503-6670-0. DOI: 10 . 1145 /3307681 . 3325397.
URL: https://doi.org/10.1145/3307681 .3325397
(visited on June 3, 2020).

75

https://doi.org/10.1016/S1389-1286(99)00031-6
https://doi.org/10.1016/S1389-1286(99)00031-6
http://www.sciencedirect.com/science/article/pii/S1389128699000316
http://www.sciencedirect.com/science/article/pii/S1389128699000316
https://doi.org/10.1109/MC.2012.33
https://doi.org/10.1109/MC.2012.33
https://doi.org/10.1145/3307681.3325397
https://doi.org/10.1145/3307681.3325397

[Amb+19]

[Ans+09]

[Asg+12]

[Att+06]

[AZH18]

Pradeep Ambati, David Irwin, Prashant Shenoy, Lixin
Gao, Ahmed Ali-Eldin, and Jeannie Albrecht. “Under-
standing Synchronization Costs for Distributed ML
on Transient Cloud Resources”. In: 2019 IEEE Interna-
tional Conference on Clond Engineering (IC2E). June 2019,
pp. 145-155. DOI:10.. 1109/IC2E. 2019. 00029

Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski,
Qin Zhao, Alan Edelman, and Saman Amarasinghe.
“PetaBricks: a language and compiler for algorithmic
choice”. In: ACM SIGPLAN Notices 44.6 (June 15, 2009),
pp. 38-49. ISSN: 0362-1340. DOL: [10. 1145/1543135 |
1542481. URL: https://doi.org/10.1145/1543135.
1542481 (visited on June 9, 2020).

Muhammad Rizwan Asghar, Mihaela Ion, Giovanni Rus-
sello, and Bruno Crispo. “Securing Data Provenance in
the Cloud”. en. In: Open Problems in Network Security. Ed.
by Jan Camenisch and Dogan Kesdogan. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2012,
pp- 145-160. ISBN: 978-3-642-27585-2. DOI: 10.1007/
978-3-642-27585-2_12.

Andrea Attanasio, Gianpaolo Ghiani, Lucio Grandinetti,
and Francesca Guerriero. “Auction algorithms for decen-
tralized parallel machine scheduling”. In: Parallel Com-
puting. Optimization on Grids - Optimization for Grids
32.9 (Oct. 1, 2006), pp. 701-709. ISSN: 0167-8191. DOI:
10.1016/j . parco . 2006 . 03 . 002. URL: http: //
www . sciencedirect . com/ science /article /pii/
S0167819106000597) (visited on June 22, 2020).

Mohammad Aazam, Sherali Zeadally, and Khaled A. Har-
ras. “Fog Computing Architecture, Evaluation, and Fu-
ture Research Directions”. In: [EEE Communications Mag-
azine 56.5 (May 2018). Conference Name: IEEE Commu-
nications Magazine, pp. 46-52. ISSN: 1558-1896. DOI:
10.1109/MC0OM.2018.1700707.

76

https://doi.org/10.1109/IC2E.2019.00029
https://doi.org/10.1145/1543135.1542481
https://doi.org/10.1145/1543135.1542481
https://doi.org/10.1145/1543135.1542481
https://doi.org/10.1145/1543135.1542481
https://doi.org/10.1007/978-3-642-27585-2_12
https://doi.org/10.1007/978-3-642-27585-2_12
https://doi.org/10.1016/j.parco.2006.03.002
http://www.sciencedirect.com/science/article/pii/S0167819106000597
http://www.sciencedirect.com/science/article/pii/S0167819106000597
http://www.sciencedirect.com/science/article/pii/S0167819106000597
https://doi.org/10.1109/MCOM.2018.1700707

[Bar+20]

[BCRO9]

[BD13]

[BE11]

[BG13]

Alejandro Barredo Arrieta, Natalia Diaz-Rodriguez,
Javier Del Ser, Adrien Bennetot, Stham Tabik, Alberto
Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel
Molina, Richard Benjamins, Raja Chatila, and Francisco
Herrera. “Explainable Artificial Intelligence (XAI): Con-
cepts, taxonomies, opportunities and challenges toward
responsible AI”. en. In: Information Fusion 58 (June 2020),
pp- 82-115. ISSN: 1566-2535. DOI:10.1016/j.inffus.
2019 .12 .012. URL: http: //www . sciencedirect |
com/science/article/pii/S1566253519308103 (vis-
ited on June 11, 2020).

Ken Birman, Gregory Chockler, and Robbert van Re-
nesse. “Toward a cloud computing research agenda”. In:
ACM SIGACT News 40.2 (June 2009), pp. 68-80. ISSN:
0163-5700. DOI: 10 . 1145 /1556154 . 1556172. URL:
https://doi.org/10.1145/1556154.1556172 (visited
on May 20, 2020).

Philip A. Bernstein and Sudipto Das. “Rethinking even-
tual consistency”. In: Proceedings of the 2013 ACM SIG-
MOD International Conference on Management of Data.
SIGMOD ’13. New York, New York, USA: Associa-
tion for Computing Machinery, June 22, 2013, pp. 923-
928. ISBN: 978-1-4503-2037-5. DOI:10.1145/2463676 .
2465339. URL: https://doi.org/10.1145/2463676 !
2465339 (visited on June 8, 2020).

David Breitgand and Amir Epstein. “SLA-aware place-
ment of multi-virtual machine elastic services in com-
pute clouds”. In: 12¢th IFIP /IEEE International Symposinm
on Integrated Network Management (IM 2011) and Work-
shops. ISSN: 1573-0077. May 2011, pp. 161-168. DOI:
10.1109/INM.2011.5990687.

Peter BAILIS and Ali GHODSI. “Eventual Consistency
Today: Limitations, Extensions, and Beyond”. In: Even-

tual Consistency Today: Limitations, Extensions, and Be-
yond 56.5 (2013). Num Pages: 9 Place: New York, NY

77

https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
http://www.sciencedirect.com/science/article/pii/S1566253519308103
http://www.sciencedirect.com/science/article/pii/S1566253519308103
https://doi.org/10.1145/1556154.1556172
https://doi.org/10.1145/1556154.1556172
https://doi.org/10.1145/2463676.2465339
https://doi.org/10.1145/2463676.2465339
https://doi.org/10.1145/2463676.2465339
https://doi.org/10.1145/2463676.2465339
https://doi.org/10.1109/INM.2011.5990687

[BHO7]

[Bial6]

[Bie+12]

[Bir+14]

[Bir07]

[BKR10]

Publisher: Association for Computing Machinery, pp. 55-
63. ISSN: 0001-0782.

Luiz André Barroso and Urs Holzle. “The Case for
Energy-Proportional Computing”. In: IEEE Computer
40 (2007). URL: http://www.computer .org/portal/
site / computer / index . jsp ? pagelD = computer _
levell & path = computer / homepage / DecO7 & file =

feature . xml&xsl=article.xsl (visited on June 10,
2020).

Randy Bias. The History of Pets vs Cattle and How to
Use the Analogy Properly. Sept. 2016. URL: http : / /
cloudscaling . com/blog/ cloud - computing / the -

history - of - pets - vs - cattle/| (visited on June 11,
2020).

Annette Bieniusa, Marek Zawirski, Nuno Preguica, Marc
Shapiro, Carlos Baquero, Valter Balegas, and Sérgio
Duarte. “An optimized conflict-free replicated set”. In:
arXiv:1210.3368 [cs] (Oct. 11, 2012). arXiv: 1210.3368.
URL: http://arxiv.org/abs/1210.3368 (visited on
June 8, 2020).

I Bird, P Buncic, F Carminati, M Cattaneo, P Clarke,
I Fisk, M Girone,] Harvey, B Kersevan, P Mato, R
Mount, and B Panzer-Steindel. Update of the Comput-
ing Models of the WLCG and the LHC Experiments. Tech.
rep. CERN-LHCC-2014-014. LCG-TDR-002. Apr. 2014.
URL: https://cds.cern.ch/record/1695401.

Ken Birman. “The promise, and limitations, of gossip
protocols”. In: ACM SIGOPS Operating Systems Review
41.5 (Oct. 1, 2007), pp. 8-13. ISSN:: 0163-5980. DOIL: 10
1145/1317379.1317382. URL: https://doi.org/10.
1145/1317379.1317382 (visited on June 8, 2020).

David Breitgand, Gilad Kutiel, and Danny Raz. “Cost-

aware live migration of services in the cloud”. en. In: Pro-
ceedings of the 3rd Annual Haifa Experimental Systems Con-
ference on - SYSTOR °10. Haifa, Israel: ACM Press, 2010,

78

http://www.computer.org/portal/site/computer/index.jsp?pageID=computer_level1&path=computer/homepage/Dec07&file=feature.xml&xsl=article.xsl
http://www.computer.org/portal/site/computer/index.jsp?pageID=computer_level1&path=computer/homepage/Dec07&file=feature.xml&xsl=article.xsl
http://www.computer.org/portal/site/computer/index.jsp?pageID=computer_level1&path=computer/homepage/Dec07&file=feature.xml&xsl=article.xsl
http://www.computer.org/portal/site/computer/index.jsp?pageID=computer_level1&path=computer/homepage/Dec07&file=feature.xml&xsl=article.xsl
http://cloudscaling.com/blog/cloud-computing/the-history-of-pets-vs-cattle/
http://cloudscaling.com/blog/cloud-computing/the-history-of-pets-vs-cattle/
http://cloudscaling.com/blog/cloud-computing/the-history-of-pets-vs-cattle/
https://arxiv.org/abs/1210.3368
http://arxiv.org/abs/1210.3368
https://cds.cern.ch/record/1695401
https://doi.org/10.1145/1317379.1317382
https://doi.org/10.1145/1317379.1317382
https://doi.org/10.1145/1317379.1317382
https://doi.org/10.1145/1317379.1317382

[BPV09]

[Bre00]

[Brel2a]

[Brel12b]

[BT11]

p. 1. ISBN: 978-1-60558-908-4. DOI: 10.1145/1815695.
1815709, URL: http://portal.acm.org/citation!
cfm?doid=1815695.1815709 (visited on June 4, 2020).

Rajkumar Buyya, Suraj Pandey, and Christian Vecchiola.
“Cloudbus Toolkit for Market-Oriented Cloud Comput-
ing”. en. In: Cloud Computing. Ed. by Martin Gilje Jaatun,
Gansen Zhao, and Chunming Rong. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2009,
pp- 24-44. ISBN: 978-3-642-10665-1. DOI:10.1007/978-
3-642-10665-1_4.

Eric A. Brewer. “Towards robust distributed systems”.
ACM Symposium on Principles of Distributed Com-
puting (PODC). Portland, Oregon, USA, July 16, 2000.
URL: https://doi.org/10.1145/343477 . 343502
(visited on June 8, 2020).

Eric Brewer. “CAP twelve years later: How the "rules"
have changed”. In: Computer 45.2 (Feb. 2012). Conference
Name: Computer, pp. 23-29. ISSN: 1558-0814. DOI: 10.
1109/MC.2012.37.

Eric Brewer. “Pushing the CAP: Strategies for Consis-
tency and Availability”. In: Computer 45.2 (Feb. 1, 2012),
pp- 23-29. ISSN: 0018-9162. DOI:'10.1109/MC.2012. 37.
URL: https://doi.org/10.1109/MC.2012.37 (visited
on June 8, 2020).

David Bermbach and Stefan Tai. “Eventual consistency:
How soon is eventual? An evaluation of Amazon S3’s con-
sistency behavior”. In: Proceedings of the 6th Workshop on
Middleware for Service Oriented Computing. MW4SOC
’11. Lisbon, Portugal: Association for Computing Ma-
chinery, Dec. 12, 2011, pp. 1-6. ISBN: 978-1-4503-1067-
3. DOI: 10.1145/2093185 .2093186. URL: https://
doi.org/10.1145/2093185.2093186) (visited on June 8,
2020).

79

https://doi.org/10.1145/1815695.1815709
https://doi.org/10.1145/1815695.1815709
http://portal.acm.org/citation.cfm?doid=1815695.1815709
http://portal.acm.org/citation.cfm?doid=1815695.1815709
https://doi.org/10.1007/978-3-642-10665-1_4
https://doi.org/10.1007/978-3-642-10665-1_4
https://doi.org/10.1145/343477.343502
https://doi.org/10.1109/MC.2012.37
https://doi.org/10.1109/MC.2012.37
https://doi.org/10.1109/MC.2012.37
https://doi.org/10.1109/MC.2012.37
https://doi.org/10.1145/2093185.2093186
https://doi.org/10.1145/2093185.2093186
https://doi.org/10.1145/2093185.2093186

[Bur06]

[Burl4]

[Byel7]

[BYVO08]

[Cha+06]

[Che+09]

Mike Burrows. “The Chubby lock service for loosely-
coupled distributed systems”. In: 7th USENIX Symposium
on Operating Systems Design and Implementation (OSDI).
2006.

Sebastian Burckhardt. Principles of Eventual Consistency.
Principles of Eventual Consistency. Vol. 1. Foundations
and Trends() in Programming Languages. Now Publish-
ers, Oct. 2014. 1-150. URL: https://www.microsoft.
com/en-us/research/publication/principles-of-
eventual-consistency/.

Charles C. Byers. “Architectural Imperatives for Fog
Computing: Use Cases, Requirements, and Architec-
tural Techniques for Fog-Enabled IoT Networks”. In:
IEEE Communications Magazine 55.8 (Aug. 2017). Confer-
ence Name: IEEE Communications Magazine, pp. 14-20.
ISSN: 1558-1896. DOI:10.1109/MCOM. 2017 . 1600885,

Rajkumar Buyya, Chee Shin Yeo, and Srikumar Venu-
gopal. “Market-Oriented Cloud Computing: Vision,
Hype, and Reality for Delivering IT Services as Comput-
ing Utilities”. In: 2008 10th IEEE International Conference
on High Performance Computing and Communications.
Sept. 2008, pp. 5-13. DOI: 10. 1109/HPCC . 2008 . 172,

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.
Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chan-
dra, Andrew Fikes, and Robert E. Gruber. “Bigtable: A
Distributed Storage System for Structured Data”. In: 7th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 2006, pp. 205-218.

Betty H. C. Cheng, Rogério de Lemos, Holger Giese,
Paola Inverardi, Jeff Magee, Jesper Andersson, Basil
Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Gio-
vanna Di Marzo Serugendo, Schahram Dustdar, An-
thony Finkelstein, Cristina Gacek, Kurt Geihs, Vincenzo
Grassi, Gabor Karsai, Holger M. Kienle, Jeff Kramer,
Marin Litoiu, Sam Malek, Raffaela Mirandola, Hausi
A. Miiller, Sooyong Park, Mary Shaw, Matthias Tichy,

80

https://www.microsoft.com/en-us/research/publication/principles-of-eventual-consistency/
https://www.microsoft.com/en-us/research/publication/principles-of-eventual-consistency/
https://www.microsoft.com/en-us/research/publication/principles-of-eventual-consistency/
https://doi.org/10.1109/MCOM.2017.1600885
https://doi.org/10.1109/HPCC.2008.172

[Chi+12]

[Chi+13]

[Cis18]

[C]C19]

[CLC13]

Massimo Tivoli, Danny Weyns, and Jon Whittle. “Soft-
ware Engineering for Self-Adaptive Systems: A Research
Roadmap”. In: Software Engineering for Self-Adaptive Sys-
tems. Ed. by Betty H. C. Cheng, Rogério de Lemos, Hol-
ger Giese, Paola Inverardi, and Jeff Magee. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2009,
pp. 1-26. ISBN: 978-3-642-02161-9. DOI: 10 1007/978
3-642-02161-9_1. URL: https://doi.org/10.1007/
978-3-642-02161-9_1 (visited on June 9, 2020).

Houssem-Eddine Chihoub, Shadi Ibrahim, Gabriel An-
toniu, and Maria S. Pérez. “Harmony: Towards Auto-
mated Self-Adaptive Consistency in Cloud Storage”. In:
2012 IEEE International Conference on Cluster Computing.
2012 IEEE International Conference on Cluster Com-
puting. ISSN: 2168-9253. Sept. 2012, pp. 293-301. DOL
10.1109/CLUSTER.2012.56.

Vinay K. Chippa, Srimat T. Chakradhar, Kaushik Roy,
and Anand Raghunathan. “Analysis and characterization
of inherent application resilience for approximate com-
puting”. In: Proceedings of the 50th Annual Design Automa-
tion Conference. DAC *13. Austin, Texas: Association for
Computing Machinery, May 29, 2013, pp. 1-9. ISBN: 978-
1-4503-2071-9. DOI:110.1145/2463209.2488873. URL:
https://doi.org/10.1145/2463209 . 2488873 (visited
on June 8, 2020).

Cisco Systems Inc. “Cisco Annual Internet Report
(2018-2023) White Paper”. Visited 14 February 2020.
2018. URL: https : //www . cisco.com/c/en/us/
solutions/collateral/executive - perspectives/
annual - internet - report / white - paper - cl1l -
741490 .html.

Ericsson Mobility Report November 2019. en. Tech. rep.
EMR-November-2019. Ericsson AB, Nov. 2019.

Jui-Hao Chiang, Han-Lin Li, and Tzi-cker Chiueh.
“Working Set-based Physical Memory Ballooning”. In:

81

https://doi.org/10.1007/978-3-642-02161-9_1
https://doi.org/10.1007/978-3-642-02161-9_1
https://doi.org/10.1007/978-3-642-02161-9_1
https://doi.org/10.1007/978-3-642-02161-9_1
https://doi.org/10.1109/CLUSTER.2012.56
https://doi.org/10.1145/2463209.2488873
https://doi.org/10.1145/2463209.2488873
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

[CMDé62]

[Com18]

[CP17]

[CSK02]

[CZS17]

10th International Conference on Autonomic Comput-
ing {ICAC} 13). 2013, pp. 95-99. ISBN: 978-1-931971-
02-7. URL: https://www.usenix . org/conference/
icac13/technical-sessions/presentation/chiang
(visited on June 22, 2020).

Fernando]J. Corbat6, Marjorie Merwin-Daggett, and
Robert C. Daley. “An experimental time-sharing sys-
tem”. In: Proceedings of the May 1-3, 1962, spring joint
computer conference. AIEE-IRE *62 (Spring). San Fran-
cisco, California: Association for Computing Machinery,
May 1962, pp. 335-344. ISBN: 978-1-4503-7875-8. DOI:
10.1145/1460833.1460871. URL: https://doi.org/
10.1145/1460833.1460871 (visited on May 17, 2020).

CNCEF Technical Oversight Committee. CNCF Cloud
Native Definition v1.0. en. Library Catalog: github.com.
June 2018. URL: https://github. com/cncf /toc/
blob/master/DEFINITION.md (visited on May 20, 2020).

Emiliano Casalicchio and Vanessa Perciballi. “Measur-
ing Docker Performance: What a Mess!!!” In: Proceed-
ings of the 8th ACM /SPEC on International Conference
on Performance Engineering Companion. ICPE *17 Com-
panion. L'Aquila, Italy: Association for Comput-
ing Machinery, Apr. 18, 2017, pp. 11-16. ISBN: 978-1-
4503-4899-7. DOI: 10.1145/3053600 . 3053605. URL:
https://doi.org/10.1145/3053600.3053605 (visited
on May 26, 2020).

Duk-Ho Chang, Jin Hyun Son, and Myoung Ho Kim.
“Critical path identification in the context of a work-
flow”. In: Information and Software Technology 44.7
(May 15, 2002), pp. 405-417. ISSN: 0950-5849. DOI:
10.1016 /50950 - 5849(02) 00025 - 3. URL: http: //
www . sciencedirect . com/ science /article /pii/
S0950584902000253 (visited on June 8, 2020).

Songging Chen, Tao Zhang, and Weisong Shi. “Fog Com-
puting”. In: IEEE Internet Computing 21.2 (Mar. 2017).

82

https://www.usenix.org/conference/icac13/technical-sessions/presentation/chiang
https://www.usenix.org/conference/icac13/technical-sessions/presentation/chiang
https://doi.org/10.1145/1460833.1460871
https://doi.org/10.1145/1460833.1460871
https://doi.org/10.1145/1460833.1460871
https://github.com/cncf/toc/blob/master/DEFINITION.md
https://github.com/cncf/toc/blob/master/DEFINITION.md
https://doi.org/10.1145/3053600.3053605
https://doi.org/10.1145/3053600.3053605
https://doi.org/10.1016/S0950-5849(02)00025-3
http://www.sciencedirect.com/science/article/pii/S0950584902000253
http://www.sciencedirect.com/science/article/pii/S0950584902000253
http://www.sciencedirect.com/science/article/pii/S0950584902000253

[Dem-+87]

[DGOS]

[DR97]

[Dre08]

[ES18]

Conference Name: IEEE Internet Computing, pp. 4-6.
ISSN: 1941-0131. DOI:110.1109/MIC.2017.39.

Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John
Larson, Scott Shenker, Howard Sturgis, Dan Swinehart,
and Doug Terry. “Epidemic algorithms for replicated
database maintenance”. In: Proceedings of the sixth annual
ACM Symposium on Principles of distributed computing.
PODC ’87. Vancouver, British Columbia, Canada: Asso-
ciation for Computing Machinery, Dec. 1, 1987, pp. 1-12.
ISBN: 978-0-89791-239-6. DOI:/10.1145/41840.41841.
URL: https://doi.org/10.1145/41840.41841 (vis-
ited on June 8, 2020).

Jeffrey Dean and Sanjay Ghemawat. “MapReduce: sim-
plified data processing on large clusters”. en. In: Commu-
nications of the ACM 51.1 (Jan. 2008), pp. 107-113. ISSN:
0001-0782, 1557-7317.DOI:10.1145/1327452.1327492.
URL: https://dl.acm.org/doi/10.1145/1327452|
1327492, (visited on June 10, 2020).

Pedro C. Diniz and Martin C. Rinard. “Dynamic feed-
back: an effective technique for adaptive computing”. In:
Proceedings of the ACM SIGPLAN 1997 conference on Pro-
gramming language design and implementation. PLDI *97.
Las Vegas, Nevada, USA: Association for Computing
Machinery, May 1, 1997, pp. 71-84. ISBN: 978-0-89791-
907-4. DOI: 10. 1145 /258915 . 258923, URL: https :
//doi.org/10.1145/258915.258923 (visited on June 9,
2020).

Ulrich Drepper. “The Cost of Virtualization”. In: Quene
6.1 (Jan. 2008), pp. 28-35. ISSN: 1542-7730. DOI: |10.
1145/1348583.1348591. URL: https://doi.org/10.
1145/1348583. 1348591 (visited on May 18, 2020).

Melike Erol-Kantarci and Sukhmani Sukhmani. “Caching
and Computing at the Edge for Mobile Augmented Re-
ality and Virtual Reality (AR/VR) in 5G”. en. In: Ad
Hoc Networks. Ed. by Yifeng Zhou and Thomas Kunz.
Lecture Notes of the Institute for Computer Sciences,

83

https://doi.org/10.1109/MIC.2017.39
https://doi.org/10.1145/41840.41841
https://doi.org/10.1145/41840.41841
https://doi.org/10.1145/1327452.1327492
https://dl.acm.org/doi/10.1145/1327452.1327492
https://dl.acm.org/doi/10.1145/1327452.1327492
https://doi.org/10.1145/258915.258923
https://doi.org/10.1145/258915.258923
https://doi.org/10.1145/258915.258923
https://doi.org/10.1145/1348583.1348591
https://doi.org/10.1145/1348583.1348591
https://doi.org/10.1145/1348583.1348591
https://doi.org/10.1145/1348583.1348591

[Fer+12]

[FH07]

[FHO09]

[Flo+18]

Social Informatics and Telecommunications Engineering.
Cham: Springer International Publishing, 2018, pp. 169-
177. ISBN: 978-3-319-74439-1. DOI: 10 . 1007 /978 -3 -
319-74439-1_15.

Ana Juan Ferrer, Francisco Hernandez, Johan Tordsson,
Erik Elmroth, Ahmed Ali-Eldin, Csilla Zsigri, Ratil Sir-
vent, Jordi Guitart, Rosa M. Badia, Karim Djemame,
Wolfgang Ziegler, Theo Dimitrakos, Sryjith K. Nair,
George Kousiouris, Kleopatra Konstanteli, Theodora Var-
varigou, Benoit Hudzia, Alexander Kipp, Stefan Wesner,
Marcelo Corrales, Nikolaus Forgd, Tabassum Sharif, and
Craig Sheridan. “OPTIMIS: A holistic approach to cloud
service provisioning”. en. In: Future Generation Computer
Systems 28.1 (Jan. 2012), pp. 66-77. ISSN: 0167-739X.
DOI:10.1016/j . future.2011.05.022. URL: http:
//www .sciencedirect.com/science/article/pii/
S0167739X1100104X (visited on June 2, 2020).

Daniel M. Fleder and Kartik Hosanagar. “Recommender
systems and their impact on sales diversity”. In: Proceed-
ings of the 8th ACM conference on Electronic commerce. EC
’07. San Diego, California, USA: Association for Com-
puting Machinery, June 11, 2007, pp. 192-199. ISBN:
978-1-59593-653-0. DOI: 10 . 1145/ 1250910 . 1250939.
URL: https://doi.org/10.1145/1250910.1250939
(visited on May 8, 2020).

Daniel Fleder and Kartik Hosanagar. “Blockbuster Cul-
ture’s Next Rise or Fall: The Impact of Recommender
Systems on Sales Diversity”. In: Management Science 55.5
(Mar. 6, 2009). Publisher: INFORMS, pp. 697-712. ISSN:
0025-1909. DOI: 10 . 1287 /mnsc . 1080 . 0974. URL:
https://pubsonline . informs . org/doi/abs /10|
1287/mnsc.1080.0974 (visited on May 8, 2020).

Luciano Floridi, Josh Cowls, Monica Beltrametti, Raja
Chatila, Patrice Chazerand, Virginia Dignum, Christoph
Luetge, Robert Madelin, Ugo Pagallo, Francesca Rosst,
Burkhard Schafer, Peggy Valcke, and Effy Vayena.

84

https://doi.org/10.1007/978-3-319-74439-1_15
https://doi.org/10.1007/978-3-319-74439-1_15
https://doi.org/10.1016/j.future.2011.05.022
http://www.sciencedirect.com/science/article/pii/S0167739X1100104X
http://www.sciencedirect.com/science/article/pii/S0167739X1100104X
http://www.sciencedirect.com/science/article/pii/S0167739X1100104X
https://doi.org/10.1145/1250910.1250939
https://doi.org/10.1145/1250910.1250939
https://doi.org/10.1287/mnsc.1080.0974
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.1080.0974
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.1080.0974

[Fos+08]

[Fos02]

[Fos03]

[Fra+12]

[Fral2]

[GAO2]

“Al4People—An Ethical Framework for a Good Al So-
ciety: Opportunities, Risks, Principles, and Recommen-
dations”. en. In: Minds and Machines 28.4 (Dec. 2018),
pp- 689-707. ISSN: 1572-8641. DOI:|10.1007/s11023-
018-9482- 5. URL: https://doi.org/10. 1007/
$11023-018-9482-5 (visited on June 11, 2020).

Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu.
“Cloud Computing and Grid Computing 360-Degree
Compared”. In: 2008 Grid Computing Environments
Workshop. ISSN: 2152-1093. Nov. 2008, pp. 1-10. DOLI:
10.1109/GCE.2008.4738445.

Ian Foster. “What is the grid? a three point checklist”. In:
GRID today 1.6 (2002), pp. 32-36.

Ian Foster. “THE GRID: Computing without Bounds”.
In: Scientific American 288.4 (2003). Publisher: Scientific
American, a division of Nature America, Inc., pp. 78-
85. ISSN: 0036-8733. URL: https://www. jstor.org/
stable/26060247 (visited on May 15, 2020).

Eitan Frachtenberg, Dan Lee, Marco Magarelli, Veeren-
dra Mulay, and Jay Park. “Thermal design in the open
compute datacenter”. In: 13th InterSociety Conference on
Thermal and Thermomechanical Phenomena in Electronic
Systems. ISSN: 1087-9870. May 2012, pp. 530-538. DOL:
10.1109/ITHERM.2012.6231476.

E. Frachtenberg. “Holistic Datacenter Design in the
Open Compute Project”. In: Computer 45.07 (July 2012),
pp- 83-85. ISSN: 1558-0814. DOI: 10.1109/MC.2012.
235.

Sanny Gustavsson and Sten F. Andler. “Self-stabilization
and eventual consistency in replicated real-time
databases”. In: Proceedings of the first workshop on
Self-healing systems. WOSS °02. Charleston, South
Carolina: Association for Computing Machinery,
Nov. 18, 2002, pp. 105-107. ISBN: 978-1-58113-609-
8. DOI: 10 . 1145 / 582128 . 582150. URL: https :

85

https://doi.org/10.1007/s11023-018-9482-5
https://doi.org/10.1007/s11023-018-9482-5
https://doi.org/10.1007/s11023-018-9482-5
https://doi.org/10.1007/s11023-018-9482-5
https://doi.org/10.1109/GCE.2008.4738445
https://www.jstor.org/stable/26060247
https://www.jstor.org/stable/26060247
https://doi.org/10.1109/ITHERM.2012.6231476
https://doi.org/10.1109/MC.2012.235
https://doi.org/10.1109/MC.2012.235
https://doi.org/10.1145/582128.582150
https://doi.org/10.1145/582128.582150
https://doi.org/10.1145/582128.582150
https://doi.org/10.1145/582128.582150

[Gar99]

[GGT10]

[Gog+12]

[Gog+13]

[Goi+15]

//doi.org/10.1145/582128.582150 (Visited on June 8§,
2020).

Simson Garfinkel. Architects of the Information Society:
35 Years of the Laboratory for Computer Science at MIT.
en. Google-Books-ID: Fc7dkLGLKrcC. MIT Press, 1999.
ISBN: 978-0-262-07196-3.

Inigo Goiri, Jordi Guitart, and Jordi Torres. “Character-
izing Cloud Federation for Enhancing Providers’ Profit”.
In: 2010 IEEE 3rd International Conference on Cloud Com-
puting. ISSN: 2159-6190. July 2010, pp. 123-130. DOL:
10.1109/CLOUD.2010.32.

Spyridon V. Gogouvitis, George Kousiouris, George
Vafiadis, Elliot K. Kolodner, and Dimosthenis Kyriazis.
“OPTIMIS and VISION Cloud: How to Manage Data
in Clouds”. en. In: Euro-Par 2011: Parallel Processing
Workshops. Ed. by Michael Alexander, Pasqua D’Ambra,
Adam Belloum, George Bosilca, Mario Cannataro, Marco
Danelutto, Beniamino Di Martino, Michael Gerndt,
Emmanuel Jeannot, Raymond Namyst, Jean Roman,
Stephen L. Scott, Jesper Larsson Traff, Geoffroy Vallée,
and Josef Weidendorfer. Lecture Notes in Computer Sci-
ence. Berlin, Heidelberg: Springer, 2012, pp. 35-44. ISBN:
978-3-642-29737-3. DOI: 10.1007/978-3-642-29737 -
3_5.

S. V. Gogouvitis, M. C. Jaeger, H. Kolodner, D. Kyriazis,
F. Longo, M. Lorenz, A. Messina, M. Montagnuolo, E.
Salant, and F. Tusa. “Vision Cloud: A Cloud Storage Solu-
tion Supporting Modern Media Production”. In: SMPTE
Motion Imaging Journal 122.7 (Oct. 2013). Conference
Name: SMPTE Motion Imaging Journal, pp. 30-37.ISSN:
2160-2492. DOL:[10. 5594/ § 18341.

Inigo Goiri, Ricardo Bianchini, Santosh Nagarakatte, and
Thu D. Nguyen. “ApproxHadoop: Bringing Approxima-
tions to MapReduce Frameworks”. In: ACM SIGPLAN
Notices 50.4 (Mar. 14, 2015), pp. 383-397. ISSN: 0362-
1340. DOI: 10.1145/2775054 . 2694351. URL: https:

86

https://doi.org/10.1145/582128.582150
https://doi.org/10.1145/582128.582150
https://doi.org/10.1145/582128.582150
https://doi.org/10.1109/CLOUD.2010.32
https://doi.org/10.1007/978-3-642-29737-3_5
https://doi.org/10.1007/978-3-642-29737-3_5
https://doi.org/10.5594/j18341
https://doi.org/10.1145/2775054.2694351
https://doi.org/10.1145/2775054.2694351
https://doi.org/10.1145/2775054.2694351
https://doi.org/10.1145/2775054.2694351

[Goo15]

[Gor+12]

[HK19]

[HO13]

[HIR$3]

[Hua+13]

//doi .org/10.1145/2775054 . 2694351 (visited on
Apr. 27, 2020).

Tom Goodwin. The Battle Is For The Customer Interface.
Mar. 2015. URL: https://techcrunch. com/2015/
03/03/1in-the - age-of -disintermediation- the -
battle-is-all-for-the-customer-interface/|(vis-
ited on June 15, 2020).

Abel Gordon, Nadav Amit, Nadav Har’El, Muli Ben-
Yehuda, Alex Landau, Assaf Schuster, and Dan Tsafrir.
“ELI: bare-metal performance for I/O virtualization”.
In: ACM SIGPLAN Notices 47.4 (Mar. 2012), pp. 411-
422.1SSN: 0362-1340. DOI:10.1145/2248487 .2151020.
URL: https://doi.org/10.1145/2248487.2151020
(visited on May 18, 2020).

Michael Haenlein and Andreas Kaplan. “A Brief History
of Artificial Intelligence: On the Past, Present, and Fu-
ture of Artificial Intelligence”. en. In: California Manage-
ment Review 61.4 (Aug. 2019). Publisher: SAGE Publica-
tions Inc, pp. 5-14. ISSN: 0008-1256. DOI: |10 . 1177/
0008125619864925. URL: https : / /doi . org/ 10 |
1177/0008125619864928 (visited on June 11, 2020).

Jie Han and Michael Orshansky. “Approximate comput-
ing: An emerging paradigm for energy-efficient design”.
In: 2013 18th IEEE European Test Symposium (ETS). 2013
18th IEEE European Test Symposium (ETS). ISSN: 1558-
1780. May 2013, pp. 1-6. DOI: 10. 1109 /ETS . 2013,
6569370.

Theo Haerder and Andreas Reuter. “Principles of
transaction-oriented database recovery”. In: ACM Com-
puting Surveys 15.4 (Dec. 2, 1983), pp. 287-317. ISSN:
0360-0300. DOI: |10.1145/289 .291. URL: https: //
doi.org/10.1145/289.291 (visited on June 8, 2020).

Ye Huang, Nik Bessis, Peter Norrington, Pierre Kuonen,
and Beat Hirsbrunner. “Exploring decentralized dynamic
scheduling for grids and clouds using the community-

87

https://doi.org/10.1145/2775054.2694351
https://doi.org/10.1145/2775054.2694351
https://doi.org/10.1145/2775054.2694351
https://techcrunch.com/2015/03/03/in-the-age-of-disintermediation-the-battle-is-all-for-the-customer-interface/
https://techcrunch.com/2015/03/03/in-the-age-of-disintermediation-the-battle-is-all-for-the-customer-interface/
https://techcrunch.com/2015/03/03/in-the-age-of-disintermediation-the-battle-is-all-for-the-customer-interface/
https://doi.org/10.1145/2248487.2151020
https://doi.org/10.1145/2248487.2151020
https://doi.org/10.1177/0008125619864925
https://doi.org/10.1177/0008125619864925
https://doi.org/10.1177/0008125619864925
https://doi.org/10.1177/0008125619864925
https://doi.org/10.1109/ETS.2013.6569370
https://doi.org/10.1109/ETS.2013.6569370
https://doi.org/10.1145/289.291
https://doi.org/10.1145/289.291
https://doi.org/10.1145/289.291

[los+11]

[Lrw+19]

[Ism+15]

[IYE11]

[JHBO1]

aware scheduling algorithm”. In: Future Generation Com-
puter Systems. Including Special section: AIRCC-NetCoM
2009 and Special section: Clouds and Service-Oriented
Architectures 29.1 (Jan. 1, 2013), pp. 402-415. ISSN: 0167-
739X. DOI: 10.1016/j . future.2011.05.006. URL:
http://www.sciencedirect.com/science/article/
pii/S0167739X11000872 (visited on June 22, 2020).

Alexandru losup, Simon Ostermann, M. Nezih Yigit-
basi, Radu Prodan, Thomas Fahringer, and Dick Epema.
“Performance Analysis of Cloud Computing Services for
Many-Tasks Scientific Computing”. In: [EEE Transactions
on Parallel and Distributed Systems 22.6 (June 2011). Con-
ference Name: IEEE Transactions on Parallel and Dis-
tributed Systems, pp. 931-945. ISSN: 1558-2183. DOL:
10.1109/TPDS.2011.66.

David Irwin, Prashant Shenoy, Pradeep Ambati, Prateek
Sharma, Supreeth Shastri, and Ahmed Ali-Eldin. “The
Price Is (Not) Right: Reflections on Pricing for Transient
Cloud Servers”. In: 2019 28th International Conference on
Computer Communication and Networks (ICCCN). ISSN:
2637-9430. July 2019, pp. 1-9. DOI: 10. 1109 /ICCCN .
2019.8846933.

Marcelo Alexandre da Cruz Ismael, Cesar Alberto da
Silva, Gabriel Costa Silva, and Reginaldo Ré. “An Empir-
ical Study for Evaluating the Performance of jclouds”. In:
2015 IEEE 7th International Conference on Cloud Com-
puting Technology and Science (ClondCom). Nov. 2015,
pp- 115-122. DOI: 10.1109/CloudCom.2015.61.

Alexandru Iosup, Nezih Yigitbasi, and Dick Epema. “On
the Performance Variability of Production Cloud Ser-
vices”. In: 2011 11th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing. May 2011,
pp. 104-113. DOI:[10. 1109/CCGrid. 2011 . 22,

K. Jenkins, K. Hopkinson, and K. Birman. “A gossip
protocol for subgroup multicast™. In: Proceedings 21st In-
ternational Conference on Distributed Computing Systems

88

https://doi.org/10.1016/j.future.2011.05.006
http://www.sciencedirect.com/science/article/pii/S0167739X11000872
http://www.sciencedirect.com/science/article/pii/S0167739X11000872
https://doi.org/10.1109/TPDS.2011.66
https://doi.org/10.1109/ICCCN.2019.8846933
https://doi.org/10.1109/ICCCN.2019.8846933
https://doi.org/10.1109/CloudCom.2015.61
https://doi.org/10.1109/CCGrid.2011.22

[Jin409]

[Joy15]

[JP13]

[KepO5]

[Kha-+19]

Workshops. Proceedings 21st International Conference on
Distributed Computing Systems Workshops. Apr. 2001,
pp- 25-30. DOI:110.1109/CDCS . 2001 .918682.

Hai Jin, Li Deng, Song Wu, Xuanhua Shi, and Xiaodong
Pan. “Live virtual machine migration with adaptive, mem-
ory compression”. In: 2009 IEEE International Confer-
ence on Cluster Computing and Workshops. ISSN: 2168-
9253. Aug. 2009, pp. 1-10. DOI:110.1109/CLUSTR. 2009.
5289170.

Ann Mary Joy. “Performance comparison between Linux
containers and virtual machines”. In: 2015 International
Conference on Advances in Computer Engineering and
Applications. Mar. 2015, pp. 342-346. DOI: 10. 1109/
ICACEA.2015.7164727.

Raj Jain and Subharthi Paul. “Network virtualization
and software defined networking for cloud computing: a
survey”. In: IEEE Communications Magazine 51.11 (Nov.
2013). Conference Name: IEEE Communications Maga-
zine, pp. 24-31. ISSN: 1558-1896. DOI: 10.1109/MCOM,
2013.6658648.

Jeffrey O. Kephart. “Research challenges of autonomic
computing”. In: Proceedings of the 27th international con-
ference on Software engineering. ICSE °05. St. Louis, MO,
USA: Association for Computing Machinery, May 15,
2005, pp. 15-22. ISBN: 978-1-58113-963-1. DOI: 10 .
1145/1062455.1062464. URL: https://doi.org/10.
1145/1062455.1062464 (visited on June 9, 2020).

Wazir Zada Khan, Ejaz Ahmed, Saqib Hakak, Ibrar
Yaqoob, and Arif Ahmed. “Edge computing: A sur-
vey”. en. In: Future Generation Computer Systems 97
(Aug. 2019), pp. 219-235. ISSN: 0167-739X. DOIL: [10}
1016 / j . future . 2019 . 02 . 050, URL: http : / /
www . sciencedirect . com/ science /article /pii/
S0167739X18319903 (visited on June 3, 2020).

89

https://doi.org/10.1109/CDCS.2001.918682
https://doi.org/10.1109/CLUSTR.2009.5289170
https://doi.org/10.1109/CLUSTR.2009.5289170
https://doi.org/10.1109/ICACEA.2015.7164727
https://doi.org/10.1109/ICACEA.2015.7164727
https://doi.org/10.1109/MCOM.2013.6658648
https://doi.org/10.1109/MCOM.2013.6658648
https://doi.org/10.1145/1062455.1062464
https://doi.org/10.1145/1062455.1062464
https://doi.org/10.1145/1062455.1062464
https://doi.org/10.1145/1062455.1062464
https://doi.org/10.1016/j.future.2019.02.050
https://doi.org/10.1016/j.future.2019.02.050
http://www.sciencedirect.com/science/article/pii/S0167739X18319903
http://www.sciencedirect.com/science/article/pii/S0167739X18319903
http://www.sciencedirect.com/science/article/pii/S0167739X18319903

[Kim+19]

[Kle+14a]

[Kle+14b]

[KMO07]

[KMZ15]

Dongmin Kim, Hanif Muhammad, Eunsam Kim,
Sumi Helal, and Choonhwa Lee. “TOSCA-Based and
Federation-Aware Cloud Orchestration for Kubernetes
Container Platform”. en. In: Applied Sciences 9.1 (Jan.
2019). Number: 1 Publisher: Multidisciplinary Digital
Publishing Institute, p. 191. DOI:|10.3390/app9010191.
URL: https://www.mdpi.com/2076-3417/9/1/191
(visited on June 2, 2020).

Cristian Klein, Martina Maggio, Karl-Erik Arzén, and
Francisco Hernandez-Rodriguez. “Brownout: building
more robust cloud applications”. In: Proceedings of the
36th International Conference on Software Engineering.
ICSE 2014. Hyderabad, India: Association for Comput-
ing Machinery, May 31, 2014, pp. 700-711. ISBN: 978-
1-4503-2756-5. DOI:|10.1145/2568225.2568227. URL:
https://doi.org/10.1145/2568225.2568227 (visited
on June 8, 2020).

Cristian Klein, Alessandro Vittorio Papadopoulos, Man-
fred Dellkrantz, Jonas Diirango, Martina Maggio, Karl-
Erik Arzén, Francisco Hernandez-Rodriguez, and Erik
Elmroth. “Improving Cloud Service Resilience Using
Brownout-Aware Load-Balancing”. In: 2014 IEEE 33rd
International Symposium on Reliable Distributed Systems.
2014 IEEE 33rd International Symposium on Reliable
Distributed Systems. ISSN: 1060-9857. Oct. 2014, pp. 31-
40. DOI:10.1109/SRDS.2014. 14.

Jeff Kramer and Jeff Magee. “Self-Managed Systems: an
Architectural Challenge”. In: Future of Software Engineer-
ing (FOSE °07). Future of Software Engineering (FOSE
°07). May 2007, pp. 259-268. DO 10. 1109/FOSE . 2007 |
19.

Kenji E. Kushida, Jonathan Murray, and John Zysman.
“Cloud Computing: From Scarcity to Abundance”. en.
In: Journal of Industry, Competition and Trade 15.1 (Mar.
2015), pp. 5-19. ISSN: 1573-7012. DOI: 10 . 1007 /

90

https://doi.org/10.3390/app9010191
https://www.mdpi.com/2076-3417/9/1/191
https://doi.org/10.1145/2568225.2568227
https://doi.org/10.1145/2568225.2568227
https://doi.org/10.1109/SRDS.2014.14
https://doi.org/10.1109/FOSE.2007.19
https://doi.org/10.1109/FOSE.2007.19
https://doi.org/10.1007/s10842-014-0188-y
https://doi.org/10.1007/s10842-014-0188-y
https://doi.org/10.1007/s10842-014-0188-y

[KQ17]

[Krz+18]

[KS15]

[KW14]

[LC16]

[Leel6]

s10842-014-0188-y. URL: https : //doi . org/ 10|
1007/s10842-014-0188-y (visited on May 20, 2020).

Nane Kratzke and Peter-Christian Quint. “Understand-
ing cloud-native applications after 10 years of cloud com-
puting - A systematic mapping study”. en. In: Journal
of Systems and Software 126 (Apr. 2017), pp. 1-16. ISSN:
0164-1212. DOI: 10.1016/j . jss.2017.01.001. URL:
http://www.sciencedirect.com/science/article/
pii/S0164121217300018 (visited on May 19, 2020).

Jakub Krzywda, Ahmed Ali-Eldin, Eddie Wadbro, Per-
Olov Ostberg, and Erik Elmroth. “ALPACA: Applica-
tion Performance Aware Server Power Capping”. In: 2018
IEEE International Conference on Autonomic Computing
(ICAC). ISSN: 2474-0756. Sept. 2018, pp. 41-50. DOI:
10.1109/ICAC.2018.00014.

Sowmya Karunakaran and Rangaraja P. Sundarraj. “Bid-
ding Strategies for Spot Instances in Cloud Computing
Markets”. In: IEEE Internet Computing 19.3 (May 2015).
Conference Name: IEEE Internet Computing, pp. 32-40.
ISSN: 1941-0131. DOI:10.1109/MIC.2014.87.

Ryan K.L. Ko and Mark A. Will. “Progger: An Efficient,
Tamper-Evident Kernel-Space Logger for Cloud Data
Provenance Tracking”. In: 2014 IEEE 7th International
Conference on Cloud Computing. ISSN: 2159-6190. June
2014, pp. 881-889. DOI:10.1109/CLOUD.2014. 121.

Philipp Leitner and Jiirgen Cito. “Patterns in the
Chaos—A Study of Performance Variation and Pre-
dictability in Public IaaS Clouds”. In: ACM Transactions
on Internet Technology 16.3 (Apr. 2016), 15:1-15:23. ISSN:
1533-5399. DOI: 10 . 1145/2885497. URL: https://
doi.org/10.1145/2885497 (visited on May 25, 2020).

Craig A. Lee. “Cloud Federation Management and Be-
yond: Requirements, Relevant Standards, and Gaps”. In:
IEEE Cloud Computing 3.1 (Jan. 2016). Conference Name:

91

https://doi.org/10.1007/s10842-014-0188-y
https://doi.org/10.1007/s10842-014-0188-y
https://doi.org/10.1007/s10842-014-0188-y
https://doi.org/10.1007/s10842-014-0188-y
https://doi.org/10.1007/s10842-014-0188-y
https://doi.org/10.1016/j.jss.2017.01.001
http://www.sciencedirect.com/science/article/pii/S0164121217300018
http://www.sciencedirect.com/science/article/pii/S0164121217300018
https://doi.org/10.1109/ICAC.2018.00014
https://doi.org/10.1109/MIC.2014.87
https://doi.org/10.1109/CLOUD.2014.121
https://doi.org/10.1145/2885497
https://doi.org/10.1145/2885497
https://doi.org/10.1145/2885497

[Lia+17]

[Llo+14]

[Lv+17]

[Man+18]

[MB17]

IEEE Cloud Computing, pp. 42-49. ISSN: 2325-6095.
DOI:10.1109/MCC.2016.15.

Xueping Liang, Sachin Shetty, Deepak Tosh, Charles
Kamhoua, Kevin Kwiat, and Laurent Njilla. “ProvChain:
A Blockchain-Based Data Provenance Architecture in
Cloud Environment with Enhanced Privacy and Avail-
ability”. In: 2017 17th IEEE /ACM International Sympo-
sium on Cluster, Cloud and Grid Computing (CCGRID).
May 2017, pp. 468-477. DOI:[10.1109/CCGRID . 2017 . 8.

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky,
and David G. Andersen. “Don’t Settle for Eventual Con-
sistency”. In: Quene 12.3 (Mar. 15, 2014), pp. 30-45. ISSN:
1542-7730. DOI: 10 . 1145 /2602649 . 2610533. URL.:
https://doi.org/10.1145/2602649.2610533 (visited
on June 8, 2020).

Xiao Lv, Fazhi He, Weiwei Cai, and Yuan Cheng. “A
string-wise CRDT algorithm for smart and large-scale
collaborative editing systems”. In: Advanced Engineering
Informatics 33 (Aug. 1, 2017), pp. 397-409. ISSN: 1474-
0346. DOI:|10.1016/j.aei.2016.10.005. URL: http:
//www .sciencedirect.com/science/article/pii/
S1474034616301811 (visited on June 8, 2020).

Johannes Manner, Martin Endref3, Tobias Heckel, and
Guido Wirtz. “Cold Start Influencing Factors in Function
as a Service”. In: 2018 IEEE JACM International Confer-
ence on Utility and Cloud Computing Companion (UCC
Companion). Dec. 2018, pp. 181-188. DOI: 10. 1109/
UCC-Companion.2018.00054.

Pavel Mach and Zdenek Becvar. “Mobile Edge Comput-
ing: A Survey on Architecture and Computation Offload-
ing”. In: IEEE Communications Surveys Tutorials 19.3
(2017). Conference Name: IEEE Communications Sur-
veys Tutorials, pp. 1628-1656. ISSN: 1553-877X. DOIL:
10.1109/COMST.2017.2682318.

92

https://doi.org/10.1109/MCC.2016.15
https://doi.org/10.1109/CCGRID.2017.8
https://doi.org/10.1145/2602649.2610533
https://doi.org/10.1145/2602649.2610533
https://doi.org/10.1016/j.aei.2016.10.005
http://www.sciencedirect.com/science/article/pii/S1474034616301811
http://www.sciencedirect.com/science/article/pii/S1474034616301811
http://www.sciencedirect.com/science/article/pii/S1474034616301811
https://doi.org/10.1109/UCC-Companion.2018.00054
https://doi.org/10.1109/UCC-Companion.2018.00054
https://doi.org/10.1109/COMST.2017.2682318

[McC+19]

[McK+-08]

[MD11]

[Mer+11]

[Mer14]

[MFO1]

Jonathan McChesney, Nan Wang, Ashish Tanwer, Eyal
de Lara, and Blesson Varghese. “DeFog: fog computing
benchmarks”. In: Proceedings of the 4th ACM/IEEE Sym-
posium on Edge Computing. SEC °19. Arlington, Vir-
ginia: Association for Computing Machinery, Nov. 2019,
pp- 47-58. ISBN: 978-1-4503-6733-2. DOI: 10 . 1145/
3318216.3363299. URL: https://doi.org/10.1145/
3318216.3363299 (visited on May 4, 2020).

Nick McKeown, Tom Anderson, Hari Balakrishnan,
Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott
Shenker, and Jonathan Turner. “OpenFlow: enabling in-
novation in campus networks”. In: ACM SIGCOMM Com-
puter Communication Review 38.2 (Mar. 2008), pp. 69-
74.ISSN: 0146-4833. DOI:10.1145/1355734 . 1355746.
URL: https://doi.org/10.1145/1355734 . 1355746
(visited on May 18, 2020).

Michele Mazzucco and Marlon Dumas. “Achieving Per-
formance and Availability Guarantees with Spot In-
stances”. In: 2011 IEEE International Conference on High
Performance Computing and Communications. Sept. 2011,
pp. 296-303. DOI:[10. 1109/HPCC . 2011 . 46.

Arif Merchant, Mustafa Uysal, Pradeep Padala, Xiaoyun
Zhu, Sharad Singhal, and Kang Shin. “Maestro: quality-
of-service in large disk arrays”. In: Proceedings of the 8th
ACM international conference on Autonomic computing.
ICAC ’11. Karlsruhe, Germany: Association for Com-
puting Machinery, June 14, 2011, pp. 245-254. ISBN:
978-1-4503-0607-2. DOI: |10 . 1145/1998582 . 1998638.
URL: https://doi.org/10.1145/1998582.1998638
(visited on June 9, 2020).

Dirk Merkel. “Docker: lightweight Linux containers for
consistent development and deployment”. In: Linux Jour-
nal 2014.239 (Mar. 2014), 2:2. ISSN: 1075-3583.

AW. Mu’alem and D.G. Feitelson. “Utilization, pre-
dictability, workloads, and user runtime estimates in

93

https://doi.org/10.1145/3318216.3363299
https://doi.org/10.1145/3318216.3363299
https://doi.org/10.1145/3318216.3363299
https://doi.org/10.1145/3318216.3363299
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1109/HPCC.2011.46
https://doi.org/10.1145/1998582.1998638
https://doi.org/10.1145/1998582.1998638

[MG11]

[Mit16]

[MLM11]

[Moh+19]

[Mou+18]

scheduling the IBM SP2 with backfilling”. In: IEEE Trans-
actions on Parallel and Distributed Systems 12.6 (June 2001).
Conference Name: IEEE Transactions on Parallel and Dis-
tributed Systems, pp. 529-543. ISSN: 1558-2183. DOI:
10.1109/71.932708.

Peter Mell and Tim Grance. The NIST Definition of Clond
Computing. en. Tech. rep. NIST Special Publication (SP)
800-145. National Institute of Standards and Technol-
ogy, Sept. 2011. DOI: https: //doi . org/10.6028/
NIST.SP.800-145. URL: https://csrc.nist.gov/
publications/detail/sp/800-145/final (visited on
May 15, 2020).

Sparsh Mittal. “A Survey of Techniques for Approximate
Computing”. In: ACM Computing Surveys 48.4 (Mar. 18,
2016), 62:1-62:33. ISSN: 0360-0300. DOI: 10 . 1145/
2893356. URL: https://doi.org/10.1145/2893356
(visited on June 8, 2020).

Dejan Milojicic, Ignacio M. Llorente, and Ruben S. Mon-
tero. “OpenNebula: A Cloud Management Tool”. In:
IEEE Internet Computing 15.2 (Mar. 2011). Conference
Name: IEEE Internet Computing, pp. 11-14. ISSN: 1941-
0131. DOI:110.1109/MIC.2011.44.

Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna
Edupuganti, Naren Nayak, and Vadim Sukhomlinov.
“Agile Cold Starts for Scalable Serverless”. In: 11th
USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 19). Renton, WA: USENIX Association, July
2019. URL: https://www.usenix.org/conference/
hotcloud19/presentation/mohan.

Carla Mouradian, Diala Naboulsi, Sami Yangui, Roch H.
Glitho, Monique J. Morrow, and Paul A. Polakos. “A
Comprehensive Survey on Fog Computing: State-of-the-
Art and Research Challenges”. In: IEEE Communications
Surveys Tutorials 20.1 (2018). Conference Name: IEEE
Communications Surveys Tutorials, pp. 416-464. ISSN:
1553-877X. DOI:110.1109/C0OMST.2017.2771153.

94

https://doi.org/10.1109/71.932708
https://doi.org/https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/https://doi.org/10.6028/NIST.SP.800-145
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://doi.org/10.1145/2893356
https://doi.org/10.1145/2893356
https://doi.org/10.1145/2893356
https://doi.org/10.1109/MIC.2011.44
https://www.usenix.org/conference/hotcloud19/presentation/mohan
https://www.usenix.org/conference/hotcloud19/presentation/mohan
https://doi.org/10.1109/COMST.2017.2771153

[MS70]

[Nah03]

[Nel09]

[Ngu+19]

[Nur+09]

[Osa+17]

R. A. Meyer and L. H. Seawright. “A virtual machine
time-sharing system”. In: IBM Systems Journal 9.3 (1970).
Conference Name: IBM Systems Journal, pp. 199-218.
ISSN: 0018-8670. DOI:110.1147/s3.93.0199.

Fiona Nah. “A Study on Tolerable Waiting Time: How
Long Are Web Users Willing to Wait?” In: vol. 23. Jan.
2003, p. 285. DOI:10.1080/01449290410001669914.

Michael Nelson. “Virtual machine migration”.
US7484208B1. Library Catalog: Google Patents.
Jan. 2009. URL: https : / / patents . google . com /
patent/US7484208B1/en (visited on May 18, 2020).

Chanh Nguyen, Amardeep Mehta, Cristian Klein, and
Erik Elmroth. “Why cloud applications are not ready
for the edge (yet)”. In: Proceedings of the 4th ACM /IEEE
Symposium on Edge Computing. SEC *19. Arlington, Vir-
ginia: Association for Computing Machinery, Nov. 2019,
pp- 250-263. ISBN: 978-1-4503-6733-2. DOI: 10.1145/
3318216.3363298. URL: https://doi.org/10.1145/
3318216 .3363298 (visited on May 8, 2020).

Daniel Nurmi, Rich Wolski, Chris Grzegorczyk,
Graziano Obertelli, Sunil Soman, Lamia Youseff, and
Dmitrii Zagorodnov. “The Eucalyptus Open-Source
Cloud-Computing System”. In: 2009 9th IEEE /ACM Inter-
national Symposium on Cluster Computing and the Grid.
May 2009, pp. 124-131. DOI: 10.1109/CCGRID. 2009.
93.

Opeyemi Osanaiye, Shuo Chen, Zheng Yan, Rongxing
Lu, Kim-Kwang Raymond Choo, and Mghele Dlodlo.
“From Cloud to Fog Computing: A Review and a Con-
ceptual Live VM Migration Framework”. In: I[EEE Ac-
cess 5 (2017). Conference Name: IEEE Access, pp. 8284~
8300. ISSN: 2169-3536. DOI: 10.1109/ACCESS . 2017 .
2692960.

95

https://doi.org/10.1147/sj.93.0199
https://doi.org/10.1080/01449290410001669914
https://patents.google.com/patent/US7484208B1/en
https://patents.google.com/patent/US7484208B1/en
https://doi.org/10.1145/3318216.3363298
https://doi.org/10.1145/3318216.3363298
https://doi.org/10.1145/3318216.3363298
https://doi.org/10.1145/3318216.3363298
https://doi.org/10.1109/CCGRID.2009.93
https://doi.org/10.1109/CCGRID.2009.93
https://doi.org/10.1109/ACCESS.2017.2692960
https://doi.org/10.1109/ACCESS.2017.2692960

[Ost+10]

[OST14]

[Pag+19]

[Pap+17]

[Pap+19]

Simon Ostermann, Alexandria Iosup, Nezih Yigitbasi,
Radu Prodan, Thomas Fahringer, and Dick Epema. “A
Performance Analysis of EC2 Cloud Computing Services
for Scientific Computing”. en. In: Clond Computing. Ed.
by Dimiter R. Avresky, Michel Diaz, Arndt Bode, Bruno
Ciciani, and Eliezer Dekel. Lecture Notes of the Institute
for Computer Sciences, Social-Informatics and Telecom-
munications Engineering. Berlin, Heidelberg: Springer,
2010, pp. 115-131. ISBN: 978-3-642-12636-9. DOI: 10.
1007/978-3-642-12636-9_9.

Justice Opara-Martins, Reza Sahandi, and Feng Tian.
“Critical review of vendor lock-in and its impact on adop-
tion of cloud computing”. In: International Conference on
Information Society (i-Society 2014). Nov. 2014, pp. 92-97.
DOI:10.1109/1i-Society.2014.7009018.

Ugo Pagallo, Paola Aurucci, Pompeu Casanovas, Raja
Chatila, Patrice Chazerand, Virginia Dignum, Christoph
Luetge, Robert Madelin, Burkhard Schafer, and Peggy
Valcke. AI4People - On Good Al Governance: 14 Priority
Actions, a S.M.A.R.T. Model of Governance, and a Regu-
latory Toolbox. en. SSRN Scholarly Paper ID 3486508.
Rochester, NY: Social Science Research Network, Nov.
2019. URL: https://papers. ssrn. com/abstract=
3486508 (visited on June 11, 2020).

Alessandro Vittorio Papadopoulos, Jakub Krzywda, Erik
Elmroth, and Martina Maggio. “Power-aware cloud
brownout: Response time and power consumption con-
trol”. In: 2017 IEEE 56th Annual Conference on Decision
and Control (CDC). 2017 IEEE 56th Annual Conference
on Decision and Control (CDC). Dec. 2017, pp. 2686~
2691. DOI:110.1109/CDC.2017 . 8264049.

Alessandro Vittorio Papadopoulos, Laurens Versluis,
André Bauer, Nikolas Herbst, Jéakim Von Kistowski,
Ahmed Ali-eldin, Cristina Abad, José Nelson Amaral,
Petr Tima, and Alexandru Iosup. “Methodological Prin-
ciples for Reproducible Performance Evaluation in Cloud

96

https://doi.org/10.1007/978-3-642-12636-9_9
https://doi.org/10.1007/978-3-642-12636-9_9
https://doi.org/10.1109/i-Society.2014.7009018
https://papers.ssrn.com/abstract=3486508
https://papers.ssrn.com/abstract=3486508
https://doi.org/10.1109/CDC.2017.8264049

Computing”. In: IEEE Transactions on Software Engineer-
ing (2019). Conference Name: IEEE Transactions on Soft-
ware Engineering, pp. 1-1. ISSN: 1939-3520. DOI: 10.
1109/TSE.2019.2927908.

[PDT18] Gopika Premsankar, Mario Di Francesco, and Tarik
Taleb. “Edge Computing for the Internet of Things: A
Case Study”. In: I[EEE Internet of Things Journal 5.2 (Apr.
2018). Conference Name: IEEE Internet of Things Jour-
nal, pp. 1275-1284. ISSN: 2327-4662. DOI: 10. 1109/
JIOT.2018.2805263.

[Phi+10] Jeremy Philippe, Noel De Palma, Fabienne
Boyer, and et Olivier Gruber. “Self-adaptation
of service level in distributed systems”. In: Soft-
ware: Practice and Experience 40.3 (2010). _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002 /spe.957,
pp- 259-283. ISSN: 1097-024X. DOI:|10.1002/spe . 957.
URL: https://onlinelibrary.wiley.com/doi/abs/
10.1002/spe. 957 (visited on June 9, 2020).

[PMA17] Carlo Puliafito, Enzo Mingozzi, and Giuseppe Anastasi.
“Fog Computing for the Internet of Mobile Things: Issues
and Challenges”. In: 2017 IEEE International Conference
on Smart Computing (SMARTCOMP). May 2017, pp. 1-6.
DOI:10.1109/SMARTCOMP. 2017 .7947010.

[Pog+14] Nicolas Poggi, David Carrera, Ricard Gavalda, Eduard
Ayguadé, and Jordi Torres. “A methodology for the eval-
uation of high response time on E-commerce users and
sales”. In: Information Systems Frontiers 16.5 (Nov. 1,
2014), pp. 867-885. ISSN: 1572-9419. DOI: 10. 1007/
s10796-012-9387-4. URL: https://doi.org/10.
1007/510796-012-9387-4 (visited on June 8, 2020).

[Pro+18] Andrew Prout, William Arcand, David Bestor, Bill Berg-
eron, Chansup Byun, Vijay Gadepally, Michael Houle,
Matthew Hubbell, Michael Jones, Anna Klein, Peter
Michaleas, Lauren Milechin, Julie Mullen, Antonio Rosa,
Siddharth Samsi, Charles Yee, Albert Reuther, and
Jeremy Kepner. “Measuring the Impact of Spectre and

97

https://doi.org/10.1109/TSE.2019.2927908
https://doi.org/10.1109/TSE.2019.2927908
https://doi.org/10.1109/JIOT.2018.2805263
https://doi.org/10.1109/JIOT.2018.2805263
https://doi.org/10.1002/spe.957
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.957
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.957
https://doi.org/10.1109/SMARTCOMP.2017.7947010
https://doi.org/10.1007/s10796-012-9387-4
https://doi.org/10.1007/s10796-012-9387-4
https://doi.org/10.1007/s10796-012-9387-4
https://doi.org/10.1007/s10796-012-9387-4

[PSK15]

[Quo+18]

[Red18]

[Roc+09a]

[Roc+09b]

Meltdown”. In: 2018 IEEE High Performance extreme
Computing Conference (HPEC). ISSN: 2377-6943. Sept.
2018, pp. 1-5. DOI: 10.1109/HPEC.2018.8547554.

Bryan Pon, Timo Seppild, and Martin Kenney. “One
Ring to Unite Them All: Convergence, the Smartphone,
and the Cloud”. en. In: Journal of Industry, Competition
and Trade 15.1 (Mar. 2015), pp. 21-33. ISSN: 1573-7012.
DOI: 10.1007/s10842-014-0189-x. URL: https://
doi.org/10.1007/s10842-014-0189-x (visited on
May 20, 2020).

Do Le Quoc, Istemi Ekin Akkus, Pramod Bhatotia,
Spyros Blanas, Ruichuan Chen, Christof Fetzer, and
Thorsten Strufe. “ApproxJoin: Approximate Distributed
Joins”. In: Proceedings of the ACM Symposium on Cloud
Computing. SoCC *18. Carlsbad, CA, USA: Associa-
tion for Computing Machinery, Oct. 11, 2018, pp. 426-
438. ISBN: 978-1-4503-6011-1. DOI:|10.1145/3267809.
3267834. URL: https://doi.org/10.1145/3267809.
3267834 (visited on Apr. 27, 2020).

Red Hat, Inc. Understanding clond-native apps. en.
Library Catalog: www.redhat.com. June 2018. URL:
https : / / www . redhat . com/ en / topics / cloud -
native-apps) (visited on May 20, 2020).

B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin,
I. M. Llorente, R. Montero, Y. Wolfsthal, E. Elmroth,
J. Caceres, M. Ben-Yehuda, W. Emmerich, and F. Galan.
“The Reservoir model and architecture for open federated
cloud computing”. In: IBM Journal of Research and Devel-
opment 53.4 (July 2009). Conference Name: IBM Journal
of Research and Development, 4:1-4:11. ISSN: 0018-8646.
DOI:110.1147/JRD.2009.5429058.

B. Rochwerger, A. Galis, E. Levy, J. A. Caceres, D. Bre-
itgand, Y. Wolfsthal, I. M. Llorente, M. Wusthoff, R. S.
Montero, and E. Elmroth. “RESERVOIR: Management
technologies and requirements for next generation Ser-
vice Oriented Infrastructures”. In: 2009 IFIP/IEEE In-

98

https://doi.org/10.1109/HPEC.2018.8547554
https://doi.org/10.1007/s10842-014-0189-x
https://doi.org/10.1007/s10842-014-0189-x
https://doi.org/10.1007/s10842-014-0189-x
https://doi.org/10.1145/3267809.3267834
https://doi.org/10.1145/3267809.3267834
https://doi.org/10.1145/3267809.3267834
https://doi.org/10.1145/3267809.3267834
https://www.redhat.com/en/topics/cloud-native-apps
https://www.redhat.com/en/topics/cloud-native-apps
https://doi.org/10.1147/JRD.2009.5429058

[Roc+11]

[Ros14]

[Roy+15]

[RWHI11]

[SAE12]

ternational Symposium on Integrated Network Manage-
ment. ISSN: 1573-0077. June 2009, pp. 307-310. DOI:
10.1109/INM.2009.5188828.

Benny Rochwerger, David Breitgand, Amir Epstein,
David Hadas, Irit Loy, Kenneth Nagin, Johan Tords-
son, Carmelo Ragusa, Massimo Villari, Stuart Clayman,
Eliezer Levy, Alessandro Maraschini, Philippe Massonet,
Henar Mufioz, and Giovanni Tofetti. “Reservoir - When
One Cloud Is Not Enough”. In: Computer 44.3 (Mar.
2011). Conference Name: Computer, pp. 44-51. ISSN:
1558-0814. DOI:|10.1109/MC.2011.64.

Rami Rosen. “Linux containers and the future cloud”. In:
Linux Journal 2014.240 (Apr. 2014), 3:3. ISSN: 1075-3583.

Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter,
and Alex C. Snoeren. “Inside the Social Network’s (Data-
center) Network”. In: Proceedings of the 2015 ACM Con-
ference on Special Interest Group on Data Communica-
tion. SIGCOMM ’15. London, United Kingdom: Asso-
ciation for Computing Machinery, Aug. 2015, pp. 123-
137. ISBN: 978-1-4503-3542-3. DOI:110.1145/2785956.
2787472. URL: https://doi.org/10.1145/2785956.
2787472 (visited on June 10, 2020).

Charles Reiss, John Wilkes, and Joseph L. Hellerstein.
Google cluster-usage traces: format + schema. Technical Re-
port. Revised 2014-11-17 for version 2.1. Posted at https:

//github.com/google/cluster-data. Mountain View,
CA, USA: Google Inc., Nov. 2011.

Omar Sefraoui, Mohammed Aissaoui, and Mohsine
Eleuld;. “OpenStack: Toward an Open-source Solution
for Cloud Computing”. en. In: International Journal of
Computer Applications 55.3 (Oct. 2012), pp. 38-42. ISSN:
09758887. DOI: 10 . 5120 /8738 - 2991. URL: http :
/ /research . ijcaonline . org/volumeb5/number3/
pxc3882991 . pdf| (visited on June 2, 2020).

99

https://doi.org/10.1109/INM.2009.5188828
https://doi.org/10.1109/MC.2011.64
https://doi.org/10.1145/2785956.2787472
https://doi.org/10.1145/2785956.2787472
https://doi.org/10.1145/2785956.2787472
https://doi.org/10.1145/2785956.2787472
https://github.com/google/cluster-data
https://github.com/google/cluster-data
https://doi.org/10.5120/8738-2991
http://research.ijcaonline.org/volume55/number3/pxc3882991.pdf
http://research.ijcaonline.org/volume55/number3/pxc3882991.pdf
http://research.ijcaonline.org/volume55/number3/pxc3882991.pdf

[SAS19]

[Sat+13]

[SB10]

[SH11]

[Sha+11a]

[Sha+11b]

Prateek Sharma, Ahmed Ali-Eldin, and Prashant Shenoy.
“Resource Deflation: A New Approach For Transient Re-
source Reclamation”. In: Proceedings of the Fourteenth Eu-
roSys Conference 2019. EuroSys 19. Dresden, Germany:
Association for Computing Machinery, Mar. 2019, pp. 1-
17. ISBN: 978-1-4503-6281-8. DOI: 10.1145/3302424 |
3303945. URL: https://doi.org/10.1145/3302424 |
3303945 (visited on June 3, 2020).

Benjamin Satzger, Waldemar Hummer, Christian
Inzinger, Philipp Leitner, and Schahram Dustdar.
“Winds of Change: From Vendor Lock-In to the Meta
Cloud”. In: IEEE Internet Computing 17.1 (Jan. 2013).
Conference Name: IEEE Internet Computing, pp. 69-73.
ISSN: 1941-0131. DOI:10.1109/MIC.2013.19.

Mohsen Amini Salehi and Rajkumar Buyya. “Adapting
Market-Oriented Scheduling Policies for Cloud Comput-
ing”. en. In: Algorithms and Architectures for Parallel Pro-
cessing. Ed. by Ching-Hsien Hsu, Laurence T. Yang, Jong
Hyuk Park, and Sang-Soo Yeo. Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer, 2010, pp. 351-
362. ISBN: 978-3-642-13119-6. DOI: |10. 1007 /978 - 3 -
642-13119-6_31.

David Schneider and Quentin Hardy. “Under the hood
at Google and Facebook”. In: IEEE Spectrum 48.6 (June
2011). Conference Name: IEEE Spectrum, pp. 63-67.
ISSN: 1939-9340. DOI:10.1109/MSPEC.2011.5779795.

Marc Shapiro, Nuno Preguiga, Carlos Baquero, and
Marek Zawirski. A comprehensive study of Convergent
and Commutative Replicated Data Types. report. Inria -
Centre Paris-Rocquencourt ; INRIA, Jan. 13, 2011, p. 50.
URL: https://hal.inria.fr/inria-00555588 (vis-
ited on June 8, 2020).

Marc Shapiro, Nuno Preguica, Carlos Baquero, and
Marek Zawirski. “Conflict-Free Replicated Data Types”.
In: Stabilization, Safety, and Security of Distributed Systems.
Ed. by Xavier Défago, Franck Petit, and Vincent Villain.

100

https://doi.org/10.1145/3302424.3303945
https://doi.org/10.1145/3302424.3303945
https://doi.org/10.1145/3302424.3303945
https://doi.org/10.1145/3302424.3303945
https://doi.org/10.1109/MIC.2013.19
https://doi.org/10.1007/978-3-642-13119-6_31
https://doi.org/10.1007/978-3-642-13119-6_31
https://doi.org/10.1109/MSPEC.2011.5779795
https://hal.inria.fr/inria-00555588

[Shi+16]

[Sim56]

[SK17]

[SRC13]

[Sri+02]

[SRS17]

Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2011, pp. 386-400. ISBN: 978-3-642-24550-3.
DOI:10.1007/978-3-642-24550-3_29.

Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and
Lanyu Xu. “Edge Computing: Vision and Challenges”.
In: [EEE Internet of Things Journal 3.5 (Oct. 2016). Confer-
ence Name: IEEE Internet of Things Journal, pp. 637-646.
ISSN: 2327-4662. DOI:10.1109/J10T.2016.2579198.

H. A. Simon. “Rational choice and the structure of
the environment”. In: Psychological Review 63.2 (Mar.
1956), pp. 129-138. ISSN: 0033-295X. DOI: 10. 1037/
h0042769.

Marc Shapiro and Bettina Kemme. Eventual Consistency.
Pages: 2. Springer, June 2017. ISBN: 978-1-4899-7993-3.
DOI: 110.1007/978-1-4899-7993-3_1366-2. URL:
https://hal.inria.fr/hal- 01547451 (visited on
June 8, 2020).

Gabriel Costa Silva, Louis M. Rose, and Radu Calinescu.
“Towards a Model-Driven Solution to the Vendor Lock-
In Problem in Cloud Computing”. In: 2013 IEEE 5th
International Conference on Cloud Computing Technology
and Science. Vol. 1. Dec. 2013, pp. 711-716. DOI: 10
1109/CloudCom.2013.131.

S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sa-
dayappan. “Characterization of backfilling strategies for
parallel job scheduling”. In: Proceedings. International
Conference on Parallel Processing Workshop. ISSN: 1530-
2016. Aug. 2002, pp. 514-519. DOI: |10.1109/ICPPW .
2002.1039773.

Michael Schneider, Jason Rambach, and Didier Stricker.
“Augmented reality based on edge computing using the
example of remote live support”. In: 2017 IEEE In-
ternational Conference on Industrial Technology (ICIT).
Mar. 2017, pp. 1277-1282. DOI: 10.1109/ICIT.2017.
7915547.

101

https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1037/h0042769
https://doi.org/10.1037/h0042769
https://doi.org/10.1007/978-1-4899-7993-3_1366-2
https://hal.inria.fr/hal-01547451
https://doi.org/10.1109/CloudCom.2013.131
https://doi.org/10.1109/CloudCom.2013.131
https://doi.org/10.1109/ICPPW.2002.1039773
https://doi.org/10.1109/ICPPW.2002.1039773
https://doi.org/10.1109/ICIT.2017.7915547
https://doi.org/10.1109/ICIT.2017.7915547

[SS13]

[Ste20]

[Sue+13]

[Sva+11]

[TEF07]

[TLE16]

Navin Sabharwal and Ravi Shankar. Apache CloudStack
Cloud Computing. Packt Publishing, 2013. ISBN: 978-1-
78216-010-6.

Bijan Stephen. A pizzeria owner made money buying his
own $24 pizzas from DoorDash for $16. en. Library Cat-
alog: www.theverge.com. May 2020. URL: https: //
www . theverge . com/2020/5/18/21262316/doordash-
plzza- profits - venture - capital - the - margins -
ranjan-roy (visited on June 10, 2020).

Chun Hui Suen, Ryan K.L. Ko, Yu Shyang Tan, Peter
Jagadpramana, and Bu Sung Lee. “S2Logger: End-to-End
Data Tracking Mechanism for Cloud Data Provenance”.
In: 2013 12th IEEE International Conference on Trust, Se-
curity and Privacy in Computing and Communications.
ISSN: 2324-9013. July 2013, pp. 594-602. DOL[10. 1109/
TrustCom.2013.73.

Petter Svird, Benoit Hudzia, Johan Tordsson, and Erik
Elmroth. “Evaluation of delta compression techniques
for efficient live migration of large virtual machines”. In:
Proceedings of the 7th ACM SIGPLAN /SIGOPS interna-
tional conference on Virtual execution environments. VEE
’11. Newport Beach, California, USA: Association for
Computing Machinery, Mar. 2011, pp. 111-120. ISBN:
978-1-4503-0687-4. DOI: 10 . 1145/ 1952682 . 1952698.
URL: https://doi.org/10.1145/1952682.1952698
(visited on May 18, 2020).

Dan Tsafrir, Yoav Etsion, and Dror G. Feitelson. “Back-
filling Using System-Generated Predictions Rather than
User Runtime Estimates”. In: IEEE Transactions on Paral-
lel and Distributed Systems 18.6 (June 2007). Conference
Name: IEEE Transactions on Parallel and Distributed
Systems, pp. 789-803. ISSN: 1558-2183. DOI:10.1109/
TPDS.2007.70606.

Luis Tomas, Ewnetu Bayuh Lakew, and Erik Elmroth.
“Service Level and Performance Aware Dynamic Re-
source Allocation in Overbooked Data Centers”. In:

102

https://www.theverge.com/2020/5/18/21262316/doordash-pizza-profits-venture-capital-the-margins-ranjan-roy
https://www.theverge.com/2020/5/18/21262316/doordash-pizza-profits-venture-capital-the-margins-ranjan-roy
https://www.theverge.com/2020/5/18/21262316/doordash-pizza-profits-venture-capital-the-margins-ranjan-roy
https://www.theverge.com/2020/5/18/21262316/doordash-pizza-profits-venture-capital-the-margins-ranjan-roy
https://doi.org/10.1109/TrustCom.2013.73
https://doi.org/10.1109/TrustCom.2013.73
https://doi.org/10.1145/1952682.1952698
https://doi.org/10.1145/1952682.1952698
https://doi.org/10.1109/TPDS.2007.70606
https://doi.org/10.1109/TPDS.2007.70606

[Tof+17]

[Tom-+14]

[Tor+12]

[Tsi-+01]

[TT13]

2016 16th IEEE /JACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid). May 2016, pp. 42-
51. DOI:|10.1109/CCGrid.2016.29.

Giovanni Toffetti, Sandro Brunner, Martin Blochlinger,
Joset Spillner, and Thomas Michael Bohnert. “Self-
managing cloud-native applications: Design, implementa-
tion, and experience”. en. In: Future Generation Computer
Systems 72 (July 2017), pp. 165-179. ISSN: 0167-739X.
DOI: 10.1016/j . future.2016.09.002. URL: http:
//www.sciencedirect.com/science/article/pii/
S0167739X16302977 (visited on May 19, 2020).

Luis Tomas, Cristian Klein, Johan Tordsson, and Fran-
cisco Hernandez-Rodriguez. “The Straw that Broke the
Camel’s Back: Safe Cloud Overbooking with Application
Brownout”. In: 2014 International Conference on Cloud
and Autonomic Computing. 2014 International Confer-
ence on Cloud and Autonomic Computing. Sept. 2014,
pp. 151-160. DOI: 10.. 1109/ICCAC. 2014 . 10.

Johan Tordsson, Rubén S. Montero, Rafael Moreno-
Vozmediano, and Ignacio M. Llorente. “Cloud brokering
mechanisms for optimized placement of virtual machines
across multiple providers”. en. In: Future Generation Com-
puter Systems 28.2 (Feb. 2012), pp. 358-367. ISSN: 0167-
739X. DOI:|10.1016/j . future.2011.07.003. URL:
http://www.sciencedirect.com/science/article/
pii/S0167739X11001373 (visited on June 2, 2020).

Mark Tsimelzon, Bill Weihl, Joseph Chung, Dan Frantz,
John Basso, Chris Newton, Mark Hale, Larry Jacobs, and
Conleth O’Connell. ESI Language Specification 1.0. Ed.
by Mark Nottingham. Aug. 2001. URL: https: //www!
w3.org/TR/2001/NOTE- esi- lang-20010804 (visited
on May 25, 2020).

Luis Tomas and Johan Tordsson. “Improving cloud infras-
tructure utilization through overbooking”. In: Proceed-
ings of the 2013 ACM Cloud and Autonomic Computing
Conference. CAC *13. Miami, Florida, USA: Association

103

https://doi.org/10.1109/CCGrid.2016.29
https://doi.org/10.1016/j.future.2016.09.002
http://www.sciencedirect.com/science/article/pii/S0167739X16302977
http://www.sciencedirect.com/science/article/pii/S0167739X16302977
http://www.sciencedirect.com/science/article/pii/S0167739X16302977
https://doi.org/10.1109/ICCAC.2014.10
https://doi.org/10.1016/j.future.2011.07.003
http://www.sciencedirect.com/science/article/pii/S0167739X11001373
http://www.sciencedirect.com/science/article/pii/S0167739X11001373
https://www.w3.org/TR/2001/NOTE-esi-lang-20010804
https://www.w3.org/TR/2001/NOTE-esi-lang-20010804

[TT14]

[TW84]

[TYL12]

[Ull75]

[Var10]

[Vaz+13]

for Computing Machinery, Aug. 2013, pp. 1-10. ISBN:
978-1-4503-2172-3. DOI: |10 . 1145 /2494621 . 2494627.
URL: https://doi.org/10.1145/2494621 . 2494627
(visited on June 3, 2020).

Luis Tomas and Johan Tordsson. “An Autonomic Ap-
proach to Risk-Aware Data Center Overbooking”. In:
IEEE Transactions on Cloud Computing 2.3 (July 2014).
Conference Name: IEEE Transactions on Cloud Com-
puting, pp. 292-305. ISSN: 2168-7161. DOI: 10. 1109/
TCC.2014.2326166.

Van Tilborg and Wittie. “Wave Schedul-
ing—Decentralized Scheduling of Task Forces in
Multicomputers”. In: IEEE Transactions on Computers C-
33.9 (Sept. 1984). Conference Name: IEEE Transactions
on Computers, pp. 835-844. ISSN: 1557-9956. DOI:
10.1109/TC.1984.1676500.

ShaoJie Tang, Jing Yuan, and Xiang-Yang Li. “Towards
Optimal Bidding Strategy for Amazon EC2 Cloud Spot
Instance”. In: 2012 IEEE Fifth International Conference on
Cloud Computing. ISSN: 2159-6190. June 2012, pp. 91-98.
DOI:10.1109/CLOUD.2012.134.

J. D. Ullman. “NP-complete scheduling problems”. en. In:
Journal of Computer and System Sciences 10.3 (June 1975),
pp- 384-393. ISSN: 0022-0000. DOI: 10.1016/50022-
0000(75)80008-0. URL: http://www.sciencedirect!
com/science/article/pii/S0022000075800080) (vis-
ited on June 15, 2020).

Jinesh Varia. Migrating your Existing Applications to the
AWS Cloud. en. Oct. 2010. URL: https : / / media .
amazonwebservices . com / CloudMigration - main .
pdf.

Carlos Vazquez, Luis Tomas, Ginés Moreno, and Jo-
han Tordsson. “A Fuzzy Approach to Cloud Admission
Control for Safe Overbooking”. en. In: Fuzzy Logic and
Applications. Ed. by Francesco Masulli, Gabriella Pasi,

104

https://doi.org/10.1145/2494621.2494627
https://doi.org/10.1145/2494621.2494627
https://doi.org/10.1109/TCC.2014.2326166
https://doi.org/10.1109/TCC.2014.2326166
https://doi.org/10.1109/TC.1984.1676500
https://doi.org/10.1109/CLOUD.2012.134
https://doi.org/10.1016/S0022-0000(75)80008-0
https://doi.org/10.1016/S0022-0000(75)80008-0
http://www.sciencedirect.com/science/article/pii/S0022000075800080
http://www.sciencedirect.com/science/article/pii/S0022000075800080
https://media.amazonwebservices.com/CloudMigration-main.pdf
https://media.amazonwebservices.com/CloudMigration-main.pdf
https://media.amazonwebservices.com/CloudMigration-main.pdf

[VB18]

[Ver+15]

[Vil+12]

[Vog08]

[Voo+09]

and Ronald Yager. Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2013, pp. 212-
225. ISBN: 978-3-319-03200-9. DOI: 10. 1007 /978-3-
319-03200-9_22.

Blesson Varghese and Rajkumar Buyya. “Next gener-
ation cloud computing: New trends and research di-
rections”. en. In: Future Generation Computer Systems
79 (Feb. 2018), pp. 849-861. ISSN: 0167-739X. DOIL:
10.1016/j . future . 2017 .09 . 020. URL: http: //
www . sciencedirect . com/ science /article /pii/
S0167739X17302224 (visited on May 20, 2020).

Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. “Large-
scale cluster management at Google with Borg”. In: Pro-
ceedings of the Tenth European Conference on Computer
Systems. EuroSys *15. Bordeaux, France: Association for
Computing Machinery, Apr. 2015, pp. 1-17. ISBN: 978-
1-4503-3238-5. DOI:|10.1145/2741948.2741964. URL:
https://doi.org/10.1145/2741948.2741964 (visited
on June 3, 2020).

David Villegas, Norman Bobroff, Ivan Rodero, Javier
Delgado, Yanbin Liu, Aditya Devarakonda, Liana Fong, S.
Masoud Sadjadi, and Manish Parashar. “Cloud federation
in a layered service model”. en. In: Journal of Computer
and System Sciences. JCSS Special Issue: Cloud Computing
2011 78.5 (Sept. 2012), pp. 1330-1344. ISSN: 0022-0000.
DOI: |10.1016/75 . jcss . 2011 .12.017. URL: http:
//www.sciencedirect.com/science/article/pii/
S0022000011001620 (visited on June 2, 2020).

Werner Vogels. “Beyond Server Consolidation”. In:
Quene 6.1 (Jan. 2008), pp. 20-26. ISSN: 1542-7730. DOL:
10.1145/1348583.1348590. URL: https://doi.org/
10.1145/1348583. 1348590 (visited on June 3, 2020).

William Voorsluys, James Broberg, Srikumar Venugopal,
and Rajkumar Buyya. “Cost of Virtual Machine Live
Migration in Clouds: A Performance Evaluation”. en. In:

105

https://doi.org/10.1007/978-3-319-03200-9_22
https://doi.org/10.1007/978-3-319-03200-9_22
https://doi.org/10.1016/j.future.2017.09.020
http://www.sciencedirect.com/science/article/pii/S0167739X17302224
http://www.sciencedirect.com/science/article/pii/S0167739X17302224
http://www.sciencedirect.com/science/article/pii/S0167739X17302224
https://doi.org/10.1145/2741948.2741964
https://doi.org/10.1145/2741948.2741964
https://doi.org/10.1016/j.jcss.2011.12.017
http://www.sciencedirect.com/science/article/pii/S0022000011001620
http://www.sciencedirect.com/science/article/pii/S0022000011001620
http://www.sciencedirect.com/science/article/pii/S0022000011001620
https://doi.org/10.1145/1348583.1348590
https://doi.org/10.1145/1348583.1348590
https://doi.org/10.1145/1348583.1348590

[VouQ9]

[VT16]

[VVB10]

[Wan+18]

[Wel+01]

Cloud Computing. Ed. by Martin Gilje Jaatun, Gansen
Zhao, and Chunming Rong. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2009, pp. 254-265.
ISBN: 978-3-642-10665-1. DOI: |10. 1007 /978-3-642-
10665-1_23.

Mladen A. Vouk. “Cloud Computing - Issues, Research
and Implementations”. en-US. In: CIT. Journal of Comput-
ing and Information Technology 16.4 (June 2009). Num-
ber: 4, pp. 235-246. ISSN: 1846-3908. DOI: 10 . 2498/
cit.1001391. URL: http://cit.fer.hr/index.php/
CIT/article/view/1674 (visited on May 20, 2020).

Rath Vannithamby and Shilpa Talwar. Towards 5G: Ap-
plications, Requirements and Candidate Technologies. en.
Google-Books-ID: g2IxDQAAQBA]. John Wiley & Sons,
Nov. 2016. ISBN: 978-1-118-97991-4.

Ruben Van den Bossche, Kurt Vanmechelen, and Jan
Broeckhove. “Cost-Optimal Scheduling in Hybrid IaaS
Clouds for Deadline Constrained Workloads”. In: 2010
IEEE 3rd International Conference on Cloud Computing.
2010 IEEE 3rd International Conference on Cloud Com-
puting. ISSN: 2159-6190. July 2010, pp. 228-235. DOL:
10.1109/CL0OUD.2010.58.

Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ris-
tenpart, and Michael Swift. “Peeking Behind the Cur-
tains of Serverless Platforms”. In: 2018 USENIX Annual
Technical Conference (USENIX ATC 18). Boston, MA:
USENIX Association, July 2018, pp. 133-146. ISBN:
ISBN 978-1-939133-01-4. URL: https://www.usenix.
org/conference/atc18/presentation/wang-1liang.

Michael P. Wellman, William E. Walsh, Peter R. Wur-
man, and Jeffrey K. MacKie-Mason. “Auction Protocols
for Decentralized Scheduling”. In: Games and Economic
Behavior 35.1 (Apr. 1, 2001), pp. 271-303. ISSN: 0899-
8256. DOI: 10 . 1006 / game . 2000 . 0822. URL: http :
//www .sciencedirect.com/science/article/pii/
S0899825600908224 (visited on June 22, 2020).

106

https://doi.org/10.1007/978-3-642-10665-1_23
https://doi.org/10.1007/978-3-642-10665-1_23
https://doi.org/10.2498/cit.1001391
https://doi.org/10.2498/cit.1001391
http://cit.fer.hr/index.php/CIT/article/view/1674
http://cit.fer.hr/index.php/CIT/article/view/1674
https://doi.org/10.1109/CLOUD.2010.58
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://doi.org/10.1006/game.2000.0822
http://www.sciencedirect.com/science/article/pii/S0899825600908224
http://www.sciencedirect.com/science/article/pii/S0899825600908224
http://www.sciencedirect.com/science/article/pii/S0899825600908224

[Wil11]

[Wil20a]

[Wil20b]

[XB19]

[XDB16]

[XMK16]

[XTB19]

John Wilkes. More Google cluster data. Google research
blog. Posted at http : //googleresearch . blogspot .
com/2011 /11 /more - google - cluster - data . html.
Mountain View, CA, USA, Nov. 2011.

John Wilkes. Google cluster-usage traces v3. Technical Re-
port. Posted at https://github. com/google/cluster-
data/blob/master/ClusterData2019 .md. Mountain
View, CA, USA: Google Inc., Apr. 2020.

John Wilkes. Yet more Google compute cluster trace
data. Google research blog. Posted at https: //ai |
googleblog . com / 2020 / 04 / yet - more - google -
compute-cluster-trace.html. Mountain View, CA,
USA, Apr. 2020.

Minxian Xu and Rajkumar Buyya. “Brownout Approach
for Adaptive Management of Resources and Applica-
tions in Cloud Computing Systems: A Taxonomy and
Future Directions”. In: ACM Computing Surveys 52.1
(Jan. 25, 2019), 8:1-8:27. ISSN: 0360-0300. DOI: 10 .
1145/3234151. URL: https://doi.org/10. 1145/
3234151 (visited on June 8, 2020).

Minxian Xu, Amir Vahid Dastjerdi, and Rajkumar Buyya.
“Energy Efficient Scheduling of Cloud Application Com-
ponents with Brownout”. In: IEEE Transactions on Sus-
tainable Computing 1.2 (July 2016). Conference Name:
IEEE Transactions on Sustainable Computing, pp. 40-53.
ISSN: 2377-3782. DOI:110.1109/TSUSC. 2017 .2661339.

Qiang Xu, Todd Mytkowicz, and Nam Sung Kim. “Ap-
proximate Computing: A Survey”. In: I[EEE Design Test
33.1 (Feb. 2016). Conference Name: IEEE Design Test,
pp. 8-22. ISSN: 2168-2364. DOIL: [10. 1109/MDAT . 2015
2505723.

Minxian Xu, Adel Nadjaran Toosi, and Rajkumar Buyya.
“iBrownout: An Integrated Approach for Managing En-
ergy and Brownout in Container-Based Clouds”. In: IEEE
Transactions on Sustainable Computing 4.1 (Jan. 2019).

107

http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
https://github.com/google/cluster-data/blob/master/ClusterData2019.md
https://github.com/google/cluster-data/blob/master/ClusterData2019.md
https://ai.googleblog.com/2020/04/yet-more-google-compute-cluster-trace.html
https://ai.googleblog.com/2020/04/yet-more-google-compute-cluster-trace.html
https://ai.googleblog.com/2020/04/yet-more-google-compute-cluster-trace.html
https://doi.org/10.1145/3234151
https://doi.org/10.1145/3234151
https://doi.org/10.1145/3234151
https://doi.org/10.1145/3234151
https://doi.org/10.1109/TSUSC.2017.2661339
https://doi.org/10.1109/MDAT.2015.2505723
https://doi.org/10.1109/MDAT.2015.2505723

[Xu+14]

[YAK12]

[Yao+12]

[Yaz+17]

[YKA10]

Conference Name: IEEE Transactions on Sustainable
Computing, pp. 53-66. ISSN: 2377-3782. DOI: [10. 1109/
TSUSC.2018.2808493.

Fei Xu, Fangming Liu, Linghui Liu, Hai Jin, Bo Li, and
Baochun Li. “iAware: Making Live Migration of Virtual
Machines Interference-Aware in the Cloud”. In: IEEE
Transactions on Computers 63.12 (Dec. 2014). Conference
Name: IEEE Transactions on Computers, pp. 3012-3025.
ISSN: 1557-9956. DOI:10.1109/TC.2013. 185.

Sangho Yi, Artur Andrzejak, and Derrick Kondo. “Mon-
etary Cost-Aware Checkpointing and Migration on Ama-
zon Cloud Spot Instances”. In: [EEE Transactions on
Services Computing 5.4 (2012). Conference Name: IEEE
Transactions on Services Computing, pp. 512-524. ISSN:
1939-1374. DOI:|10.1109/TSC.2011 .44.

Yuan Yao, Longbo Huang, Abhihshek Sharma, Leana
Golubchik, and Michael Neely. “Data centers power re-
duction: A two time scale approach for delay tolerant
workloads”. In: 2012 Proceedings IEEE INFOCOM. 2012
Proceedings IEEE INFOCOM. ISSN: 0743-166X. Mar.
2012, pp. 1431-1439. DOI: [10 . 1109/ INFCOM . 2012 |
6195508.

Amir Yazdanbakhsh, Divya Mahajan, Hadi Es-
maeilzadeh, and Pejman Lotfi-Kamran. “AxBench:
A Multiplatform Benchmark Suite for Approximate
Computing”. In: IEEE Design Test 34.2 (Apr. 2017).
Conference Name: IEEE Design Test, pp. 60-68. ISSN:
2168-2364. DOI:|10.1109/MDAT.2016.2630270.

Sangho Y1, Derrick Kondo, and Artur Andrzejak. “Re-
ducing Costs of Spot Instances via Checkpointing in the
Amazon Elastic Compute Cloud”. In: 2010 IEEE 3rd In-
ternational Conference on Cloud Computing. ISSN: 2159-
6190. July 2010, pp. 236-243. DOI: |10 . 1109 /CLOUD |
2010. 35.

108

https://doi.org/10.1109/TSUSC.2018.2808493
https://doi.org/10.1109/TSUSC.2018.2808493
https://doi.org/10.1109/TC.2013.185
https://doi.org/10.1109/TSC.2011.44
https://doi.org/10.1109/INFCOM.2012.6195508
https://doi.org/10.1109/INFCOM.2012.6195508
https://doi.org/10.1109/MDAT.2016.2630270
https://doi.org/10.1109/CLOUD.2010.35
https://doi.org/10.1109/CLOUD.2010.35

[YLL15]

[You+19]

[Yul2]

[Zub19]

Shanhe Yi, Cheng Li, and Qun Li. “A Survey of Fog
Computing: Concepts, Applications and Issues”. In: Pro-
ceedings of the 2015 Workshop on Mobile Big Data. Mo-
bidata *15. Hangzhou, China: Association for Computing
Machinery, June 2015, pp. 37-42. ISBN: 978-1-4503-3524-
9. DOI: 10.1145/2757384 . 2757397. URL: https://
doi.org/10.1145/2757384.2757397 (visited on June 1,
2020).

Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna
Kadiyala, Fatemeh Jalali, Amirreza Niakanlahiji, Jian
Kong, and Jason P. Jue. “All one needs to know about
fog computing and related edge computing paradigms:
A complete survey”. en. In: Journal of Systems Archi-
tecture 98 (Sept. 2019), pp. 289-330. ISSN: 1383-7621.
DOI:10.1016/j .sysarc.2019.02.009. URL: http:
//www.sciencedirect.com/science/article/pii/
S1383762118306349 (visited on June 2, 2020).

Weihai Yu. “A string-wise CRDT for group editing”.
In: Proceedings of the 17th ACM international conference
on Supporting group work. GROUP *12. Sanibel Island,
Florida, USA: Association for Computing Machinery,
Oct. 27, 2012, pp. 141-144. ISBN: 978-1-4503-1486-2.
DOI: 10 . 1145 /2389176 . 2389198. URL: https: //
doi.org/10.1145/2389176.2389198 (visited on June 8,
2020).

Shoshana Zuboff. The Age of Surveillance Capitalism.
PublicAffairs (Hachette Book Group), Jan. 2019. ISBN:
9781610395700.

109

https://doi.org/10.1145/2757384.2757397
https://doi.org/10.1145/2757384.2757397
https://doi.org/10.1145/2757384.2757397
https://doi.org/10.1016/j.sysarc.2019.02.009
http://www.sciencedirect.com/science/article/pii/S1383762118306349
http://www.sciencedirect.com/science/article/pii/S1383762118306349
http://www.sciencedirect.com/science/article/pii/S1383762118306349
https://doi.org/10.1145/2389176.2389198
https://doi.org/10.1145/2389176.2389198
https://doi.org/10.1145/2389176.2389198

	Introduction
	Research Goal and Objectives
	Historical Context
	Thesis Outline

	Cloud and Edge Computing
	Utility Computing: Vision and Implementation
	Virtualization of Resources
	Forklifting to Cloud-Native: Cloud Paradigm Shifts
	Cloud Perspectives: Everything as a Service
	Edge Computing
	Research Methods in Cloud and Edge Computing
	Ethical Aspects of Cloud Computing

	Federated Cloud Infrastructure
	Early Vision of Cloud Federations
	Current Implementation of Cloud Federations
	Future Vision of Cloud Federations

	Scheduling
	Scheduling as an Optimization Problem
	Co-development of Scheduling and Cloud Computing
	Scheduling Across Cloud Federations
	Scheduling in Future Cloud and Edge Computing

	Quality Elasticity
	Approximate Computing Primer
	Eventual Consistency in Databases
	Adjusting Application Output Quality to Resource Availability

	Summary of Contributions
	Outline of Contributions
	Paper I
	Paper II
	Paper III
	Paper IV
	Paper V
	Paper VI
	Paper VII

	Conclusion
	Bibliography

