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Abstract. In this paper, we present a prototype assembly support sys-
tem for hydraulic components, tailored to a mechanical industry produc-
tion plant. The case study for the project is Komatsu Forest, a leading
provider of forestry machines. The system uses multimodal data analysis
to understand the assembly process and detect errors. In particular, it
uses a TensorFlow network to identify hydraulic components, a projec-
tive computer vision model to map a CAD drawing against the partial
assembly, and natural language processing techniques to recognise pat-
terns in the non-conformance reports.
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1 Introduction

We present a prototype AI system for industrial assembly, intended to support
the assembly worker and provide automatic quality control, documentation, and
data collection. The system takes as its primary input a video stream of an on-
going assembly, and uses computer vision to (i) match the governing blueprint in
the form of a CAD drawing against the construction, and (ii) recognise the com-
ponents used in the assembly. Based on this information, the system can assist
the assembly worker with the selection, positioning, and fastening of components.
The system communicates with the user by enriching the input video stream
with drawings and assembly instructions, using see-through-augmentation [1],
in which successfully mounted components are checked off as work progress.
This is an extension of previous work, in which projection-based augmentation
allows remote experts to guide local users through complex tasks [3].

The case study for the project is a plant for the production of forestry ma-
chines, harvesters and forwarders, operated by Komatsu Forest. A typical har-
vester uses hydraulics for power transmission to steering, crane, and saw aggre-
gate. Each machine is made to the specifications of the buyer. The customisation
is motivated by, for example, the regulatory rules of the local market, poten-
tial environmental impact, intended usage, and expected working conditions. It
is not uncommon that the machine requires more than 10 000 components to
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build. Given the sheer number of assembly steps needed to fit these components
together, the combined risk of a non-conformance is significant, even if the risk
associated with each step is minute.

If a non-conformance is detected in the assembly plant before the machine is
finished, then the consequence is typically only an offset in the assembly schedule.
If, on the other hand, the non-conformance is not detected until the machine has
reached its operation site, then the non-conformance could cause a downtime of
several days, as the machine may be stationed in a remote forest area where the
access to spare parts and professional mechanics is low. Moreover, in some cases
the repair work calls for a disassembly of large parts of the machine, and this is
difficult to accomplish in the field.

Since the implementation of a full-scale system was not realistic given the
limited time frame, we focused our attention on a number of key challenges,
and directed our efforts towards these. Moreover, we restricted our attention
to the detailed assembly of the service valve shown in Figure 1. We chose the
valve because it is of a manageable size, sufficiently generic not to constitute
a trade secret, and requires a varied range of operations to build. The valve
is also of practical interest: Depending on the configuration of the machine,
approximately 20 hydraulic hoses are connected to this valve using different
hydraulic couplings. A fault in the assembly of components similar to this service
valve can lead to leakage of hydraulic fluid, which can have a severe impact on
the local environment. Moreover, the service valve is placed low in the chassis
under the engine, and the repair of an assembly non-conformance is likely to
cause an extended downtime and a consequent loss of income for the machine’s
owner. Finally, since similar components are common in advanced machinery,
our results regarding the valve are likely to be transferable to other domains.

Recent surveys of support systems for the manufacturing industry have been
compiled in [7, 2]. The use of multimodal analysis has recently been investigate in
the case of human-guided robot assembly by Wan et al. [6]. The authors consider
a two-phase solution. In the first phase, the human operator demonstrates the
assembly, and in the second phase, the robot detects geometrical objects and
manipulates these to follow the operator’s instruction. To realise accurate 3D
vision, the system is guided by augmented-reality markers in the training phase,
and point clouds in the execution phase.

2 System description

The assembly support system receives its input video streams from two consumer-
grade web cameras. A Racer Kiyo (henceforth; Camera 1) with a built-in lighting
ring was used for the identification of components, and a Logitech C925E (Cam-
era 2) was used for the collecting the video stream of the assembly and video
analysis. The system was implemented in Python 3.6 with OpenCV for video
analysis and run on a laptop with Ubuntu 18.04. We trained the neural net-
works on a dedicated machine with two ASUS RTX2080ti graphics cards. The



An AI-enabled assembly support system for industrial production 3

Fig. 1. The object in focus for this project, a service valve for hydraulics.

component identification was based on TensorFlow and the pre-trained image
recognition network SSD-ResNet50.

The principal functionalities of the system are as follows:

– Identification of hydraulic connectors using a TensorFlow network
– Enumeration of possible mounting points for selected components, indicated

with an overlay drawn on top of a video stream.
– Detection of successfully mounted components
– Aggregation of assembly information, primarily image frames, for documen-

tation and future reference

2.1 User interface

The support system is designed to guide a human worker, not to control a
robot. For this reason, it is important that the worker retains their autonomy
and is free to make professional decisions. For example, a fixed workflow planned
for a right-handed worker is likely to be inconvenient for a left-handed person.
The type of small-series assembly represented by our use case involves a large
amount of domain knowledge, and it is important that the workers find their
work satisfying and can take pride in their skills. An overly controlling system
is likely to cause more irritation than benefit.

The main workflow of the assembly support system is as follows:

1. Initialise the system:
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Fig. 2. A screenshot of the user interface. Upper left: A video stream of the assembly
with suggested positions for the selected component (green circles) and marking of
already assembled components (blue crosses). Lower left: Component identification
with a separate camera. The component is tagged with the identification made by the
neural net. Upper right: Information about the component such as possible assembly
positions. Lower right: List view of the assembly stems. The finished ones are stroked
out. Possible options for the selected component are marked. At the bottom: A progress
bar that shows how much of the assembly is done.

(a) Check and confirm the orientation of the projected CAD drawing in the
video.

2. Main loop:

(a) Identify component using Camera 1.
(b) Suggest mount points for the component by augmenting in the video

stream from Camera 2.
(c) Verify the assembly using Camera 2 and give feedback to the user.
(d) Repeat from 2a until assembly is finished.

2.2 Component identification

The prototype system recognises ten different hydraulic couplings; Figure 3 de-
picts some of these. To identify the components an object-detecting convolution
neural network was used. During development of the prototype, different models
were evaluated based on performance. As previously mentioned this was done
with TensorFlow and the different models all used pre-trained weights publicly
available online.3 A data set of annotated images was also created in order to

3 https://github.com/tensorflow/models/blob/master/research/object_

detection/g3doc/detection_model_zoo.md
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Fig. 3. A subset of the hydraulic couplings included in the prototype. Notice how
some couplings (the ’L-shaped’ ones in this example) are relatively similar and easily
mistaken for each other. Therefore, attention to detail is important and the classifier
should be able to detect also small variations in the geometry.

train and test the models. The training examples were created through an auto-
mated process, where frames from simple video recordings of the couplings were
used to (i) find contours in frame and (ii) create bounding box annotations. The
images presented in Figure 3 are examples from the data set without bounding
boxes. This automated process gave us a large, but relatively homogeneous, data
set available with little effort.

In the end the SSD model with the ResNet50 feature extractor was chosen
to be used in this project. Other models tested was Faster-RCNN with vary-
ing feature extractors and Yolo v3. Model selection was done by a grid search
and cross validation. Specifically 5x5 cross validation was used to measure the
mean average precision across the following hyperparameters: (i) Batch Size,
(ii) Regularization term, (iii) Optimizer function, (iv) Learning rate, and (v)
Anchor box aspect ratios. To further increase the stability of trained models,
data augmentations was also used during training.

2.3 Video analysis and augmented video

The video analysis serves to project a CAD drawing in the video stream gener-
ated by Camera 2, in order to guid and instruct to the assembly worker. The
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same drawing is used to find regions of interest in the video, to detect progress
through the planned the assembly steps. A transformation matrix between the
drawing coordinate system and the video coordinate system is needed to make
the projection possible.

When the system is initialised, the position and the orientation of service
valve is detected in the video by searching for circles, which are the holes for the
connectors. The Hough circles function in OpenCV is used for this detection.
When the correct number of circles has been found in a number of subsequent
frames, a transformation matrix from the positions of the connector holes in
the drawing to the detected set of circles is calculated. The transformation is
evaluated by visual inspection from the user (”Is the model drawing correctly
displayed in the video?”). New transformations are tested until the user accepts
the transformation. When the transformation is accepted, the assembly work can
begin. That step of finding the holes is very light sensitive, and adversely affected
by, e.g., reflections – hence the need for the user to verify the transformation.

The system saves reference frame of the service valve as it looked before the
assembly. During the assembly process, the CAD drawing is projected onto the
video. For the most recently identified component, the possible positions are
indicated in the video with green circles. The video frames are analysed in areas
of interest around the positions for the couplings. When the subsequent video
frames are sufficiently similar (which most probably indicates that there are no
hands working in the image), the mean intensity values in the areas of interest
are compared to the same areas in the reference frame. If the intensity differs
more than a set value, it is assumed that something is mounted in that hole and
the hole is crossed out.

3 Analysis of non-conformance reports

Within the scope of the project, we have analysed data from Komatsu Forest’s
system for non-conformance reporting. The aim was to find patterns that can
help production management to prioritise among quality assurance measures.

3.1 Data

The data set consists of a spreadsheet matrix where each row represents one non-
conformance report (ncr). It has 21 577 rows. The 60 columns represent different
aspects of the non-conformance in question. The data types for the columns vary,
including text strings, category labels, numerical values, and values representing
choices from drop-down menus in the graphical user interface.

3.2 Delay times

A column of particular interest is ‘Störningstider’ (‘Delay times’), that represent
how much delay, measured in minutes, the non-conformance issue has caused.
Of the 21 577 ncr:s, 13 878 has a reported delay time. Finding factors that can
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Table 1. The number of available characters for each column and the average number
per ncr.

Characters Average

Describe the nc 274436 13

How shall we... 389123 18

Detailed descr. 1922466 89

Detailed descr. 2 1823324 85

predict long delays would be of great benefit. A problem in the analysis was that
some reported values do not seem to conform to the reality of the production
process. For example, the value 1 000 000 appears a number of time, correspond-
ing to almost two years. We here choose to disregard all reported values larger
than 10 000, leaving 13 770 ncr:s of interest.

We investigated the correlation between a number of other columns and the
delay times, but without finding statistically significant correlations. The two
exceptions were, unsurprisingly, the two columns ‘AvvikelseorsakId’ (‘Cause for
non-conformance’) and ‘AvvikelsekodId’ (‘Non-conformance code’).

3.3 Linguistic data

A number of columns contain text entered by the person who created the ncr.
These are the columns ‘BeskrivAvvikelsen’ (‘Describe the non-conformance’),
‘HurSkaViLösaAvvikelsenS̊aAttDenInteÅterkommer’ (‘How shall we handle the
non-conformance so that it is not repeated’), ‘DetBeskrivning’ (‘Detailed de-
scription’), and ‘DetBeskrivning2’ (‘Detailed description 2’). The free-text fields
are, relatively often left empty or filled in with short comments not suitable for
further analysis, e.g., ‘ok’. Table 1 shows how many characters in total were
available for the four columns and the average number of characters per ncr.

The amount of available data turned out to be a problem. We tried to train
models to predict delay times using the textual data. The results, however, were
not encouraging. It is hard to determine the exact cause of this, but we conjecture
that the amount of data is a major factor, as well as the poor quality of the data.

We also used Latent Dirichlet Allocation topic modelling to try to find pat-
terns in the textes. This method takes the text, or rather the word frequencies
in them, as well as a number k, and computes k “topics”, where each topic is
a probability distribution over the vocabulary. The results can only be qualita-
tively evaluated, but the method showed some results of interest for production
management. Table 2 shows the 10 most heavily weighted words for the top-
ics we got for the column ‘Describe the non-conformance’, when setting k = 5.
The first topic is clearly concerned with assembly errors. The second one has
more emphasis on problems with external deliveries and material. The third
topic has almost all the probability mass assigned to the tree words ‘inga’ (‘no’),
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Fig. 4. Distribution of ncr:s over the five “topics” mined from the texts from the column
‘Describe the non-conformance’.

‘avvikelser’ (‘non-conformancies’), and ‘funna’ (‘found’). The reason for this is
that the phrase “no non-conformancies found” is a very common entry. The
fourth topic is less unambigouos, while the fifth clearly focuses on damaged
parts. Figure 4 shows how the model distributes the ncr:s across the five topics.

Our judgement is that topic modelling has a potential to be useful for finding
new patterns in the ncr data. The amount of data available, as well as its quality,
is, however crucial. Also, further studies of the usability of topic modelling in
this setting would require close cooperation with domain specialists who can
assess how valuable the extracted information is to the target organisation.

4 Discussion

During the construction of the system prototype, we have earned insights about
what is technologically feasible, and a deeper understanding of the requirements
related to user experience and system design. It is clear that to make the system
successful, it is important to take a user-centric approach. The user should find
the system supportive and helpful – if it is perceived as too restrictive, it will
become a work environment problem.

In the long term, we think the system would be most easily accessed if
integrated as part of a protective head visor, complete with headphones and
microphone for natural-language interaction. Preliminary experiments with the
Microsoft HoloLens are promising, but the technology is still to immature to be
a viable alternative. Especially the weight of the headset and the narrow field of
view poses problems [5]. In the long term, retinal displays (which draw a raster
display directly onto the retina of the eye) are an interesting alternative [4].
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Table 2. The ten most heavily weighted words for each of the five topics mined from
the column “Describe the non-conformance”.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

maladjusted / 0.25 external / 0.29 none / 0.26 restat / 0.18 damaged / 0.26

unmarked / 0.23 supplier / 0.29 deviation / 0.26 assembly / 0.18 fits / 0.18

assembled / 0.19 unassembl. / 0.21 found / 0.26 marked / 0.15 skratches / 0.17

badly / 0.06 leakage / 0.13 additional / 0.06 filled in 0.09 broken / 0.14

tightend / 0.06 missing / 0.04 untightend / 0.04 error / 0.09 version /0.06

marked 0.06 layout / 0.03 wrongly sel. / 0.03 o-ring / 0.05 level / 0.06

wrongly att. / 0.05 material / 0.01 cleanliness / 0.03 damaged / 0.04 transport dmg / 0.04

late / 0.04 return / 0.01 unmarked / 0.03 attached / 0.04 unselected / 0.03

according to / 0.02 article / 0.01 own / 0.03 badly / 0.04 wrongly / 0.02

specific. / 0.02 waste / 0.02 marked / 0.02 unmarked / 0.04 improved / 0.02

The lighting conditions was a recurring problem throughout the project.
We experimented with different light sources to facilitate the video analysis. A
diffuse, stable light without shadows in the work area is preferable. A future
work station should probably have white screens around with indirect lighting.
As remarked by the manufacturing management, this is in line with the general
requirements on a well-lit workstation. The white balance also poses a challenge,
since we are looking for holes in a black object. A dark background gives a better
range for the light values in the image and simplifies the task.

There are many other candidate features that could be included in the assem-
bly support system. For practical use, a feedback system should be implemented:
At present, the system assumes that the worker mounts the component most re-
cently shown to Camera 1, and not some other component. A next step could be
to support the mounting of components that must be placed at a given angle,
by drawing a line with the correct angle on top of the video stream and then
verifying the the mounted components direction.

A question raised by manufacturing management is “Who should write the
assembly instructions?”. It is a recurring problem in specialised assembly that
the assembly instructions are of low quality. Sometimes they are given is an ex-
ploded view of the object without any directions, and the knowledge of how to
assemble certain parts must be memorised by the assembly workers. Our vision
is that the system should be integrated to the CAD system, with connection
to a component database and a standard procedure database. The construction
engineer could then, when designing the CAD model, import component and
standard-procedure data. The goal should be that the assembly support system
can import a simple wire-frame of the object, together with component infor-
mation to assemble and standard procedures about how the components should
be assembled.
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