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Abstract

Mobile Edge Clouds (MECs) are platforms that complement today’s centralized
clouds by distributing computing and storage capacity across the edge of the
network, in Edge Data Centers (EDCs) located in close proximity to end-
users. They are particularly attractive because of their potential benefits for
the delivery of bandwidth-hungry, latency-critical applications. However, the
control of resource allocation and provisioning in MECs is challenging because
of the heterogeneous distributed resource capacity of EDCs as well as the need
for flexibility in application deployment and the dynamic nature of mobile users.
To realize the potential of MECs, efficient resource management systems that
can deal with these challenges must be designed and built.

This thesis focuses on two problems. The first relates to the fact that
it is unrealistic to expect MECs to become successful based solely on MEC-
native applications. Thus, to spur the development of MECs, we investigated
the benefits MECs can offer to non-MEC-native applications, i.e., applications
not specifically engineered for MECs. One class of popular applications that
may benefit strongly from deployment on MECs are cloud-native applications,
particularly microservice-based applications with high deployment flexibility.
We therefore quantified the performance of cloud-native applications deployed
using resources from both cloud datacenters and edge locations. We also de-
veloped a network communication profiling tool to identify the aspects of these
applications that reduce the benefits they derive from deployment on MECs,
and proposed design improvements that would allow such applications to better
exploit MECs’ capabilities.

The second problem examined in this thesis relates to the dynamic nature
of resource demand in MECs. To overcome the challenges arising from this
dynamicity, we make use of statistical time series models and machine learning
techniques to develop two workload prediction models for EDCs that account
for both user mobility and the correlation of workload changes among EDCs
in close physical proximity.

iii





Preface

This thesis contains a brief introduction to Mobile Edge Clouds (MECs) infras-
tructures, a discussion on the challenges and problems to resource management
in MECs, and the following papers†:

Paper I Chanh Nguyen, Amardeep Mehta, Cristian Klein, and Erik Elm-
roth. Why Cloud Applications Are not Ready for the Edge (yet).
4th ACM/IEEE Symposium on Edge Computing (SEC 2019), to
appear, 2019.

Paper II Chanh Nguyen, Cristian Klein, and Erik Elmroth. Location-
aware load prediction in Edge Data Centers. 2nd IEEE Interna-
tional Conference on on Fog and Mobile Edge Computing (FMEC
2017), pp. 25-31, IEEE, 2017.

Paper III Chanh Nguyen, Cristian Klein, and Erik Elmroth. Multivariate
Long Short-term Memory based Location-aware load prediction in
Edge Data Centers. 19th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (IEEE/ACM CCGrid 2019),
pp. 341-350, IEEE, 2019.

This work was partially supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg
Foundation.

†The included articles have been reformatted to comply with the thesis layout.
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Chapter 1

Introduction

1.1 Background and Research Motivation

Thanks to remarkable advances in Artificial Intelligence (AI), Internet of Things
(IoTs), and mobile technologies, recent years have seen a wave of disruptive
applications and services in domains as varied as health care [1], industrial
process control [2], intelligent transportation [3], and entertainment [4]. Un-
like traditional cloud applications, these emerging applications are extremely
latency-sensitive, produce massive quantities of data that is only of local in-
terest, and require significant data processing capabilities as well as privacy
guarantees.

Fifth generation (5G) wireless networks promise to deliver high performance
in the form of extremely high bandwidth and ultra-robust low latency, with
round-trip latencies below 1 ms [5]. These disruptive capabilities make it likely
that 5G will be a perfect tool for overcoming many barriers to the success of
emerging applications. However, there is an intrinsic problem with the current
application deployment mechanism in which application-hosting nodes (i.e.,
centralized data centers) are located at a large distance from the end-users. As
shown in Figure 1.1, the network traffic associated with cloud applications may
have to traverse three different network layers:

• The last-mile: the link between the end-user and the edge network of an
Internet Service Provider.

• The aggregation: the link between the edge network and the point at
which the Internet Service Provider hands off the aggregated traffic to
various network points of another provider.

• The core network : where off-premises or cloud data centers are situated.

Technically, congestion in the last-mile can be mitigated by deploying new
broadband and radio access technologies such as 5G that increase the available

1



Aggregation
La

st 
mile

External Networks
Core network

Centralized Cloud

Figure 1.1: Congestion in the core network.

bandwidth. However, congestion can easily occur in the aggregation and core
network if the aggregated demand exceeds the bandwidth available in these
parts of the network. Because of this problem, modern telecoms networks
are expected to cope poorly with the enormous and rapidly varying capacity
demands that will arise in the near future.

For example, large-scale and industrial IoT systems such as those used in
smart cities or oil pipeline monitoring. These systems typically feature millions
of network-connected sensors that generate vast streams of data to support
online analytics and real-time decision-making. As predicted by Ericsson and
Cisco [6, 7], by 2021 there will be around 28 billion devices connected to the
Internet (including 16 billion IoT devices), generating almost 850 zettabytes of
data. Most of data generated by IoT devices is local in scope. That is to say,
it is used for local purposes such as coordinating the movements of self-driving
cars at a specific traffic hotspot, evaluating gas transmission pipeline state
information, or exercising intelligent control over industrial processes in smart
factories. It is extremely costly to transmit the large amounts of data generated
by these devices to a centralized datacenter where data processing services are
deployed. Additionally, transmitting such data can easily cause congestion
in the aggregation and core networks if the aggregated demand exceeds the
network capacity, and network latency and jitter can hurt latency-sensitive
applications, resulting in potential damage to people and the environment.

High response times also cause significant performance problems for state
of the art human-computer applications such as Virtual and Augmented Re-
ality (VR, AR) applications and interactive online games that use computing
resources located in distant datacenters. A compelling AR system must sup-
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port High-Dynamic Range to ensure that the appearance of its virtual objects
is spatially and temporally consistent with the real world. This requires a la-
tency of no more than 10 ms [8]. Recent measurements indicate that typical
network latencies between end users and public cloud datacenters are at least
20–40 ms over high-quality wired networks, and on the order of 100–250ms over
a 4G network connection [9]. These latencies are too high for VR and AR ap-
plications to deliver instantaneous responses that appear natural to end-users
because delivering such responses requires large volumes of data to be rapidly
processed using complex technologies such as 3D rendering and machine vision.

There has recently been an explosion of edge content services such as
YouTube Live, Facebook Live, and video surveillance that generate large quan-
tities of high definition video data (e.g., live streams of sporting events). Cur-
rent technologies that use a centralized datacenter architecture to process and
deliver content of this type to millions of users are inefficient for three main
reasons. First, forwarding such large quantities of data to the centralized dat-
acenter places huge pressure on the core network. Second, in some cases, the
aggregated latency between the distant datacenter and the end-users can cause
a poor quality of service. Third, there is a high risk that transmitting such data
will violate local network privacy policies due to a lack of location awareness
and data privacy protection [10].

Modern cloud computing platforms have been widely used over the last
decade because of their ability to offer computing services on demand at a low
cost [11]. Many organizations have exploited the benefits they offer in terms
of IT efficiency and business agility by deploying or migrating various appli-
cations to cloud platforms, including web servers, data processing tools, and
batch job applications. However, cloud resources are centralized in a relatively
small number of large datacenters located far from end-users, which implies an
increase in network latency and jitter [12]. These issues are the Achilles’ heel
of cloud platforms, and make them unable to meet key requirements for the
successful wide-scale use of mobile and IoT applications. Accordingly, studies
on the impact of cloud deployment on the performance of IoT applications
have shown that current compute clouds are sub-optimal for such applications
because of the high latency and poor connectivity caused by long-distance com-
munication [13, 14].

To address these challenges, current cloud computing systems must undergo
a paradigm shift aimed at reducing overall network latency and jitter, mini-
mizing the central cloud’s ingress bandwidth requirements, and increasing reli-
ability and flexibility in deploying and removing network functions in response
to users’ demands. As a result, recent years have seen a transition towards a
new type of computing infrastructure called Mobile Edge Clouds (MECs) in
which resource capabilities are distributed at the edge of the network, in close
proximity to end-users. This wide geographical distribution of resources allows
MECs to complement existing large-scale cloud platforms, making it possible
to perform computation and data processing both at centralized datacenters
and at the network edge. Computation and processing at the network edge
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is achieved by exploiting the compute capacity of small servers or datacenters
known as Edge Data Centers (EDCs) that are attached to radio base stations.
Several concepts similar to MECs have been proposed, including Cloudlets [15],
Fog Computing [16], Follow me Cloud [17], and Telco Cloud [18].

1.2 Characteristics of Mobile Edge Clouds

Figure 1.2 depicts an MEC system in which EDCs with heterogeneous scales
and costs are distributed in close proximity to end-users in a wireless access net-
work. This enable MECs to provide computation and storage capabilities with
higher bandwidth and lower latency than would be possible for a centralized
cloud. MECs also offer users other attractive benefits, such as the ability to
run locally-targeted, context-aware services on EDCs that are closely-coupled
to the radio network. This is particularly valuable for services that require
guaranteed robust or low-latency communication, send a lot of data from end-
user devices, or require analysis of enormous amounts of data immediately after
its capture. It also allows network operators to provide additional value-added
services and improve the experience of end users while alleviating security and
privacy concerns. MECs have the following key characteristics:

Ultra low latency. Because their resources are physically close to end
users, MECs can take advantage of 5G networks to achieve extremely low
latency (on the order of several milliseconds).

Highly distributed and heterogeneous resources. The Edge Data
Centers of MECs are distributed in different geographical locations and at
different hierarchical levels within the wireless access network (i.e., at cellular
base stations and access points). Further, unlike centralized datacenters, EDCs
vary in scale and in terms of their processing and storage resources as well as
their level of network connectivity and bandwidth.

Local network status awareness and local user context awareness.
Since MECs’ resources are deployed at the edge of the network, they can access
real-time wireless network and channel information. Applications deployed on
MECs can thus leverage location and user context data to provide a better
service that is more accurately targeted to the end-user’s circumstances (e.g.,
traffic assistance applications can give more accurate and helpful traffic infor-
mation at a hotspot to specific end-users close to that hotspot).

Support for mobility. End-users typically access MECs via mobile de-
vices and often change their points of attachment to the network. Therefore,
mobility support is critical for MECs.

Interplay with central clouds. MECs complement traditional central
clouds. Because their resources are distributed in the vicinity of the end-users,
MECs can provide localized processing with context awareness and low latency.
Conversely, more distant centralized clouds have much greater computing and
storage capabilities, while being less costly than MECs because they are located
in more sparsely-populated areas with access to cheap electricity and cooling.
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Figure 1.2: An illustrative MEC platform showing the association between
client and service entities.

Many applications and services may need to exploit the resources of both MECs
and distant clouds.

1.3 Research Problems and Objectives

MECs are emerging as novel computing platforms designed to overcome barri-
ers to the success of new application types that we refer to as “MEC-native”
applications. However, it is unrealistic to expect MECs to become success-
ful based on these applications alone because MEC-native applications are
unlikely to be extensively developed before MECs become widely available.
MEC providers should therefore focus on the benefits MECs can offer to non-
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MEC-native applications. A promising class of applications that may benefit
greatly from deployment on MECs are cloud-native applications, particularly
microservice-based applications with high deployment flexibility. Therefore,
the first research objective of this thesis, RO1, was to answer the following
two research questions:

1. How much can cloud-native applications benefit from latency reduction
when deployed on MECs?

2. How should cloud-native applications be engineered to maximize these
benefits?

Second, because they are designed to provide low-latency services and re-
duce network traffic to the central cloud, MECs basically attempt to provision
end-users with resources from physically nearby EDCs. Therefore, the resource
demand at each EDC depends heavily on the mobility behavior of nearby users.
The number of end-users concurrently requiring services from a specific EDC
may vary considerably. This user mobility together with the resource het-
erogeneity and wide geographical distribution of the infrastructure create new
kinds of challenges in resource management. An important problem in the
management of MECs is how to decide where the computation for each user
should be performed, what resources should be allocated, and how much of
each resource is needed, taking into account the unpredictability of user mobil-
ity behavior and the dynamic properties of the network. When a user requests a
cloud service, that service may run either in the centralized cloud or in an MEC.
Additionally, there may be multiple servers or datacenters within the central-
ized cloud or within individual MECs. It is therefore necessary to identify the
optimal combination of resources to run the service. In addition, the user may
move between geographical areas, so it is also important to decide whether and
where to migrate the service as the user’s location and/or the network state
changes. The time taken to select and enact these resource management ac-
tions is important, especially when resource usage is likely to vary rapidly, as
is common in MECs. Given these challenges, MECs require autonomous re-
source management systems that can continuously monitor workload dynamics
and adapt to changes by continuously optimizing resource allocation. The ac-
quired resources must be transparently provisioned and ready to use so as to
meet users’ expectations. Because of these needs, the second research objec-
tive, RO2, was to develop an efficient workload prediction mechanism that can
understand the characteristics of a workload, anticipate the likely variation in
workload at EDCs, and help the resource management operator to proactively
identify and make important management decisions.

The main research objectives of this thesis are thus:

RO1 To quantify the benefits MECs can provide to non-MEC-applications.

RO2 To develop a workload prediction algorithm for Edge Data Centers.
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1.4 Research Methodology

The work presented in this thesis primarily involved experiments on emulated
and simulated systems.

To address RO1, we configured emulated Edge Clouds and studied the
network delay between end-users, edge locations, and a distant centralized
datacenter. To this end, we deployed two benchmark applications located on
different resources, together with a workload generator to generate load on the
servers. We then measured the response times of the deployed applications on
the loaded servers.

To address RO2, we used machine learning techniques and statistical meth-
ods to develop a model for workload prediction in MECs. To evaluate the
model, we emulated two MECs, one with a hexagonal topology and another
based on the real geographical distribution of cellular base stations from a
particular area. To simulate the load on the EDCs, we use two real mobility
traces.

1.5 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 provides a brief
overview of the main challenges facing MECs, introduces MAPE-K feedback
loop autonomic resource management, and briefly reviews state-of-the-art tech-
niques for resource management in MECs. Chapter 3 summarizes the contri-
butions of each paper included in the thesis. Finally, Chapter 4 presents some
suggestions for future work building on the results presented here.
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Chapter 2

Resource Management in
Mobile Edge Clouds

MECs are still in their infancy, and their infrastructure configuration has yet
to be standardized. Therefore, most research on MECs has primarily focused
on the concept of the MEC and its characteristics, as well as application sce-
narios [19, 20, 21]. In this chapter, we first describe the resource management
challenges associated with MECs. We then introduce the MAPE-loop for au-
tonomous resource management, which can be used to overcome these chal-
lenges. Finally, we present a literature review of previous efforts to address
these challenges and develop different resource management mechanisms for
MECs.

2.1 Resource Management Challenges

The key disruptive transformation of the MEC concept is the decentraliza-
tion of the compute, storage, and networking resources of a cloud system and
their redistribution towards the edge of the network, closer to the end-users,
in ”micro” data centers (i.e., data centers with lesser resource capabilities than
a centralized cloud data center). This generates many benefits by reducing
latency and mitigating bandwidth limits, unlocking the potential of new ap-
plication types including IoT applications, autonomous vehicle systems, and
AR/VR applications [14, 13]. However, the combination of the intrinsic char-
acteristics of MECs with the inherent characteristics of clouds creates several
challenges for resource management operators:

Highly Distributed and Heterogeneous Resource Capacity. The
benefits MECs gain by moving computing resources toward the edge of the
network are clear. However, the highly distributed and heterogeneous nature
of MECs introduces difficult challenges in resource management. The new
platform infrastructure may feature tens of large data centers and thousands of
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micro data centers of various sizes colocated with radio base stations separated
by 1 to 10 km. As a result, centralized strategies for monitoring system behavior
and workload dynamics, and for resource allocation, may perform poorly in
MECs despite being very efficient in centralized clouds.

User Mobility. To deliver low latency services and direct network traffic
away from the central cloud, MECs seek to provision end-users with resources
from EDCs located in the end-user’s vicinity. The resource demand at each
EDC therefore depends heavily on users’ mobility behavior. The number of
end-users concurrently requiring services from a specific EDC may exhibit large
temporal fluctuations, causing load variation. The users’ mobility behavior
together with the inherent resource heterogeneity of MECs and the wide geo-
graphical distribution of the infrastructure create new challenges for resource
management operators. The fundamentally intertwined questions of how many
resources to allocate, where to place different application services among the
available EDCs, and when to activate various resource management actions are
inherently difficult to solve due to the scale, complexity, and dynamics of both
infrastructure and applications.

More Flexibility in Deploying Software. Cloud applications are in-
creasingly engineered as sets of multiple loosely-coupled fine-grained software
components, each requiring different resources. To maximize the benefits of
MECs, these components can be deployed on diverse resources ranging from
centralized datacenters to edge locations. However, such deployment flexibil-
ity introduces significant challenges in analyzing, predicting and controlling
resource allocations to optimize cost and energy efficiency while delivering the
expected end-user Quality of Service.

2.2 A MAPE-K-based Autonomous Resource
Management

The aim of resource management operators is to ensure that the reliability,
availability, and performance targets of the MEC platform are met while min-
imizing costs and energy consumption. The challenges mentioned above make
traditional centralized resource management strategies that rely on human in-
tervention impractical [22, 23]. It is therefore be important to develop au-
tonomic resource management strategies in which both the system’s behavior
and its workload dynamics are continuously monitored, and the monitoring
data are used to automatically adjust resource allocations (in terms of both
size and type) and the system’s behavior in response.

An autonomic system is defined as a hierarchy of self-governing components,
each of which consists of multiple interacting, autonomous components [24].
While the fundamental principles of autonomic systems are relatively well un-
derstood, the extreme scale, complexity, and dynamicism of MECs makes the
practical implementation of those principles difficult [25].
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The following sections introduce the individual components of a MAPE-
K (Monitor, Analyze, Plan, Execution, and Knowledge) autonomic controller.
To show how MAPE-K could be used to implement a dynamic adaptation
policy and strategy, we present a proactive auto-scaler for MECs as a running
example.

A proactive auto-scaler: Resource usage in datacenters fluctuates over time
depending on end-users’ demands. The purpose of an auto scaler is to dynami-
cally adapt the resources assigned to an application depending on its workload
so as to keep the response time for end user requests below some predefined tar-
get value while maximizing resource utilization. A major issue in resource pro-
visioning is delay. For example, the average startup time of a Virtual Machine
(VM) was determined to be 10 minutes [26], and containers hosting stateful
applications may need several minutes [27] to replicate state until additional
capacity is available to serve users. Because of this unavoidable startup time, a
simple threshold-based reactive auto-scaler may be slow to converge to the ca-
pacity levels needed to meet current demand. It would therefore be desirable to
have a proactive auto-scaler capable of predicting and provisioning the required
resources in advance so they are ready to use within the user expectation.

To deliver low response time services, end-users of MECs are connected
to EDCs located in their vicinity. The resource demand at individual EDCs
will therefore fluctuate depending on user mobility. The proactive MAPE-K
auto-scaler was designed to accommodate these fluctuations in MECs. This
scaler is activated every 10 minutes to pro-actively provision/de-provision re-
sources (e.g., CPUs) at each EDC. It also continuously monitors the system’s
workload and performance, using both as inputs to determine the number of
CPUs that should be allocated to the hosted applications in order to maintain
a low response time. The following subsections describe the individual com-
ponents of a MAPE-K controller and their implementation in the proposed
auto-scaler.

2.2.1 Monitor

The Monitor component samples the system’s behavior and tracks the per-
formance of running applications. The frequency of data acquisition by the
Monitor component is predefined, typically on the basis of Shannon sampling
theory [28]. Many monitoring systems and tools have been developed for dy-
namically monitoring systems with various objectives. For example, Amazon
CloudWatch∗ is a monitoring and management service that gives developers,
system operators, and IT managers actionable insights into running applica-
tions and system-wide performance. Similarly, NetLogger [29] is used to moni-
tor and collect information on networks. GridEye [30] is a service-oriented mon-
itoring system using in grid environments and other contexts. Prometheus [31]
is an open source metrics-based monitoring system that is widely used in dis-
tributed systems. It provides a simple yet powerful data model based on time

∗https://aws.amazon.com/cloudwatch/
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Figure 2.1: An MAPE-K loop Resource Management system in an MEC.

series and a flexible query language (PromQL) that facilitates analysis of the
performance of deployed applications and computing infrastructure. Time se-
ries of different metrics are collected from endpoints that expose them and
accessed using a pull model over HTTP. Monitoring the performance of com-
plex distributed systems such as MECs and the applications running on them is
difficult because of the unique characteristics of these systems. Brandon et al.
presented FmonE [32], which is a lightweight, user-adjustable monitoring tool
designed for MECs and Fog systems. FmonE uses a container orchestration
system to create monitoring pipelines that are adapted to the unique features
of an MEC’s infrastructure.

In the auto-scaler, the Monitor component periodically gathers different
metrics relating to the system and the current state of the hosted applications
such as their workload, resource usage (e.g., CPU utilization per VM, memory
usage, etc.) to facilitate analysis of the system and early detection of anoma-
lies. The gathered data is stored in the form of time series, i.e., streams of
timestamped values representing the same metric and the same set of labeled
dimensions in the Knowledge database for further processing and analyzing by
other components.

2.2.2 Analyze

The Analyze component provides the mechanisms used to observe and analyze
situations to determine whether some change should be enacted [33]. To sup-
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port decision-making by the Plan component, an autonomic manager must be
able to perform complex data analysis and reason about the symptoms cap-
tured by the Monitoring component. To this end, the Analyze component uses
complex models such as time series models, statistical models, and machine
learning techniques to capture the static and dynamic characteristics of the
system’s hardware and software components, as well as the behavior of the real
workload it processes.

In the case of the auto-scaler, the historical workload time series of EDCs
recorded by the Monitor component are analyzed by using various statistical
models and data mining techniques to extract recurring patterns related to
workload characteristics, such as times when demand rises or falls during the
day or over the course of the week. Based on these findings, an efficient work-
load prediction model is developed that reflects the dynamics of the workload,
making it possible to anticipate variations in the workload of individual EDCs.
Since the auto-scaler is activated once every 10 minutes, the predictive model
must respond rapidly (e.g., within several seconds) and be very accurate to
enable the Plan component to proactively plan for resource provisioning/de-
provisioning in the EDCs. The predicted workload and the current state of
the EDCs (e.g., their queue lengths, average response times, etc.) are the in-
puts that the performance modeler uses to estimate the resources (e.g., CPUs)
required at each EDC in the next 10-minute window.

2.2.3 Plan

The Plan component is responsible for planning mitigation actions that will
allow the managed system to adapt to predicted changes. Using the results
generated by the Analyze component together with predefined target perfor-
mance indicators relating to variables such as throughput and response times,
the autonomic manager structures actions (e.g., admission control, resource
allocation, migration, etc.) to ensure the system meets its performance targets
while minimizing costs and energy consumption.

In our running example, the Plan component takes as input the estimated
resource requirements of each EDC and converts this information into planned
actions such as ‘add x resource to EDC#1 and remove y resource from EDC#2 ’.

2.2.4 Execute

The Execute component is responsible for scheduling and performing the planned
adaptation actions. The execution of the plans also involves updating the
Knowledge database that can be used by all components of the autonomic
manager.

In our example, the Execute component uses some predefined APIs or mid-
dleware to communicate with the hardware or virtualization layer to enact the
actions chosen by the Plan component.
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2.2.5 Knowledge

The Knowledge component stores data with an architected syntax and seman-
tics, such as topological information, historical logs, policies, change requests,
and change plans. In a complete loop, knowledge from other components is also
stored. For example, the Monitor component generates knowledge about recent
activities by logging the notifications it receives from a managed resource. Sim-
ilarly, the Execute component might update the knowledge base with records of
actions taken in response to the output of the Analysis and Plan components,
making it possible to trace the actions’ effects on the system. The Knowledge
can be shared with all of the autonomic manager components mentioned above.

In the auto-scaler, the Knowledge component stores historical time series
of the different metrics traced by the Monitor component, and also records the
success or failure of previous decisions so as to improve the quality of subsequent
decisions.

2.2.6 Multiple MAPE-K loops

In large, complex, and highly geo-distributed systems such as MECs, a fully
centralized MAPE loop may be a poor solution because it could introduce a sin-
gle point of failure and a bottleneck for scalability [25]. It is therefore necessary
to investigate different MAPE patterns to design multiple MAPE loops that
decentralize the components of each individual MAPE loop. Potentially suit-
able patterns include the Master-slave pattern, Coordinated control pattern,
and the Hierarchical control pattern [34], as shown in Figure 2.2.
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Figure 2.2: Different MAPE loop control patterns.
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2.3 Review of the Literature on Resource Man-
agement in MECs

The characteristics of MECs present major challenges for resource management
operators, as discussed above. This section reviews the efforts that have been
made to address these challenges and to develop automated resource manage-
ment mechanisms for MECs. We initially consider research on the Capacity
Sizing problem, which requires the resource management operator to decide
what type and quantity of resources should be reserved to meet an application’s
Quality of Service requirements. Second, we review work on the Application
and Workload Placement problem, which is the problem of deciding where and
when to deploy a service within the heterogeneous resource capacity of an MEC
so as to achieve efficient resource utilization.

2.3.1 Capacity Sizing

One critical challenge facing the operators of any computing infrastructure
is to consistently meet end-users’ expectations while minimizing operational
costs. The intertwined question of what and how many resources to allocate
to each hosted application is not trivially answered. This is especially true
for MECs, whose infrastructure makes these challenges much more severe than
they are in conventional cloud systems. To solve this problem, it is necessary to
think outside the box and employ concepts from multiple disciplines including
feedback control loops, data analytics, and optimization techniques. A recent
literature review [21, 35] highlighted the vast efforts that have been made in
both academia and industry to solve the resource allocation problem.

Yin et al. proposed a task scheduling and resource allocation tool for delay-
sensitive and high-concurrency applications in fog computing systems that is
based on container technology [36]. This tool uses the delay constraints of
the managed tasks to schedule and allocate resources from edge nodes or a
centralized datacenter based on the objective of ensuring that the response
times of the managed tasks remain below predefined thresholds. Chen et al. [37]
proposed a framework consisting of a computation offloading mechanism and
a joint communication and computation resource allocation method for the
network operator. Based on predefined user ranking criteria, this framework
can deliver performance guarantees for the managed applications.

Another effort to address the capacity sizing problem was presented by
Mehta et al. [38], who developed a two-tier scheduler for allocating runtime
resources to Industrial Internet of Things applications in MECs. A high-level
scheduler is responsible for application admission and migration to meet long-
term performance goals, while a low-level scheduler decides which application
will occupy the runtime resources in the next execution period.

Using the concept of the MAPE feedback loop, Cardellini et al. [25] pro-
posed a hierarchical decentralized resource allocation framework for data stream
processing applications. The framework is based on a two-layered approach in
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which timescale-related issues are handled separately from other concerns. The
lower layer is responsible for controlling the adaptation of data stream process-
ing operators by means of scaling and migration actions, while the higher layer
is a centralized component that oversees general application performance.

Differently from these efforts, the approaches we present in Papers II and
III begin by considering the correlation of changes in the workloads of neigh-
boring EDCs in order to predict each EDC’s workload in the near future. This
approach yielded highly accurate predictions, showing that the proposed meth-
ods could be used to develop an efficient proactive auto-scaler to provision and
de-provision resources in MECs as required to meet end-users’ demands.

2.3.2 Application and Workload Placement

Cloud applications are increasingly engineered as sets of interacting compo-
nents, each of which may require different kinds and quantities of resources to
perform well. The increased deployment flexibility offered by MECs could in
principle be very beneficial for such applications because their individual com-
ponents could be deployed at different resource levels (ranging from the cen-
tralized datacenter to edge datacenters) provided that the application’s overall
performance goals are met. For example, a typical face recognition application
will have face detection, image processing, feature extraction, and face recogni-
tion components. The face detection component is deployed on the end-user’s
device, the image processing and feature extraction components could be de-
ployed at the edge datacenter, while the face recognition component could be
deployed on the centralized distant datacenter. This distribution of compo-
nents over available resources is a solution to the service placement problem
for this hypothetical application. In general, the service placement problem is
the problem of deciding where an application’s services should be placed (and
executed) within the hierarchy of the datacenter or cloud system; in the case
of an MEC, each component of a cloud application could be placed anywhere
from a centralized distant datacenter to an EDC near the user. The service
placement problem in MECs is complicated by several factors not found in
conventional clouds, including the limited coverage area of base stations, the
dynamic nature of mobile users, and network background traffic. Nevertheless,
it must be solved well because poor solutions can adversely affect the Quality of
Service experienced by end users, potentially causing significant costs for both
the application provider (due to unnecessary use of expensive resources) and
the resource provider (as a consequence of repeatedly performing replacement
actions due to poor initial placement decisions).

Tong et al. [39] attempted to solve the mobile workload placement problem
in the hierarchical architecture of an edge cloud. They first designed a hierar-
chical edge cloud architecture that enables the aggregation of peak loads across
various tiers of the edge cloud servers. An analytical model was then created
to compare the efficiency of resource utilization between such hierarchical de-
signs and a flat infrastructure. Additionally, to minimize the average program
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execution delay, the authors developed an optimization algorithm that adap-
tively decides which edge cloud server a program should be deployed on and
how much compute capacity should be allocated to it. Tarneberg et al. [40]
presented a holistic algorithm for dynamically placing applications in MEC in-
frastructures. To minimize global system costs, the algorithm takes account
of factors including the network link capacity, user expectations in term of
latency, user mobility, and server provisioning costs. Taking a social Virtual
Reality application as a potential “killer app” for emerging MECs, Wang et
al. [41] introduced ITerative Expansion Moves (ITEM) to solve the combina-
torial optimization problem for service entity placement. In [42], Wang et al.
modeled users, a multi-component application, and physical MEC resources as
graphs and considered service placement for a linear application graph with
the goal of minimizing peak resource utilization for both compute resources
and network links. To this end, the authors proposed online approximation
algorithms for lacing tree application graphs onto tree physical graphs. Tak-
ing into account stochastic user mobility, Ouyang et al. [43, 44] proposed effi-
cient heuristic algorithms to optimize long-term time-averaged migration costs.
In [43], the authors proposed a novel mobility-aware online service placement
framework to achieve a desirable balance between user latency and migration
cost. Additionally, in [44], the authors proposed a joint service placement and
routing algorithm designed to minimize total service placement costs.

All of the works discussed above focused primarily on MEC-native appli-
cations, i.e., applications engineered specifically to run on MECs. However,
to encourage investment in MECs, it will be necessary to show that they can
also benefit more diverse applications and services, such as cloud-native appli-
cations. To this end, the work presented in Paper I evaluates the performance
of selected cloud-native applications when deployed on MECs using resources
from various levels of the hierarchical infrastructure, ranging from the central-
ized datacenter to edge locations.
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Chapter 3

Summary of Contributions

This thesis focuses on two main issues. The first is the potential for improving
the performance of cloud applications by deploying them on MECs. MECs
have emerged as distributed platforms that can complement existing cloud
systems to overcome barriers to the success of MEC-native applications (e.g.,
IoT applications, autonomous vehicles, etc.). Much of the literature in this area
focuses only on ”killer apps” that could drive investment in MECs, such as IoT
applications and augmented reality systems. However, given that the adoption
of traditional clouds was fostered by legacy, non-cloud-native applications, we
argue that MECs need also to provide benefits to non-MEC-native applications.
Failing to do so risks creating a deadlock whereby infrastructure investment is
slow due to a lack of MEC-native applications, and development of MEC-
native applications is postponed until more MECs become available. Paper I
addresses this issue by testing the potential for cloud applications to leverage
the strengths of MECs to improve their performance in terms of end-to-end
response time.

The second issue addressed in this thesis is the lack of reliable tools for
workload prediction in MECs. To achieve the objectives of providing services
with low latency and minimizing network traffic to the central cloud, MECs
rely on the resources of EDCs located in close proximity to the end user. There-
fore, the resource demand at any given EDC depends heavily on users’ mobil-
ity behavior. The fundamentally intertwined questions of how much resource
to allocate, where to place different application services among the available
EDCs, and when to activate various resource management actions are inher-
ently difficult to solve due to the scale, complexity, and dynamics of both MEC
infrastructure and applications. To address this, we investigated the design
and implementation of algorithms for efficient autonomous resource manage-
ment in MECs. Papers II and III introduce two workload prediction algorithms
that can be used to estimate the resource usage in EDCs in advance, enabling
informed decision-making and the selection of effective management actions to
ensure the EDCs consistently satisfy their Quality of Service (QoS) require-
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Figure 3.1: Contributions made by this thesis and future work to build on the
results obtained.

ments while maximizing resource utilization.

3.1 Paper I

Chanh Nguyen, Amardeep Mehta, Cristian Klein, and Erik Elmroth. Why
Cloud Applications Are not Ready for the Edge (yet). In Proceedings
of the 4th ACM/IEEE Symposium on Edge Computing (SEC 2019), to appear,
2019.

In Paper I, we address RO1 by quantifying the benefits of deploying cloud-
native applications on MECs. Two commonly cited potential benefits of MECs
are lower latencies and lower core network bandwidth consumption. In this
work we focus on latency because many end-user-facing cloud-native applica-
tions need low end-to-end response times; several studies have identified neg-
ative correlations between response times and revenues. To determine the im-
pact of MEC deployment on latency, we emulated an MEC infrastructure with
a distant datacenter and an edge datacenter. We focused on microservice-based
applications because of their flexibility in deployment. Using two popular cloud
benchmarks, SockShop and Web Serving, we empirically measured performance
– specifically, end-to-end latency – under different deployment configurations,
using resources from both distant datacenters and edge locations. Extensive
experimentation revealed that against conventional wisdom, end-to-end latency
does not improve significantly even when most services are deployed in an edge
location. To explain these findings, we developed a network communication
profiling tool and applied it to the two benchmarks to determine why they
do not benefit from MEC development. It was found that these cloud-native
applications tend to make many transactions between the user services and the
corresponding database services when responding to end-user’s requests. Con-
sequently, deploying these services separately in different MEC layers causes
poor application performance. This is an intrinsic problem that restricts the
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scope for migrating such cloud-native applications to highly distributed envi-
ronments such as MECs. We also investigated the communication patterns
of current cloud-native application architectures to identify potential design
improvements that would make it possible to take advantage of MECs. We
addressed this problem at two levels: the application level and the network
communication protocol level.

I was the main author; I contributed to the formulation of the problem,
conducted the experiments, and helped write the paper. Amardeep Mehta helped
design the Web Serving experiments and wrote the section of the paper dealing
with the Web Serving results. Cristian Klein and Erik Elmroth had advisory
roles that included discussions about the problem formulation, methods, exper-
iments, and the presentation of the results.

3.2 Paper II

Chanh Nguyen, Cristian Klein, and Erik Elmroth. Location-aware load
prediction in Edge Data Centers. In Proceedings of the 2nd IEEE In-
ternational Conference on on Fog and Mobile Edge Computing (FMEC), pp.
25-31, IEEE, 2017.

In MECs, the operator’s ability to perform capacity adjustment and plan-
ning is complicated by the bounded coverage radius of the base station, the
limited capacity of each EDC, and the mobility of users. It would therefore
be highly desirable to develop a self-managed system for MECs efficiently de-
cides how much scaling is needed, when it should be activated, and where to
place and migrate services. However, such a system would require an accurate
and reliable method of predicting the characteristics of the MEC’s workload,
including its variation in time and space.

In Paper II, we address RO2 by proposing a location-aware workload pre-
diction tool. The fact that EDCs are located in the near vicinity of users means
that changes in the workloads of nearby EDCs may be strongly correlated (for
example, when a user moves from the area served by one EDC to an area
served by another, the first EDC’s workload will fall while that of the other
will increase). This information could in principle be exploited to improve the
accuracy of load prediction in MECs. The developed tool therefore predicts
the load of each individual EDC based on its own historical load time-series
(as is done for centralized clouds) as well as those of its neighboring EDCs.
This is done using the Vector Auto Regression (VAR) Model, which exploits
the correlations between the load time-series of adjacent EDCs.

To evaluate our approach, we used real world mobility traces for taxis in San
Francisco, USA to simulate the load in each EDC. We emulated a MEC plat-
form consisting of a cellular infrastructure of 37 cells arranged in a hexagonal
grid covering the area of San Francisco. Each cell contained one EDC providing
services to all end-users within that cell. Our proposed algorithm achieved an
average accuracy of 93% in the experiments, outperforming the state-of-the-art
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alternative by 4.3%. Given the scale of MECs, such an improvement in pre-
dictive performance could yield significant gains in the efficiency of resource
allocation, and thus substantial cost savings.

I was the main author; I contributed to the formulation of the problem,
conducted the experiments, and wrote the paper. Cristian Klein and Erik Elm-
roth had advisory roles that included discussions regarding problem formulation,
methods, experiments, and presentation of results.

3.3 Paper III

Chanh Nguyen, Cristian Klein, and Erik Elmroth. Multivariate Long Short-
term Memory based Location-aware load prediction in Edge Data
Centers. In Proceedings of the 19th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (IEEE/ACM CCGrid 2019), pp. 341-350,
IEEE/ACM, 2019.

Paper III also addresses RO2 by building on the tool proposed in Paper
II, which uses the correlation between the workload fluctuations of neighboring
EDCs to improve predictive accuracy. An alternative location-aware workload
prediction tool for EDCs that uses Long Short-Term Memory (LSTM) net-
works is presented. In essence, LSTM networks are special recurrent neural
networks that incorporate integrated multiplicative nonlinear gate units with a
linear dependence between memory cell states. They can capture the temporal
dependencies of time series and have a high rate of learning per time step,
making them well suited for predicting the workload of EDCs. To predict the
workload of individual EDCs, we built an LSTM-based network that takes as
input the multivariate workload time series of the EDCs in the vicinity of the
predicted EDC.

Although the background and problem definition of this paper are identical
to those for Paper II, the new method offers superior predictive accuracy to
that reported in the earlier paper. Additionally, the new method differs from
the earlier one in three important ways: 1) it relies a neural network-based
technique, 2) it was tested in an extensive series of experiments using two
real mobility traces to simulate the workload of EDCs, together with data on
the real geographical locations of network base stations (emulating an MEC
infrastructure in which the locations of the EDCs match those of the real
network base stations); and 3) its predictive performance was validated using
an input-shaking approach.

In evaluations based on the first of the real mobility traces mentioned above,
the normalized root mean square error (NRMSE) observed with the neural
network-based method proposed in Paper III was 17% lower than that for the
location-aware method presented in Paper II and 44% lower than that for a
location-unaware method previously reported in the literature; the correspond-
ing values in evaluations using the second real mobility trace were 12% and
41%, respectively. Additionally, sensitivity analyses using different input shak-
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ing techniques clearly demonstrated that the neural network-based method is
stable and robust.

I was the main author; I contributed to the formulation of the problem,
conducted the experiments, and wrote the paper. Cristian Klein and Erik Elm-
roth had advisory roles that included discussions regarding problem formulation,
methods, experiments, and presentation of results.
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Chapter 4

Future Work

The studies described in the preceding section sought to address different fun-
damental resource management challenges associated with MECs. First, to
spur the development of MECs, we quantified their potential to enhance the
performance of cloud-native applications. These studies showed that addi-
tional engineering work is needed to adapt existing cloud-native applications
to MEC-like environments. We also introduced two workload prediction models
for MECs that exploit the correlation between workload changes in neighbor-
ing EDCs. The high predictive accuracy achieved with these models suggests
that they could be used effectively in a full resource management operation
loop to improve capacity sizing planing in MECs. As discussed in Chapter 2,
one of the major challenges facing potential MEC operators is their hetero-
geneous resource distribution, which makes centralized resource management
strategies impractical because they introduce single points of failure. Decen-
tralized autonomic strategies are thus preferable. Consequently, future efforts
in this area will focus on developing autonomic resource management systems
for MECs. This will be done by extending the work presented here in three
distinct directions to address three main problems:

First, elasticity is an important feature of cloud computing that MECs
must share to attract end-users. It is therefore essential to find ways of letting
MECs dynamically adjust their resource allocations to meet changing work-
load demands. The workload prediction methods proposed in Papers II and
III achieve high predictive accuracies and could therefore potentially be used
to develop an elastic control framework for MECs. The aim is to create a man-
agement system that is adaptive and self-optimizing with respect to workload
changes.

Second, to create a full MAPE-loop based autonomic resource management
system, we want to focus on planning with the aim of developing an efficient
solution for identifying (near-) optimal management actions including resource
scheduling and planning. Specifically, we intend to develop a decentralized self-
managed system based on models of application performance and workload
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characteristics as well as real-time analytics of run-time monitoring data. This
system will optimize capacity allocations in terms of size, type, and location,
using feedback control and optimization to ensure that reliability, availability,
and performance targets are met while minimizing costs.

Third, modern applications are increasingly architected as collections of
many components, each with different resource requirements (e.g., some com-
ponents are highly compute intensive, while others require more bandwidth).
Such multi-component applications present non-trivial service placement prob-
lems when combined with the heterogeneous resource capacity of MECs; it is
essential to deploy each component in a way that ensures satisfactory perfor-
mance of the application as a whole. Furthermore, the mobility of users in
some settings (e.g., autonomous vehicles, users of augmented reality assistance
applications, streaming video, etc.) makes resource management much more
challenging because it introduces the possibility of large and rapid changes in
resource demand in individual EDCs. Therefore, to develop an optimal service
placement solution, it is essential to consider the stochasticity of user mobility
to decide where to place the services so as to minimize both placement and
migration costs.
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