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Abstract

We present a formal model for translating un-
ranked syntactic trees, such as dependency
trees, into semantic graphs. The proposed tree-
to-graph transducers can serve as a formal-
ization of transition-based systems which re-
cently have been shown to perform very well,
yet hitherto lack a suitable formal basis. Our
model features “extended” rules and a useful
normal form, comes with an efficient transla-
tion algorithm, and can in a straightforward
manner be equipped with weights.

1 Introduction

In dependency semantic parsing, one is given a
natural language sentence and has to output a
directed graph representing an associated, most-
likely semantic analysis. Semantic parsing in-
tegrates tasks that have usually been addressed
separately in statistical natural language process-
ing, such as named entity recognition, word sense
disambiguation, semantic role labeling, and co-
reference resolution. Semantic parsing is receiv-
ing considerable attention nowadays, as attested
by the number of approaches being proposed for
its solution (Oepen et al., 2014, 2015) and by the
variety of existing semantic representations and
available datasets (Kuhlmann and Oepen, 2016).
A successful approach to dependency semantic
parsing by Wang et al. (2015b,a) first parses the
input sentence into a dependency tree ¢, and then
applies a transition-based algorithm that translates
t into a dependency graph in Abstract Meaning
Representation (AMR), a popular semantic for-
malism developed by Banarescu et al. (2013). In
this work, we present a finite-state transducer for
tree-to-graph translation that can serve as a math-
ematical model for (Wang et al., 2015b) and, more
in general, for work in syntax/semantic interface.
Bottom-up tree transducers (Thatcher, 1973)
have gained significant attention in the field of ma-
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chine translation, where they are used to map syn-
tactic phrase structure trees from source to target
languages. This holds in particular for their “ex-
tended” version, which may process, in a single
step, sections of the input consisting of several
symbols; see (Maletti et al., 2009) and references
therein. We propose a similar formalism for de-
pendency semantic parsing, mapping syntactic de-
pendency trees into directed graphs that represent
the associated semantic interpretation.

When translating dependency trees into graphs
in a bottom-up fashion, we face two problems.
Firstly, bottom-up tree transducers process ranked
trees, i.e., the number of children at each node is
bounded by some constant. Thus, typically, these
tree transducers use a single rule to process in one
shot a node along with all of its (previously pro-
cessed) children in the source tree. In contrast,
in the case of dependency trees there is no global
constant that limits the number of children a node
may have, and processing all of the children by
means of a single rule is problematic.

Secondly, in an output tree of a bottom-up tree
transducer, nodes that are located near one another
are translations of nodes in a source tree that are
in close proximity as well. This condition is of-
ten referred to as locality. Locality does no longer
hold true when translating trees into graphs. In
fact, so-called reentrancy nodes in a graph have
several parents, which are translations of nodes in
the source tree whose distance from one another
may not be bounded. Reentrancies thus require
some form of nonlocal processing, generally not
found in tree transducers.

The main contribution of this work is a finite-
state tree-to-graph transducer that processes de-
pendency trees in a bottom-up, left-to-right fash-
ion. Our solution to the two problems mentioned
above is rather simple. Each node and its chil-
dren are processed by means of several translation



rules, using some sort of independence assump-
tion. Furthermore, in order to implement reen-
trancy, each translated subtree produces a graph
that comes with a record of selected vertices, to be
made accessible later in the translation process.

While our transducers use extended translation
rules in the sense of (Maletti et al., 2009), they can
be cast in a simple normal form, very useful for
processing. We provide a polynomial time algo-
rithm for translating an input dependency tree into
a packed graph forest, from which each translation
graph can efficiently be recovered.

Related work. Bottom-up tree-to-graph trans-
ducers were introduced by Engelfriet and Vogler
(1994, 1998) who based their work on hyperedge
replacement. Since the graph construction mech-
anism we use is equivalent to hyperedge replace-
ment, our notion of tree-to-graph transducers is es-
sentially an unranked and extended generalization
of theirs, except for the fact that ours cannot cre-
ate multiple copies of unbounded material in the
input. This ability seems inappropriate for model-
ing natural language semantics.

When viewed as an accepting device, our t2g
transducers turn into a new type of unranked tree
automata that is as space-efficient as the stepwise
automata of Carme et al. (2004). In addition, t2g
transducers have the advantages of (i) doing away
with the need for a binarization of the input tree,
and (ii) allowing extended rules that make the rep-
resentation yet more compact.

The system by Wang et al. (2015b) has inspired
our t2g transducers. A technical comparison be-
tween their formalism and ours is made in Ex-
ample 2. An alternative approach to the syntax-
semantics interface exploits multi-component syn-
chronous tree-adjoining grammars; see Nesson
and Shieber (2006) and references therein. How-
ever, these models produce tree-like semantic rep-
resentations, as opposed to general graphs.

A common approach in semantic parsing is
to extend existing syntactic dependency parsers
to produce graphs, realizing translation models
from strings to graphs, as opposed to the tree-
to-graph model investigated here. On this line,
transition-based, greedy parsers have been adapted
by Ballesteros and Al-Onaizan (2017), Damonte
et al. (2017), Peng et al. (2018) and Vilares and
Gomez-Rodriguez (2018). Despite the fact that
the input is a bare string, these systems exploit fea-
tures obtained from a precomputed run of a depen-

dency parser, thus committing to some best parse
tree, similarly to the pipeline model of Wang et al.
(2015b). Dynamic programming parsers have also
been adapted to produce graphs by Kuhlmann and
Jonsson (2015) and Schluter (2015). Semantic
translation from strings to graphs is further in-
vestigated by Jones et al. (2012) and Peng et al.
(2015) using synchronous hyperedge replacement
grammars, who provide unsupervised learning al-
gorithms for grammar extraction.

2 Preliminaries

In this section we introduce some basic notation
and terminology that we use throughout this paper.

General Notation. The set of natural numbers
(including zero) is denoted by N, and N = N\
{0}. For n € N the set {1,...,n} is abbreviated
to [n]. In particular, [0] = ). The set of all finite
sequences of elements of a set .S is written S*,
is the empty sequence, St = S* \ {¢}, and 27 is
the powerset of S. Given a sequence w, we write
[w] for the set of its elements. Concatenation of
sequences s, s’ is denoted by juxtaposition or, if
required for notational clarity, as s - 5.

Trees. Let X be an alphabet. The set Ty, of (un-
ranked) trees over X is the smallest set such that,
forall f € ¥ and ty,...,t, € Ty (n € N), we
have f(t1,...,t,) € Tx. In particular f(), which
we abbreviate by f, is in Ty.

The nodes of a tree are identified by their Gorn
addresses, which are sequences in N : the root
has the address ¢, and if « is the address of a
node in t; then i« is the address of that node in
f(t1,...,t,). The set of all nodes of ¢ is N (¢) and
the size of ¢ is |t| = | N(t)].

The label of node « in ¢ is t(«). For ¥ C X,
the set of all nodes o € N(¢) with t(a) € ¥ is
denoted by Ny (t). Throughout the paper, a sub-
set {au,...,ap} of the set of nodes of a tree ¢ is
denoted as (v, . . ., ag) to stress that its nodes are
listed in lexicographic order.

The following notion will play a crucial role in
the definition of the translation step for our trans-
ducers in Section 3. Let O ¢ ¥ be a special sym-
bol. A context is a tree ¢ € Ty that contains
exactly one occurrence of O, and this occurrence
is a leaf. Given such a context and a tree ¢, we
let c[t] denote the tree obtained from c by replac-
ing O with ¢. Thus, c[t] = ¢ if ¢ = O, and oth-
erwise c[t] = f(s1,...,8i-1,Si[t], Sit1,---,Sn)s



where ¢ = f(s1,...,5,) and s; € Tyyny is the
context among Si, ..., S,. For contexts ¢ # O,
the notation c[t] is straightforwardly extended to
clti, ..., tg] for trees tq, ..., tx (k € N). It yields
the tree obtained by inserting the sequence of sub-
trees t1, . . ., t at the position marked by O. (This
yields a tree since we only use it if ¢ # 0.) To
be precise, if ¢ = f(s1,...,5,) and i € [n] is the

index such that O occurs in s;, then c[t1, . .., tx] is
equal to f(S1,...,Sim1,t1y s lhySitly---,Sn)
if we have s; = O; otherwise, it is f(s1,...,Si—1,
Si[tl, e ,tn], 7 [ Sn).

Graphs. In our graphs, a designated group of

vertices, called ports, is used to connect to some
outer graph structures in the translation process.

For a given alphabet A, the set Ga of graphs
with labels in A consists of all quintuples G =
(V, E, lab, port) such that

1. V is a finite set of vertices,

2. E CV x A x V is the set of labeled edges,

3. lab: V — A is a function labeling each ver-

tex, and

4. port € V* is a sequence of pairwise distinct

vertices called ports.

The size of G is |G| = |V| + |E|. If port =
v1 -+ - Uy, then the p-th port v, of G, p € [n], is
denoted by port(p) and type(G) = |port| is the
type of G. If the components of GG are not explic-
itly named, they are denoted by V5, Eg, labg, and
portq, respectively. For simplicity, we do not use
separate sets for vertices and edge labels.

3 Bottom-Up Unranked Tree-to-Graph
Transducers

Informally, our transducers process the input tree
in a locally bottom-up, left-to-right manner. To
apply a translation rule with a left-hand side s
at a given node o, s must cover « together with
k > 0 of its leftmost subtrees. Hence, these sub-
trees must have been processed earlier, to the ex-
tent necessary to make the part to be processed
identical to s. Applying the rule then removes the
subtrees and turns « into a state (or turns it from
one state into another, if it already was a state due
to an earlier step). Disregarding for the moment
the partial output graphs involved, this is depicted
schematically in Figure 1.

Note that, in particular, the number k of pro-
cessed children can be zero, which means that sin-
gle nodes can initially be turned into states by
translation rules whose left-hand sides consist of

P

left-hand sid.

Figure 1: Rule application at node « is locally leftmost
(any number, including zero, of the leftmost children
of a are consumed) and bottom-up (the left-hand side
covers those subtrees all the way down to the leaves).
The result of applying a rule at « deletes the subtrees
covered by the left-hand side and turns the label of « (a
state or input symbol) into a state q.

just one node. More generally, rules in which the
root of the left-hand side is an input symbol (with
or without children) can be viewed as initializing
the processing of the remaining children of that
node by turning their parent into an “initial” state.

An (unranked, linear, nondeleting) bottom-up
tree-to-graph transducer (briefly t2g transducer)
isatuple tg = (X, A, Q, R, u, F') consisting of

1. finite input and output alphabets 3 and A;

2. afinite set () of states disjoint with 3., where

every state ¢ € () has a type type(q) € N;

3. afinite set I of translation rules to be defined

below;

4. a merging function x: 22\ {#} — A; and

5. aset F' C (@ of final states.

Note that the merging function is finite (because
A is). It allows us to determine the label of a ver-
tex obtained by merging vertices with different la-
bels. While we do not place any restrictions on
L, 1t is reasonable to assume that, in linguistic set-
tings, p will be generated by a binary function in
the sense that u({0}) = ¢ and u(A" U {0}) =
p({p(A"),6}) forall 6 € A and A’ € 22\ {(}.
Thus, in this case u can be efficiently represented
by a table of size |A[%

A translation rule s — (g, G) consists of a
left-hand side s € Ty \ @ and a right-hand
side (¢, G), where ¢ € @ and G is a graph with
type(G) = type(q). G must fulfill the follow-
ing additional condition: if P = {ap | a €
Ng(s), p € [type(s(a))]} then G € Goopr and
every a:p € P occurs at most once in the labels
of vertices in G. A vertex v carrying a label in
2P is called a docking vertex. Intuitively, each



a:p € labg(v) is a syntactic name (or formal pa-
rameter) referring to the pth port of the graph G,
associated with the node matched by «. During
the application of the rule the pth port of G, will
be merged with v. This is formalized next.
A configuration of tg is a pair (¢,I') with
t € Txug such that I': Ng(t) — Ga, where
type(I'(av)) = type(t(cr)) for every v € Ng(t).
Given an input tree ¢ty € Ty, the computation of
a transducer starts with (tg, o) where Ty is the
function with the domain Ng(t9) = (. Suppose
inductively that, after some computation steps, a
configuration (¢,I") has been reached. A transla-
tion rule s — (g, G) can be applied to this config-
uration if ¢ can be written as t = c[f(¢1,...,tn)],
such that s = f(t1,...,t) for some k < n. If so,
let « be the node in ¢ such that ¢(«r) = O. Then
there is a computation step (¢,I) —, (¢,T') with
t = clq(tps1,---,tn)], where T is as follows:
1. For every node 3 € Ng(f) \ {a}, if B is the
corresponding node in ¢, then T'(3) = I'(3).!
2. T'(«) is obtained as follows:
First, take the disjoint union of G and all
graphs I'(a3), B € Ng(s), the ports of the
resulting graph being those of G.
Second, if a docking vertex v € Vg has
the label labg(v) = {ai1:p1,-.., @m:Pm}s
merge v with all v; = portp(ai)(pi) for
i € [m] and label the merged vertex by
M({labf(al)(vl)v R labF(am)(vm)})'

Example 1 Consider the sentence “The president
loves, respects, and fears himself.” A slightly sim-
plified Universal Dependencies parse tree of the
sentence is shown leftmost in Figure 2. Here, we
have removed the “and” node as well as the addi-
tional root node above the “loves” node. Further,
the edge labels in the tree should be considered as
intermediate nodes (since our trees, for simplicity,
and in contrast to graphs, do not have edge labels).
The figure shows how a t2g transducer may turn
the tree into a semantic graph akin to AMR.

In Step 1 we assume for the sake of illustration
that the model has seen the leftmost path of the tree
(“The president loves™) often enough to construct
an individual translation rule for it, and that it has
also learned that the president referred to is usually

"Here, the node corresponding to 3 is defined in the ob-
vious way, to take care of the change of Gorn addresses that
results from the deletion of ¢1, ..., tx: if B = iy (i € Ny,
then its corresponding node in ¢ is a(k + 4)~y. If v is not a
proper prefix of 3, then the corresponding node is (3 itself.

Trump. Thus, the translation rule
loves(nsubj(president(det(The)))) — {(qo, Go)

turns node “loves” into the state ¢gg and its first de-
pendent vanishes. The pair (g0, ['(¢)) = (qo, Go)
is illustrated by a dashed box with I'(¢) shown in-
side. The numbers next to the vertices indicate the
ports. Thus, all three vertices are ports.

In Step 2, we apply a translation rule of the form
go(coni(respects)) — (geonj, G) to add two ver-
tices and four edges to the graph. The graph G in
the right-hand side is shown in Figure 3. The ports
of G become the ports of I'(¢), and each of the
vertices labeled £:p is merged with the pth port of
Gy (i.e., of the T'(g) of the previous step).

Step 3 processes fears(dobi(himself)), after
which Step 4 finally combines the two graphs
by applying geonj(coni(q1)) — (g, H), where
H contains a vertex with label {£:2,£:3,11:2}
(see Figure 4). This merges the vertices labeled
“Trump”, “?”, and “himself” into one. Here, we
assume that the merging p of vertex labels gives
proper names precedence over pronouns, which in
turn take precedence over “7”.

Example 2 The transition-based system of Wang
et al. (2015b) (and subsequent versions) translates
dependency trees into AMRs by visiting nodes and
dependency arcs of the input tree bottom-up and
left-to-right. At each node or arc, it greedily ap-
plies one out of eight alternative actions, turning
the tree into a graph. Six actions are local, mean-
ing that they involve nodes at a close distance in
the input tree. These include node or arc rela-
belling, reversing arc directions, deleting a node,
and deleting an arc by merging its two nodes. Each
of these actions can easily be captured by some in-
dividual translation rule of a t2g transducer.

Two remaining actions are nonlocal: one reat-
taches a node and the other creates a new arc to
form a reentrancy. These actions are restricted to
local actions for efficiency reasons (Wang et al.,
2015b, Section 3.2), so reattachment takes place
to the grandparent or great grandparent, and reen-
trancy involves sibling nodes only. While t2g can
simulate reattachment, a major difference between
the two models lies in the creation of reentran-
cies. Wang’s system can repeatedly apply the
reentrancy action, turning for instance n sibling
nodes into a clique, for any n. This is not pos-
sible in our model, since translation rules can cre-
ate reentrancies only by accessing a fixed number



loves

nsubj conj
conj

president  respects fears

det l dobj l

The himself

Figure 3: The graph G used in the translation rule
go(conij(respects)) — (qeonj, G) Of Step 2

of vertices “remembered” as ports. On the other
hand, t2g transducers do implement nonlocality,
by percolating port nodes at any distance in the
underlying derivation tree. This results in reen-
trancies that extend further than to sibling nodes.
Thus, in terms of translation power the two for-
malisms seem very close to each other in practice,
but are formally incomparable.

arg0 argl
—>tg g
arg0 argl
2 3(2)
fears conj l
dob l fears
himself dobJ l
himself

Figure 2: Computation of a t2g trans-
ducer applied to the Universal Dependen-
cies parse tree of “The president loves, re-
spects, and fears himself.”

Figure 4: The graph H used in the translation rule
qconj(conj (q1)) — {q¢, H) of Step 4

Readers who are familiar with the concept of
hyperedge replacement may have noticed that, ex-
cept for the role of the merging function, the pro-
cess described in item 2 in the definition of —,
is just hyperedge replacement (where the replaced
hyperedges are kept implicit).

A configuration (¢,T) is final if t € F, i.e., if
the first component has been reduced to a single
state, which is final. For an input tree ¢y, the set



of all output graphs computed by tg is denoted by
tg(to). It is the set of all graphs I'(e) such that
(to,Lo) —1, (t,T) for some final configuration
(t,T'). The transduction computed by tg is the
set {(t,g9) € Ty x Ga | g € tg(t)}. The domain
language of tg is {t € Tx, | tg(t) # 0}.

4 Derivation Trees

In this section, we describe how a computation of
a t2g transducer tg can be represented by means
of a tree over the alphabet R, the set of translation
rules of tg. We call these trees derivation trees
of tg. Derivation trees will be used in Section 6
to design efficient translation algorithms. We also
show that the derivation trees of ¢g form a regular
tree language (and, in fact, even a local one).

Consider a computation ~ of tg that is of form
(to,To) =4, (¢,T) with to € Ty and ¢ € Q. If
~ consists of a single step, then a translation rule
of the form 7 : t9 — (¢, G) has been used. In this
case the derivation tree associated with v, written
d(7y), is simply 7.

If v consists of more than one step, assume that
at the last step of v we have used a translation rule
ro of the form s — (g, G). We can then write ~y
as (to, To) =7, (s,I") =, (¢,T). Let+ denote
the first part (to,[o) —7, (s,I”) of the compu-
tation.> We define 7k(ro) = |Ng(s)|, called the
rank of r, and we let Ng(s) = (a1, . . ., Qpp(ry))-
In the derivation tree d(v), ro has rk(rg) direct
subtrees, the i-th subtree corresponding to the sub-
derivation that ended in the state at «;. Accord-
ingly, below we split the input tree ¢y into smaller
pieces on the basis of the node addresses «;.

In order to describe this thoroughly, we need to
determine a correspondence between nodes in s
and nodes in y. Intuitively, s is a segment at the
top of ¢ that extends to the right. To see this, ob-
serve that the root € of s corresponds to the root of
to. Some of the children of ¢ in £y may have been
consumed by +/ and thus are no longer present in
s. However, this happens strictly from left to right.
Therefore, if a child of € in ¢g is still present in s,
then all of its siblings to the right are still present,
too. The same pattern continues recursively at the
children of these nodes in s. The situation is illus-
trated schematically in Figure 5.

Formally, for a node o« € N(s) we define the

?Recall that Ng (s) is the set of all nodes in s labeled by
states in @, and that we write Ng(s) = (a1, ..., Qy(ry)) tO
indicate that a1, . . ., i) are listed in lexicographic order.

to

Figure 5: Schematic illustration of the part s of an in-
put tree to which is left after some computation steps.
(Note that this is only a structural illustration; some of
the node labels in s are not the same as in ¢y anymore,
but have been replaced with states.)

pre-image @ € N (tg) of « inductively over the
structure of s, as follows:

l.e=e.

2. Assume that - 1,..., - k € N(s) are the
children of a node « in s. Then it should
be clear that the children of @ in ty are
a-1,...,a-n for some n > k. We let

a-i=a-(i+n—k)foralli e [k].
For a set N C N(s) of node addresses, we let
N={a|aeN}.

We are now ready to split the tree ¢g into the
subtrees that, via the computation +/, gave rise
to the states at v, ..., (). We do this by
defining the sets N; C N(tp) of their nodes,
i € [rk(rg)]. For each i € [rk(ro)], N; is the
set of all nodes 8 € N (t¢) such that @; is the first
node in N (s) that appears on the path from £ to
the root of %.

Q

Thus, NV; consists of &; and those of its descen-
dants which are not in s anymore, i.e., which have
already been “consumed” by the computation '
in the process of producing node «; in s. For each
i € [rk(ro)], define tree ¢; as the portion of tree ¢
that is induced by the nodes in NN;.

For every i € [rk(ro)], consider the transla-
tion rules of ~' that are applied to the nodes in
N;. Clearly, the restriction of 4/ to them yields
a new computation ~y; of the form (¢;, ') —>;;
(s(a;),T';) whose length is at most the length
of 7/ and thus less than the length of . Let
d(~;) be the derivation tree associated with ~;.
Then we define the derivation tree d(vy) to be
ro(d(11), -+ -, d(Vrk(re)))-

The inductive procedure above associates a
unique derivation tree d(+y) to each computation -y
of tg. Observe that each node of d(7) has a label
r € R and anumber of children 7% (7). This means
that the set of derivation trees of tg is defined over



a finite, ranked alphabet. More precisely, it is the
set D(tg) recognized by a bottom-up finite-state
tree automaton A whose set of states is (), with F’
the accepting states. The rules of the automaton A
are all 7(q1, ..., qr) — q such that:

1. r: t — (¢, G) is a translation rule of tg,

2. Ng(t) = (a1,...,a;), and

3. t(e) = ¢, forall ¢ € [k].

Given a derivation tree dt € D(tg), such that
dt = r(dty,...,dty), we can compute its input
tree in(dt) and its output graph out(dt) recur-
sively, as follows. Suppose the root r of dt is
the translation rule 7: ¢t — (¢, G) with Ng(t) =
(0517 R 7ark(r))'

1. If t; = in(dt;) for all i € [k], then in(dt) is
obtained from ¢ and ¢4, . . . , . by fusing each
node «y; with the root of ¢; and making ¢;(¢)
the label of the fused node. The subtrees of
t; are added to the left of the leftmost subtree
of o; in t. (If «; is a leaf, ¢; just replaces «;.)

2. If the graph G; = out(dt;) for every in-
dex ¢ € [k], then the output graph out(dt)
is obtained from the disjoint union of G' and
(1, ..., Gk by merging each docking vertex
v € Vg with ports in Gy,...,Gg, as fol-
lows: if labg(v) = {ai,:p1,-..,q6, Pm}s
then v is merged with all v; = porte, (pj)s
j € [m], and the resulting vertex is labeled
by u({labg, (v1),...,labg,, (vm)}).

Note that the definition of out(dt) simply re-
iterates the way in which computations are defined
to construct output graphs. As a consequence, it is
a straightforward task to show that dt = d(v) for
a computation ~y that consumes in(dt) and yields
the output graph out(dt).

5 Arc-Factored Normal Form

A translation rule is in arc-factored normal form
if its left-hand side is in ¥ U Q(Q). A t2g trans-
ducer is in arc-factored normal form if each of its
translation rules is in arc-factored normal form.
We now show that every t2g transducer tg can
effectively be transformed into a t2g transducer
in arc-factored normal form which computes the
same transduction. First, introduce a new state ¢y
of type 0 for every f € X that occurs in some
left-hand side of a translation rule, add the rule
[ — (qs,0) (where () denotes the empty graph),
and replace f by g; in the left-hand sides of all
original rules. Clearly, the computed transduc-
tion remains the same and all rules which violate

the condition of the arc-factored normal form have
left-hand sides in Tg.

Now, we split rules with large left-hand sides
into smaller ones. As long as the transducer is not
in arc-factored normal form, select any translation
rule s — (q,G) such that |s| > 2. Then s has
the form c[q1(q2,t1, ..., t,)] for some context c,
states q1, ¢9, and trees t1,...,t, (n > 0). If k =
type(q1) and ¢ = type(q2), we decompose the
translation rule into two rules, namely ¢;(q2) —
(q1:2, H) and ¢[q1.2(t1, ..., tn)] — (¢, G'), where
q1;2 is a fresh state with type(q1.2) = k + £.

The intermediate graph H consists of k 4 £ iso-
lated vertices uq, . .., Uk, V1, . . ., Vg With port g =
up -+ -uRvy -+ -vg and, for all « € [k] and j € [¢],
labg (u;) = e:i and labg (vj) = 1:5. The effect of
this translation rule is to take the disjoint union of
the graphs associated with the two nodes, concate-
nating the port sequences.

The graph G’ is obtained from G by appropri-
ately renaming the references of the form «-1:p
where « is the address of O in ¢: for every p € [/],
if a-1:p occurs in a label of a vertex in G, then it
is replaced by a:(¢ + p). Moreover, in every label
each port reference of the form «-i:p for i > 1 is
replaced by a-(i — 1):p.

It should be clear that the two translation rules,
executed one after the other, have precisely the
same effect as the original one. This completes
the proof of the arc-factored normal form.

Note that the size increase implied by the pre-
ceding construction is modest. Let us define the
size of tg = (3,A,Q, R, i, F) to be the sum of
the sizes of its rules. The size of a rule is the size
of the left-hand side plus the size of the graph in
the right-hand side. By the construction above,
each rule will be decomposed into as many rules as
there are arcs in the original left-hand side, and the
size of graphs in the right-hand sides of interme-
diate translation rules is at most twice the largest
type 7 of states in (). Hence, the total size of the
new rules replacing s — (¢, G) is O(|s| - 7 +|G]).
More sophisticated constructions can result in a
smaller transducer. A rather simple optimization is
to drop all ports from the discrete graph H which
do not occur in GG, and to identify those referenced
in the label of the same docking vertex. We do not
further pursue this here.



6 Translation into a Packed Forest

In this section we investigate the translation prob-
lem for our t2g transducers, defined as follows.
Given a t2g transducer tg = (X,A,Q, R, u, F)
and an unranked tree ¢, we have to provide a suit-
able representation for the set of all graphs that
are translations of ¢ under tg. We describe the
construction only for t2g transducers tg in arc-
factored normal form because it is both simpler
and significantly more efficient.

We solve the translation problem in two steps.
The first step annotates every occurrence of a
symbol in ¢ with its address in the tree, yield-
ing £, and constructs a new t2g transducer tg, =
(XA, Q' R, u, F'). The domain language of
tg, is {t} and the output graphs of tg, are the
graphs that are translations of ¢ by ¢g. In the sec-
ond step, we construct a finite state tree automa-
ton M, representing the set D(tg,) of all deriva-
tion trees of ¢tg,. We provide below a more precise
description of these steps, but without an overly
detailed formalization.

6.1 Grounding

For the first step in our translation algorithm, let
N(t) = N(t) and t(a) = t(a)® forall « € N(t).
Thus, in  each occurrence of a symbol f is anno-
tated with its address a. Next, we restrict the do-
main language of tg to the set {¢}, in such a way
that the translation process of tg is “preserved”.
We call this construction the grounding of tg to t.
For this, let k, = min{i € Ny | ai ¢ N(¢t)} for
every a € N(t), i.e., kq is the number of children
of « plus one.

1. The input alphabet ¥’ consists of all symbols
appearing in .

2. The set @’ consists of all (g, «, ) such that
g€ Q,a € N(t),and i € [k,]. Intuitively,
a records the position in the tree and ¢ is the
number of the next child to be consumed.
The set F” is {{(q,¢,k:) | ¢ € F'}.

4. For every translation rule f — (g, G) of tg
and every a € N (t) with t(a) = f, we in-
clude f* — ((¢,,1),G) in R'.

5. For every translation rule ¢1(q2) — (g, G) of
tg and every avi € N(t) (1 € Ni), we let
(g1, ) ({g2, @i kai)) — (g, 0,0 + 1), G)
be a translation rule in R’

Note that the grounding algorithm above bears

close similarity with the notion of parsing by in-
tersection, which makes use of the construction

»

proposed by Bar-Hillel et al. (1964) for produc-
ing a context-free grammar that generates the in-
tersection of a language generated by a context-
free grammar and a language recognized by a fi-
nite (string) automaton. It should thus be clear that
tg,(3) = O forall s € Tx\{t}, and tg,(t) = tg(t).

The size of the t2g transducer tg, is the product
of the sizes of tg and t. However, in practice many
of its translation rules may be useless. It is possi-
ble to avoid this by interleaving the construction
of the translation rules of g, with a simulation of
the process of parsing by tg on input ¢. This has
the advantage of pruning the search space, so that
useless translation rules are filtered out. We do not
further pursue this issue here.

6.2 Graph Forest

In the second step of our translation algorithm, we
construct a suitable representation of all the graphs
that are obtained in any translation of ¢ based on
tg. Using the t2g transducer ¢g, from the previ-
ous step, we can apply the construction outlined in
Section 4 and produce a finite state tree automaton
M, representing the set D(tg,) of all derivation
trees of tg,.

Together with the interpretation of generated
derivation trees dt as out(dt) this yields a com-
pact representation of the set tg(¢) of graphs t
translates into. We therefore call M; a graph for-
est for the translation of ¢ under tg.

One can now use standard algorithms to, e.g.,
generate the graphs of the form out(dt). Further,
if the rules of ¢g are equipped with weights from a
suitable weight structure, these weights carry over
to the rules of M, in the obvious way. We can thus
use n-best algorithms (Huang and Chiang, 2005)
to efficiently extract the n “best” translations of ¢,
e.g., those with the lowest weight.

7 Transducer with a Continuous
Memory Register

We assume that the transduction now keeps a gen-
eral state “processor” that is being updated during
the transduction. Each state that is represented in
the derivation during the transduction will be re-
placed by a vector (possibly a typed vector). The
states of the machine (the set () are represented
by vectors in R’ for some /.

In addition, we assume that each node in the de-
pendency tree is associated with a “context vec-
tor,” for example, created by a TreeLSTM or a



contextual word embedding network. This means
that each node is accompanied by a vector v € R™
for some m.

For our continuous-state transducer, we also
assume the existence of a state update function
F:R™ x R® — R’ This function consumes a
node in the tree, an embedding for graph and an
existing state vector, and outputs a new state vec-
tor.

Now, the transducer works in a similar way to
the case of a discrete state. It traverses the depen-
dency tree, and whenever it needs to apply a rule,
it takes some combination of the tree node vec-
tors and the state vector from the current derivation
(corresponding to the states in the left-hand side of
arule). It applies F' multiple times perhaps, until it
gets the final state. It then uses this state vector in
a classification to find the best rule to apply at this
point. Note that depending on the number of rules
in the grammar, this could be quite an expensive
classification problem.

Abstractly, the main idea is that there is a reg-
ister that keeps being updated as the derivation is
being generated. It is essentially used to lineraize
the states in the derivation into a sequence of states
that are being fed to F' and it assists at each step to
decide what rule to use next.

8 Conclusion

We have developed a novel finite-state transducer
that implements nonlocal processing to translate
unranked dependency trees into general graphs for
semantic representation of natural language. The
model can be used as a formalization of transition-
based approaches to semantic parsing such as the
one of Wang et al. (2015b). The next step in this
project is the development of effective algorithms
for unsupervised extraction of t2g translation rules
from semantic graph corpora.
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