
Order-Preserving Graph Grammars

Petter Ericson

DOCTORAL THESIS, FEBRUARY 2019
DEPARTMENT OF COMPUTING SCIENCE

UMEÅ UNIVERSITY
SWEDEN

Department of Computing Science
Umeå University
SE-901 87 Umeå, Sweden

pettter@cs.umu.se

Copyright c© 2019 by Petter Ericson
Except for Paper I, c© Springer-Verlag, 2016

Paper II, c© Springer-Verlag, 2017

ISBN 978-91-7855-017-3
ISSN 0348-0542
UMINF 19.01

Front cover by Petter Ericson
Printed by UmU Print Service, Umeå University, 2019.

It is good to have an end to journey toward;
but it is the journey that matters, in the end.

URSULA K. LE GUIN

iv

Abstract

The field of semantic modelling concerns formal models for semantics, that is, formal
structures for the computational and algorithmic processing of meaning. This thesis
concerns formal graph languages motivated by this field. In particular, we investigate
two formalisms: Order-Preserving DAG Grammars (OPDG) and Order-Preserving
Hyperedge Replacement Grammars (OPHG), where OPHG generalise OPDG.

Graph parsing is the practise of, given a graph grammar and a graph, to determine
if, and in which way, the grammar could have generated the graph. If the grammar
is considered fixed, it is the non-uniform graph parsing problem, while if the gram-
mars is considered part of the input, it is named the uniform graph parsing problem.
Most graph grammars have parsing problems known to be NP-complete, or even ex-
ponential, even in the non-uniform case. We show both OPDG and OPHG to have
polynomial uniform parsing problems, under certain assumptions.

We also show these parsing algorithms to be suitable, not just for determining
membership in graph languages, but for computing weights of graphs in graph series.

Additionally, OPDG is shown to have several properties common to regular lan-
guages, such as MSO definability and MAT learnability. We moreover show a direct
correspondence between OPDG and the regular tree grammars.

Finally, we present some limited practical experiments showing that real-world
semantic graphs appear to mostly conform to the requirements set by OPDG, after
minimal, reversible processing.

v

vi

Populärvetenskaplig
sammanfattning

Inom språkvetenskap och datalingvistik handlar mycket forskning om att på olika
sätt analysera strukturer inom språk; dels syntaktiska strukturer – vilka ordklasser
som kommer före andra och hur de i satser och satsdelar kan kombineras för kor-
rekt meningsbyggnad, och dels hur olika ords mening eller semantik kan relatera till
varandra och till idéer, koncept, tankar och ting. Denna avhandling behandlar formella
datavetenskapliga modeller för just sådan semantisk modellering. I vårt fall represen-
teras vad en mening betyder som en graf, bestående av noder och kanter mellan noder,
och de formella modeller som diskuteras är grafgrammatiker, som avgör vilka grafer
som är korrekta och inte.

Att med hjälp av en grafgrammatik avgöra om och hur en viss graf är korrekt
kallas för grafparsing, och är ett problem som generellt är beräkningsmässigt svårt –
en grafparsingalgoritm tar i många fall exponentiell tid i grafens storlek att genomföra,
och ofta påverkas dessutom körtiden av grammatikens sammansättning och storlek.

I den här avhandlingen beskrivs två relaterade modeller för semantiskt modeller-
ing – Ordningsbevarande DAG-grammatiker (OPDG) och Ordningsbevarande Hyper-
kantsomskrivningsgrammatiker (OPHG). Vi visar att grafparsingproblemet för OPDG
och OPHG är effektivt lösbart, och utforskar vad som behöver gälla för att en viss
grammatik skall vara en OPHG eller OPDG.

vii

viii

Acknowledgements

There are very few books that can be attributed solely to a single person, and this thesis
is no exception to that rule. Listing all of the contributors is an exercise in futility, and
thus my lie in the acknowledgement section of my licentiate thesis is exposed – this
will by necessity if not by ambition be an incomplete selection of people who have
helped me get to this point.

First off, my advisor Henrik Björklund and co-advisor Frank Drewes both deserve
an enormous part of the credit that is due from this thesis. They have discussed, co-
authored, taught, coaxed, calmed down, socialised, suggested, edited, and corrected,
all as warranted by my ramblings and wanderings in the field and elsewhere, and all
of that has acted to make me a better researcher and a better person both. Thank you.

Second, Linn, my better half, has helped with talk, food, hugs, kisses, walks,
travels, schedules, lists (so many lists) and all sort of other things that has not only
kept me (more or less) sane, but in any sort of state to be capable of finishing this
thesis. There is no doubt in my mind that it would not have been possible, had I not
had you by my side. You are simply the best.

Third, the best friend I could never deserve and always be thankful for, Philip,
who has simply been there through it all, be it on stage, at the gaming table, or in the
struggles of academia. Your help with this thesis made it at least 134(±3)% better in
every single respect, and hauled me back from the brink, quite literally. You are also,
somehow, the best.

I have also had the pleasure and privilege to be part of an awesome group of
people known as the Foundations of Language Processing research group, which have
at different points during my PhD studies contained people such as my co-authors
Johanna and Florian, my bandmate Niklas, my PhD senior Martin, and juniors Anna,
Adam and Yonas. Suna and Mike are neither co-authors nor common PhD student
with me, but have been magnificient colleagues and inspirations nonetheless. I have
enjoyed our friday lunches, seminars and discussion greatly, and will certainly try to
set up something similar wherever I end up.

Many other colleagues have helped me stay on target in various ways, such as my
partner in course crime Jan-Erik, the compulsive crosswords-solvers including Tomas,
Carina, Helena, Niklas, Niclas, Helena, Lars, Johan, Mattias, Pedher, and many more
coworkers of both the crossword-solving and -avoiding variety.

My family has also contributed massively with both help and inspiration during my
PhD studies. My parents Curry and Lars both supplying rides, talks, jams, academic
insights, dinners, berries, mushrooms, practically infinite patience, and much more.

ix

Acknowledgements

My sister Tove and her husband Erik providing a proof-of-concept of Dr. Ericson,
showing that it can indeed be done, and that it can be done while being and remaining
some of the best people I know, and all this while my niece Isa and nephew Malte
came along as well.

Too many friends and associations have brightened my days and evenings dur-
ing these last years to list them all, but I will make the attempt. In no particular
order, thanks to Olow, Diana, Renhornen, JAMBB, Lochlan, Eric, Jenni, Bengt, Bir-
git, Kelly, Tom, MusicTechFest, Björn, Linda, Erik, Filip, Hanna (who got me into
this whole thing), Hanna (who didn’t), Michela, Dubber (we’ll get that paper written
soon), Sofie, Alexander, Maja, Jonathan, Peter, Niklas, Oscar, Hanna (a recurring pat-
tern), Mats, Nick, Viktor, Anna, Ewa, Snösvänget, Avstamp, Isak, Samuel, Kristina,
Ivar, Helena, Christina, Britt, Louise, Calle, Berit, Thomas, Kerstin, Lottis, Ola, Mat-
tias, Mikael, Mikael, Tomas, Mika, Benjamin, and the rest of the Umeå Hackerspace
gang, Offer, André, Four Day Weekend, LESS, Mikael, Staffan, Lisa, Jesper, Henrik,
John, Mats, Carlos, Valdemar, Axel, Arvid, Christoffer, Tomas, Becky, Jocke, Jen-
nifer, Jacob, Jesper, Ellinor, Magne, Hanna (yes really), Johan, Lennart, LLEO, Jet
Cassette, Calzone 70, Veronica, Johan, Container City, Malin, Sanna, Fredrik, Maja,
Mats, and everyone that have slipped my mind for the moment and will remember
seconds after sending this to print. Thank you all!

x

Preface

The following papers make up this Doctoral Thesis, together with an introduction.

Paper I Henrik Björklund, Frank Drewes, and Petter Ericson.
Between a Rock and a Hard Place – Parsing for Hyperedge Replacement
DAG Grammars.
In 10th International Conference on Language and Automata Theory and
Applications (LATA 2016), Prague, Czech Republic, pp. 521-532, Springer,
2016.

Paper II Henrik Björklund, Johanna Björklund, and Petter Ericson.
On the Regularity and Learnability of Ordered DAG Languages.
In Arnaus Carayol and Cyril Nicaud, editors, 22nd International Confer-
ence on the Implementation and Application of Automata (CIAA 2017),
Marne-la-Vallée, France, volume 10329 of Lecture Notes in Computer
Science, pp. 27-39, Springer 2017.

Paper III Henrik Björklund, Johanna Björklund, and Petter Ericson.
Minimisation and Characterization of Order-preserving DAG Grammars.
Technical Report UMINF 18.15 Dept. Computing Sci., Umeå University,
http://www8.cs.umu.se/research/uminf/index.cgi, 2018. Sub-
mitted

Paper IV Henrik Björklund, Frank Drewes, and Petter Ericson.
Uniform Parsing for Hyperedge Replacement Grammars.
Technical Report UMINF 18.13 Dept. Computing Sci., Umeå University,
http://www8.cs.umu.se/research/uminf/index.cgi, 2018. Sub-
mitted

Paper V Henrik Björklund, Frank Drewes, and Petter Ericson.
Parsing Weighted Order-Preserving Hyperedge Replacement Grammars.
Technical Report UMINF 18.16 Dept. Computing Sci., Umeå University,
http://www8.cs.umu.se/research/uminf/index.cgi, 2018.

xi

Preface

Additionally, the following technical report and paper were completed during the
course of the PhD program.

Paper I Petter Ericson.
A Bottom-Up Automaton for Tree Adjoining Languages.
Technical Report UMINF 15.14 Dept. Computing Sci., Umeå University,
http://www8.cs.umu.se/research/uminf/index.cgi, 2015.

Paper II Henrik Björklund and Petter Ericson.
A Note on the Complexity of Deterministic Tree-Walking Transducers.
In Fifth Workshop on Non-Classical Models of Automata and Applications
(NCMA), pp. 69-84, Austrian Computer Society, 2013.

xii

Contents

1 Introduction 3
1.1 The Study of Languages 3
1.2 Organisation 4

2 Semantic modelling 5
2.1 History 5
2.2 Issues in Semantic Modelling 6

3 String languages 9
3.1 Automata 10
3.2 Grammars 11
3.3 Logic 12
3.4 Composition and decomposition 14
3.5 Regularity, rationality and robustness 15
3.6 Learning of regular languages 15
3.7 Weights 16

4 Tree languages 17
4.1 Tree grammars 18
4.2 Automata 19
4.3 Logic 21
4.4 Composition and decomposition 22
4.5 Weights 22

5 (Order-Preserving) Graph Languages 25
5.1 Hyperedge replacement grammars 26
5.2 Issues of decomposition 28

5.2.1 Reentrancies 29
5.2.2 Subgraphs 30

5.3 Issues of order 31
5.4 A Regular Order-Preserving Graph Grammar 32

5.4.1 Normal forms 33
5.4.2 Composition and decomposition 34
5.4.3 Logic 34

5.5 Weights 35

1

Contents

6 Related work 37
6.1 Regular DAG languages 37
6.2 Unrestricted HRG 38
6.3 Regular Graph Grammars 38
6.4 Predictive Top-Down HRG 38
6.5 S-Graph Grammars 38
6.6 Contextual Hyperedge Replacement Grammars 39

7 OPDG in Practise 41
7.1 Abstract Meaning Representations 41
7.2 Modular synthesis 42
7.3 Typed Nodes 43
7.4 Primary and Secondary References 43
7.5 Marbles 43
7.6 Modular Synthesis Graphs 44

7.6.1 Translation 44
7.7 Semantic Graphs 44

7.7.1 Translation 44
7.8 Results 44

8 Future work 47

9 Included Articles 49
9.1 Order-Preserving DAG Grammars 49

9.1.1 Paper I: Between a Rock and a Hard Place – Parsing for Hy-
peredge Replacement DAG Grammars 49

9.1.2 Paper II: On the Regularity and Learnability of Ordered DAG
Languages 49

9.1.3 Paper III: Minimisation and Characterisation of Order-Preserving
DAG Grammars 49

9.2 Order-Preserving Hyperedge Replacement Grammars 50
9.2.1 Paper IV: Uniform Parsing for Hyperedge Replacement Gram-

mars 50
9.2.2 Paper V: Parsing Weighted Order-Preserving Hyperedge Re-

placement Grammars 50
9.3 Author’s Contributions 50

10 Articles not included in this Thesis 51
10.1 Mildly Context-sentitive Languages 51

10.1.1 A Bottom-up Automaton for Tree Adjoining Languages 51
10.1.2 A Note on the Complexity of Deterministic Tree-walking Trans-

ducers 51

2

CHAPTER 1

Introduction

This thesis concerns the study of graphs, and grammars and automata working on
graphs, with applications in the processing of human language as well as other fields.
A new formalism with two variants is presented and various desirable features are
shown to hold, such as efficient (weighted) parsing, and for the limited variant, MSO
definability, MAT learnability, and a normal form.

It also presents novel, though limited, practical work using these formalisms, and
aims to show their usefulness in order to motivate further study.

1.1 The Study of Languages

The study of languages has at minimum two very distinct meanings. This thesis con-
cerns both.

The first, and probably most intuitive, sense of “study of language” concerns hu-
man languages, which is the kind of languages we humans use to communicate ideas,
thoughts, concepts and feelings. The study of such languages is an immense field of
research, including the whole field of linguistics, but also parts of informatics, mu-
sicology, various fields studying particular languages such as English or Swedish,
philosophy of language, and many others. It concerns what human language is, how
languages work, and how they can be applied. It also concerns how understanding of
human language and various human language tasks such as translation and transcrip-
tion can be formalised or computerised, which is where the work presented in this
thesis intersects the subject.

Though many of the applications mentioned in this thesis make reference to nat-
ural language processing (NLP), it may be appropriate to mention that many of the
techniques are in fact also potentially useful for processing constructed languages
such as Klingon,1 Quenya,2 Esperanto,3, Lojban4 and toki pona5. The language of
music also shares many of the same features, and musical applications are used later
in this introduction to illustrate a practical use case of the results.

1 From Gene Roddenberry’s “Star Trek”
2 From J.R.R. Tolkien’s “The Lord of the Rings”
3 An attempt at a “universal” language, with a grammar without exceptions and irregularities.
4 A “logical” language where the grammar is constructed to minimise ambiguities.
5 A “Taoist” language, where words are generally composites of a “minimal” amount of basic concepts.

3

Chapter 1

The particular field that has motivated the work presented in this thesis is that
of semantic modelling, which seeks to capture the semantics, or meaning of various
language objects, e.g. sentences, in a form suitable for further computational and
algorithmic processing. In short, we wish to move from representing some real-world
or imaginary concept using natural language to representing the same thing using
more formal language.

This bring us to the second meaning of “language” and its study. For this we
require some mathematical and theoretical computer science background. In short,
given a (usually infinite) universe (set) of objects, a (formal) language is any sub-
set of the universe (including the empty set and the complete universe). The study
of these languages, their definitions, applications, and various other properties, is,
loosely specified, the field of formal language theory. Granted, the given definition is
very wide, bordering on unusable, and we will spend Chapters 3 to 5 defining more
specifically the field and subfield that is the topic of this thesis.

1.2 Organisation

The organisation of the rest of this thesis proceeds as follows: First, we present the
field of semantic modelling through a brief history of the field, after which we in-
troduce formal language theory in general, including the relevant theory of finite au-
tomata, logic, and various other fields. We then discuss the formalisms that form the
major contributions in the papers included in this thesis. We briefly introduce a num-
ber of related formalisms, before turning to the areas and applications which we aim to
produce practical results for, and the minor practical results themselves. We conclude
the introduction with a section on future work, both for developing and using our for-
malisms. Finally, the five papers that comprise the major scientific contributions in
this thesis are included.

4

CHAPTER 2

Semantic modelling

The whole field of human language is much too vast to give even a cursory intro-
duction to in a reasonable way, so let us focus on the specific area of study that has
motivated the theoretical work presented here.

From the study of human language in its entirety, let us first focus on the area
of natural language processing, which can be very loosely described as the study of
how to use computers and algorithms for natural language tasks such as translation,
transcription, natural language interfaces, and various kinds and applications of nat-
ural language understanding. This, while being more specific than the whole field of
human language, is thus still quite general.

The specific area within natural language processing that interests us is semantic
processing, and even more specifically, semantic modelling. That is, we are more in-
terested in the structure of meaning, than that of syntax. Again, this is a quite wide
field, which has a long and varied history, but the problem can be briefly stated as fol-
lows: How can we represent the meaning of a sentence in a way that is both reasonable
and useful?

2.1 History

Arguably, this field has predecessors all the way back to the beginning of the Enlight-
enment with the attempts of Francis Lodwick, John Wilkins and Gottfried Wilhelm
Leibniz among others to develop a “philosophical language” which would be able to
accurately represent facts of the world without the messy abstractions, hidden con-
texts and ambiguities of natural language. This was to be accomplished in Wilkins
conception [Wil68] through, on the one hand, a “scientifically” conceived writing sys-
tem based on the anatomy of speech, on the other hand, an unambiguous and regular
syntax with which to construct words and sentences, and on the gripping hand,1 a
well-known and unambiguous way to refer to things and concepts, and their rela-
tions. Needless to say these attempts, though laudable and resulting in great insights,
ended with no such language in use, and the worlds of both reality and imagination
had proven to be much more complex and fluid than the strict categories and forty

1 This is a somewhat oblique reference to the science fiction novel “A Mote in Gods Eye” by Larry
Niven and Jerry Pournelle. The confused reader may interpret this as “on the third hand, and most
importantly”.

5

Chapter 2

all-encompassing groupings (or genera) of Wilkins.
Even though the intervening years cover many more interesting and profound in-

sights, the next major step that is relevant to this thesis occurs in the mid-twentieth
century, with the very first steps into implementing general AI on computers. Here,
various approaches to knowledge representation could be tested “in the field”, by at-
tempting to build AI systems using them. Initially, projects like the General Problem
Solver [NSS59] tried to, once again, deal with the world and realm of imagination
in a complete, systematic way. However, the complexities and ambiguities of the real
world once again gradually asserted themselves to dissuade this approach. Instead, ex-
pert systems became the norm, where the domain was very limited, e.g. to reasoning
about medical diagnoses. Here, the meaning of sentences could be reduced to simple
logical formulae and assertions, which could then be processed to give a correct output
given the inputs.

In parallel, the field of natural language processing was in its nascent stages, with
automated translation being widely predicted to be an easy first step to fully natural
language interfaces being standard for all computers. This, too, was quickly proven
to be an overly optimistic estimation of the speed of AI research, but led to an influx
of funding, kick-starting the field and its companion field of computational linguis-
tics. Initial translator systems dispensed with any pretence at semantic understanding
or representation, and used pure lexical word for word correspondences between lan-
guages to translate text from one language to another, with some special rules in place
for certain reorderings, deletions and insertions. Many later attempts were built on
similar principles, but sometimes used an intermediate representation, or interlingua,
as a step between languages. This can be seen as a kind of semantic representation.

After several decades of ever more complex rules and hand-written grammars, the
real world once again showed itself to be much too complex to write down in an exact
way. Meanwhile, an enormous amount of data had started to accumulate in ever more
computer accessible formats, and simple statistical models trained on such data started
seeing success in various NLP tasks. Recent examples of descendants of such models
include all sorts of neural network and “deep learning” approaches.

With the introduction of statistical models, we have essentially arrived at a rea-
sonable picture of the present day, though the balance between data-driven and hand-
written continues to be a difficult one, as is the balance between complexity and ex-
pressivity of the chosen models. An additional balance that has recently come to the
fore is the balance between efficiency and explainability – that is, if we construct a
(usually heavily data-driven) model and use it for some task, how easy is it so see why
the model behaves as it does, and gives the results we obtain? All of these separate
dimensions of course interact, sometimes in unexpected ways.

2.2 Issues in Semantic Modelling

With this history in mind, let us turn to the practicalities of representing semantics.
The two keywords in our question above is “reasonable” and “useful” – they require
some level of judgement as to for whom and what purpose the representation should

6

Semantic modelling

be reasonable and useful. As such, this question has much in common with other
questions in NLP research. Should we focus on making translations that seem good to
professional translators and bilinguals, or should we focus on making the translations
explicit, showing the influence of each part of the input to the relevant parts of the
output? Is it more important to use data structures that mimic what “really” is going
on in the mind, or should we use abstractions that are easier to reason about, even
though they may be faulty or inflexible, or should we just use “whatever works best”,
for some useful metric?

Thus the particular semantic representation chosen depends very much on the re-
search question and on subjective valuations. In many instances, the semantics are less
important than the function, and thus a relatively opaque representation may be cho-
sen, such as a simple vector of numbers based on word proximity (word embeddings).
In others, the computability and manipulation of semantics is the central interest, and
thus the choice is made to represent semantics using logical structures and formulae.

In this thesis, we have chosen to explore formalisms for semantic graphs, that
represent the meaning of sentences using connections between concepts. However,
to properly define and discuss these requires a bit more background of a more formal
nature, which will be provided in the following chapters.

7

8

CHAPTER 3

String languages

With some background established in the general field of natural language processing,
let us turn to theory.

To define strings, we first need to define alphabets: these are (usually finite) sets
of distinguishable objects, which we call symbols. A string over the alphabet Σ is any
sequence of symbols from the alphabet, and a string language (over the same) is any
set of such strings. A set of languages is called a class of languages.

Thus the string ”aababb” is a string over the alphabet {a,b} (or any alphabet
containing a and b), while the string “the quick brown fox jumps over the lazy dog”
is a string over the alphabet of lowercase letters a to z and a space character (or any
superset thereof).

Further, any finite set of strings, such as {”a”,”aa”,”aba”} is a string language,
but we can also define infinite string languages such as “all strings over the alphabet
{a,b} containing an even number of a’s”, or “any string over the English alphabet
(plus a space character) containing the word supercalifragilisticexpialidocious”.

For classes of languages, we can again look at finite sets of languages, though it
is generally more interesting to study infinite sets of infinite languages. Let us look
closer at such a class – the well-studied class of regular string languages (REG). We
define this class first inductively using regular expressions, which were first described
by Stephen Kleene in [Kle51]. In the following, e and f refer to regular expressions,
while a is a symbol from the alphabet.

• A symbol a is a regular expression defining the language “a string containing
only the symbol a”.

• A concatenation e · f defines the language “a string consisting of first a string
from the language of e, followed by a string from the language of f ”. We often
omit the dot, leaving e f .

• An alternation (or union) (e)|(f) defines the language “either a string from the
language of e, or one from the language of f ”

• A repetition e∗ defines the language “zero or more concatenated strings from
the language of e” 1

1 This is generally called a Kleene star, from Stephen Kleene.

9

Chapter 3

Thus, the regular expression (a)|(aa)|(aba) defines the finite string language
{”a”,”aa”,”aba”}, while (b∗ab∗a)∗b∗ is one way of writing the language “all strings
over {ab} with an even number of a’s”.

3.1 Automata

Let us now turn to one of the most important, well-studied, and, for lack of a better
word, modified structures of formal language theory – the finite automaton, which in
its general principles were defined and explored by Alan Turing in [Tur37].

In short, a finite automaton is an idealised machine that can be in any of a finite
set of states. It reads an input string of symbols, and, upon reading a symbol, moves
from one state to another. Using this simple, mechanistic framework, we can achieve
great complexity. As great, it turns out, as when using regular expressions (Kleene’s
Theorem [Kle51]). Let us formalise this:

Finite automaton A finite (string) automaton is a structure A=(Σ,Q,q0,F,δ), where

• Σ is the input alphabet

• Q is the set of states

• q0 ∈ Q is the initial state

• F ⊂ Q is the set of final states, and

• δ : (Σ×Q)→ 2Q is the transition function

A configuration of an automaton A is an element of (Q×Σ∗), that is, a state paired
with a string or, equivalently, a string over Q∪Σ where only the first symbol is taken
from Q. The initial configuration of A on a string w is the configuration q0w, a final
configuration is q f , where q f ∈ F , and a run of A on w is a sequence of configurations
q0w = q0w0,q1w1, . . . ,qkwk = qk, where for each i, wi = cwi+1 for some c ∈ Σ, and
qi+1 ∈ δ (qi,c). If a run ends with a final configuration, then the run is successful, and
if there is a successful run of an automaton on a string, the automaton accepts that
string. The language of an automaton is the set of strings it accepts.

An automaton that accepts the finite language {”a”,”aa”,”aba”} is, for example,
A = ({a,b},{q0,q1,q2,q f },q0,{q1,q f },δ) where

δ = {(q0,a)→{q1},(q1,a)→{q f },(q1,b)→{q2},(q2,a)→{q f },}

depicted in Figure 3.1, and one for the language ”all strings with an even number of
a’s in Figure 3.2.

As mentioned, there are many well-known and well-studied modifications of the
basic form of a finite state automaton,2 such as augmenting the processing with an
unbounded stack (yielding push-down automata), or an unbounded read-write tape

2 Finite automata are perhaps more correctly described as being derived by restricting the more general
Turing machines, which was the initially defined machine given in [Tur37].

10

String languages

q0start

q1

q2

q f

a a

b

a

Figure 3.1: An automaton for the lan-
guage {”a”,”aa”,”aba”}.

q0start q1

a

a

bb

Figure 3.2: An automaton for the lan-
guage of all strings over {a,b} with an
even number of a’s

(yielding Turing machines), or restricting it, for example by forbidding loops (restrict-
ing the use to finite languages). Another common extension is to allow the automaton
to write to an output tape, yielding string-to-string transducers

Another restriction which is more relevant to this thesis is to require the transition
function be single-valued, i.e. instead of yielding a set of states, it yields a single
state. The definition of runs is amended such that instead of requiring that qi+1 ∈
δ (qi,c), we require that qi+1 = δ (qi,c). Such an automaton is called deterministic,
while ones defined as above are nondeterministic. Both recognise exactly the regular
languages, but deterministic automata may require exponentially many more states to
do so. Additionally, while nondeterministic automata may have several runs on the
same string, deterministic automata have (at most) one.

3.2 Grammars

Finite automata is a formalism that works by recognising a given string, and regular
expressions are well-specified descriptions of a languages. Grammars, in contrast,
are generative descriptions of a languages. In general, grammars work by some kind
of replacement of nonterminals, successively generating the next configuration, and
ending up with a finished string of terminals. Though, again, many variants exist, and
the practise of string replacement has a long history, the most studied and used type
of grammar is the context-free grammar.

Context-free grammar A context-free grammar is a structure G = (Σ,N,S,P) where

• Σ and N are finite alphabets of terminals and nonterminals, respectively

• S ∈ N is the initial nonterminal, and

• P is a set of productions, on the form A→ w where A ∈ N and w ∈ (Σ∪N)∗.

11

Chapter 3

Intuitively, for a grammar, such as the context-free, we employ replacement by
taking a string uAv and applying a production rule A→ w, replacing the left-hand side
by the right-hand side, obtaining the new string uwv. The language of a grammar is
the set of terminal strings that can be obtained by starting with the string S containing
only the initial nonterminal, and then applying production rules until only terminal
symbols remain.

Analogously to automata, we may call any string over Σ∪N a configuration. A
pair wi,wi+1 of configurations such that wi+1 is obtained from wi by applying a pro-
duction rule is called a derivation step. A sequence of configurations w0,w1 . . . ,wk,
starting with the string w0 = S containing only the initial nonterminal and ending with
a string wk = w over Σ, where each pair wi,wi+1 is a derivation step is a derivation.

While the context-free grammars are the most well-known and well-studied of the
grammar formalisms, they do not correspond directly to regular expressions and finite
automata in terms of computational capacity. That is, there are languages that can be
defined by context-free grammars that no finite automaton recognises. Instead, CFG
correspond to push-down automata, that is automata that have been augmented with a
stack which can be written to and read from as part of the computation.

The grammar formalism that generates regular languages is named, unsurprisingly
the regular grammars, and is defined in the same manner as the context-free, except
that the strings on the right-hand side of productions are required to consist only of
terminal symbols, with the exception of the last symbol. Without sacrificing any ex-
pressive power, we can even restrict the right-hand sides to be exactly aA where a is a
terminal symbol and A is an optional nonterminal. If all rules in a regular grammars
are on this form, we say that it is on normal form. Compare this to finite automata,
where we start processing in one end and continue to the other, processing one symbol
after the other.

The parsing problem for a certain class of grammars is the task of finding, given
a grammar and a string, one or more derivation of the grammar that results in the
string, if any exists. For regular grammars, it amounts, essentially, to restructuring the
grammar into an automaton and running it on the string.

For a well-written introduction to many topics in theoretical computing science,
and in particular grammars and automata on strings, see Sipser [Sip06].

3.3 Logic

Though the connection between language and logic is mostly thought of as concerning
the semantic meaning of statements and analysing self-contradictions and implications
in arguments, there is also a connection to formal languages. Let us first fix some
notation for how to express logic.

We use ¬ for logical inversion, in addition to the standard logical binary connec-
tives: ∧,∨,⇔,→, as in Table 3.1

We can form logical formulae by combining facts (or atoms), with logical con-
nectives, for example claiming that “It is raining”→ “the pavement is wet”, or “This
is an ex-parrot” ∧ “it has ceased to be”. Each of these facts can be true or false, and

12

String languages

A B A∧B A∨B A⇔ B A→ B
T T T T T T
T F F T F F
F T F T F T
F F F F T T

Table 3.1: Standard logical connectives, T and F stands for “true” and “false”, respec-
tively

the truth of a formula is most often dependent on the truth of its component atoms.
However, if we have some fact P, then the truth of the statements P∨¬P and P∧¬P
are both independent of P. We call the first formula (which is always true) a tautology,
and the second (which is always false) a contradiction. Much has been written on this
so-called propositional logic, both as a tool for clarifying arguments and as formal
methods of proving properties of systems in various contexts.

We can be more precise about facts. Let us first fix a domain – a set of things
that we can make statements about, such as “every human who ever lived”, “the set of
natural numbers”, or “all strings over the alphabet Σ”. We can then define subsets of
the domain for which a certain fact is true, such as even, which is true of every even
natural number, dead, which is true of all dead people, or empty, which is true of
the empty string. A fact, then is for example dead(socrates), which is true, or
dead(petter), which as of this writing is false.

We can generalise this precise notion of facts to not just be claims about the prop-
erties of single objects, but claims of relations. For example, we could have a binary
father relation, which would be true for a pair of objects where the first is the father
of the second, or a trinary concatenation relation, which is true if the first argu-
ment is the concatenation of the two following, as in concatenation(aaab, a,
aab). The facts about properties discussed previously are simply monadic relations.

A domain together with a set of relations (a vocabulary) and their definitions on the
domain of objects is a logical structure, or model, and model checking is the practise
of taking a model and a formula and checking whether or not the model satisfies the
formula – that is, if the formula is true, given the facts provided by the model.

Up until now, we have discussed only propositional, or zeroth-order logic. Let us
introduce variables and quantification, to yield first-order logic: We add to our logical
symbols an infinite set X = {x,y,z . . .} of variables, disjoint from any domain, and the
two symbols ∃ and ∀ that denote existential and universal quantification, respectively.
Briefly, we write ∃x φ for some formula φ containing x to mean that “there exists some
object x in the domain such that φ holds”. Conversely, we write ∀x φ to mean “for all
objects x in the domain, φ holds”.

Quantification is thus a tool that allows us to express things like ∀x human(x)→
(alive(x)∨dead(x)∧¬(alive(x)∧dead(x))), indicating that we have no vampires
(who are neither dead nor alive) or zombies (who are both) in our domain, or at least
that they do not count as human. Moreover, ∃x even(x)∧prime(x) holds thanks to the
number 2, assuming the domain is the set of natural numbers and even and prime

13

Chapter 3

are given reasonable definitions.
Second-order logic uses the same vocabulary as first-order, but allows us to use

variables not only for objects in the domain, but also for relations. Restricting our-
selves to quantification over relations of arity one yields monadic second-order (MSO)
logic, which is a type of logic with deep connections to the concept of regularity as
defined using regular grammars or finite automata, see e.g. [Büc60].

Let our domain be the set of positions of a string, and define the relations laba(x)
for “the symbol at position x has the label a”, and succ(x,y) for “the position y comes
directly after the position x”. With these predicates, each string s has, essentially, one
single reasonable logical structure Ss that encodes it. We can then use this encoding
to define languages of strings, using logical formulae, saying that the language L (φ)
of a formula φ over the vocabulary of strings over Σ (i.e. using facts only on the form
laba(x) and succ(x,y) for a ∈ Σ) is the set of strings s such that Ss satisfies φ .

For example, if we let φ = ∀x (¬∃z (succ(z,x))→ laba(x)), we capture all strings
that start with an a in our language. We arrive at a new hierarchy of language classes,
where first-order logic captures the star-free languages, and MSO logic captures the
regular languages (Büchi’s Theorem). The proof is somewhat technical, but for the
direction of showing that all regular languages are MSO definable, it proceeds roughly
as follows: We are going to assign each position of the string to a set, representing the
various states that the automaton or grammar could have at that position. We do this
by assigning the first position to the set representing the initial state, and then having
formulae that represent transitions, checking that, for each pair of positions x,y, if
succ(x,y), then x is assigned to the proper set (say, Qq(x)), that laba(x), and then
claiming that y is assigned to the proper set (say, Qq′(y)). By finally checking whether
or not the final position of the string belongs to any of the sets representing final states,
we can ensure that the formula is only satisfied for structures Ss such that s is in the
target language.

3.4 Composition and decomposition

We have thus far defined regularity in terms of automata, grammars and logic. We now
introduce another perspective on regularity. First, let us define the universe of strings
over an alphabet Σ, once again, this time algebraically. In short, the set of all strings
over Σ is also named the free monoid over Σ, that is, the monoid with concatenation
as the binary operation, and the empty string as the identity element.

We can moreover compose and decompose strings into prefixes and suffixes.
Given a string language L, we can define prefix equivalence in relation to L as

the following: Two strings w and v are prefix equivalent in relation to L, denoted ≡L,
if and only if for all strings u ∈ Σ∗, uw ∈ L iff uv ∈ L. For each language, ≡L is an
equivalence relation on Σ∗ – that is, it is a relation that is reflexive, symmetric and
transitive. As such, it partitions Σ∗ into equivalence classes, where all strings in an
equivalence class are equivalent according to the relation. The number of equivalence
classes for an equivalence relation is called its index, and we let the index of a language
be the index of its prefix equivalence.

14

String languages

With these definitions in hand, we can define regular languages in a different
way: The string languages with finite index are exactly the regular languages (Myhill-
Nerode theorem) [Ner58].

3.5 Regularity, rationality and robustness

The regular languages have several other definitions and names in the literature, such
as the recognisable languages, or the rational languages. What all these disparate
definitions of regular languages have in common is that they are relatively simple, and
for want of a better word, “natural”, and though they come from radically different
contexts (viz. algebra, formal grammars/automata, logic), they all describe the same
class of languages. This is a somewhat unusual, though highly desirable property
called robustness.

3.6 Learning of regular languages

Using finite automata or MSO logic, we can determine whether or not a string (or set of
strings) belongs to a specific regular language. With regular grammars or expressions,
we can, for a given language, generate strings taken from that language. However,
sometimes we have no such formal description of a language, but we do have some
set of strings we know are in the language, and some set of strings that are not. If we
wish to infer or learn the language from these examples, we say we are trying to solve
the problem of grammatical inference or grammar induction.

There are many different variants of this problem, such as learning only from pos-
itive examples or from a positive and negative set, these set(s) of examples being finite
or infinite, having some coverage guarantees of the (finite) sets of examples, or having
more or less control over which examples are given. The learning paradigm relevant to
this thesis is one where not only is this control rather fine-grained, but in fact usually
envisioned as a teacher, having already complete knowledge of the target language.
More specifically, we are interested in the minimally adequate teacher (MAT) model
of Angluin [Ang87], where the teacher can answer two types of queries:

• Membership: Is this string a member of the language?

• Equivalence: Does this grammar implement the target language correctly?

Membership queries are easily answered, but equivalence queries require not only
an up-or-down boolean response, but a counterexample, that is, a string that is mis-
classified by the submitted grammar.3

Briefly, using membership and equivalence queries, the learner builds up a set of
representative strings for each equivalence class of the target language, and a set of

3 There are variants of MAT learning that avoids this type of equivalence queries using various techniques
or guarantees on an initial set of positive examples.

15

Chapter 3

distinguishing suffixes (or prefixes), such that for any two representatives w1,w2, there
is some suffix s such that either w1s is in the language while w2s is not, or vice versa.

While many learning paradigms are limited to some subset of the regular lan-
guages, MAT learning can identify any regular language using a polynomial number
of queries (in the number of equivalence classes of the target language).

3.7 Weights

We can augment our grammars and automata with weights,4 yielding regular string
series, more well known as recognisable series. There is a rich theory in abstract al-
gebra with many results and viewpoints concerning recognisable series, though most
of these are not relevant for this thesis. Refer to [DKV09] for a thorough introduction
to the subject. Briefly, we augment our grammars and automata with a weight func-
tion, which gives each transition or production a weight taken from some semiring.
The weight of a run or derivation is the product of the weights of all its constituent
transitions/productions, and the weight of a string, the sum of all its runs/derivations.
Deterministic weighted grammars and automata are those where for each string there
is only a single run or derivation of non-zero weight.

4 There are several candidates for putting weights on logical characterisations, e.g. [DG07], but thus far
no obviously superior one.

16

CHAPTER 4

Tree languages

Though useful in many contexts, regular string languages are generally not sufficiently
expressive to model natural human language. For this, we require at minimum context-
free languages.1 An additional gain from moving to the context-free languages is the
ability to give some structure to the generation of strings – we can for example say that
a sentence consists of a noun phrase and a verb phrase, and encode this in a context-
free grammar using the rule S→ NP VP, and then have further rules that specify what
exactly constitutes a noun or verb phrase. That is, we can give syntactic rules, and
have them correlate meaningfully to our formal model of the natural language.

Of course, with the move from regular to context-free languages we lose a number
of desirable formal properties, such as MSO definability and closure under comple-
ment and intersection, as well as the very simple linear-time parsing achievable using
finite automata.

However, though context-free production rules and derivations are more closely
related to how we tend to think of natural language syntax, working exclusively with
the output strings is not necessarily sufficient. Ideally, we would like to reason not
only about the strings, but about the syntactic structures themselves. To this end, let
us define a tree over an alphabet Σ as being either

• a symbol a in Σ, or

• a formal expression a[t1, . . . , tk] where a is a symbol in Σ, and t1, . . . , tk are trees

A specific tree such as a[b,c[d]] can also be shown as in Figure 4.1. We call the
position of a in this case the top or root, while b and d are leaves that together make
up the bottom, or frontier. We say that a is the parent of its direct subtrees b and c[d].
Further, a[b,c[d]],b,c[d] and d are all the subtrees of a[b,c[d]]. Note that each tree is
a subtree of itself, and each leaf is a subtree as well.

The paths in a tree is the set of sequences that start at the root and then move from
parent to direct subtree down to some node. In the example that would be the set
{a,ab,ac,acd}, optionally including the empty sequence.

1 There are some known structures in natural language that even context-free languages are insufficient
for. As the more expressive context-sensitive languages are prohibitively computationally expensive,
there is an active search among several candidates for an appropriate formalism of mildly context-
sensitive languages. See my licentiate thesis [Eri17] for my contributions to that field.

17

Chapter 4

a

b c

d

Figure 4.1: The tree a[b,c[d]]

4.1 Tree grammars

We can now let our CFG produce not strings, but trees, by changing each rule A→
a1a2 . . .ak into A→ A[a1,a2, . . . ,ak], with replacement working as in Figure 4.2. This
gives us a tree grammar that instead of generating a language of strings generates
a language of trees. In fact, these grammars are a slight restriction of regular tree
grammars.2 Unsurprisingly, many of the desirable properties that hold for regular
string languages also hold for regular tree languages, but for technical reasons, this is
easier to reason about using ranked trees, for which we require ranked alphabets:

a

A c

d

→A→b[e, f]

a

b

e f

c

d

Figure 4.2: A tree replacement of A by b[e, f].

Ranked alphabet A ranked alphabet (Σ,rank) is an alphabet Σ together with a rank-
ing function, rank : Σ→ N, that gives a rank rank(a) to each symbol in the alphabet.
When clear from context, we identify (Σ,rank) with Σ. We let Σk denote the largest
subset of Σ such that rank(a) = k for all a ∈ Σk, i.e. Σk is all the symbols a ∈ Σ such
that rank(a) = k.

We can now define the set TΣ of ranked trees over the (ranked) alphabet Σ induc-
tively as follows:

• Σ0 ∈ TΣ

2 Specifically, over unranked trees.

18

Tree languages

• For a ∈ Σk and t1 . . . tk ∈ TΣ, a[t1, . . . , tk] ∈ TΣ

We can immediately see that we can modify our previous CFG translations by let-
ting all terminal symbols have rank 0 and creating several copies of each nonterminal
A, one for each k = |w| where A→w is a production. This also requires several copies
of each production where A appears in the right-hand side. Though this may require
an exponential number of new rules (in the maximum width of any right-hand side),
the construction is relatively straightforward to prove correct and finite.

We now generalise our tree grammars slightly to obtain the regular tree grammars,
as follows:

Regular tree grammar A regular tree grammar is a structure G = (Σ,N,S,P) where

• Σ and N are finite ranked alphabets of terminals and nonterminals, respectively,
where additionally N = N0,

• S ∈ N is the initial nonterminal, and

• P is a set of productions, on the form A→ t where A ∈ N and t ∈ T(Σ∪N).

Now, the connection to context-free string grammars is obvious, but it is perhaps
less obvious why these tree grammars are named regular rather than context-free.
There are several ways of showing this, but let us stay in the realm of grammars for
the moment.

Consider the way we would encode a string as a tree – likely we would let the first
position be the root, and then construct a monadic tree, letting the string grow “down-
wards”. The string abcd would become the tree a[b[c[d]]], and some configuration of
a regular string grammar abcA would become a[b[c[A]]]. Now, a configuration abAc
of a context-free grammar would, by the same token, be encoded as the tree a[b[A[c]]],
but note that the nonterminal A would need to have rank 1 for this to happen – some-
thing which is disallowed by the definition of regular tree grammars, where N = N0.
This correlates to the restriction that regular grammars have only a single nonterminal
at the very end of all right-hand sides.3

Another way to illustrate the connection is through the path languages of a tree
grammar – the string language that is defined by the set of paths of any tree in the
language. For monadic trees, this would coincide with the string translation used in
the previous paragraph, but even allowing for wider trees, this is regular for any regular
tree grammar. Moreover, as implied in the above sketch, each regular string language
is the path language of some regular tree grammar.

4.2 Automata

As in the string case, the connection between automata and grammars is relatively
straightforward. First we restrict the grammar to be on normal form, which in the tree
case means that the right-hand sides should all be on the form a[A1, . . . ,Ak] for a ∈ Σk
and Ai ∈ N for all i.

3 Context-free tree grammars, analogously, let nonterminals have any rank.

19

Chapter 4

S →

a

A B

→

a

A c

D

→

a

b

E F

c

D

→

a

b

e F

c

D

→

a

b

e f

c

D

→

a

b

e f

c

d

Figure 4.3: A derivation of a tree grammar.

Now, consider a derivation of a grammar on that form that results in a tree t, as in
Figure 4.3. We wish to design a mechanism that, given the tree t, accepts or rejects
it, based on similar principles as the grammar. Intuitively, we can either start at the
bottom, and attempt to do a “backwards” generation, checking at each level if and
how well a subtree matches a specific rule, or we start at the top and try to do a
“generation” matching what we see in t. These are informal descriptions of bottom-up
and top-down finite tree automata, respectively. Let us first formalise the former:

Bottom-up finite tree automaton A bottom-up finite tree automaton is a structure
A = (Σ,Q,F,δ), where

• Σ is the ranked input alphabet

• Q is the set of states

• F ⊂ Q is the set of final states, and

• δ :
⋃

k(Σk×Qk)→ 2Q is the transition function

In short, to compute the next state(s) working bottom-up through a symbol a of
rank k, we take the k states qi, i ∈ {1,2, . . . ,k} computed in its direct subtrees, and re-
turn δ (a,q1, . . . ,qk). Note that we have no initial state – instead the transition function
for symbols of rank 0 (i.e. leaves) will take only the symbol as input and produce a
set of states from only reading that. Compare this to the top-down case, defined next:

20

Tree languages

Top-down finite tree automaton A top-down finite tree automaton is a structure A=
(Σ,Q,q0,δ), where

• Σ is the ranked input alphabet

• Q is the set of states

• q0 ∈ Q is the initial state

• δ :
⋃

k(Σk×Q)→ 2Qk
is the transition function

Here, we instead have an initial state q0, but no final states, as the transition func-
tion, again for symbols of rank 0, will either be undefined (meaning no successful run
could end thus), or go to the empty sequence of states λ .

Runs and derivations for tree automata naturally become more complex than for
the string case, though configurations are, similar to the string case, simply trees over
an extended alphabet with some restrictions. In particular, in derivations of regular
string grammars there is at most one nonterminal symbol present in each configura-
tion, making the next derivation step relatively obvious. For regular tree grammars, in
contrast, there may in any given configuration be several nonterminals, any of which
could be used for the next derivation step. Likewise, for string automata one simply
proceeds along the string, while the computation proceeds in parallel in several dif-
ferent subtree in runs for both top-down and bottom-up tree automata. Let us for the
moment ignore this difficulty, as for the unweighted case the order is irrelevant, and
the run will be successful or not, the derivation result in the same tree regardless of
what particular order we choose to compute or replace particular symbols in, as long
as the computation or replacement is possible.

Bottom-up finite tree automata recognise exactly the class of regular tree lan-
guages in both its deterministic and nondeterministic modes, but for top-down finite
tree automata, only the nondeterministic variant does so. This asymmetry comes from,
essentially, the inability of top-down deterministic finite tree automata to define the
language { f [a,b], f [b,a]}, as it can designate that it expects either an a in the left
subtree and a b in the right, or vice versa, but not both at the same time without also
expecting f [a,a] or f [b,b]. For a slightly aged, but still excellent introduction to the
basics of tree formalisms, including this and many other results, see [Eng75].

4.3 Logic

Logic over trees works in much the same way as logic over strings – we let the do-
main be the set of positions in the tree, and the relations be, essentially, the successor
relation, but with several successors. More specifically, let the vocabulary for a tree
over the ranked alphabet Σ with maximum rank k be, for each a∈ Σ, the unary relation
laba, and for each i ∈ {1,2, . . . ,k}, the binary relation succi.

It should come as no surprise that the set of MSO definable tree languages are
exactly the regular tree languages [TW68]. As for the string case, the proof is quite
technical, but is built on similar principles that apply equally well.

21

Chapter 4

4.4 Composition and decomposition

Translating prefixes, suffixes and algebraic language descriptions to the tree case is
slightly more complex than the relatively straightforward extension of grammars, au-
tomata and logic. In particular, while both prefixes and suffixes in the string case, for
trees we must introduce the notion of tree contexts, which are trees “missing” some
particular subtree. More formally, we introduce the symbol � of rank 0, disjoint from
any particular alphabet Σ under discussion, and say that the set CΣ of contexts over the
alphabet Σ is the set of trees in TΣ∪{�} such that � occurs exactly once.

We can then define tree concatenation as the binary operation concat : (CΣ×TΣ)→
TΣ, written s = concat(c, t) = c[t] where s is the tree obtained by replacing� in c by t.
As for string languages, this gives us the necessary tools to define context equivalence
relative to L where L is a tree language: trees t and s are context equivalent in relation
to L if c[t] ∈ L iff c[s] ∈ L for all c ∈ CΣ, written s ≡L t. As in the string case, the
regular tree languages are exactly those for which ≡L has finite index.4

4.5 Weights

Augmenting the transitions and productions of tree automata and grammars with
weights taken from some semiring, and computing weights in a similar manner to
the string case yields recognisable tree series.5 In the case where a tree has a sin-
gle run or derivation, the computation is simple - multiply all the weights of all the
transitions/productions used – but if we have some tree f [a,b] with a derivation

S→ f [A,B]→ f [a,B]→ f [a,b]

then we could also derive the same tree as

S→ f [A,B]→ f [A,b]→ f [a,b]

.
However, considering exactly the same derivation steps have been made, with no

interaction between the reordered parts, it would seem silly to count these derivations
as distinct in order to compute the weight of the tree.

We can formalise the distinction between necessarily different derivations and
those that differ only by irrelevant reorderings by placing our derivation steps into
a derivation tree. This is a special kind of ranked tree where the alphabet is the set of
productions of a grammar, and the rank of a production A→ t is the number ` of non-
terminals in t. We call this the arity of the production. A derivation tree for a grammar
G = (Σ,N,S,P), then, is a tree over the ranked alphabet (P,arity), where arity is the
arity function that returns the arity of a rule. However, note that not every tree over
this alphabet is a proper derivation trees, as we have more restrictions on derivations
than just there being a nonterminal in the proper place.

4 See [Koz92] for a quite fascinating history of, and accessible restatement and proof of this result.
5 See, once again, [DKV09], specifically [FV09], for a more thorough examination of the topic.

22

Tree languages

Instead, a derivation tree is one where the labels of nonterminals is respected, in the
sense that (i) the root is marked with some production that has the initial nonterminal
S as its left-hand side, and (ii) for each subtree (A → t)[s1, . . . ,s`] such that the `
nonterminals in t are A1 to A` we require that for each si, its root is (Ai → ti) for
Ai→ ti ∈ P. The derivation tree of the example derivation would then be

(S→ f [A,B])[(A→ a),(B→ b)]

We then define the weight of a tree t according to a weighted regular tree grammar
G to be sum of the weights of all its distinct derivation trees, where the weight of a
derivation tree is the product of the weights of all its constituent productions.

23

24

CHAPTER 5

(Order-Preserving) Graph
Languages

Shifting domains once again, let us discuss graphs and graph languages, with the back-
ground we have established for strings and trees. Graphs consist of nodes and edges
that connect nodes. As such, graphs generalise trees, which in turn generalise strings.
However, while the generalisation of regularity from strings to trees is relatively pain-
less, several issues make the step to graphs significantly more difficult.

Let us first define what type of graphs we are focusing on. First of all, our graphs
are marked, in the sense that we have a number of designated nodes that are external to
the graph. Second, our graphs are directed, meaning that each edge orders its attached
nodes in sequence. Third, our edges are not the standard edges that connect just a pair
of nodes, but the more general hyperedges, that connect any (fixed) number of nodes.
Fourth, our edges have labels, taken from some ranked alphabet, such that the rank of
the label of each edge matches the number of attached nodes.

Thus, from now on, when we refer to graphs we refer to marked, ranked, directed,
edge-labelled hypergraphs, and when we say edges, we generally refer to hyperedges.

Formally, we require some additional groundwork before being able to properly
define our graphs. Let LAB, V , and E be disjoint countably infinite supplies of labels,
nodes, and edges, respectively. Moreover, for a set S, let S~ be the set of non-repeating
strings over S, i.e. strings over S where each element in S occurs at most once. Let
S+ be the set of strings over S excluding the empty string ε , and S⊕ be the same for
non-repeating strings.

Marked, directed, edge-labelled hypergraph A graph over the ranked alphabet Σ⊂
LAB is a structure g = (V,E, lab,att,ext) where

• V ⊂ V and E ⊂ E are the disjoint sets of nodes and edges, respectively

• lab : E→ Σ is the labelling,

• att : E→V⊕ is the attachment, with rank(lab(e)) = |att(e)|−1 for all e ∈ E

• ext : V⊕ is the sequence of external nodes

Further, for att(e) = vw with v ∈ N and w ∈ V~ we write src(e) = v and tar = w
and say that v is the source and w the sequence of targets of the edge e. This implies a

25

Chapter 5

directionality on edges from the source to the targets. Graphs, likewise have sources
and targets, denoted as v = g and w = g for ext = vw. The rank rank(x) of an edge or
a graph x is the length of its sequence of targets. The in-degree of a node v is the size
of the set {e : e ∈ E,v ∈ tar(e)}, and the out-degree the size of the set {e : e ∈ E,v =
src(e)}. Nodes with out-degree 0 are leaves, and with in-degree 0, roots. We subscript
the components and derived functions with the name of the graph they are part of, in
cases where it may otherwise be unclear (Eg,srcg(e) etc.).

Note that we in the above define edges to have exactly one source and any (fixed)
number of targets. This particular form of graphs is convenient for representing trees
and tree-like structures, as for example investigated by Habel et. al. in [HKP87].
Moreover, natural language applications tend to use trees or tree-like abstractions for
many tasks.

Even with this somewhat specific form of graphs, however, we can immediately
identify a number of issues that prevent us from defining a naturally “regular” for-
malism, most obviously the lack of a clear order of processing, both in the sense of
“this comes before that, and can be processed in parallel”, and as in “this must be pro-
cessed before that, in sequence”. The formalisms presented in this thesis solves both
of these problems, but at the cost of imposing even further restrictions on the universe
of graphs.

5.1 Hyperedge replacement grammars

We base our formalism on the well-known hyperedge replacement grammars, which
are context-free grammars on graphs, where we, as in context-free string grammars,
continuously replace atomic nonterminal items with larger structures until we arrive at
an object that contains no more nonterminal items. While nonterminal items are single
nonterminal symbols in the string case, now they are hyperedges labelled with non-
terminal symbols. To this end, we partition our supply of labels LAB into countably
infinite subsets LABT and LABN of terminal and nonterminal labels, respectively.

Hyperedge replacement grammar A hyperedge replacement grammar (HRG) is a
structure G = (Σ,N,S,P) where

• Σ ⊂ LABT and N ⊂ LABN are finite ranked alphabets of terminals and nonter-
minals, respectively

• S ∈ N is the initial nonterminal, and

• P is a set of productions, on the form A → g where A ∈ N and rank(A) =
rank(g).

Hyperedge replacement, written g = h[[e : f]], is exactly what it sounds like – given
a graph h we replace a hyperedge e ∈ Eh with a graph f , obtaining the new graph g by
identifying the source and targets of the replaced edge with the source and targets of
the graph we replace it with. See Figure 5.1 for an example. As in the string and tree

26

(Order-Preserving) Graph Languages

cases, replacing one edge with a new graph fragment according to a production rule is
a derivation step. The set of terminal graphs we can derive using a sequence of deriva-
tions steps starting with just the initial nonterminal is the language of the grammar.
For a thorough treatment of hyperedge replacement and HRG, see [DHK97].

B

A

C

C →

a

c

b

B

A

a

c

b

Figure 5.1: A hypergraph, replacement rule, and the result of applying the latter to the
former

27

Chapter 5

5.2 Issues of decomposition

A major difficulty in restricting HRG to something “regular” is, as mentioned, that
there is no clear sense of “direction” in its derivations. Where strings go from one end
to the other, and trees go from top to bottom (or bottom to top), we have no a priori
obvious place in the right-hand sides of HRG to restrict our nonterminals to. Indeed,
we have little sense of “position” and “direction” in graphs the first place, considering
all the various connections that may occur. This is a major problem when it comes
to efficient parsing of the graphs languages, as we would ideally like to be able to
tell in “which end” to start processing, and how to choose a “next part” to continue
with. Further, we would like these parts to be strictly nested, in the sense that we can
immediately, from the structure of the graph, determine what larger subgraph of the
graph the current subgraph is part of, in the same way that a specific subtree is not
simultaneously a direct subtree of two different roots.

A natural first step in defining regular graph languages, then, is to simply decide
that there is exactly one node that is the initial point from where everything starts
generating, and that, moreover, the rest of the graph is at least reachable from that
node. For us, the initial node is already clear – the source of the graph. Somewhat
elided in the previous discussion on HRG, this remains the source of the graph even
after replacing one of its nonterminals, and thus it is an ideal choice of a stable point.

In order to define reachability, let a path be a sequence v0,e1,v1, . . . ,ek,vk of nodes
and edges such that for all i ∈ {1,2, . . . ,k}, vi−1 is the source of ei, and vi is among the
targets of ei. We may optionally exclude the initial or the final node, or both. A path
where v0 = vk is a cycle, and path where v0 is g, a source path. Any node or edge on
any path starting at a node v or edge e is reachable from v (e). In a graph g with the
source g we say that nodes or edges reachable from g are reachable in g. A graph g
where Vg∪Eg are all reachable in g is reachable.

We now come to our first restriction on HRG, and on our universe of graphs – we
require that all graphs are reachable.1 Placing this restriction on all right-hand sides of
our grammars ensures that all the graphs they generate will conform to this restriction
as well (as the source of all nonterminals are reachable, so is the source of any graphs
we replace them with, and these graphs in turn are all reachable from said source).
Moreover, checking that an input graph has this property is easy.

The next restriction pertains to limiting the impact of a single nonterminal replace-
ment. Consider a replacement like the one in Figure 5.2. From the final graph, there
is no way to distinguish if the subgraphs having the external nodes as sources were
part of the original graph, or if it was introduced in the replacement. For this reason,
among others, we require that all targets of a right-hand side are leaves.

Together, these restriction provide an important property in that our grammars now
are path preserving in the sense that if we have a replacement g = h[[e : f]] and two
nodes u,v ∈ Vh, then u is reachable from v in g if and only if the same is true in h.
Intuitively, this is because we no longer can introduce new paths between the targets
of e, while all paths that pass srch(e) can still exit through the proper targets, as a
result of us requiring f (and thus f) to be reachable. Note that this property does not

1 This also requires that the graphs are all connected.

28

(Order-Preserving) Graph Languages

a

b A

A →
c

d e

a

b c

d e

Figure 5.2: A hypergraph, replacement rule, and the result of applying the latter to the
former

hold for all nodes in f , as there may be paths and cycles involving any combination of
nodes of ext f , including f .

5.2.1 Reentrancies

We come now to a central concept in our formalisms – that of reentrant nodes. Briefly,
the reentrant nodes of an edge or node x are the “first” nodes that can be reached from
the root by passing x, but also using some path avoiding x. Let us make this more
specific:

Reentrant nodes Let g be a graph. For x ∈Vg∪Eg, let x̂ be x if x ∈V , and srcg(x) if
x ∈ Eg. Moreover, let Ex

g be the set of all reachable edges e such that all source paths
to e pass x, and let TARg(E) for E ⊂ Eg be the set of all targets of edges in E.

The set of reentrant nodes of x in g is

reentg(x) = (TARg(Ex
g)\{x̂})∩ (TARg(Eg \Ex

g)∪ extg)

Looking at the final graph in Figure 5.2, the reentrant nodes of the root, and of the
edge marked a, is simply the external node that is the third target of that same edge.
For the edge marked e, only its leftmost target is reentrant, while for all other edges,
their sets of reentrant nodes coincide with their targets.

We now introduce our third restriction on the grammars: That for every nontermi-
nal edge e, targ(e) = reentg(e). The change from the previous is relatively small – this
essentially means that all targets of nonterminals either have in-degree greater than 1,
or are external nodes (or both). However, with all these restriction, our grammars are
now reentrancy preserving,2 in the following sense:

29

Chapter 5

Reentrancy preservation Let g = h[[e : f]] be a replacement of a nonterminal e in
h by f , resulting in g. The replacement is reentrancy preserving if, for all edges and
nodes x∈Eh∪Vh, reentg(x) = reenth(x), and for all edges and nodes x∈E f ∪Vf \ext f ,
reentg(x) = reent f (x).

The precise claim is that if we have a grammar G with right-hand sides f conform-
ing to the above restrictions, i.e.

• f is reachable

• All nodes in f are leaves

• For all nonterminal edges e ∈ E f , tar f (e) = reent f (e)

Then all derivation steps of all derivations of G are reentrancy preserving. This is
shown (with superficial differences) as Lemma 4.3 in Paper IV.

5.2.2 Subgraphs

Finally, with the above restrictions and concepts in place, we can define a hierarchy
of subgraphs of each graph, delineated by each node and edge x and their reentrancies
(see Lemma 3.4 of Paper IV). Moreover, with a reentrancy preserving grammar, we
know that these subgraphs will be stable under derivation, and thus our parsing algo-
rithm can assume that the reentrancies computed on the input will be useful throughout
the parsing.

More formally, we let the subgraph of g induced by x, for x ∈Vg∪Eg be the graph
g↓x = (E,V, lab,att,ext) where

• E = Ex
g

• V = {x̂}∪TARg(E)

• lab and att are the proper restrictions of labg and attg to E, respectively

• ext is x̂ followed by reentg(x) in some as of now unspecified order

Though a regular formalism is still some distance away, we now have an important
set-piece: The ability to take an input graph and divide it into a tree-like hierarchy of
subgraphs that can be processed one after the other, with clear lines between which
graphs are direct subgraphs, and which are parallel lines of computation.

Let us look at a small example. In Figure 5.3 we have a small graph which has
been generated by an OPDG. We have marked the “bottom-level” subgraphs using
dashed, coloured lines. Note that these, as mentioned, can be found looking only at
the structure of the input graph, with no reference to the grammar. The leftmost sub-
graph (indicated in green) has no reentrant nodes, and thus it must have come from a
nonterminal of rank 0. In contrast the rightmost, indicated in purple, has two reentrant
nodes, meaning that it must have come from a nonterminal of rank 2. Drawing in the
“higher” subgraphs is left as an exercise for the reader.

2 Note that this is not quite the same restrictions as used in Paper IV. Specifically, we lack restriction P2
of Definition 4.2, obviating the need for duplication rules, but this is not used in the relevant theorems
and lemmas: Lemma 3.4, and Lemmas 4.3-4.5

30

(Order-Preserving) Graph Languages

a

b
b

b

d b

c

b b

b

Figure 5.3: A graph with some of its subgraphs indicated.

5.3 Issues of order

An important consideration during the research that led to this thesis has been effi-
cient parsing, rather than regularity itself. In particular, we have been searching for
graph formalisms with efficient parsing in the uniform case. A thorough treatment of
complexity theory is beyond the scope of this introduction,3 but a major contributor to
increased algorithmic complexity is the need to guess any particular node or edge, or
even worse, a combination of nodes. Guessing the order of a set of nodes is another
operation we wish to avoid, and in particular the need to remember an unbounded
number of such guesses during the course of parsing.

Thus, while the hierarchy of subgraphs we have defined above is a necessary in-
gredient for efficient parsing, it is not yet sufficient.

In Paper IV, we investigate a set of requirements that lead to efficient parsing.
One part is the reentrancy preservation that we have already discussed. The other is
the property of order preservation. In the paper, this is a highly generalised set of
requirements on the order itself (it needs to be efficiently computable, and order the
targets of nonterminals according to the attachment), combined with a restriction on
the rules that they preserve said order in a similar sense as the above on reentrancy
preservation;

Order preservation Let g = h[[e : f]] be a replacement of a nonterminal e in h by f ,
resulting in g and let � f ,�h and �g be ordering relations on the nodes of f , h and g,
respectively. The replacement is order preserving if the restriction of �g to Vf (Vh) is
equal to � f (�h).

3 See e.g. [Pap03] for a useful textbook on the topic.

31

Chapter 5

This is a slight restatement of Definition 4.7 of Paper IV. Let us now assume that
our grammar is order preserving and reentrancy preserving. With structure and the
order of nodes stable and discernible over derivations, we lack only a way to disam-
biguate or disregard the ordering of edges. In particular, while edges impose an order
on their targets, no such ordering is imposed by a node on the edges that have it as their
source. For this reason, we choose to disregard rather than disambiguate the order of
edges, when it is ambiguous or undefined.

The restrictions that we now impose are thus intended to make sure that if we have
some node with out-degree greater than 1, then we can parse it without referring to
the order among the edges that are sourced there. We accomplish this by splitting our
supply of rules into two sets: One where we limit the out-degrees of nodes to at most
1, and one a set of duplication rules with two edges, where nonterminal labels and
attachments are required to be identical for both edges.4 In Section 5.1 of Paper IV
we show how duplication rules are parsed efficiently.

Finally, with all these restrictions, we have arrived at the formalism – Order-
Preserving Hyperedge Replacement Grammars (OPHG) – that we present in Paper
IV, and further investigate in Paper V. More properly, it is a family of formalisms, each
with its own order. We show one example in Section 6 of Paper IV. It is still not known
to be “regular”, but does have efficient parsing in the uniform case.

5.4 A Regular Order-Preserving Graph Grammar

OPHG generalise an even more restricted type of graph grammar that was the ini-
tial object of study for this thesis – Order-preserving DAG grammars (OPDG). These
can be seen as regular tree grammars augmented with (i) the ability to form connec-
tions through reentrant leaf nodes, and (ii) the possibility to create parallel structures
through “cloning” a nonterminal.

In order to reason about the connections between OPDG and RTG, we need to be
able to see trees as graphs. To this end, let us define a transformation from trees that
yield graphs with the same structure in the following way: For a tree t = a[t1, . . . , tk]
we create a graph g with nodes va and vti for each i ∈ {1,2 . . . ,k}, an edge ea with
attg(ea) = va,vt1 , . . . ,vtk , and lab(ea) = a. We then repeat the construction for each
subtree in a similar way (substituting vti for va where appropriate). See Figure 5.4 for
an example. Note that when implementing a “regular tree grammar” as a HRG with
the right-hand sides transformed in this way, the nonterminals will still appear only at
the bottom of these graphs.

With this in place, we define our two extensions: First, we allow for clone rules,
i.e. duplication rules where the two right-hand side nonterminals have the same sym-
bol as the left-hand side. Second, we allow for leaves as targets, and moreover allow
for leaves (but only leaves) with in-degree more than 1. In the style of OPHG, we
require that the targets of nonterminals be reentrant, which in this context means that
they must be leaves, and either external or the target of some other edges.

4 We also require that for duplication rules A→ f where rank(A) = rank(f), that both edges in f have
the label A.

32

(Order-Preserving) Graph Languages

a

b

e f

c

d

a

b

e f

c

d

Figure 5.4: A tree and its translation into a graph.

Our grammars are still very close to regular tree grammars (with the exception of
clone rules), and can be parsed strictly bottom-up in much the same fashion, as long
as the order of leaves is accounted for. Let us look more closely at the way this is done
in Papers I-III.

Closest common ancestor order If a node or edge x occurs on a source path ending
at a node or edge y, we call x an ancestor of y, and y a descendant of x. If x is also an
ancestor of z, it is a common ancestor of y and z. If no descendant of x is a common
ancestor of y and z, then x is a closest common ancestor.

If x is an edge with targets v1, . . . ,vk and it is a closest common ancestor of y and
z, then there is a node vi that is an ancestor of y, and moreover, that for all other nodes
v j that are ancestors of y, that i < j. Likewise we have a node vk that is the first of the
targets that are ancestors of z. If i < k we say that x orders y before z.

We say that a graph g is ccae-ordered if, for all pairs of leaves y,z, all common
ancestor edges of y and z either order y before z or z before y. We write y�g z.

Essentially, what we require from our right-hand sides f is that they are ccae-
ordered, and that moreover, if a target y of f comes before another target z, that y� f z.
This ensures that leaves are not reordered (or made to be unordered) by hyperedge re-
placement, and that all derivation steps are order-preserving for ccae-ordering. In
Paper I (Theorem 8), we establish that disregarding ordering constraints leads to in-
tractable parsing in the uniform setting.

5.4.1 Normal forms

In Paper I, we also show that we can put all OPDG into normal form, reminiscent
of regular tree grammars – a normal form rule is either a clone rule, or contains a
single terminal edge. As nonterminals are positioned only above leaves, this results
in a graph consisting of a single terminal and an optional “layer” of nonterminals,
with three “layers” of nodes – the source, the targets of the terminal, and the leaves.5

33

Chapter 5

This, together with the close relation to regular tree grammars leads us to call OPDG a
regular formalism. In particular, by “flipping” the arrow of normal form rules, we get
something closely resembling tree automata, whereas this is not obviously the case
for OPHG.

5.4.2 Composition and decomposition

Though the above discussion seems to indicate some sort of regular properties for
OPDG, they can, in contrast to regular string and tree grammars, not generate the
full universe of graphs, or even the universe of connected graphs. Indeed, even the
universe of acyclic, single-rooted, reachable graphs, with only leaves having in-degree
1, is strictly larger than the union of all OPDG languages, due to cloning and ordering
constraints.

The proper definition of the universe of graphs that OPDG can generate is some-
what technical, and is given in two different ways in Papers II and III. Briefly, we
define a set of typed concatenation operators, each essentially matching a normal-
form rule. Their input is a number of graphs, each with rank equal to the matching
“nonterminal” in the operator, and the output is simply the graph obtained by replac-
ing each such “nonterminal” with the corresponding input graph. The base case is all
the graphs consisting of a single terminal symbol, possibly with some of its targets
marked. The universe of graphs is the set of graphs that can be constructed using such
concatenation operators.

With the universe thus defined, we again take inspiration from the tree case to
define “prefixes” and “suffixes” – The universe of graph contexts over a specific al-
phabet is, as in the tree case, graphs “missing” a subgraph, which we can express as
follows: We add to the set of “base” graphs the graphs �k for each k, which consist of
a single �-labelled edge with its source and k targets, all external. The concatenation
that constructs a graph context uses exactly one of these graphs in its construction.

Graph concatenation is only defined if the graph being inserted into the context has
the same rank as the � edge, but is otherwise similar to the tree case. This includes
the opportunity to define equivalence relative to some language for graphs, which
unsurprisingly has finite index for OPDG languages. In Paper II we establish this fact,
and use it to prove that OPDG are MAT learnable.

It is not known at this time if OPHG languages are MAT learnable.

5.4.3 Logic

Logic over graphs has two distinct implementations in the literature,6 with quantifi-
cation either over both nodes and edges or just over nodes, with edges implemented
as relations in the structure. Using the former, we can define an MSO formula that
identifies the graphs that conform to our OPDG restrictions. We show in Paper III
that OPDG languages are MSO definable, but, crucially, not the reverse. That is, we
have not shown that for every MSO formula that picks out a subset of our universe of
graphs, we have an OPDG that defines the same language.

5 Though this is an imperfect picture, as a node may be both a leaf and a target of the terminal.
6 See e.g. pioneering work by Courcelle [Cou90]

34

(Order-Preserving) Graph Languages

This is a weakness in our claim that OPDG is a regular formalism, and one that
we conjecture can be rectified in a future article. Future articles may also investigate
the logical characterisation, if any, of OPHG.

5.5 Weights

As with the step from string to tree formalisms, when taking the step from tree gram-
mars to OPDG and OPHG in terms of introducing weights, much is familiar, but some
new complications are introduced, in particular in terms of what derivations are sup-
posed to be seen as distinct for the purpose of the weight computation. Recall that
we moved from linear derivations to derivation trees, which are trees over the ranked
alphabet of productions with some additional restrictions. Two derivation trees are
distinct if their root label differs or if any of their subtrees differ. For non-duplication
rules, we can simply use this same framework, but as we explore in Papers III and V,
this leads to unwanted outcomes for duplication rules.

More specifically, as both edges on the right-hand side of a duplication have the
same source, and the same label, we do not care about their identity (i.e. which is e1
and which e2) for the purposes of keeping derivations distinct. In Papers III and V we
make precise what this means for the equivalence of derivation trees for OPDG and
OPHG, respectively.

Let us take a deeper look at what we actually mean by two derivations being dis-
tinct, which we can use to inform our understanding of weighted grammars more
generally. For some entirely generalised grammar – not necessarily working with ei-
ther strings, trees or graphs, let p1 and p2 be two productions. We, as usual, say
that two derivation steps are independent if x→p1 x′→p2 y and x→p2 x′′→p1 y. But
by the discussion above on duplication rules, this is not sufficient for determining if
two derivations are distinct, as this would, for example, not count duplicated edges as
equivalent for the purposes of derivations.

Now, let us consider two full derivations d1 = x0 →p1 x1 →p2 x2 . . .xk and d2 =
y0 →q1 y1 →q2 y2 . . .→qk yk for the purpose of how to distinguish them. Generally,
our notion of independent derivation steps lets us consider d1 and d2 equivalent if the
independent derivation steps of d2 can be rearranged to produce d′2 = y0→q′1

y′1→q′2
y′2 . . .→q′k

yk, where for each i, y′i = xi. If we instead change this requirement to be that
for each i, y′i is to isomorphic to xi, our concept of distinct derivations more closely
matches our intuition.

In particular, this new concept ensures that, for OPHG and OPDG derivations,
which edge of a particular cloning we choose to apply further productions on is going
to be irrelevant – the results will be isomorphic.

35

36

CHAPTER 6

Related work

OPDG and OPHG are far from the only attempts at defining or implementing gram-
mars for working with semantic graphs in general, or even the specific one we have
used to motivate our work – abstract meaning representations (AMR). Other paral-
lel work has been looking at the specific theoretical properties we have attempted to
achieve, such as polynomial parsing or a “natural” extension of the regular languages
to graphs or DAGs. For semantic graphs, two major strains can be discerned in recent
research; one focusing, like the present work, on hyperedge replacement and restric-
tions and extensions of same, and one focusing on various properties, restrictions and
extensions of DAG automata.

6.1 Regular DAG languages

DAG automata define the regular DAG languages, and were originally introduced as
straightforward generalisations of tree automata by Kamimura and Slutzki in [KS81].
They are usually defined as working on node-labelled directed acyclic graphs with
node labels taken from a doubly ranked alphabet giving the in-degrees and out-degrees
of the nodes. They have been further developed and investigated by Quernheim and
Knight [QK12]. In [Chi+18], an investigation into the characteristics of regular DAG
languages is made with an eye to semantic processing, with some encouraging, and
some discouraging results. In particular, the parsing problem is shown to be NP-
complete even in the non-uniform case, but a parsing algorithm is provided with rela-
tively benign exponents.

Recent work by Vasiljeva, Gilroy and Lopez [VGL18] seems to indicate that DAG
automata may be a suboptimal choice for weighted semantic models, if the intent is
to have a probabilistic distribution. An interesting quirk of regular DAG languages is
that they in general have regular path languages, but if the input graphs are required
to be single-rooted this no longer holds. The specifics are explored in [BBD17]. See
also [Dre+17] for a recent survey of results and open problems for DAG languages.

37

Chapter 6

6.2 Unrestricted HRG

Major steps have been taken recently in making general HRG parsing more efficient in
practise, see e.g. [Chi+13], and much seems to point to HRG being able to capture the
structure of AMR in a reasonable way. However, numerous parameters in the input
graphs – notably node degree – may contribute exponentially to the running time of
the graph parsing. The same is also true of several grammar characteristics.

6.3 Regular Graph Grammars

In [Cou90; Cou91], Courcelle investigates several closely related classes of hyper-
graph languages – the languages of hyperedge replacement grammars (HRL),1 the
class of recognisable graph languages (REC), where the (context) equivalence relation
has finite index, and the class of MSO definable graph languages (DEF). In particular,
it is established that while DEF is properly included in REC, both are incomparable
with HRL. Specifically, the languages that are recognisable but not in HRL are exactly
the recognisable languages with unbounded treewidth.

The languages that are in the intersection of HRL and DEF are semantically de-
fined as the strongly context-free graph languages, but a constructive definition is also
given of a strongly context free class of graph languages: the regular graph grammars.
This is reintroduced in [Gil+17] for use as an AMR formalism, and a parsing algo-
rithm with slightly better, though still exponential complexity than for general HRG
is given in [GLM17].

6.4 Predictive Top-Down HRG

Another restriction of HRG to obtain more favourable parsing complexity is predictive
top-down parsing [DHM15], which is analogous to SLL(1) parsing for strings and
uses look-ahead to limit the amount of backtracking that might be required during
the parsing of a graph. The specific effects on the possible graphs and grammars is
somewhat complex, and unfortunately [Jon16] seems to indicate that they may not be
favourable for use with AMR.

6.5 S-Graph Grammars

S-graph grammars [Kol15] are able to produce the same graph languages as HRG,
but does so in a quite different way, using an initial regular tree grammar to generate
derivation trees for a constructive algebra. They have been applied to the AMR graph
parsing problem and compared favourably to the unrestricted HRG parsing mentioned
above. See [GKT15] for details.

1 In [Cou91] HRL are referred to as the context-free graph languages, CF.

38

Related work

6.6 Contextual Hyperedge Replacement Grammars

While we argue that HRG are too powerful mainly for parsing complexity reasons,
Drewes and Jonsson argue in [DJ17] that extending HRG to contextual HRG [DH15],
while resulting in worse parsing complexity in general, captures more exactly and
succinctly the actual structures of AMR over a set of concepts, thus resulting in more
efficient parsing in practise.

39

40

CHAPTER 7

OPDG in Practise

The papers included in this thesis are almost exclusively built on theoretical results.
To explore if these also carries practical usefulness, we conducted some very basic
experiments, described below. Briefly, graphs were taken from two separate domains
– abstract meaning representations and modular synthesis – and ingested into a hyper-
graph context with minimal transformations. In particular, the graphs were minimally
and reversibly made to conform to the general structure of OPDG graphs, while order
was ignored. Then, the order was checked for consistency according to ccae-order.
Likewise, the sets of reentrant nodes for edges sharing a source were checked for
equality. If a graph passes all these checks, then it can be generated by an OPDG,
and if a large proportion of the graphs encountered in a bank are of that form, then
we conjecture that a useful OPDG grammar could be inferred or constructed. The
proportion of graphs where the order or reentrant sets was inconsistent is given below.

7.1 Abstract Meaning Representations

As briefly mentioned in the previous chapter, the development of OPHG and OPDG
was motivated by Abstract Meaning Representations (AMR) [Ban+13]. These repre-
sent the semantics of actual sentences using graphs on the form shown in Figure 7.1.
The construction of AMR graphs from sentences is currently done by humans, in or-
der to build a graph bank of known correct examples which can be used as input for
training a graph grammar. There is a lengthy specification [Ban+18] of how this is
to be accomplished, which can be seen as an example of the “complex, rule-based”
approaches mentioned above. However, note that this specification is intended to be
used by humans, not computers, and thus it includes certain judgements that would
otherwise be hard to encode.

The AMR process is thus, in some sense, a combination of the data-driven and the
rule-based approaches mentioned at the end of Chapter 2 – use complex, hand-written
rules in combination with human domain knowledge to build a large data bank, which
then is used to train a relatively simple model. This is not unprecedented in NLP,
as many syntactic treebanks have been built on the same principle, and for a similar
purpose. The approach is less widespread in the context of semantics, however, with
major projects starting mainly in the last decade.

We can immediately see from Figure 7.1 that both OPHG, and in particular our

41

Chapter 7

arg1
think’

arg0

likes’

arg1
arg0

girl’

boy’

Figure 7.1: An AMR graph for “The
boy thinks that the girl likes him”

think’

boy’

likes’

girl’

Figure 7.2: A “translation” of the
AMR graph in Figure 7.1.

known learnable grammar OPDG may not be able to generate all AMR graphs (there
are non-leaves with in-degree greater than 1, and no obvious control over the order).
This is not ideal, as ostensibly, AMR is the motivation for their existence. However,
let us take a closer look on the structure of an AMR.

We have a single root, and can assume that the graphs are acyclic. Each node has
an identity, and at least one edge of rank 0 connected to it that shows what kind of
thing or concept the node represents. There are also, depending on the type, a certain
number of labelled edges pointing to arguments of whatever concept the node repre-
sents, and finally, potentially an unknown number of modifiers (“thinking deeply”, is
“think” modified with a “deeply” modifier). Our strategy, then, is to translate each
such node into a hyperedge, labelled with the type, and with k+ 2 targets, where k
is the number of arguments of the node. One of the extra nodes is used to collect all
modifiers. For the case where we have a node of in-degree greater than 1, we choose
one of its parents to be the primary one, and aim the other at the second extra target.
In sum, the translation looks something like in Figure 7.2. Issues clearly remain, espe-
cially pertaining to order, but the experiments in Section 7.7 make this approach seem
worthy of further study.

7.2 Modular synthesis

Briefly, a modular synthesizer is a synthesizer consisting of modules. That is, it is a
mechanism for generating sounds and control signals from basic components such as
sound sources, filters, sequencers, clock dividers, sample players, effects units, phys-
ical triggers, signal modifiers etc. Each module has a number of inputs and outputs,
and these can be connected to each other in almost any configuration. The network

42

OPDG in Practise

that defines a specific sound (a patch) can be seen as a hypergraph, with the modules
being the hyperedges, and the connection points being the nodes.

7.3 Typed Nodes

In modular synthesis it is important to consider what type a particular connection point
has – broadly, either audio or control – and further that no more than one thing con-
nected to said point is an output, whereas all other connections are inputs. Likewise,
we also have semantic types and categories in AMR that carry important information,
such as the object argument of an action concept actually being capable of that action.

Placing these typed nodes in a single well-specified order, we can reduce the po-
tential reordering in a graph derivation (or parsing) to be only between nodes of the
same type. As shown in Paper I, this does not, unfortunately, reduce our parsing prob-
lem from being NP-complete, but the intuition is that such reorderings are rare, or in
the worst case, with properly chosen types, relatively meaningless.

7.4 Primary and Secondary References

Though our formalism has been generalised to handle graphs where reentrancies occur
not only in the leaves, but anywhere in the graph (subject to reentrancy and order
preservation), the more limited OPDG are still significantly easier to work with in
several respects. As such, it is useful to have techniques to arrive at a leaf-reentrant
DAG from a general rooted graph.

A simple way to do this is, if given a general rooted graph, for each source v of
a hyperedge e with in-degree greater than one, we can designate one single edge as
the primary referrer to e (and thus v). This done, we create a new target v′ of e, and
replace v by v′ in all other edges targeting it. We call these others secondary referrers.
With minor modifications (making no edge a primary referrer to the root), this can
create a leaf-reentrant DAG from any rooted graph.

For AMR this is especially simple as, in the syntax of AMR, the nodes are initially
given as nodes of a tree, giving the primary references directly, while the secondary
references are given by further connections among nodes in the AMR. In modular
synthesis graphs it is not as clear-cut which connection should be given the distinction
of being the primary one.

7.5 Marbles

The software used for the following practical tests is originally a Tree Automata Work-
bench, written by the author in the course of completing the Master’s Thesis [Eri12].
It is a modular system written in Scala with some useful abstractions and general con-
ventions suitable for implementing and experimenting with automata and grammars
on trees. Extending the functionality to the types of graphs discussed in this thesis
proved relatively straightforward.

43

Chapter 7

7.6 Modular Synthesis Graphs

Axoloti [Tae18] is an open source hard- and software project for modular synthesis,
where modules are implemented with typed in- and outputs, mostly specified in XML
files. Patches are also specified in XML files, and are thus relatively easy to parse into
a manipulable form.

As an open and available dataset for modular synths patches, we have used the
user-generated contrib [TC18] repository of the Axoloti project, containing about
560 complete patches, which, separating subpatches to separate graphs yields around
1400 graphs.

7.6.1 Translation

In our tests we have assumed that any module not connected to a global output can
be disregarded, as these will not impact the final sound or behaviour of the patch. We
also create a new root hyperedge that is connected to all global outputs. This results
in a rooted graph, which we than transform into a leaf-reentrant DAG by the above
construction, choosing the first occurring edge as the primary referrer.

7.7 Semantic Graphs

As described in Chapter 7.1 Abstract Meaning Representations are graphs represent-
ing the semantics of a single sentence, and the main motivation for the research in-
cluded in this thesis. The specification of AMRs in its actual syntax is particularly
well suited to our formalism in that each graph is essentially described as a tree of
nodes with either a name and type, or a reference to a node defined elsewhere. The
specific dataset we have tested with is the freely available Little Prince corpus [al18].

7.7.1 Translation

The tree structure of AMR mentioned above gives us the relations of primary referrals
in a natural way, while any additional references are secondary. No further translations
have been made. In particular, no ordering attempts have been made based on the types
mentioned above.

7.8 Results

Due to time and resource constraints, the experiments are rather limited both in scope
and rigour. As a shorthand for whether a specific input graph is ’covered’ by the
OPDG formalism, we have chosen to make a naive ingestion into the system, and then
testing if the resulting graph is (i) rooted and reachable, and (ii) ordered. If the graph
is reachable from the designated root (generally true by construction), and if there are
no two edges ordering two nodes (leaves) in opposing ways, then the graph is on a
structure that can be generated by an OPDG. We also checked that all edges sharing a
source had the same set of reentrant nodes.

44

OPDG in Practise

For the AMR Little Prince corpus, this fails only in 30 out of 1562 sentences.
However, there is a natural explanation for this low number: In order for a graph to
qualify as unordered there need to be two nodes that have two separate edges as closest
common ancestors, and this occurs only in 80 graphs in the whole corpus. In a way,
this is an encouraging finding, as the reordering of nodes is by far the most obvious
difficulty in applying our grammars to real-world data. Thus, even though the naive
ordering has obvious difficulties with ordering nodes consistently, it is not necessarily
a major problems, as it is not something that comes into play very often, at least in
this limited AMR corpus. Moreover, recall the translation given above, where we
create a new target v′ of each edge e. If we disregard e for the purposes of ordering
inconsistencies involving v′, the amount of unordered AMR graphs in the Little Prince
corpus drops to a scant 12.

Figure 7.3: The cumulative sum of unordered graphs (blue), out of all potentially
unordered modular synth graphs, ordered by number of potential unordered node pairs
(red).

In the modular synthesis graph, ordering problems occur in 190 cases out of 1345
total tested graphs, that is, 14% of the graphs are unordered directly after the changes
mentioned above. Here, only 242 graphs have of potential ordering problems, mean-
ing that out of the potentially unordered graphs, around three fourths of them are
actually unordered. This is likely due to there being no analogue to the tree structure
in the specification of AMR, while the modules, in contrast, have a well-defined order
on its connections in the Axoloti XML files already. As such, if one was to work more
significantly with Axoloti graphs, it would be prudent to find some other way of or-

45

Chapter 7

dering the nodes. A closer look at the statistics reveal further that, not unsurprisingly,
graphs with few potential unorderings are less likely to be unordered than ones where
many pairs of nodes have many shared closest common ancestor edges; see Figure
7.3, where the X axis represents the 242 graphs with potential reorderings, sorted by
the amount of such reorderings. The blue line is the cumulative sum of unordered
graphs. The red line is a scaled logarithm of the amount potentially unordered pairs
of nodes in each graph. As can be plainly seen, almost every ordered graph is on the
left side of the scale, i.e. has very few potential ordering problems.

There was no graph, in either corpus, where two edges sharing a source had dif-
ferent sets of reentrant nodes.

46

CHAPTER 8

Future work

The most immediate theoretical extension of the current work is to attempt to find
corresponding proofs of “regular” properties for OPHG as already exists for OPDG,
such as MSO definability, finite congruences for some reasonable definition, a Myhill-
Nerode theorem, etc. For OPDG, similarly, a number of well-known results for regular
tree languages should be relatively easy to prove for OPDG, such as various closedness
and decidability results.

The most interesting direction to take for theoretical investigations may be to ex-
plore how well OPDG and OPHG match other semantic graph classes, as well as other
graph representations. Another interesting topic is that of regularity for graphs, more
generally – What would a regular formalism for graphs look like? Is it even possible
to define, given the various difficulties we have encountered in doing so?

In terms of practical explorations, the first priority would be to properly implement
both OPDG and OPHG into one or more systems suitable for testing. Second would
be to do comparative testing against other already implemented systems for AMR
parsing, and other graph parsing and generation problems.

Further practical explorations could focus on learning, either of weights in e.g.
a expectation-minimisation model, or a practical implementation of a MAT oracle,
either through human experts or some other model.

47

48

CHAPTER 9

Included Articles

9.1 Order-Preserving DAG Grammars

9.1.1 Paper I: Between a Rock and a Hard Place – Parsing for Hyperedge Re-
placement DAG Grammars

This paper is the first investigation into order-preservation, and thus uses various ar-
guments, definitions and terminology that has been subsequently replaced by more
elegant and descriptive terms. Nevertheless, the restrictions required for OPDG are
introduced, together with a parsing algorithm. Additionally, a normal form is defined
and proven to be relatively simple to construct for any given language. Furthermore,
the restrictions of OPDG are motivated by giving several NP-completeness results for
parsing variant grammars where one or more of the restrictions of OPDG are relaxed
or removed. In particular, the ordering constraint is shown to be critical for polynomial
uniform parsing.

9.1.2 Paper II: On the Regularity and Learnability of Ordered DAG Languages

Here we for the first time use the terminology of the rest of this thesis, and further
develope the theory of OPDG. In particular, we define the universe of graphs in a way
distinct from OPDG, and show that we have a Myhill-Nerode theorem for OPDG.
This is used to instantiate an abstract MAT learner, which is proven correct using
previous results. This algorithm is also a minimization algorithm for the deterministic
unweighted case.

9.1.3 Paper III: Minimisation and Characterisation of Order-Preserving DAG
Grammars

We deepen the connections between OPDG and regular tree grammars, showing their
algebraic representations to be isomorphic. This is used to develop MAT learning, and
thus minimisation, for OPDG in the weighted case. We also develop concatenation
schema: a new way to conceive of the algebra generating the universe of graphs, as
well as show OPDG to be MSO definable, giving additional credence to the idea of
OPDG as a regular formalism. In addition, we replicate some results from Paper II
using these new ideas.

49

Chapter 9

9.2 Order-Preserving Hyperedge Replacement Grammars

9.2.1 Paper IV: Uniform Parsing for Hyperedge Replacement Grammars

The first paper on OPHG is also the first to properly identify the distinction between
reentrancy preservation and order preservation, and to show the need for both for a
uniformly polynomial parsing algorithm. Much of the paper is devoted to proving
the nesting properties of reentrancies and subgraphs, and that OPHG are reentrancy
preserving. The parsing algorithm is also defined and proven to run in polynomial
time under certain conditions. We also give a concrete example of a suitable order,
and additional restrictions under which OPHG preserve that order.

9.2.2 Paper V: Parsing Weighted Order-Preserving Hyperedge Replacement
Grammars

The final paper builds mainly on results from Paper IV, introducing weights to the
derivations of OPHG and making precise which derivations are to be seen as distinct
for the purposes of computing weights for a graph. We also amend the parsing algo-
rithm from Paper IV with weight computations and show it to be correct and remain
efficient under the assumption that the weight operations are efficient.

9.3 Author’s Contributions

Paper I: Conceptualization of formalism and parsing algorithm, translation of AMR

Paper II: Algebraic characterization, equality of graph classes, context definition

Paper III: Introducing weights, initial logical characterization

Paper IV: Generalisation parameters, separating reentrancy preservation from order
preservation,

Paper V: Initial draft, derivation trees

50

CHAPTER 10

Articles not included in this
Thesis

The papers described below were written during the course of the PhD program,
though their content is significantly removed from the topic of order-preservation and
graph grammars, and thus not included in this thesis.

10.1 Mildly Context-sentitive Languages

10.1.1 A Bottom-up Automaton for Tree Adjoining Languages

This technical report investigates the tree languages of the tree-adjoining grammars,
in particular their path languages, and presents a bottom-up automaton for recognising
them – essentially a regular bottom-up tree automaton augmented with an unbounded
stack, and the opportunity to propagate the stack from any single subtree.

10.1.2 A Note on the Complexity of Deterministic Tree-walking Transducers

While tree adjoining languages are one of the weaker candidates for mildly context-
sensitive languages, linear context-free rewriting systems (LCFRS) are one of the
stronger. Here we investigate the precise parameterised complexities of LCFRS and an
equally powerful formalism: deterministic tree-walking transducers. Unfortunately,
the complexity results are for the most part negative.

51

52

Bibliography

[al18] Kevin Knight et al. AMR Download page. 2018. URL: https://amr.
isi.edu/download.html (visited on 09/10/2018).

[Ang87] Dana Angluin. “Learning Regular Sets from Queries and Counterexam-
ples”. In: Information and Computation 75 (1987), pp. 87–106.

[Ban+13] L. Banarescu, C. Bonial, S. Cai, M. Georgescu, K. Griffitt, U. Hermjakob,
K. Knight, P. Koehn, M. Palmer, and N. Schneider. “Abstract Mean-
ing Representation for Sembanking”. In: Proc. 7th Linguistic Annotation
Workshop, ACL 2013. 2013.

[Ban+18] L. Banarescu, C. Bonial, S. Cai, M. Georgescu, K. Griffitt, Hermjakobj
U., K. Knight, P. Koehn, M. Palmer, and N. Schneider. Abstract Mean-
ing Representation (AMR) 1.2.5 Specification. 2018. URL: https://
github.com/amrisi/amr- guidelines/blob/master/
amr.md (visited on 12/27/2018).

[BBD17] Martin Berglund, Henrik Björklund, and Frank Drewes. “Single-Rooted
DAGs in Regular DAG Languages: Parikh Image and Path Languages”.
In: Proceedings of the 13th International Workshop on Tree Adjoining
Grammars and Related Formalisms. 2017, pp. 94–101.

[Büc60] J Richard Büchi. “Weak second-order arithmetic and finite automata”. In:
Mathematical Logic Quarterly 6.1-6 (1960), pp. 66–92.

[Chi+13] David Chiang, Jacob Andreas, Daniel Bauer, Karl Moritz Hermann, Be-
van Jones, and Kevin Knight. “Parsing graphs with hyperedge replace-
ment grammars”. In: Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers). Vol. 1.
2013, pp. 924–932.

[Chi+18] David Chiang, Frank Drewes, Daniel Gildea, Adam Lopez, and Giorgio
Satta. “Weighted DAG automata for semantic graphs”. In: Computational
Linguistics 44.1 (2018), pp. 119–186.

[Cou90] Bruno Courcelle. “The monadic second-order logic of graphs. I. Rec-
ognizable sets of finite graphs”. In: Information and computation 85.1
(1990), pp. 12–75.

[Cou91] Bruno Courcelle. “The monadic second-order logic of graphs V: On clos-
ing the gap between definability and recognizability”. In: Theoretical
Computer Science 80.2 (1991), pp. 153–202.

53

BIBLIOGRAPHY

[DG07] Manfred Droste and Paul Gastin. “Weighted automata and weighted log-
ics”. In: Theoretical Computer Science 380.1 (2007), p. 69.

[DH15] Frank Drewes and Berthold Hoffmann. “Contextual hyperedge replace-
ment”. In: Acta Informatica 52.6 (2015), pp. 497–524.

[DHK97] Frank Drewes, Annegret Habel, and Hans-Jörg Kreowski. “Hyperedge
Replacement Graph Grammars”. In: Handbook of Graph Grammars and
Computing by Graph Transformation. Vol. 1: Foundations. Ed. by G.
Rozenberg. World Scientific, 1997. Chap. 2, pp. 95–162.

[DHM15] Frank Drewes, Berthold Hoffmann, and Mark Minas. “Predictive top-
down parsing for hyperedge replacement grammars”. In: International
Conference on Graph Transformation. Springer. 2015, pp. 19–34.

[DJ17] Frank Drewes and Anna Jonsson. “Contextual Hyperedge Replacement
Grammars for Abstract Meaning Representations”. In: Proceedings of the
13th International Workshop on Tree Adjoining Grammars and Related
Formalisms. 2017, pp. 102–111.

[DKV09] Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of weighted
automata. Springer Science & Business Media, 2009.

[Dre+17] Frank Drewes et al. “On DAG languages and DAG transducers”. In: Bul-
letin of EATCS 1.121 (2017).

[Eng75] J Engelfriet. “Tree automata and tree grammars”. In: (1975).

[Eri12] Petter Ericson. Prototyping the Tree Automata Workbench Marbles. 2012.

[Eri17] Petter Ericson. “Complexity and expressiveness for formal structures in
Natural Language Processing”. PhD thesis. Umeå Universitet, 2017.

[FV09] Zoltán Fülöp and Heiko Vogler. “Weighted tree automata and tree trans-
ducers”. In: Handbook of Weighted Automata. Springer, 2009, pp. 313–
403.

[Gil+17] Sorcha Gilroy, Adam Lopez, Sebastian Maneth, and Pijus Simonaitis.
“(Re)introducing Regular Graph Languages”. In: Proceedings of the 15th
Meeting on the Mathematics of Language. 2017, pp. 100–113.

[GKT15] Jonas Groschwitz, Alexander Koller, and Christoph Teichmann. “Graph
parsing with s-graph grammars”. In: Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language Processing (Volume
1: Long Papers). Vol. 1. 2015, pp. 1481–1490.

[GLM17] Sorcha Gilroy, Adam Lopez, and Sebastian Maneth. “Parsing Graphs
with Regular Graph Grammars”. In: Proceedings of the 6th Joint Con-
ference on Lexical and Computational Semantics (* SEM 2017). 2017,
pp. 199–208.

[HKP87] Annegret Habel, Hans-Jörg Kreowski, and Detlef Plump. “Jungle evalua-
tion”. In: Workshop on the Specification of Abstract Data Types. Springer.
1987, pp. 92–112.

54

BIBLIOGRAPHY

[Jon16] Anna Jonsson. “Generation of abstract meaning representations by hyper-
edge replacement grammars–a case study”. MA thesis. Umeå University,
2016.

[Kle51] Stephen Cole Kleene. Representation of events in nerve nets and finite
automata. Tech. rep. RAND PROJECT AIR FORCE SANTA MONICA
CA, 1951.

[Kol15] Alexander Koller. “Semantic construction with graph grammars”. In: Pro-
ceedings of the 11th International Conference on Computational Seman-
tics. 2015, pp. 228–238.

[Koz92] Dexter Kozen. “On the Myhill-Nerode theorem for trees”. In: Bulletin of
the EATCS 47 (1992), pp. 170–173.

[KS81] Tsutomu Kamimura and Giora Slutzki. “Parallel and two-way automata
on directed ordered acyclic graphs”. In: Information and Control 49.1
(1981), pp. 10–51.

[Ner58] Anil Nerode. “Linear automaton transformations”. In: Proceedings of the
American Mathematical Society 9.4 (1958), pp. 541–544.

[NSS59] Allen Newell, John C Shaw, and Herbert A Simon. Report on a gen-
eral problem solving program. Tech. rep. RAND PROJECT AIR FORCE
SANTA MONICA CA, 1959.

[Pap03] Christos H Papadimitriou. Computational complexity. John Wiley and
Sons Ltd., 2003.

[QK12] Daniel Quernheim and Kevin Knight. “Towards probabilistic acceptors
and transducers for feature structures”. In: Proceedings of the Sixth Work-
shop on Syntax, Semantics and Structure in Statistical Translation. Asso-
ciation for Computational Linguistics. 2012, pp. 76–85.

[Sip06] Michael Sipser. Introduction to the Theory of Computation. Vol. 2. Thom-
son Course Technology Boston, 2006.

[Tae18] Johannes Taelman. Axoloti website. 2018. URL: http://www.axoloti.
com/ (visited on 12/29/2018).

[TC18] Johannes Taelman and Axoloti Contributors. Axoloti contrib repository.
2018. URL: https://github.com/axoloti/axoloti-contrib
(visited on 09/10/2018).

[Tur37] Alan M Turing. “On computable numbers, with an application to the
Entscheidungsproblem”. In: Proceedings of the London mathematical so-
ciety 2.1 (1937), pp. 230–265.

[TW68] James W. Thatcher and Jesse B. Wright. “Generalized finite automata
theory with an application to a decision problem of second-order logic”.
In: Mathematical systems theory 2.1 (1968), pp. 57–81.

[VGL18] Ieva Vasiljeva, Sorcha Gilroy, and Adam Lopez. “The problem with prob-
abilistic DAG automata for semantic graphs”. In: arXiv preprint arXiv:1810.12266
(2018).

55

BIBLIOGRAPHY

[Wil68] John Wilkins. An Essay Towards a Real Character and a Philosophical
Language. 1668.

56

I

Between a Rock and a Hard Place –
Parsing for Hyperedge Replacement DAG

Grammars

Henrik Björklund, Frank Drewes, Petter Ericson

Department of Computing Science, Ume̊a University, Sweden
{henrikb, drewes, pettter}@cs.umu.se

Abstract. We study the uniform membership problem for hyperedge-
replacement grammars that generate directed acyclic graphs. The study
of this type of language is motivated by applications in natural language
processing. Our major result is a low-degree polynomial-time algorithm
that solves the uniform membership problem for a restricted type of such
grammars. We motivate the necessity of the restrictions by two different
NP-completeness results.

1 Introduction

Hyperedge-replacement grammars (HRGs, see [7, 5]) are one of the most success-
ful formal models for the generative specification of graph languages, thanks to
the fact that their language-theoretic and algorithmic properties to a great ex-
tent resemble those of context-free grammars. Unfortunately, polynomial parsing
is an exception from this general rule: graph languages generated by HRGs may
be NP-complete. Thus, not only is the uniform membership problem intractable
(unless P 6= NP), but the non-uniform one is as well [1, 8].

Recently, Chiang et al. [4] advocated the use of hyperedge-replacement for
describing meaning representations in natural language processing (NLP), and in
particular the abstract meaning representations (AMRs) proposed by Banarescu
et al. [2]. Chiang et al. described a general recognition algorithm building upon
earlier work by Lautemann [9], together with a detailed complexity analysis.
Unsurprisingly, the running time of the algorithm is exponential even in the non-
uniform case, one of the exponents being the maximum degree of nodes in the
input graph. Unfortunately, this is one of the parameters one would ideally not
wish to limit, since AMRs may have unbounded node degree. However, AMRs
and similar linguistic models to represent meaning are usually directed acyclic
graphs (DAGs), a fact that is not exploited in [4]. Another recent approach to
HRG parsing is [6], where predictive top-down parsing in the style of SLL(1)
parsers is proposed. This is a uniform approach yielding parsers of quadratic
running time in the size of the input graph, but the generation of the parser
from the grammar is not guaranteed to run in polynomial time. (For a list of
earlier attempts to HRG parsing, see [6].)

In this paper, we study the complexity of the membership problem for DAG-
generating HRGs. Since NLP applications usually involve a machine learning
component in which the rules of a grammar are inferred from a corpus, and
hence the resulting HRG cannot be assumed to be given beforehand, we are
mainly interested in efficient algorithms for the uniform membership problem.
We propose restricted DAG-generating HRGs and show, in Section 4, that their
uniform membership problem is solvable in polynomial time. More precisely, the
upper bound on the running time of the algorithm is O(n2+nm), where m and n
are the sizes of the grammar and the input graph, resp. In linguistic applications,
where grammars are usually much larger than the input structures to be parsed,
this is essentially equivalent to O(nm). To our knowledge, this is the first time a
uniform polynomial-time parsing algorithm for a non-trivial subclass of HRGs is
proposed. Naturally, the restrictions are rather strong, but we shall briefly argue
in Section 5 that they are reasonable in the context of AMRs. We furthermore
motivate the restrictions with two NP-completeness results for DAG-generating
HRGs, in Section 6. One of these proofs is a reduction of SAT to the uniform
membership problem of DAG-generating HRGs whereas the second modifies
the construction of [8] to show that there are NP-complete DAG languages of
height 1 that can be generated by hyperedge replacement.

2 Preliminaries

The set of non-negative integers is denoted by N. For n ∈ N, [n] denotes
{1, . . . , n}. Given a set S, let S~ be the set of non-repeating lists of elements of
S. If sw ∈ S~ with s ∈ S, we shall also denote sw by (s, w). If � is a (partial)
ordering of S, we say that s1 · · · sk ∈ S~ respects � if si � sj implies i ≤ j.

2.1 Hypergraphs and DAGs

A ranked alphabet is a pair (Σ, rank) consisting of a finite set Σ of symbols and
a ranking function rank : Σ → N which assigns a rank rank(a) to every symbol
a ∈ Σ. We usually identify (Σ, rank) with Σ and keep the second component
rank implicit.

Let Σ be a ranked alphabet. A (directed hyperedge-labeled) hypergraph over
Σ is a tuple G = (V,E, src, tar, lab) consisting of

– a finite set V of nodes,
– a source and target mappings src : E → V and tar : E → V ~ assigning to

each hyperedge e its source src(e) and its sequence tar(e) of targets, and
– a labeling lab: E → Σ such that rank(lab(e)) = |tar(e)| for every e ∈ E.

To simplify terminology, we shall in the following call hyperedges edges and
hypergraphs graphs. Note that edges have only one source but several targets,
similarly to the usual notion of term (hyper)graphs. The DAGs we shall consider
below are, however, more general than term graphs in that nodes can have out-
degree larger than one.

Continuing the formal definitions, a path in G is a (possibly empty) sequence
e1, e2, . . . , ek of edges such that for each i ∈ [k− 1] the source of ei+1 is a target
of ei. The length of a path is the number of edges it contains. A nonempty path
is a cycle if the source of the first edge is a target of the last edge. If G does not
contain any cycle then it is acyclic and is called a DAG. The height of a DAG G
is the maximum length of any path in G. A node v is a descendant of a node u
if u = v or there is a nonempty path e1, . . . , ek in G such that u = src(e1) and v
occurs in tar(ek). An edge e′ is a descendant edge of an edge e if there is a path
e1, . . . , ek in G such that e1 = e and ek = e′.

The in-degree of a node u ∈ V is the number of edges e such that u is a target
of e. The out-degree of u is the number of edges e such that u is the source of e.
A node with in-degree 0 is a root and a node with out-degree 0 is a leaf.

For a node u of a DAG G = (V,E, src, tar, lab), the sub-DAG rooted at u is the
DAG G↓u induced by the descendants of u. Thus G↓u = (U,E′, src′, tar′, lab′)
where U is the set of all descendants of u, E′ = {e ∈ E | src(e) ∈ U}, and src′,
tar′, and lab′ are the restrictions of src, tar and lab to E′. A leaf v of G↓u is
reentrant if there exists an edge e ∈ E \ E′ such that v occurs in tar(e).

2.2 DAG Grammars

A marked graph is a tuple G = (V,E, src, tar, lab, X) where (V,E, src, tar, lab)
is a graph and X ∈ V ~ is nonempty. The sequence X is called the marking of
G, and the nodes in X are referred to as external nodes. If X = (v, w) for some
v ∈ V and w ∈ V ~ then we denote them by root(G) and ext(G), resp. The
former is motivated by the form or our rules, which is defined next.

Definition 1 (DAG grammar). A DAG grammar is a system H = (Σ,N, S,
P) where Σ and N are disjoint ranked alphabets of terminals and nonterminals,
respectively, S is the starting nonterminal with rank(S) = 0, and P is a set of
productions. Each production is of the form A → F where A ∈ N and F is
a marked DAG over Σ ∪ N with |ext(F)| = rank(A) such that root(F) is the
unique root of F and ext(F) contains only leaves of F .

Naturally, a terminal (nonterminal) edge is an edge labeled by a terminal
(nonterminal, resp.). We may sometimes just call them terminals and nontermi-
nals if there is no danger of confusion. By convention, we use capital letters to
denote nonterminals, and lowercase letters for terminal symbols.

A derivation step of H is described as follows. Let G be a graph with an edge
e such that lab(e) = A and let A→ F in P be a rule. Applying the rule involves
replacing e with an unmarked copy of F in such a way that src(e) is identified
with root(F) and for each i ∈ [|tar(e)|], the ith node in tar(e) is identified
with the ith node in ext(F). Notice that |tar(e)| = |ext(F)| by definition. If
the resulting graph is G′, we write G ⇒H G′. We write G ⇒∗H G′ if G′ can be
derived from G in zero or more derivation steps. The language L(H) of H are
all graphs G over the terminal alphabet T such that S• ⇒∗H G where S• is the
graph consisting of a single node and a single edge labeled by S.

The graphs produced by DAG grammars are connected, single-rooted, and
as the name implies, acyclic. This can be proved in a straightforward manner by
induction on the length of the derivation.

2.3 Ordering the Leaves of a DAG

Let G = (V,E, src, tar, lab) be a DAG and let u and u′ be leaves of G. We say
that an edge e with tar(e) = w is a common ancestor edge of u and u′ if there
are t and t′ in w such that u is a descendant of t and u′ is a descendant of t′.
If, in addition, there is no edge with its source in w that is a common ancestor
edge of u and u′, we say that e is a closest common ancestor edge of u and u′.
We stress that since a node is a descendant of itself, this definition implies that
if u and u′ belong to w, then e is a closest common ancestor edge of u and u′.
We also note that in a DAG, a pair of nodes can have more than one closest
common ancestor edge.

Definition 2. Let G = (V,E, src, tar, lab) be a DAG. Then �G is the partial
order on the leaves of G defined by u �G u′ if, for every closest common ancestor
edge e of u and u′, tar(e) can be written as wtw′ such that t is an ancestor of u
and all ancestors of u′ in tar(e) are in w′.

3 Restricted DAG Grammars

DAG grammars are a special case of hyperedge-replacement grammars. We now
define further restrictions that will allow polynomial time uniform parsing.

Every rule A → F of a restricted DAG grammar is required to satisfy the
following conditions (in addition to the conditions formulated in Definition 1):

1. If a node v of F has in-degree larger than one, then v is a leaf
2. If F consists of exactly two edges e1 and e2, both labeled by A, such that

src(e1) = src(e2) and tar(e1) = tar(e2) we call A → F a clone rule. Clone
rules are the only rules in which a node can have out-degree larger than 1
and the only rules in which a nonterminal can have the root as its source.

3. For every nonterminal e in F , all nodes in tar(e) are leaves.
4. If a leaf of F has in-degree exactly one, then it is an external node or its

unique incoming edge is terminal.
5. The leaves of F are totally ordered by �F and ext(F) respects �F .

As is the case for DAG grammars in general, every graph that can be derived
by a restricted DAG grammar is connected, single-rooted, and acyclic. We now
demonstrate some additional properties.

Lemma 1. Let H = (Σ,N, S, P) be a restricted DAG grammar, G a DAG such
that S• ⇒∗H G, and U the set of nodes of in-degree larger than 1 in G. Then U
contains only leaves of G and tar(e) ∈ U~ for every nonterminal e of G.

Proof. We prove the lemma by induction. The base case, where G = S• is
immediate. Assume that G fulfils the conditions of the lemma and consider G′

such that G⇒H G′. Let A→ F be the rule used in the derivation step.
By assumption, the edge e, labeled by A, that is rewritten has only leaves as

targets. As nonterminals in F only appear directly above leaves in F and all the
nodes in the marking of F are leaves, nonterminals of G′ only appear directly
above leaves.

Since only leaves have in-degree larger than 1 in G, all targets of A are leaves,
and only leaves have in-degree larger than 1 in F , only leaves have in-degree
larger than 1 in G′.

Since the edge that is being rewritten is nonterminal, it is not connected to
any leaf with in-degree exactly 1. In F , leaves with in-degree exactly 1 are only
connected to terminals. Thus the same holds in G′. ut

3.1 Normal form

To simplify the presentation of parsing algorithm, we introduce a normal form
for restricted DAG grammars.

Definition 3. A restricted DAG grammar H = (Σ,N, S, P) is on normal form
if every rule A→ F in P has one of the following three forms.

(a) The rule is a clone rule.
(b) F has a single edge e, which is terminal.
(c) F has height 2, the unique edge e with src(e) = root(F) is terminal, and all

other edges are nonterminal.

A A a

a

B C

Fig. 1. Examples right-hand sides F of normal form rules of types (a), (b), and (c)
for a nonterminal of rank 3. In illustrations such as these, boxes represent hyperedges
e, where src(e) is indicated by a line and the nodes in tar(e) by arrows. Filled nodes
represent the marking of F . Both tar(e) and ext(F) are drawn from left to right unless
otherwise indicated by numbers.

See Figure 1 for examples of right-hand sides of the three types. In particular,
right-hand sides F of the third type consist of nodes v, v1, . . . , vm, u1, . . . , un, a
terminal edge e and nonterminal edges e1, . . . , ek such that

– v = root(F) = src(e) and v1 · · · vm is a subsequence of tar(e),

– src(ei) ∈ {v1, . . . , vm} for all i ∈ [k],

– ext(F) and tar(ei), for i ∈ [k], are subsequences of u1 · · ·un.

Lemma 2. Every restricted DAG grammar H can be transformed in linear time
into a restricted DAG grammar H ′ on normal form such that L(H) = L(H ′).

Proof. Let H = (Σ,N, S, P) and let r = A→ F be a rule in P . We present a re-
cursive procedure for replacing r with a number of rules who together can derive
F from A. If F has height 1, then due to restriction 2, r already has form (a)
or (b). Thus, nothing needs to be done. Otherwise, we know that F has height at
least 2 and, again by restriction 2, a unique edge e such that src(e) = root(F). By
the height of F , and since only leaves are targets of nonterminals, e is terminal.

Now, assume that F does not have the form (c). Then there exists a node v′

in tar(e) which is not a leaf, such that the unique outgoing edge of v′ is terminal.
Let F ′ = F↓v′ and let s be the sequence of leaves in F , ordered according to �F .
Notice that since no node in F has out-degree larger than 1, the leaves are totally
ordered by �F , and ext(F) is a subsequence of s. Now, let s′ be the subsequence
of s consisting of the leaves in F ′ that are either in ext(F) or in tar(e′) for an
edge e′ in F that does not belong to F ′. We create a fresh nonterminal A′ with
rank(A′) = |s′| and a rule r′ = A′ → (F ′, v′s′), i.e., the marking of the right-
hand side is (v′, s′). In F , we replace F ′ by A′. (More precisely, we remove all
edges in F ′ from F , and likewise all nodes F ′ except for those in v′s′, and we
add a fresh edge f with src(f) = v′, tar(f) = s′, and lab(f) = A′.)

Clearly, the language generated by the grammar is not affected by this de-
composition of r into two rules. Moreover, each of the two new right-hand sides
satisfies the conditions 1–5 and has fewer terminal hyperedges than F . Hence, by
repeating the process we finally obtain an equivalent restricted DAG grammar
in normal form. ut

Lemma 3. Let H be a restricted DAG grammar and G = (V,E, src, tar, lab) a
DAG generated by H. Then there is a total order E on the leaves of G such that
�G ⊆ E and for every v ∈ V and every pair u, u′ of reentrant nodes of G↓v we
have uE u′ ⇔ u �G↓v u

′.

Proof. Note that it suffices to consider nodes v that are not leaves since the
statement is trivially true if v is a leaf. Without loss of generality, we may
furthermore assume that H is in normal form. We show by induction on the
length of derivations that the statement holds for all DAGs G that can be derived
from S•, not just the terminal ones. Moreover, we shall additionally prove that
E can be chosen in such a way that u1 E · · · E uk for all nonterminals e in G
with tar(e) = u1 · · ·uk.

The DAG S• has the claimed property as it does not possess any leaves.
Now, consider a derivation S• ⇒n G0 ⇒ G and assume that the claim holds
for G0 with the total order E0. Let G be obtained from G0 by applying a rule
r = A→ F to an edge e in G0. There are three different cases to consider.

If the rule r is a clone rule, setting E = E0 is sufficient because �G↓v = �G0↓v
for all nodes v. This follows directly from the fact that the two edges e1, e2 that
e is replaced with satisfy tar(e1) = tar(e) = tar(e2).

If r is of the form (b), let E be any total extension of E0 to the set of leaves
of G that is consistent with �F . For all v, the reentrant nodes of G↓v coincide
with those of G0↓v, and by restriction 5, �G↓v coincides with �G0↓v on these
nodes.

Finally, suppose r is of the form (c) and let ext(F) = v1 · · · vk. Leaves of F
that are not in {v1, . . . , vk} and have in-degree 1 are not reentrant in any G↓v
and can thus be handled as in the preceding case, i.e., E0 can be extended to
cover these nodes in any way that is consistent with �F . Let U be the remaining
set of leaves of F , which thus includes {v1, . . . , vk}. Since the nodes of F have
out-degree at most one, U is totally ordered by �F , and by restriction 5 we have
v1 �F · · · �F vk. Moreover, by the induction hypothesis we may assume that
v1 E0 · · ·E0 vk. We can thus extend E0 to a total order E on the leaves of G in
such a way that the order coincides with �F on U . It remains to argue that this
definition of E has the claimed property.

To this end, let v be a non-leaf of G and let u, u′ be reentrant nodes of G↓v.
If v is a node in G0 then u, u′ are leaves of G0 and we have

u �G↓v u
′ ⇒ u �G0↓v u

′ ⇒ uE0 u
′ ⇒ uE u′. (1)

The remaining case is the one in which v is the source of a nonterminal edge f
of F and u, u′ are targets of f . If not both of u, u′ are in ext(F) then f is the
only closest common ancestor edge of u and u′, and thus the claim immediately
follows. If both u and u′ are in ext(F) and u occurs before u′ in tar(f), then
u �F u′ by restriction 5. Consequently, u �G↓v u

′ and also u �G0↓v u
′ because

the only closest common ancestor of u and u′ in G0 that is not a closest common
ancestor of them in G is f . Moreover, both u and u′ are targets of f in G0,
so that the induction hypothesis yields uE0 u

′. Altogether, we obtain the same
chain of implications as in (1) above. ut

3.2 Derivation Transparency

If a DAG G has been derived by a restricted DAG grammar in normal form, it is
uniquely determined which subgraphs ofG have been produced by a nonterminal,
and which leaves were connected to it at that point. In particular, given a non-
leaf node v in G, consider the subgraph G↓v. Consider the earliest point in the
derivation where there was a nonterminal e having v as its source. We say that
e generated G↓v. From the structure of G and G↓v, we know that all reentrant
nodes of G↓v are leaves and, by restriction 4, that e must have had exactly these
reentrant leaves of G↓v as targets. By Lemma 3 and restriction 5, the order of
these leaves in tar(e) coincides with the total order �G↓v .

In other words, during the generation of G by a restricted DAG grammar,
G↓v must be generated from a nonterminal e such that src(e) = v and tar(e) is
uniquely determined by the condition that it consists of exactly the reentrant

nodes of G↓v and respects �G↓v . Therefore, we will from now on view G↓v as a
marked DAG, where the marking is (v, tar(e)).

4 A Polynomial Time Algorithm

We present the parsing algorithm in pseudocode, after which we explain vari-
ous subfunctions used therein. Intuitively, we work bottom-up on the graph in
a manner resembling bottom-up finite-state tree automata, apart from where a
node has out-degree greater than one. We assume that a total order E on the
leaves of the input DAG G, as ensured by Lemma 3, is computed in a prepro-
cessing step before the algorithm is executed. At the same time, the sequence wv

of external nodes of each sub-DAG G↓v is computed. (Recall from the paragraph
above that these are the reentrant leaves of G↓v, ordered according to �G↓v .)
For a DAG G of size n, this can be done in time O(n2) by a bottom-up process.
To explain how, let us denote the set of all leaves of G↓v by Uv for every node
v of G. We proceed as follows. For a leaf v, let Ev = {(v, v)} and wv = v. For
every edge e with tar(e) = u1 . . . uk such that ui has already been processed for
all i ∈ [k], first check if E0 =

⋃
i∈[k] Eui

is a partial order. If so, define Ee to be

the unique extension of E0 given as follows. Consider two nodes u, u′ ∈ Usrc(e)

that are not ordered by E0. If i, j are the smallest indices such that u ∈ Uui

and u′ ∈ Uuj , then u Ee u
′ if i < j. Note that Ee is uniquely determined and

total. Moreover, let we be the unique sequence in U~
src(e) which respects E0 and

contains exactly the nodes in Usrc(e) which are targets of edges of which e is not
an ancestor edge. Similarly, if v is a node and all edges e1, . . . , ek having v as
their source have already been processed, check if

⋃
i∈[k] Eei is a partial order.

If so, define Ee to be any total extension of this order. Moreover, check that
we1 = · · · = wek , and let wv be exactly this sequence.

After this preprocessing, Algorithm 1 can be run. As the sequences wu of
external nodes for each sub-DAG G↓u were computed in the preprocessing step,
we consider this information to be readily available in the pseudocode. This,
together with the assumption that the DAG grammar H is in normal form
allows for much simplification of the algorithm.

Walking through the algorithm step by step, we first extract the root node
(line 2) and determine which kind of (sub-)graph we are dealing with (line 4):
one with multiple outgoing edges from the root must have been produced by
a cloning rule to be valid, meaning we can parse each constituent subgraph
(line 5) recursively (line 6) and take the intersection of the resulting nontermi-
nal edges (line 7). Each nonterminal that could have produced all the parsed
subgraphs and has a cloning rule is entered into returns (line 8). The procedure
subgraphs below is used to partition the sub-DAG G↓v into one sub-DAG per
edge having v as its source, by taking each such edge and all its descendant
edges (and all their source and target nodes) as the subgraph. Note that the
order among these subgraphs is undefined, though they are all guaranteed by
the preprocessing to have the same sequence of external nodes wv.

Algorithm 1 Parsing of restricted graph grammars

1: function parses to(restricted DAG grammar H in normal form, DAG G)
2: v ← root(G)
3: returns← ∅
4: if out degree(v) > 1 then
5: for Gi ← subgraphs below(v) do
6: Ni ← parses to(Gi)

7: N ←
⋂

i Ni

8: returns ← {A ∈ N | has clone rule(A)}
9: else

10: e← edge below(v)
11: children ← ()
12: for v′ ← targets(e) do
13: if leaf(v′) then
14: append(children, external node(v′))
15: else
16: append(children, parses to(G↓v′))
17: returns ← {A | (A→ F) ∈ P and match(F, e, children)}
18: return returns

If, on the other hand, we have a single outgoing edge from the root node
(line 9), we iterate through the subgraphs below the (unique) edge below the
root node (line 12). Nodes are marked either with a set of nonterminals (that
the subgraph below the nodes can parse to) (line 16), or, if the node is a leaf,
with a boolean indicating whether or not the node is reentrant in the currently
processed subgraph G (line 14).

The match function used in line 17 deserves a closer description, as much of
the complexity calculations depend on this function taking no more than time
linear in the size of the right-hand side graph on average. It works as follows:

Let src(e) = v and tar(e) = v1 · · · vk. Each vi has an entry in children. If vi is
a leaf it is a Boolean, otherwise a set of nonterminal labels. From G and children,
we create a DAG G′ as follows. Let T be the union of {v, v1, . . . , vk} and the set
of leaves ` of G such that ` is reentrant to G (as indicated by children) or there is
an i ∈ [k] with ` being external in G↓vi . Let T = {v, v1, . . . , vk, t1, . . . , tp}. Then
G′ has the set of nodes U = {u, u1, . . . , uk, s1, . . . , sp}. Let h be the bijective
mapping with h(v) = u and h(vi) = ui for every i ∈ [k] and h(ti) = (si) for
every i ∈ [p]. We extend h to sequences in the obvious way. The root of G is u
and there is a single edge d connected to it such that lab(d) = lab(e), src(d) = u
and tar(d) = u1 · · ·uk. For every i ∈ [k] such that vi is not a leaf, G′ has an
edge di with src(di) = ui and tar(di) = h(wi), where wi is the subsequence of
leaves of G↓vi that belong to T , ordered by E. The edge is labeled by the set of
nonterminals children[i].

Once match has builtG′ it tests whether there is a way of selecting exactly one
label for each nonterminal edge in G′ such that the resulting graph is isomorphic
to rhs. This can be done in linear time since the leaves of both G′ and rhs are

totally ordered and, furthermore, the ordering on v1 · · · vk and u1 · · ·uk makes
the matching unambiguous.

Let us now discuss the running time of Algorithm 1.
Entering the if branch of parses to, we simply recurse into each subgraph

and continue parsing. The actual computation in the if-clause is minor: an
intersection of the l sets of nonterminals found.

Each time we reach the else clause in parses to, we consume one terminal
edge of the input graph. We recurse once for each terminal edge below this (no
backtracking), so the parsing itself enters the else-clause n times, where n is
the number of terminal edges in the input graph. For each rule r = A→ F , we
build and compare at most |F | nodes or edges in the match function. Thus, it
takes O(nm) operations to execute Algorithm 1 in order to parse a graph with n
terminal hyperedges according to a restricted DAG grammar H in normal form
of size m. If H is not in normal form, Lemma 2 can be used to normalize it in
linear time. Since the process does not affect the size of H by more than a (small)
linear factor, the time bound is not affected. Finally, a very generous estimation
of the running time of the preprocessing stage yields a bound of O(n2), because
n edges (and at most as many nodes) have to be processed, each one taking no
more than n steps. Altogether, we have shown the following theorem, the main
result of this paper.

Theorem 1. The uniform membership problem for restricted DAG grammars
is solvable in time O(n2 +mn), where n is the size of the input graph and m is
the size of the grammar.

Note that in linguistic applications grammars are usually by orders of mag-
nitude larger than the structures to be parsed (sentences, trees or, in our case,
DAGs). Therefore, the bound given in Theorem 1 is essentially O(mn) in the
context of such applications.

5 Representing and Generating AMRs

Let us have a very short glimpse at Abstract Meaning Representations (AMRs)
and compare them with the type of DAGs considered in this paper. An AMR is
an ordinary directed edge-labeled acyclic graph expressing the meaning of a sen-
tence. An example expressing “Anna’s cat is missing her” is shown in Figure 2.
The root corresponds to the concept “missing”, which takes two arguments, the
misser and the missed.

In this representation every node has a special “instance edge” that deter-
mines the concept represented by its source node (miss, cat, anna). The most
important concepts are connected to (specific meanings of) verbs, which have a
number of mandatory arguments arg0, arg1, . . . whose number depends on the
concept in question. While the representation shown is not directly compatible
with the restrictions introduced in Section 3 a simple translation helps. Every
concept with its k mandatory arguments is turned into a hyperedge of rank
k + 1, the target nodes of which represent the instance (a leaf) and the roots

=⇒

arg1
miss’

arg0

anna’

poss

cat’

miss’

anna’

cat’

arg1
inst

arg0

inst

poss
inst

Fig. 2. Example translation of AMR.

of the arguments. The resulting hypergraph is shown in Figure 2 on the right.
Note that all shared nodes on the left (corresponding to cross-references) are
turned into reentrant leaves. This is important because in a DAG generated by
a restricted DAG grammar only leaves can have an in-degree greater than 1.

It might seem that we only need graphs with nodes of out-degree at most 1,
and thus no cloning rules for their generation. However, a concept such as miss
can typically also have optional so-called modifiers, such as in “Anna’s cat is
missing her heavily today”, not illustrated in the figure. Such modifiers can typ-
ically occur in any number. We can add them to the structure by increasing the
rank of miss by 1, thus providing the edge with another target v. The out-degree
of this node v would be the number of modifiers of miss. Using the notation of
Section 4, each sub-DAG G↓e given by one of the outgoing edges e of v would
represent one (perhaps complex) modifier. To generate these sub-DAGs G↓e a
restricted DAG grammar would use a nonterminal edge that has v as its source
and which can be cloned. The latter makes it possible to generate any number
of modifiers all of which can refer to the same shared concepts (represented by
the leaves having the cloned nonterminals as their common targets).

On the generating side of AMRs, we immediately run into problems if the
situation calls for multi-rooted graphs (e.g. two sentences connected via a con-
junction or similar). Furthermore, the standard AMR solution for this situation
(introducing a “dummy” root node, which connects to all the individual roots)
is not necessarily applicable, as there might still be calls for connections among
the different parts of the graph, which is a situation that cannot be covered
by restricted DAG grammars. However, introducing a dummy edge above the
different parts lets us decide on an order, and generate all the shared nodes
beforehand, so to speak.

In Figure 3 we present a restricted DAG grammar that generates AMR-like
graphs for all sentences consisting only of the concepts boy, girl, want, and believe
in various combinations, an example that was introduced in [3]. Note that there

is only one boy and girl involved, which requires us to use a “dummy” root
creating them (in order not to have several copies), along with the various sub-
sentence start symbols.

The first row of rules constructs the basic structure of the graph – one edge
each for boy and girl, and three basic statement edges. Any of these statement
edges may be omitted, though we do not show these permutations in Figure 3.
The second, third and fourth row are fairly self-explanatory. The rules for V2

S →

head

B GS2S1 S1

B → boy

inst

G→ girl

inst

S1 → S1 S1

stmt

V

S2 → S2 S2

stmt

V2

V → believe’

a1

want’

a1

believe’

a2

want’

a2

want’

a2

V

believe’

a2

V

V2 → believe’

a1 a2

want’

a1 a2

believe’

a2 a1

want’

a2 a1

believe’

a1 a2

V

. . .

want’

a2 a1

V

believe’

a1

a2

V2

. . .

want’

a2

a1

V2

Fig. 3. Rules for a restricted DAG grammar generating AMR-like graphs for all sen-
tences involving boy, girl, want and believe

involve quite a bit of (omitted) repetition. In particular, the first ellipsis cover
two right-hand side graphs, the second another two.

Though the graph grammar is somewhat cumbersome, it serves as an example
of a restricted DAG grammar generating a very general language of AMR-like
graphs.

6 NP-hardness Results

In order to motivate the rather harsh restrictions we impose on our grammars,
we present NP-hardness results for two different classes of grammars that are
obtained by easing the restrictions in different ways.

Theorem 2. The uniform membership problem for DAG grammars that con-
form to restrictions 1–4 is NP-complete.

Proof. Clearly, the problem is in NP since the restrictions guarantee that deriva-
tions are of linear length in the size of the input graph. Thus, it remains to prove
NP-hardness.

Let us consider an instance ϕ of the satisfiability problem SAT, i.e., a set
{C1, . . . , Cm} of clauses Ci, each being a set of literals xj or ¬xj , where j ∈ [n] for
some m,n ∈ N. Recall that the question asked is whether there is an assignment
of truth values to the variables xj such that each clause contains a true literal.
We have to show how to construct a DAG grammar H and an input graph G
such that G ∈ L(H) if and only if ϕ is satisfiable.

For simplicity, we shall first give a construction in which H violates condi-
tions 4 and 5. The grammar uses nonterminals S,K,Ki,Kij with i ∈ [m], j ∈ [n].
The terminal labels are c, all j ∈ [m], and an “invisible” label. The labels
K,Ki,Kij , c are of rank 2n, S is of rank 0 and the remaining ones are of rank 1.
Figure 4 depicts the rules of the grammar. In this figure, and in the following, we
draw ordinary edges (i.e., whose labels have rank 1) in the usual form as labeled
arcs rather than boxes.

The grammar works in the following stages.
First row of rules: (1) Generate 2n leaves which, intuitively, represent x1,¬x1,

. . . , xn,¬xn and are targets of a K-labeled nonterminal. (2) Clone K any number
of times (where the intention is to clone it m times, once for each clause). (3) Let
each K “guess” which clause Ci (i ∈ N) it should check.

Second row of rules: (4) Let every Ki “guess” which literal makes Ci true.
If the literal is negative, interchange the corresponding targets, otherwise keep
their order.

Third row of rules: (5) For all pairs (x`,¬x`) that are not used to satisfy Ci,
interchange the corresponding targets or keep their order. Finally, (6) replace
the nonterminal edge by a terminal one.

Now, consider the input DAG G in Figure 5 (left). Suppose that G is indeed
generated by H. Since the jth outgoing tentacles of all c-labeled edges point
to the same node (representing either xj or ¬xj), a consistent assignment is

S → K

. . .

K → K K

. . .

K →

i

Ki

. . .

(1 ≤ i ≤ m)

Ki → Kij

. . .

if xj ∈ Ki Ki → Kij

. . .
2j−1 2j

. . .

if ¬xj ∈ Ki

Kij → Kij

. . .

Kij

. . .
2`−1 2`

. . .

for ` ∈ [n] \ {j} c

. . .

Fig. 4. Reduction of SAT to the uniform membership problem

. . .

1 m

...
...


n times

c c

. . .

. . .

. . .

. . .

S →

�

K K

. . .

Fig. 5. Input graph in the proof of Theorem 2 (left) and modified starting rule (right)

obtained that satisfies ϕ. Conversely, a consistent assignment obviously gives rise
to a corresponding derivation of G, thus showing that the reduction is correct.

Finally, let us note that changing the initial rule to the one shown in the left
part of Figure 5 (using a new terminal � of rank 2) makes H satisfy condition 4
as well. This change being made, the input graph is changed by including two
copies of the original input, both sharing their leaves, and adding a new root
with an outgoing �-hyperedge targeting the roots of the two copies. ut

Let us now turn to our second NP-completeness result. It shows that if we, in
addition, disregard restriction 2 in the definition of restricted DAG grammars,
even the non-uniform membership problem becomes NP-complete. Moreover,
this result holds even if all graphs generated by the grammar have height 1.

Theorem 3. There is a DAG grammar H that conforms to restrictions 1, 3,
and 4, such that all graphs in L(H) have height 1 and L(H) is NP-complete.

Proof. The proof is by reduction from the (non-uniform) membership problem
for context-free grammars with disconnecting (CFGD), using a result from [8].
A CFGD is an ordinary context-free grammar G in Chomsky normal form, with
additional rules A → �, where � is a special symbol that cuts the string apart.
Thus, an element in the generated language is a finite multiset of strings rather
than a single string. More precisely, let w = w1 � · · · � wk ∈ (Σ ∪ {�})∗, with
w1, . . . , wk ∈ Σ∗, be a string generated by G if we view G as an ordinary context-
free grammar over Σ ∪ {�}. Then the multiset {w1, . . . , wk} is in L(G).

It is shown in [8] that CFGDs can generate NP-complete languages. Now, let
us represent a multiset {w1, . . . , wk} of strings wi as a graph consisting of k DAGs
of height 1 sharing their roots, as follows. For a single string wi = a1 · · · am, the
graph dag(wi) representing it consists of a root v, leaves u0, . . . , um, and ai-
hyperedges ei with src(ei) = r and tar(ei) = ui−1ui. Moreover, there are two
terminal edges from v to u0 and un, resp. (We draw the latter as unlabeled
edges, using a special “invisible” label.) For a finite multiset W = {w1, . . . , wk}
of strings wi, dag(W) is obtained from the disjoint union of the individual DAGs
dag(wi) by identifying their roots. As an example, dag({ab, aba, c}) is shown in
Figure 6.

a ba b a c

Fig. 6. The DAG dag({ab, aba, c}); note that the DAG does not define an order among
the sub-DAGs dag(wi) that constitute it

Now, every CFGD G can be turned into a DAG grammar H such that
L(H) = {dag(W) | W ∈ L(G)} using the schemata in Figure 7. Hence, L(H) is
NP-complete if L(G) is.

Though the simplicity of the translation should be sufficient to prove its
correctness, a few remarks may be in order. On the one hand, the ordering of
symbols within the representation of an individual string wi is faithfully reflected
in dag(wi), due to the fact that tar(e) is an ordered sequence for each edge e,
which unambiguously determines the start and end of the representation of wi.
On the other hand, there is no order among the represented strings in dag(W)
as they are connected only via the root.

S → S0 A→ B C A→ a A→

Fig. 7. Rules of a DAG grammar equivalent to a CFGD with initial nonterminal S0,
from left to right: initial rule, A→ BC, A→ a, A→ �.

7 Conclusions

By enforcing rather severe restrictions, we have defined a class of hyperedge
replacement graph grammars for which even the uniform parsing problem is
solvable in low-degree polynomial time. We also argued that this class, despite
its limitations, can still be practically relevant, e.g., in linguistic applications.

A number of interesting questions remain open. We motivate our restrictions
by showing how two ways of easing them lead to NP-hardness, but this does
not necessarily mean that all of our restrictions are necessary, neither does it
mean that they are the only interesting ones. Is it the case that lifting any one
of our five restrictions, while keeping the others, leads to NP-hardness? It seems
that the algorithm we propose leads to a fixed-parameter tractable algorithm,
with the size of right-hand sides in the grammar as the parameter, when we
lift restriction 5 (enforcing that the marking respects �F). Is this actually the
case and are there other interesting parameterizations that give tractability for
some less restricted classes of grammars? Another open question is whether
the algorithm for checking the structure of the input graph and computing the
ordering on the leaves can be optimized to run in linear or O(n log n) time.

From a practical point of view, one should study in detail how well suited
restricted DAG grammars are for describing linguistic structures such as AMRs.
Which phenomena can be modeled in an appropriate manner and which cannot?
Are there important aspects in AMRs that can be modeled by general DAG-
generating HRGs but not by restricted DAG grammars? If so, can the restrictions
be weakened appropriately without sacrificing polynomial parsability?

References

1. I. J. Aalbersberg, A. Ehrenfeucht, and G. Rozenberg. On the membership problem
for regular DNLC grammars. Discrete Applied Mathematics, 13:79–85, 1986.

2. L. Banarescu, C. Bonial, S. Cai, M. Georgescu, K. Griffitt, U. Hermjakob, K. Knight,
P. Koehn, M. Palmer, and N. Schneider. Abstract meaning representation for sem-
banking. In Proc. 7th Linguistic Annotation Workshop, ACL 2013 Workshop, 2013.

3. F. Braune, D. Bauer, , and K. Knight. Mapping between english strings and reen-
trant semantic graphs. In Proc. 9th Intl. Conf. on Language Resources and Evalu-
ation (LREC’14), 2014.

4. D. Chiang, J. Andreas, D. Bauer, K. M. Hermann, B. Jones, and K. Knight. Parsing
graphs with hyperedge replacement grammars. In Proc. 51st Annual Meeting of the
Association for Computational Linguistics (ACL 2013), Volume 1: Long Papers,
pages 924–932. The Association for Computer Linguistics, 2013.

5. F. Drewes, A. Habel, and H.-J. Kreowski. Hyperedge replacement graph grammars.
In G. Rozenberg, editor, Handbook of Graph Grammars and Computing by Graph
Transformation. Vol. 1: Foundations, chapter 2, pages 95–162. World Scientific,
Singapore, 1997.

6. F. Drewes, B. Hoffmann, and M. Minas. Predictive top-down parsing for hyper-
edge replacement grammars. In Proc. 8th Intl. Conf. on Graph Transformation
(ICGT’15), Lecture Notes in Computer Science. Springer, 2015.

7. A. Habel. Hyperedge Replacement: Grammars and Languages, volume 643 of Lecture
Notes in Computer Science. Springer, 1992.

8. K.-J. Lange and E. Welzl. String grammars with disconnecting or a basic root of
the difficulty in graph grammar parsing. Discrete Applied Mathematics, 16:17–30,
1987.

9. C. Lautemann. The complexity of graph languages generated by hyperedge replace-
ment. Acta Informatica, 27:399–421, 1990.

II

On the Regularity and Learnability of
Ordered DAG Languages

Henrik Björklund, Johanna Björklund, and Petter Ericson

Dept. Computing Science, Ume̊a University

Abstract. Order-Preserving DAG Grammars (OPDGs) is a subclass of
Hyper-Edge Replacement Grammars that can be parsed in polynomial
time. Their associated class of languages is known as Ordered DAG Lan-
guages, and the graphs they generate are characterised by being acyclic,
rooted, and having a natural order on their nodes. OPDGs are useful
in natural-language processing to model abstract meaning representa-
tions. We state and prove a Myhill-Nerode theorem for ordered DAG
languages, and translate it into a MAT-learning algorithm for the same
class. The algorithm infers a minimal OPDG G for the target language
in time polynomial in G and the samples provided by the MAT oracle.

1 Introduction

Graphs are one of the fundamental data structures of computer science, and
appear in every conceivable application field. We see them as atomic structures
in physics, as migration patterns in biology, and as interaction networks in so-
ciology. For computers to process potentially infinite sets of graphs, i.e., graph
languages, these must be represented in a finite form akin to grammars or au-
tomata. However, the very expressiveness of graph languages often causes prob-
lems, and many of the early formalisms have NP-hard membership problems;
see, e.g., [15] and [8, Theorem 2.7.1].

Motivated by applications in natural language processing (NLP) that require
more light-weight forms of representation, there is an on-going search for gram-
mars that allow polynomial time parsing. A recent addition to this effort was
the introduction of order-preserving DAG grammars (OPDGs) [3]. This is a re-
stricted type of hyper-edge replacement grammars [8] that generate languages of
directed acyclic graphs in which the nodes are inherently ordered. The authors
provide a parsing algorithm that exploits this order, thereby limiting nondeter-
minism and placing the membership problem for OPDGs in O

(
n2 + nm

)
, where

m and n are the sizes of the grammar and the input graph, respectively. This is
to be compared with the unrestricted case, in which parsing is NP-complete.

The introduction of OPDGs is a response to the recent application [5] of
Hyperedge Replacent Grammars (HRGs) to abstract meaning representations
(AMRs) [2]. An AMR is a directed acyclic graph that describes the semantics of a
natural language sentence. Although restricted, OPDGs retain enough expressive
power to capture AMRs.

In this paper, we continue to explore the OPDGs mathematical properties.
We provide an algebraic representation of their domain, and a Myhill-Nerode
theorem for the ordered DAG languages. We show that every ordered DAG
language L is generated by a minimal unambiguous OPDG GL, and that this
grammar is unique up to renaming of nonterminals. In this context, ‘unambigu-
ous’ means that every graph is generated by at most one nonterminal. This is
similar the behaviour of deterministic automata, in particular that of bottom-up
deterministic tree automata which take each input tree to at most one state.

One way of understanding the complexity of the class of ordered DAG lan-
guages, is to ask what kind of information is needed to infer its members. MAT
learning [1], where MAT is short for minimal adequate teacher, is one of the most
popular and well-studied learning paradigms. In this setting, we have access to
an oracle (the teacher) that can answer membership queries and equivalence
queries. In a membership query, we present the teacher with a graph g and are
told whether g is in the target language L. In an equivalence query, we give
the teacher an OPDG H and receive in return an element in in the symmet-
ric difference of L(H) and L. This element is called a counterexample. If L has
been successfully inferred and no counterexample exists, then the teacher instead
returns the special token ⊥.

MAT learning algorithms have been presented for a range of language classes
and representational devices [1,16,17,9,11,4,13]. There have also been some re-
sults on MAT learning for graph languages. Okada et al. present an algorithm
for learning unions of linear graph patterns from queries [14]. These patterns
are designed to model structured data (HTML/XML). The linearity of the pat-
terns means that no variable can appear more than once. Hara and Shoudai
do MAT learning for context-deterministic regular formal graph systems [10].
Intuitively, the context determinism means that a context uniquely determines
a nonterminal, and only graphs derived from this nonterminal may be inserted
into the context. Both restrictions are interesting, but neither is compatible with
our intended applications.

2 Preliminaries

Sets, sequences and numbers. The set of non-negative integers is denoted by N.
For n ∈ N, [n] abbreviates {1, . . . , n}, and 〈n〉 the sequence 1 · · ·n. In particular,
[0] = ∅ and 〈0〉 = λ. We also allow the use of sets as predicates: Given a set
S and an element s, S(s) is true if s ∈ S, and false otherwise. When ≡ is an
equivalence relation on S, (S/ ≡) denotes the partitioning of S into equivalence
classes induced by ≡. The index of ≡ is |(S/ ≡)|. For s ∈ S, [s]≡, or simply [s],
is the equivalence class of s with respect to ≡.

Let S◦ be the set of non-repeating sequences of elements of S. We refer to
the ith member of a sequence s as si. When there is no risk for confusion, we use
sequences directly in set operations, as the set of their members. Given a partial
order � on S, the sequence s1 · · · sk ∈ S◦ respects � if si � sj implies i � j.

A ranked alphabet is a pair (Σ, rank) consisting of a finite set Σ of symbols
and a ranking function rank : Σ 7→ N which assigns a rank rank(a) to every
symbol a ∈ Σ. The pair (Σ, rank) is typically identified with Σ, and the second
component is kept implicit.

Graphs. Let Σ be a ranked alphabet. A (directed edge-labelled) hypergraph over
Σ is a tuple g = (V,E, src, tar , lab) consisting of

– finite sets V and E of nodes and edges, respectively,

– source and target mappings src : E 7→ V and tar : E 7→ V ◦ assigning to each
edge e its source src(e) and its sequence tar(e) of targets, and

– a labelling lab : E 7→ Σ such that rank(lab(e)) = |tar(e)| for every e ∈ E.

Since we are only concerned with hypergraphs, we simply call them graphs.

A path in g is a finite and possibly empty sequence p = e1, e2, . . . , ek of edges
such that for each i ∈ [k − 1] the source of ei+1 is a target of ei. The length
of p is k, and p is a cycle if src(e1) appears in tar(ek). If g does not contain
any cycle then it is a directed acyclic graph (DAG). The height of a DAG G
is the maximum length of any path in g. A node v is a descendant of a node
u if u = v or there is a nonempty path e1, . . . , ek in g such that u = src(e1)
and v ∈ tar(ek). An edge e′ is a descendant edge of an edge e if there is a path
e1, . . . , ek in g such that e1 = e and ek = e′.

The in-degree and out-degree of a node u ∈ V is |{e ∈ E | u ∈ tar(e)}| and
|{e ∈ E | u = src(e)}|, respectively. A node with in-degree 0 is a root and a node
with out-degree 0 is a leaf. For a single-rooted graph g, we write root(g) for the
unique root node.

For a node u of a DAG g = (V,E, src, tar , lab), the sub-DAG rooted at u is the
DAG g ↓u induced by the descendants of u. Thus g ↓u = (U,E′, src′, tar ′, lab′)
where U is the set of all descendants of u, E′ = {e ∈ E | src(e) ∈ U}, and
src′, tar ′, and lab′ are the restrictions of src, tar and lab to E′. A leaf v of
g↓u is reentrant if there exists an edge e ∈ E \ E′ such that v occurs in tar(e).
Similarly, for an edge e we write g↓e for the subgraph induced by src(e), tar(e),
and all descendants of nodes in tar(e). This is distinct from subggsrc(e) iff srce
has out-degree greater than 1.

Marked graphs. Although graphs, as defined above, are the objects we are ul-
timately interested in, we will mostly discuss marked graphs. When combining
smaller graphs into larger ones, whether with a grammar or algebraic operations,
the markings are used to know which nodes to merge with which.

A marked DAG is a tuple g = (V,E, src, tar , lab, X) where (V,E, src, tar , lab)
is a DAG and X ∈ V ◦ is nonempty. The sequence X is called the marking of g,
and the nodes in X are referred to as external nodes. For X = v0v1 · · · vk, we
write head(g) = v0 and ext(g) = v1 · · · vk. We say that two marked graphs are
isomorphic modulo markings if their underlying unmarked graphs are isomor-
phic. The rank of a marked graph g is |ext(g)|.

Graph operations. Let g be a single-rooted marked DAG with external nodes X
and |ext(g)| = k. Then g is called a k-graph if head(g) is the unique root of g,
and all nodes in ext(g) are leaves.

If head(g) has out-degree at most 1 (but is not necessarily the root of g),
and either head(g) has out-degree 0 or ext(g) is exactly the reentrant nodes
of g ↓ head(g), then g is a k-context. We denote the set of all k-graphs over
Σ by GkΣ , and the set of all k-contexts over Σ by CkΣ . Furthermore, GΣ =
∪k∈NGkΣ and CΣ = ∪k∈NCkΣ . Note that the intersection GΣ∩CΣ is typically not
empty. Finally, the empty context consisting of a single node, which is external,
is denoted by ε.

Given g ∈ GkΣ and c ∈ CkΣ , the substitution c[[g]] of g into c is obtained
by first taking the disjoint union of g and c, and then merging head(g) and
head(c), as well as the sequences ext(g) and ext(c) element-wise. The results is
a single-rooted, unmarked DAG.

a

b
d

a

b d

Fig. 1. A 2-context c, a 2-graph g, and the concatenation c[[g]]. Filled nodes convey the
marking of c and g, respectively. Both targets of edges and external nodes of marked
graphs are drawn in order from left to right unless otherwise noted.

Let g be a graph in G0
Σ , e an edge and let h be the marked graph given by

taking g ↓ e and marking the (single) root, and all reentrant nodes. Then the
quotient of g ∈ G0

Σ with respect to h, denoted g/h is the unique context c ∈ CkΣ
such that c[[h]] = g. The quotient of a graph language L ⊆ GΣ with respect to
g ∈ GΣ is the set of contexts L/g = {c | c[[g]] ∈ L}.

Let A be a symbol of rank k. Then A• is the graph (V, {e}, src, tar , lab, X),
where V = {v0, v1, . . . , vk}, src(e) = v0, tar(e) = v1 . . . vk, lab(e) = A, and
X = v0 . . . vk. Similarly, A� is the very same graph, but with only the root
marked, in other words, X = v0.

3 Well-ordered DAGs

In this section, we present two formalisms for generating languages of DAGs,
one grammatical and one algebraic. Both generate graphs that are well-ordered
in the sense defined below. We show that the two formalisms define the same
families of languages. This allows us to use the algebraic formulation as a basis
for the upcoming Myhill-Nerode theorem and MAT learning algorithm.

An edge e with tar(e) = w is a common ancestor edge of nodes u and u′ if
there are t and t′ in w such that u is a descendant of t and u′ is a descendant of
t′. If, in addition, there is no edge with its source in w that is a common ancestor
edge of u and u′, we say that e is a closest common ancestor edge of u and u′.
If e is a common ancestor edge of u and v we say that e orders u and v, with u
before v, if tar(e) can be written as wtw′, where t is an ancestor of u and every
ancestor of v in tar(e) can be found in w′.

The relation �g is defined as follows: u �g v if every closest common ancestor
edge e of u and v orders them with u before v. It is a partial order on the leaves
of g[3]. Let g be a graph. We call g well-ordered, if we can define a total order E
on the leaves of g such that �g⊆ E, and for every v ∈ V and every pair u, u′ of
leaves of g↓v, u �g↓v u′ implies uE u′.

3.1 Order-preserving DAG grammars

Order-preserving DAG grammars (OPDGs) are essentially hyper-edge replace-
ment grammars with added structural constraints to allow efficient parsing.1

The idea is to enforce an easily recognisable order on the nodes of the gener-
ated graphs, that provides evidence of how they were derived. The constraints
are rather strict, but even small relaxations make parsing NP-hard; for details,
see [3]. Intuitively, the following holds for any graph g generated by an OPDG:

– g is a connected, single-rooted DAG,
– only leaves of g have in-degree greater than 1, and
– g is well-ordered

Definition 1 (Order-preserving DAG grammar [3]). An order-preserving
DAG grammar is a system H = (Σ,N, I, P) where Σ and N are disjoint ranked
alphabets of terminals and nonterminals, respectively, I is the set of starting
nonterminals, and P is a set of productions. Each production is of the form

A→ f where A ∈ N and f ∈ Grank(A)
Σ∪N satisfies one of the following two cases:

1. f consists of exactly two nonterminal edges e1 and e2, both labelled by A,
such that src(e1) = src(e2) = head(f) and tar(e1) = tar(e2) = ext(f). In
this case, we call A→ f a clone rule.

2. f meets the following restrictions:

– no node has out-degree larger than 1
– if a node has in-degree larger than one, then it is a leaf;
– if a leaf has in-degree exactly one, then it is an external node or its

unique incoming edge is terminal
– for every nonterminal edge e in f , all nodes in tar(e) are leaves, and

src(e) 6= head(f)
– the leaves of f are totally ordered by �f and ext(f) respects �f .

1 In [3], the grammars are called Restricted DAG Grammars, but we prefer to use a
name that is more descriptive.

A A a

a

B C

Fig. 2. Examples right-hand sides f of normal form rules of types (a), (b), and (c) for
a nonterminal of rank 3.

A derivation step of H is defined as follows. Let ρ = A→ f be a production, g
a graph, and gA a subgraph of g isomorphic modulo markings to A�. The result
of applying ρ to g at gA is the graph g′ = (g/gA)[[f]], and we write g ⇒ρ g

′.
Similarly, we write g ⇒∗H g′ if g′ can be derived from g in zero or more derivation
steps. The language L(H) of H are all graphs g over the terminal alphabet Σ
such that S• ⇒∗H g, for some S ∈ I. Notice that since a derivation step never
removes nodes and never introduces new markings, if we start with a graph g
with |ext(g)| = k, all derived graphs g′ will have |ext(g′)| = k. In particular, if
we start from S•, all derived graphs will have |ext(g′)| = rank(S).

Definition 2 (Normal form [3]). An OPDG H is on normal form if every
production A→ f is in one of the following forms:

(a) The rule is a clone rule.
(b) f has a single edge e, which is terminal.
(c) f has height 2, the unique edge e with src(e) = head(f) is terminal, and all

other edges are nonterminal.

We say that a pair of grammars H and H ′ are language-equivalent if L(H) =
L(H ′). As shown in [3], every OPDG H can be rewritten to a language-equivalent
OPDG H ′ in normal form in polynomial time.

For a given alphabet Σ, we denote the class of graphs ∪H is an OPDGL(H)
that can be generated by some OPDG by HΣ , and by HkΣ the set of rank k
marked graphs that can be generated from a rank k nonterminal.

3.2 DAG concatenation

In sections 4 and 5, we need algebraic operations to assemble and decompose
graphs. For this purpose, we define graph concatenation operations that mirror
the behaviour of our grammars and show that the class of graphs that can be
constructed in this way is equal to HΣ .

In particular, we construct our graphs in two separate ways, mirroring the
cloning and non-cloning rules of the grammars:

– 2-concatenation, which takes 2 rank-m graphs and merges their external
nodes. This corresponds to the clone rules in Definition 2.

– a-concatenation, for a ∈ Σ, takes an a-labelled rank(a) terminal edge and a
number (less than or equal to rank(a)) of marked graphs, puts the graphs
under targets of the terminal edge, and merges some of the leaves. This
corresponds to rules of type (b) or (c) in Definition 2.

The second operation is more complex, as we must make sure that the output
conforms to the ordering and structural constraints of OPDG. Given a terminal
a of rank k and a sequence g1, . . . , gn, with n ≤ k of marked graphs, we create
new graphs in the following way. We start with a� and, for each i ∈ [n] identify
head(gi) with a unique leaf of a�, intuitively “hanging” g1, . . . , gn under an edge
labelled a. We then identify some of the leaves of the resulting graph, but only
in such a way that the resulting graph is well-ordered. The intuition is that we
mirror productions of type (b) and (c) from Definition 2, but instead of producing
a graph containing nonterminal edges, we immediately replace the nonterminals
by graphs that can be derived from them. More formally:

Definition 3 (2-concatenation). Let m ∈ N and let g1, g2 ∈ GmΣ be disjoint
graphs. A 2-concatenation 2[g1, g2] is obtained by merging the roots and external
nodes of g1 and g2. The root and external nodes of 2[g1, g2] are the merged roots
and external nodes, respectively.

Observation 4 (k-concatenation) An obvious extension of 2-concatenation
is to use an arbitrary number k of graphs from GmΣ instead of just 2. Such
operations can be implemented using iterated 2-concatenations, and we refer to
them as k-concatenations.

2− concat



a

b

,

b b

c b


=

a

b

b b

c b

Fig. 3. A 2-concatenation of two graphs

The second operation is more complex, since we must make sure that order
is preserved. Given a terminal a of rank k and a sequence g1, . . . , gn, with n ≤ k
of marked graphs, new graphs are created in the following way. We start with
a� and, for each i ∈ [n] identify head(gi) with a unique leaf of a�, intuitively
“hanging” g1, . . . , gn under an edge labelled a. We then identify some of the leaves
of the resulting graph. In order to fully specify the result of such a concatenation,
and to make sure that it preserves order, we need to parameterize it with the
following.

(1) A number m. This is the number of nodes we will merge the external nodes
of the graphs g1, . . . , gn and the remaining leaves of the a-labelled edge into.

(2) A subsequence s = s1 . . . sn of 〈k〉 of length n. This sequence defines under
which leaves of a� we are going to hang which graph.

(3) A subsequence x of 〈m〉. This sequence defines which of the leaves of the
resulting graph will be external.

(4) An order-preserving function ϕ that defines which leaves to merge. Its do-
main consists of the external leaves of the graphs g1, . . . , gn as well as the
leaves of a� to which no graph from g1, . . . , gn is assigned. Its range is [m].

Before we describe the details of the concatenation operation, we must go into
the rather technical definition of what it means for ϕ to be order-preserving. It
has to fulfil the following conditions:

(i) If both u and v are marked leaves of gi, for some i ∈ [n], and u comes
before v in ext(gi), then ϕ(u) < ϕ(v).

(ii) If |ϕ−1(i)| = 1, then either i ∈ x or the unique node v with ϕ(v) = i
belongs to a�.

(iii) If there are i and j in [m], with i < j such that no graph g` for ` ∈ [n]
contains both a member of ϕ−1(i) and a member of ϕ−1(j), then there
exists a p ∈ [k] such that either
– p is the qth member of s, and gq contains a member of ϕ−1(i), or
– the pth member of tar(a) is in ϕ−1(i)

and furthermore there is no r < p such that either
– r is the tth member of s and gt contains a member of ϕ−1(j), or
– the rth member of tar(a) is itself in ϕ−1(j)

Definition 5 (a-concatenation). Given a terminal a, the a-concatenation of
g1, . . . , gn, parameterized by m, s, x, φ is the graph g obtained by doing the fol-
lowing. For each i ∈ [n], identify head(gi) with the leaf of a� indicated by si.
For each j ∈ [m], identify all nodes in ϕ−1(j). Finally, ext(g) is the subsequence
of the m nodes from the previous step indicated by x.

We note that our concatenation operations can be seen as algebraic oper-
ations independent of their input. 2−concatenation is defined for any pair of
graphs, as long as both of them have the same rank. For the a−concatenations,
things are a little bit more complex, but once we fix the parameters m, s, x, ϕ, we
can see (a,m, s, x, ϕ) as a well-defined operator that can take any sequence of |s|

a

Fig. 4. The topmost terminal graph used in a-concatenation, for a rank-4 terminal
symbol a, with the subsequence s of 〈4〉 where subgraphs will be attached indicated as
filled leaves

(g1, g2, g3) =



b ,

b b

b b

,

c

b b

b



Fig. 5. The (previously constructed) marked graphs, here used as arguments to our
example a-concatenation.

〈m〉 =

Fig. 6. The nodes that leaves are being merged into in an a-concatenation. The sub-
sequence x of external nodes of the concatenated graph are indicated as filled nodes.

a

b

b
b

b b

c

b b

b

Fig. 7. A “halfway done” a-concatenation, where the input graphs has been hanged
underneath the terminal edge, but leaves have not yet been merged. The filled leaves
in the graph indicate the domain of ϕ, and the dashed lines show which node in 〈m〉
each leaf is merged into. As previously, x is given by the filled nodes of 〈m〉.

a

b
b

b

b b

c

b b

b

Fig. 8. The marked graphs that is result of the complete a-concatenation, including
the merges indicated by ϕ

graphs as input, as long as their ranks match what ϕ expects. Indeed, instead of
defining the range of ϕ as the external nodes of the input graphs together with
the unused leaves of a�, i.e., those not indicated by s, we can see it as a function
from numbers and pairs of numbers in the following way. If ϕ is defined for a
leaf ` of a� whose position in tar(a) is i, then we redefine ϕ so that ϕ(i) = ϕ(`).
If, on the other hand, ` is the jth member of ext(gi), then we set ϕ(i, j) = ϕ(`).

We denote by AΣ the class of marked graphs that can be assembled from Σ
through a- and 2-concatenation, and by AkΣ ⊆ AΣ the graphs of rank k.

Each concatenation operation can be defined as an algebraic operation that
takes a number of graphs (of certain ranks) and combines them.

Observation 6 Let ψ be a concatenation operator and g1, . . . , gn a sequence of
graphs for which it is defined. Let g = ψ(g1, . . . , gn). For some i ∈ n, let g′ be a
graph of the same rank as gi. Then ψ(g1, . . . , gi−1, g

′, gi+1, . . . , gn) = (g/gi)[[g
′]].

The following is the main result of this section.

Theorem 7. AΣ = HΣ, and AkΣ = HkΣ for all k.

Proof. The proof for AΣ ⊆ HΣ is by induction on the size of a graph g. For
the base step, we observe that all connected graphs consisting of a single edge
with the appropriate number nodes trivially belong to both AΣ and HΣ . For
the inductive step, there are two cases.

We first address 2-concatenation. Let g = 2[g1, g2], and assume both g1 and
g2 are in both H`Σ and A`Σ , for ` = |ext(g)|. Thus, there are OPDGs H1 and H2

generating g1 and g2 with some derivations S•i ⇒ fi ⇒∗ gi for i ∈ {1, 2}. We can
construct an OPDG H that generates g by essentially merging H1 and H2, and
adding a new nonterminal S′ of rank `, with a cloning rule and the productions
S′ → fi for i ∈ {1, 2}. This will allow the grammar H to generate g, as well as
any k-concatenation involving any combination of the same two graphs.

For a-concatenation, we reason as follows. Let g be obtained from g1, . . . , gn
by applying a-concatenation, parameterized bym, s, x, ϕ. Since every gi is smaller
than g, it belongs to HΣ , and hence there is an OPDG Hi with initial nonter-
minal Si, such that S•i ⇒∗ gi. We construct an OPDG H such that g ∈ L(H)
as follows:

– We add all the productions, nonterminals etc. from Hi, i ∈ [n], keeping the
sets of nonterminals disjoint.

– We add a starting nonterminal S′ of rank |ext(g)| and the production S′ ⇒ f
where f = (a,m, s, x, ϕ)[S•1 , . . . , S

•
n].

By the context-freeness lemma for HRGs[8], there is a derivation f ⇒∗ g. It
remains to be proved that f is a valid right-hand side, and thus H a valid OPDG.
The single edge connected to the root of f is terminal. There are no nodes of out-
degree greater than 1, and only a single layer of n nonterminal edges. Leaves of
in-degree 1 are either connected to the terminal or are external (or both). This
is ensured by item (ii) in the requirements for ϕ to be order-preserving. Any
nonexternal leaves are either connected to the terminal or at least of in-degree
2. Let us now check that the leaves are totally ordered by �f , and moreover
that ext(f) respects it. As there are no nodes of out-degree greater than 1, the
only way �f can fail to be total is if two leaves u, v have two closest common
ancestor edges ei, ej such that u comes before v in tar(ei), but not in tar(ej).
However, the requirement that ϕ is order-preserving precludes this.

To prove the opposite direction, let H = (Σ,N, S, P) be an OPDG on normal
form. We show by induction on the length of the derivations that both the
terminal graphs and the intermediate graphs that arise during the derivations
are in AΣ∪N .

Again, the base case is trivial — for any start symbol S, the graph S• clearly
belongs AΣ∪N . Moving on to the inductive step, we assume that we have a
derivation S• ⇒∗ g ⇒A→f g′ with g ∈ AΣ∪N . For the rule A → f to be
applicable, g must have a subgraph h that is isomorphic modulo markings to A•.
We know that g′ = (g/h)[[f]]. We first argue that if f ∈ AΣ∪N , then g′ ∈ AΣ∪N .
For since h is a part of g, any construction of g using concatenation operators
must at some point use a concatenation operation ψ(g1, . . . , gn), with gi = A•

for some i ∈ [n], resulting in a graph h′. By Observation 6, if we use f instead
of A• in this operation, we get a graph (h′/A•)[[f]]. If in all later concatenations,
we use this graph instead of h′, then, by induction, we will in the end obtain
(g/h)[[f]] = g′. It remains to show that f ∈ AΣ∪N . There are three cases:

(1) A→ f is a clone rule, in which case f = 2[A•, A•].
(2) f is a single terminal edge, in which case it is also clearly a member of AΣ .
(3) f is of height 2, and the single edge of rank k connected to the root is

terminal. This closely mirrors an a-concatenation, where the graphs g1, . . . gn
are graphs with just a single nonterminal edge each. The parameters of the
concatenation can be read directly from the form of f . The one thing to
notice is that the conditions that the leaves of f be totally ordered by �f
and that ext(f) respect �f ensures that we can find an order-preserving ϕ
and make x be a subsequence of 〈m〉. ut

4 A Myhill-Nerode theorem

We begin by defining the Nerode congruence for ordered DAG languages. From
here on, let L be such a language. Intuitively, a pair of graphs are equivalent
with respect to L if they can be freely substituted for one another in any context,
without disturbing the resulting graph’s membership in L. For our purposes, it
is useful to view the Nerode congruence as a corner case in a family of relations,
each focusing on a subset of CΣ .

Definition 8. Let C ⊆ CΣ. The equivalence relation ≡L,C on HΣ is given by:
g ≡L,C g′ if and only if (L/g ∩ C) = (L/g′ ∩ C). The relation ≡L,CΣ is known
as the Nerode congruence with respect to L and is written ≡L.

It is easy to see that for two graphs to be equivalent, they must have equally
many external nodes. The graph g is dead (with respect to L) if L/g = ∅, and
graphs that are not dead are live. Thus, if ≡L has finite index, there must be a
k ∈ N such that every g ∈ HΣ with more than k external nodes is dead.

In the following, we use Ψ(Σ) to denote the set of all concatenation operators
applicable to graphs over Σ.

Definition 9 (Σ-expansion). Given N ⊆ AΣ, we write Σ(N) for the set:

{ψ(g1, . . . , gm) | ψ ∈ Ψ(Σ), g1, . . . , gm ∈ N and ψ(g1, . . . , gm) is defined } .

In the upcoming Section 5, Theorem 13 will form the basis for a MAT learn-
ing algorithm. As is common, this algorithm maintains an observation table T
that collects the information needed to build a finite-state device for the target
language L. The construction of an OPDG GT from T is very similar to that
from the Nerode congruence, so by introducing it here, we can make use of it
twice. Intuitively, the observation table is made up of two sets of graphs N and
P , representing nonterminals and production rules, respectively, and a set of
contexts C used to explore the congruence classes of N ∪ P with respect to L.

To facilitate the design of new MAT learning algorithms, the authors of [6]
introduce the notion of an abstract observation table (AOT); an abstract data
type guaranteed to uphold certain helpful invariants.

Definition 10 (Abstract observation table, see [6]). Let N ⊆ P ⊆ Σ(N) ⊆
AΣ, with N finite. Let C ⊆ CΣ, and let ρ : P 7→ N . The tuple (N,P,C, ρ) is an
abstract observation table with respect to L if for every g ∈ P ,

1. L/g 6= ∅, and
2. ∀g′ ∈ N \ {ρ(g)} : g 6≡L,C g′.

The AOT in [6] accommodates production weights taken from general semir-
ings. The version that we have recalled here has three modifications: First, we
dispense with the sign-of-life function that maps every graph g ∈ N to an el-
ement in L/g. Its usages in [6] are to avoid dead graphs, and to compute the

weights of productions involving g. From the way new productions and nonter-
minals are discovered, we already know that they are live, and as we are working
in the Boolean setting, there are no transition weights to worry about. Second,
we explicitly represent the set of contexts C to prove that the nonterminals in
N are distinct. Both realisations of the AOT discussed in [6] collect such con-
texts, though it is not enforced by the AOT. Third, we do not require that
L(g) = L(ρ(g)), as this condition is not necessary for correctness, though it may
reduce the number of counterexamples needed. The data fields and procedures
have also been renamed to reflect the shift from automata to grammars. From
here on, we use a bold font when referring to graphs as nonterminals.

Definition 11. Let T = (N,P,C, ρ) be an AOT with respect to L. Then GT is
the OPDG (Σ,NT, IT, PT) where NT = N , IT = N ∩ L, and

PT = {ρ(g)→ ψ(ρ(g1), . . . ,ρ(gm)) | g = ψ(g1, . . . , gm) ∈ P} .

In preparation for Theorem 13, we expand our technical vocabulary. Given
an ODPG G = (Σ,N, I, P) and a nonterminal f ∈ N , Gf = (Σ,N, {f}, P). The
grammar G is unambiguous if for every g,h ∈ N , L(Gg) ∩ L(Gh) 6= ∅ implies
that g = h.

Lemma 12. If ≡L has finite index, then there is a k ∈ N0 such that for graph
g ∈ HΣ with more than k external nodes, L/g is empty.

Proof. If |ext(g)| 6= |ext(g′)|, then L/g ∩ L/g′ = ∅. By Definition 8, this means
that either L/g = L/g′ = ∅, or that g 6≡L g′. Since ≡L has finite index, {ext(g) |
L/g 6= ∅} must be bounded from above. ut

Theorem 13 (Myhill-Nerode theorem). The language L can be generated
by an OPDG if and only if ≡L has finite index. Furthermore, there is a minimal
unambiguous OPDG GL with L(GL) = L that has one nonterminal for every
live equivalence class of ≡L. The OPDG GL is unique up to nonterminal names.

Proof. We begin by proving the “if” direction. Let D = {g ∈ AΣ | g is dead},
and N be a selection of representative elements of (AΣ/ ≡L) \ {D}. Let P =
Σ(N) \D. Since L has finite index, N and P are finite sets. Finally, let C = CΣ
and, for every g ∈ P , let ρ(g) be the representative of [g]≡L in N . It is easy to
verify that T = (N,P,C, ρ) is an abstract observation table.

Let us now argue by contradiction that (1) g ∈ L(GT
ρ(g)) and g 6∈ L(GT

g′), for

every g ∈ AΣ \D and g′ ∈ N \ {ρg}. Suppose that g 6∈ L(GT
ρ(g)). We decompose

g into c[[g′]] such that Statement 1 is not true for g′ = ψ(g1, . . . , gm), but it is
true for every proper subgraph of g′.

By construction of T, there is a graph h′ = ψ(ρ(g1), . . . , ρ(gm)) ∈ P , and
hence a production

ρ(h′)→ ψ(ρ(g1), . . . ,ρ(gm)) ∈ PT .

Since g1 ≡L ρ(g1), we have ψ(ρ(g1), ρ(g2), . . . , ρ(gm) ≡L ψ(g1, ρ(g2), . . . , ρ(gm)).
As gi ≡L ρ(gi) for all i ∈ [m], we can repeat the argument m − 1 times, and
learn that

h′ = ψ(ρ(g1), . . . , ρ(gm)) ≡L ψ(g1, . . . , gm) = g′ .

This means that g′ ∈ L(GT
ρ(h′)) = L(GT

ρ(g′)), contrary to our initial assumption.

The “if” direction is completed by noticing that since g ∈ L(GT
ρ(g)),

g ∈ L(GT) ⇐⇒ ρ(g) ∈ I ⇐⇒ ρ(g) ∈ L ⇐⇒ g ∈ L .

Now for the proof of the “only if” direction. Assume that L is generated by the
OPDG H = (Σ,N, I, P). For every g ∈ HΣ , let NT (g) = {A ∈ N | g ∈ L(HA)}.
We show that if, for g, g′ ∈ HΣ , NT (g) = NT (g′), then L/g = L/g′. Suppose
that NT (g) = NT (g′) and that c ∈ L/g. This means that there is a derivation
I ⇒∗ c[[A]]⇒∗ c[[g]]. Since A is also in NT (g′), there is an alternative derivation
I ⇒∗ c[[A]] ⇒∗ c[[g′]]. This is due to the context-freeness of the grammars; see,
e.g., [8], and implies that c ∈ L/g′ which proves the claim. As the powerset of
N is finite, so is the index of ≡L. This completes the “only if” direction.

To see that GT is an unambiguous OPDG, we note that if g, h ∈ L(GT)f for
some f ∈ N , then g ≡ h. There cannot be an unambiguous OPDG with fewer
nonterminals, since then two graphs belonging to different congruence classes
would be generated from the same nonterminal f , and since they can only be
generated from f , they would appear in exactly the same set of contexts. GT

has thus the minimal number of nonterminals. Neither can any production be
removed, as every production is used in the generation of some live graph g ∈ P ,
and removing it would cancel all graphs on the form c[[g]] from the language. We
conclude that GT is a minimal unambiguous OPDG for L, and that it is unique
up to renaming of nonterminals. ut

Notice that when L only contains ordered ranked trees (i.e., when the root
has exactly one child and no node has more than one ancestor), then Theorem 13
turns into the Myhill-Nerode theorem for regular tree languages [12], and the
constructed device is essentially the minimal bottom-up tree automaton for L.

5 MAT learnability

In Section 4, the data fields N , P , and C of the AOT were populated with what
is usually called a characteristic set for L, to derive the minimal unambiguous
OPDG GL that generates L. In this section, we describe how the necessary in-
formation can be incrementally built up by querying a MAT oracle. The learning
algorithm interacts with the oracle through the following procedures:

– Equals?(H) returns a graph in L(H)	 L = {g | L(H)(g) 6= L(g)}, or ⊥ if
no such exists.

– Member?(g) returns the Boolean value L(g).

The information gathered from the oracle is written and read from the AOT
through the procedures listed below. In the declaration of these, (N,P,C, ρ) and
(N ′, P, C ′, ρ′) are the data values before and after application, respectively. The
procedures are then as follows:

– Initialise sets N ′ = P ′ = C ′ = ∅.
– AddProduction(g) with g ∈ Σ(N) \ P . Requires that L/g 6= ∅, and guar-

antees that N ⊆ N ′ and P ∪ {g} ⊆ P ′.
– AddNonterminal(c, g) with g ∈ P \ N and c ∈ CΣ . Requires that ∀g′ ∈
N : g 6≡L,C∪{c} g′, and guarantees that N ∪ {g} ⊆ N ′, P ⊆ P ′, and C ⊆
C ′ ⊆ C ∪ {c}.

– grammar returns GT without modifying the data fields.

Algorithms 1 and 2 are recalled almost exactly as they stand in [6], with
the only adjustments being those needed to go from weighted automata to un-
weighted grammars. Algorithm 1 maintains an AOT T, from which it induces an
OPDG GT. This OPDG is given to the language oracle Lang in the form of an
equivalence query. If the oracle responds with the token ⊥, then the language has
been successfully acquired. Otherwise, the algorithm receives a counterexample
g ∈ L(GT)	L, from which it extracts new facts about L through the procedure
Extend and includes these in T.

The technique used in Algorithm 2, Extend, is known as contradiction back-
tracking. We cover it superficially here; a closer discussion is available in [7]. The
contradiction backtracking essentially consists of simulating the parsing of the
counterexample g with respect to the OPDG GT. The simulation is done incre-
mentally, and in each step a subgraph h ∈ Σ(N)\N of g is nondeterministically
selected. If h is not in P , this indicates that a production is missing from GT

and the problem is solved by a call to AddProduction. If h is in P , then the
algorithm replaces it by ρ(h) and checks whether the resulting graph g′ is in L.
If its membership has changed (i.e., if L(g) 6= L(g′)), then

evidence has been found that h and ρ(h) do not represent the same congru-
ence class and the algorithm calls AddNonterminal. If the membership has
not changed, then the procedure calls itself recursively with the graph g′ as argu-
ment, which has strictly fewer subgraphs not in P . Since g is a counterexample,
so is g′.

If this parsing process succeeds in replacing all of g with a graph g′ ∈ N ,
then L(g) = L(g′) and g ∈ L(GT

g′). Since g′ ∈ N , L(GT)(g′) = L(g′). It follows

that L(GT)(g) = L(g) which contradicts g being a counterexample.

From [6], we know that if Extend adheres to the pre- and postconditions of
the AOT procedures, and the target language L can be computed by an OPDG,
then Algorithm 1 terminates and returns a minimal OPDG generating L. It thus
remains to add realisations of AddProduction and AddNonterminal, and
to show that all procedures behave as desired.

Algorithm 1: Template learning algorithm [6]

T.Initialise();
while true do

GT ← T.Grammar();

g ← Lang.Equal?(GT);
if g = ⊥ then

return GT

else
T.Extend(g)

Algorithm 2: The procedure Extend [6]

Data: g ∈ L(GT)	 L
Decompose g into g = c[[h]] where c ∈ CΣ , h ∈ Σ(N) \N ;
if h 6∈ P then

T.AddProduction(h);
else

if Lang.Member?(c[[h]]) 6= Lang.Member?(c[[ρ(h)]]) then
T.AddNonterminal(c, h);

else
Extend(c[[ρ(h)]]);

Consider the implementations of AddProduction and AddNonterminal,
shown in Algorithm 3 and Algorithm 4, respectively. AddProduction simply
adds its argument g to the set P of graphs representing productions. It then
looks for a representative g′ for g in N , such that g′ ≡L,C g. If no such graph
exists, it simply chooses any g′ ∈ N , or if N is empty, adds g itself to N with
a call to AddNonterminal. Similarly, AddNonterminal adds g to the set
N of graphs representing nonterminals. If g cannot be distinguished from ρ(g),
which is the only element in N that could possibly be indistinguishable from g,
then c is added to C to tell g and ρ(g) apart. Finally, the representative function
ρ is updated to satisfy Condition 2 of Definition 10.

Algorithm 3: The procedure AddProduction

Data: p ∈ Σ(N) \ P
P ← P ∪ {g};
if ∃g′ ∈ N : g ≡L,C g′ then

ρ(g)← g′;
else

if ∃g′ ∈ N then
ρ(g)← g′;

else
AddNonterminal(ε, g);

Algorithm 4: The procedure AddNonterminal

Data: g ∈ P \N , c ∈ CΣ , and ∀g′ ∈ N : g 6≡L,C∪{c} g′
N ← N ∪ {g};
if g ≡L,C ρ(g) then

C ← C ∪ {c};
g′ ← ρ(g);
for h ∈ ρ−1(g′) do

if h ≡L,C g then
ρ(h)← g;

Lemma 14. For every g ∈ P , g ∈ L(GT
ρ(g)).

Proof. We first prove that for every g ∈ N , g ∈ L(GT
g). The argument is by

induction on the number of edges in g. If g consists of a single edge, then g = ψ
for some concatenation operator of rank 0, so the result is trivially true. Assume
now that g = ψ(g1, . . . , gm). Since N ⊆ P ⊆ Σ(N), there is a production
g → ψ(g1, . . . , gm) ∈ PT and gi ∈ N , i ∈ [m]. By the induction hypothesis,
gi ∈ L(GT

gi
), i ∈ [m]. It follows that g ∈ L(GT

g).
Assume now that g = ψ(g1, . . . , gm) ∈ P . Since P ⊆ Σ(N), gi ∈ N , i ∈ [m].

By the above argument, gi ∈ L(GT
gi

) for every i ∈ [m], and since g ∈ P ,

ρ(g)→ ψ(ρ(g1), . . . ,ρ(gm)) = ρ(g)→ ψ(g1, . . . , gm) ∈ PT

so g ∈ L(GT)ρ(g). ut

Theorem 15. Algorithm 1 terminates and returns GL.

Proof. It should be clear that Initialise trivially fulfils the conditions of Def-
inition 10, and that Grammar has no effect on the data fields at all. Since
AddProduction depends on AddNonterminal, we begin verifying the lat-
ter.

We us assume that g ∈ P \N , c ∈ CΣ , and that ∀g′ ∈ N : g′ 6≡L,C∪{c} g. Since
N is updated to N∪{g}, and P is unchanged, the guarantees of AddNontermi-
nal are fulfilled. Condition 1 of Definition 10 is not affected, and the requirement
that ∀g′ ∈ N : g′ 6≡L,C∪{c} ensures that Condition 2 continues to hold.

Let us now look at AddProduction. Here, we assume that p ∈ Σ(N) \ P ,
c ∈ CΣ , and L/g 6= ∅, which immediately fulfils Condition 1 of Definition 10,
and since N is not updated, Condition 2 is trivially met. Finally we note that
in the call to AddNonterminal, N = ∅, so ε trivially a separates g from every
other graph in N .

We conclude by ensuring that the AddProduction and AddNonterminal
are called from Extend with their requirements met. In case of AddProduc-
tion, we know that c[[g]] ∈ L since g 6∈ P so c[[g]] 6∈ L(GT) and c[[g]] is supposed
to be a counterexample. This means in particular that {c} ⊆ L/g, so L/g is not
empty. Also the requirement of AddProduction is met due to the if-clause

on Line 2, since by assumption ∀g′ ∈ N \ {ρ(g)} : g′ 6≡L,C g and we know that
c ∈ L/g 	 L/ρ(g).

Since the Conditions of Definition 10 are respected, and the associated pro-
cedures have their requirements met and fulfil their guarantees, [6, Corollary 8]
ensures that the learning algorithm terminates and outputs GL. ut

We close this section with a discussion of the complexity of Algorithm 1.
To infer the minimal unambiguous ODGP GL = (Σ,N, I, P) recognising L, the
algorithm must gather as many graphs as there are nonterminals and transitions
in GL. In each iteration of the main loop, it parses a counterexample g in poly-
nomial time in the size of g and T (the latter is limited by the size of GL), and
is rewarded with at least one production or nonterminal. The algorithm is thus
polynomial in |GL| = |N | + |P | and the combined size of the counterexamples
provided by the MAT oracle.

References

1. D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75:87–106, 1987.

2. L. Banarescu, C. Bonial, S. Cai, M. Georgescu, K. Griffitt, U. Hermjakob,
K. Knight, P. Koehn, M. Palmer, and N. Schneider. Abstract meaning repre-
sentation for sembanking. In 7th Linguistic Annotation Workshop (ACL 2013
Workshop), 2013.

3. H. Björklund, F. Drewes, and P. Ericson. Between a rock and a hard place – uniform
parsing for hyperedge replacement DAG grammars. In A.-H. Dediu, J. Janousek,
C. Mart́ın-Vide, and B. Truthe, editors, 10th International Conference on Language
and Automata Theory and Applications, Prague, Czech Republic, 2016, volume
9618 of Lecture Notes in Computer Science, pages 521–532. Springer, 2016.

4. J. Björklund, H. Fernau, and A. Kasprzik. Polynomial inference of universal au-
tomata from membership and equivalence queries. Information and Computation,
246:3–19, 2016.

5. D. Chiang, J. Andreas, D. Bauer, K. M. Hermann, B. Jones, and K. Knight.
Parsing graphs with hyperedge replacement grammars. In 51st Annual Meeting
of the Association for Computational Linguistics (ACL 2013), volume Volume 1:
Long Papers, pages 924–932. The Association for Computer Linguistics, 2013.

6. F. Drewes, J. Björklund, and A. Maletti. MAT learners for tree series: an abstract
data type and two realizations. Acta Informatica, 48(3):165, 2011.

7. F. Drewes and J. Högberg. Query learning of regular tree languages: How to avoid
dead states. Theory of Computing Systems, 40(2):163–185, 2007.

8. F. Drewes, H.-J. Kreowski, and A. Habel. Hyperedge replacement graph grammars.
In G. Rozenberg, editor, Handbook of Graph Grammars, volume 1, pages 95–162.
World Scientific, 1997.

9. F. Drewes and H. Vogler. Learning deterministically recognizable tree series. Jour-
nal of Automata, Languages and Combinatorics, 12(3):332–354, 2007.

10. S. Hara and T. Shoudai. Polynomial time MAT learning of c-deterministic regular
formal graph systems. In International Conference on Advanced Applied Informat-
ics (IIAI AAI 2014), pages 204–211, 2014.

11. J. Högberg. A randomised inference algorithm for regular tree languages. Natural
Language Engineering, 17(02):203–219, 2011.

12. Dexter Kozen. On the Myhill-Nerode theorem for trees. Bulletin of the EATCS,
47:170–173, 1992.

13. A. Maletti. Learning deterministically recognizable tree series—revisited. In Alge-
braic Informatics, pages 218–235. Springer, 2007.

14. R. Okada, S. Matsumoto, T. Uchida, Y. Suzuki, and T. Shoudai. Exact learning of
finite unions of graph patterns from queries. In The 18th International Conference
on Algorithmic Learning Theory (ALT 2007), pages 298–312, 2007.

15. G. Rozenberg and E. Welzl. Boundary NLC graph grammars—basic definitions,
normal forms, and complexity. Information and Control, 69(1-3):136–167, 1986.

16. Y. Sakakibara. Learning context-free grammars from structural data in polynomial
time. Theoretical Computer Science, 76(2–3):223–242, 1990.

17. H. Shirakawa and T. Yokomori. Polynomial-time MAT learning of c-deterministic
context-free grammars. Transaction of Information Processing Society of Japan,
34:380–390, 1993.

III

Minimisation and Characterisation of

Order-Preserving DAG Grammars

Henrik Björklunda, Johanna Björklunda, Petter Ericsona

aDepartment of Computing Science, Umeå University, Sweden

Order-preserving DAG grammars (OPDGs) is a formalism for processing semantic infor-
mation in natural languages [5, 4]. OPDGs are su�ciently expressive to model abstract
meaning representations, a graph-based form of semantic representation in which nodes en-
code objects and edges relations. At the same time, they allow for e�cient parsing in the
uniform setting, where both the grammar and subject graph are taken as part of the input.

In this article, we introduce an initial algebra semantic for OPDGs, which allows us to
view them as regular tree grammars. This makes it possible to transfer a number of results
from that domain to OPDGs, both in the unweighted and the weighted case. In particular,
we show that deterministic OPDGs can be minimised e�ciently, and that they are learnable
in the so-called MAT setting. To conclude, we show that the languages generated by OPDGs
are MSO-de�nable.

1. Introduction

Order-Preserving DAGGrammars (OPDGs) [5] is a subclass of Hyper-Edge Replacement
Grammars (HRGs) [12], motivated by the need to model semantic information in natural-
language processing. In OPDGs, the basic units of computation are directed hyperedges,
the generalisation of regular directed edges that comes from permitting any �nite number
of target vertices. The left-hand side of a production rule is a single k-targeted hyperedge
labelled by a nonterminal symbol, and the right-hand side is a graph with k + 1 marked
vertices. The generation process starts out from an initial graph in which the edges are
labelled with nonterminals or terminals. It then iteratively replaces nonterminal edges by
larger graph fragments, until only terminal edges remain. The replacement step involves a
simple form of graph concatenation, illustrated in Figure 1.

To ensure e�cient parsing, the graphs that appear as right-hand sides in OPDG pro-
ductions must be on one of three allowed forms, illustrated in Figure 2. As a result, the
generated graphs are acyclic, rooted, and have a natural order on their nodes. This is
restrictive compared to HRGs in general, but su�ciently expressive to model semantic rep-
resentations such as abstract meaning representations [2]. Moreover, this normal form places
parsing in O

(
n2 + nm

)
, where m and n are the sizes of the grammar and the input graph,

respectively. For full HRGs, parsing is NP-complete even in the non-uniform case, when the
grammar is �xed and only the graph is considered as input; see, for example, [12]. In [5],
it is shown that even small relaxations of the restrictions on the right-hand sides lead to
NP-complete parsing as well.

In [4], we provided an algebraic representation of the languages generated by OPDGs.
This allowed us to state and prove a Myhill-Nerode theorem for order-preserving DAG
grammars, and in doing so also provide a canonical form and an Angluin-style MAT learning
algorithm. In the present work, we generalise these results to the weighted case. This is done
by providing an initial algebra semantic for OPDGs, which allows us to transfer a number

January 2, 2019

of results from the tree case. We also introduce the notion of bottom-up determinism for
OPDGs and provide an e�cient minimisation algorithm for weighted OPDGs.

A further area of study regarding graph grammars is their relation to logic. In particular,
the relation between Monadic Second-Order (MSO) logic on graphs and HRG is an active
research topic, with recent results [14] exploring Regular Graph Grammars, a formalism
that is both a subclass of HRL and MSO de�nable. We show that OPDGs occupy a similar
position by proving that for every OPDG, we can construct an MSO formula that de�nes
the same graph language.

Both the regular graph grammars of Gilroy et al. [14] and the grammars proposed by
Chiang et al. [10] are variants of HRGs that are potential candidates for modelling natural
language semantic data. Unlike OPDGs, however, none of these models allow for polynomial
time parsing. Further related work include e�orts on the generalisation of OPDGs to cover
restricted types of cyclic graphs [6]. Additionally, the Regular DAG Automata proposed by
Chiang et al. [11] is a recent graph formalism, also studied in, e.g., [8, 3], intended for the
same applications as the present work. It shares some desirable properties with OPDGs,
though not polynomial time parsing.

2. Preliminaries

Sets, sequences and numbers. The set of non-negative integers is denoted by N. For n ∈ N,
[n] abbreviates {1, . . . , n}. In particular, [0] = ∅. We also allow the use of sets as predicates:
Given a set S and an element s, S(s) is true if s ∈ S, and false otherwise. When ≡ is
an equivalence relation on S, (S/ ≡) denotes the partitioning of S into equivalence classes
induced by ≡. For s ∈ S, [s]≡ is the equivalence class of s with respect to ≡.

Let S and T be sets. The set of all bijective functions from S to T is denoted biject(S, T).
Note that biject(S, T) = ∅ unless |S| = |T |.

Let S~ be the set of non-repeating sequences of elements of S. We refer to the ith
member of a sequence s as si. Given a sequence s, we write [s] for the set of elements of s.
Given a partial order � on S, the sequence s1 · · · sk ∈ S~ respects � if si � sj implies i ≤ j.
We write S⊕ for S~ \ {λ} where λ denotes the empty sequence.

Ranked alphabets and trees. A ranked alphabet is a pair (Σ, rk) consisting of a �nite set Σ
of symbols and a ranking function rk : Σ → N which assigns a rank rk(a) to every a ∈ Σ.
The pair (Σ, rk) is typically identi�ed with Σ, and the second component is kept implicit.

The set TΣ of trees over the ranked alphabet Σ is de�ned inductively as follows:

• Every symbol f ∈ Σ of rank 0 is a tree.

• Every top-concatenation f [t1, . . . , tk] of a symbol f ∈ Σ of rank k with trees t1 . . . tk ∈
TΣ is a tree.

a

b ⊥
d

a

b d

Figure 1: A graph context c, a graph g, and
the substitution of g into c. Filled nodes
indicate the marking of g.

A A a

a

B C

Figure 2: Example right-hand sides.

2

From here on, letX be a ranked alphabet containing only 0-ranked symbols, called variables,
disjoint from every other alphabet discussed here. The set TΣ(X) is the set of trees over
Σ ∪X. A tree language is a subset of TΣ.

A context over Σ is a tree in TΣ(X) containing exactly one occurrence of a symbol in
X. The set of contexts over Σ is written CΣ. The substitution of t ∈ TΣ into c ∈ CΣ(X) is
c[[t]] = c[x← t] for x the single symbol from X. The tree t is a subtree of s ∈ TΣ if there is
a c ∈ CΣ, such that s = c[[t]]. If t is a tree and v a position in t, we write t/v for the subtree
of t rooted at v.

Typed alphabets and graphs. A typed ranked alphabet is a tuple (Σ, rk , tp), where (Σ, rk) is
a ranked alphabet, and tp : Σ→ N× N∗ assigns a type tp(a) ∈ N× Nrk(a) to every symbol
a ∈ Σ. For tp(a) = (o, i), where o ∈ N and i ∈ N∗, we call o the output type and i the
sequence of argument types, respectively, and write otp(a) = o, atp(a) = i.

De�nition 2.1 (hypergraph). A directed, edge-labeled, marked hypergraph over a ranked

alphabet Σ is a tuple g = (V,E, att, lab, ext) with the following components:

• V and E are disjoint �nite sets of nodes and edges, respectively.

• The attachment att : E → V ⊕ assigns a sequence of nodes to each hyperedge. For

att(e) = vw with v ∈ V and w ∈ V ~, we call v the source and w the sequence of

targets, respectively, and write src(e) = v and tar(e) = w.

• The labeling lab: E → Σ assigns a label to each edge, subject to the condition that

rank(lab(e)) = |tar(e)| for every e ∈ E.

• The sequence ext ∈ V ⊕ is the sequence of external nodes. If extG = vw, then the node

v is denoted by g and the sequence w of nodes by g , respectively, and we impose the

additional requirement that src(e) /∈ [g] for all e ∈ E. The type tp(g) of g is (|g |, ε).

In the following, we will only deal with the directed, edge-labeled, marked hypergraphs
from De�nition 2.1, and will therefore simply call them graphs.

A path in g is a �nite and possibly empty sequence ρ = e1e2 · · · ek of edges such that
for each i ∈ [k − 1] the source of ei+1 is a target of ei. The length of ρ is k, and ρ is
a cycle if src(e1) appears in tar(ek). If g does not contain any cycle then it is a directed

acyclic graph (DAG). The height of a DAG G is the maximum length of any path in g. A
node v is a descendant of a node u if u = v or there is a nonempty path e1 · · · ek in g such
that u = src(e1) and v ∈ [tar(ek)]. An edge e′ is a descendant edge of an edge e if there
is a path e1 · · · ek in g such that e1 = e and ek = e′. An edge or node is an ancestor of
its descendants. The in-degree and out-degree of a node u ∈ V is |{e ∈ E | u ∈ [tar(e)]}|
and |{e ∈ E | u = src(e)}|, respectively. A node with in-degree 0 is a root and a node with
out-degree 0 is a leaf. For a single-rooted graph g, we write root(g) for the root node.

If A is a nonterminal of rank k, we write A• for the graph consisting of a single edge,
labeled A, with its k + 1 attached nodes, which are all external.

For nodes u and v of a DAG g = (V,E, att, lab, ext), a node or edge x is a common

ancestor of u and v if it is an ancestor of both. It is a closest common ancestor if there is
no descendant of x that is a common ancestor of u and v. A closest common ancestor edge
e orders u before v if e's ith target is an ancestor of u, and for all j such that e's jth target
is an ancestor of v, i < j. The partial order �g on the leaves of a graph g is, if de�ned, the
re�exive and transitive closure of the relation before(u, v), which holds if u, v have at least
one closest common ancestor edge and if all such edges order u before v.

For a node u of a marked DAG g = (V,E, att, lab, ext), the sub-DAG rooted at u is the
DAG g↓u induced by the descendants of u. Thus g↓u = (U,E′, att′, lab′, ext′) where U is

3

the set of all descendant nodes of u, E′ = {e ∈ E | src(e) ∈ U}, and att′, and lab′ are the
restrictions of att and lab to E′. A leaf v of g↓u is reentrant in regards to u if there exists
an edge e ∈ E \E′ such that v occurs in tar(e) or in ext. We de�ne ext′ to be the sequence
starting with u, and continuing with the reentrant nodes of u, ordered by �g, if de�ned. If
�g is not de�ned, we let ext′ consist only of u. We note that �g↓u is de�ned and is a subset
of �g, if �g is de�ned. We also note that if y ∈ g↓x \ extg↓x then g↓x↓y = g↓y. For proofs
of these properties, see [5, 4]. For both nodes and edges x, the set of reentrant leaves of x
in the graph g is denoted reentg(x).

For an edge e we write g↓e for the subgraph induced by src(e), tar(e), and all descendants
of nodes in tar(e), with the same reasoning as above on the de�nition of ext′. This is distinct
from g↓src(e) if and only if src(e) has out-degree greater than 1.

Let g = (Vg, Eg, attg, labg, extg) and h = (Vh, Eh, atth, labh, exth) be DAGs. We say that
g and h are isomorphic, and write g ≈ h, if there are two bijective functions fV : Vg → Vh
and fE : Eg → Eh such that atth ◦ fE = fV ◦ attg, labh ◦ fE = labg, and extH = fV (extG).

For graphs g, h, f and an edge e ∈ Eh with |tarh(e)| = |f |, we call g = h[[e : f]] the
graph substitution of e by f in h, if
• Eg = Eh \ {e} ∪ Ef
• Vg = Vh ∪ Vf
• extg = exth

and attg(e
′) = attf (e′), labg(e

′) = labf (e′) for e′ ∈ Ef , and attg(e
′) = atth(e′), labg(e

′) =
labh(e′) for e′ ∈ Eh \ {e}. We require that atth(e) = extf = Vf ∩ Vh. Note that we can
always choose isomorphic copies of f and h such that this is the case.

For e, e′ ∈ Eh, g = h[[e : f]] and g′ = g[[e′ : f ′]], we write g′ = h[[e : f, e′ : f ′]], and extend
this notation to any number of edges in h.

3. Well-ordered DAGs

In this section, we de�ne a universe of well-ordered DAGs and discuss formalisms for
expressing subsets of this universe, i.e., well-ordered DAG languages (WODLs).

Well-ordered DAGs were initially introduced as the class of graphs recognised by order-

preserving DAG grammars1 (OPDG) [5]. Some further properties of OPDGs are studied
in [4]. Intuitively, every DAG generated by an ODPG has a partial order on its node
set. This order is easily decidable from the structure of the DAG, and simpli�es several
processing tasks, most notably parsing.

3.1. Order-preserving DAG algebras

Well-ordered DAGs can be inductively assembled using concatenation operations, analo-
gously to the step-wise construction of strings or trees through the concatenation of symbols
from an alphabet. In the string case, each symbol is a string, and concatenating a string
with a symbol yields a new string. In the tree case, each rank-0 symbol is a tree, and top
concatenating k trees with a rank-k symbol yields a new tree.

In our domain of well-ordered DAGs, every concatenation operation is assigned a type

that re�ects the structure of the graphs it takes as input and the graph it produces as output.
The operations are based on concatenation schemata, which also have types. Concatenation
schemata are special kinds of DAGs, where some edges are place-holders and carry no label.

1In [5], the grammars were called �restricted DAG grammars�, but in [4], the more descriptive name
�order-preserving DAG grammars� was substituted.

4

De�nition 3.1. Let Σ be a ranked alphabet. A DAG f is a concatenation schema over Σ
if either of the two following conditions hold.

1. f contains exactly two edges, both of rank k, both place-holders, and both have the

same source and the same targets, in the same order. All nodes of f are external and

connected to the two edges. We call such a graph a clone. Its type is (k, kk).

2. f has height at most two and satis�es the following.

• No node has an out-degree larger than one.

• There is a single root with a single edge attached to it. This edge is labeled by a

terminal from Σ.

• All other edges are place-holders.

• Only leaves have in-degrees larger than one.

• All targets of place-holder edges have in-degree larger than one or are external.

• The ordering �f is total on the leaves and is respected by f .

For a concatenation schema that is not a clone, there is a natural ordering on the place-
holder edges. This is because there is a unique edge connected to the root, all place-holders
have targets of this edge as sources, and no two place-holders share a source. Thus, if f
has ` place-holders, we can refer to them as f1, . . . , f`. In the case of clone rules, the two
edges are isomorphic, and we can simply pick any ordering. The number ` of place-holder
edges in f is the arity of f , denoted arity(f). The type of such concatenation schema is
(|f |, |tarf (f1)||tarf (f2)| · · · |tarf (fl)|).

Each concatenation schema f gives rise to a concatenation operator concatf of arity
arity(f) as described in the following de�nition.

De�nition 3.2. Let f be a concatenation schema of type (o, a1 . . . a`), and f1 . . . f` its place-
holder edges. The concatenation operation concatf (g1, . . . , g`) is de�ned for well-ordered

DAGs g1 . . . g` where otp(gi) = ai for all i ∈ [`]. It yields the graph g = f [[f1 : g1, . . . , f` : g`]].

If f is a concatenation schema over Σ, we call concatf a concatenation operator over Σ.
The set of all such operators is denoted concatΣ.

A special case of concatenation schemata is the one where the graph f has height one,
but is not a clone. In this case, f consists of a single terminal edge. The external nodes
include the source and any subsequence of the targets.

De�nition 3.3. Let Σ be an alphabet. The well-ordered DAGs over Σ, denoted AΣ, is the

set of graphs that can be constructed using operations from concatΣ.

3.2. Order-preserving DAG grammars

Order-preserving DAG grammars (OPDGs) produce well-ordered DAGs [5, 4]. In other
words, every language produced by an OPDG over Σ is a subset of AΣ. When we next recall
the de�nition, we restrict ourselves to grammars on a particular normal form. As shown
in [5], every OPDG can be rewritten into one on this normal form in polynomial time.

If Σ is a ranked alphabet of terminals and N a ranked alphabet of non-terminals, we
call a graph f an N -instantiated concatenation schema over Σ if f can be obtained from
a concatenation schema over Σ by assigning each place-holder a nonterminal from N of
appropriate rank.

An order-preserving DAG grammar (OPDG) is a structure G = (Σ, N, P, S) where

5

• Σ is the ranked alphabet of terminal symbols,

• N is the ranked alphabet of nonterminal symbols,

• P is the set of production rules, described below, and

• S ∈ N is the starting nonterminal

A production rule has the form A→ f , where A is a nonterminal and f anN -instantiated
concatenation schema over Σ. We require that rk(A) = otp(f) and that if f is a clone, then
both its edges are labelled A.

A derivation step g →p h for a production A→ f = p ∈ P consists of replacing an edge
marked with A in g with f , producing h. We write →G for a derivation step using any of
the rules of P , and →∗G for the re�exive and transitive closure. We write L(G), indicating
the language of the grammar G for the set of terminal graphs g such that S• →∗G g. If
g →p1 h′ →p2→ h and g →p2 h′′ →p1→ h, the two derivation steps are independent.
Two derivations d1 = S• →∗G g and d2 = S• →∗G g are distinct if they cannot be made
equal by reordering of independent derivation steps. Note that our view of derivation is
essentially a linearised version of context-free derivation trees, where rule applications in
di�erent subtrees are independent, and distinct derivations have derivation trees that are
distinguishable. However, the presence of cloning rules makes matters more involved, and
Section 4 explains how these are handled.

An OPDG is bottom-up deterministic if, for each rule A → f , there is no rule B → g
such that g ≈ f and B 6= A. Informally, there are no two nonterminals that lead to the
same right-hand side.

We conclude this section by sketching a parsing algorithm for OPDGs; for a detailed
presentation, formal proofs, and complexity results, see [5]. In short, we can, without looking
at the grammar, determine a number of useful properties of the input graph � in particular
that there is an appropriate ordering of the leaves � and identify the graphs g↓x for all
nodes and edges x. Afterwards, assuming that the grammar is on normal form, we parse
the graph bottom-up, marking each non-leaf node or edge x with the the nonterminals that
could produce g↓x, and checking at each step which right-hand sides match. Finally, we
check that the initial nonterminal is in the set of nonterminals that marks the root node.

3.3. Well-ordered DAG series

A commutative semiring is a tuple C = (C,+, ·, 0, 1) such that both (C, ·, 1) and (C,+, 0)
are commutative monoids, · distributes over +, and 0 ·c = c ·0 = 0 for all c ∈ C. If, for every
semiring element c ∈ C except 0, there exists an element c−1 ∈ C such that c · c−1 = 1,
then C is a commutative semi�eld. If C is a semi�eld and there also exists, for every c ∈ C,
an element −c ∈ C such that c + (−c) = 0, then C is a commutative �eld. The semiring
is zero-sum free if there does not exists elements a, b ∈ C \ {0} such that a + b = 0. It is
zero-divisor free if there does not exists elements a, b ∈ C \ {0} such that a · b = 0.

By equipping OPDG rules with weights from a semiring, we can model weighted well-
ordered DAG languages, in other words, well-ordered DAG series (WODS). A weighted
OPDG (WOPDG) over commutative semiring C is a structure G = (Σ, N, P, S, w), where
(Σ, N, P, S) is an OPDG, and w : P → C is the weight function.

The A-weight of a derivation A• →p0 g0 →p1 . . .→pl g is∏
i

w(pi) ,

and the weight of a graph is the sum of the weights of all distinct S-derivations that generate
it. We generally call S-derivations derivations. The weight distribution thus de�ned is the

6

WODS S(G) : AΣ → C. This means that if there is no (S-)derivation of g in G, then
S(G)(g) = 0. The support of a WOPDG G is the set of graphs support(G) = {g | S(G)(g) 6=
0}. Note that the support of a WOPDG is a subset of the language of the underlying OPDG.
If no rule is assigned weight 0, and the semiring is zero-sum and zero-divisor free, then the
support of the WOPDG and the language of the underlying OPDG coincide. A WOPDG
is deterministic if its underlying OPDG is. A WOPDG is bottom-up deterministic if, for
every nonterminal A, there is at most one production rule A→ g that has non-zero weight.

4. Initial algebra semantics

In this section, we establish a link between well-ordered DAG series and tree series,
from which several results relating to minimisation (Section 5) and learnability (Section 6)
immediately follow.

De�nition 4.1 (Terms over concatΣ). We associate with the set of concatenation operators

concatΣ the typed ranked alphabet concat′Σ = {f̂ | f ∈ concatΣ}, where rk(f̂) equals the

arity of f and tp(f̂) is tp(f).
The terms over concatΣ is the set of trees TconcatΣ ⊂ Tconcat′Σ

that are type-matched in

the sense that for each subterm f̂ [t1, . . . , tl], the ith element of the argument type of f̂ must

match the output type of the root symbol of ti.
Let X be the (in�nite) typed ranked alphabet {xk | k ∈ N}, such that rk(xk) = 0 and

tp(xk) = (k, ε) for every k ∈ N. Analogously to the tree case, the set TconcatΣ(X) is the set

of type-matched trees over concat′Σ ∪X

Terms over concatΣ can be evaluated to yield graphs in AΣ. The construction is as
expected. Evaluating a symbol xk ∈ X yields a placeholder edge with k targets.

De�nition 4.2 (Term evaluation). The evaluation function eval : TconcatΣ(X) → AΣ

is de�ned as follows: For every xk ∈ X, eval(xk) is a single placeholder edge with ex-

actly k targets, all external. For every t = f̂ [t1, . . . , tk] ∈ TconcatΣ(X) \ X, eval(t) =
f(eval(t1), . . . , eval(tk)).

The clones in concatΣ need some special care, since their arguments have no inherent
order. In what follows, we will write Cl to denote the set {f̂ | f ∈ concatΣ ∧ f is a clone}
of all clones in concatΣ.

De�nition 4.3 (Top clone positions). Let t ∈ TconcatΣ. The top clone positions of t is the
set of positions

cln(t) = {v ∈ pos(t) | there is a path from root(t) to v labelled (Cl)+(concat′Σ \ {Cl})} .

The set of subtrees that attaches to the top clone positions in a term t can be freely
permuted according to some bijection onto these positions, without a�ecting the value of t
with respect to eval. This invariance induces an equivalence relation on TconcatΣ .

De�nition 4.4 (The relation ∼). The binary relation ∼ on TconcatΣ is de�ned as follows,

for every t = f̂ [t1, . . . , tk], s = ĝ[s1, . . . , sn] ∈ TconcatΣ:

t ∼ s ⇐⇒ f̂ = ĝ and

{
∃ϕ ∈ biject(cln(t), cln(s)) : ∀v ∈ cln(t) : t/v ∼ s/ϕ(v) if f̂ ∈ Cl
ti ∼ si,∀i ∈ [k] otherwise.

It is straight-forward to show that ∼ is an equivalence relation on TconcatΣ.

7

Lemma 4.5. For every g ∈ AΣ, there is a tree t ∈ TconcatΣ such that g = eval(t), and t is
unique modulo ∼.

Proof. The proof is by induction on the size of g↓x, where x ∈ V ∪ E. For the base case,
assume that x is an edge and g↓x has height one and thus consists of a single edge. There
must then be a constant operation f ∈ concatΣ, such that g↓x = f = eval(f̂).

For the inductive case, �rst assume that x ∈ V . If x only has a single outgoing edge e,
then g↓x = g↓e and, since the inductive case for edges is handled below, we are done.

Assume that x has outgoing edges {e1, . . . , e`}. Then g↓x must be the result of a clone
operator f applied to two smaller graphs h and h′, which by the induction hypothesis can
be uniquely represented (modulo ∼) as concatenation terms t and t′, respectively. It follows
that g↓x can uniquely represented as f̂ [t, t′], as f̂ [t, t′] ∼ f̂ [t′, t].

Next, assume that x ∈ E. Let tar(x) = v1 · · · vk and let vi1 · · · vi` be the non-leaf
subsequence of tar(x). For each j ∈ [`], by inductive assumption, the subgraph g↓vij is
represented by a term tij such that eval(tij) = g↓vij , so g↓x is represented by a term

f̂ [tij , . . . , til], for some suitable basic concatenation operator f ∈ concatΣ.

Every ranked alphabet suggests a corresponding set of top concatenation operators.

De�nition 4.6 (Top concatenation). Let Γ be a ranked alphabet. We denote by TOPΓ

the Γ-indexed family of top-concatenations (cγ)γ∈Γ, where for every γ ∈ Γ, cγ is the top-

concatenation with respect to γ.
We extend the notion of top-concatenation to the domain TconcatΣ/∼ by letting

cf̂ ([t1]∼, . . . , [trk(f)]∼) 7→ [f̂ [t1, . . . , trk(f)]]∼ ,

for every f̂ ∈ concat′Σ and t1, . . . , trk(f) ∈ TconcatΣ. The function is well-de�ned, because for

every f̂ ∈ concat′Σ, top concatenation with respect to f̂ is a congruence with respect to ∼.

From Lemma 4.5 it follows that eval : AΣ → TconcatΣ/∼ is a bijection, and this gives us
Theorem 4.7.

Theorem 4.7. The algebras (concatΣ,AΣ) and (TOPconcat′Σ
, TconcatΣ/∼) are isomorphic.

Theorem 4.7 suggests an alternative de�nition of ODPG semantics.

De�nition 4.8. Every WOPDG G over the alphabet Σ is a weighted tree grammar (wtg)

over the typed ranked alphabet concat′Σ. We denote by St(G) the tree series generated by G
when viewed as a wtg.

De�nition 4.9 (Inital algebra semantics). Let G = (Σ, N, P, S, w) be a WOPDG. The

initial algebra semantics of G is the tree series S ′(G) = {(eval(t),St(G)(t)) | t ∈ St(G)}.

Observation 4.10. For every WOPDG G, S(G) = S ′(G).

A WOPDG is thus essentially a weighted tree grammar together with an evaluation
function. This connection to tree series allows us to transfer a host of results.

5. Minimisation

In this section, we consider the minimisation problem for deterministic WOPDGs. We
start by showing that if a grammar is bottom-up deterministic, then each graph in its
support has a unique derivation tree. This is immediately implied by the following lemma.

8

Lemma 5.1. Let G = (Σ, N, P, S, w) be a WOPDG. Then G is bottom-up deterministic

if and only if the following property holds. For every graph g = (V,E, att, lab, ext) in

support(G) and every x ∈ V ∪ E that is not a leaf node, there is a unique nonterminal

A ∈ N such that A• →∗G g↓x.

Proof. The `if' direction is immediate: if there were two distinct nonterminals that appeared
as left-hand sides of rules with isomorphic right-hand sides, then there would be some graph
that could be derived from both of them.

The `only if' direction is proved by induction on, primarily, the height of g↓x, and
secondarily, the outdegree of the root of g↓x. Since x is not a leaf, the base case is that x
is an edge and the height of g↓x is 1. Thus g↓x is a single edge, together with its incident
nodes. This means that for G to generate g, the subgraph g↓x must be generated by a rule
A → f , where f is isomorphic to g↓x, for some A ∈ N . Since there cannot be two distinct
nonterminals that generate graphs isomorphic to g↓x and our grammars have no unit rules,
A is the unique nonterminal such that A• →∗G g↓x.

For the inductive case, �rst assume that x ∈ V . If x has only a single outgoing edge e,
then g↓x = g↓e and, as the inductive case for edges are handled in the next paragraph, we
are done. If, on the other hand, x has several outgoing edges e1, . . . , e`, then we reason as
follows. The only way for a node in a graph generated by an OPDG to have outdegree larger
than one is if at some point in the derivation process, x was the source of a single nonterminal
edge that was subsequently cloned. This means that there must be some nonterminal A
such that each graph g↓e1 , . . . , g↓e` can be generated by A and there is a clone rule in P for
A. Furthermore, by inductive assumption, A is the unique nonterminal with this property.
Thus A is also the unique nonterminal from which g↓x can be derived.

Assume, �nally, that x is an edge. Let v1, . . . , v` be the non-leaf targets of x. By
inductive assumption, for each i ∈ [`], there is a unique nonterminal Ai that can generate
g↓vi. Then g↓x must have been generated starting with the application of a rule A → f ,
where f is isomorphic to the graph obtained from g↓x by replacing each graph g↓vi by a
single edge labeled Ai, attached to the sequence of leaf nodes of g↓x that are external for
g↓vi. Since no distinct nonterminals can appear in rules with isomorphic right-hand sides,
A must be the unique such nonterminal.

Another way of stating Lemma 5.1 is the following. For each A ∈ N , let GA be the
grammar obtained from G by replacing S with A as starting symbol. Then G is bottom-up
deterministic if and only if, for each pair A1 and A2 of nonterminals from N , support(GA1)∩
support(GA2) 6= ∅ implies A1 = A2. In other words, the concept of bottom-up determinism
coincides with the notion of unambiguity for OPDGs, as de�ned in [4]. Thus we can restate
one of the results from that article:

Theorem 5.2 (cnf. [4]). If S is a series generated by some deterministic WOPDG over a

commutative semi�eld, then there is a unique (up to isomorphism) minimal deterministic

WOPDG GL such that S(GL) = S.

Theorem 5.2 ensures that the minimisation problem for deterministic WOPDGs always
has a unique solution, modulo nonterminal names. The problem is stated as follows:

De�nition 5.3 (Minimization problem). Given a deterministic WOPDG G, �nd the unique
minimal deterministic WOPDG for S(G).

Rather than formulating a minimisation algorithm that solves Problem 5.3 directly, we
show that the problem can be reduced to �nding the unique minimal weighted deterministic
regular tree grammar for St(G). For this purpose, we note that the forward or backward
application of eval does not a�ect the nonterminal to which a tree or DAG is mapped:

9

Lemma 5.4. Let G be a deterministic WOPDG. For every non-terminal A in G and every

t ∈ Tconcat′Σ
, St(GA)(t) = S(GA)(eval(t)).

In preparation for the proof of Lemma 5.6, we lift the notion of contexts from the tree
domain to the graph domain. Intuitively, a context is a graph with a single, appropriately
placed placeholder edge.

De�nition 5.5 (Graph context). A graph context over Σ is the evaluation of a tree in

TconcatΣ(X) with a single occurrence of a symbol xk from X.

This yields a graph context c of some type (m, k) with a single placeholder edge e of rank
k. We can substitute a graph f ∈ AΣ of appropriate type (k, ε) into c in the standard way,

yielding the graph g = c[[e : f]] of type (m, ε). We also write this operation as c[[f]].
It is straightforward to show that taking a graph g ∈ AΣ and replacing g↓x for some

x ∈ Vg ∪ Eg with a placeholder edge of rank |g↓x | yields a graph context in this sense.

Lemma 5.6. Let G be a deterministic WOPDG over a commutative semi�eld, and H the

minimal deterministic weighted tree grammar for St(G). Then H is the minimal determin-

istic WOPDG for S(G).

Sketch. The nonterminals A and B in G are distinguishable w.r.t. S(G) if there is a graph
context c and graphs g ∈ support(S(GA)) and h ∈ support(S(GB)) such that

S(G)(c[[g]]) · S(GA)(g)−1 6= S(G)(c[[h]]) · S(GB)(h)−1 .

Similarly, the pair of nonterminals is distinguishable w.r.t. St(G) if there is a tree context c
and trees t ∈ support(St(GA)) and s ∈ support(St(GB)) such that

St(G)(c[[t]]) · St(GA)(t)−1 6= St(G)(c[[s]]) · St(GB)(s)−1 .

We �rst ensure that H is a WOPDG. Since H is minimal for St(G), and both H and G
are deterministic, the nonterminals of H can be obtained by merging every set of mutually
indistinguishable nonterminals w.r.t. St(G) into a single nonterminal [16]. This means in
particular that every clone rule in H can be written in the form P → f [P, P], where
P is an equivalence class of mutually indistinguishable nonterminals. Moreover, to see
that the merge respects ∼, we argue as follows: From Theorem 4.7 we have that t ∼ s
implies eval(t) = eval(s), and by Lemma 5.4 that there is a nonterminal A such that
t, s ∈ support(St(GA)), so there is a nonterminal B ∈ H (that is the result of merging A
the with indistinguishable nonterminals) such that t, s ∈ support(St(HB)). It follows that
H is a valid WOPDG, and that ∼ is a congruence with respect to H.

It is then straight-forward to show that for every WOPDG G and nonterminals A and
B in G, A and B are distinguishable w.r.t. S(G) if and only if they are distinguishable
w.r.t. St(G), so H is minimal also for S(G). A witness context for the distinguishability of
a pair of nonterminals in one domain, can be translated to a witness context in the other,
by extending eval and eval−1 to tree and graph contexts in the expected way.

Lemma 5.6 means that the minimisation result established in [7] and [16] are directly
transferable to our setting. In the statement of these results, we assume a deterministic
input WOPDG G over di�erent types of semirings and let r denote the maximal number of
non-terminals in the right-hand side of any production of G, m denote the size of the input
grammar G, and n denote the number of nonterminals in G. A WOPDG is all-accepting if
assigns a non-zero value to every graph in its domain.

Theorem 5.7 (cnf. Theorem 4.12 of [7]). The minimisation problem for all-accepting de-

terministic WOPDGs over commutative �elds is solvable in O(rm log n).

Theorem 5.8 (cnf. [16]). The minimisation problem for deterministic WOPDGs over com-

mutative semi�elds is solvable in O(rmn).

10

6. MAT Learning

The relation between WODS and tree series established in Section 4 also makes results
on grammatical inference for tree languages transferable to our DAG domain. Here, we
focus on the Minimal Adequate Teacher (MAT) model due to Angluin [1]. The MAT model
supposes two entities � a learner and a teacher. The teacher already knows the target series
S, and it is the objective of the learner to infer S. The learner gathers information about
S by querying the teacher: In a coe�cient query, the learner gives the teacher a graph g,
and the teacher answers with the weight S(g). In an equivalence query, the learner gives the
teacher a WOPDG G. If G represents S correctly, then the teacher con�rms the successful
inference and the learning ends. If not, the teacher returns a counterexample � a graph g
that is assigned an erroneous weight by G, i.e., that is such that S(G)(g) and S(g) di�er.

De�nition 6.1 (MAT learning). A MAT teacher for a WODS S over a semiring C is an

oracle capable of answering two types of queries:

• Coe�cient queries: Given g ∈ AΣ, what is S(g)?

• Equivalence queries: Given a WOPDG G, is S(G) = S? If yes, the teacher con�rms

the successful inference of S, if no, the teacher returns a counterexample, that is, a

graph g ∈ AΣ such that S(G)(g) 6= S(g).

A class of graph series is MAT learnable if every series in the class can be inferred within
the MAT model. In general, this is true for classes for which there is a Myhill-Nerode
theorem, such as recognisable string and tree series [9]. As we shall see, WODLs and
WODSs over commutative semi�elds also meet this description. Rather than providing an
explicit MAT-learning algorithm for the latter class, we show that the problem of inferring
a target WODS S over the commutative semi�eld C can be reduced to that of inferring a
regular tree series St over C, and that St is easily derivable from S.

De�nition 6.2 (The series St). Let S : AΣ → C be a WODS. The regular tree series

St : Tconcat′Σ
→ C is given by

St(t) =

{
S(g) if t ∈ eval−1(g) for some g ∈ support(S) , and
0 otherwise.

In preparation for Theorem 6.3, we recall the MAT learner for tree series over commu-
tative semi�elds given in [15] (there formulated for weighted tree automata, see also [13]).
In the inference of a series S, the learner gathers two sets of trees, S and T . Both are
subtree-closed in the sense that if they contain a tree t, then they also contain every subtree
of t. Additionally, every direct subtree of a tree in T is contained in S. The purpose of S
is to collect representatives of the syntactic congruence classes with respect to S, which are
in a one-to-one correspondence with the nonterminals of the minimal wtg Gt that generates
St. To avoid confusion, we write 〈t〉 to express that a tree t is viewed as a nonterminal.

The learner also maintains an auxiliary set of contexts E that witness (i) that every tree
in S is a subtree of some tree in support(St), and (ii) that the trees in S are syntactically
distinct. The purpose of T is to represent production rules of the hypothesis grammar,
and a tree f [t1, . . . , tk] ∈ T encodes the production rule 〈rep(t)〉 → f(〈t1〉, . . . , 〈tk〉), where
rep(t) is the unique tree in S such that rep(t) and f [t1, . . . , tk] are indistinguishable with
respect to the contexts in E (if no such tree exists, then f [t1, . . . , tk] is added to S).

From S and T , the learner synthesises a weighted tree grammar H that is passed to the
teacher through an equivalence query. The wtg has the property that every tree t ∈ T is

11

in support(St)(H〈rep(t)〉), where H〈rep(t)〉 is the grammar obtained from H by replacing the
initial nonterminal by 〈rep(t)〉.

The learner collects the elements of S and T by processing the teacher's counterexamples
through contradiction-backtracking [17]. This essentially consists in step-wise simulation of
the parsing of a counterexample t with respect to the current hypothesis wtg H. The learner
repeatedly selects a subtree of t on the form f [t1, . . . , tk] for some t1, . . . , tk ∈ S. If this
subtree is not in T , then it is added to T , and the learner has found a new production rule.
If it is in T , it is replaced in t by rep(f [t1, . . . , tk]). The learner then uses a coe�cient query
to verify that the counterexample is still a counterexample. If it is not, then the learner has
discovered that f [t1, . . . , tk] and rep(f [t1, . . . , tk]) belong to di�erent syntactic congruence
classes, i.e., the learner has found a new nonterminal. Since the learner disagrees with
the teacher about t, it is guaranteed to �nd at least one new transition or nonterminal by
backtracking, and this guarantees that the overall inference process eventually terminates.

Theorem 6.3. WODSs over commutative semi�elds are MAT learnable in polynomial time.

Proof. We show that the problem of inferring a target WODS S can be reduced to that
of inferring the tree series St de�ned above, and then applying the existing MAT-learning
algorithm for trees series over semi�elds given in [15]. We henceforth refer to this algorithm
as the learner. With this approach, the problem becomes one of �nding a way to simulate
a MAT teacher for St using the available MAT teacher for S .

For coe�cient questions, the simulation is easy. When the learner wants to ask a co-
e�cient question for the tree t ∈ Tconcat′Σ

, we �rst check if it is type matched. If not, we
answer the learner that it has weight 0. If it is type matched, then eval(t) is well-de�ned,
so we ask the teacher a coe�cient question for eval(t), and as the answer holds equally for
every s ∈ eval−1(eval(t)), it holds in particular for t.

To simulate equivalence queries, we must ensure that the hypothesis grammar H main-
tained by the learner is not only a well-formed weighted tree grammar, but also a well-formed
WOPDG. This requires us to argue that the following invariants hold:

• First, we require the trees produced be type-matched, and that for each rule A→ f ,
that rank(A) = otp(rep(f)) = otp(f)

• Second, all clone rules in H are on the form A→ f [A,A] for some nonterminal A and
clone f of appropriate type.

We deal with these in order:

• Note that for every tree s ∈ S, the learning algorithm in [15] is guaranteed to have
collected at least one context c ∈ E, such that eval(c[[s]]) ∈ support(S), meaning s is
type-matched. Moreover, each tree t ∈ T can be freely substituted for its representa-
tive rep(t) ∈ S in all of the contexts c ∈ C, so by the same reasoning, all trees in T
are type-matched. That is, for each tree f [s1, . . . , s`] ∈ T with si ∈ S for all i ∈ [`],
otp(si) = atp(f)i. Finally, by the substitution of t for s in c, otp(t) = otp(s).

• As described in [15], the learner is reactive in its collection of trees that represent
productions, and will therefore only include clone rules in H if it has come across
such in the contradiction-backtracking on some tree t on the form c[[f [s, s′]]] that
is in support(S) but not in support(S(H)). When this happens, the learner uses
contradiction backtracking and incrementally replaces larger and larger subtrees of s
and s′ by trees that is in its set of nonterminal representatives S, but if it any points
produces a tree c′[[[f [r, r′]]] such that exactly one of r or r′ is not in the same syntactic

12

congruence class as s and s′, then c′[[[f [r, r′]]] will fall outside of support(S), and the
algorithm will learn that r and r′ are not syntactically equivalent.

Hence, by the time the learner has replaced s and s′ with trees in S, it has to be the
same tree, because it has only one representative per syntactic class, so the example
will be on the form c′′[[[f [r, r]]]] for some r ∈ S. Since f [r, r] will then be in the set of
representatives for production rules T , since it is in the same syntactic class as r, and
since the grammar H produced by the learner is guaranteed to map every tree in T
to the correct nonterminal in S, f [r, r] will be taken to r, and thus represents a valid
clone rule.

We can thus pass H to the teacher through equivalence queries, and if we are given in
return a counterexample g, then any tree in eval−1(g) is a counterexample for the learner,
because H maps each tree in eval−1(g) to the same nonterminal.

7. Logical characterisation

Our aim in this section is to prove that OPDL is a set of MSO de�nable graph languages.
Thus, given an OPDG G = (Σ, N, P, S), our goal is to construct an MSO formula ϕG such
that for every graph g,

g ∈ L(G)⇔ g |= ϕG.

Let r be the maximal rank of any edge appearing in G. The vocabulary we use for ϕG
has the following predicate symbols:

Node Node(v) is true if v is a node.

Edge Edge(e) is true if e is an edge.

Src Src(e, v) is true if e is an edge and v is the source node of e.

Tari For every i ∈ [r], Tari(e, i) is true if e is an edge and v is the ith target node of e.

Laba For every a ∈ Σ ∪N , laba(e) is true if e is an edge and a is the label of e.

Ext Ext(v) is true if v is a node and v is external.

We can now de�ne the following useful formulas:

Tar(e, v) =
∨
i∈[r]

Tari(e, v)

Root(v) = Node(v) ∧ ¬∃e(Tar(e, v))

Leaf(v) = Node(v) ∧ ¬∃e(Src(e, v))

Indegree(v) = 1 = ∃e(Tar(e, v) ∧ (∀x(Tar(x, v)→ x = e)))

Outdegree(v) = 1 = ∃e(Src(e, v) ∧ (∀x(Src(x, v)→ x = e)))

We leave the somewhat tedious construction of a formula that ensures that the input
structure correctly encodes a well-ordered DAG for the Appendix, where the formula WDAG
is de�ned.

For every rule ρ = A → f ∈ P that is not a clone rule, we want to de�ne a formula
Pρ(e, x0, x1, . . . , xk) that is true for a subgraph g↓e if the following conditions are met:

1. x0 is the unique root of g↓e and e the unique edge in g↓e connected to x0.

13

2. The external nodes of g↓e are x0x1 · · ·xk

3. g↓e can be derived from A in G, starting with an application of ρ.

We next describe how to construct such formulas. In the construction, we use the formula
Reenti(x, v), that is true if and only if v is the ith reentrant node of edge x (the formula is
de�ned in the Appendix). Further, let PA be the subset of P having A as its left-hand side,
for all A ∈ N .

Given ρ = A→ f , we assume without loss of generality that

• v0 is the unique root of f and f0 is the unique edge connected to v0.

• labf (f0) = a

• f1, . . . , f` is the ordered sequence of nonterminal edges in f .

We arbitrarily number the non-root nodes in f and call them v1, . . . , vn. We start the
formula Pρ(e, x0, x1, . . . , xk) by existentially quantifying over n+ 1 variables y0, y1, . . . , yn,
corresponding to v0, v1, . . . , vn. Then we simply describe the structure of f with a conjunc-
tion of the following kinds of formulas:

• Src(e, y0) ∧ Labf (e)

• If vi is the jth target of f0, then Tarj(e, yi).

• If vi is the jth node in extf , then yi = xj .

• If vi is the source of f ′ 6= f0, and vt is the jth target of f ′, then Reentj(vi, vt).

The last item is motivated by the fact that in g, the nonterminal edges have been replaced
by graphs, whose reentrancies are exactly the targets of the nonterminal edges.

We also need to add the recursive requirement that the graphs that have replaced the
nonterminals of f could have been derived from them. To this end, let vi be the source of
fj . We then need to state that for any edge d that has vi as its source in g, the subgraph g↓d
could have been produced from fj , or, more succinctly, that g↓d ∈ L(GA) for A = lab(fj).

Let fj have rank s and let tarf (fj) = vi1 · · · vis . We then require that for any such
edge d, the formula Pρ′(d, yi, yi1 , . . . , yis) should hold, for some rule ρ′ ∈ PA. Furthermore,
if labf (fj) is not clonable, we require that yi has outdegree 1 in g.

Note that the recursion involved in the rules will, for graphs generated by G, always
terminate with rules where the right-hand side has no nonterminals.

Now that we have the formulas Pρ, for all ρ ∈ P , we are ready to de�ne the formula
LG that states that the input structure is a graph in the language of G. Let i be the rank
of the start nonterminal S. We want to state that the input is a DAG and that it can be
produced from S. In order to do so, we need to identify the root. Depending on whether or
not S is clonable, we get a di�erent variant of the formula. In the non-clonable case, we get

LG = WDAG ∧ ∀v(Root(v)→

(Outdegree(v) = 1 ∧ ∃e, u1, . . . , ui(Src(e, v) ∧
∨
ρ∈PS

Pρ(e, v, u1, . . . , ui)))).

In the case where S is clonable, the formula instead looks as follows.

LG = WDAG ∧ ∀v(Root(v)→ (∃u1, . . . , ui(∀e(src(e, v)→
∨
ρ∈PS

Pρ(e, v, u1, . . . , ui))))).

14

The formula LG is closed, and will be true for exactly those input structures that rep-
resent DAGs generated by G. We note that we have used no second-order quanti�cation in
the above, but it is needed in the de�nitions of WDAG and the formulas Reenti, stated in
the Appendix.

15

References

[1] D. Angluin. Learning regular sets from queries and counterexamples. Information and

Computation, 75:87�106, 1987.

[2] L. Banarescu, C. Bonial, S. Cai, M. Georgescu, K. Gri�tt, U. Hermjakob, K. Knight,
P. Koehn, M. Palmer, and N. Schneider. Abstract meaning representation for sembank-
ing. In 7th Linguistic Annotation Workshop & Interoperability with Discourse, So�a,

Bulgaria, 2013.

[3] Martin Berglund, Henrik Björklund, and Frank Drewes. Single-rooted DAGs in regular
DAG languages: Parikh image and path languages. In Proceedings of the 13th Inter-

national Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+13),
pages 94�101, 2017.

[4] H. Björklund, B. Björklund, and P. Ericson. On the regularity and learnability of
ordered DAG languages. In Arnaus Carayol and Cyril Nicaud, editors, 22nd Interna-

tional Conference on the Implementation and Application of Automata (CIAA 2017),

Marne-la-Vallée, France, volume 10329 of Lecture Notes in Computer Science, pages
27�39. Springer International Publishing, 2017.

[5] H. Björklund, F. Drewes, and P. Ericson. Between a rock and a hard place � uniform
parsing for hyperedge replacement DAG grammars. In 10th International Conference

on Language and Automata Theory and Applications (LATA 2016), Prague, Czech

Republic, 2016, pages 521�532, 2016.

[6] Henrik Björklund, Frank Drewes, Petter Ericson, and Florian Starke. Uniform parsing
for hyperedge replacement grammars. Technical Report UMINF 18.13, Umeå Univer-
sity, http://www8.cs.umu.se/research/uminf/index.cgi, 2018. Submitted for publica-
tion.

[7] Johanna Björklund, Andreas Maletti, and Jonathan May. Bisimulation minimisation
for weighted tree automata. In Proceedings of the 11th International Conference on De-

velopments in Language Theory (DLT 2007), Turku, Finnland, volume 4588 of Lecture
Notes in Computer Science, Berlin, Heidelberg, 2007. Springer Verlag.

[8] Johannes Blum and Frank Drewes. Properties of regular DAG languages. In Adrian-
Horia Dediu, Jan Janousek, Carlos Martín-Vide, and Bianca Truthe, editors, LATA,
volume 9618 of Lecture Notes in Computer Science, pages 427�438. Springer, 2016.

[9] Björn Borchardt. The Myhill-Nerode theorem for recognizable tree series. In Zoltán
Ésik and Zoltán Fülöp, editors, Developments in Language Theory, pages 146�158,
Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[10] D. Chiang, J. Andreas, D. Bauer, K. M. Hermann, B. Jones, and K. Knight. Parsing
graphs with hyperedge replacement grammars. In 51st Annual Meeting of the Associa-

tion for Computational Linguistics (ACL 2013), So�a, Bulgaria, pages 924�932, 2013.

[11] David Chiang, Frank Drewes, Daniel Gildea, Adam Lopez, and Giorgio Satta. Weighted
DAG automata for semantic graphs. Computational Linguistics, 44(1):119�186, 2018.

[12] F. Drewes, H.-J. Kreowski, and A. Habel. Hyperedge replacement graph grammars. In
G. Rozenberg, editor, Handbook of Graph Grammars, volume 1, pages 95�162. World
Scienti�c, 1997.

16

[13] Frank Drewes and Heiko Vogler. Learning deterministically recognizable tree series.
Journal of Automata, Languages and Combinatorics, 12(3):332�354, 2007.

[14] S. Gilroy, A. Lopez, S. Maneth, and P. Simonaitis. (Re)introducing regular graph
languages. In Proceedings of the 15th Meeting on the Mathematics of Language (MOL

2017), pages 100�113, 2017.

[15] Andreas Maletti. Learning deterministically recognizable tree series � revisited. In
Symeon Bozapalidis and George Rahonis, editors, Algebraic Informatics, pages 218�
235, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[16] Andreas Maletti. Minimizing deterministic weighted tree automata. Information and

Computation, 207(11):1284�1299, 2009.

[17] Ehud Y. Shapiro. Algorithmic Program DeBugging. MIT Press, Cambridge, MA, USA,
1983.

17

Appendix

In this section, we de�ne the formulas Reenti(e, v) and Reent(e,X), as well as the formula
WDAG, stating that the input structure is a well-ordered DAG.

Basic graph properties

We de�ne formulas stating that there is a single root (and thus that the graph is con-
nected and fully reachable from said root), that each element of the universe is either an
edge or a node, and that each edge has a unique label, a unique source, and the correct
number of targets.

Single-Rooted = ∃r(Root(r) ∧ ∀u(Root(u)→ (u = r)))

Partition = ∀x(Edge(x)↔ ¬Node(x))

UniqueLabels = ∀x(Edge(x)→ (
∨
a∈Σ

(Laba(x)
∧

b∈Σ\{a}

¬Labb(x))) ∧

(¬Edge(x)→
∧
a∈Σ

¬Laba(x)))

UniqueSources = ∀e(Edge(e)→ ∃v(Src(e, v) ∧ ∀u(Src(e, u)→ (u = v)))) ∧
Targets = ∀e(Edge(e)→

∨
a∈Σ

(Laba(e) ∧∧
i∈[rank(a)]

(∃v(Tari(e, v) ∧ ∀u(Tari(e, u)→ (u = v))))) ∧

∧
j∈[r]\[rank(a)]

(¬∃v(Tarj(e, v))))

We also de�ne a formula Externals that makes sure that the root is external, the rest of
the external nodes are leafs, and, by enumeration, that they are as many as the rank of the
start nonterminal. With this in hand, we de�ne the formula Graph, that simply ensures all
of the above properties:

Graph = Single-Rooted ∧ Partition ∧UniqueLabels ∧UniqueSources ∧ Targets ∧ Externals

Reachability and reentrancies

In order to be able to speak about reachability, we de�ne the notion of a set being closed
under the Src and Tar relations:

Closed(S) = ∀x∀y(x ∈ S ∧ (Src(y, x) ∨ Tar(x, y))→ y ∈ S)

In other words, if x ∈ S, then any edge or node reachable from x also belongs to S.
Towards the de�nitions of reentrancies and ordering we now de�ne directed reachability.

ReachableSet(x, Y) = ∀S((Closed(S) ∧ x ∈ S)→ ∀y(y ∈ Y → y ∈ S))

The above formula makes sure that Y is the smallest closed set that contains x, or, in other
words, that Y is the set of nodes and edges reachable from x. For convenience, we also
de�ne reachability between individual nodes and edges:

Reachable(x, y) = ∃Y (ReachableSet(x, Y) ∧ y ∈ Y)

18

We are now ready to de�ne the set of reentrant nodes with respect to a node or edge:

Reent(x,X) = ∀y(y ∈ X ↔ (Reachable(x, y) ∧ Leaf(y)∧
(Ext(y) ∨ ∃z(¬Reachable(x, z) ∧ ¬Reachable(z, x) ∧ Reachable(z, y)))))

The formula says that for y to be reentrant with respect to x, it has to be a leaf reachable
from x and either be external or also reachable from some z such that z is not reachable
from x and x is not reachable from z. This is also a su�cient condition.

We require that all edges have the same set of reentrant nodes as their sources. This
neatly covers the requirement that edges sharing the same source have the same set of
reentrant nodes.

ReentClones = ∀e, v(Src(e, v)→
∀x,X, Y (Reent(e,X) ∧ Reent(v, Y)→ (x ∈ X ↔ x ∈ Y)))

Ordering

We can de�ne the notion of closest common ancestor edges, as follows:

CommonAncestor(x, u, v) = Reachable(x, u) ∧ Reachable(x, v)

CCAE(e, u, v) = Edge(e) ∧ CommonAncestor(e, u, v)∧
¬∃w(Tar(e, w) ∧ CommonAncestor(w, u, v))

To de�ne the ordering of leaves, we have the following.

Before(u, v) = Leaf(u) ∧ Leaf(v) ∧ ((u = v) ∨ ∀e(CCAE(e, u, v)

→ ∃x∀y(Reachable(x, u) ∧ Reachable(y, v) ∧ Tari(e, x) ∧ Tarj(e, y)→ i < j)))

This is a shorthand, as we cannot directly compare i and j. However, as the alphabet
has bounded rank, the above can be achieved by a disjunction over all relevant pairs of
values for i and j.

Now, to make sure we have a consistent ordering, we use the following formula.

ConsistentOrdering = ∀e, u, v((CCAE(e, u, v) ∧ u 6= v)→ (Before(u, v)↔ ¬Before(v, u)))

Finally, we need to make sure that the graph is really a DAG:

DAG = ∀x, y(Reachable(x, y) ∧ Reachable(y, x)→ x = y)

In conclusion, our precondition amounts to

WDAG = Graph ∧ ReentClones ∧ ConsistentOrdering ∧DAG
Given a consistent ordering, we can �nd the ordering of the reentrant nodes, and in

particular if a speci�c leaf v is the ith member of the sequence of reentrant leaves of some
edge or node x.

Reent(x, y) = ∀X(Reent(x,X)→ y ∈ X)

Reenti(x, v) = Reent(x, v) ∧ ∃u1, . . . ui(
∧
j

Reent(x, uj) ∧
∧
j

Before(uj , v)∧

∧
j 6=k

(uj 6= uk) ∧ ∀y(Reent(x, y) ∧ Before(y, x)→
∨
j

(y = uj)))

The last formula simply enumerates i nodes that are reentrant for x, the last of which is v.
This concludes the de�nition of the formulas used in Section 7.

19

IV

Uniform Parsing for Hyperedge Replacement Grammars

Henrik Björklunda, Frank Drewesa, Petter Ericsona, Florian Starkeb

aDeptartment of Computing Science, Ume̊a University, Sweden
bFaculty of Computer Science, TU Dresden, Germany

Abstract

It is well known that hyperedge-replacement grammars can generate NP-complete graph
languages even under seemingly harsh restrictions. This means that the parsing problem
is difficult even in the non-uniform setting, in which the grammar is considered to be
fixed rather than being part of the input. Little is known about restrictions under which
truly uniform polynomial parsing is possible. In this paper we propose a low-degree
polynomial-time algorithm that solves the uniform parsing problem for a restricted type
of hyperedge-replacement grammars which we expect to be of interest for practical
applications.

1. Introduction

Hyperedge-replacement grammars (HR grammars, for short) are context-free graph
grammars that were introduced in (Bauderon and Courcelle, 1987; Habel and Kreowski,
1987), see also Habel (1992); Drewes et al. (1997). They represent one of the two
most successful formal models for the description of graph languages (the other be-
ing confluent node-replacement grammars), because of their favorable algorithmic and
language-theoretic properties which closely resemble those of context-free string grammars.
Unfortunately, the similarities between the string and graph cases fail to extend to one
of the most important computational problems in the context of formal languages: the
parsing problem. It has been known for a long time that even the non-uniform membership
problem for context-free graph languages is intractable (unless P 6= NP). In particular,
there are hyperedge replacement graph languages which are NP-complete (Aalbersberg
et al., 1986; Lange and Welzl, 1987). Severe restrictions must be placed on the grammars
in order to make at least non-uniform polynomial parsing possible. Early results in this
regard can be found in (Lautemann, 1990; Vogler, 1991; Drewes, 1993b). In (Lautemann,
1990) the degree of the polynomial that bounds the running time varies with the lan-
guage. The algorithm in (Vogler, 1991), which considers only edge replacement, and its
generalization to hyperedge replacement by Drewes (1993b) are cubic in the size of the
input graph, but depend exponentially on the grammar if considered in a uniform setting.
Moreover, the restrictions Vogler (1991) and Drewes (1993b) placed on the considered

Email addresses: henrikb@cs.umu.se (Henrik Björklund), drewes@cs.umu.se (Frank Drewes),
pettter@cs.umu.se (Petter Ericson), Florian.Starke@tu-dresden.de (Florian Starke)

Preprint submitted to Elsevier April 24, 2018

graph languages are very strong, and it was shown in Drewes (1993a) that even a slight
relaxation results in NP-completeness again. For these reasons, these parsing algorithms
are mainly of theoretical interest.

In recent years the question of efficiently parsing hyperedge replacement languages
received renewed interest, because hyperedge replacement was proposed as a suitable
mechanism for describing sentence semantics in natural language processing, and in
particular the abstract meaning representation proposed in Banarescu et al. (2013).
Regarding the use of hyperedge replacement in this application area, see Chiang et al.
(2013). The same paper described a general recognition algorithm together with a detailed
complexity analysis. Unsurprisingly, the running time of the algorithm is exponential
even in the non-uniform case, one of the exponents being the maximum degree of nodes
in the input graph. The same is true for the recent algorithm by Gilroy et al. (2017)
which implements parsing for so-called regular tree grammars.

Unfortunately, the node degree is one of the parameters one would ideally not wish to
limit, since meaning representations do not have bounded node degree. Moreover, natural
language processing often has to deal with algorithmic learning situations in which large
corpora must be parsed and grammars adjusted in an iterative process. Thus, truly
uniform polynomial-time solutions would be valuable, provided that the polynomials have
a reasonably low degree and the restrictions on the grammars are “natural”.

Parsing a graph G with respect to a given HR grammar G means to check whether
there is a derivation tree in G that yields G. Thus, the task is to decompose G recursively
into subgraphs that can be generated from the nonterminals of G. Intuitively, the NP-
completeness of the problem comes from the fact that a graph has exponentially many
subgraphs. This is the main difference between graph and string parsing. In the latter
case, the well-known dynamic programming approach by Cocke, Kasami, and Younger is
efficient because a string has only quadratically many substrings. One way to achieve
polynomial parsing in the graph case as well is to make sure that only polynomially many
decompositions are possible candidates for well-formed derivation trees. In this paper we
achieve this by imposing restrictions on G which guarantee that the overall shape of a
suitable decomposition of G can be “read off” G itself. Intuitively, what remains is to
check whether appropriate rules of G can be assigned to the vertices of this decomposition
in order to turn it into a derivation tree.

An attempt at a set of restrictions serving this purpose was made in (Björklund et al.,
2016). Motivated by the fact that meaning representations such as those by Banarescu
et al. (2013) are typically acyclic, HR grammars were considered that generate directed
acyclic graphs. However, as acyclicity alone does not make parsing any easier additional
conditions were placed on the form of the rules. In the present paper, we generalize
the approach: the generated graphs may have cycles, the allowed rules are considerably
more general, and the restrictions are fewer and formulated in an axiomatic way which
allows for different concretizations. We impose two conditions on our grammars, called
reentrancy preservation and order preservation. The latter is relative to an ordering of
the nodes of input graphs that can be instantiated in different ways.

Let us describe the idea behind these restrictions. When working with hyperedge
replacement, a nonterminal hyperedge is a placeholder attached to a sequence of of nodes.
This placeholder will eventually be replaced by a subgraph that shares the attached nodes
of the hyperedge (and only those) with the rest of the generated graph. One difficulty
parsing has to face is that, after the replacement of a hyperedge, it may not be visible in

2

the resulting graph which nodes the replaced hyperedge had been attached to. Reentrancy
preservation is a condition which makes it possible to recover this set of nodes from the
structure of the generated graph.

One difficulty remains: even if the attached nodes of a nonterminal hyperedge can
uniquely be recovered, it may still be unclear in which order they had been attached to
the hyperedge. This is what is avoided by the condition of order preservation. It ensures,
for example, that a rule cannot replace a nonterminal hyperedge by another nonterminal
hyperedge attached to the same nodes but in a different order.

Thanks to the two restrictions, we obtain a uniform parsing algorithm which is roughly
quadratic in both the size of the grammar and that of the input graph.1

As a final note on related work, we mention here that another recent approach to
efficient parsing for HR grammars was presented in (Drewes et al., 2015, 2017), where
predictive top-down and bottom-up parsers are proposed, generalizing techniques from
compiler construction to the graph case. The approach thus differs from ours in that it
yields a parser generator which, with only the grammar as input, constructs a quadratic
parser for the specific language generated by that grammar. Provided that the grammar
analysis can be performed in polynomial time (which depends on the exact variant of the
parser generator used), this approach is thus uniformly polynomial as well.

The next section compiles the basic notions relevant to hyperedge replacement gram-
mars. Section 3 and 4 define and study reentrancy and order preservation, respectively.
The parsing algorithm is presented in Section 5. Section 6 presents one possible con-
cretization of our abstract notion of preserved orders, and Section 7 concludes the paper.

2. Preliminaries

The set of non-negative integers is denoted by N. For n ∈ N, [n] denotes {1, . . . , n}.
Given a set S, S∗ denotes the set of all finite sequences over S, and S~ denotes the set of
non-repeating sequences in S∗, i.e. those sequences in which no element of S occurs twice.
The empty sequence is denoted by ε, S+ = S∗ \ {ε}, and S⊕ = S~ \ {ε}. The length of a
sequence w ∈ S∗ is denoted by |w|, and [w] denotes the smallest subset A of S such that
w ∈ A∗. The canonical extensions of a mapping f : S → T to S∗ and to the powerset
of S are denoted by f as well, i.e., f(a1 · · · ak) = f(a1) · · · f(ak) for a1, . . . , ak ∈ S, and
f(S′) = {f(a) | a ∈ S′} for S′ ⊆ S. A sequence sw ∈ S∗ with s ∈ S may also be denoted
by (s, w). If ≺ is a binary relation on S, we say that ≺ orders a given subset A of S if
A = {s1, . . . , sk} such that s1 ≺ · · · ≺ sk, and furthermore si ≺ sj implies i < j for all
i, j ∈ [k]. In this case, we denote the sequence s1 · · · sk (which is uniquely determined
by the conditions) by [[A]]≺. We say that a given sequence w ∈ S∗ is ordered by ≺ if
w = [[[w]]]≺.

2.1. Hypergraphs

Throughout this paper, we fix a countably infinite supply LAB of symbols called labels,
such that every σ ∈ LAB has a unique rank rank(σ) ∈ N. Similarly, we fix countably
infinite supplies V and E of vertices and hyperedges, respectively.

1The exact running time depends on how efficiently the chosen order can be computed.

3

Definition 2.1 (hypergraph) A (directed hyperedge-labeled) hypergraph over Σ ⊆
LAB is a tuple G = (V,E, att, lab, ext) with the following components:

• V ⊆ V and E ⊆ E are disjoint finite sets of nodes and hyperedges, respectively.

• The attachment att : E → V ⊕ assigns to each hyperedge e a sequence of attached
nodes. For e ∈ E with att(e) = (s, t) we also denote s by src(e) and t by tar(e),
calling them the source and the sequence of targets of e, respectively.

• The labeling lab: E → Σ assigns a label to each hyperedge, subject to the condition
that rank(lab(e)) = |tar(e)| for every e ∈ E.

• The sequence ext ∈ V ⊕ is the sequence of external nodes. If extG = (s, t), then we

denote the node s by G and the sequence t of nodes by G , respectively, and we
impose the additional requirement that src(e) /∈ [G] for all e ∈ E.

The size |G| of G is
∑
e∈E |att(e)|.2

Note that we forbid att(e) (for e ∈ E) to contain any node repeatedly. In the following,
we simply call hyperedges edges and hypergraphs graphs. Our division of the attachment
of every edge into a single source node and any number of target nodes is similar to that
used in the literature on term (hyper)graphs. It makes it meaningful to speak about
directed paths (defined below). Our graphs are, however, more general than term graphs
in that we, for the moment, do not impose further structural conditions on them.

Throughout the paper, if the components of a graph G are not explicitly named, we
denote them by VG, EG, attG, etc. If the components of G are given explicit names (and
thus the subscript is dropped) we extend this in the obvious way to derived notations,
dropping the subscript even there. We furthermore use the notation outG(v) to denote
the set of all outgoing edges of a node v ∈ VG, i.e., outG(v) = {e ∈ EG | srcG(e) = v}.

An isomorphism h : G→ H is a pair of bijective mappings (hV : VG → VH , hE : EG →
EH) such that attH ◦ hE = hV ◦ attG, labH ◦ hE = labG, and extH = hV (extG). If such
an ismorphism exists we write G ≡ H and say that the graphs are isomorphic.

A path of length k ∈ N from u ∈ V to e ∈ E in G is a sequence p = e1 · · · ek ∈ E+

where src(e1) = u, src(ei+1) ∈ [tar(ei)] for all i ∈ [k − 1], and ek = e. If furthermore
v is a node in [tar(ek)] then pv is a path from u to v. Both p and pv pass the nodes
src(e2), . . . , src(ek), and we say that p contains e1, . . . , ek as well as src(e1), . . . , src(ek),
while pv additionally contains v. If src(e1) ∈ [tar(ek)], the path is a cycle. We say that

the path is a source path if u = G.
A node v or an edge e is reachable from a node u if u = v or there is a path from u to

v or from u to e, respectively. We simply say that v and e are reachable in G if they are

reachable from G. If G is clear from the context we may just write “reachable” instead of
“reachable in G”. Note that, by definition, paths are always directed, and thus all of these
notions refer to directed paths.

2This simple definition of size is sufficient and appropriate for our purposes as the classes of grammars
considered in the paper only generate connected hypergraphs, and by the definition of hypergraphs
it holds that external nodes are pairwise distinct and 1 ≤ |att(e)| ≤ |V | for all hyperedges e. Thus,
|V | ≤ |G|, |E| ≤ |G|, and |ext| ≤ |G|.

4

s

u

v w

v′ w′

A
e

c
f

bga h

Figure 1: Example drawing of a graph G.

The rank of G = (V,E, att, lab, ext) is rank(G) = |G | and that of e ∈ E is rankG(e) =
rank(lab(e)). The in-degree of a node u ∈ V is |{e ∈ E | u ∈ [tar(e)]}| and its out-degree
is |{e ∈ E | src(e) = u}|. A node of out-degree 0 is a leaf, and a node v of in-degree 0,
such that every other node in V is reachable from v, is a root. Thus, the root of a graph

is unique if it exists. If it does, we say that G is rooted. Note that, if the root is G, then
the whole graph G is also reachable. Note furthermore that, by our general condition on
the sources of edges, all nodes in G are leaves. The reader should keep this fact in mind
because we will occasionally make use of it without explicitly mentioning it.

For a label A of rank k, we let A• denote the graph ({0, . . . , k}, {e}, att, lab, 0 · · · k)
such that att(e) = 0 · · · k, and lab(e) = A.

2.2. Drawing Conventions

We draw graphs as shown in Figure 1: external nodes are depicted as bullets and

non-external ones as circles. The node G is always the topmost bullet. An edge e ∈ EG
is depicted as a box with the edge label inscribed, which can be dropped if it is not
relevant. The attachment attG(e) is indicated by a line drawn from srcG(e) to (the box
representing) e, and arrows pointing from e to the nodes in tarG(e). The arrows leave the
box in the order in which they appear in tarG(e), from left to right. Similarly, the nodes
in G are arranged from left to right. For example, in the figure we have tarG(e) = uv,

G = s, and G = vw.

2.3. Hyperedge Replacement

Let H and F be graphs and e ∈ EH such that VH ∩ VF = [extF], EH ∩ EF = ∅, and
attH(e) = extF . The result of substituting e by F in H is the graph G = H[e :F] such
that G = (VH ∪ VF , (EH ∪ EF) \ {e}, attG, labG, extH) with

attG(f) =

{
attH(f) if f ∈ EH \ {e}
attF (f) if f ∈ EF

labG(f) =

{
labH(f) if f ∈ EH \ {e}
labF (f) if f ∈ EF .

For graphs H and F and an edge e ∈ EH with rankH(e) = rank(F) it should be
clear that we may always choose an isomorphic copy F ′ of F such that H[e :F ′] is

5

defined. To avoid the cumbersome technicalities of constantly having to deal with explicit
isomorphisms, we shall therefore always assume that F itself fulfills the requirements. If
it does not, it is assumed that F is silently replaced by an appropriate isomorphic copy.
Note that this is possible by our assumption that neither attachments of edges nor the
sequences of external nodes of graphs contain repetitions.

For the remainder of the paper, we assume that LAB is partitioned into two disjoint
subsets LABN and LABT, both countably infinite, whose elements are called nonterminals
and terminals, respectively. Naturally, a terminal (nonterminal) edge is an edge labeled
by a terminal (nonterminal, respectively). We sometimes just call them terminals and
nonterminals if there is no danger of confusion. By convention, we use capital letters to
denote nonterminals, and lowercase letters for terminal symbols.

Definition 2.2 (hyperedge replacement grammar) A hyperedge replacement gram-
mar (HR grammar, for short) is a system G = (Σ, N, S,R) where Σ ⊆ LABT, N ⊆ LABN,
S ∈ N is the initial nonterminal, and R is a set of rules, also called HR rules. Each rule is
of the form A→ F where A ∈ N and F is a graph over Σ ∪N with rank(F) = rank(A).

The size of G is |G| =
∑

(A→F)∈R |F |.
For graphs G,H, we let H ⇒R G if there exist a rule A→ F ∈ R and an edge e ∈ EH

with lab(e) = A such that G = H[e :F]. As usual, ⇒∗R denotes the reflexive transitive
closure of ⇒R. If there is no danger of confusion we often write ⇒ and ⇒∗ instead of ⇒R

and ⇒∗R, respectively. The language generated by G from A ∈ LABN is the set LA(G) of
all graphs G over Σ such that A• ⇒∗R G. The language generated by G is L(G) = LS(G).

For a given set R of HR rules (usually infinite), we let GR denote the set of all graphs
G over LAB such that A• ⇒∗R G for some A ∈ LABN.

Given pairwise distinct edges f1, . . . , fk ∈ EF and graphs G1, . . . , Gk such that
F [f1 :G1] · · · [fk :Gk] is defined, we may denote the latter by F [f1 :G1, . . . , fk :Gk]. We
recall here the so-called context-freeness lemma of hyperedge-replacement grammars:

Lemma 2.3 (Habel (1992); Drewes et al. (1997)) Let G = (Σ, N, S,R) be an HR
grammar. The sets LA(G) (A ∈ N) are the smallest sets such that the following
holds: for every rule (A → F) ∈ R, if f1, . . . , fk are the nonterminal edges in F and
G1 ∈ LlabF (f1)(G), . . . , Gk ∈ LlabF (fk)(G), then F [f1 :G1, . . . , fk :Gk] is in LA(G).

3. Reentrancies

We now start to develop the notions and restrictions that lead to our parsing algorithm.
This section focusses on reentrancies while the next section discusses suitable ways to
order reentrant nodes.

Imagine starting at a node or edge x in a given graph G and collecting nodes that
can be reached from there. Descending through G from x, we may first only encounter
some nodes that cannot be reached in other ways, i.e., on source paths not containing
x. However, typically we will eventually reach nodes that can also be reached on paths
avoiding x, or are external nodes of G (which, intuitively, are nodes that can be reached
from outside G). These are the reentrant nodes of x. They determine the “fringe” of a
subgraph F such that G = H[f :F], where H is the graph G with F “cut out” of it and
f is an edge whose targets are the reentrant nodes of x in G (and thus F consists of the

6

reentrant nodes of x as well). The ambiguity inherent in this situation, caused by the fact
that the reentrant nodes must be ordered in some way, will be dealt with in Section 4.

The definition below formalizes the notion of reentrant nodes.

Definition 3.1 (reentrant nodes) For a graph G and E ⊆ EG, let TARG(E) =⋃
e∈E [tarG(e)] be the set of all targets of edges in E. For x ∈ VG ∪ EG, let

x̂ =

{
x if x ∈ VG
srcG(x) if x ∈ EG,

and let ExG be the set of all reachable edges e ∈ EG such that all source paths to e contain
x. Then the set of reentrant nodes of x in G is

reentG(x) = (TARG(ExG) \ {x̂}) ∩ (TARG(EG \ ExG) ∪ [extG]). (1)

Note that e ∈ EeG for all reachable e ∈ EG, and ExG = reentG(x) = ∅ for all unreachable
x. We will not overly concern ourselves with unreachable parts of G in the following, as
for the substantial parts of this paper, only graphs are of interest in which all nodes and
edges are reachable.

The reentrant nodes with respect to x are those which are targets of edges that can

only be reached (from G) via x and are at the same time targets of other edges (not only
reachable through x) or are in [extG]. As indicated above, the latter corresponds to the
intuition that the external nodes are those nodes which can be reached “from outside G”
and thus in particular by edges not in ExG.

For a reachable node or edge x, we may also understand reentG(x) as the nodes in G
where source paths that necessarily pass x cross source paths that do not. Observe that,
as the latter may actually be shorter than the former, a node in reentG(x) may in fact be

closer to G than to x itself.
Examples of reentrancies in the graph G of Figure 1 are:

1. reentG(e) = reentG(u) = {v, w}.
This is because both of these nodes are targets of edges in EeG = {e, h} and EuG = {h},
and they both appear in extG. If v and w would not be external, then w would
still be in reentG(e) (because it is also a target of g) but v would not. In contrast,
reentG(u) would remain unaffected.

2. reentG(f) = {w}.

This is becasue EfG = {f, g}; here s is not reentrant because s = f̂ and w is reentrant
because it appears in extG (or, alternatively, because it appears in tarG(h)).

3. reentG(g) = {w,w′, s} because EgG = {g}.

4. reentG(s) = {v, w} because EsG = EG and {v, w} = (TARG(EG) \ {ŝ}) ∩ [extG].

Lemma 3.2 Let G be a graph with x ∈ EG ∪ VG, and let e ∈ EG be reachable. Then
e ∈ ExG if and only if one of the following holds:

1. x ∈ {e, srcG(e)} or

7

2. srcG(e) 6= G and all reachable edges f ∈ EG with srcG(e) ∈ [tarG(f)] are in ExG.

Proof For the only if direction, if x /∈ {e, srcG(e)} and srcG(e) = G then the source
path e does not contain x and thus e /∈ ExG. Thus, assume that x /∈ {e, srcG(e)} and

srcG(e) 6= G. Consider a reachable edge f ∈ EG with srcG(e) ∈ [tarG(f)] and assume,
towards a contradiction, that f /∈ ExG. Then there is a source path p to f not containing
x. But then pe is a source path to e not containing x, and hence e /∈ ExG.

We now prove the if statement. If x ∈ {e, srcG(e)}, then all source paths to e contain

x, and thus e ∈ ExG. Suppose now that srcG(e) 6= G. If all reachable edges f ∈ EG with
srcG(e) ∈ [tarG(f)] are in ExG, then all source paths to e contain x as they pass one of

those edges (because srcG(e) 6= G). Since e is reachable, it follows that e ∈ ExG. �

In the following, let ≈ be the binary relation on graphs such that G ≈ H if the
two graphs are equal except that the order of nodes in G and H may differ. To be

precise, VG = VH , EG = EH , attG = attH , labG = labH , G = H, and [G] = [H]. The
following definition formalizes the notion of a subgraph rooted at an edge or a node.
These subgraphs are uniquely determined up to ≈.

Definition 3.3 (rooted subgraphs) Let G be a graph and x ∈ VG∪EG. The subgraph
G↓x rooted at x is a graph H = (V,E, att, lab, x̂w), where

• E = ExG and V = {x̂} ∪ TARG(E),

• att and lab are the restrictions of attG and labG to E, and

• [w] = reentG(x).

Thus, G↓x is uniquely determined up to ≈. We assume in the following that G↓x
denotes an arbitrarily chosen element of the corresponding equivalence class of ≈.3

A slight simplification of the definition of reentrant nodes that is easier to handle in
some proofs is

reeG(x) = TARG(ExG) ∩ (TARG(EG \ ExG) ∪ [extG]). (2)

Obviously, reentG(x) = reeG(x) \ {x̂}. Hence, in order to establish equations such as
reentG(x) = reentH(x) it is sufficient (but not necessary) to show that reeG(x) = reeH(x).
Thus, we will frequently show that reentG(x) = reentH(x) by establishing that reeG(x) =
reeH(x) as the latter relieves us from considering x̂ as a special case.

We conclude this section by stating and proving a lemma that essentially says that
if y belongs to G↓x, then its rooted subgraph in G is the same as in G↓x. This will be
important for the correctness proof of our parsing algorithm.

Lemma 3.4 Let G be a graph, H = G↓x for some x ∈ (VG∪EG)\[G]. Then H↓y ≈ G↓y
for all y ∈ (VH ∪ EH) \ [extH].

3For unreachable x ∈ VG ∪EG, G↓x is the graph consisting of the single external node x̂ and no edges.

8

Proof Let us first assume that x and y are both edges and that x is reachable. (As
G↓x is a single external node for unreachable x, the lemma is trivially true if x is not
reachable.) By Definition 3.3 it suffices to show that

(i) EyH = EyG and

(ii) reeH(y) = reeG(y).

We distinguish two sub-cases.

Case 1: x = y. Then y is the unique edge in EH whose source is H, as all other
edges (in EG) sharing that source can obviously be reached on source paths in G not
containing x.

Moreover, as all edges in ExG are reachable only through x, all edges in EH are
reachable in H, and all source paths (in H) pass x = y, meaning EyH = EH . Consequently,
EyH = EH = ExG = EyG, completing (i).

For (ii), it suffices to note that

reeH(y) = TARH(EH) ∩ [extH] since EyH = EH and thus EH \ EyH = ∅
= TARG(ExG) ∩ ({x̂} ∪ reeG(x)) by definition of H = G↓x
= reeG(x)

= reeG(y).

Case 2: x 6= y. To prove (i), consider first an edge e ∈ EyH ⊂ ExG. There is a source
path to y in G, and from there to e. Thus, e /∈ EyG only if e is also reachable in G on
a source path not containing y. Then that path contains x (because e ∈ ExG), and its
sub-path p from x to e cannot be a path in H because all those paths do contain y. Thus
p = p1e

′p2 for some edge e′ /∈ EH = ExG, i.e., e′ is reachable on a source path q in G
that does not contain x. However, then qep2 is a source path to e in G, and it does not
contain x, which contradicts the assumption that e ∈ ExG.

Conversely, for an edge e ∈ EyG, all source paths to e in G contain y, and hence they
all contain x as well because y ∈ ExG. Moreover, at least one such path exists. Thus,
e ∈ ExG = EH . Clearly, H cannot contain more paths than G, which shows that all source
paths to e in H contain y. It remains to show that at least one such path exists. However,
we know that there is a source path to e in G that contains x, i.e., it has a sub-path
starting at x. By the same reasoning as in the previous paragraph, this sub-path is a path
in H because otherwise there would be a source path to e in G that does not contain x.
Hence e ∈ EyH , completing the proof of (i).

We now prove (ii), i.e., reeH(y) = reeG(y) (still for the case where x, y ∈ EG and
x 6= y).

(reeH(y) ⊆ reeG(y)) We have to show that

TARH(EyH) ∩ (TARH(EH \ EyH) ∪ [extH])

⊆ TARG(EyG) ∩ (TARG(EG \ EyG) ∪ [extG]).

9

We already know that EyH = EyG and hence TARH(EyH) = TARG(EyG). Thus, it remains
to be shown that TARH(EH \EyH)∪[extH] ⊆ TARG(EG\EyG)∪[extG]. Since TARH(EH \
EyH) = TARG(EH \ EyG) ⊆ TARG(EG \ EyG), it only needs to be verified that ([extH] ∩
TARH(EyH)) \ [extG] ⊆ TARG(EG \ EyG), but this is clear because

([extH] ∩ TARH(EyH)) \ [extG] = reeG(x) \ [extG]

⊆ (TARG(EG \ ExG) ∪ [extG]) \ [extG]

⊆ TARG(EG \ ExG)

⊆ TARG(EG \ EyG).

(reeG(y) ⊆ reeH(y)) Consider a node v ∈ reeG(y). We already know that v ∈
TARG(EyG) = TARH(EyH), so we need to verify that v ∈ TARH(EH \ EyH) ∪ [extH]. If
v ∈ [extG] then there is nothing left to show, because reeG(y) ∩ [extG] ⊆ [extH]. For
v ∈ reeG(y) \ [extG] we get

v ∈ TARG(EyG) ∩ TARG(EG \ EyG)

= TARH(EyH) ∩ TARG(EG \ EyH)

= TARH(EyH) ∩ TARH(EH \ EyH) (since EG ∩ EyH ⊆ EH)

⊆ TARH(EH \ EyH),

as required.

This finishes the reasoning for the case where x, y are edges. To complete the proof,

consider the case where at least one of x, y is a node. If x = G, y = G, or x = y we
obviously have G↓x = G, H↓y = G↓x, or H↓y = H, respectively, and there is nothing to
show. Hence, assume that {x, y} ∩ [extG] = ∅ and x 6= y. Let G be the graph obtained
from G by doing the following for every node v ∈ VG \ [G]:

• add a fresh node v and an edge ev with attG(ev) = vv (the label of ev does not
matter), and

• for every edge e ∈ EG with srcG(e) = v, define srcG(e) = v.

The remaining components of G, including the target attachments of edges, are inherited
from G. The graph H is defined similarly. Now, since ev is the unique outgoing edge
of v, it holds that G↓ev ≈ G↓v, and similarly H↓ev ≈ H↓v for nodes v ∈ VH \ [H].
Consequently, the first part of the proof shows that H↓y ≈ G↓y. As the mapping is
injective, this yields the result. �

4. Order-Preserving Hyperedge Replacement Grammars

Our aim in this section is to define a notion of order-preserving grammars that
generalizes the type of HR grammars introduced in in Björklund et al. (2016) and also
studied in Björklund et al. (2017).

The purpose of restricting HR grammars in this way is to make polynomial uniform
parsing possible. We achieve this by making sure that there are partial orders on the

10

nodes of derivable graphs that can be computed efficiently and are compatible with
hyperedge replacement in a way that can be used to guide the parsing process.

We start out with a class of HR rules that satisfy some structural requirements which
make it possible to exploit the findings of the preceding section. Such rules are called
reentrancy preserving. Next, we define the notion of a suitable family of orders. Finally,
we define what it means for a set of HR rules to be order preserving for such a family of
orders. The requirement is essentially that an HR replacement does not alter the relative
order of any nodes, neither in the host graph nor in the right-hand side inserted into it.

Before giving the definition of reentrancy preservation, we define a type of rule that
forms a special case among the reentrancy-preserving ones, the so-called duplication rule.

Definition 4.1 Consider a graph

F = ({v0, . . . , vn}, {e, e′}, att, lab, v0vi1 · · · vik),

where att(e) = v0 · · · vn = att(e′), lab(e) = lab(e′) ∈ LABN, and i1 < · · · < ik. If
k < n then F (and every graph isomorphic to F) is a twin, and if k = n then it is a
clone. A rule A → F is a twin rule if F is a twin and a clone rule if F is a clone with
lab(e) = lab(e′) = A. A duplication rule is either a clone or a twin rule.

Note that the right-hand side of a clone rule is uniquely determined by the left-hand
side. A clone rule simply duplicates the nonterminal edge it is applied to, whereas a twin
rule replaces a nonterminal edge by two “twins” having some additional targets (and,
therefore, a different label).

Definition 4.2 (reentrancy-preserving rule) An HR rule A→ F is reentrancy pre-
serving if it is a duplication rule, or if F satisfies the following conditions:

(P1) all nodes in VF are reachable,

(P2) the out-degree of every node is at most 1,

(P3) for every nonterminal edge e, reentF (e) = [tarF (e)].

We denote the set of all reentrancy-preserving HR rules by C, and thus the set of graphs
that can be generated from A• with A ∈ LABN using rules in C by GC . Before discussing
node orderings, let us study a few immediate properties of reentrancy-preserving rules
and the graphs they generate.

First of all, note that all graphs A• satisfy (P1)–(P3). Moreover, applying a reentrancy-
preserving HR rule to a graph that satisfies (P1) and (P3) preserves these two properties.
Thus, it follows by induction on the length of derivations that all graphs in GC satisfy (P1)
and (P3) (but not necessarily (P2), owing to the existence of duplication rules).

Lemma 4.3 (reentrancy preservation) LetG = H[e :F], whereH ∈ GC and (labH(e)→
F) ∈ C. For all x ∈ EG ∪ VG we have

reentG(x) =

{
reentH(x) if x ∈ EH ∪ VH
reentF (x) if x ∈ EF ∪ VF \ [extF]

11

We prove the two cases of Lemma 4.3 by establishing a lemma for each, i.e., Lemma 4.3
is the conjunction of Lemmas 4.4 and 4.5 proved next.

Lemma 4.4 Let G = H[e :F], where H ∈ GC and (labH(e) → F) ∈ C. For all x ∈
(EH ∪ VH) \ {e} it holds that reentG(x) = reentH(x).

Proof Observe first that

ExG =

{
ExH \ {e} ∪ EF if e ∈ ExH
ExH otherwise.

(3)

This is because all nodes (and thus all edges) in F are reachable from F by (P1), and
thus every source path in H can be converted into a source path in G by substituting a
suitable source path in F for each occurrence of e, and vice versa every source path in G
to e′ ∈ EG can be converted into a source path in H to e′ if e′ 6= e and to e otherwise, by
substituting e for every maximal sub-path which is a path in F .

By the definition of hyperedge replacement, we have

TARG(EF) ∩ TARG(EG \ EF) ⊆ [extF] = [attH(e)].

Thus, by equation (3), no node in TAR(EF) \ [extF] belongs to both TARG(ExG) and
(TARG(EG \ ExG) ∪ [extG]), i.e., to reeG(x). In other words, among the nodes in VF only
the external nodes of F can be reentrant for x in G: reeG(x) ∩ VF ⊆ [extF]. Only nodes
in VH could thus potentially violate the equality reentG(x) = reentH(x). Hence, as x̂ is in
neither reentG(x) nor reentH(x), it remains to show that v ∈ reeG(x) ⇐⇒ v ∈ reeH(x)
for all v ∈ VH \ {x̂}.

Recall that

reeG(x) = TARG(ExG) ∩ (TARG(EG \ ExG) ∪ [extG])

reeH(x) = TARH(ExH) ∩ (TARH(EH \ ExH) ∪ [extH]).

Note that, by the definition of hyperedge replacement, we always have [extG] = [extH].
We first consider the case when e 6∈ ExH and thus ExG = ExH and ExG ∩ EF = ∅. Then

the left arguments of the intersections defining reeG(x) and reeH(x) are identical, i.e.,
TARG(ExG) = TARH(ExH) ⊆ VH . Thus, since [extG] = [extH] we need to show that
v ∈ TARG(EG \ ExH) if and only of v ∈ TARH(EH \ ExH) for all v ∈ VH \ [extH].

By the definition of hyperedge replacement, all edges in EH \{e} keep their targets in G.
Thus, only nodes v ∈ [attH(e)] could potentially violate the equality, which yields two cases:
either v ∈ tarH(e) \TARF (EF), which is prevented by (P1), or v = srcH(e). However, as
e /∈ ExH (by assumption) and v /∈ [extH], we know that srcH(e) ∈ TARH(EH \ ExH), as
required.

We next consider the case when e ∈ ExH and thus ExG = ExH \ {e} ∪ EF . In this
case, we have TARH(ExH) ⊆ TARG(ExG), but also TARH(EH \ ExH) = TARG(EG \ ExG),
due to the definition of hyperedge replacement. This makes the right arguments of the
intersections defining reeG(x) and reeH(x) identical.

Thus, it remains to show that v ∈ TARG(ExG) if and only if v ∈ TARH(ExH) for the
relevant cases. Once again, this boils down to whether there can be a node v that is a
target of e but not of any edge in EF , or a target of an edge in EF but not of e, and the

12

only discrepancy that may occur is if v = srcH(e) and F ∈ TARF (EF). However, with
e ∈ ExH , the only case in which srcH(e) may be an element of the second but not the first
argument of the intersection defining reeH(x) is the case x = e, which is excluded by the
assumptions in the statement of the lemma. �

Lemma 4.5 Let G = H[e :F], where H ∈ GC and (labH(e) → F) ∈ C. For all x ∈
EF ∪ VF \ [extF] it holds that reentG(x) = reentF (x).

Proof As e is nonterminal and H belongs to GC and thus satisfies (P3), reeH(e) =
[tarH(e)]. Hence, every node v ∈ [attH(e)] = [extF] is reachable on a source path in H not
containing e, or it is in [extH]. Thus, in G, v is reachable on a source path not containing
any edge in EF , or it is in [extG]. In particular, ExF = ExG and thus ExG ∩ (EG \ EF) = ∅
for all x ∈ EF ∪ VF \ [extF].

This further means that TARG(ExG) ⊆ VF , and as we previously established that all
nodes in [extF] have source paths not passing edges in EF or are in [extG], and are thus
contained in the second argument of the intersection defining reeG(x), the lemma follows
from the observation that attG(f) = attF (f) for all edges f ∈ EF . �

We now formalize the notion of a suitable family of orders. These do not actually
have to be orders in the mathematical sense, but are binary relations required to order
the target nodes of nonterminal edges and of all right-hand sides. We thus call these
relations orders to support the intuition that this is what they are used for.

Definition 4.6 (suitable family of orders) A family ≺ = (≺G)G∈GC , where each ≺G
is a binary relation on VG, is a suitable family of orders if the following hold:

(S1) For all A ∈ LABN, A• is ordered by ≺A• .

(S2) For G,G′ ∈ GC , if G′ ≡ G via an isomorphism h : G→ G′ then for all u, v ∈ VG we
have u ≺G v if and only if hV (u) ≺G′ hV (v).

We are now ready to define our notion of order preservation.

Definition 4.7 (order-preserving) Let ≺ = (≺G)G∈GC be a suitable family of orders.
A set R ⊆ C of HR rules preserves ≺ if, for all G = H[e :F] with H ∈ GR, e ∈ EH , and
(labH(e)→ F) ∈ R, we have ≺G|VH

= ≺H and ≺G|VF
= ≺F .

From now on, let (≺G)G∈GC be a suitable family of orders which is preserved by a
set R ⊆ C of HR rules. We shall without loss of generality assume that each label in
LABN occurs among the left-hand sides of rules in R, since all other nonterminals can be
removed from LABN (and the rules whose right-hand sides contain such labels can be
removed from R) without changing GR. With this we get the following observation as a
consequence of (S1) and Definition 4.7 (additionally using (S2)):

Observation 4.8 For every rule A → F in R, F is ordered by ≺F , and so is tarF (e)
for every nonterminal edge e ∈ EF .

The first property follows from (S1) by choosing H = A• in Definition 4.7, and the
second follows by choosing G = F [e :F ′] with (labF (e) → F ′) ∈ R, applying the first
property to F ′ and then using Definition 4.7 twice.

13

5. The Parsing Algorithm

We are now ready to develop our parsing algorithm and prove its correctness as well
as analyse its running time.

5.1. Shallow Graphs

As a warm-up, we discuss how to parse when the grammar contains only duplication
rules. This will provide some insights into how our general parsing algorithm handles
cases where a node has more than one outgoing edge. Since duplication rules only use
nonterminal labels in their right-hand sides, we only consider nonterminal labels in this
section.

Definition 5.1 A graph G is shallow if G is its root and no path in G has length more
than one. Additionally, we require G to only have nonterminal labels. A graph which
is not shallow is deep. A rule is said to be shallow or deep depending on whether its
right-hand side is.

Note that graphs containing terminal labels are always considered to be deep, even if
they do not contain a path of length greater than one.

It should be clear that shallow rules only produce shallow graphs. In particular,
duplication rules do. For the most part of Section 5.1, we shall restrict our attention to
duplication rules. Note that, using exclusively duplication rules, every derivation of a
graph G from a graph A• consists of |EG| − 1 steps.

Definition 5.2 A siblinghood in a shallow graph G is a set Sib of edges such that
tarG(e) = tarG(e′) for all e, e′ ∈ Sib. Given a siblinghood Sib we write tarG(Sib) for this
sequence, where tarG(∅) = G . The size of a siblinghood is the number of edges in it.

The next lemma gathers some useful properties of siblinghoods in graphs produced by
duplication rules.

Lemma 5.3 Let R be a set of duplication rules and let A• ⇒∗R G be a derivation. Then
the following holds for every siblinghood Sib in G:

1. If |EG| > 1 then G contains a siblinghood of size 2.

2. G is a subsequence of tarG(Sib).

3. labG(e) is the same for all edges e ∈ Sib.

4. Let T1 and T2 be siblinghoods in G. Then the overlap of the targets of one
of them with Sib is a subset of the overlap of the other with Sib. Formally,
[TARG(Sib)] ∩ [TARG(T1)] is a subset of [TARG(Sib)] ∩ [TARG(T2)] or vice versa.

5. If Sib is a siblinghood of size 2, then there is a derivation of G of the form
A• ⇒∗R H ⇒ H[e :F], where EF = Sib (i.e., the very last step of the derivation
introduces the siblinghood Sib).

14

Proof Property (1) is obvious: by the definition of siblinghoods, every duplication rule
introduces a siblinghood of size 2. For the remaining properties, we proceed by induction
on the length of derivations (or, equivalently, the size of EG). To show that property (2)
holds, it is clearly sufficient to show property (2′): G is a subsequence of tarG(e) for
every edge e ∈ EG.

Let A• = G0 ⇒ G1 ⇒ · · · ⇒ Gn = G be a derivation by rules in R. The base case is
G = A•. Then G contains only one edge e, and tarG(e) = G .

For the inductive case, we assume that the properties hold for G0, . . . , Gk. Let
Gk+1 = Gk[e : F] for some edge e in Gk and a rule A → F in R with A = labGk

(e),
where EF = {f1, f2}. By the definition of duplication rules, tarGk

(e) is a subsequence of
tarGk+1

(fi), and thus property (2′) holds by the induction hypothesis.
To show properties (3)–(5), assume first that F is a clone rule and consider a siblinghood

Sib. The inductive assumption that Gk satisfies property (4) immediately yields that
Gk+1 does so as well, because {tarGk+1

(T) | T is a siblinghood of Gk+1} is equal to
{tarGk

(T) | T is a siblinghood of Gk}, using the fact that tarGk+1
(fi) = tarGk

(e). We
furthermore have that labF (f1) = labf (f2) = labGk

(e). If Sib ∩ {f1, f2} = ∅, then
property (3) holds by the induction hypothesis, because Sib is a siblinghood in Gk. To
see that this indeed also establishes property (5) note that, if Gk = Gk−1[e′ :F ′] with
EF ′ = Sib, then Gk+1 = Gk−1[e :F][e′ :F ′], i.e., the last two steps of the derivation
can be interchanged. If Sib ∩ {f1, f2} = {f1} (the other case being symmetric), then
Sib′ = (Sib \ {f1}) ∪ {e} is a siblinghood in Gk, and thus again the induction hypothesis
proves (3) since labF (fi) = labGk

(e). To see that property (5) holds in this case as well,
suppose additionally that Sib is of size 2, say Sib = {f1, f ′2}. Then all of f1, f2, and f ′2
have identical attachments and labels, and we may assume by induction that {f1, f ′2} is
introduced in Gk. However, then property (5) holds by simply applying an isomorphism
that interchanges the roles of f2 and f ′2. Finally, if {f1, f2} ⊆ Sib, property (3) follows
by the same reasoning as before, and if Sib is additionally of size 2 and thus equal to
{f1, f2}, then property (5) holds immediately.

To finish, assume now that F is a twin, i.e., EF = {f1, f2} and labF (f1) = B =
labF (f2) for a nonterminal B such that rank(B) > rank(A). Then the only siblinghoods
Sib containing f1 or f2 are subsets of the siblinghood {f1, f2}. Property (4) also holds,
because [TARGk+1

({f1, f2})] \ [TARGk
({e})] are new vertices, not connected to any edge

in Gk and thus [TARGk+1
(T)] ∩ [TARGk+1

(Sib)] is equal to [TARGk
(T)] ∩ [TARGk

({e})]
for all siblinghoods T of Gk.4 Property (3) clearly holds for Sib, and by the induction
hypothesis also for all other siblinghoods, as those are siblinghoods in Gk. Finally, if any
siblinghood Sib of Gk+1 is of size 2, it is either equal to {f1, f2}, in which case property (5)
holds immediately, or it is a siblinghood in Gk. In the latter case, we can again apply the
induction hypothesis to the derivation of Gk and then swap the last two rule applications,
thus introducing Sib in the last step, as above. �

In particular, property (4) of Lemma 5.3 implies that for every siblinghood Sib,
either tarG(Sib) = G or there is a unique maximal subsequence itarG(Sib) (for inherited
targets) of tarG(Sib) such that itarG(Sib) is also a subsequence of tarG(T) for some other

4For the sake of completeness, note additionally that [TARGk+1
(∅)] ∩ [TARGk+1

(Sib)] = [Gk+1] by

property (2). By a second application of property (2), this establishes property (4) for the case where
T1 = ∅ or T2 = ∅.

15

siblinghood T 6= Sib. If tarG(Sib) = G , we define itarG(Sib) to be tarG(Sib). If Sib
is a siblinghood of G, we write G↓Sib for the subgraph of G induced by Sib, where
G↓Sib = itarG(Sib). We write B(G↓Sib) for the graph obtained from G↓Sib by setting
lab(e) = B for every edge e in G↓Sib .

In the upcoming algorithms, we use intermediate graphs that are abstract in the sense
that each edge carries a set of labels rather than a single label:

Definition 5.4 An abstract graph is a tuple G = (V,E, att, lab, ext), where V,E, att,
and ext are as for graphs, but lab is a function from E to finite sets of labels. For a
siblinghood Sib in a shallow abstract graph G, we define labG(Sib) =

⋂
e∈Sib labG(e). A

concretization of G is a graph H = (VG, EG, attG, lab, extG) such that lab(e) ∈ labG(e)
for all e ∈ EG.

Given a graph G, we implicitly identify it with the abstract graph where lab(e) is a
singleton set for each node, and vice versa.

A parsing algorithm handling the derivation of graphs by duplication rules is given as
Algorithm 1. We argue its correctness below. More specifically, we argue that, given an
input graph G, it returns the set of all nonterminals X such that X• ⇒∗ G.

Algorithm 1 Parsing with Duplication Rules

1: function shallowParse(set R of duplication rules, shallow abstract graph G)
2: while |EG| > 1 do
3: if G contains no siblinghood of size 2 then
4: return ∅
5: choose a siblinghood Sib of size 2
6: replace Sib in G with a new edge e with target sequence itarG(Sib)
7: lab(e)← {A | ∃B ∈ labG(Sib) : A→ B(G↓Sib)}
8: return labG(e) where {e} = EG

First, we note that if the condition on line 3 ever becomes true, then this is because
condition 1 is violated, and thus G cannot be derived.

If this does not happen, we can view Algorithm 1 as producing a sequence G0, . . . , Gn
of abstract graphs such that G0 = G and Gn has only one edge. Let Gi and Gi+1 be two
graphs in the constructed sequence. Then there is a siblinghood Sib of size 2 in Gi and an
edge e in Gi+1 such that Gi is isomorphic to Gi+1[e :Gi↓Sib]. We argue that labGi+1

(e)
is the set of all nonterminals A such that there exists a nonterminal B in labGi

(Sib)
with A → B(Gi↓Sib). To see this, suppose first that a nonterminal A was included in
labGi+1(e). Line 6 of shallowParse in the algorithm replaces the siblinghood Sib in
question with a single edge e with tarGi+1

(e) = itarGi
(Sib). On line 7, the label set of

e is set to those nonterminals that have an appropriate duplication rule for some B in
labGi

(Sib). (Note that B is equal to A if and only if the rule is a clone rule if and only if
tarGi

(Sib) = itarGi
(Sib).) Thus, starting with a single edge e with label A, we can use

this rule to produce a twin or clone G′i. Clearly, this graph is isomorphic to B(Gi↓Sib).
Conversely, a similar reasoning gives us that for every B ∈ labGi(Sib), Algorithm 1
includes a nonterminal A in labGi+1

(e) such that A→ B(Gi↓Sib).
We now consider the case where G0, the input to the algorithm, is a concrete graph

in the sense that every edge has a label set of size exactly one. We argue that if

16

Algorithm 1 eventually arrives at a graph Gn with EGn = {e}, then labGn(e) is the
set of all nonterminals X such that G′0, the unique concretization of G0 can be derived
from X•. First, let G0, . . . , Gn and X be as above. We argue that there are graphs
G′n, G

′
n−1, . . . , G

′
0 such that

X• = G′n ⇒ G′n−1 ⇒ · · · ⇒ G′0

and for each i ∈ {0, . . . , n}, G′i is a concretization of Gi. In particular, this means that
G′0 can thus be derived from X•.

For the induction basis, let Sib = {e} be the unique siblinghood in Gn. Since X is in
labGn

(e), X• = G′n is a concretization of Gn.
For the inductive case, consider Gi and Gi+1. As above, let e be the edge in Gi+1 and

Sib = {f1, f2} the siblinghood in Gi such that Gi = Gi+1[e :Gi↓Sib]. By the induction
hypothesis, there is an edge e′ in G′i+1 such that lab(e′) ∈ lab(e). Let lab(e′) = A. By
the reasoning above, there is a B in labGi

(Sib) such that A → B(Gi↓Sib). This means
that from G′i+1 we can derive a graph G′i that is a concretization of Gi. In particular,
siblinghood Sib will have label B in G′i, which belongs to labGi

(Sib).
For the other direction, assume that X• = G′n ⇒ G′n−1 ⇒ · · · ⇒ G′0 = G. By

Lemma 5.3(5) we can assume that every step in the derivation introduces a siblinghood
of size 2. Choosing this siblinghood on line 5 of the algorithm and proceeding by an
induction similar to the one above, yields the required graphs G1, . . . , Gn.

Algorithm 1 handles only shallow graphs generated by duplication rules. However,
the derivation of a shallow graph by a reentrancy-preserving grammar may also make
use of shallow rules A → F where EF = {f} for a nonterminal edge f . Since we
only consider order-preserving rules, these rules are always of the form A → B• with
rank(A) = rank(B), called chain rules in the following. Their effect is essentially the
same as the effect of chain rules in context-free string grammars: they only relabel a
nonterminal. Consequently, standard techniques can be used to extend Algorithm 1
appropriately, as follows. For the given HR grammar and an abstract graph G, define the
(backwards) closure of G to be cl(G) = (VG, EG, attG, lab, extG) where lab(e) = {A ∈
N | A• ⇒∗ B• for some B ∈ labG(e)} for all e ∈ EG. Then the only two changes that
must be made to Algorithm 1 in order to handle chain rules are:

1. On line 7 of shallowParse, replace “B ∈ labG(Sib)” by “B ∈ labcl(G)(Sib)”.

2. On line 8 of shallowParse, replace “labG(e)” by “labcl(G)(e)”.

In effect, this incorporates the application of all relabelings permitted by the grammar into
the derivations constructed by Algorithm 1, in the standard way known from context-free
string grammars.

Summarizing, we get the following lemma:

Lemma 5.5 shallowParse(R,G), extended to rules of the form A• → B• as discussed
above, runs in time O(|R|2 + |G|2) for every set R of shallow rules and every shallow
abstract graph G, and it holds that

shallowParse(R,G) = {A ∈ LABN | A• ⇒∗R H for some concretiazation H of G}.

17

Proof The required correctness arguments were given above. To implement the general-
ization efficiently, note that the set of all pairs (A,B) with A• ⇒∗ B• can be precomputed
in time |R|2 by a standard technique. The algorithm itself runs in time |G|2 because
choosing Sib on line 5 requires only linear time and the loop terminates after at most
|EG| executions. �

The reader should note for later use that the term |R|2 in the running time estimation
is a one-time investment if shallowParse(R,G) is run several times with differing G
but the same set R of rules.

5.2. The general algorithm

We now present our parsing algorithm, show that it is correct, and determine its
worst-case running time. Throughout this section, let G = (Σ, N, S,R) denote the order-
preserving HR grammar which, together with a graph G over Σ, is the input to the
parsing algorithm. Let P ⊆ R be the set of deep rules in R, and Q ⊆ R be the set of
duplication rules (i.e., P ∩Q = ∅ and R \ (P ∪Q) is the set of chain rules in R).

We want to parse the input graph G with respect to G. Throughout most of the
section, we will assume that ≺ = (≺G)G∈GC is a suitable family of orders and that G ∈ GR
for a set R that preserves ≺. We generalize the reasoning to arbitrary input graphs at the
end of the section. Thus, we furthermore assume that ≺G has been computed beforehand,
and that G fulfills condition (P1) in Definition 4.2 (i.e., all nodes and edges are reachable
on source paths), while (P3) is trivially fulfilled since G is terminal.

In the following, given a graph G and some x ∈ EG∪VG such that ≺G orders reentG(x),
we let G(x) denote the graph such that G(x) ≈ G↓x and extG(x) is ordered by ≺G. If ≺G
does not order reentG(x), then G(x) is undefined. Note that, if G is given, then G(x) can
efficiently be represented by simply storing x and G(x) , and in this representation it can
easily be traversed in, e.g., a depth-first manner. In the following, we will thus assume
that G(e) is represented in this way when passed as a parameter to algorithms. Observe
also that, for nodes v ∈ VG, G(v) = ({v}, ∅, ∅, ∅, v) if v is a leaf, and G(v) = G(e) if v has
out-degree 1 and e ∈ EG is the unique edge with srcG(e) = v.

As the following lemma states, if G ∈ GR and x ∈ VG ∪ EG, then reentG(x) can be
efficiently computed.

Lemma 5.6 Let G ∈ GR. There is a quadratic algorithm that computes, for every
x ∈ VG ∪ EG, the set reentG(x), and thus the graph G(x), provided that it is defined
(since we assume that ≺G has been precomputed).

Proof For every x ∈ VG ∪ EG, we can make a depth-first search starting at G to
determine the set of nodes reachable without passing x. Adding [extG], this yields
V = TARG(EG \ ExG) ∪ [extG]. Afterwards, we perform a similar search along paths
starting at x and not passing any node in V . This takes linear time and reveals the nodes
in reentG(x) as they are exactly the nodes in V which can be reached from x on such
paths. Performing this procedure for all x ∈ VG ∪ EG thus takes quadratic time. �

Before we present the parsing algorithm, let us formulate and prove a lemma that will
enable us to match deep right-hand sides against (subgraphs of) the input graph. This
lemma captures one of the central reasons why order-preserving HR grammars can be
parsed efficiently: the mapping of nodes in a candidate right-hand side to corresponding

18

nodes in the host graph is uniquely determined (if it exists). For the lemma and the rest
of the section, recall from Section 2 that outG(v) denotes the set of all outgoing edges of
a node v in a graph G.

Lemma 5.7 Let H = F [f1 :G1, . . . , fk :Gk] for graphs F,G1, . . . , Gk ∈ GR, where F is
a deep graph satisfying (P1)–(P3) and f1, . . . , fk are the nonterminal edges in F . If H is
isomorphic to G(e) via an isomorphism h : H → G(e) for a graph G ∈ GR and an edge
e ∈ EG, then the restriction φ of hV to VF satisfies the following, for every node v ∈ VF :

(i) if v = F , then φ(v) = srcG(e);

(ii) if v = srcF (f) for a terminal edge f ∈ EF , then outG(φ(v)) is a singleton {f ′} with
labG(f ′) = labF (f) and it holds that φ(tarF (f)) = tarG(f ′); and

(iii) if v = srcF (fi) for some i ∈ [k], then φ(tarF (fi)) = [[reentG(v)]]≺G

Proof Consider any isomorphism h as in the statement of the lemma, let φ be its
restriction to VF , and v ∈ VF .

If v = F , then (i) holds by the definition of hyperedge replacement and isomorphism,

because φ(F) = φ(H) = srcG(e).
If v = srcF (f) where f is terminal, since v has out-degree (at most) one, we have

outH(v) = outF (v) = {f}. Hence by the definition of isomorphisms outG(e)(φ(v)) is
the singleton {f ′} with f ′ = hE(f), and we also have labG(f ′) = labF (f). Again by
the definition of hyperedge replacement and isomorphisms φ(tarF (f)) = φ(tarH(f)) =
tarG(f ′).

Finally, assume that f = fi for some i ∈ [k]. As F is deep and f nonterminal, it

follows that srcF (f) 6= F . This is so because F has out-degree 1, and thus srcF (f) = F

implies [tarF (f)] = reentF (f) = reentF (F) = [F] (where the first equality is due to (P3)),
meaning that F is shallow as all nodes in [F] have out-degree 0. But, by the precondition
of the lemma, F is not shallow.

Let H = I[f :Gi] were I is the graph in GR given by

I = F [f1 :G1, . . . , fi−1 :Gi−1, fi+1 :Gi+1, . . . , fk :Gk].

We get

reentH(v) = reentI(srcF (f)) (by Lemma 4.3 and since v = srcF (f))

= reentF (srcF (f)) (by (k − 1)-fold application of Lemma 4.3)

= reentF (f) (because, by (P1), srcF (f) has out-degree 1)

= [tarF (f)] (by (P3))

Since R preserves ≺, each of these steps furthermore preserves the order of nodes, and by
Observation 4.8 tarF (f) is ordered by ≺F , which yields tarF (f) = [[reentH(v)]]≺H

. As the
definition of reentrancies is obviously invariant under isomorphism, and ≺ is so by (S2),
the latter means that φ(tarF (f)) = [[reentG(e)(φ(v))]]≺G(e)

.

19

It remains to be verified that [[reentG(e)(φ(v))]]≺G(e)
= [[reentG(φ(v))]]≺G

. For this,

recall that F is assumed to be deep. This implies that v 6= F , because v = F would
imply [tarF (f)] = reentF (f) = reentF (v) = [F] (where the first equality holds by (P3)
and the second by (P2), because outF (v) = {f}), and thus that F is shallow as all

nodes in [F] have out-degree 0. Now, since v 6= F we have φ(v) 6= srcG(e), and hence
φ(v) ∈ VG(e) \ [extG(e)]. This shows that Lemma 3.4 applies with x = e and y = φ(v),
telling us that G↓e↓φ(v) = G↓φ(v). In particular, reentG(e)(φ(v)) = reentG(φ(v)) and thus
[[reentG(e)(φ(v))]]≺G(e)

= [[reentG(φ(v))]]≺G
, as required. �

Note that φ in Lemma 5.7 does not depend on G1, . . . , Gk. Thus, given F , G, and
e, and assuming that reentG(v) has been precomputed for all v ∈ VG, the mapping φ
(viewed as a subset of VF × VG) can be computed in linear time by an obvious recursion
along the cases (i)–(iii). In the following, this computation is assumed to fail if it reveals
an inconsistency, i.e., if outG(φ(v)) is not a singleton {f ′} with labG(f ′) = labF (f) in
case (ii), there happen to be conflicting assignments of values to φ(v) for some v (i.e., φ
is not a function), φ is not injective, or φ(F) 6= [[reentG(e)]]≺G

.
The two main routines of the parser are parseV(v) and parseE(e), which are called

alternately by parse to augment the nodes and edges of G with sets of nonterminals:

1. parseV(v) augments a node v ∈ VG with NT(v) = {A ∈ N | A• ⇒∗ G(v)}.

2. parseE(e) augments an edge e ∈ EG with NT(e) = {A ∈ N | A• ⇒∗ G(e)}.

In both cases, NT(x) = ∅ if G(x) is undefined.

Algorithm 2 Parsing for Order-Preserving HR Grammars

1: function parse(order-preserving HR grammar G = (Σ, N, S,R), graph G ∈ GR)
2: preProcess(G) . Compute ≺G as well as all G(x) for all x ∈ VG ∪ EG
3: for x ∈ VG ∪ EG do
4: if G(x) is defined then NT(x)← ⊥
5: else NT(x)← ∅
6: while NT(G) = ⊥ do
7: let x ∈ VG∪EG with NT(x) = ⊥ and

NT(y) 6= ⊥ for all y ∈ (VG(x) ∪ EG(x)) \ ([extG(x)] ∪ {x})
8: if x ∈ VG then parseV(x)
9: else parseE(x)

10: return S ∈ NT(G)

The pseudocode, parseV and parseE is given as Algorithms 2, 3, and 4. parseE
additionally calls the subroutine match, given as Algorithm 5. The following is a
high-level description of how the algorithms work:

After parse has completed the preprocessing of the input graph, it repeatedly finds
either a node or an edge x to be processed. Once it has processed x, NT(x) will be
equal to the set of nonterminals A such that A• ⇒∗ G(x). To be able to process x, the
requirement is that NT(y) has already been determined for all nodes and edges y of G(x)
except for the external nodes and x itself. Intuitively, the algorithm proceeds bottom-up
on the graph, starting by processing leaves, and moving on with any edges whose targets

20

are all either leaves or members of reentG(x), moving on with “higher” nodes and edges
only when everything “below” them has been processed. (This intuitive view should be
taken with a grain of salt, because G can be cyclic.)

When parsing a node v with parseV, there are two cases:

• The node is a leaf, which is equivalent to saying that G(v) is the graph • consisting
of a single external node and no edges. In this case G(v) can only be derived from
a nonterminal of rank zero by applying a series of chain rules, i.e., NT(v) = {A ∈
N | A• ⇒∗ •}.

• The node has out-degree d > 0, which means that the derivations A• ⇒∗ G(v)
are (up to reordering derivation steps) those which begin with applying d − 1
duplication rules yielding d nonterminal edges from which the individual graphs
G(e) with srcG(e) = v have been derived. This requires us to identify and “reverse”
the expansions. In practise we construct a temporary graph Gsh that represents
the relevant structures, with one edge for each of the graphs G(e) such that
srcG(e) = v. We then call shallowParse on this graph to calculate the set of
possible nonterminals A such that A• can yield a suitable collection of edges to
derive G(v) from.

parseE mainly identifies potential matching right-hand sides to the graph G(e) and
uses the function match to check their relationship in detail. In particular, we know that
the rank of any nonterminal A• generating G(e) must match the number of reentrant
nodes. In fact, since the grammar is order preserving, the ith node in A• corresponds
to the ith node in G(e) . Further, since parseV handles any applications of duplication
rules, parseE does not have to deal with them.

Checking whether F matches G(e) is easily done, using the mapping φ determined
by Lemma 5.7: assuming that the sets NT(v) have already been computed for all
internal nodes of G(e), we just have to check for all nonterminal edges f of F that
labF (f) ∈ NT(φ(srcF (f))). This is done by the procedure match. Lemma 5.8 confirms
formally that match works correctly.

Lemma 5.8 Let e ∈ EG and assume that NT(v) = {A ∈ N | A• ⇒∗ G(v)} for all nodes
v ∈ VG(e) \ [extG(e)]. For a rule (A→ F) ∈ P , match(F, e) returns true if and only if
there is a derivation F ⇒∗ G(e).

Algorithm 3 Parsing of Vertices for Order-Preserving HR Grammars

1: function parseV(node v)
2: if outG(v) = ∅ then
3: NT(v)← {A ∈ N | A• ⇒∗G •} . A single leaf can be derived from A•

4: else initialize Gsh = (V,E, att, lab, ext) as the following shallow graph:
5: E = {e ∈ EG | srcG(e) = v}
6: V = {v} ∪

⋃
e∈E reentG(e)

7: ext = extG(v)

8: lab(e) = NT(e) and att(e) = v · [[reentG(e)]]≺G
for each e ∈ E

9: NT(v)← shallowParse({r ∈ R | r shallow}, Gsh)

21

Algorithm 4 Parsing of Edges for Order-Preserving HR Grammars

1: function parseE(edge e)
2: NT ← ∅
3: for each nonterminal A ∈ N do
4: for each deep production A→ F do
5: if match(F, e) then . G(e) is derivable from F
6: NT ← NT ∪ {A} and thus from A•

7: NT(e)← {A ∈ N | A• ⇒∗ B• for some B ∈ NT} . finally, apply closure

Algorithm 5 Matching a deep right-hand side F against G(e)

1: function match(right-hand side F , edge e ∈ EG)
2: compute φ according to Lemma 5.7 (return false if this computation fails)
3: if lab(f) ∈ NT (φ(src(f))) for all nonterminal edges f ∈ EF then
4: return true
5: else
6: return false

Proof Let f1, . . . , fk be the pairwise distinct nonterminal edges of F . Assume first that
match(F, e) returns true, and let vi = φ(srcF (fi)) and Gi = G(e)(vi) for all i ∈ [k].
By Lemma 5.7(iii), extGi

= φ(attF (fi)) for all i ∈ [k]. By the definition of hyperedge
replacement, this yields G(e) ≡ F [f1 :G1, . . . , fk :Gk], and by the test on line 3 of match
it holds that labF (fi) ∈ NT(vi) and thus labF (fi)

• ⇒∗ Gi for all i ∈ [k]. Consequently,
by context-freeness (Lemma 2.3) F ⇒∗ F [f1 :G1, . . . , fk :Gk] ≡ G(e), as required.

Conversely, assume that F ⇒∗ G(e). Again by context-freeness, this means that there
are graphs Gi such that labF (fi)

• ⇒∗ Gi (for all i ∈ [k]) and H = F [f1 :G1, . . . , fk :Gk]
is isomorphic to G(e) by some isomorphism h : H → G(e). In particular, Gi ∈ GR, and
thus Lemma 5.7 states that match computes the restriction φ of hV to VF on line 2.
The condition on line 3 is satisfied because labF (fi)

• ⇒∗ Gi and thus, by assumption,
labF (fi) ∈ NT(φ(srcF (fi))) for all i ∈ [k]. Hence, match returns true. �

We are now ready to show that parse (Algorithm 2) works correctly on graphs in
GR.

Lemma 5.9 A call parse(G, G) with G ∈ GR to Algorithm 2 returns true if and only if
G ∈ L(G).

Proof We first argue that, whenever the condition on line 6 is satisfied, there exists an
appropriate x on line 7 of parse. We use Lemma 3.4, which applies to the subgraphs G(x)
because G↓x ≈ G(x) (if the latter is defined). Intuitively, since Lemma 3.4 states that
the subgraphs G(x) are properly nested, we can always recurse down into them to find an
appropriate x. For a more precise argument, choose some x ∈ VG ∪ EG with NT(x) = ⊥
that minimizes the cardinality of the set Yx of all y ∈ (VG(x)∪EG(x))\ ([extG(x)]∪{x}) for
which NT(y) = ⊥. We have to show that Yx = ∅. Assume for a contradiction that there
is a y ∈ Yx. If x ∈ EG, then G(y) = G(x)(y) does not contain x (because x /∈ EyG(x) as it

can be reached in G(x) without passing y). As, furthermore, [extG(x)]∩ VG(y) ⊆ [extG(y)],
this yields the contradiction that |Yy| < |Yx|. The second case is that x ∈ VG. If y is

22

an edge with srcG(y) = x, then x ∈ [extG(y)] and thus Yy ⊆ Yx \ {x, y}, again yielding a
contradiction. Otherwise y is a node, or it is an edge with srcG(y) 6= x. Hence x is either
not in VG(y) at all, or else it belongs to G(y) , which in both cases yields Yy ⊆ Yx \ {y}
and thus again a contradiction.

Thus, parse never gets stuck on line 6. To prove the statement of the lemma, we
now show by induction on the number of loop executions the slightly stronger claim that
NT(x) 6= ⊥ implies

NT(x) =

{
{A ∈ N | A• ⇒∗ G(x)} if G(x) is defined
∅ otherwise.

(4)

In particular, since G = G(G), this means that S ∈ NT(G) if and only if G ∈ L(G).
The base case, before the first iteration of the loop, is given on line 5 of parse, i.e.,

G(x) is undefined and NT(x) = ∅. Thus, the claim holds in this case.
For the inductive case, assume now that G(x) is defined and x fulfills the condition

on line 7 of parse. We have to show that, after the execution of parseV(x) (if x ∈ VG)
or parseE(x) (if x ∈ EG), it holds that NT(x) = {A ∈ N | A• ⇒∗G G(x)}.

Assume first that x ∈ VG. If outG(x) = ∅, then G(x) is the graph • consisting of a
single node and no edge, and hence (4) reduces to NT(x) = {A ∈ N | A• ⇒∗ •}, which is
ensured on line 3 of parseV. Otherwise, if outG(x) = {e1, . . . , ek} with k > 0, then the
derivations A• ⇒∗ G(x) are (by context-freeness and the induction hypothesis) exactly
those which can be written in the form A• ⇒∗ H ⇒∗ G(x) = H[f1 :G(e1), . . . , fk :G(ek)],
where H is a shallow graph with EH = {f1, . . . , fk} and labH(fi) ∈ NT(ei) for all i ∈ [k].
Since tarH(fi) = G(ei) = reentG(ei) for all i ∈ [k], the graph H is (isomorphic to) a
concretization of the graph Gsh constructed in parseV. Conversely, if a concretization
H of Gsh with tarH(fi) = G(ei) = reentG(ei) for all i ∈ [k] satisfies A• ⇒∗ H, then
A• ⇒∗ H[f1 :G(e1), . . . , fk :G(ek)]. Hence, Lemma 5.5 proves that NT(x) = {A ∈ N |
A• ⇒∗G G(x)} when line 9 of parseV has been executed.

Finally, consider the case where x ∈ EG. Since G(x) is deep (it contains the terminal
edge x), and no edge in G(x) shares its source with x, all derivations A• ⇒∗ G(x) have
the form

A• ⇒∗ B• ⇒ F ⇒∗ G(x) (5)

for some deep rule A → F in R. By the condition on line 7 of parse, x satisfies
NT(v) = {A ∈ N | A• ⇒∗ G(v)} for all nodes v ∈ VG(x)\[extG(x)], i.e., on line 5 of parseE
the condition for applying Lemma 5.8 is fulfilled. Consequently, on line 7 of parseE, NT
equals the set of all B ∈ N such that there is a deep rule B → F with F ⇒∗ G(x). Hence,
by (5), the assignment on line 7 of parseE yields NT(x) = {A ∈ N | A• ⇒∗ G(x)}, as
claimed. �

We are now ready to generalize our result to graphs that do not necessarily belong to
GR and give time bounds. This yields the main result of the paper. The time bounds
given are relative to the time it takes to compute ≺G. In Section 6 we will see that there
are suitable and natural families of orders that can efficiently be computed.

Theorem 5.10 Let ≺ be a suitable family of orders that is preserved by a set R ⊆ C
of HR rules, and let f : GR → N be a function such that both f(G) and ≺G can be

23

computed in time f(G) for every graph G ∈ GR.5 Then there is an algorithm which takes
as input a graph G and an HR grammar G = (Σ, N, S,R) with R ⊆ R, and decides in
time O(f(G) + |G|2 + |G|2) whether G ∈ L(G).

Proof Assume first that G ∈ GR. By Lemma 5.9 and the definition of parse,
parse(G, G) returns true if and only if G ∈ L(G). By assumption, we can compute
≺G in time f(G) and by Lemma 5.6 the family (reentG(e))e∈EG

can be computed in
time O(|G|2). As pointed out after (the proof of) Lemma 5.5, we can precompute
RELAB = {(A,B) ∈ N2 | A• ⇒∗ B•} in time |G|2. Algorithm 5 (match) runs in linear
time in the size of the right-hand side F . parseV and parseE are called once for each
node and edge, respectively. In particular, the calls of parseE invoke match at most
|EG| · |R| times in total, thus altogether taking at most O(|EG| · |G|) computation steps if
we make use of the precomputed set RELAB to implement line 7 of parseE efficiently.
Moreover, parseV runs in constant time, except for the construction of Gsh and the
call to shallowParse. The total size of the graphs that are passed to shallowParse
cannot exceed |G| and shallowParse itself runs in time |G|2 by Lemma 5.5 (where
we again make use of the precomputed set RELAB).6 Hence, the total contribution is
O(|G|2). Altogether, this yields the upper bound O(f(G) + |G|2 + |G|2) on the running
time of parse(G, G) for G ∈ GR.

Now, let us drop the assumption that G ∈ GR. Let c be such that parse runs in time
at most g(G, G) = c ·(f(G)+ |G|2+ |G|2)) on input graphs in GR. We use the old yardstick
trick of computational complexity to make sure that the algorithm terminates in time
O(g(G, G)): initially, M = g(G, G) is computed (which is possible because f(G) can be
computed in time f(G)), and a counter is initialized to zero. Then the original algorithm
is executed, incrementing the counter after each computation step. If the counter reaches
the value M before the algorithm terminates, the input is rejected (because this, by the
correctness of the algorithm on GR, proves that G /∈ GR).

This makes sure that the running time stays within O(g(G, G)) = O(f(G)+ |G|2+ |G|2)
even for graphs not in GR. However, we still have to make sure that such graphs are
indeed rejected. For this, note that our parsing procedure, if it accepts G, actually
determines a concrete derivation, as match determines the mapping φ of nodes and
edges of right-hand sides to those in G, i.e., it yields the isomorphic copies A → F ′ of
rules (A→ F) ∈ R that need to be applied in order to generate the concrete graph G. A
similar mapping is obtained in shallowParse because its parameter Gsh, constructed
in parseV, uses the actual nodes of VG (see line 6 of parseV). Thus, we can extend
the algorithm in such a way that it, for all A ∈ NT(e), stores the concrete isomorphic
copy A → F ′ of the rule (A → F) ∈ R applied to e. Now, having this information,
upon successful termination of parse it is easy to reconstruct in time O(f(G) + |G| · |G|)
the concrete derivation, thereby checking that it is indeed a consistent derivation and
rejecting if it is not. Upon success, we finally check the derived graph and G for equality
(rather than isomorphism!). If they are indeed equal, then by definition G ∈ L(G). If
they are not, then the correctness of parse on graphs in GR implies that G /∈ GR and
thus, in particular, G /∈ L(G). �

5The first condition corresponds to the usual condition of time-constructibility, but here for a function
that takes graphs as input, rather than for an ordinary complexity function.

6It may be worth noting that this is a very pessimistic estimation because the graphs Gsh will typically
have considerably fewer edges than G.

24

We note here that, depending on the choice of R and ≺, it may often be possible
to handle the case where the input graph is not an element of GR in another way, thus
avoiding the explicit use of the yardstick argument and the construction of the derivation
with the final equality check. In fact, it may be interesting to study the case where
parse returns a positive result and thus a derivation of a graph G′ ∈ L(G) even though
G /∈ L(G). This could be seen as a best effort to derive a graph G′ similar to G. We will
not further pursue this line of thought in the current paper, however.

6. A Suitable Family of Orders

We now present a family / of orders and a set R ⊆ C of rules that preserves /. In
particular, this generalizes the order and set of rules used in Björklund et al. (2016).

Definition 6.1 (path order) Let G be a graph.

(1) For e ∈ EG with tarG(e) = v1 · · · vk, we define a relation /eG on reentG(e). For every
i ∈ [k], let Vi be the set of nodes in reentG(e) which are reachable from vi in G↓e
on a path not containing e. Then, for u, v ∈ reentG(e), we let u /eG v if u ∈ Vi and
v ∈ Vj implies i < j for all i, j ∈ [k].

(2) The path order /G on VG is defined as /G =
⋃
e∈EG

/eG.

Lemma 6.2 (/ is suitable) The family / fulfills conditions (S1) and (S2), and is thus
a suitable family of orders.

Proof For G = A• with EG = {e} and G = v1 · · · vk = attG(e) we have /G = /eG =
{(vi, vj) | 1 ≤ i < j ≤ k} (because Vi = {vi} in the definition of /eG). Thus, (S1) holds.
Obviously, (S2) (invariance under isomorphism) also holds. �

Now, call a graph G well formed if it is rooted and it holds that G and tarG(e),
for every nonterminal edge e ∈ EG, are ordered by /G. We let R be the set of all rules
A→ F in C such that F is well formed.

Example 6.3 Figure 2 shows an example of a well-formed right-hand side F with two
nonterminal edges labelled A and B, respectively. Here, it is assumed that the leftmost
leaf, labelled by (1′) in the figure, is the first node of F and and the other filled leaf,
labelled (3), is the second. Following our general drawing conventions, the order of the
outgoing tentacles of edges, from left to right, indicates the order of nodes in tarF (e) for
each edge e. We have

• /e0F = ∅ because the reentrant nodes (1′) and (3) can both be reached via the same
tentacle of e0 (i.e., via (1)),

• (1′) /F (2) and (1′) /F (3) as (1′) can only be reached via the first tentacle of e1
while (2) and (3) can only be reached via its second (and the fact that the latter two
can be reached via the same tentacle of e1 means that /e1F does not order them),

• (1) /F (2) /F (3) because reentF (e3) = [tarF (e3)] = {(1), (2), (3)}, which are thus
ordered according to their appearance in tarF (e3),

25

(4)

(1)

(1′)

(2) (3)

e0

e1

Ae3

e2

B
e4

Figure 2: A well-formed right-hand side

• (2) /F (3) and (2) /F (4) by virtue of /e2F (which does not order (3) and (4)), and
finally (3) /F (4) by virtue of /e4F .

The proof showing that R preserves / makes use of the following easy lemma.

Lemma 6.4 Let G = H[e :F] for a graph H and a rule (labH(e) → F) ∈ C, and let
u, v ∈ VH . For every path p from u to v in H there is a path p′ from u to v in G containing
the same nodes of H as p does. Conversely, for every path p′ from u to v in G, there is a
path p from u to v in G containing the same nodes of H as p′ does.

Proof Since F is either a duplication rule or satisfies (P1), it contains a (simple) source
path pw to every w ∈ [F], and as all nodes in F have out-degree 0, this pw does not
pass any of the nodes in F . Thus, as a path in G, pw does not pass any node of H. It
follows for the first direction that every occurrence of e in p can be replaced by a suitable
pw to obtain p′. Conversely, since u, v ∈ VH , in p′ every maximal sub-path formed by
edges in EF is of the form pw for some w, and can thus be replaced by e to obtain p. �

Theorem 6.5 The family / is preserved by R.

Proof Let G = H[e :F] for H ∈ GR, e ∈ EH with labH(e) = A, and (A → F) ∈ R.
Since H ∈ GR, there is a derivation A• ⇒n

R H for some n ∈ N. We show by induction
on n that G is well formed and that, as required by Definition 4.7, /G|VH

= /H and
/G|VF

= /F .

26

As F is well formed, this holds for n = 0, because then G = F . For the induction
step, we can thus assume that H is well formed. In particular, tarH(f) is ordered by /H
(and we have reentH(e) = [tarH(e)] as H ∈ GR ⊆ GC satisfies (P3)).

First, let I = VF \ [extF] be the set of internal nodes of F . Then, for all v ∈ I and
f ∈ EG, v ∈ reentG(f) only if f ∈ EF (by Lemma 4.3). Therefore, v appears in /eG
only if f ∈ EF . Furthermore, for f ∈ EF , /fG = /fF because G↓f = F↓f . Consequently,

/G ∩ ((VG × I) ∪ (I × VG)) = /F . Moreover, since F is rooted, F occurs in none of the

/fF (f ∈ EF). As we furthermore know that /F orders F and /H orders tarH(e), it

remains to be shown that /fG = /fH for all f ∈ EH \ {e}. (Note that this also establishes
well-formedness of G because H and F are well formed.)

Let tarG(f) = v1 · · · vk and V = reentG(f). We know from Lemma 4.3 that V =
reentH(f). Thus, by Definition 6.1(1), it suffices to show for all i ∈ [k] and v ∈ V that v
is reachable in G↓f on a path p′ not containing srcG(f) if and only if v is reachable in
H↓f on a path p not containing srcH(f). This, however, is true by Lemma 6.4. �

To end this section, we discuss how to compute /G. For this, we mainly have to
explain how to compute /eG for every edge e. Below, let us say that the inner rank of a
graph G is the maximum of the ranks of its edges and of all |reentG(x)|, x ∈ VG ∪ EG.
Note that if G ∈ L(G) for a reentrancy-preserving HR grammar G = (Σ, N, S,R), then its
inner rank r is bounded by the maximal inner rank of the right-hand sides of R. Hence,
in the estimations below we can always assume that r is bounded in this way because the
condition can be checked during the pre-computation of all reentG(x). If it is not fulfilled,
the algorithm can immediately reject the input.

Lemma 6.6 For a graph G, /G can be computed in time O(r|G|2), where r is the inner
rank of G.

Proof It suffices to show that /eG can be computed in time O(r|G|) for every edge
e ∈ EG. By Lemma 5.6, we can compute the reentrancies for all edges in quadratic time,
and may thus assume that reentG(e) has already been computed.

As in Definition 6.1, let tarG(e) = v1 · · · vk and, for every i ∈ [k], let Vi be the set of
nodes in reentG(e) which are reachable from vi in G↓e on a path not containing e. Since
all nodes in reentG(e) have out-degree zero in G↓e, we can collect the Vi by simple depth-
first search in O(|G|) steps, and thus O(r|G|) steps in total because k ≤ r. Afterwards,
we compute for each v ∈ reentG(e) the numbers lower(v) = min{i ∈ [k] | v ∈ Vi} and
upper(v) = max{i ∈ [k] | v ∈ Vi}. This takes O(r) steps for every v and thus O(r2) steps
in total. Finally, we obtain /eG from reentG(e)× reentG(e) in O(r2) steps by deleting all
pairs (u, v) such that upper(u) ≥ lower(v).

In summary, since r ≤ |G|, all parts of the computation of /eG run in time O(r|G|),
which proves the lemma. �

From Theorem 5.10, setting f(G) = r|G|2 and observing that f(G) can certainly be
computed in time f(G), we thus get the following corollary.

Corollary 6.7 Algorithm 2, instantiated with the family / of orders, runs in time
O(r|G|2 + |G|2), where G is the input graph, r its inner rank, and G the input HR
grammar.

27

7. Conclusions and Future Work

Having developed an axiomatic notion of order-preserving hyperedge replacement
grammars that allows for parsing in uniform polynomial time, and discussed a particular
instantiation in the form of a suitable family of orders and a set of HR rules preserving it,
several possible directions for future work remain. One is the study of suitable orders and
the formal properties of these orders as well as of the sets of rules which preserve them.
A better understanding of what characterizes suitable orders and order-preserving types
of rules could make it easier to find additional ones. A related question is whether and in
which cases it may be possible to infer a suitable order for a given set of rules “on the fly”.
Suppose, for example, that a given set of rules does not preserve the family / defined
in Section 6. The reason may simply be that the targets of edges must be permuted
depending on the labels. Is it possible to determine such a permutation efficiently if it
exists? Another line of future work could extend the results of this paper to hyperedge
replacement grammars with weights. Though the details may require nontrivial arguments,
we believe that the parsing algorithm presented in this paper can be extended to the
weighted case, so that it computes the weight of the input graph uniformly in polynomial
time.

References

Aalbersberg, I. J., Ehrenfeucht, A., Rozenberg, G., 1986. On the membership problem for regular DNLC
grammars. Discrete Applied Mathematics 13, 79–85.

Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U., Knight, K., Koehn, P.,
Palmer, M., Schneider, N., 2013. Abstract meaning representation for sembanking. In: Proc. 7th
Linguistic Annotation Workshop, ACL 2013.

Bauderon, M., Courcelle, B., 1987. Graph expressions and graph rewriting. Mathematical Systems Theory
20, 83–127.

Björklund, H., Björklund, J., Ericson, P., 2017. On the regularity and learnability of ordered DAG
languages. In: Proc. 22nd International Conference on the Implementation and Application of Automata
(CIAA’17). Vol. 10329 of Lecture Notes in Computer Science. Springer, pp. 27–39.

Björklund, H., Drewes, F., Ericson, P., 2016. Between a rock and a hard place – uniform parsing for
hyperedge replacement DAG grammars. In: Dediu, A., Janoušek, J., Mart́ın-Vide, C., Truthe, B.
(Eds.), Proc. 10th Intl. Conf. on Language and Automata Theory and Applications. Vol. 9618 of
Lecture Notes in Computer Science. pp. 521–532.

Chiang, D., Andreas, J., Bauer, D., Hermann, K. M., Jones, B., Knight, K., 2013. Parsing graphs with
hyperedge replacement grammars. In: Proc. 51st Annual Meeting of the Association for Computational
Linguistics (ACL 2013), Volume 1: Long Papers. pp. 924–932.

Drewes, F., 1993a. NP-completeness of k-connected hyperedge-replacement languages of order k. Infor-
mation Processing Letters 45, 89–94.

Drewes, F., 1993b. Recognising k–connected hypergraphs in cubic time. Theoretical Computer Science
109, 83–122.

Drewes, F., Habel, A., Kreowski, H.-J., 1997. Hyperedge replacement graph grammars. In: Rozenberg, G.
(Ed.), Handbook of Graph Grammars and Computing by Graph Transformation. Vol. 1: Foundations.
World Scientific, Ch. 2, pp. 95–162.

Drewes, F., Hoffmann, B., Minas, M., 2015. Predictive top-down parsing for hyperedge replacement
grammars. In: Proc. 8th Intl. Conf. on Graph Transformation (ICGT’15). Lecture Notes in Computer
Science.

Drewes, F., Hoffmann, B., Minas, M., 2017. Predictive shift-reduce parsing for hyperedge replacement
grammars. In: de Lara, J., Plump, D. (Eds.), Proc. 10th Intl. Conf. on Graph Transformation
(ICGT’17). Vol. 10373 of Lecture Notes in Computer Science. pp. 106–122.

Gilroy, S., Lopez, A., Maneth, S., 2017. Parsing graphs with regular graph grammars. In: Proc. 6th Joint
Conf. on Lexical and Computational Semantics (*SEM 2017). pp. 199–208.

28

Habel, A., 1992. Hyperedge Replacement: Grammars and Languages. Vol. 643 of Lecture Notes in
Computer Science. Springer.

Habel, A., Kreowski, H.-J., 1987. May we introduce to you: Hyperedge replacement. In: Proceedings of
the Third Intl. Workshop on Graph Grammars and Their Application to Computer Science. Vol. 291
of Lecture Notes in Computer Science. Springer, pp. 15–26.

Lange, K.-J., Welzl, E., 1987. String grammars with disconnecting or a basic root of the difficulty in
graph grammar parsing. Discrete Applied Mathematics 16, 17–30.

Lautemann, C., 1990. The complexity of graph languages generated by hyperedge replacement. Acta
Informatica 27, 399–421.

Vogler, W., 1991. Recognizing edge replacement graph languages in cubic time. In: Ehrig, H., Kreowski,
H.-J., Rozenberg, G. (Eds.), Proceedings of the Fourth Intl. Workshop on Graph Grammars and
Their Application to Computer Science. Vol. 532 of Lecture Notes in Computer Science. Springer, pp.
676–687.

29

V

Parsing Weighted Order-Preserving Hyperedge
Replacement Grammars

Henrik Björklund1, Frank Drewes1, and Petter Ericson1

Department of Computing Science, Ume̊a University
{henrikb,drewes,pettter}@cs.umu.se

Abstract. We introduce a weighted extension of the recently proposed
notion of order-preserving hyperedge-replacement grammars and prove
that the weight of a graph according to such a weighted graph grammar
can be computed uniformly in quadratic time (under assumptions made
precise in the paper).

1 Introduction

The hyperedge-replacement grammar (HRG) is a well-studied formalisms for
describing graph languages; see, e.g., [2, 13, 12, 8]. It is also a promising candidate
for modelling semantic representations of natural language such as Abstract
Meaning Representation [1]. However, HRGs overshoot the mark in that parsing
with respect to them is computationally too expensive. Recently, a suitable
restriction called order preservation was proposed [4, 3, 5].

The present article builds upon the order-preserving HRGs (OPHGs) of [5].
It was shown in [5] that parsing for OPHGs is efficient, requiring polynomial
time even in the uniform case, i.e. the grammar is considered to be part of the
input. Here, we define a weighted version of OPHGs, and extend the results of [5]
to show that when the weights are taken from a commutative semiring, we can
efficiently compute the weight assigned by an OPHG to any input graph. This is
an important feature since applications such as semantic modelling require ways
to quantify the well-formedness of a generated graph.

Introducing weights for OPHGs requires some care, as the associativity and
commutativity of some of the rules complicates the question which derivations
of a certain graph are to be considered distinct. For this reason, we introduce
a notion of hybrid derivation trees, in which some nodes have a set of children,
while others have them ordered in a list. After this, we show how weights can
efficiently be computed, and prove the correctness of the algorithm.

Related work. Another type of restricted HRGs for semantic modelling was
proposed by Chiang et al. [6], together with a parsing algorithm and a detailed
complexity analysis. The complexity is, however, exponential even in the non-
uniform case. In particular, it is exponential in the maximum degree of nodes
in the input graph. The same holds for the parsing algorithm for regular graph
grammars presented by Gilroy et al. [11]. We also mention that another technique
for efficient HRG parsing was resently developed by Drewes et al. [9, 10].

2 Henrik Björklund, Frank Drewes, and Petter Ericson

2 Preliminaries

The set of non-negative integers is N, and [k] = {1, . . . , k}. For a set S, S∗ is the
set of strings over S, while S~ is the set of strings in S∗ in which no element of
S occurs twice. The empty string is ε, and we have S+ = S∗ \ ε and S⊕ = S~ \ ε.
The length of a string w is denoted |w|. We use the terms ’string’ and ’sequence’
interchangably. For a sequence w = a1 · · · an, every sequence ai1 · · · aik with
1 ≤ i1 < · · · < ik ≤ n is a subsequence of w, and [w] is the set {a1, . . . , an}.

2.1 Hypergraphs

We fix a disjoint, countably infinite supply LAB of labels, such that each σ ∈ LAB
has a rank rank(σ) ∈ N. A hypergraph is a structure g = (V,E, lab, att, ext) where
V and E are the (finite) sets of nodes and hyperedges, lab : E → LAB is the edge
labelling, att : E → V ⊕ is the edge attachment with |att(e)| = rank(lab(e)) + 1
for all e ∈ E, and ext ∈ V ⊕ is the sequence of external nodes.

From now on, we simply call hypergraphs graphs, and hyperedges edges.
We use the graph as a subscript to identify its components. E.g., Eg refers to
the set of edges of g. For an edge e ∈ Eg with att(e) = v0 · · · vk, we say that
srcg(e) = v0, targ(e) = v1 · · · vk, and name these the source and sequence of
targets, respectively. Similarly, for extg = v0 · · · vl, we say that v0 = g is the
source of the graph, and v1 · · · vl = g its sequence of targets. In this paper, we
require all targets of a graph to be leaves, i.e. srcg(e) /∈ [g] for all e ∈ Eg. For
a graph g, rank(g) = |g |, and for an edge e, rank(e) = rank(lab(e)) = |targ(e)|.
Graphs g, h are isomorphic, denoted g ≡ h, if they are equal up to a bijective
renaming of nodes and edges.

For a ∈ LAB with rank(a) = k, a• denotes the graph ({v0, . . . , vk}, {e}, (e→
a), (e→ v0 · · · vk), (v0 · · · vk)), i.e. the graph of one a-labelled edge of the proper
rank, with all its attached nodes external.

An alternating sequence v1e1 . . . vkek of nodes and edges is a path in g from
v1 to ek if srcg(ei) = vi and vi+1 ∈ [targ(ei)], for each i ∈ [k]. We may optionally
terminate the path at vk+1 instead of ek. In either case, the path passes all nodes
and edges vi and ei for i ∈ [k]. If v1 = g, it is a source path. A node v or edge e
is reachable from s (in g) if there is a path in g from s to v (e). A node or edge
is reachable in g if there is a source path to it.

2.2 Hyperedge replacement

For graphs h, f , and an edge e ∈ Eh such that rank(e) = rank(f), we can use
hyperedge replacement to obtain the graph g = h[[e : f]], substituting f for e in h,
where g = ((Vh ∪ Vf), (Eh ∪ Ef) \ {e}, attg, labg, exth) with

attg(e
′) =

{
attf (e′) if e′ ∈ Ef
atth(e′) if e′ ∈ Eh \ {e}

and labg(e
′) =

{
labf (e′) if e′ ∈ Ef
labh(e′) if e′ ∈ Eh \ {e}.

Clearly, we can always choose isomorphic copies of h and f so that h[[e : f]] is
defined. We will generally not make note of this, to avoid irrelevant technicalities.

Parsing Weighted Order-Preserving Hyperedge Replacement Grammars 3

For the case where g = h[[e : f]] and i = g[[e′ : j]] with e′ /∈ Ef , we write
i = h[[e : f, e′ : j]], and similarly for a larger number of replacements.

We divide LAB into two subsets LABT and LABN of terminals and nonter-
minals, and accordingly call edges terminal and nonterminal ones. We sometimes
shorten the expressions further to just “terminals” and “nonterminals”.

2.3 Hyperedge replacement grammars

A hyperedge replacement grammar (HRG) is a context-free graph grammar
G = (Σ,N, S,R) consists of a terminal alphabet Σ ⊂ LABT , a nonterminal
alphabet N ⊂ LABN , an initial nonterminal S ∈ N , and a set R of (HR) rules
form A→ f , where A ∈ N and f is a graph over Σ ∪N with rank(A) = rank(f).
If f has ` nonterminal edges, we name them {e1, . . . , e`} and write arity (A→ f)
for `.

If we have a graph h with an edge e with labh(e) = A ∈ N , and A→ f ∈ R,
we can derive g = h[[e : f]]. We call this a derivation step, and denote it h→A→f g.
We also write more generally h→G g for a derivation step using any rule in R.
The reflexive and transitive closure of →G is →∗G. The language of G is the set
L(G) of all graphs g over LABT such that S• →∗G g.

3 Order-Preserving Hyperedge Replacement Grammars

We now turn to order-preserving HRGs. The first ingredient is a condition called
reentrancy preservation. Reentrancies are deeply entwined with the way we
identify places in a graph that match the right-hand side of a given rule.

3.1 Reentrancies

Intuitively, the reentrant nodes of a node or edge x in a graph g are the first
descendants of x that can also be reached on a path that avoids x. As the external
nodes of a right-hand side of an HR rule are the ones that, after the replacement,
are reachable from “outside” the subgraph, we also consider them as reentrant.
The graph delineated by x and its reentrant nodes is the subgraph rooted at x.

Definition 1 (Reentrant node). Given a graph g and E ⊂ Eg, let TARg(E)
be the union of all sets of targets of edges in E, i.e.

⋃
e∈E [targ(e)].

Further, for x ∈ Vg ∪ Eg, let x̂ be x if x ∈ Vg, and srcg(x) if x ∈ Eg. Now,
let Exg be the set of all edges e ∈ Eg such that all source paths to e pass x.1 Then
the set of reentrant nodes of x in g is

reentg(x) = (TARg(E
x
g) \ {x̂}) ∩ (TARg(Eg \ Exg) ∪ [extg]).

Definition 2 (Rooted subgraph). Given a graph g with x ∈ Vg ∪ Eg, the
subgraph g↓x rooted at x is a graph h such that Eh = Exg , Vh = {x̂}∪TARg(Eh),
atth and labh are the appropriate restrictions of attg and labg, respectively, and
exth is x̂ followed by reenth(x) in some order.

1 Note that if x is not reachable in g, Exg = ∅

4 Henrik Björklund, Frank Drewes, and Petter Ericson

Rooted subgraphs are strictly nested, which is proved in [5] as the following
lemma (where ∼ is isomorphy modulo the order of g):

Lemma 1 (Lemma 3.4 in [5]). Let g be a graph, h = g↓x for some x ∈ Vg∪Eg.
Then h↓y ∼ g↓y for all y ∈ (Vh ∪ Eh) \ [exth]

3.2 Reentrancy Preservation

Reentrancy preservation formalizes the property that, given a graph h and some
edge e ∈ Eh with labh(e), we can replace e by some graph f according to a rule
A→ f without affecting the sets reentg(x) for x ∈ Vh ∪ Vf .

We achieve this by restricting our grammars to two types of rules, namely
duplication rules and deep rules. Rules of these two kinds are called reentrancy
preserving. To define duplication rules, consider a graph

f = ({v0, . . . , vn}, {e1, e2}, att, lab, ext),

where att(e1) = v0 · · · vn = att(e2), lab(e1) = lab(e2) ∈ LABN , and ext is a
subsequence of att(e1) starting with v0. If |ext| < n then f (and every graph
isomorphic to f) is a twin, and if |ext| = n then it is a clone. A rule A→ f is a
twin rule if f is a twin and a clone rule if f is a clone with lab(e1) = lab(e2) = A.
A duplication rule is either a clone or a twin rule.

A rule A→ f is a deep rule if f fulfills the following conditions:

– Vf 6= [extf],

– all nodes in Vf are reachable from f and have out-degree ≤ 1, and
– for every nonterminal edge e, reentf (e) = [tarf (e)].

A HRG is reentrancy preserving if it has only reentrancy-preserving rules. We
note here that [5] also permits chain rules, i.e. rules that only change the label of
an edge from one nonterminal to another nonterminal, and thus violate the first
condition above. In the present paper we exclude them because they can result
in an infinite number of derivations of a given graph, thus making it in general
unreasonable to associate a weight with such a graph.

Later on, we will also need the following generalization of duplication rules
to the case where ` ≥ 2 copies of a nonterminal edge are created: given any
duplication rule r = (A→ f) and some ` ≥ 2, we denote by r` the rule A→ f ′,
where f ′ is obtained from f by replacing e1, e2 by ` copies. Thus, r2 = r.

Lemma 2 (Adapted from lemma 5.6 in [5]). Let g ∈ L(G) for some
reentrancy-preserving HRG G. There is a quadratic algorithm that computes, for
every x ∈ Vg ∪ Eg, the set reentg(x), and thus the subgraph g↓x.

3.3 Ordering nodes

Reentrancy preservation allows us to pinpoint the subgraphs that may have been
generated by a specific nonterminal, but as shown in [4], this is not sufficient to

Parsing Weighted Order-Preserving Hyperedge Replacement Grammars 5

achieve efficient parsing, as needing to guess the order of targets in subgraphs
g↓x may still cause NP-hardness. Thus, we require a way to determine the order
of nodes, in particular reentrant nodes. This requires an ordering relation that
can be efficiently computed, and fulfils some basic requirements, and a set of
reentrancy-preserving rules that additionally preserves that order. Formally:

Definition 3 (Suitable order). For a set G of graphs, a suitable family of
orders is a family (�g)g∈G of binary relations �g ⊆ Vg × Vg such that

– for all A ∈ LABN , A• is ordered by �A• and
– if i : g → h is an isomorphism and u, v ∈ Vg, then u �g v iff iV (u) �h iV (v).

Definition 4 (Order preservation). A reentrancy-preserving set R of HR
rules preserves a suitable family of orders � = (�g)g∈G if, for all g = h[e : f]
with g, h, f ∈ G, e ∈ Eh, and labh(e) → f ∈ R, we have �g|Vh

= �h and
�f |Vf

= �f .
An order-preserving HRG (OPHG) is an HRG (Σ,N, S,R) together with a

suitable family � of orders, such that R is both order preserving and preserves �.

4 Weighted Order-Preserving HR Grammars

We now add weights – taken from some semiring – to order-preserving HR
grammars. For this, and throughout the rest of this paper, let S = (S,+, ·, 0, 1)
be a commutative semiring, meaning that (S,+, 0) and (S, ·, 1) are two monoids
over the domain S. Thus, + and · are binary operations on S such that

– 1 is the identity element for ·
– 0 is the identity element for + and the absorbing one for ·,
– + and · are commutative, and
– · distributes over +.

As usual, for every a ∈ S we let a0 = 1 and an+1 = a · an for all n ∈ N.
A weighted OPHG computes a graph series, i.e. a mapping of graphs to S.

As usual, this is achieved by assigning weights to rules.

Definition 5 (weighted OPHG). A weighted OPHG G = (Σ,N, S,R, ω)
(over S) consists of an OPHG (Σ,N, S,R) and a weight assignment ω : R→ S.

Informally speaking, if several distinct derivations can produce the same
graph, we sum up the weights of the individual derivations to obtain the weight
of the graph. The weight for a single derivation is the product of the weights of
all the rules applied.

It is inconvenient to formalise this based on the derivations themselves because,
just as in the case of ordinary context-free grammars, derivations may differ only
in the order in which nonterminals are replaced, which yields distinct derivations
that should not be distinguished. A standard technique to solve this problem is to
consider derivation trees instead of derivations. We can mostly use this standard

6 Henrik Björklund, Frank Drewes, and Petter Ericson

technique, but we also have to take into account that duplication rules have
certain associativity and commutativity properties that make it inappropriate to
sum up over derivation trees that, intuitively, should be considered equivalent.

Let us begin the process of making these notions more precise by recalling
the notions of shallow graphs and siblinghoods from [5].

Definition 6. A graph g is shallow if g = srcg(e) for all e ∈ Eg. A sibling-
hood in g is a set Sib ⊆ Eg such that |Sib| ≥ 2 and targ(e) = targ(e

′) for all
e, e′ ∈ Sib. We denote targ(e), e ∈ Sib, by targ(Sib), and let g(Sib) = ({g} ∪
[targ(Sib)],Sib, attg|Sib, labg|Sib, tar), where tar is the subsequence of targ(Sib)
of nodes that are external in g or targets of edges outside of Sib, i.e. that belong
to TARg(Sib) ∩ (TARg(Eg \ Sib) ∪ [g])

For siblinghoods Sib,Sib′, we let Sib ≤ Sib′ if targ(Sib) is a subsequence of
targ(Sib′). A siblinghood of g is prime if it is maximal with respect to both ≤
and set inclusion.

From now on, we shall for technical simplicity assume that the considered
OPHG G contains exactly one clone rule for every A ∈ N . This is not a restriction
because the definition of the weight of derived graphs to be given below ensures
that any number of clone rules for the same nonterminal can be replaced by a
single clone rule whose weight is the sum of the weights of the individual rules.
In particular, if there is no clone rule for A, this has the same effect as a single
clone rule of weight 0. The weight of the unique clone rule for A ∈ N is denoted
by ω(A), and we write →cl for the derivation relation that exclusively uses clone
rules, i.e. g →∗cl g

′ if g′ is obtained from g by cloning nonterminal edges.

The following is essentially Lemma 5.3 of [5]:

Lemma 3. Let A ∈ N and let g be a shallow graph over N with |Eg| ≥ 2.

– If A• →+ g, then for every prime siblinghood Sib of g we either have g =
g(Sib) and A• →+

cl g, or A• →∗ h → h[[e : f]] →∗cl h[[e : f ′]] = g where
labh(e)→ f is a twin rule and g(Sib) = f ′.

– Up to reordering of derivation steps, the derivations of these forms are the
only ones deriving g from A•.

Hence, a derivation of a shallow graph can be broken down into an initial series
of clonings followed by iterated sub-derivations each consisting of an application of
a twin rule A→ f and any number of clonings of the two nonterminal edges e1, e2

of f . Note that the result of each such sub-derivation depends only on A→ f
and the number of clonings since attf (e1) = attf (e2). Therefore, the following
definition of derivation trees uses trees in which the nodes that correspond to
derivations of siblinghoods are unordered and unranked. For a tree consisting
of a root labelled a and subtrees t1, . . . , t`, we write a[t1, . . . , t`] or a〈t1, . . . , t`〉
depending on whether t1, . . . , t` is to be interpreted as an ordered or unordered
list (or a multiset), respectively. We write a(t1, . . . , t`) to denote a tree in which
the first level of children can be either ordered or unordered.

Parsing Weighted Order-Preserving Hyperedge Replacement Grammars 7

Definition 7 (derivation tree). For a weighted OPHG G = (Σ,N, S,R, ω)
and A ∈ N , the set of all A-derivation trees is the smallest set of trees t such
that one of the following holds:

(1) t = r[t1, . . . , t`] for a deep rule r = (A→ f) ∈ R such that arity (A→ f) = `,
and ti is a labf (ei)-derivation tree for every i ∈ [k].

(2) t = r`〈t1, . . . , t`〉 for a clone rule A→ f , where ` ≥ 2 and ti is an A-derivation
tree that is not of type (2), for every i ∈ [`].

(3) t = r`〈t1, . . . , t`〉 for a twin rule A → f , where ` ≥ 2 and ti is a labf (e1)-
derivation tree that is not of type (2), for every i ∈ [`].

A more rigorous and complete treatment of various issues surrounding deriva-
tion trees of graph algebras with associative and commutative operations can be
found in [7].

We can evaluate a derivation tree to yield a graph g in the following way:
Given a derivation tree t = r(t1, . . . , t`), eval (t) is defined as the right-hand side
f of r, with each successive nonterminal ei replaced with the evaluation of the
corresponding subtree of the derivation tree, i.e. eval ((A → f)(t1, . . . , t`)) =
f [[e1 : eval (t1), . . . , e` : eval (t`)]]. Given a graph g, we let DTG(g) denote the set
of all S-derivation trees such that eval (t) ≡ g.

We make the following observation, whose correctness follows from the context-
freeness of hyperedge replacement.

Observation 1 For every OPHG G = (Σ,N, S,R, ω),

L(G) = {eval (t) | t is an S-derivation tree of G}.

Now, as mentioned, the weight of a graph is defined to be the sum of the
weights of all its derivation trees:

Definition 8 (generated graph series). Let G = (Σ,N, S,R, ω) be a weighted
OPHG and A ∈ N .

1. For every duplication rule r = (A → f) ∈ R and every ` ≥ 2, let ω(r`) =
ω(r)·ω(labf (e1))`−2. (Note that r` corresponds to the application of r followed
by `− 2 clonings of any of the two resulting nonterminal edges.)

2. The weight of an A-derivation tree t = r(t1, . . . , t`) is defined inductively, as

ω(t) = ω(r) ·
∏
i∈[k]

ω(ti).

3. The graph series ωG : GΣ → S generated by G is given by

ωG(g) =
∑

t∈DTG(g)

ω(t).

(The sum is finite, and thus well defined due to the commutativity of +.)

Note that given G, the language L(G) of G seen as an unweighted grammar, is a
superset of the support of G, i.e. the set of all graphs g such that ωG(g) 6= 0.

8 Henrik Björklund, Frank Drewes, and Petter Ericson

5 Computing Weights

Our algorithm builds upon the unweighted parsing algorithm from [5]. We store
in each node and edge nothing more than an |N |-vector of weights, which is
computed in very much the same way as the sets of nonterminals computed in [5].
We use the distributivity of multiplication over addition to keep our computations
efficient (assuming efficient multiplication and addition).

The algorithm exploits Lemma 1, i.e. the property that the subgraphs g↓x
are strictly nested in all graphs derivable by an OPHL. Using this, it is possible
to process the subgraphs of g in a tree-like “bottom-up” manner, marking each
node and edge x with the set of all nonterminals that can generate g↓x, after
all g↓y properly contained in g↓x have already been processed. Eventually, S
belongs to the set g is marked with if and only if g ∈ L(G).

Order preservation enters the picture as follows: every subgraph h of g which
was derived from some nonterminal edge, is of the form h = g↓x for some node
or edge x of g. As shown in [5], order preservation guarantees that h is ordered
by �g. Thus, in the algorithm only those subgraphs g↓x are of interest for which
the ordering of targets is uniquely determined by �g. From now on, we will thus
assume that, whenever a subgraph h = g↓x is constructed, the order of nodes in
h is chosen according to �g.

To show how ωG(g) can be computed, we describe two algorithms in one: the
first computes the derivation trees of g whereas the second computes its weight
by summing up over all the derivation trees. In the current paper, we mainly
use the first algorithm as a tool to facilitate the correctness proof of the second.
The set of derivation trees computed can, however, be represented in a compact
fashion as a “packed forest”, which is of independent usefulness.

The main procedure of the algorithm computes, in the same bottom-up
manner as in [5], a set Dx(A) of A-derivation trees for each x ∈ Vg ∪ Eg and
every A ∈ N . More precisely, Dx(A) is the set of all A-derivation trees of the
input HRG G such that A• →∗G g↓x. As the correctness of this procedure was
proved in [5] (though not explicitly in terms of derivation trees), it remains to
show that the second version of the algorithm computes

∑
t∈D

g
(S) ω(t).

That second version computes weights Wx(A) instead of the sets Dx(A),
where Wx(A) =

∑
t∈Dx(A)) ω(t). In the pseudocode below, we always indicate

the changes that must be made to obtain the second version by lines marked
by “alt:”. The corresponding line always replaces its immediate predecessor.
For sets of (derivation) trees D1, . . . , D` and a rule r of arity `, we furthermore
write r(D1, . . . , D`) to denote the set {r(t1, . . . , t`) | (t1, . . . , t`) ∈ D1× · · · ×D`}
(i.e. we use that notation in both the ordered and unordered case).

A subroutine used by the algorithm is Algorithm 1, a modified version of
the corresponding procedure in [5]. It takes as input a shallow graph h whose
edges e are already assumed to be annotated with the respective sets De(A).
The algorithm uses Lemma 3 in order to assemble – in a bottom-up manner
over the prime siblinghoods of h – the set D

h
(A). In the algorithm we say

that a duplication rule A → f of G fits a siblinghood Sib = {s1, . . . , s`} of h

Parsing Weighted Order-Preserving Hyperedge Replacement Grammars 9

Algorithm 1 Computing Derivation Trees with Duplication Rules

1: function shallowParse(set R of duplication rules, shallow annotated graph h
with irrelevant edge labels)

2: while |Eg| > 1 do
3: if h does not contain a prime siblinghood then
4: return (A 7→ ∅)A∈N
5: alt: return (A 7→ 0)A∈N

6: choose a prime siblinghood Sib = {s1, . . . , s`}
7: replace Sib in h by a new edge e with tarh(e) = h(Sib)
8: for each A ∈ N do
9: De(A)←

⋃
r = (A → B••) fits Sib r

`〈Ds1(B), . . . ,Ds`(B)〉
10: alt: We(A)←

∑
r = (A → B••) fits Sib ω(r`) ·

∏
i∈[`]Wsi(B)

11: return (A 7→ De(A))A∈N where {e} = Eh
12: alt: return (A 7→ We(A))A∈N where {e} = Eh

Algorithm 2 Computing Derivation Trees for Order-Preserving HR Grammars

1: function parse(order-preserving HR grammar G = (Σ,N, S,R), graph g ∈ GR)
2: preProcess(g) . Compute ≺g as well as all g↓x for all x ∈ Vg ∪ Eg
3: for x ∈ Vg ∪ Eg do
4: if g↓x is defined then Dx ← ⊥
5: else
6: Dx ← (A 7→ ∅)A∈N
7: alt: Wv ← (A 7→ 0)A∈N

8: while Dg = ⊥ do

9: let x ∈ Vg ∪ Eg with Dx = ⊥ and
Dy 6= ⊥ for all y ∈ (Vg↓x ∪ Eg↓x) \ ([extg↓x] ∪ {x})

10: if x ∈ Vg then parseV(x)
11: else parseE(x)

12: return Dg(S)
13: alt: return Wg(S)

if f ≡ h({s1, s2}) when disregarding edge labels, and we denote f by B•• to
indicate that the two edges in f carry the label B.

The reader should note that the result of Algorithm 1 does not depend on
the choice of Sib because the prime siblinghoods Sib1, . . . ,Sibk of h are pairwise
disjoint and the replacement of Sib = Sibi by e does not affect the siblinghoods
Sibj , j ∈ [k]\{i} (though it may of course create an additional prime siblinghood).

The main procedure of the parsing algorithm is shown in Algorithm 2. In
its while loop, it repeatedly chooses an x ∈ Vg ∪ Eg for which the sets Dx(A)
shall be computed, and calls parseV (Algorithm 3) or parseE (Algorithm 4)
depending on whether x ∈ Vg or x ∈ Eg.

The function matching used in line 5 of Algorithm 4 is described in [5] (using
slightly different notation). It is based on the fact that, if g↓e can be derived
from a deep right-hand side f , then the mapping φ of the nodes in f to their

10 Henrik Björklund, Frank Drewes, and Petter Ericson

Algorithm 3 Computing Derivations Trees of g↓v for nodes v ∈ Vg
1: function parseV(node v such that De(A) 6= ⊥ for all e ∈ Eg with srcg(e) = v)
2: if v has out-degree 0 then
3: Dv ← (A 7→ ∅)A∈N
4: alt: Wv ← (A 7→ 0)A∈N
5: else
6: initialize h = (V,E, att, lab, ext) as the following shallow graph:
7: E = {e ∈ Eg | srcg(e) = v}
8: V = {v} ∪

⋃
e∈E reentg(e)

9: ext = extg↓v
10: att(e) = vw, where w is reentg(e) ordered by �g, for each e ∈ E
11: Dv ← shallowParse({r ∈ R | r a duplication rule}, h)
12: alt: Wv ← shallowParse({r ∈ R | r a duplication rule}, h)

Algorithm 4 Computing Derivations Trees of g↓e for edges e ∈ Eg
1: function parseE(edge e s.t. Dy 6= ⊥ for all y ∈ (Vg(x) ∪ Eg(x)) \ ([extg(x)] ∪ {x}))
2: De(A)← ∅ for all A ∈ N
3: alt: We(A)← 0 for all A ∈ N
4: for each deep rule r = (A→ f) of arity ` do
5: φ← matching(f, e)
6: if φ 6= null then
7: De(A)← De(A) ∪ r[Dφ(srcf (e1))(labf (e1)), . . . ,Dφ(srcf (e`))(labf (e`))]
8: alt: We(A)←We(A) + ω(r) ·

∏
i∈[`]Wφ(srcf (ei))(labf (ei))}

images in g↓e is uniquely determined by f and the reentrancies in g↓e, due to
reentrancy and order preservation. As proved in [5], this makes it furthermore
possible to compute φ = matching(f, e) in linear time.

As the correctness of the computation of the sets Dx(A) was essentially shown
in [5], we take it for granted here and use it to show inductively that the weights
are correctly computed. Below, we assume for the sake of technical simplicity
that the operations of the semiring S are computable in constant time.

Theorem 2. Let ≺ be a suitable family of orders, and let η be a function mapping
graphs to N such that both η(g) and ≺g can be computed in time η(g).2 Then
there is an algorithm which takes as input a graph g and an OPHG grammar
G = (Σ,N, S,R, ω), and computes ωG(g) in time O(η(g) + |g|2 + |G|2).

Proof. With straightforward reformulations, the proof of the main theorem in [5]
shows that Algorithm 2 computes DTG(g) and runs in time O(η(g) + |g|2 + |G|2)
if the time required for the explicit construction of derivation trees is neglected.3

Together with the assumption that the operations of S can be computed in

2 The function η describes the complexity of computing≺g, and the condition that it can
be executed in time η(g) corresponds to the usual requirement of time constructibility.

3 Instead of computing the sets Dx(A), the algorithm in [5] only computes, for every
x ∈ Vg ∪ Eg, the set of all A ∈ N such that Dx(A) 6= ∅.

Parsing Weighted Order-Preserving Hyperedge Replacement Grammars 11

constant time, the latter means that the weight-computing version of Algorithm 2
runs in time O(η(g) + |g|2 + |G|2) as well. To complete the proof, it thus suffices
to prove by induction that Algorithms 1–4 maintain the invariant that Wx(A) =∑
t∈Dx(A) ω(t) for those edges and nodes x and those A ∈ N such that Dx(A) 6= ⊥.

In the proof, for a set D of derivation trees, we abbreviate
∑
t∈D ω(t) by ω(D).

We check the algorithms one by one. Note that the induction hypothesis states
that the equation Wx(A) = ω(Dx(A)) holds when the respective procedure is
entered, and we have to show that it still holds afterwards. We use the fact that,
by distributivity, for every rule r = (A→ f) of arity ` and all sets D1, . . . , D` of
derivation trees, it holds that

ω(r(D1, . . . , D`)) = ω(r) ·
∏
i∈[`]

ω(Di). (1)

Procedure shallowParse: We have to show that the two lines in the body of
the loop starting in line 8 maintain the invariant. These lines change only De(A)
and We(A), and after those two lines we have

We(A) =
∑

r = (A→ B••) fits Sib

ω(r`) ·
∏
i∈[`]

Wsi(B)

=
∑

r = (A→ B••) fits Sib

ω(r`) ·
∏
i∈[`]

ω(Dsi(B))

=
∑

r = (A→ B••) fits Sib

ω(r`〈Ds1(B), . . . ,Ds`(B)〉) (by Equation 1)

= ω(De(A)).

Procedure parse: Only lines 6 and 7 affect some Dx(A) and Wx(A). These lines
obviously preserve the invariant.

Procedure parseV: As before, lines 3 and 4 respect the invariant. Concerning
lines 11 and 12, note that the two versions of shallowParse return (A 7→
De(A))A∈N and (A 7→ We(A))A∈N , respectively, for some edge e. By induction
hypothesis, We(A) = ω(De(A)) for all A ∈ N , which completes the argument.

Procedure parseE: Once more, lines 2 and 3 respect the invariant. Furthermore,
if D = De(A) and W =We(A) = ω(De(A)) before an execution of lines 7 and 8
then, after those two lines,

We(A) = W + ω(r) ·
∏
i∈[`]

Wφ(srcf (ei))(labf (ei))}

= ω(D) + ω(r) ·
∏
i∈[`]

ω(Dφ(srcf (ei))(labf (ei)))

= ω(D) + ω(r[Dφ(srcf (e1))(labf (e1)), . . . ,Dφ(srcf (e`))(labf (e`))]

= ω(De(A)).

This completes the correctness proof of the theorem. ut

12 Henrik Björklund, Frank Drewes, and Petter Ericson

As indicated before, it is worthwhile noticing that the first version of the
parsing algorithm computes the set DTG(g) in time O(η(g) + |g|2 + |G|2) if the
sets Dx(A) are represented in a compact way as packed forests. This may be
useful for further applications.

References

1. Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U.,
Knight, K., Koehn, P., Palmer, M., Schneider, N.: Abstract meaning representation
for sembanking. In: Proc. 7th Linguistic Annotation Workshop, ACL 2013 (2013)

2. Bauderon, M., Courcelle, B.: Graph expressions and graph rewriting. Mathematical
Systems Theory 20, 83–127 (1987)

3. Björklund, H., Björklund, J., Ericson, P.: On the regularity and learnability of
ordered DAG languages. In: Proc. 22nd International Conference on the Imple-
mentation and Application of Automata (CIAA’17). Lecture Notes in Computer
Science, vol. 10329, pp. 27–39. Springer (2017)

4. Björklund, H., Drewes, F., Ericson, P.: Between a rock and a hard place – uniform
parsing for hyperedge replacement DAG grammars. In: Dediu, A., Janoušek, J.,
Mart́ın-Vide, C., Truthe, B. (eds.) Proc. 10th Intl. Conf. on Language and Automata
Theory and Applications. Lecture Notes in Computer Science, vol. 9618, pp. 521–532
(2016)

5. Björklund, H., Drewes, F., Ericson, P., Starke, F.: Uniform parsing for hy-
peredge replacement grammars. Tech. Rep. UMINF 18.13, Ume̊a University,
http://www8.cs.umu.se/research/uminf/index.cgi (2018), submitted for publication

6. Chiang, D., Andreas, J., Bauer, D., Hermann, K.M., Jones, B., Knight, K.: Parsing
graphs with hyperedge replacement grammars. In: Proc. 51st Annual Meeting of
the Association for Computational Linguistics (ACL 2013), Volume 1: Long Papers.
pp. 924–932 (2013)

7. Courcelle, B.: The monadic second-order logic of graphs V: On closing the gap
between definability and recognizability. Theoretical Computer Science 80(2), 153–
202 (1991)

8. Drewes, F., Habel, A., Kreowski, H.J.: Hyperedge replacement graph grammars.
In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph
Transformation. Vol. 1: Foundations, chap. 2, pp. 95–162. World Scientific (1997)

9. Drewes, F., Hoffmann, B., Minas, M.: Predictive top-down parsing for hyperedge re-
placement grammars. In: Proc. 8th Intl. Conf. on Graph Transformation (ICGT’15).
Lecture Notes in Computer Science (2015)

10. Drewes, F., Hoffmann, B., Minas, M.: Predictive shift-reduce parsing for hyperedge
replacement grammars. In: de Lara, J., Plump, D. (eds.) Proc. 10th Intl. Conf. on
Graph Transformation (ICGT’17). Lecture Notes in Computer Science, vol. 10373,
pp. 106–122 (2017)

11. Gilroy, S., Lopez, A., Maneth, S.: Parsing graphs with regular graph grammars. In:
Proc. 6th Joint Conf. on Lexical and Computational Semantics (*SEM 2017). pp.
199–208 (2017)

12. Habel, A.: Hyperedge Replacement: Grammars and Languages, Lecture Notes in
Computer Science, vol. 643. Springer (1992)

13. Habel, A., Kreowski, H.J.: May we introduce to you: Hyperedge replacement.
In: Proceedings of the Third Intl. Workshop on Graph Grammars and Their
Application to Computer Science. Lecture Notes in Computer Science, vol. 291, pp.
15–26. Springer (1987)

	Kappa_21738_Avh_P Ericson_B
	Paper 1__Regflik
	Paper 1_21738_Avh_P Ericson_A
	Paper 2__Regflik
	Paper 2_21738_Avh_P Ericson_A
	Paper 3__Regflik
	Paper 3_21738_Avh_P Ericson_A
	Paper 4__Regflik
	Paper 4_21738_Avh_P Ericson_A
	Paper 5__Regflik
	Paper 5_21738_Avh_P Ericson_B

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 341
 284

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

 HistoryItem_V1
 PageSizes

 Range: all pages
 Size: 6.496 x 9.370 inches / 165.0 x 238.0 mm
 Action: Make all pages the same size
 Scale: No scaling (crop or pad)
 Rotate: Never

 D:20190107082824

 AllSame
 1

 D:20151203093154
 674.6457
 s5
 Blank
 467.7165

 Tall
 1
 1
 1
 1341
 152

 qi4alphabase[QI 4.0/QHI 4.0 alpha]
 CCW
 None
 1

 2
 AllDoc
 2

 CurrentAVDoc

 Custom

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 12
 11
 12

 1

 HistoryList_V1
 qi2base

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 341
 284

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

 HistoryItem_V1
 PageSizes

 Range: all pages
 Size: 6.496 x 9.370 inches / 165.0 x 238.0 mm
 Action: Make all pages the same size
 Scale: No scaling (crop or pad)
 Rotate: Never

 D:20190102111117

 AllSame
 1

 D:20151203093154
 674.6457
 s5
 Blank
 467.7165

 Tall
 1
 1
 1
 1341
 152

 qi4alphabase[QI 4.0/QHI 4.0 alpha]
 CCW
 None
 1

 2
 AllDoc
 2

 CurrentAVDoc

 Custom

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 18
 17
 18

 1

 HistoryList_V1
 qi2base

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 341
 284

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

 HistoryItem_V1
 PageSizes

 Range: all pages
 Size: 6.496 x 9.370 inches / 165.0 x 238.0 mm
 Action: Make all pages the same size
 Scale: No scaling (crop or pad)
 Rotate: Never

 D:20190102111239

 AllSame
 1

 D:20151203093154
 674.6457
 s5
 Blank
 467.7165

 Tall
 1
 1
 1
 1341
 152

 qi4alphabase[QI 4.0/QHI 4.0 alpha]
 CCW
 None
 1

 2
 AllDoc
 2

 CurrentAVDoc

 Custom

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 20
 19
 20

 1

 HistoryList_V1
 qi2base

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 341
 284

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

 HistoryItem_V1
 PageSizes

 Range: all pages
 Size: 6.496 x 9.370 inches / 165.0 x 238.0 mm
 Action: Make all pages the same size
 Scale: Scale width and height equally
 Rotate: Clockwise if needed

 D:20190102111413

 AllSame
 1

 D:20151203093154
 674.6457
 s5
 Blank
 467.7165

 Tall
 1
 1
 1
 1341
 152

 qi4alphabase[QI 4.0/QHI 4.0 alpha]
 CCW
 Uniform
 1

 2
 AllDoc
 2

 CurrentAVDoc

 Custom

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 20
 19
 20

 1

 HistoryList_V1
 qi2base

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 341
 284

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

 HistoryItem_V1
 PageSizes

 Range: all pages
 Size: 6.496 x 9.370 inches / 165.0 x 238.0 mm
 Action: Make all pages the same size
 Scale: No scaling (crop or pad)
 Rotate: Never

 D:20190102111711

 AllSame
 1

 D:20151203093154
 674.6457
 s5
 Blank
 467.7165

 Tall
 1
 1
 1
 1341
 152

 qi4alphabase[QI 4.0/QHI 4.0 alpha]
 CCW
 None
 1

 2
 AllDoc
 2

 CurrentAVDoc

 Custom

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 29
 28
 29

 1

 HistoryList_V1
 qi2base

 HistoryItem_V1
 PageSizes

 Range: all pages
 Size: 6.496 x 9.370 inches / 165.0 x 238.0 mm
 Action: Make all pages the same size
 Scale: No scaling (crop or pad)
 Rotate: Never

 D:20190107082426

 AllSame
 1

 D:20151203093154
 674.6457
 s5
 Blank
 467.7165

 Tall
 1
 1
 1
 1341
 152

 qi4alphabase[QI 4.0/QHI 4.0 alpha]
 CCW
 None
 1

 2
 AllDoc
 2

 CurrentAVDoc

 Custom

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 68
 67
 68

 1

 HistoryList_V1
 qi2base

