
Z-automata
for Compact and Direct Representation

of Unranked Tree Languages

Johanna Björklund1, Frank Drewes1, and Giorgio Satta2

1 Dept. Computing Science, Ume̊a University
{johanna,drewes}@cs.umu.se

2 Department of Information Engineering, University of Padua
satta@dei.unipd.it

Abstract. Unranked tree languages are valuable for modelling struc-
tured objects such as XML documents, database entries, and depen-
dency trees. We introduce a new type of automaton for unranked tree
languages, called Z-automaton. The model is closely related to stepwise
tree automata, thus offering a compact form of representation, but it
avoids obfuscating encoding schemes. We discuss alternative semantics
and normal forms, and finally prove the membership problem to be in
O(mn), where m is the size of the transition table, an n is the size of the
input tree.

1 Introduction

Unranked tree languages (UTLs) have been studied since the 60s, most notably
as a formal model for the document markup language XML [1, 6]. The current
work is motivated by the use of UTLs as a representation for dependency trees in
natural language processing [8]. A dependency tree for a sentence is, simply put,
an arrangement of the lexical items of the sentence into a hierarchy of heads
and their dependents. Our long-term objective is to provide transducers that
translate dependency syntactic trees into graph-based structures, representing
the semantics of the input, in which nodes encode objects and edges encode rela-
tions. In this paper, we take a first step by introducing a new type of automaton
to capture the domain language of well-formed dependency trees.

Computer Science literature contains a number of formalisms for representing
unranked tree languages. The best known is probably the unranked tree automa-
ton (UTA) of Brüggemann-Klein, Murata, and Wood [1]. These UTA use regular
string languages to express the left-hand sides of transitions rules. Depending on
what device is chosen to represent these string languages, different types of UTA
arise. Natural choices include regular expressions and nondeterministic or deter-
ministic finite state automata. However, as shown in [11], none of these yields
unique minimal UTA in the deterministic case. Moreover, even when the string
languages are represented by DFAs, the minimization problem is NP-complete.
Martens and Niehren therefore proposed stepwise tree automata (STA) which

The quick brown fox jumped over the lazy dog .

det

amod

amod nsubj

root

det

amod

prep-over

Fig. 1. The dependency analysis assigned by the Stanford parser to the sentence ‘The
quick brown fox jumped over the lazy dog.’

process binarized encodings of unranked tree automata. Bottom-up (bu-) deter-
ministic stepwise automata have the advantage of having a canonical form, and
being exponentially more succinct than bu-deterministic tree automata over the
first-child next-sibling encoding.

There are also logic formalisms for (weighted) unranked tree languages. In [5],
Droste and Vogler provide a weighted monadic second order logic for unranked
trees and introduce the notion of weighted UTA. Again, the theories of ranked
and unranked tree languages differ, this time in that weighted UTA and a syntac-
tically restricted weighted MSO-logic for unranked trees have the same expressive
power in case the semiring is commutative, but not in general.

In its canonical computations, the Z-automaton proposed here visits the in-
put tree bottom-up in an order resembling a zed-shaped motion, alternating
horizontal moves and vertical moves. The Z-automaton is as expressive as UTA
and STA. It combines the best aspects of both: The representation is arguably
as natural as UTA, and as compact as STA. Furthermore, Z-automata use tran-
sitions whose left-hand sides may refer to components at differing tree depths.
Similarly to the tree transducers developed in [9], this feature allows for a direct
implementation of so-called local rotations when Z-automata are used as a basis
for the development of transducers for unranked tree languages.

2 Preliminaries

General Notation. The set of natural numbers (including zero) is denoted by N,
and N+ = N\{0}. For n ∈ N the set {1, . . . , n} is abbreviated to [n]. In particular,
[0] = ∅. The set of all finite sequences of elements of a set S is written S∗, ε
is the empty sequence, S+ = S∗ \ {ε}, and 2S is the powerset of S. Given a
sequence w, we write [w] for the set of its elements, i.e., the smallest set S such
that w ∈ S∗. Given a string s and a set of strings S, we denote by s · S the set
of strings {ss′ | s′ ∈ S}.

Trees. Let Σ be an alphabet. We define the set TΣ of (unranked) trees over
Σ as usual. It is the smallest set such that, for all f ∈ Σ and t1, . . . , tn ∈ TΣ

2

(n ∈ N), we have f(t1, . . . , tn) ∈ TΣ . In particular f(), which we abbreviate by
f , is in TΣ . (This is the base case of the inductive definition.)

A ranked alphabet Σ is an alphabet additionally equipped with a function
#: Σ → N. For f ∈ Σ, the value #(f) is called the rank of f . For any n ≥ 0,
we denote by Σn the set of all symbols of rank n from Σ. If Σ is ranked, then
TΣ is restricted so that f(t1, . . . , tn) ∈ TΣ only if n = #(f). Thus, in this case
TΣ becomes a set of ranked trees.

In both cases, we speak of the nodes of a tree in the usual way, and identify
them by their Gorn addresses, which are strings in N∗+: the root has the address
ε, and if α is the address of a node in ti then iα is the address of that node in
f(t1, . . . , tn). The label of node α in t is denoted by t(α), and the set of all nodes
of t is N(t). For Σ′ ⊆ Σ, the set of all nodes α ∈ N(t) with t(α) ∈ Σ′ is denoted
by NΣ′(t). A node α ∈ N(t) is a leaf if α1 /∈ N(t), and is internal otherwise.
The size of t is |t| = |N(t)|.

We denote a subset {α1, . . . , αk} of the set of nodes of a tree t as (α1, . . . , αk)
if we wish to indicate that α1, . . . , αk are listed in lexicographic order.

Let 2 be a special symbol never used as an ordinary symbol. A context is
a tree c ∈ TΣ∪{2} such that c contains exactly one occurrence of 2, and this
occurrence is a leaf. Given such a context and a tree t, we let c[t] denote the
tree obtained from c by replacing 2 with t. Formally, c[t] = t if c = 2, and
otherwise c[t] = f(s1, . . . , si−1, si[t], si+1, . . . , sn), where c = f(s1, . . . , sn) and
si ∈ TΣ∪{2} is the context among s1, . . . , sn. For contexts c 6= 2, the notation
c[t] is extended in the obvious way to c[t1, . . . , tk] for trees t1, . . . , tk (k ∈ N). It
yields the tree obtained by inserting the sequence of subtrees t1, . . . , tk at the
position marked by 2. (Note that this yields a tree, since we only use it if c 6= 2.)
To be precise, if c = f(s1, . . . , sn) and i ∈ [n] is the index such that 2 occurs in
si, then

c[t1, . . . , tk] =

{
f(s1, . . . , si−1, t1, . . . , tk, si+1, . . . , sn) if si = 2

f(s1, . . . , si−1, si[t1, . . . , tn], si+1, . . . , sn) otherwise.

Ranked tree automata A ranked bottom-up tree automaton (TA) is a tuple A =
(Q,Σ,R, F) where

– Q is a finite set of states,
– Σ is a ranked input alphabet,
– R is a finite set of transition rules, and
– F ⊆ Q is a set of accepting (final) states.

Each transition rule is a triple of the form f(q1, . . . , qn)→ q where q1, . . . , qn, q ∈
Q, f ∈ Σ, and #(f) = n. The TA is determinstic if all distinct rules have distinct
left-hand sides.

Let t ∈ TΣ∪Q. A transition f [q1, . . . , qn) → q is applicable to t, if t can be
written as t = c[f(q1, . . . , qn)]. If so, then there is a computation step t→A t =
c[q]. A tree t ∈ TΣ is accepted by A if there is a sequence of computation steps
t →∗A q, for some q ∈ F . The language accepted by A, denoted L(A), is the set
of all trees in TΣ that A accepts.

3

3 Z-automata

A Z-automaton is a quadruple A = (Σ,Q,R, F) consisting of

– a finite input alphabet Σ;
– a finite set Q of states which is disjoint with Σ;
– a finite set R of transitions, each of the form s→ r consisting of a left-hand

side s ∈ TΣ∪Q and a right-hand side q ∈ Q;
– a finite set F ⊆ Q of accepting states.

Let t ∈ TΣ∪Q. A transition s → q is applicable to t, if t can be written as
t = c[f(t1, . . . , tn)], such that s = f(t1, . . . , tk) for some k ≤ n. If so, then there
is a computation step t→A t = c[q(tk+1, . . . , tn)]. A tree t ∈ TΣ is accepted by A
if there is a sequence of computation steps t→∗A q, for some q ∈ F . The language
accepted by A, denoted L(A), is the set of all trees in TΣ that A accepts. The
automaton A is deterministic if there does not exist distinct transitions s → q
and t→ p in R such that s→ q is applicable to t.

Example 1. Consider the Z-automaton A = (Q,Σ,R, f), where Σ = {a, b, c},
Q =

⋃
x∈Σ{px, qx, rx}, F = {px | x ∈ Σ}, and R is given as followed, where x

and y range over Σ:

x(y) → qx qx(y) → qx qx(x) → rx
x(py)→ qx qx(py)→ qx qx(px)→ rx
qx(y) → qx qx(x) → rx rx(y) → px .

The language accepted by A is the set of all unranked trees over the alphabet
Σ, in which the second-to-last child of every internal node carries the same label
as the node itself.

This can be seen as follows. The first line of the table lets us process a node
α labelled x ∈ Σ by nondeterministically guessing if it is a leaf. If it is, the
automaton should assign it the state px indicating that the subtree below it is
valid. Otherwise, it should assign the state qx to it. If the automaton guessed
wrong, then it will not be able to complete the processing of the subtree rooted
at α, because R contains no transitions with a left-hand side of the form p(q),
where p = px or q = qx for an x ∈ Σ.

The rules in the second line of the table verify that the second-to-last child of
a node labelled x was also labelled x (and was thus eventually assigned the state
px). To accomplish this, the automaton advances over its input while looping on
the same state qx, until it nondeterministically decides guesses that it has reached
the child px which is the second to last. It then turns qx into the intermediate
state rx and to px in the next step. Again, if there should still be children of n
left after that, then the computation will not be able to proceed and the input
tree is rejected.

Figure 2 shows an accepting computation of the automaton A on an input
tree. The automaton starts by processing the right-most subtree, guessing cor-
rectly which nodes are leaves, and which are internal. The states labelling an
internal node α, take the role of an interal state in a string automaton processing

4

a

c

acb

a

aa

→∗
A

a

c

papcpb

a

aa

→A

a

qc

papcpb

a

aa

→A

a

qc

papc

a

aa

→A

a

rc

pa

a

aa

→A

a

pca

aa

→A

a

pcqa

papa

→A

a

pcpa

→A
qa

pcpa

→A
ra

pc

→A
pa

Fig. 2. A sample computation of the Z-automaton A of Example 1. The automaton
accepts all unranked trees over the alphabet {a, b, c}, in which every internal node has
the same label as its second-to-last child.

the children of α. As this subtree is well-formed with respect to L(A) and its
root is labelled by c, it is mapped to pc. At this point, the computation must
also process the left-most subtree, before it can continue upwards. As also this
subtree is well-formed and its root is labelled a, it is mapped to the state pa.
In the final steps of the computation, the automaton repeats the same type of
verification at the highest level in the tree, and as the labels of the root of the
entire tree and the left-hand subtree agree, the whole tree is accepted.

An alternative set of transitions exploits the fact that we can turn individual
input symbols into states:

x → px x → qx
qx(py)→ qx qx(px)→ rx rx(py)→ px .

These transitions are in fact in a particular normal form, that simplifies many
of the upcoming arguments.

Definition 1 (Arc-factored normal form). Let A = (Σ,Q,R, F) be a Z-
automaton. A transition is in arc-factored normal form if its left-hand side is in
Σ ∪ Q(Q), and A is in arc-factored normal form if every transition in R is in
arc-factored normal form.

We shall now show that every Z-automaton can indeed be transformed into
arc-factored normal form. As can be expected, this makes a larger number of

5

states and transitions necessary to recognize the same language. To make this
precise, let us say that the size of a transition r is the size of its left-hand side,
denoted by |r|. The size of A is |A| =

∑
r∈R |r|.

Theorem 1. Every Z-automaton A = (Σ,Q,R, F) can effectively be trans-
formed into a Z-automaton B in arc-factored normal form such that L(B) =
L(A) and |B| ≤ 4|A|.

Proof. We transform A in three steps:
In the first step, we remove rules of the form p → q with p, q ∈ Q. We do

this by the usual procedure: simply replace R by the set of all rules t→ q′ such
that t → q is in R, t /∈ Q, and q →∗A q′. Clearly, this does not affect the set of
trees accepted by A.

In the second step, we add a transition f → qf for every symbol f ∈ Σ,
where qf is a fresh state added to Q. Furthermore, we replace f by qf in the
left-hand side of every ordinary transition in R of size larger than 1. Clearly,
this does not affect the language recognized by A. Of course, the introduction
of new states and transitions can be restricted to those symbols which actually
occur in a left-hand side, which means that at most |A| transitions are added.

The third and final step is slightly more technical, and easiest to describe in
an iterative manner. However, the intuition is rather straightforward: instead of
consuming an entire left-hand side s ∈ TQ in one step, the arcs are consumed
one by one, using auxiliary states.

Formally, as long as A is not in arc-factored normal form, select any transition
s→ q such that |s| > 2. Then s has the form c[q1(q2, t1, . . . , tn)] for some context
c, states q1, q2, and trees t1, . . . , tn (n ≥ 0). We decompose the transition into
one that consumes q1(q2), resulting in a new state q1;2, and one that consumes
c[q1;2(t1, . . . , tn)]. Thus, the first of these transitions is in arc-factored normal
form and the second is of size one less than the original transition. Let n be the
type of q1 and α its address in s (i.e., α is the address of 2 in c). Then the first
transition is q1(q2)→ q1;2. The second transition is c[q1;2(t1, . . . , tn)]→ q.

It should be clear that this procedure of splitting the original transition s→ q
into two does not change the language recognized by A. Moreover,

∑
r∈R, |r|>2 |r|

is reduced by one each time a transition is split in this way. Thus, the process
will terminate, resulting in a Z-automaton which is in arc-factored normal form
and of size at most 4|A|. ut

Once the automaton is in arc-factored normal form, we can use the standard
powerset construction to make it deterministic.

Lemma 1. There is an algorithm that turns a Z-automaton A into a determin-
istic Z-automaton B in arc-factored normal form such that L(A) = L(B).

Proof (sketch). Let A = (Σ,Q,R, F) be a Z-automaton. Without loss of gener-
ality, we may assume that A is in arc-factored normal form. For t ∈ Σ ∪Q(Q),
let R(t) = {q ∈ Q | (t→ q) ∈ R}. We let B = (Σ, 2Q, R1 ∪R2, F

′), where

R1 =
⋃
f∈Σ

{f → R(f)} ,

6

R2 =
⋃

P1,P2⊆Q

{P1(P2)→
⋃

p1∈P1,p2∈P2

R(p1(p2))} ,

and F ′ = {P ⊆ Q | P ∩ F 6= ∅}. Clearly, B is in arc-factored normal form, and
hence also deterministic because rules in arc-factored normal form violate the
determinism requirement only if their left-hand sides are equal.

It is furthermore straightforward to verify that A and B are language equiv-
alent, which completes the proof sketch. ut

Naturally, the determinisation according to the previews lemma may take
exponential time, simply because the size of the output Z-automaton B has
exponentially many states.

4 Equivalence to Stepwise Tree Automata

As we shall see, Z-automata accept the same family of unranked regular tree
languages as unranked tree automata [2] and stepwise automata [3]. The latter
is syntactically similar to the Z-automaton, but operates on binary encodings
of the input tree. This encoding makes use of an auxiliary symbol @, used as
a binary operator over trees, that extends the tree t1 in its first argument by
adding the tree t2 in its second argument as the right-most direct child of the
root of t1. A sample encoding is shown in Figure 3.

Definition 2 (Binary encoding). Given an (unranked) alphabet Σ, we denote
by Σ@ the alphabet Σ ∪ {@}, viewed as a ranked alphabet in which the symbols
in Σ are taken to have rank 0, and the symbol @ to have rank 2. For every tree
t = f(t1, . . . , tn) ∈ TΣ, the function tree@(t) : TΣ → TΣ@

is given by

tree@(t) =

{
f if n = 0
@(tree@(f(t1, . . . , tn−1)) , tree@(tn)) otherwise .

We extend tree@ to tree languages: for all L ⊆ TΣ, tree@(L) = {tree@(t) | t ∈ L}.

It is not difficult to check that tree@ is a bijection between TΣ and TΣ@
.

A stepwise automaton is simply a ranked bottom-up tree automaton that
inputs binary encodings of unranked trees.

Definition 3 (Stepwise automaton [4]). A stepwise tree automaton (STA)
M = (Q,Σ,R, F) is a ranked bottom-up tree automaton over Σ@. Consequently,
every transition in R is of the form a → q or @(p, p′) → q where a ∈ Σ is a
symbol of rank 0, and q, p, p′ ∈ Q.

As we shall see, each Z-automaton A can be translated into an STA that
recognizes tree@(L(A)).

Definition 4 (Related automata). A Z-automaton A = (Σ,Q,R, F) in arc-
factored normal form and an STA MA = (Q,Σ@, P,Q), are related if P =
P ′ ∪ P ′′ with

7

a

c

acb

a

aa

@

@

a@

c@

bc

@

@

a@

aa

a

Fig. 3. The input tree t over the alphabet {a, b, c} used in Example 1 and its binary
encoding tree@(t).

– P ′ = {a→ q | a→ q ∈ R},
– P ′′ = {@(p, p′)→ q | p(p′)→ q ∈ R}.

Let us ensure ourselves that relatedness preserves the accepted language.
Given a Z-automaton or STA A with state set Q, and a tree t, we let eval(A, t) =
{q ∈ Q | t→∗A q} denote the set of states reached by A on input t.

Theorem 2. For every Z-automaton A = (Σ,Q,R, F) in arc-factored normal
form and its related STA MA, it holds that L(MA) = tree@(L(A)), and MA is
deterministic if and only if A is.

Proof. Clearly, MA is deterministic if and only if A is. To prove that L(MA) =
tree@(L(A)), we show that eval(MA, tree@(t)) = eval(A, t) for every tree t ∈
TΣ . We prove this by induction on the structure of the trees, as constructed
with the extension operator (as opposed to classical top-concatenation). Let
t = f(t1, . . . , tn) ∈ TΣ .

If q ∈ eval(A, t), then we have the following cases:

– If n = 0, then there is a transition f → q ∈ R, and by construction, f → q ∈
P ′ ⊆ P so q ∈ eval(MA, tree@(t)).

– If n = 1, then there is a p ∈ Q and a p′ ∈ eval(A, t1) such that f → p
and p(p′) → q ∈ R. By the induction hypothesis, eval(MA, tree@(t1)) =
eval(A, t1) and by construction, f → p ∈ P ′ and @(p, p′) → q ∈ P ′′, so
q ∈ eval(MA, tree@(t)).

– If n > 1, then there is a p ∈ eval(A, f(t1, . . . , tn−1)) and a p′ ∈ eval(A, tn)
such that p(p′)→ q ∈ R. By the induction hypothesis,

eval(MA, tree@(f(t1, . . . , tn−1))) = eval(A, f(t1, . . . , tn−1)) ,

and eval(MA, tree@(tn)) = eval(A, tn), and by construction @(p, p′) → q ∈
P ′′, so again q ∈ eval(MA, tree@(t)).

8

For the other inclusion, if q ∈ eval(MA, tree@(t)), then we similarly have the
following three cases:

– If n = 0, then there is a transition f → q ∈ P ′, and by construction, a
transition f → q ∈ R, so q ∈ eval(A, t).

– If n = 1, then there is be a p ∈ Q and p′ ∈ eval(MA, tree@(t1)) such that f →
p ∈ P ′ and @[p, p′] → q ∈ P ′′. By the induction hypothesis, eval(A, t1) =
eval(MA, tree@(t1)) and by construction, f → p, and p(p′) → q ∈ R, so
q ∈ eval(A, t).

– If n > 1, then there is be a p ∈ eval(MA, tree@(f(t1, . . . , tn−1))) and a
p′ ∈ eval(MA, tree@(tn)) such that @(p, p′) → q ∈ P . By the induction
hypothesis,

eval(A, f(t1, . . . , tn−1)) = eval(MA, tree@(f(t1, . . . , tn−1))) ,

and eval(A, tn) = eval(MA, tree@(tn)), and by construction p(p′) → q ∈ R,
yielding again q ∈ eval(A, t). ut

This bridge between Z-automata and STA has several immediate implica-
tions, summarised in Corollaries 1 and 2.

Corollary 1. For an unranked tree language L, the following are equivalent:

1. L is recognisable by a Z-automaton.
2. L is recognisable by a UTA.
3. tree@(L) is recognisable by an STA.

Corollary 2. The following properties hold for Z-automata:

1. The family of tree languages accepted by Z-automata is closed under union,
intersection, and complement.

2. Z-automata are an equally succinct representation of unranked tree languages
as STA, and exponentially more succinct than UTA [10].

Theorem 3. For every Z-automaton A, there is a unique minimal deterministic
Z-automaton B in arc-factored normal form such that L(A) = L(B). Further-
more, B can be computed in time O(m log n), where m is the size of the transition
table, and n is the number of states of the input automaton.

Proof. Let A = (Σ,Q,R, F) be a Z-automaton, which we may, without loss of
generality, assume to be in arc-factored normal form. Let MA be the STA related
to A. We note that both can be viewed as ordered labelled hypergraphs with node
set Q and hyperedge set R. A hyperedge corresponding to r = (a→ q) is labelled
with a and incident with q. A hyperedge corresponding to r = (@(p, p′) → q)
or r = (p(p′) → q) is labelled with @ and incident with pp′q. Obviously, the
hypergraph representations of A and AM are isomorphic.

Let B be the Z-automaton AN , where N is the result of minimizing the
stepwise automaton AM using the forward-bisimulation algorithm of [7], which
coincides with standard minimization on deterministic tree automata. For binary

9

trees, the time complexity of this algorithm is O(m log n). Since relatedness
preserves the recognized language, the number of states, and the property of
being deterministic, we have that B is a deterministic Z-automaton with the
same number of states as AN , and such that L(B) = L(N) = L(MA) = L(A).

Suppose that there is another deterministic Z-automaton C with strictly
fewer states than B recognizing the same language. In this case, the deterministic
stepwise automaton MC would be language equivalent to N , but have fewer
states. This is not possible by the correctness of the minimization algorithm
in [7]. Hence, B has a minimal number of states.

Finally assume that there is another determinstic Z-automaton C with the
same number of states as B that is, when viewed as a hypergraph, not isop-
morphic to B. Then BM and CM are not isomorphic to each other, as they
are isomorphic to B and C, respectively. This contradicts the uniquness of the
minimal deterministic STA2.

Hence, B is the unique minimal deterministic Z-automaton. ut

5 Left-to-Right Bottom-Up Derivations

The Z-automata semantics given in Section 3 allows transitions to be applied
whereever they apply in an intermediate tree t. As we shall see, we can restrict
applications to the two lowest nodes along the left-most path of t, without loss
of expressive power.

Definition 5 (lrbu derivation). Let A = (Σ,Q,R, F) be a Z-automaton in
arc-factored normal form, and let s ∈ TΣ. A computation is left-to-right-bottom-
up (lrbu) if, in every step t→A t

′ of the computation, one of the following holds.
If α is the left-most leaf of t, then either

1. t(α) ∈ Σ and the rule is applied at node α or
2. t(α) ∈ Q and the rule is applied at the parent of α.

We let Llrbu(A) = {t ∈ TΣ | t→∗A q by an lrbu computation for some q ∈ F}.

Note that, in the second case above, the rule applied to the parent of α can
either be of the form a→ q or of the form p(p′)→ q.

Theorem 4. For every Z-automaton A in arc-factored normal form, L(A) =
Llrbu(A).

Proof. Let A = (Σ,Q,R, F) be a Z-automaton in arc-factored normal form, and
let t ∈ TΣ . We show that A has an accepting computation on t if and only if it
has an accepting lrbu computation on t. The ‘if’ direction is trivial, since every
lrbu computation is a regular computation. The ‘only if’ direction is proved by
induction on the structure of t. We argue that every computation of A ending in
a state q ∈ Q can be turned into an lrbu computation ending in the same state.

If |t| = 1 then this is trivially true because the computation already is lrbu.
If |t| ≥ 2, then t can be obtained from two trees s, s′ ∈ TΣ by adding s′ as the

10

rightmost child of the root of s. Since t is accepted by A, there is an accepting
computation π of A on t. This computation, restricted to the rule applications
at nodes in s and s′ in the obvious way, yields subcomputations s →∗A p and
s′ →∗A p′, for some p, p′ ∈ Q. Since the computation accepts t, its last step is of
the form p(p′) →A q for a state q ∈ F . By the induction hypothesis, there are
lrbu computations µ and µ′ on s and s′, respectively, that accomplish the same.
We can thus construct an accepting lrbu computation on t by first applying µ
to t, then µ′ to the subtree s′ of t, and finally the transition p(p′) → q to the
remaing tree p(p′). ut

From Theorem 4, Theorem 5 follows:

Theorem 5. The membership problem for Z-automata is in O(mn), where m
is the number of rules and n is the size of the input tree.

Proof (Sketch). Let A = (Σ,Q,R, F) be a Z-automaton. By Theorem , we can
assume that A is in arc-factored normal form. To decide whether an input tree t ∈
TΣ is in L(A), the automaton is applied to t by performing lrbu computations on
t. At every step, it uses on-the-fly subset construction to check what transitions
in R are applicable at the last two nodes of the leftmost path of the intermediate
tree. The time needed to consume one edge of t is thus in O(|R|), and there are
|t| = n edges to consume. ut

6 Conclusion

We have introduced a new type of automaton for unranked trees, the Z-automaton,
and shown it to be equivalent to the UTA and STA. Z-automata offer a more com-
pact form of representation than UTA, and avoid the binary encoding used by
STA. We have also provided a normal form and a standard left-to-right bottom-
up (lrbu) mode of derivations that although syntactically more restrictive, retain
the expressive power of the original device.

Given the close relation between Z-automata and STA, we expect the ma-
jority of the results pertaining to the latter to carry over. However, in some
situations, the time and space complexities may be affected, however. A further
investigation in this direction is left for future work, as is the study of logical
characterizations.

References

1. A. Brüggemann-Klein, M. Murata, and D. Wood. Regular tree and regular hedge
languages over unranked alphabets: Version 1. Technical Report HKUST-TCSC-
2001-0, 2001.

2. A. Brüggemann-Klein, M. Murata, and D. Wood. Regular tree and regular hedge
languages over unranked alphabets: Version 1. Technical Report Technical Report
HKUST-TCSC-2001-0, The Hongkong University of Science and Technology, 2001.

11

3. Julien Carme, Joachim Niehren, and Marc Tommasi. Querying unranked trees with
stepwise tree automata. In Vincent van Oostrom, editor, Rewriting Techniques and
Applications, pages 105–118, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

4. Julien Carme, Joachim Niehren, and Marc Tommasi. Querying Unranked Trees
with Stepwise Tree Automata. In Vincent van Oostrom, editor, 19th International
Conference on Rewriting Techniques and Applications, volume 3091 of LNCS, pages
105–118, Aachen, Georgia, 2004. Springer.

5. Manfred Droste and Heiko Vogler. Weighted logics for unranked tree automata.
Theory of Computing Systems, 48(1):23–47, Jan 2011.

6. Ferenc Gécseg and Magnus Steinby. Tree automata. 1984.
7. Johanna Högberg, Andreas Maletti, and Jonathan May. Backward and for-

ward bisimulation minimization of tree automata. Theoretical Computer Science,
410(37):3539 – 3552, 2009. Implementation and Application of Automata (CIAA
2007).

8. Sandra Kübler, Ryan McDonald, and Joakim Nivre. Dependency Parsing. Morgan
and Claypool Publishers, 2009.

9. A. Maletti, J. Graehl, M. Hopkins, and K. Knight. The power of extended top-down
tree transducers. SIAM Journal on Computing, 39(2):410–430, 2009.

10. Wim Martens and Joachim Niehren. Minimizing tree automata for unranked trees.
In Gavin Bierman and Christoph Koch, editors, Database Programming Languages,
pages 232–246, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

11. Wim Martens and Joachim Niehren. On the minimization of xml schemas and tree
automata for unranked trees. Journal of Computer and System Sciences, 73(4):550
– 583, 2007. Special Issue: Database Theory 2005.

12

