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Abstract

High Performance Computing (HPC) and Cloud Computing datacenters are
extensively used to steer and solve complex problems in science, engineering,
and business, such as calculating correlations and making predictions. Already
in a single datacenter server, there are thousands of hardware and software met-
rics – Key Performance Indicators (KPIs) – that individually and aggregated
can give insight in the performance, robustness, and efficiency of the datacenter
and the provisioned applications. At the datacenter level, the number of KPIs
is even higher. The fast growing interest on datacenter management from both
public and industry together with the rapid expansion in scale and complexity
of datacenter resources and the services being provided on them have made
monitoring, profiling, controlling, and provisioning compute resources dynam-
ically at runtime into a challenging and complex task. Commonly, correlations
of application KPIs, like response time and throughput, with resource capaci-
ties show that runtime systems (e.g., containers or virtual machines) that are
used to provision these applications do not utilize available resources efficiently.
This reduces datacenter efficiency, which in term results in higher operational
costs and longer waiting times for results.

The goal of this thesis is to develop tools and autonomic techniques for im-
proving datacenter operations, management and utilization, while improving
and/or minimizing impacts on applications performance. To this end, we make
use of application resource descriptors to create a library that dynamically ad-
justs the amount of resources used, enabling elasticity for scientific workflows
in HPC datacenters. For mission critical applications, high availability is of
great concern since these services must be kept running even in the event of
system failures. By modeling and correlating specific resource counters, like
CPU, memory and network utilization, with the number of runtime synchro-
nizations, we present adaptive mechanisms to dynamically select which fault
tolerant mechanism to use. Likewise, for scientific applications we propose a
hybrid extensible architecture for dual-level scheduling of data intensive jobs in
HPC infrastructures, allowing operational simplification, on-boarding of new
types of applications and achieving greater job throughput with higher overall
datacenter efficiency.
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Chapter 1

Introduction

A datacenter is the main physical infrastructure behind many local and global
services, a key enabler for high performance (HPC) and cloud computing
[41]. Effective datacenter operations is a crucial aspect for many organiza-
tions around the world because customers satisfaction and datacenter costs are
directly linked to optimal and performant operational services, a concept also
known as Information Technology (IT) performance management. Many im-
portant applications and services from both industry and academia could be
mentioned: Google, Facebook and YouTube, as well as scientific applications
enabling researchers to address pressing challenges in e.g., medicine, chem-
istry, biology (bioinformatics), materials design, natural disasters and climate
change. A datacenter is composed of different hardware equipment for perform-
ing computations and data handling (Input/Output or I/O): data processing
(compute servers), data storage, and communication (network). Together, this
hardware equipment respectively processes, stores, and transmits digital in-
formation (the data) around the world. Datacenters have become ubiquitous
and important to nearly all aspects of communication, business, academic, and
governmental information systems [44].

As the engines that make industry services and most scientific applications
run, datacenters processing power and reliability depend on very large infras-
tructures, remotely accessed through the Internet. It is very complex to operate
and maintain such infrastructures in an efficient and cost-effective way, and this
challenge is subject of much research, including this thesis. Demands for and on
datacenters have been consistently increasing over the years and thus, commer-
cial providers are building newer and even bigger datacenters in many regions
across the world. Furthermore, datacenters generate lots of data which can be
used to automatize most of resource management problems, like overall system
efficiency, and software failures. Combined with statistical learning techniques,
this data can lead to automatic remediation and reductions in the time to so-
lution for such management problems, which otherwise require significant time
and effort.
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The software managing datacenters is called Resource Manager (RM) [47].
A RM is responsible for making important decisions regarding the datacenter’s
internal operations, which affect the whole datacenter’s performance, function-
ality, and maintenance costs. Datacenter RM softwares such as auto-scaling
or elasticity engines and schedulers provide partial solutions to research chal-
lenges such as understanding how much and what type of resources to allocate,
and when and where to deploy them inside datacenter infrastructures [21, 23].
Traditionally, such systems have been designed following models of application
and system performance based on a selected few metrics such as response time
and throughput (for applications) and utilization of servers, CPU, memory,
bandwidth as well as energy expenditure and heat (for servers) [13, 40]. How-
ever, all these software have limitations because they usually aim for only few
aspects of resource management and do not holistically correlate different orga-
nizational policies to applications’ Key Performance Indicators (KPIs) [24, 23].
In this context, KPIs are monitored values specific to the service or application
in question and describe its performance. Integrated to resource management,
KPIs present a varied number of interesting and important problems that are
yet to be studied [24]. Here holistically means that the global view of a system
and supported applications have to be systematically considered before trying
to improve any of the system parts.

There are commonly two types of applications being managed: interactive
and batch [35, 3, 23]. Interactive applications are commonly web requests or
tasks in a data analysis pipeline, which runs in cloud datacenters. Interactive
applications are commonly described because of their low latency characteris-
tics. The second type, batch applications, are background computations, i.e.,
a sequence of commands in a file (also known as batch file, command file, or
shell script) executed by an Operating System (OS) and submitted for exe-
cution as a single unit. Batch workloads are common in scientific computing,
historically running in HPC environments to enable large scale experiments.
Because these experiments are time consuming, scientists can split the overall
problem in independent parts, pipelined in order to produce final data prod-
ucts and are called scientific workflows [9]. Scientific workflows allow users to
customize/sweep parameters in an experiment without viewing or altering its
inner code, making them vastly flexible and reuseable. Besides that, some mis-
sion critical applications residing in datacenters must achieve high availability
(HA), which is the percentage of time the infrastructure or web service is in
an operable state. Outages can severely damage datacenter services reputation
and overall users’ perception with web services, and thus most datacenter ser-
vices typically aim for at least 99.99% uptime (available services, according to
the Service Level Agreement), approximately an hour of downtime (unavailable
services) over a year. HA is achievable by using replication, that is duplicating
the execution of the system of interest. One way of implementing HA is through
fault tolerance mechanisms, which commonly use checkpoint and restart tech-
niques and/or hardware and software request duplication, where one request is
executed two or more times, and in case of failures, a secondary replica takes
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over the request execution or failed component.
Thus, it is important that resource management happens in a way that

satisfies datacenter end-users (also called users) and operators. Users are the
ones using or developing and coding applications, and ultimately depend on
the datacenter to run their applications, often making use of modules, libraries
and runtime systems to facilitate and automate infrastructural operations. Op-
erators are the ones maintaining and providing fair means to support end-users
the access to the datacenter infrastructure through a RM software system, fol-
lowing an organizational policy on how to access and share available resources.
At datacenter’s scale, the RM has the role of an OS [19], since it is the layer
of software abstracting and managing the infrastructure’s hardware resources
for users and their applications, running in a wide range of compute servers,
invisible to end users. Understanding the various tradeoffs in allocating and
requesting resources, besides adapting applications runtime mechanisms and
capacities according to the workload’s variations lead to operational efficiency
in datacenters because it tailors the infrastructure to the application dynamic
demands.

1.1 Research Problem and Objectives

In this thesis, we investigate and map resources capacities to workloads with
the goal of maximizing application performance and resource utilization. Thus
we analyse the tradeoffs in performance, reliability, and costs in datacenters,
create models that capture these tradeoffs, and propose controllers and tools
to optimise datacenter infrastructures taking these tradeoffs into considera-
tion. The main research problem investigated in this thesis is how to increase
the efficiency of datacenter taking into account the applications performance
tradeoffs.

Therefore, our main objective is to perform a more efficient management
of the computing infrastructure by continuously adjusting the number of re-
sources, their capacity and the their runtime mechanisms that affect resource
usage and allocations in face of what the workloads demand from allocated
resources. We do this by controlling the performance tradeoffs in datacen-
ter servers through the application, runtime, and operating systems levels of
software configurations. The main research objectives of this thesis are:

RO1 To enable developers to specify scientific workflow resource requirements
in order to improve overall performance efficiency of applications and
datacenters.

RO2 To develop theoretical control techniques for adapting and choosing best
fault-tolerant mechanisms according to workload variations and applica-
tion characteristics.

RO3 To use and develop statistical learning methods to enable resource capac-
ity controllers for servers to continuously improve datacenter throughput
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(e.g., number of completed jobs) without sacrificing application perfor-
mance.

1.2 Methodology

The methodology used in this thesis is mostly experimental. To model RO1
and RO2, we set up testbeds consisting of multiple servers and/or use real
clusters. To put a load on the servers we use both benchmarks generating
utilization of selected computational resources and real applications modeling
scientific methods/experiments and handling web-requests from users. When
the servers are exposed to the load, we dynamically (at workloads’ runtime)
modify various configurations and measure the performance of hosted applica-
tions.

To address RO1, RO2 and RO3, we analyze the measurements using con-
trol theory and various statistical methods in order to remove outliers, sum-
marize multiple measurements, and evaluate hypothesis. Furthermore, we use
statistical methods to model dependencies between application performance
metrics and server metrics, like CPU and memory utilization.
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Chapter 2

Resource Management in
Datacenters

In this chapter we describe the role of a resource manager (RM), which is the
software system that manages the infrastructure and application scheduling in
a datacenter according to organizational policies that specify how such infras-
tructures can be used. Novel classes of applications require RMs to be more
dynamic in order to allow runtime systems and orchestrators to handle, mea-
sure, and evaluate how different organizational policies affect application KPIs
experienced by users. We also discuss challenges and approaches to improve
the efficiency of RMs. We give an overview of concepts such as collocation,
isolation, resource control and scheduling, link the approaches to enabling tech-
nologies and datacenter actuators, review the research performed in each area,
and present the associated limitations and challenges.

A RM is the middleware managing infrastructure resources, such as super-
computers and cloud datacenters [21], also known as clusters. The RM has the
ability to run distributed applications on a cluster (Figure 2.1). These applica-
tions (sometimes referred to as jobs) are usually encapsulated and orchestrated
through virtual machines and containers (herein also called runtime systems),
or classic Operating System (OS) processes [6]. From a system’s perspective,
in addition to handle the actual execution of jobs coming in a queue (coloured
boxes in Figure 2.1), the RM is responsible for efficient job management such
as maintaining high utilization and throughput (performance), as well as han-
dling software and hardware faults in a graceful manner. In addition, from a
user perspective, the RM should improve execution times and fairness among
different workloads, users, and projects [13]. The queue makespan, a metric
which is defined at the total amount of time a given set of jobs takes to finish
their execution, is one important metric users and operators want to minimize.

Besides handling high-level policies, like fairness and efficient execution,
more recently RMs also have to provide applications with communication in-
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Figure 2.1: Resource Manager in a datacenter cluster: (Coloured) jobs are
queued (submitted by users), and requested resources allocated in the compute
nodes by the scheduler (big red and green parallel rectangles in the Infrastruc-
ture). During job execution, resources’ capacity utilization and idleness can be
monitored and profiled (white areas within compute nodes). The underneath
network connects all nodes and remote storage.

terfaces for handling state, load, and resource capacity variations, the latter
for different and complex workflows that now are emerging from academia and
industry [38]. Applications and runtime systems are aware of measures like
workload variation, progress, and on what type of remediation is needed in
order to mitigate system faults, a feature also known as fault-tolerance sup-
port [9]. Because of this high dynamicity in the datacenter and new classes
of applications using such features, RMs have to be able to quickly adapt to
workload variations at which current and new applications operate [6]. For
instance, if a legacy application is latency sensitive and reliability is of great
concern, then it may be worth to simultaneously run two replicas of the same
application and synchronize the two replicas only when they do not seem to be
producing similar outputs given similar inputs. Since latency is linked to ap-
plications workloads, the fault-tolerance synchronization mechanism used (e.g.
by a virtual machine) can be switched over time in order to adapt the runtime
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system to such variations. This allows the runtime system to more efficiently
utilize available resources according to application loads, thus improving over-
all datacenter resource usage. Likewise, if a scientific workflow describes the
amount of resources the tasks demand, a workflow management system can
communicate with the RM, which can then allocate the appropriate number of
resources to each of the workflow stage when needed, dynamically at runtime.

As a building block for datacenter RMs, the lowest system layers (e.g. OS)
provide a new channel of management from which RMs can relate hardware
metrics such as processor counters to application KPIs [6]. Processor counters
are CPU hardware registers that count events such as CPU utilization, num-
ber of instructions executed, cache-misses, or branch mispredictions. At the
OS level, these metrics form a basis for profiling applications to trace dynamic
control flow and identify hot-spots. Based on continuous job profiling, RMs
can utilize specific resource controllers to understand and adapt resource ca-
pacity according to what jobs actually need, thus improving overall resource
utilization.

As it can be seen, efficient and improved resource management in a dat-
acenter can happen at different levels of the stack: application, runtime, and
lower-level systems. For different goals and objectives (i.e. policies), the way
resources are shared plays a very important role. Time-sharing and space-
sharing refer to the way resources of a machine or a cluster are shared among
jobs. In time-sharing, several processes typically take turns in accessing the
resource (e.g., a compute server or a CPU). On the contrary, when resources
are assigned exclusively to individual processes, different processes share the
infrastructure spaces (the resources). These processes can be seen as sharing
only if observed that resources separately run the different processes in the
same infrastructure, thus the term space-sharing.

2.1 High Performance and Cloud Computing

High Performance Computing (HPC) organizes independent compute nodes
in clusters that can deliver more performance than could be delivered from
a typical personal computer (PC) or workstation. HPC clusters are used to
solve and steer complex problems and experiments in science, engineering, and
business, and is key for innovation [41]. The reason for having a HPC system
is because independent nodes working together can (in a timely manner) solve
problems bigger than an independent PC could ever solve. To work together,
cluster nodes need to communicate with each other. This is usually performed
through the network by means of standardized libraries such as the Message
Passing Interface (MPI) [43]. The use of one type of network over another usu-
ally depend on the bottlenecks most workloads experience in an HPC centre.
HPC clusters usually are managed by static RMs like Slurm [22] or Torque
[40], which commonly asks users to provide a deadline for launching jobs [36].
Jobs can finish earlier than the specified deadlines, and more importantly, can
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use less resources than what was required by the users at job submission. Usu-
ally users cannot use more resources than what has already been allocated to
them, which is commonly determined by which project or organization they
belong to, to which compute time is distributed by an allocation committee.
Some tools allow users to more efficiently utilize their allocations [4] by offering
mechanisms for bundling jobs together in optimal ways, and mechanisms for
migrating jobs to other resources without loosing completed work. However,
there are still some drawbacks as important features like job state management
and monitoring are not fully integrated into HPC schedulers. A time-sharing
RM such as Slurm with a space-shared policy assures predictable resource per-
formance to jobs at the cost of higher queue-makespan [1].

Cloud computing is a model of computing where applications run on shared
computing and storage infrastructure in large-scale datacenters instead of the
user’s own computers [21]. It must address many of similar issues faced in OSes
in terms of resource sharing, abstraction, and common services. This happens
because of the diversity of applications that clouds can accommodate: basically
any type of application can run alongside with one another, which compete for
and influence how resources are used. Cloud RMs like Mesos [19], Omega [38]
and Yarn [42], provide APIs enabling jobs to control resource assignment, con-
duct state management and perform resource profiling and monitoring. Cloud
RMs are developed as flexible frameworks of execution engines, which can be
ported to different infrastructural contexts [21]. As their main objective is to
maximize utilization, most cloud RMs allow application collocation with dif-
ferent policies support (including for HPC workloads). Although some HPC
RMs (like Slurm) supports finer grain allocations, they come with no support
for enforcing resource isolation when sharing resources (see Section 2.2).

The main differences between cloud and HPC lie in the model of delivery
or access to computing resources as well as associated costs [14]. In traditional
HPC, the operator (say, an university) will typically owns, share, and organizes
the infrastructural system management, in a way that satisfies users’ workload
characteristics and priorities. By owning the server, the operator incurs capital
expenditures,1 e.g. cost of servers, hiring admins, compute room rent, and etc.
Besides that, there are recurrent operational expenditure, e.g. power and cool-
ing, admin wages, software and hardware upgrades.2 This cost is almost con-
stant regardless of whether the server is fully utilized or not. Cloud Computing,
on the other hand, is really an economical definition for delegating the manage-
ment of the IT hardware infrastructure to a third party (Cloud Provider), who
buys, maintains, shares and utilizes the computer infrastructure. The user has
access to a virtual infrastructure through the public Internet, with a pay-per
use billing scheme. Users personalize this virtual infrastructure by using vari-
ous runtimes or application environments such as containers, virtual machines
and orchestration tools like Mesos and Kubernetes [6].

1Known as capex cost
2Known as opex cost
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2.2 Components and Characteristics

A cluster system’s architecture provides four main functions to job (applica-
tions) management, as illustrated in Figure 2.2: job life-cycle, resource mon-
itoring, scheduling, and job execution [35]. Job’s life-cycle management is
responsible for receiving user’s jobs through a user interface such as the com-
mand line or a web interface. Users provide the job’s requirement (or geometry)
such as specific hardware resources (i.e. CPU cores, memory, network band-
width and other resources), the amount of each, and/or time constraints, like
total execution time and/or deadlines. Also, users can specify jobs requiring
elastic execution such that they change their resource geometry in the mid-
dle of execution without halting execution. Job’s lifecycle management thus
places jobs into the appropriate queue for execution. RMs makes cluster re-
sources (such as compute nodes and CPUs) accessible for use by jobs, while the
scheduler allocates the resources required to execute the job, and assigns these
resources based on datacenter policies and resource availability. Job execution
is a process in which jobs start executing on each node, after which they can
be manipulated by the job lifecycle management, which in turn also allows
the application to communicate directly with the scheduler (and vice-versa) in
order to help it take appropriate management decisions in case of failures or
workload variations. Job monitoring and profiling provides interfaces accessing
application and system KPIs, allowing techniques to statistically estimate and
analyze resource demands and needs, possibly in real-time. For instance, it
can enable flexible options for users to manage and use their own resource al-
locations. An example would be allowing users to co-schedule multiple of their
jobs’ tasks in varied ways not currently possible by static libraries.

2.2.1 Classes of Jobs

Historically, jobs have been classified in four types: rigid, moldable, malleable,
and evolving [13]. Specifically, these classes differ in what can happen to a
job’s resource geometry throughout its life-cycle. Whereas a moldable job can
have its resource geometry changed before its execution, a rigid job cannot.
These jobs are sometimes considered the same, and simply known as rigid
jobs since none of them allow resource changes at runtime. Malleable and
evolving jobs, which are often considered the same and simply called malleable,
can change resource geometry throughout execution, the difference between
the two is which entity requests the change: the scheduler for malleable jobs,
or the user for evolving jobs respectively. With large data processing needs
becoming a norm both in industry and in scientific communities, a fifth class
has emerged: adaptive jobs. These jobs are characterized by being highly
dynamic and adaptable to changes and system faults, and for having data
intensive (DI) requirements as they process unprecedented amounts of data.
In relation to resource needs, adaptive jobs are a combination of malleable and
evolving jobs [34]: malleable for how many resources they require, and evolving
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Figure 2.2: Components of a typical Resource Manager: Job Lifecycle, Schedul-
ing and Resource Management in datacenters. Users submit jobs through an
interface. Jobs are queued and scheduled for execution. Each one of these steps
is profiled and monitored according to the policies set in the management com-
ponent. Adapted from [35].

because the number of resources can vary at runtime according to system and
workload contexts.

In this context, resource allocation refers to assigning datacenter’s resources
to user requests (specified through jobs) according to its goals and objectives.
As an example of an objective is datacenter resource utilization, that is fo-
cused on measuring how well, or how efficiently, resources in a datacenter are
being used. From the applications context, it is defined as how efficiently a
given resource capacity is used by the application, where operators often try
to maximize the use of specific resources without (negatively) impacting user
application KPIs. In either context, utilization is often used as the main metric
of comparison among different techniques in RM systems because it clearly re-
lates the application performance of a given workload to the resource capacity
available to the application. Even though it is very intuitive, utilization hides
many aspects of what happens internally in a system. A system is often in-
tertwined with other system(s) which may have different utilization ratios and
would then perform differently to similar requests, depending on time and on
the workload at that time.

2.2.2 Scientific Workflows: Job Templates and Pipelines

Large scale experiments rely on big computing infrastructures available to scien-
tists. Because these experiments are very large and time consuming, scientists
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Figure 2.3: Scientific Workflow: Pipeline structure (snippet) for the Montage
Workflow, an astronomical image mosaic engine used at NASA [5]. Each color
in the graph describes a set of specific tasks within a workflow stage. Each stage
produces outputs used as inputs at subsequent pipelined stages that produce
the data product (final result) at the end.

split the overall problem in independent parts, which are later on combined
in order to produce final data products. Such time consuming scientific cam-
paigns with high complexity can be organized in pipelines, where each pipeline
stage describes a specific set of models and computational tasks organized in
batch calculations. At a high level, these interconnected pipelines composed
of independent stages is what defines a scientific workflow (Figure 2.3). More-
over, scientific workflows are not only common in HPC centres, but also in
virtually every sector in industry and academia to analyze and correlate data
for predictions and decision support.

Intrinsically, a workflow pipeline structure describes the number of resources
required to perform a batch (computation) task in each stage of a scientific
workflow. Such a pipeline is managed by a workflow management system
(WMS). The purpose of a WMS is to aid in the automation of execution of
tasks and the information exchanged between these tasks, with a special focus
on reliability. The task of ensuring good performance during execution is del-
egated to the developers, but with increased use of workflows to process big
amounts of data, a closer integration between the WMS and the datacenter RM
is of vital importance for improving scientific application performance [9, 8, 2].
Today, HPC platforms are primarily designed to support monolithic MPI ap-
plications and to provide a static allocation model i.e., the resource allocation
is fixed for the duration of the entire job [23, 35, 38, 8]. Current methods result
in loss of efficiency or utilization, and the problems are likely to be exacerbated
with next-generation dynamic workflows. Thus dynamic resource management
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models that allows workflows to dynamically increase and decrease the amount
of resources used at runtime is key not only to current workflows, but also
future streaming workflows.

2.2.3 Resource Managers and Sharing

Each RM uses different sharing schemes and policies for multiplexing managed
resources, depending on the context applications are deployed. Common RMs
in large clusters usually use frameworks such as Mesos [19], Slurm [46], Torque
[40], or Omega [38], to allocate resources to their jobs. When sharing resources
like CPU, memory, network and file systems (I/O), isolation is a requirement
for most applications competing for a common resource. Isolation specifies that
minimum levels of a resource capacity will be available when the application
needs it, allowing predictable behavior given similar workloads and amount of
resources.

With advents of lightweight in-kernel virtualization and isolation tools such
as cgroups [28], Linux containers (LXC) [28], and Docker [29], resource orches-
trators such as Kubernetes [6] and Docker Swarm [37] have also been considered
and used in large infrastructures because of the new levels of resource manage-
ment offered by these tools. By leveraging upon such tools, some RMs allow
tasks within a job to also specify/request their resource geometries, enabling
new features and challenges in datacenter resource management. For instance,
Mesos and Kubernetes, RMs commonly used in cloud datacenters, support
Docker containers and Linux namespaces [28], but are mainly designed to im-
prove fine-grain resource utilization (within servers, i.e., ratio of CPU and/or
memory capacities used). These RMs use finer grained resource allocation
by taking into consideration fractions of resources needed to run a job. In
HPC, though, most jobs are batch scripts which run for long times and oc-
cupy high percentages of a cluster [35]. As such, Slurm and Torque, common
RMs used in HPC centres, are designed mainly to achieve high resource uti-
lization at coarse-granularity like compute nodes (cluster level, i.e., ratio of
occupied/booked servers). In such context and higher level granularities, re-
source utilization refers to the percentage of the whole infrastructure that is
occupied by several jobs (space-sharing) at some point in time, and not to how
efficiently job allocations are using provided resource capacities (time-sharing)
as is the case in the cloud context.

Moreover, scheduling algorithms such as Completely Fair Scheduler (CFS)
and Dominant-Resource Fair Scheduling (DRF) allows for fair resource alloca-
tions in time-sharing contexts such as OSes and in clouds. CFS keeps track of
the fair share of resources (e.g., CPU) that would have been available to each
process in a system [32]. In modern OSs, CFS is configured by using mecha-
nisms such as namespaces and cgroups [28], offering extended capabilities for
isolation enforcement. DRF proposes a notion of fairness across jobs where
the jobs have multi-resource (e.g., number of CPU, amount of memory and
network bandwidth) requirements [15]. In HPC, Backfilling is one of the most
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used schedule algorithms in space-sharing contexts [39]. Its main advantages
is increased utilization at the cluster level, lowering queue waiting time.

2.2.4 Reliability and Availability

In cloud computing, services are subject to a Service Level Agreement (SLA),
which generally specifies the availability levels within a time frame the Service
Provider guarantees. In another hand, specific users, like those running HPC
applications, are often more concerned about Service Level Objectives (SLOs)
for alloted resources, which are the terms describing overall performance lev-
els (such as ”latency < X(units) or throughput > Y (units)”) that make up
the SLA. Additionally, web services must achieve high availability, which is
the measure of percentage of time the infrastructure is in an operable state.
Reaching zero fault operations on large hardware and software systems is hard
and even more difficult at extreme scales. It is possible to prevent failures in
a collection of thousands of servers at costs of deploying hardware fault toler-
ance mechanisms such as RAID (Redundant Array of Independent Disks) and
mechanisms for software such as storage replication, Virtual Machine duplica-
tion, migration, and etc. Consequently, workloads and runtime systems have
been designed to gracefully tolerate and adapt to component faults with little
to no impacts on service level performance and availability. A recent model of
software development, known as DevOps, advocates for shorter development
cycles and reduced costs, separates application logic from its infrastructure
management, which enables increased flexibility in regards to system faults, a
norm in large datacenters.

All these changes created new demands for modern datacenter RMs. In
clouds and HPC, datacenter system reliability directly relates to resource per-
formance metrics because applications and services may not run properly when
failures occur. If a system does not support any hardware or software fault tol-
erant mechanism, applications may need to be restarted from scratch, possibly
affecting user web requests or scientific experiments results. Even if a system
does support fault tolerant mechanisms, there is a still chance that applica-
tion performance degrades, mainly due to re-computing time and also the time
taken to restart the failed system and ensure that the failed application works
properly again. Therefore, it is important to accurately estimate the reliability
of a datacenter system in order to better mitigate faults and thus effectively
utilize its resources to improve application KPIs and achieve the SLAs agreed
with cloud users.

2.3 Challenges

There are many ways performance can be evaluated and measured, specially
when comparing different infrastructures with overall different goals and poli-
cies. In order to evaluate a RM, one needs to understand its design goals and
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history, how it communicates with its users, how its resources are managed,
and what tradeoffs were made to achieve its goals. Differently from most OSs
that were designed to run on a certain hardware, a category of processor, or be
used by a specific group of users, datacenter RMs evolved over time to operate
on multiple systems and support different and multiple hardware and users.
With new classes of adaptive DI jobs [18] and the convergence of many differ-
ent workloads, job and infrastructure management, combined with needs for
fast and efficient resource assignment, are key challenges for modern datacen-
ters [2]. This is particularly true for clusters with heterogeneous resources or
with applications that have varying SLOs and diverse workloads with unknown
variations.

Traditional RMs have been unable to properly manage these highly dynamic
and adaptive jobs because most of them are expected to execute immediately
(low latency scheduling) as they often have shorter duration in comparison
to more traditional batch jobs that runs for longer. Dynamic jobs are also
complex to manage as they more easily adapt to different resource geometries,
such as those caused by resource revocations and faults. Monolithic schedulers
traditionally used by HPC clusters were designed to centrally maintain the
complete state of the jobs and cluster infrastructure, while also performing
workload placement logic. These design choices limits scalability and make it
hard to introduce the new features and capabilities today’s dynamic workloads
need, and furthermore results in poor resource utilization (capacity-wise). On
the other hand, characteristics from dynamic, non-monolithic schedulers (e.g.
Mesos, Yarn, Omega) such as resource state management, optimization for data
access and low-latency scheduling, as well as easy extensibility for supporting
new policies and classes of workload requirements, are yet to be fully supported
in HPC centres [2].

Thus, to be properly managed by a HPC RM, adaptive and DI jobs of-
ten combine multiple scheduling policies in a same job and thus require higher
degrees of integration with schedulers than what monolithic managers offer.
These dynamicity and adaptability are often not fully supported in HPC cen-
ters, which demand full resource control to keep-up with Service Level Objec-
tives (SLOs), for e.g., deadlines.

2.3.1 Collocation

Resource assignment can be a challenging task in clusters with heterogeneous
resources, where compute nodes with different configurations and architectures
are combined. For heterogeneous environments, dynamic RMs are commonly
used since they are able to cope with variations and faults within the infrastruc-
ture [35, 23]. In traditional HPC RMs, allocation is the exclusive assignment
of resources to execute a job [23], which means that the resource request de-
scribes the exact amount of resources the RM allocates to the job, which is the
common SLO that most HPC clusters support.

Collocation (also known as co-scheduling) is a common technique in cloud
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datacenters, though operators tend to use it with care due to the performance
interference caused by node sharing. However, with finer granularity in resource
allocations, one can expect higher resource utilization [49, 35], and in large
clusters this can have high impacts due to the lower fragmentation of unused
resources per node. Additionally, because of resource sharing, a method for
enforcing resource isolation among jobs is essential [49, 6].

2.3.2 Isolation

Isolation mechanisms need to be combined with interference detection tech-
niques [10] that use, e.g., classification to weight the impact of different re-
sources for each job, and use this knowledge to select candidates for collocating
jobs. In such scenarios, on-line models can also be used to detect, control, and
avoid performance interference [30, 45], or to take actions such as throttling
low-priority jobs to mend the interference [49].

Most traditional HPC RMs do not let jobs to dynamically change their
placement at the level of nodes inside a cluster, let alone to throttle or to
perform low-level resource control in order to enable different isolation mech-
anisms among multiple jobs and tasks. Although RMs like Slurm can also
allocate resources with finer granularity (e.g., CPU-cores), they do not pro-
vide the necessary application programming interface (API) and capabilities
for application elasticity at runtime (change on the resource geometry), nor
mechanisms for enforcing isolation between jobs [20]. For instance, these ca-
pabilities are essential for doing load-balacing in workflow stream-processing,
which demand capabilities like task migration, or changing resource allocations
at runtime [20, 2].

There are various ways to enforce isolation between co-located tasks (pro-
cesses) within a node:

• Operating System Schedulers : An OS scheduler can be used to dynami-
cally control the prioritization given to jobs while also monitoring applica-
tion performance. Unfortunately this may not provide enough guarantees
for memory operations because of Last Level Cache (LLC) evictions that
could cause severe interference problems [49].

• Using a monitoring Agent on the nodes: This could be implemented by
having an exclusive hardware profiler. Though a very promising approach
[38], it needs a specific system architecture for communicating with the
RM and it can be hardware dependant [25], limiting its adoption.

• Linux Cgroup: Cgroup [28] is a set of mechanisms to enforce isolation be-
tween containers where processes share resources such as CPU, memory,
I/O and network bandwidth. Cgroups also control the way the Linux
CSF scheduler calculates weights in container execution. Linux’s cgroup
resource isolation mechanisms is one of the most available and robust
ways to make sure processes, encapsulated as containers (namespaces)
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do not consume more of the resource capacity than what has been as-
signed to them. The LLC problem can already be addressed by cgroup
in newer architectures by assigning exclusive portions of the LLC to pro-
cesses [17], guaranteeing strong isolation enforcement. The main problem
with cgroups is that within the frame of a container, tasks may not use all
available resources, though idle capacities can be used by other processes.

2.3.3 Multi-Level Scheduling

To support adaptable jobs while at the same time enforcing space sharing and
ensuring fair-share usage and that job deadlines are met, modular RMs with
multi-level scheduling are proposed [16, 38, 19]. In multi-level schedulers, the
process of deciding how to schedule and share available resources are given
to applications instead of following an organizational unique policy. RMs like
Mesos [19], Torque, and Omega [38] expect workloads (users) to specify resource
reservations, for instance how many CPU-cores and memory the application
needs. For example, Mesos3, processes resource requests and, based on avail-
ability and fairness, makes resource offers to individual application frameworks
(e.g., Hadoop), which can accept or reject these offers depending on application
requirements [19]. Mesos handles heterogeneity by acting as a meta-scheduler
for a whole cluster, with conceptual resource abstractions for CPU, memory,
I/O and other infrastructure resources being used and exposed in the same way
an OS does in a single computer. This enables a set of new capabilities like
elasticity and fault-tolerance to distributed applications [35], a concept now
known as Datacenter Operating System (DC/OS) [48, 19].

2.4 Data Analysis for Resource Efficiency

Large datasets such as utilization traces, application logs, and reliability mea-
surements can be analyzed jointly to discover patterns that could not be de-
rived without using data analytic techniques. Generally, HPC infrastructures
utilize the latest performance optimized, or domain specific hardware. How-
ever, these data analytic techniques often show that jobs do not fully utilize
allocated resource capacities [7, 12]. In addition, a very common observation
in HPC centres is that users tend to make poor estimates about parameters
like total execution time and total number of resources needed [13]. These log
traces can also be used to understand the state of a cluster as a whole and give
better informed decisions for resource management or usage reporting. Once
derived, these relationships can be used to increase cluster resource utilization
by allocating spare resources to additional jobs. Predicting system utilization
of parallel jobs have been studied extensively [30, 27, 11, 45], but adding cer-
tainty (or confidence intervals) to these predictions have not been prevalent.
One main focus of a RM design is to enable decisions with confidence and to

3Its earlier project was called Nexus [20].

16



reduce false positives when detecting performance interference (while sharing
resources), which is essential in HPC infrastructures.

Use cases for applying data analytics for RM in HPC come from DI and
adaptive jobs that can make use of spare resources given their needs of low-
latency scheduling and other characteristics as fault tolerance support. The
growth in the size of data sets and complexity of tasks has caused DI jobs to
evolve to a point that their hardware requirements are very similar to those of
traditional HPC applications [2, 26]. However, DI applications have different
performance goals compared to traditional HPC applications. SLOs guaranteed
by HPC RMs are different from what cloud providers guarantee. Whereas cloud
providers are concerned with offering high levels of availability, HPC centres
want applications to have minimal to non-existent interference among different
users and jobs. What’s more, there are types of resource requests typical in
HPC that cannot be handled by cloud providers SLOs. For instance, it is
unfeasible to allocate whole partitions of resources inside a cloud datacenter
for exclusive use and for long times, which is a critical demand for conducting
large scale scientific experiments. These contrasts make running DI jobs in
HPC infrastructures with existing HPC RMs challenging. Similarly, it becomes
more challenging to efficiently run HPC jobs in cloud infrastructures where RMs
multiplex datacenter resources unwarily of what type of jobs that are sharing
the resources.

These contrasts create some opportunities that if properly explored will cre-
ate means for the infrastructural convergence that is now needed for advancing
RMs in HPC and cloud computing [2, 23]. First, utilizing existing HPC infras-
tructures which are being shared by many diverse users (as common, e.g., in
academic research) by the dynamic DI and elastic jobs is a great opportunity.
Second, a solution should not interfere with already deployed infrastructures,
nor it should alter the job submission workflow of current HPC infrastructures.
Third, in HPC, scalability and predictability of resources are as important as
utilization because they respectively simplify application performance porta-
bility and debugging. However, scalability and predictability can at times be
contradictory to utilization. In one hand, increase in utilization can cause se-
vere application performance interference. On the other hand, if scalability in
an application is not linear and performance does not improve linearly with
additional resources, these extra resources will be underutilized [33, 12]. These
three should be considered when proposing new approaches for HPC RM be-
cause they relate to the stability and efficiency of a system. In order to allow
such diverse SLOs in a same cluster to co-exist, two of the main components
in a HPC RM (Figure 2.2) needs to be addressed: resource scheduling and
performance control [8]. Today we see a proliferation of new libraries, tools
and scripts workarounds [4], all targeting dynamicity in HPC, but with little
efforts on integrating such ideas and mechanisms directly into the RM. In-
tegrating and bridging the different constraints and requirements within the
High Performance and Data Analysis (HPDA) and HPC communities is one of
the aims of this thesis. Furthermore, any combination of static and dynamic
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RMs must be simple and scalable, and must detect and gracefully deal with
job interference.
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Chapter 3

Summary of Contributions

In this thesis, we present various tools and mechanisms that directly or indi-
rectly improve resource utilization from either the user or the system perspec-
tive. For users, applications can spend less resources overall by using informa-
tion extracted from, for instance, scientific workflow descriptors. In this way,
a larger job can be composed of many multiple intermediary jobs of various
sizes following resource requirements (geometry) for each specific task to be
performed. From a system perspective, where the same amount of work (work-
load) is submitted to the job queue, utilization is improved if the workload is
completed earlier with neglectable delays in job runtimes.

The papers in this thesis are ordered following a top-down approach, that
also follows the order of the specific research objectives in Section 1.1 and in
Chapter 2. In Paper I, we developed in a tool for enabling a better understand-
ing of the application in order to allow it to communicate with the resource
manager and use resources more appropriately in a scientific workflow scenario.
In Paper II, we focused on extending the runtime system (the emulator that
performs hardware virtualization, virtual machine) to dynamically adjust which
fault-tolerant mechanism to use according to application workload. Finally, in
Paper III, we investigate how to monitor processor counters to enable finer
grained resource allocation on HPC infrastructures via a two-level scheduling
architectural approach.

3.1 Paper I

Next-generation data-intensive scientific workflows need to support streaming
and real-time applications with dynamic resource needs on HPC platforms. The
static resource allocation model of current HPC systems that was designed for
monolithic MPI applications is insufficient to support the elastic resource needs
of current and future workflows. In this paper, we discuss the design, imple-
mentation, and evaluation of Elastic-HPC (E-HPC), an elastic framework for
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managing resources for scientific workflows on current HPC systems. E-HPC
considers a resource slot for a workflow as an elastic window that might map
to different physical resources over the duration of a workflow. Our frame-
work uses checkpoint-restart as the underlying mechanism to migrate workflow
execution across the dynamic window of resources. E-HPC provides the foun-
dation necessary to enable dynamic resource allocation of HPC resources that
are needed for streaming and real-time workflows. E-HPC has negligible over-
head beyond the cost of checkpointing, and can minimize turnaround time of
workflows core-hour utilization for common workflow resource use patterns.
It thus provides an effective framework for elastic expansion of resources for
applications with dynamic resource needs.

In this paper, I entered on an ongoing project in connection with exchange
studies at the Lawrence Berkeley National Lab. (LBNL). I have implemented
parts of the library enabling its use with any job scheduler and multiple queue
submission, as well as designed and performed all experiments (with the in-
depth implementation work). I have also written the parts of the paper con-
cerning the experiments evaluation and discussion, and introductory schemat-
ics. The first two authors are data scientist respective postdoc who worked
on the project before I came, Gonzalo P Rodrigo was a postdoc at LBNL and
contributed to some parts related to his previous research at Ume̊a University,
and Lavanya Ramakrishnan leads the group at LNBL and acted as supervisor.

3.2 Paper II

Active VM replication is an application independent and cost-efficient mech-
anism for high availability and fault tolerance, with several recently proposed
implementations based on checkpointing. However, these methods may suffer
from large impacts on application latency, excessive resource usage overhead,
and/or unpredictable behavior for varying workloads. To address these prob-
lems, in Paper II we propose a hybrid approach through a Proportional-Integral
(PI) controller to dynamically switch between periodic and on-demand check-
pointing. The mechanism proposed automatically selects the method that min-
imizes application downtime by adapting itself to changes in workload charac-
teristics. The implementation is based on modifications to QEMU, LibVirt, and
OpenStack, to seamlessly provide fault tolerant VM provisioning and to enable
the controller to dynamically select the best checkpointing mode. Our evalua-
tion is based on experiments with a video streaming application, an e-commerce
benchmark, and a software development tool. The experiments demonstrate
that our adaptive hybrid approach improves both application availability and
resource usage compared to static selection of a checkpointing method, with
improved application performance of up to 10% and neglectable overheads.

This project is a result of work in the ORBIT project [31], from which the
idea also came. The first author (Abel Souza) did the bulk of the implemen-
tation (especially in regards to integration), all experiments and wrote all the
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text in the article. The second author (Alessandro Papadopoulos, Mälarden
University) helped designing the software controller. The third author (Luis
Tomás, RedHat Inc) was the project leader and helped with some technical
issues. The fourth author (David Gilbert, RedHat Inc) did the COLO imple-
mentation in the Linux kernel and gave many advises about the experiments.
And the fifth author (Johan Tordsson, Ume̊a University - supervisor) gave feed-
back on experiments, presentation of data, and the article at large. This article
became ”best paper runner up” at IEEE International Conference on Cloud
Engineering 2018.

3.3 Paper III

Traditionally, High Performance Computing (HPC) and Data Intensive (DI)
workloads have been executed on separate hardware using different tools for
resource and application management. With increasing convergence of these
paradigms, where modern applications are composed of both types of jobs
in complex workflows, this separation becomes a growing overhead and the
need for a common computation platform for both application areas increases.
Executing both application classes on the same hardware not only enables
hybrid workflows, but can also increase the usage efficiency of the system,
as often not all available hardware is fully utilized by an application. While
HPC systems are typically managed in a coarse grained fashion, allocating a
fixed set of resources exclusively to an application, DI systems employ a finer
grained regime, enabling dynamic resource allocation and control based on
application needs. On the path to full convergence, a useful and less intrusive
step is a hybrid resource management system that allows the execution of DI
applications on top of standard HPC scheduling systems.

In this paper we present the architecture of a hybrid system enabling dual-
level scheduling for DI jobs in HPC infrastructures. Our system takes advan-
tage of real-time resource utilization monitoring to efficiently co-schedule HPC
and DI applications. The architecture is easily adaptable and extensible to
current and new types of distributed workloads, allowing efficient combina-
tion of hybrid workloads on HPC resources with increased job throughput and
higher overall resource utilization. The architecture is implemented based on
the Slurm and Mesos resource managers for HPC and DI jobs. Our experi-
mental evaluation in a real cluster based on a set of representative HPC and
DI applications demonstrate that our hybrid architecture improves resource
utilization by 20%, with 12% decrease on queue makespan while still meeting
all deadlines for HPC jobs.

I and the second author (Mohammad Rezaei, KTH Royal Institute of Tech-
nology) defined the problem together. First author did the bulk of the imple-
mentation (all integration with scheduler and subsystems, etc., and Mohammad
contributed with some code to the analytics bits). Abel conducted the experi-
ments and wrote the article. Erwin Laure (KTH Royal Institute of Technology)
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contributed with feedback and advises on HPC perspectives as well as related
work and the text overall. Johan Tordsson gave feedback on the article writing
as a whole as well as the experiments.

3.4 Future Work

Relentless demand for greater computing capabilities makes cost efficiency the
main metric of interest in the design of datacenters. Thus, datacenter opera-
tors’ primary objective concerns minimizing operational costs by maximizing
utilization while simultaneously minimizing applications performance degrada-
tion due to resource sharing.

As noted in the summary of papers, performance is not measured as a single
quantity as it can be obtained in several different ways. One metric is overhead,
the extra resource cost of implementing an abstraction presented to applica-
tions. A related metric is efficiency, the lack of overhead in an abstraction.
RMs need to allocate resources among applications, and this affects the system
performance as perceived by the end user.

Focusing on small number of metrics may bring fairness issues among mul-
tiple applications running on the same cluster or machine. Should resources be
divided equally between different users and applications, or should some get
preferential treatment? Predictability, a related performance metric is whether
the system’s response time (or other metric) is consistent over time. Pre-
dictability is most of time more important than average performance, because
it accurately estimates confidence intervals for how long repeated application
experiments take in a system.

Research in resource management for large scale clusters has always had a
duality between increasing resource utilization, and guaranteeing predictability
of allocated resources. For HPC workloads, the focus is on the later, but recent
challenges on converged infrastructures are demanding new solutions. To mix
job classes with different SLOs is a main challenge in such infrastructures, and
any solution has to provide mechanisms for intra-node isolation of collocated
jobs, outlier and interference detection, and a mechanism to handle interference.

In these directions, Paper III targets dynamic execution in HPC clusters,
and one of RMs main goals is to have predictable resource assignment of jobs.
Thus our goal is to extend on Paper III approach by considering ways to min-
imize in different ways interference and/or false positives in our co-locations
while making use of job prioritization. This is understandable since, for in-
stance majority of HPC jobs are not fault tolerant or are not designed to deal
with stragglers between tasks. On the other hand, dynamic and elastic jobs
are generally, and by design, developed to deal with those issues.

As such, varied and new combined ways for achieving extreme-efficiency
at scale at all layers of the system stack are needed [23]. Since this could be
done in different ways, we will be extending on ideas of Paper III for improv-
ing future resource utilization in order to perform probabilistic co-schedule of
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applications.
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