
Towards Semantic
Language Processing

Anna Jonsson

Towards Semantic
Language Processing

Anna Jonsson

Licentiate Thesis, December 2018
Department of Computing Science

Ume̊a University
Sweden

Department of Computing Science
Ume̊a University
SE-901 87 Ume̊a, Sweden

aj@cs.umu.se

Copyright c© 2018 by Anna Jonsson
Except for Paper I, c© Association for Computational Linguistics, 2017

Paper II, c© Elsevier, 2017

Paper III, c© Springer-Verlag, 2018

ISBN 978-91-7601-964-1
ISSN 0348-0542
UMINF 18.12

Cover illustration by Lina Lidmark.
Printed by UmU Tryckservice, Ume̊a University, 2018.

Abstract

The overall goal of the field of natural language processing is to facilitate the
communication between humans and computers, and to help humans with nat-
ural language problems such as translation. In this thesis, we focus on semantic
language processing. Modelling semantics – the meaning of natural language –
requires both a structure to hold the semantic information and a device that can
enforce rules on the structure to ensure well-formed semantics while not being
too computationally heavy. The devices used in natural language processing
are preferably weighted to allow for comparison of the alternative semantic
interpretations outputted by a device.

The structure employed here is the abstract meaning representation (AMR).
We show that AMRs representing well-formed semantics can be generated while
leaving out AMRs that are not semantically well-formed. For this purpose, we
use a type of graph grammar called contextual hyperedge replacement grammar
(CHRG). Moreover, we argue that a more well-known subclass of CHRG –
the hyperedge replacement grammar (HRG) – is not powerful enough for AMR
generation. This is due to the limitation of HRG when it comes to handling
co-references, which in its turn depends on the fact that HRGs only generate
graphs of bounded treewidth.

Furthermore, we also address the N best problem, which is as follows: Given
a weighted device, return the N best (here: smallest-weighted, or more intu-
itively, smallest-errored) structures. Our goal is to solve the N best problem
for devices capable of expressing sophisticated forms of semantic representa-
tions such as CHRGs. Here, however, we merely take a first step consisting in
developing methods for solving the N best problem for weighted tree automata
and some types of weighted acyclic hypergraphs.

iii

iv

Acknowledgements

Thanks to:

? Johanna Björklund for being the best supervisor there is and for teaching
me that failing is okay (as long as there is a party afterwards).

? my co-supervisor Frank Drewes for being meticulous at all times and for
always having a bad joke at hand.

? my reference person Lars Karlsson for making sure everything is in order.

? Andreas Maletti for hosting a research visit in Stuttgart, providing ma-
chine translation data and answering my questions.

? Martin Berglund for never denying me thesis formatting help (and for
always bringing tricky problems).

? Adam Dahlgren for travelling with me, making sure that we arrived at
CIAA 2018 on time, and for being my colleague and friend.

? Henrik, Niklas, Petter and Suna the role-model for lunch (and dinner)
company, seminars and problem-solving sessions.

? Lili for laughing at my little dances in the fika room and for repeatedly
answering my curious questions about her food with “it is a long story”.

? the rest of my colleagues at the department for helping me with all sorts
of things, but most importantly for shared laughs.

? my family – your support means everything.

? Gustav, Lina, Matilda, Martin and William for being my second family.

? Micke for all the much needed love.

Finally, I want to dedicate his thesis to my grandparents (and for their sake,
I will do so in Swedish). Till farmor Vera som lärde mig att göra grimaser, till
farfar Åke som visade mig hur man löser korsord, och till mormor Margit som
lärde mig att inte bitas med orden “Stopp stopp, var och en biter sig själv!”

This project was funded by Vetenskapsr̊adet, DNR 2012-04555.

v

vi

List of papers

This thesis is based on the following papers:

Paper I Frank Drewes and Anna Jonsson. Contextual Hyperedge Replace-
ment Grammars for Abstract Meaning Representations. In 13th

International Workshop on Tree-Adjoining Grammar and Related
Formalisms (TAG+13), 102–111, Association for Computational
Linguistics, 2017.

Paper II Johanna Björklund, Frank Drewes and Anna Jonsson. Finding the
N Best Vertices in an Infinite Weighted Hypergraph. In Theoretical
Computer Science, volume 682, 30–41, Elsevier, 2017.

Paper III Johanna Björklund, Frank Drewes and Anna Jonsson. A Com-
parison of Two N-Best Extraction Methods for Weighted Tree Au-
tomata. In 23rd International Conference on Implementation and
Applications of Automata (CIAA), 97–108, Springer, 2018.

vii

viii

List of contributions

Here the contributions of the thesis author to the papers is stated. Naturally,
the contributions include reading, commenting on and approving the papers.

Paper I Writing of first draft (which we then developed together).

Paper II Programming of and experiments on software.

Paper III Performing, describing and giving the results of the experiments.

ix

x

Contents

1 Introduction 1

2 Theoretical foundation 5
2.1 Structures 5
2.2 Devices 7
2.3 Semirings 10

3 Research questions and contributions 11
3.1 Semantic modelling 11
3.2 The N best problem 13

Paper I 19

Paper II 31

Paper III 53

xi

xii

Chapter 1

Introduction

Humans communicate in natural language such as English or Swedish. When
humans talk to each other, it is acceptable for us to make grammatical mistakes
since we will likely still understand each other. In other words: the meaning of
what we are saying – the semantics1 – will still come across, regardless of the
quality of the syntax (specific formulation). A computer, on the other hand,
would deem the sentence useless unless the syntax is perfectly correct; it can
only interpret language that follows pre-specified rules strictly.

The aim of the field of natural language processing is to make it possible for
computers to communicate in and help humans with natural language (here,
we limit ourselves to its written form). To do that, the computer must be
able to extract the semantics even if the input sentence is slightly syntactically
incorrect. Then it has to process the semantics to compute the desired result –
also in the form of semantics. Finally, it should transform the result into a syn-
tactically passable sentence and output it to the user. Thus, we need to handle
both syntax and semantics when developing natural language processing tools.

As a starting point, we know that the strength of computers lies in their
ability to store data and carry out formal directions (e.g. performing compu-
tations). We use this information to build language models for the computer.
Such models normally contain the following two parts:

(1) a structure in which we can express the syntax or semantics of pieces of
language (usually sentences), and

(2) a device that scores syntactic or semantic structures based on how well
they follow a given set of rules, and outputs the ones that follow them
well enough.

Let us start by looking at (1). The structure can for example simply be
a string as in Figure 1.1(a) – in this case, it coincides with a sentence since a
sentence is nothing but a string of natural language. It can also be a tree as
seen in Figure 1.1(b) which contains more information about the sentence and
is therefore more often used in natural language processing. A third option is
to use a graph where the nodes hold the main concepts of the sentence and the
edges are the relations given by the sentence (see Figure 1.1(d) for an example).

1 We include pragmatics in this term since it is not helpful to separate them in this case.

1

Chapter 1

“Margit peels the potatoes.”

(a) String representation (syntactic).

Sentence

Verb
phrase

Noun
phrase

Noun

potatoes.

Deter-
miner

the

Verb

peels

Noun
phrase

Noun

Margit

(b) Syntax tree representation.

Sentence

Verb
phrase

Verb

potatoes.

Noun
phrase

Deter-
miner

the

Noun

peels

Noun
phrase

Noun

Margit

(c) Incorrect syntax tree representation.

Margit

peels

potatoes

arg0(=who?) arg1(=what?)

(d) Semantic graph representation.

Figure 1.1: Different representations of the same sentence.

The first two structures – strings and trees – are dependent on the syntax of
the sentence and therefore said to be syntactic representations. In our example,
the semantics might as well be expressed as “The potatoes are peeled by Mar-
git” which would result in changed string and tree representations. The graph
representation, however, would remain the same; it is therefore considered a se-
mantic representation. When translating a sentence from one natural language
to one or several others, it is valuable to have a structure that can represent
the semantics regardless of syntax since the syntax changes between languages.
When time comes to present the result to the user, however, a syntactic repre-
sentation is needed. The ultimate goal of this research is to extract and process
semantic structures. Important tasks are to use these structures efficiently in
computations and to judge their quality. This is where (2) comes in.

Consider the tree in Figure 1.1(c). The sentence represented by the tree
uses ‘potatoes’ as a verb and ‘peels’ as a noun, making it mean “Margit pota-
toes the peels”. To humans, it is obvious that this is an example of incorrect
natural language. How can we teach computers to differentiate between struc-
tures that represent correct and structures that represent incorrect natural lan-
guage? Since computers are rule-followers, we use devices based on rules that

2

Introduction

express desired properties of the structures. The devices considered here are
grammars and automata. A grammar is a rule set that generates a structure.
An automaton is defined by transition rules that accept a structure. Apart
from using different mechanics, automata and grammars are interchangeable.
The set of structures that can be generated by a grammar or accepted by an
automaton is called a formal language, or language for short.

These devices are practical in the sense that they remove the necessity
of saving entire languages in memory, allowing for infinitely large languages
– and also for efficient processing. We can instead, given a structure, check
whether or not the device generates or accepts it. This check is referred to as
parsing. Unfortunately, depending on the expressiveness of the device, parsing
can be a very difficult problem. An expressive device can handle more complex
structures and rules, but the more expressive a device is, the harder is its
parsing problem.

Both grammars and automata can be weighted in which case they provide
an error score for the structure. Using the error score, we can compare different
structures and thereby obtain a quality measure. For example, if we receive a
set of translations in the form of an automaton, then we can pick the translation
with the lowest weight. In this thesis, we only work with these two device types.

When we have both (1) and (2), we can model natural language using a
formal language. Using the rules of the device, we can try to mimic the actual
grammar of the natural language. The problem is that it is hard to find a device
that is expressive enough whose parsing problem is solvable using a computer.
Countless combinations of structures, devices and device expressibility have
been explored, with varying results and usage areas. Yet another possibility is
explored in this thesis.

Finding a good structure and device combination is not enough, however.
We must also be able to process language in all sorts of ways: automatically
changing between natural language representations, translating natural lan-
guage in a computer (machine translation), extracting language from images
and videos and put it into language representations, analysing natural language
correctness and much more. Here, we focus on a very specific problem which
is motivated by an application in machine translation.

One way to implement machine translation is to use cascade evaluation (see
Figure 1.2). Cascade evaluation is when a problem can be solved in several steps
where the output of one step is the input of the next. When the intermediate

Input · · · Output

Intermediate results

Figure 1.2: Cascade evaluation.

3

Chapter 1

results are devices that describe infinite languages, we aggregate too much data
to handle. This is the case for machine translation where we get a weighted
tree automaton in each step. One approach to solving this is taking the result
that is given the lowest error score by the device and propagate only that to
the next step. This might not give us the optimal solution to the problem, but
it is a good heuristics. An even better heuristics is achieved by propagating
more that one result in each step. Finding the lowest-weighted structure is an
easy problem for many devices whereas finding the N > 1 best structures is a
harder one – the latter is a central topic of this thesis.

The outline of the remainder of this thesis follows: Chapter 2 lays out the
theoretical background and Chapter 3 summarises the research results. My
recommendation to the reader is to only skim Chapter 2, then move on to
Chapter 3 and revisit Chapter 2 if necessary.

4

Chapter 2

Theoretical foundation

In the previous chapter, a number of concepts were introduced but not mathe-
matically defined. Here, we provide the formal definitions and notations. These
are for clarity divided into three sections: structures, devices and semirings.

2.1 Structures

We write N for the natural numbers, N+ for the natural numbers excluding
zero and R∞ for the non-negative real numbers including ∞. Moreover, let A
be a set, and let |A| be the number of elements it contains (its cardinality).
Then, A∗ is the set of finite sequences or strings over A, and A~ is the set of
strings with no repeated elements over A. The power set of A, i.e., the set of
all subsets of A, is denoted by 2A. For simplicity, we let the symbol] denote
disjoint union – the union of sets that have no common element. The domain
of a function f is denoted by dom(f). Furthermore, we allow f to apply to
sequences through the extension f∗ defined as f∗(a0, . . . , an) = f(a0) · · · f(an).
A labelling alphabet is a finite set of symbols Σ = ΣV] ΣE] ΣN that has an
arity function arity : ΣE] ΣN → 2Σ∗V defined on it. The arity function is only
necessary in the definitions where it is explicitly used, but it is convenient to use
the same alphabet definition in all cases. Elements that are labelled by symbols
in ΣN are called nonterminals and will have a special role in Section 2.2. For
now, just consider them ordinary labels.

In Figure 1.1(d) we saw an example of a labelled directed graph, and although
it is quite a self-explanatory structure, we will see its formal definition.

Definition 2.1 (Graph) A labelled directed graph (graph, for short) with
labels from the labelling alphabet Σ is a tuple G = (V,E, labelV , labelE) where

• V is a finite set of nodes.

• E ⊆ {(v, v′) | v, v′ ∈ V } contains the edges, all directed from v to v′.

• the function labelV : V → ΣV labels the nodes.

• the function labelE : E → ΣE] ΣN labels the edges.

5

Chapter 2

A tree is an undirected graph (see the above definition but disregard the
edge directions) in which each node is only connected to any other node of the
graph by a single path. One node is often assigned the root role which gives the
tree a hierarchical structure of parents and children – the root is the only node
that is never a child (though it can be a parent). In Figures 1.1(b) and 1.1(c),
the roots of the trees are the nodes labelled ‘Sentence’. For the interested, the
formal definition of a tree used in Papers II and III follows.

Definition 2.2 (Tree) A tree labelled over a labelling alphabet Σ is a partial
function t : N∗+ → A such that the below conditions are fulfilled for v ∈ N∗+ and
i, j ∈ N+ with 1 ≤ j ≤ i.

• dom(t) is non-empty and finite.

• vi ∈ dom(t) =⇒ v ∈ dom(t). (prefix-closedness)

• vi ∈ dom(t) =⇒ vj ∈ dom(t). (left-closedness)

• |{i | vi ∈ dom(t)}| = arity(t(v)).

We call v ∈ dom(t) a node in t, and vi ∈ dom(t) children of v (v is their parent).
The last condition states that a node can only be labelled with a symbol whose
arity is equal to the number of children of the node.

Sometimes it is useful to measure how much a graph resembles a tree. For
that, we use the measurement treewidth. In the case where the graph is in fact
a tree, the treewidth of the graph is 1. The definition of treewidth below is the
one used in [CDG+18].

Definition 2.3 (Treewidth) This definition is done in three steps. First, a
tree decomposition of a graph G = (V,E, labelV , labelE) is a tree t labelled over
A ⊆ 2V such that

• ∀v ∈ V , ∃v′ ∈ dom(t) : v ∈ t(v′),

• ∀(v0, v1) ∈ E, ∃v′ ∈ dom(t) : {v0, v1} ⊆ t(v′), and

• ∀v ∈ V , the subgraph of t created using the nodes v′ ∈ dom(t) : v ∈ t(v′)
and the edges between them is connected.

Secondly, the width of a tree decomposition t is given by

max
v′∈dom(t)

(|t(v′)| − 1).

Finally, the treewidth of a graph G is the minimal width over all of its tree
decompositions.

The purpose of the −1 in the width definition is to make sure that the
treewidth of a tree is 1. Moreover, the treewidth of a cycle is 2. (For those
who are familiar with k-cliques: a k-clique has treewidth k − 1.)

6

Theoretical foundation

Next, we will see a structure that is a generalisation of the graphs we saw
above, namely hypergraphs. The only difference between the two is that the
latter uses hyperedges. A hyperedge is an edge that can connect an arbitrary
number of nodes, and a hypergraph is a graph with hyperedges. More formally:

Definition 2.4 (Hypergraph) A labelled hypergraph (hypergraph, for short)
over a labelling alphabet Σ = ΣV] ΣE] ΣN is a tuple G = (V,E, att,
labelV , labelE) such that all of the below criteria are fulfilled.

• V is a finite set of nodes.

• E is a finite set of hyperedges.

• att : E → V ~ is the attachment of hyperedges to nodes.

• labelV : V → ΣV is the labelling of nodes.

• labelE : E → ΣE]ΣN with label*V (att(e)) ∈ arity(labelE(e)) for all e ∈ E
is the labelling of hyperedges.

The hypergraph definition intuitively says that hyperedges that are con-
nected to n nodes can only be labelled with symbols whose arity contains a
sequence of length n such that all of the labels of the n nodes are represented
in the sequence. Note that hyperedges that are connected to exactly two nodes
are equivalent to ordinary directed edges. In Paper II, we use a slightly dif-
ferent but equivalent hypergraph definition: each hyperedge has a target node
and zero or more source nodes. This is only for our convenience as it allows us
to easily specify a desirable property of the input graphs.

2.2 Devices

The derivation of a grammar (or run of an automaton) is a way of assigning
a weight to a structure using the internal rules of the device (see Section 2.3
for how the cost of a run is computed). The weight assignment only works
if the structure is a member of the language of the device. If the device is
deterministic, each structure has only one corresponding run. If the device is
on the other hand nondeterministic, there can be several runs on one single
structure. Nondeterminism complicates computations using the devices, and
devices that describe natural language often contain nondeterminism.

A device that is used to describe (hyper)graph languages is the hyperedge
replacement grammar (see [DKH97] for a survey). Its definition follows.

Definition 2.5 (Hyperedge replacement grammar) A (weighted) hyper-
edge replacement grammar (HRG) is a tuple G = (Σ,R, Z) where

• Σ is the labelling alphabet Σ = ΣV] ΣE] ΣN ,

• R is a set of context-free rules, and

7

Chapter 2

• Z is a start hypergraph labelled over Σ.

A context-free rule has the form (L,R,w) where the left-hand side L is a
connected hypergraph with exactly one hyperedge that must be a nonterminal,
the right-hand side R is any supergraph of the hypergraph we obtain when
removing the nonterminal from L, and w is the weight of the rule.

So how do they work? Say that you have a starting hypergraph Z which
contains the nonterminal e. Moreover, say that you have a rule (L,R,w) for
which the single nonterminal in L is e. Then you can apply the rule to Z with
cost w by first removing e from Z and then inserting R in its place – the rule
specifies exactly how the attachment of R is to be done. See Figure 2.1 for a
rule example and Figure 2.2 for an application of the rule. The intuition is that
we can apply these context-free rules to our hypergraph over and over again
until no nonterminals remain, thereby generating an entirely new hypergraph
that follows the rules of the grammar. The nonterminals can be seen as place-
holders that are attached to the nodes that they want to be able to incorporate
in future changes to the hypergraph.

1

e

3

4 2
2

::=

1

f5 2

3

g4

Figure 2.1: A context-free rule. The circles are nodes, the squares are nonter-
minals, and ::= separates the left-hand and the right-hand side. Above ::=, we
see the weight of the rule, which is 2. Thus, the rule specifies a replacement of
the nonterminal e with cost 2.

1

a

e 2

b

3

c

4

d

⇒

1

a

2

b

3

f5

c

d

g4

Figure 2.2: An application of the rule in Figure 2.1 to the leftmost hypergraph,
resulting in the rightmost hypergraph. Note that the order of the attachment
(1234) is preserved.

8

Theoretical foundation

The next grammar type is a generalisation of HRG which allows changes to
be made to parts of the hypergrah that are not connected to any nonterminal.
This extended HRG is called contextual HRG [DH15], and its definition follows.

Definition 2.6 (Contextual hyperedge replacement grammar) A (wei-
ghted) contextual hyperedge replacement grammar (CHRG) is an HRG whose
rules are contextual rules. A contextual rule is defined in the same way as a
context-free rule, apart from the fact that the left-hand side L does not have
to be connected. Thus, the rules of a CHRG are always contextual, but not all
of them are context-free.

Intuitively, this expansion allows addition of hyperedges to nodes that have
previously been released, i.e., nodes that no longer have any nonterminals con-
nected to them. This generalisation turns out to be more suitable for semantic
generation since it models the usage of e.g. pronouns better (see Section 3.1).

Until now, we have only seen graph grammars. Now, we will see a type of
automata that describes tree languages (as defined in Papers II and III).

Definition 2.7 (Tree automaton) A weighted tree automaton (tree automa-
ton, for short) is a tuple M = (Q,Σ,R, Qf) for which we have the following.

• Q is a finite set of states.

• Σ is a labelling alphabet disjoint with Q.

• R is a finite set of transition rules of the form f [q0, . . . , qk−1]
w−→ q where

f ∈ Σ, arity(f) = k, q0, . . . , qk−1, q ∈ Q, and w ∈ R∞.

• Qf ⊆ Q is a set of final states.

The rules of an automaton can be seen as consumers of symbols. For exam-
ple, the rule a[] → q0 consumes the symbol a that does not have any children
and puts the automaton in state q0. If a has the parent f , which in its turn
has no other children than a, then it is possible to apply the rule f [q0] → q1

to consume f and put the automaton in state q1. Similarly to the grammar
case, we apply the rules repeatedly until no more rules can be applied – at the
latest, this happens when the root of the tree is reached. If the automaton is
in a final state when it has reached the root of the tree, then the automaton
accepts (or recognises) the tree. (Not that the difference is that automata take
structures as input whereas grammars generate structures.)

Both automata and grammars can be processed in the opposite direction:
for a tree automaton, we can figure out what trees it accepts, and for a graph
grammar, we can find out if a certain graph is generated by the grammar. Run-
ning automata in the usual direction and grammars in the opposite direction
corresponds to parsing.

Definition 2.8 (Parsing) Let D be a device. Then L(D) denotes the lan-
guage generated or accepted by the device. The parsing problem is solved by
answering the question: Given a structure s of type S and a device D that
describes structures of type S, does s belong to L(D)?

9

Chapter 2

At the beginning of this section, we briefly touched upon nondeterminism
and that it makes things more difficult. For automata, we however have the
option of determinising it. Determinisation is the process of taking a nonde-
terministic automaton and making it deterministic. This is convenient when
you, e.g., want to use an algorithm for extracting the best runs to find the best
trees, but not all automata can be determinised. Most often, however, they
can be partly determinised as we go such that we only determinise the part of
the automaton that we actually need – this is called on-the-fly determinisation.

2.3 Semirings

When working with weighted structures and devices, we have to define what
their weights can be and how the weights should be combined in computations
using the devices. For this, we normally use a semiring.

A semiring A is a non-empty set with operations defined on it. More for-
mally, we have A = (A,⊕,⊗,0,1) where A is a set, ⊕ is an operator with 0
as its identity element, and ⊗ is an operator with 1 as its identity element.
The two operators ⊕ and ⊗ are both associative, but only the first has to be
commutative (so a⊕ 0 = 0⊕ a = a for every a ∈ A). If ⊗ is also commutative,
we say that the semiring itself is commutative, and this is the case in all of the
semirings we consider here. A is idempotent if a ⊕ a = a for all a ∈ A; this is
the case if ⊕ is for example the min function. For a semiring A to be finitely
generated, there has to be a finite subset B of A whose elements can form all
of the elements of A by applying the operations ⊕ and ⊗ to them.

Then, how do we compute the weight of a structure using a device that
is weighted over a semiring A = (A,⊕,⊗,0,1)? As we saw in the previous
section, each rule of the device has a weight – a cost imposed on using the
rule. To say that a device is weighted over A implies that all of its rules have
weights from A. The weight of a structure is computed by applying ⊗ to all of
the weights of rules used in a run on (or a derivation of) the structure, and then
⊕ is used to summarise over all runs. For example, let ⊗ = + and ⊕ = min.
Then we only have to look at the smallest-weighted run on a structure to know
its cost because of the min operator. Thus, the weight of the structure is simply
the sum of the weights of the rules used in the smallest run on the structure.
This is the case for the semiring we will see next.

The tropical semiring (used in e.g. N best trees extraction, see Section 3.2)
is defined as T = (R∞,min,+,∞, 0). Here we see that∞ is the identity element
of min and 0 is the identity element of + since min(∞, a) = min(a,∞) = a and
0 + a = a+ 0 = a for all a ∈ R∞. Moreover, min and + are both commutative,
thus T is commutative; T is also idempotent since min(a, a) = a for all a ∈ R∞.

We can also define classes of semirings. A nice semiring is idempotent,
finitely generated, and has 1 as its smallest element. This is the semiring class
used for the N best nodes extraction in Paper II, as we will see in Section 3.2.

10

Chapter 3

Research questions and
contributions

This chapter provides a summary of the papers in this thesis and outlines
directions for future work. The summary is divided into the two main topics:
semantic modelling and finding the N best structures given a weighted device.

3.1 Semantic modelling

To work with semantic models, we must be able to extract semantics from a
natural language sentence and put it into a semantic model. There are many
studies on this topic using various semantic representations combined with dif-
ferent approaches; some of them follow. In [DM18] an existing method based
on neural networks for annotating a natural language sentence with syntactic
information is extended to allow for the addition of semantic information to
the sentence. Rule-based devices can also be used for this purpose: in [ALZ15]
semantic information is extracted using grammars. An important key to train-
ing any model is the access to high-qualitative semantic data. There are many
efforts to create more such data, one of which is [OKM+16]. Contributing
to solving this problem is however outside the scope of this thesis. Here, we
instead focus on semantic models and devices that can describe them.

In Chapter 1, we saw that graphs can be used to model semantics. To
have a fully working model, however, we need to specify how to build the
graphs: what concepts that are allowed and what their relations can be. An
example of such a graph-based semantic representation is the abstract meaning
representation (AMR) [BBC+13]. An AMR is a directed acyclic graph with
node and edge labels that follows the AMR specification1 – the nodes represent
concepts and the edges give us the relations between the concepts. The graph
in Figure 1.1(d) is an AMR consisting of the concepts peels, Margit and
potatoes, and the relations arg0 and arg1 that point us to the agent and
patient of a verb, respectively. Here, AMR is the semantic model of choice.

1 https://github.com/amrisi/amr-guidelines/blob/master/amr.md

11

Chapter 3

The next step is to find a device that can describe complete AMR lan-
guages over a pre-specified domain of concepts and relations. The term com-
plete implies that the language described by the device should contain all of
the AMRs over the domain that represent well-formed semantics (it should
optimally also leave out the ones that represent non-well-formed semantics).
The device should also have a polynomial-time-solvable parsing problem, oth-
erwise it is not practical since many applications, e.g. machine learning, require
repeated parsing of large numbers of structures.

A device that has been investigated for this purpose is hyperedge replace-
ment grammar (HRG, see Definition 2.5) [CAB+13, DHM15, DHM17, BDE16].
The usage of hyperedges as nonterminals allows us to implement the control
structures that reside in natural language. For example, the verb ‘try’ implies
that the person who is doing the trying is the one who should do what is tried as
well – “Margit tries to Vera peels the potatoes” makes no sense whereas “Mar-
git tries to peel the potatoes” has valid semantics. In [CAB+13], the authors
use the motivation of semantic models to develop a new and more efficient pars-
ing algorithm for HRGs. The improved efficiency is based on the assumption
that the graphs have bounded treewidth (see Definition 2.3), which in practice
means that they cannot have too many cross-references. Even though a general
solution cannot rely on bounded treewidth, putting a limit on the treewidth
can be motivated by real-life AMR data sets [CDG+18] (the ones examined in
this particular study have treewidth of at most four).

Moreover, predictive top-down parsing [DHM15] and restricted directed
acyclic graph grammar parsing [BDE16] are both efficient parsing algorithms
for subclasses of HRG – these are compared with respect to suitability for AMR
parsing in [Jon16]. The result of the comparison is that none of the subclasses
is suitable for AMR parsing in general and it is hypothesised that the reason
is that their superclass HRG is in itself not powerful enough.

In Paper I, we study this question and conclude that the languages resulting
from hyperedge replacement, as they are of bounded treewidth, are to narrow to
handle coreferences resulting from using pronouns. Furthermore, we show that
the contextual hyperedge replacement grammar (CHRG, see Definition 2.6)
seems to be a good option for AMR generation. This is because CHRG provides
the same mechanisms as HRG to control how concepts and relations are added
while it has the option to add additional relations to already added nodes,
rendering it unnecessary to keep track of all of the nodes already generated.
In slightly more technical terms, we show that CHRGs are more suitable than
HRGs for AMR generation by showing that they can generate complete AMR
languages over a given domain of concepts and relations. In addition, if we
have a language that can be described using both grammar types, the CHRG
turns out to be both smaller and simpler than the HRG.

However, it remains to see if all AMR languages are parsable with respect to
CHRGs and what time complexity the parsing has. Recent results indicate that
at least a subclass of HRG is parsable [DHM17], but are the AMR languages
contained in that subclass?

12

Research questions and contributions

3.2 The N best problem

The N best problem is defined as follows: Given a device D weighted over
a semiring A, extract the N pairwise distinct elements from L(D) that are
optimal with respect to A. For example, if A is the tropical semiring (recall
that its ⊕ operator is min), we want N structures of minimal weight (none of
which is equivalent to any of the other structures).

Our long-term goal is to solve the N best problem for devices that, like
CHRGs, can describe semantic languages. Then we will be able to extract,
e.g., the N most likely meanings of a sentence. This far, we have however
only worked with devices whose resulting structures are not typically used
to represent semantics. We consider the work summarised here to be a step
towards our long-term goal.

The motivation for solving the N best problem is, as previously mentioned
in Chapter 1, handling infinite amounts of intermediate data in cascade eval-
uations (see e.g. [MKV10, Mal10, Mal11] for cascade evaluations in machine
translation). In the case where the intermediate data consists of strings, the
problem is solved by the algorithm Mohri and Riley present in [MR02] which
uses on-the-fly determinisation on the input weighted string automaton (e.g.
over the tropical semiring). This string algorithm was generalised to work for
trees in [BDZ15], resulting in the algorithm Best Trees that finds the N
best trees given a tree automaton (see Definition 2.7) weighted over the trop-
ical semiring. To keep the efficiency high, Best Trees makes use of pruning
which is to at every step only consider the trees that can possibly be part of
the solution and discard the others. The implementation of Best Trees is
available on GitHub.2

In Paper II, we compare the running time of Best Trees with its running
time without the pruning; as expected, the pruning makes the algorithm much
faster. However, we do not only want to make sure that the algorithm is effi-
cient; we also want to compare it with other methods. Therefore, in Paper III,
we compare Best Trees with the state of the art manner of finding the N
best trees in practice: first finding the k ≥ N best runs and then filtering the
list, removing duplicates of higher weight, until the N best trees remain (done
in e.g. [Que17]). We call this method Filtered Runs. The k best runs are
preferably found using the tree automata toolkit Tiburon [MK06] (that imple-
ments the algorithm in [HC05]), and removing duplicates can be done with a
simple script. A weakness of Filtered Runs in the current setting is that k
has to be guessed, and if Tiburon returns less than N trees, we need to increase
k and run it all over again. Even though this can be mitigated using an imple-
mentation that outputs all of the runs until we stop it, the running time still
depends on how many runs that have to be found before we have seen all N
trees, which is hard to predict. This reasoning aligns well with the result of the
comparison which shows that Best Trees is faster when the input automa-
ton contains a high degree of nondeterminism but slower when there is less

2 https://github.com/tm11ajn/besttrees

13

Chapter 3

nondeterminism. Thus, Best Trees is both more predictable with respect to
running time and better on more nondeterministic automata.

In Paper II, we also develop a generalisation of Best Trees that allows us
to find the best nodes in a weighted acyclic hypergraph that can also be infinite.
Thus, the hypergraph is the weighted device and the smallest-weighted nodes
are what we want to extract. Recall that we use an alternative hypergraph
definition here where each hyperedge has exactly one target node and any
number of source nodes (a hyperedge is directed from the sources to the target).
The weight of each node is computed by a function over the weights of the
incoming hyperedges which in their turn depend on the source nodes of each
hyperedge: i.e., the weight function is inductive. Solving the N best trees
problem was done for weighted tree automata over the tropical semiring. Here,
we do not only generalise with respect to the device, but with respect to the
semiring as well: we compute the N best nodes of a hypergraph weighted
over nice semirings. (Note that the tropical semiring is strictly speaking not
nice but only idempotent with 1 as its smallest element. However, the part
of the semiring that is actually used for computations within the automaton
is finitely generated and thereby nice.) If we let each node of the hypergraph
represent a tree, and the weight of the node be the weight of the tree, we have
roughly the N best problem for weighted tree automata translated into the
hypergraph generalisation. (This translation does however not take the states
of the automaton into account.)

Currently, we are working on an extension of the best nodes algorithm that
allows cycles. Moreover, we have developed a new version of Best Trees, and
preliminary results show that it is clearly faster than the old one. The next
step is to compare the new version with Tiburon on actual machine translation
data resulting from [Que17]. Furthermore, we want to do the comparison not
only for extracting the N best trees, but also for finding the N best runs to
see whether or not Best Trees can compete with Tiburon on its home turf.

14

References

[ALZ15] Yoav Artzi, Kenton Lee, and Luke Zettlemoyer. Broad-coverage
CCG semantic parsing with AMR. In Proc. of the Conference on
Empirical Methods in Natural Language Processing, pages 1699–
1710, 2015.

[BBC+13] Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu,
Kira Griffitt, Ulf Hermjakob, Kevin Knight, Philipp Koehn,
Martha Palmer, and Nathan Schneider. Abstract meaning repre-
sentation for sembanking. In Proc. of the 7th Linguistic Annotation
Workshop and Interoperability with Discourse, 2013.

[BDE16] Henrik Björklund, Frank Drewes, and Petter Ericson. Between a
rock and a hard place — parsing for hyperedge replacement DAG
grammars. In 10th International Conference on Language and Au-
tomata Theory and Applications, 2016.

[BDZ15] Johanna Björklund, Frank Drewes, and Niklas Zechner. An efficient
best-trees algorithm for weighted tree automata over the tropical
semiring. In Proc. 9th Intl. Conf. on Language and Automata The-
ory and Applications, volume 8977 of LNCS, pages 97–108, 2015.

[CAB+13] David Chiang, Jacob Andreas, Daniel Bauer, Karl Moritz Her-
mann, Bevan Jones, and Kevin Knight. Parsing graphs with hyper-
edge replacement grammars. In Proc. of the 51st Annual Meeting
of the Association for Computational Linguistics, volume 1, pages
924–932, 2013.

[CDG+18] David Chiang, Frank Drewes, Daniel Gildea, Adam Lopez, and
Giorgio Satta. Weighted dag automata for semantic graphs. Com-
putational Linguistics, 44(1):119–186, 2018.

[DH15] Frank Drewes and Berthold Hoffmann. Contextual hyperedge re-
placement. Acta Informatica, 52(6):497–524, 2015.

[DHM15] Frank Drewes, Berthold Hoffmann, and Mark Minas. Predictive
top-down parsing for hyperedge replacement grammars. In Proc. of
the 8th International Conference on Graph Transformation, 2015.

15

References

[DHM17] Frank Drewes, Berthold Hoffmann, and Mark Minas. Predictive
shift-reduce parsing for hyperedge replacement grammars. In Proc.
10th Intl. Conf. on Graph Transformation, Lecture Notes in Com-
puter Science, 2017.

[DKH97] Frank Drewes, Hans-Jörg Kreowski, and Annegret Habel. Hyper-
edge replacement graph grammars. In Handbook of Graph Gram-
mars and Computing by Graph Transformation. 1997.

[DM18] Timothy Dozat and Christopher D Manning. Simpler but more
accurate semantic dependency parsing. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics,
volume 2, pages 484–490, 2018.

[HC05] Liang Huang and David Chiang. Better k-best parsing. In Proc.
of the Conference on Parsing Technology 2005, pages 53–64. Asso-
ciation for Computational Linguistics, 2005.

[Jon16] Anna Jonsson. Generation of abstract meaning representations by
hyperedge replacement grammars – a case study. Master’s thesis,
June 2016.

[Mal10] Andreas Maletti. Survey: Tree transducers in machine translation.
In NCMA, pages 11–32, 2010.

[Mal11] Andreas Maletti. Survey: Weighted extended top-down tree trans-
ducers part II – application in machine translation. Fundamenta
Informaticae, 112(2-3):239–261, 2011.

[MK06] Jonathan May and Kevin Knight. Tiburon: A weighted tree au-
tomata toolkit. In International Conference on Implementation
and Application of Automata, pages 102–113. Springer, 2006.

[MKV10] Jonathan May, Kevin Knight, and Heiko Vogler. Efficient infer-
ence through cascades of weighted tree transducers. In Proceedings
of the 48th Annual Meeting of the Association for Computational
Linguistics, pages 1058–1066, 2010.

[MR02] Mehryar Mohri and Michael Riley. An efficient algorithm for the
n-best-strings problem. In Proc. of the Conference on Spoken Lan-
guage Processing, 2002.

[OKM+16] Stephan Oepen, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman,
Silvie Cinková, Dan Flickinger, Jan Hajič, Angelina Ivanova, and
Zdeňka Urešová. Towards comparability of linguistic graph banks
for semantic parsing. In 10th International Conference on Language
Resources and Evaluation, pages 3991–3995, 2016.

[Que17] Daniel Quernheim. Bimorphism Machine Translation. PhD thesis,
2017.

16

I

Proceedings of the 13th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+13), pages 102–111,
Umeå, Sweden, September 4–6, 2017. c© 2017 Association for Computational Linguistics

Contextual Hyperedge Replacement Grammars for
Abstract Meaning Representations

Frank Drewes
Umeå University

drewes@cs.umu.se

Anna Jonsson
Umeå University
aj@cs.umu.se

Abstract

We show how contextual hyperedge re-
placement grammars can be used to
generate abstract meaning representations
(AMRs), and argue that they are more suit-
able for this purpose than hyperedge re-
placement grammars. Contextual hyper-
edge replacement turns out to have two
advantages over plain hyperedge replace-
ment: it can completely cover the lan-
guage of all AMRs over a given domain of
concepts, and at the same time its gram-
mars become both smaller and simpler.

1 Introduction

Natural language processing applications that re-
ceive sentences as input mainly make use of lexi-
cal and syntactic properties of the input sentences.
Even though these properties are an important ba-
sis for the analysis of a sentence, one is usually
more interested in the meaning of a sentence, i.e.,
its semantics. This is particularly true in the case
of machine translation where a semantic error can
cause far more bewilderment than a syntactic one.

Thus, a general-purpose formalism for mod-
elling the semantics of sentences in a way that al-
lows for efficient analysis would be widely use-
ful in natural language processing. This study
focuses on the generation of a semantic repre-
sentation that was proposed some years ago, the
abstract meaning representation (AMR) (Langk-
ilde and Knight, 1998; Banarescu et al., 2013).
An AMR1 is a directed, rooted, acyclic, node-
and edge-labelled graph that represents the se-

1We use the term AMR to refer not only to the concept
of Abstract Meaning Representation as such (Langkilde and
Knight, 1998; Banarescu et al., 2013), but also to its individ-
ual graphs.

mantics of an English sentence2; the nodes and
edges represent concepts and their relations, re-
spectively. A corpus of AMRs over a limited do-
main can be found in (Braune et al., 2014). As in
the case of syntax trees, where tree grammars and
tree automata (Knight and Graehl, 2005) provide a
model for distinguishing structurally correct trees
from incorrect ones, the algorithmic processing of
AMRs would benefit from the existence of appro-
priate formal models for their generation or recog-
nition. Here, we focus on the generation of AMRs
by graph grammars, which have previously been
proposed as formal models for this very task (Chi-
ang et al., 2013).

The usefulness of two types of hyperedge re-
placement grammar (HRG, see Habel (1992);
Drewes et al. (1997)) for AMR generation was in-
vestigated by Jonsson (2016a) (see also (Jonsson,
2016b)), namely the predictive top-down (PTD)
parsable grammar (Drewes et al., 2015) and the
restricted directed acyclic graph (rDAG) gram-
mar (Björklund et al., 2016). Both are of particular
interest because their study was, among other pos-
sible application areas, motivated by AMR gen-
eration. A specific advantage of these special
cases of HRGs is that their membership problem
is solvable in polynomial time. However, Jonsson
(2016a) concludes that neither of them is able to
generate the complete set of AMRs over a given
concept domain.

Unrestricted HRGs allow for better coverage at
the expense of greater computational complexity.
However, a general disadvantage of hyperedge re-
placement remains. The nonterminal items in an
HRG are hyperedges – edges that may be attached
to more (or fewer) than two nodes. Replacement
of a hyperedge inserts a new subgraph in its place,

2Although AMR is to some extent language independent,
it is biased towards English (Banarescu et al., 2013), and
therefore not truly an interlingua (Xue et al., 2014).

102
19

connecting it to the host graph via the nodes the
replaced hyperedge was incident on. Intuitively,
nonterminal hyperedges keep track of a number of
potentially relevant nodes for the purpose of being
able to attach new edges to them later on in the
derivation. This process is well known (and eas-
ily seen) to generate graph languages of bounded
treewidth. As shall be illustrated in Section 6 the
ability of hyperedges to keep track of a bounded
number of previously generated nodes can be used
to ensure structural properties such as those caused
by control verbs. However, it appears that other
types of reentrancies, like those arising from the
use of pronouns, are of a different nature. If,
for example, several instances of the concept boy
have been generated, any of them can in princi-
ple be referred to from anywhere else in the AMR.
As a consequence, there is no reasonable a priori
bound on the treewidth of the graph. Nontermi-
nal hyperedges generating other parts of the AMR
would have to keep track of all boy instances to
accomplish full coverage. On the one hand, this is
not possible in an HRG. On the other hand, it does
not seem to be desirable either, because keeping
track of every boy instance individually would en-
able a level of control far beyond what is needed.

Here we consider contextual hyperedge replace-
ment grammars (CHRGs) (Drewes et al., 2012;
Drewes and Hoffmann, 2015) to learn whether
they can be used to overcome these disadvantages.
CHRGs are also based on hyperedge replacement,
but the left-hand side of a rule can contain so-
called contextual nodes. This provides access to
nodes other than those immediately controlled by
the nonterminal hyperedge, thus enabling rules
to establish connections of the type discussed in
the previous paragraph. The additional ability is
severely limited, far below true context-sensitivity
in power, because nodes are terminal items and
derivation steps cannot distinguish between con-
textual nodes with the same label. For instance,
in the situation sketched above a rule application
would just pick any occurrence of boy elsewhere
in the host graph. As a consequence, however, the
treewidth of generated graphs is not necessarily
bounded anymore.

In the present paper we study and illustrate the
advantages of CHRGs over HRGs for AMR gen-
eration by looking at an example concept domain
in a theoretical case study. To this end, we build
a CHRG that generates AMRs over a restricted

domain and argue that it exhibits perfect cover-
age. The baseline domain is the one introduced
by Braune et al. (2014), consisting of the con-
cepts boy, girl, want and believe along
with two basic relations (called arg0 and arg1)
that are used to bind the concepts together and
correspond to the agent and patient of a want or
believe event. We also consider the construc-
tion of CHRGs for more general AMRs to explore
the advantages of the more generous rule format.
Therefore we add a small set of possible modifiers,
allow an arbitrary number of boys and girls to ap-
pear in an AMR,3 and discuss how to handle con-
trol verbs.

The conclusion of our study is that contextual
hyperedge replacement is indeed a promising for-
malism for describing sets of AMRs. On the one
hand, AMRs contain the mentioned local struc-
tures that must satisfy certain well-formedness
constraints, such as in the case of control verbs.
This can be implemented like it would in an HRG,
using a nonterminal hyperedge to keep track of
the involved nodes. On the other hand, contex-
tual nodes can be used to implement the kinds of
coreferences which may occur anywhere without
following strict local rules, such as those relat-
ing to the use of pronouns. As discussed above,
the latter creates problems in HRGs because non-
terminal hyperedges would have to keep track of
potential antecedents, which seems inappropriate
for various reasons: it is restricted by the rank
of hyperedges, provides an unnecessarily detailed
level of control (thus creating the risk of overfit-
ting), and leads to a huge number of rules to ac-
count explicitly for all the possible nondeterminis-
tic choices arising from the (exponentially) many
ways in which coreferences can be inserted.

The obvious downside of using CHRGs is
that computational problems may potentially be-
come more difficult. However, recent results
on shift-reduce parsing for both HRGs and
CHRGs (Drewes et al., 2017)4 indicate that this
may not be the case. In fact, as the rank of hyper-
edges and the number of rules are central param-
eters in the complexity of membership algorithms
for both unrestricted HRGs and CHRGs, it may
even pay off to turn to CHRGs since this leads
to smaller ranks and much fewer rules, the latter

3Braune et al. (2014) only consider at most one boy and
at most one girl.

4See https://www.unibw.de/inf2/grappa/
for the extension to CHRGs.

103
20

because the use of contextual nodes removes the
necessity to implement nondeterministic choices
explicitly by creating a separate rule for each.

In Section 2, we lay the ground for the rest of
the paper with some basic definitions. The CHRG
is defined in Section 3, and the subset of AMR
to be considered here is discussed in Section 4.
The construction of a CHRG for this domain is
described in Section 5. In Section 6, we indicate
how to generalise it to larger domains, and in par-
ticular how control verbs can be added. Finally,
the results are discussed in Section 7 followed by
the conclusions and future work in Section 8.

Acknowledgement We thank the reviewers for
useful comments that helped us clarify the line of
argumentation (as we hope).

2 Preliminaries

For a set A, we write A∗ to denote the set of finite
sequences or strings over A, and A~ for the set of
strings over A in which no element is repeated; ε
denotes the empty sequence. Elements of A are
identified with strings of length 1 over A, and thus
subsets of A are string languages at the same time.

Furthermore, we let 2A denote the power set
of A, i.e., the set of all subsets of A. The ex-
tension of a function f : A → A′ to sequences
a1, . . . , an where ai ∈ A for 0 ≤ i ≤ n is de-
noted f∗ : A∗ → A′∗ and defined by f∗(a0, . . . ,
an) = f(a1) · · · f(an). Concatenation of strings
is denoted by simple juxtaposition, and element-
wise concatenation of two string languages L,L′

is denoted by L · L′, i.e., L · L′ = {uv | u ∈ L,
v ∈ L′}.

A labelling alphabet is a set Σ partitioned into
three mutually disjoint sets ΣV , ΣE and ΣN on
which an arity function arity : ΣE] ΣN → 2Σ∗

V

is defined. (See Section 5 for an example of an
alphabet and its arity function.) The sets ΣV , ΣE

and ΣN are referred to as node labels, (hyper)edge
labels and nonterminal labels, respectively.

A hypergraph is a generalisation of directed
graphs by the usage of edges that can connect
an arbitrary number of nodes. Here, we consider
node- and edge-labelled hypergraphs.

Definition 1 (Hypergraph (Drewes et al., 2012)).
A labelled hypergraph (hypergraph, for short) over
a labelling alphabet Σ is a tuple G = (V,E, att ,
labelV , labelE) such that
• V is a finite set of nodes.

• E is a finite set of hyperedges.
• att : E → V ~ is the attachment of hyperedges.
• labelV : V → ΣV is the labelling of nodes.
• labelE : E → ΣE ∪ ΣN with label∗V (att(e)) ∈
arity(labelE(e)) for all e ∈ E is the labelling
of hyperedges.5

The rank of a hyperedge e is |arity(labelE(e))|.
Hyperedges with labels in ΣN are called nonter-
minals; GΣ denotes the set of all hypergraphs over
Σ. For a hypergraph G and a hyperedge e ∈ E,
the hypergraph resulting from removing e from G
is denoted by G − e. The empty hypergraph is
denoted by ().

In illustrations, nodes and hyperedges are drawn
as ellipses and squares, respectively, with in-
scribed labels. The attachment of a hyperedge is
shown by lines, and the attachment order is de-
picted using numbers (these can be left out if the
attachment order is clear from the context or irrel-
evant). If a hyperedge connects exactly two nodes
(i.e., it is binary), it can be drawn as an arrow
directed from the first node of the attachment to
the second with its label next to it. See Section 5
for various examples of hypergraphs. Note that a
hypergraph containing only binary hyperedges is
equivalent to an ordinary directed graph; this is the
case in e.g. Figure 1.

3 Contextual Hyperedge Replacement

Given a hypergraph containing nonterminals, rules
can be applied to it in order to generate a new hy-
pergraph. A set of such rules along with a fixed
hypergraph to which they are to be applied forms
a grammar. The grammar type considered here
was proposed in (Drewes et al., 2012; Drewes and
Hoffmann, 2015) and uses the following rule type.

Definition 2 (Contextual Rule). A contextual hy-
peredge replacement rule (or contextual rule) is a
pair (L,R) where L and R are hypergraphs over
the labelling alphabet Σ such that
• L (the left-hand side) contains exactly one hy-

peredge e that must be a nonterminal, and
• R (the right-hand side) is an arbitrary super-

graph of L− e.

A contextual rule for which all nodes in the left-
hand side are connected to e is called context-free.
The nodes that are not connected to e are referred
to as contextual nodes.

5The arity function used differs from the one in (Drewes
et al., 2012), but the resulting hypergraph definition remains
the same.

104
21

We denote a contextual rule by letting ::= sep-
arate the left- and right-hand sides. Moreover, we
allow rules that share the same left-hand side to be
drawn more compactly; in this case, the left-hand
side is only drawn once, and a vertical line is used
to separate the right-hand sides from each other.
To save further space, we use rule schemata in
which labels may be variables ranging over a spec-
ified subset of the set of all labels. As an exam-
ple of a set of contextual rules, consider the rules
in (iii) in Figure 4 of Section 5. Every choice of z,
u, v and a1, a2 in the range specified beneath the
rules yields three rules. Each has the nonterminal
N1 in its left-hand side, and the node labelled u is
a contextual node. In addition, the third right-hand
side contains a newly generated node labelled v.

A contextual rule (L,R) can be applied to a hy-
pergraph G containing an isomorphic copy of L,
i.e., a subgraph that is equal to L up to renaming
of nodes and hyperedges. Suppose for simplicity
that L is a subgraph of G. Then the application of
the rule works in the following manner:
1. Remove e from G, yielding G− e.
2. Add R to G− e, disjointly.
3. Identify the nodes in L−e with the correspond-

ing nodes in R.
The resulting hypergraph is denoted by G[R/e].

Now, we can formally define the grammar type
that makes use of contextual rules.

Definition 3 (Contextual Hyperedge Replace-
ment). A contextual hyperedge replacement gram-
mar (CHRG) is a triple Γ = (Σ,R, Z) where
• Σ is a finite labelling alphabet,
• R is a finite set of contextual rules, and
• Z ∈ GΣ is a start hypergraph.

If G′ = G[R/e] for some contextual rule (L,
R) ∈ R, we say that G′ is derived from G in Γ,
and we write G ⇒R G′. The language gener-
ated by Γ is L(Γ) = {G ∈ GΣ\N | Z ⇒∗R G}
where ⇒∗ is the reflective and transitive closure
of ⇒. Two CHRGs Γ1 and Γ2 are equivalent if
L(Γ1) = L(Γ2), i.e., if they generate the same
language. If all of the rules of Γ are context-
free, then Γ is a hyperedge replacement grammar
(HRG). Thus, CHRG is a generalisation of HRG
through the extension of context-free rules to con-
textual rules. Intuitively, the difference between
the two is that CHRGs can nondeterministically
pick a previously generated node with a specified
label without that node being connected to the re-
placed nonterminal. HRGs do not have this ability.

The graph languages generated by CHRGs are
in NP (Drewes and Hoffmann, 2015), and can thus
be NP-complete, as this already holds for HRGs.
Hence, unless P = NP there are CHRGs which
do not admit a polynomial membership test. For
HRGs, there exist polynomial membership algo-
rithms for nontrivial special cases such as PTD
parsable, shift-reduce parsable, and rDAG HRGs.
The fact that membership testing is not harder for
CHRG than for HRG (at least in theory) strength-
ens the hope that there are subclasses of CHRG
with efficient membership tests. Indeed, this has
partially been confirmed: the membership algo-
rithms for PTD and shift-reduce parsable HRGs
can be extended to CHRGs.4

4 Abstract Meaning Representation

Abstract meaning representation (AMR) (Langk-
ilde and Knight, 1998; Banarescu et al., 2013)
denotes sentence meaning as directed, rooted,
acyclic graphs with node and edge labels. To the
extent possible, AMR aims to provide a unique
representation of semantics, i.e., while numerous
sentences can express the same meaning, they
should all map to the same AMR. The idea is that
the nodes of the graph represent the concepts iden-
tifiable in the sentence, and the edges represent
the relations between the concepts. Intuitively, the
subgraph rooted at any one given node represents
an event, a fact, or an entity. See Figure 1 for ex-
ample AMRs that can be realised into the English
sentences “The boy wants the girl to believe him”
or “[. . .] to believe the other boy.”

The previous example highlights that every
event or entity represented in an AMR should oc-
cur once and only once. In fact, this is the ma-
jor difference between AMRs and syntax trees, in
which several subtrees may refer to the same se-
mantic thing. In the second AMR in Figure 1, the
fact that the wantee is not represented by the same
node as the believee implies that these two are dis-
tinct. Representing the first sentence by the second
AMR (or the second one by the first) is an error.

Thus, to achieve complete coverage, a grammar
for generating AMRs over the given domain must
generate both graphs in Figure 1. Figures 2 and 3
show another pair of AMRs, of which the former
correctly represents the semantics of the sentence
“The boy wants the girl to believe in herself and
this is what the girl wants, too.” The interpretation
of the latter is less obvious. We do not endeav-

105
22

want

believe

girlboy

arg1arg0

arg0arg1

want

believe

girlboy boy

arg1arg0

arg0 arg1

Figure 1: AMRs representing an event want,
where the wanter is a boy and the wantee is the
event believe for which the believer is a girl
and the believee is either the formerly mentioned
boy (left) or a different one (right).

boy

want

believe

want

girl

arg0 arg1 arg1 arg0

arg0

arg1

Figure 2: Another AMR.

boy

want

believe girl

want

believe

arg0 arg1 arg1arg0

arg0

arg1 arg1

arg0

Figure 3: An AMR similar to the one in Figure 2, but with two distinct believe events.

our to discuss whether this AMR is meaningful at
all, but it certainly seems to be less probable. Un-
fortunately, it turns out that structures such as the
one in Figure 3 are easy to generate by a HRG and
even by the aforementioned PTD parsable HRGs,
whereas trying to include the more desirable one
in Figure 2 meets severe difficulties. This is an in-
stance of the problems mentioned in the introduc-
tion: a HRG generating structures like the one in
Figure 2 (even one that is not PTD parsable) would
have to generate the believe node early on and
then keep track of it in its nonterminal hyperedges
to establish the desired relations later on, when
the two want nodes are generated.6 The non-
deterministic choices this creates seem to destroy
PTD parsability. Further, even if PTD parsability
is abandoned in favour of generative power, the
desired effect can only be approximated: as the
number of believe nodes grows, it eventually
exceeds the number of nodes that the nonterminal
hyperedges have been designed to keep track of.

4.1 The Boy-Girl AMR Corpus

The boy-girl AMR corpus is a set of 10 000
AMRs over a restricted domain that was presented
in (Braune et al., 2014). Each AMR of this corpus
fulfils the following conditions:
• The node label alphabet consists of the concept

names boy, girl, want, and believe.
6This assumes for simplicity that a bottom-up generation

strategy is employed. However, the difficulties arising depend
only marginally on the choice of strategy.

• The edge label alphabet consists of the relation
names arg0 and arg1.
• The node labels boy and girl occur at most

once each, and label the leaves of the graph.
• For each want and believe node, the outgo-

ing edges carry distinct labels and all incoming
edges are labelled arg1.
The relation arg0 is used for marking the agent

of an action expressed by a concept in the form of
a verb, and the patient of the same action is given
by the concept pointed to by arg1. The above
restrictions simply give us the domain and tell us
that a person cannot be used as a verb, and that
verbs cannot be agents, but that an event (a sub-
graph with a verb concept as root) can act as a
patient. The left AMR in Figure 1 is a boy-girl
AMR, whereas the left one is not, as it contains
two copies of boy.

To make things more interesting, we remove the
restriction that there can only be one girl and one
boy, and extend the concept domain by months,
weekdays and the words happy and angry. Let
ΣV denote this extended domain. Finally, we add
the relations manner, month and day, which to-
gether with arg0 and arg1 form ΣE .

5 Construction of a Boy-Girl CHRG

Let us now discuss how to construct a CHRG
that generates the complete language of boy-girl
AMRs. The alphabet used is that of Section 4.1,
enlarged by ΣN = {S,N,N1,M} and with the

106
23

arity function given as follows: for A ∈ ΣE ,
arity(A) = {want,believe} · TARA where

TARarg0 = {boy,girl}
TARarg1 = ΣV \ {happy,angry}
TARmanner = {happy,angry}
TARmonth = {Jan, . . . ,Dec}
TARday = {Mon, . . . ,Sun}.

Furthermore, arity(S) = arity(N) = ε and
arity(N1) = arity(M) = {want,believe}.
The start hypergraph Z consists of a single nonter-
minal labelled S. The rules of the boy-girl CHRG
can be seen in Figure 4.

The initial rules of the grammar, the ones of
schema (i), simply generate the first leaf of the
graph. The rules of schema (ii) choose between
terminating the derivation by generating the empty
graph or continuing it by generating a non-leaf
node. Schemata (iii) and (iv) connect the newly
generated node with label z to at least one previ-
ously generated node. Moreover, these rules con-
nect a nonterminal labelled M to the node, which
makes it possible to add zero or more outgoing
manner edges from the node currently being han-
dled to suitable (new) leaves. In addition, at most
one month and one day edge can be generated,
and the latter only in connection with the former.
We note here that these restrictions are not in-
tended to be semantically particularly meaningful.
They only serve to illustrate that this type of “reg-

ular control” can be used to put together the com-
bination of outgoing relations a node shall have.

To restart the cycle of either generating an-
other want or believe node or terminating the
derivation, (iii) and (iv) also create a new nonter-
minal labelled N .

We can see that each node must be given all
of its outgoing arg0 and arg1 edges before an-
other one is generated, making sure that the result-
ing AMR is acyclic (because manner, month,
and day edges only point to leaves). Every node
generated by (iii), (iv), or (v) is immediately con-
nected to an already existing node. Moreover, the
new node generated by the second rule of (ii) is
connected to a nonterminal labelled N1 until that
node, by (iii) or (iv), is connected to an older node.
Using this, it follows by induction that only con-
nected graphs are generated.

An example of a derivation using the boy-girl
CHRG can be seen in Figure 5. The rule(s) used in
every step are indicated above the derivation sym-
bol (⇒) combined with the right-hand side index
of the used rule (starting at 1). What variables are
mapped to which labels throughout the derivation
is shown implicitly. The resulting AMR is the pre-
viously discussed one in Figure 2.

It should be clear that this grammar generates
the complete language of AMRs over our small
domain: as we are only interested in generating
acyclic graphs this is always possible by generat-

S
(i)
::=

x

N

where x ∈ {boy,girl}

N
(ii)
::= ()

z

N1

where z ∈ {want,believe}

N1

z

u

(iii)
::=

z

u

M

N

a0

z

u

M

N

a0 a1

u

z

v

M

N

a0 a1

where z ∈ {want,believe}, {a0, a1} = {arg0,arg1},
and u, v ∈ ΣV are such that arity(ai) is respected

N1

z

u v

(iv)
::=

u

z

v

M

N

arg0
arg1

where z ∈ {want,believe}, u ∈ {boy,girl},
and v ∈ {want,believe,boy,girl}

M

z

(v)
::=

z

m

M

manner

z

x y

month day

z

x

month

z

where z ∈ {want,believe}, m ∈ {happy,angry},
x ∈ {Jan, . . . ,Dec}, y ∈ {Mon, . . . ,Sun}

Figure 4: A boy-girl CHRG exemplifying general rule structures. Rules are named for later reference by
a superscript on the operator ‘::=’.

107
24

S ⇒
(i)

girl

N

⇒
(ii).2

girl

believe

N1 ⇒
(iii).2

believe

girl

N

M

arg0 arg1
⇒∗
(v).4
(ii).2

believe

girl N1

want

arg0 arg1
⇒
(iv)

believe

want

girl

N

M

arg0

arg1

arg0ar
g1 ⇒∗

(v).4
(ii).2

believe

want

girlN1

want

arg0

arg1

arg0ar
g1 ⇒∗

(ii).1
(v).4
(iii).3

boy

want

believe

want

girl
arg0

arg1

arg0ar
g1

ar
g0

arg1

Figure 5: A derivation of an AMR using the boy-girl CHRG.

ing the nodes in reverse topological order. In other
words, the CHRG constructed indeed generates
the complete AMR language described above.

6 Generalisations

Let us now formulate some general rules about
how to create a CHRG that generates AMRs over
a given, finite domain of concepts and relations.

Let ΣV contain the concept names of the do-
main and ΣE its relations – these can be any
sets as long as they are finite. Define the
arity function of Σ as arity(r) = {cicj |
r is a valid relation from ci to cj for ci, cj ∈ ΣV }.
The arity function is used to restrict which con-
cepts can be connected using a particular rela-
tion. (For example, in the boy-girl case, we
know that verbs cannot be agents and that per-
sons cannot have agents. Thus, wantboy and
wantgirl are allowed in arity(arg0), but not
wantbelieve or girlwant.)

As in the boy-girl CHRG, generation starts with
the base case – a single leaf nondeterministically
chosen from all the concept names that may ap-
pear as leaves. A nonterminal similar to N in the
boy-girl case generates one new non-leaf node at
a time. All of the outgoing edges to other non-leaf
nodes are generated before returning to N . This
guarantees acyclicity as it prevents nodes from be-
ing given outgoing edges to nodes generated pos-
terior to them. As in the previous section, con-
textual rules are thus used to (1) enable the gener-
ation to refer back to previously generated nodes

by adding incoming relations and to (2) make sure
that the AMRs are connected. Further leaves can
only be generated along with the generation of an
outgoing relation from another node.

We may also want for a CHRG to generate var-
ious combinations of outgoing relations from the
latest non-leaf node (in the boy-girl grammar rep-
resented as z). This can be done similarly to the
generation of manner, month, and day edges
by M in Figure 4.

In view of the previous discussion the reader
may wonder whether one will ever have the need
to use nonterminal labels A with |arity(A)| >
1. It might seem that arguments can always be
picked using contextual nodes. However, this se-
lects targets exclusively based on their labels and
is thus inappropriate if finer structural control is
required. To illustrate this, let us add the ob-
ject control verb persuade and the subject con-
trol verb try to our concept set (i.e., to ΣV).
We also need a new relation arg2 to connect an
occurrence of persuade to its indirect object,
i.e., arity(arg2) = {persuade} · Σverb where
Σverb = {want,believe,persuade,try}.

Recall that, whenever an arg0 edge is created
in one of the rules in Figure 4, the subsequent
creation of further want and believe nodes is
taken care of by a nonterminal N generated at the
same time. To implement control, we use variants
of these rules which, instead of N , use a nonter-
minal C with arity(C) = Σverb · {boy,girl}.
This nonterminal is attached to the two nodes of

108
25

the arg0 edge, thus remembering where the con-
trol should take place instead of floating freely.

Some of the new rules are illustrated in Figure 6.
The rules in (vi) work like those in (iii), but cre-
ate nonterminals labelled by C instead of N , in
the way just described. A similar rule obtained
from (iv) is left out to save space.

The remaining rules insert the control verbs:
those in (vii) implement subject control by try
whereas those in (viii) implement object control
by persuade. Each of the rules corresponds to a

succession of two rules in Figure 4, namely (iii).1
followed by rule (ii).2. The first of each pair of
rules initiates another level of control whereas the
second returns to the “uncontrolled” case. Note
that we, for simplicity, drop the nonterminals M
that should be attached to the control verbs to
follow (iii).1 strictly. Also, there should be fur-
ther rules corresponding to (iii).2, (iii).3, and (iv),
which are omitted because they are constructed
along the same lines as those shown in the figure.

N1

z

u

(vi)
::=

z

u

M

C arg0

1

2

z

u

M

C arg1arg0

1

2

z

u v

M

C arg1arg0

1

2

where z ∈ {want,believe}, u ∈ {boy,girl}, v ∈ {want,believe,boy,girl}

C

z

u

1

2

(vii)
::=

try

z

u

C

arg1

arg0

1

2

try

z

u

N
arg1

arg0

where z ∈ {want,believe}, u ∈ {boy,girl}

C

z

xu

1

2

(viii)
::=

persuade

z

xu

C

arg2arg1

arg0

1

2

persuade

z

xu

N
arg2arg1

arg0

where z ∈ {want,believe}, u, x ∈ {boy,girl}

Figure 6: Rules implementing subject control (vii) and object control (viii).

S ⇒
(i)

N

girl
⇒

(ii).2

believe

N1

girl

⇒
(vi).3 believe

girl boy

C

arg0 arg1

1

2 ⇒
(viii).1

persuade

believe

girl boy

C

arg1 arg2 arg0

arg0 arg1

1

2 ⇒
(vii).2
(ii).1

try

persuade

believe

girl boy

arg0

arg1

arg1 arg2 arg0

arg0 arg1

Figure 7: An example derivation using the rules in Figures 4 and 6.

109
26

Figure 7 shows an example derivation involving
the new rules, the sentence being “The boy tries
to persuade the girl to believe him.” The reader
may wish to add the remaining rules not shown in
Figure 6, so that AMRs for sentences such as “The
boy wants to persuade the girl to try to persuade
the other girl to believe him” can be generated.

7 Discussion

Being able to generate complete AMR languages
is a clear advantage of CHRGs compared to PTD
parsable and rDAG grammars, and even over unre-
stricted HRGs. The latter can only generate graph
languages of bounded treewidth, and despite the
fact that real-world AMRs usually seem to be of
small treewidth (Chiang et al., 2016) it does not
seem to be justified to impose an a priori upper
bound on their treewidth.

However, the advantage of CHRGs for mod-
elling AMR languages exceeds the formal aspect
of unlimited treewidth. In an HRG, nontermi-
nal hyperedges have to keep track of all nodes to
which edges shall (potentially) be attached later
on in the process. This includes the implemen-
tation of non-local phenomena like anaphora, for
which little if any structural control is required,
thus resulting in an artificial increase not only in
the rank of hyperedges but also in the number of
rules. The latter may be significant, even exponen-
tial in the number of additional nodes to be kept
track of, because in a right-hand side every nonter-
minal hyperedge would nondeterministically have
to choose a subset of additional nodes to attach
to. Even so, the number of nodes that can be kept
track of is restricted by a constant depending on
the rank of hyperedges. In contrast, CHRGs do
not need to carry around such additional informa-
tion at all as they can simply view antecedents as
contextual nodes when it is time to insert a ref-
erence. The finer control provided by nonterminal
hyperedges can be reserved for situations in which
structural requirements must be met, such as im-
plementing control verbs, quantifiers, and the like.

It remains to be seen whether the algorith-
mic properties of AMR-generating CHRGs are
sufficiently good, especially when compared to
HRGs. Since CHRGs generalise HRGs one may
expect them to be algorithmically more demand-
ing. However, the preceding discussion indicates
that the converse may be true in practice. The ef-
ficiency of algorithms for analysing graphs with

respect to a given (C)HRG depends most signif-
icantly on two things: the ranks of hyperedges
and the number of rules (see in particular Chiang
et al. (2013)). Thus, the greater algorithmic com-
plexity of CHRGs may very well turn out to be
outweighed by them requiring much smaller ranks
and fewer rules, because the difference in size, as
indicated above, will most likely be exponential in
the desired number of potential antecedents.

The fact that CHRGs allow for structurally
simpler rules may also make it possible to cast
CHRGs like the one discussed here into a spe-
cial form suitable for efficient analysis like shift-
reduce parsing (Drewes et al., 2017) whereas the
same may happen to be impossible for an HRG,
even though the former has better coverage than
the latter. Whether these possibilities can be re-
alised is a question to be addressed by future work.

8 Conclusion

We have shown how CHRGs can generate com-
plete AMR languages in cases where HRGs fail
to do so because they do not provide appropriate
means for the implementation of arbitrary coref-
erences. Whether CHRGs can generate complete
AMR languages over arbitrary concept domains,
including phenomena such as quantification while
excluding structurally incorrect graphs, remains to
be studied. In any case, the simplicity of the gram-
mar discussed here seems to be promising. Future
work, should investigate how efficiently problems
such as the membership problem can be solved in
practise for AMR-generating CHRGs. In this con-
text, a better understanding of how quickly such
CHRGs grow with the size of the input domain
would also be valuable. If CHRGs indeed turn
out to be a suitable device for AMR generation,
a long-term goal should be to define a weighted
version of CHRGs and to devise machine learn-
ing methods that make it possible to extract rule
weights or even entire grammars from AMRbank.

Finally, it should be mentioned that there are
other formalisms for defining languages of di-
rected acyclic graphs that seem promising and
should therefore be investigated for AMR mod-
elling, e.g. DAG automata (Blum and Drewes,
2016, 2017; Chiang et al., 2016). In particular,
it would be interesting to study the relative ad-
vantages and disadvantages of these options, and
whether they can be combined in a fruitful way.

110
27

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse. pages 178–186.

Henrik Björklund, Frank Drewes, and Petter Ericson.
2016. Between a rock and a hard place — pars-
ing for hyperedge replacement DAG grammars. In
10th International Conference on Language and Au-
tomata Theory and Applications.

Johannes Blum and Frank Drewes. 2016. Properties of
regular dag languages. In 10th International Con-
ference on Language and Automata Theory and Ap-
plications.

Johannes Blum and Frank Drewes. 2017. Language
theoretic properties of regular DAG languages. To
appear.

Fabienne Braune, Daniel Bauer, and Kevin Knight.
2014. Mapping between English strings and reen-
trant semantic graphs. In Proceedings of the Ninth
International Conference on Language Resources
and Evaluation. pages 4493–4498.

David Chiang, Jacob Andreas, Daniel Bauer,
Karl Moritz Hermann, Bevan Jones, and Kevin
Knight. 2013. Parsing graphs with hyperedge
replacement grammars. In Proceedings of the 51st
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). pages
924–932.

David Chiang, Frank Drewes, Daniel Gildea, Adam
Lopez, and Giorgio Satta. 2016. Weighted DAG au-
tomata for semantic graphs. Submitted.

Frank Drewes and Berthold Hoffmann. 2015. Con-
textual hyperedge replacement. Acta Informatica
52(6):497–524.

Frank Drewes, Berthold Hoffmann, and Mark Minas.
2012. Applications of Graph Transformations with
Industrial Relevance: 4th International Symposium,
Revised Selected and Invited Papers, chapter Con-
textual Hyperedge Replacement, pages 182–197.

Frank Drewes, Berthold Hoffmann, and Mark Minas.
2015. Predictive top-down parsing for hyperedge
replacement grammars. In Proceedings of the 8th
International Conference on Graph Transformation.
pages 19–34.

Frank Drewes, Berthold Hoffmann, and Mark Minas.
2017. Predictive shift-reduce parsing for hyperedge
replacement grammars. In Proc. 10th Intl. Conf. on
Graph Transformation (ICGT’17). Lecture Notes in
Computer Science.

Frank Drewes, Hans-Jörg Kreowski, and Annegret Ha-
bel. 1997. Hyperedge replacement graph grammars.
In Handbook of Graph Grammars and Computing
by Graph Transformation, pages 95–162.

Annegret Habel. 1992. Hyperedge replacement: gram-
mars and languages, volume 643. Springer Science
& Business Media.

Anna Jonsson. 2016a. Generation of Abstract Meaning
Representations by Hyperedge Replacement Gram-
mars – A Case Study. Master’s thesis.

Anna Jonsson. 2016b. On the generation of ab-
stract meaning representations using polynomial-
time parsable hyperedge replacement grammars.
The Sixth Swedish Language Technology Confer-
ence.

Kevin Knight and Jonathan Graehl. 2005. An overview
of probabilistic tree transducers for natural language
processing. In International Conference on Intelli-
gent Text Processing and Computational Linguistics.
pages 1–24.

Irene Langkilde and Kevin Knight. 1998. Generation
that exploits corpus-based statistical knowledge. In
Proceedings of the 36th Annual Meeting of the Asso-
ciation for Computational Linguistics and 17th In-
ternational Conference on Computational Linguis-
tics - Volume 1. pages 704–710.

Nianwen Xue, Ondrej Bojar, Jan Hajic, Martha Palmer,
Zdenka Uresova, and Xiuhong Zhang. 2014. Not
an interlingua, but close: Comparison of English
AMRs to Chinese and Czech. In Proceedings of
the Ninth International Conference on Language Re-
sources and Evaluation. pages 1765–1772.

111
28

II

Finding the N Best Vertices
in an Infinite Weighted HypergraphI,II

Johanna Björklunda, Frank Drewesa, Anna Jonssona

aDepartment of Computing Science, Ume̊a University, 901 87 Ume̊a, Sweden

Abstract

We propose an algorithm for computing the N best vertices in a weighted acyclic
hypergraph over a nice semiring. A semiring is nice if it is finitely-generated,
idempotent, and has 1 as its minimal element. We then apply the algorithm
to the problem of computing the N best trees with respect to a weighted tree
automaton, and complement theoretical correctness and complexity arguments
with experimental data. The algorithm has several practical applications in
natural language processing, for example, to derive the N most likely parse
trees with respect to a probabilistic context-free grammar.

Keywords: Hypergraph, N -best problem, Idempotent semiring

1. Introduction

Suppose that we can solve an optimisation problem A by solving, in succes-
sion, the problems A1, . . . , An. One way of approaching the joint optimisation
over the cascade A1, . . . , An is to find the N best solutions to A1, and take these
as input to A2. We then compute the N best solutions to A2 for each of these
inputs, and prune the combined output down to the N best alternatives. The
computation continues in this fashion until we have the outputs for An, at which
point we take the top-ranking one as the best solution to A. In general, this
approach will not yield an optimal solution, but it is often a viable heuristic.

The problem of finding N top-scoring elements with respect to some ranking
device is referred to as the N -best problem. Such rankings can be computed by
weighted automata, which associate with each element a value in some ordered
semiring. The ranking prefers cheaper elements to more expensive ones, that
is, N distinct elements with as small values as possible are sought. Typically,

IDedicated to Prof. Dr. Jürgen Dassow on the occasion of his 70th birthday.
IIPreliminary presentations of different parts of this work have been given at Weighted

Automata: Theory and Applications (WATA 2016) and Trends in Tree Automata and Tree
Transducers (TTATT 2016).

Email addresses: johanna@cs.umu.se (Johanna Björklund), drewes@cs.umu.se (Frank
Drewes), aj@cs.umu.se (Anna Jonsson)

Preprint submitted to Elsevier October 3, 2018
31

such automata may be nondeterministic, in which case the values of the individ-
ual runs (that is, of the nondeterministic computations) are summed up. The
N -best problem is thus a harder problem than the related N -best derivations
problem, which asks for the N best individual runs of the automaton. In the
most common situation, where the semiring is the min-plus semiring with ad-
dition being minimum, the best run is always a run on the best element, but
among the N best runs several may actually be runs on the same element.

Mohri and Riley [7] provide an algorithm for solving the N -best problem for
weighted string automata over the min-plus semiring A = (R∞+ ,min,+,0,∞).
To keep the running time polynomial, they use a combination of lazy deter-
minisation and Dijkstra’s N -shortest paths algorithm. In [2], we generalise this
algorithm to work for weighted tree automata over A.1 Such an extension is
of interest because weighted tree automata are widely used in natural language
processing to represent the parse trees of probabilistic context-free grammars.
The probability values can be computed in the Viterbi semiring, or alternatively
in the min-plus semiring by moving to the domain of negative log likelihoods.
The latter method is preferred in many practical applications as it leads to better
numerical precision. The extension to weighted tree automata in [2] simplifies
the search technique by working directly with the input automaton rather than
an on-the-fly determinisation. To mitigate the added dimensionality caused by
working with trees rather than strings, an additional pruning technique is ap-
plied in order to arrive at an efficient algorithm. The resulting running time is
roughly comparable to that in [3] for computing the N -best derivations.

In this paper we consider the N -best problem for weighted hypergraphs
over nice semirings, i.e. semirings which are idempotent, finitely generated, and
have 1 as their smallest element. The convenience of idempotency in the con-
text of search algorithms has already been shown in [6]. The hypergraphs may
be infinite, but may not contain cycles. This provides an abstraction and gen-
eralisation of the approach in [2]. Roughly speaking, the hypergraph may be
instantiated to represent the set of all trees over a given ranked alphabet. Each
vertex corresponds to the root of a tree, and a hyperedge connects it to the
vertices representing the roots of its direct subtrees. Naturally, the weight of
each vertex should be the weight of the tree it represents, and hence the N -
best problem is to find the N cheapest vertices of the hypergraph. The exact
correspondence is somewhat more complex than that, because we also have to
account for the states of the tree automaton and the distinction between final
and non-final states.

The framework based on weighted hypergraphs over nice semirings can be
adapted to weighted finite-state devices whose computation graphs are acyclic.
These include finite-state string automata, unranked tree automata, and context-
free grammars. Every extremal semiring is idempotent, so for example the
 Lukasiewicz-, Viterbi-, and Boolean semirings meet this condition. These semir-
ings have also the property that the multiplicative 1 is their smallest element.

1A version of [2] providing more detail can be found in [1].

2
32

Out of these, only the Boolean semiring is finitely generated and hence nice.
However, for all three semirings, the subset of weights that actually appear in
the computation graphs of the previously mentioned devices are generated by
the devices’ edge- and transition weights, which make up finite sets. This obser-
vation makes our framework applicable to, e.g., weighted string automata over
the Viterbi semiring.

1.1. Outline

This paper is organised as follows. Section 2 recalls basics of graph theory
and algebra, and introduces nice semirings and layered graphs. In Section 3,
we present an N -best meta algorithm for weighted hypergraphs and prove its
correctness. The algorithm is abstract in the sense that it builds on top of a small
set of auxiliary procedures, and the realisation of these procedures depends on
the type of graph being studied. The algorithm is used in Section 4 to solve the
N -best problem for wta over the min-plus semiring and the theoretical results
are complemented with practical experiments. Section 5 concludes this paper
by summarizing our findings and mapping out future work.

2. Preliminaries

We write N for the set of non-negative integers, N∞ for N ∪ {∞}, R+ for
the set of non-negative reals, and R∞+ for R+ ∪ {∞}. Given n ∈ N, we let
[n] = {1, . . . , n}, and [∞] = N. In particular, [0] = ∅. Let S and S′ be a pair
of (possibly infinite) sets. The number of elements of S is written |S|, and the
powerset of S is denoted by pow (S). Given a k-tuple v = (a1, . . . , ak) we may
denote its ith component ai (i ∈ [k]) by v(i). A sequence of elements of S is
non-repetitive if it does not contain the same element in two distinct positions.
Given a function π : S → S′, we extend π to a function from sequences over S
to sequences over S′ in the usual elementwise fashion. Similarly, π is extended
to a function π : pow (S) → pow (S). Note that we do not make a notational
distinction between π and these two canonical extensions of π. Given a non-
empty sequence w, [w] denotes the smallest set S such that w is a sequence
over S. The set of all strings (i.e., finite sequences), over S is denoted by S∗; it
includes the empty string λ.

A commutative semiring is a tuple A = (A,⊕,⊗,0,1) such that (A,⊕,0)
and (A,⊗,1) are commutative monoids, ⊗ distributes both-sided over ⊕, and
0 is an absorbing element with respect to ⊗. In the following, we generally
assume that ⊗ binds stronger than ⊕, so a⊕ b⊗ c is interpreted as a⊕ (b⊗ c).

Since all semirings considered in this paper are commutative, we do not
explicitly mention commutativity throughout the rest of the paper.

A quasi-order on S is a reflexive, transitive, binary relation ≤. We write
a < b to express that a ≤ b but b 6≤ a. As usual, ≥ and > denote the inverses
of ≤ and <, resp. A quasi-order is a partial order if it is antisymmetric. It is
well-founded if there are no infinite descending chains, i.e., there is no infinite
sequence a1 > a2 > a3 > · · · . A stronger notion than that of well-foundedness

3
33

is that of a well quasi-order (wqo). A quasi-order is a wqo if every infinite
sequence a1, a2, . . . eventually increases, i.e., there are i < j such that ai ≤ aj .

A semiring A is idempotent if a ⊕ a = a for all a ∈ A. In this case, there
is a partial order ≤A on A, called the natural order of A, which is given by
a ≤A b ⇐⇒ a ⊕ b = a. Idempotent semirings are monotonic with respect to
their natural order [6, Lemma 2], in other words, a ≤A b implies a� c ≤A b� c
for all c ∈ A and � ∈ {⊕,⊗}.

The semiring A is finitely generated if there is a finite subset A′ of A such
that every a ∈ A is a sum of products of elements in A′. A finitely generated
idempotent semiring in which 1 is the smallest element is said to be nice. In
almost all applications, the fact that nice semirings are required to be finitely
generated is an insignificant restriction because weights are usually constructed
on the basis of a finite subset of A (such as the weights of the rules of a weighted
tree automaton), and the sub-semiring generated by this subset is by definition
finitely generated.

Example 1. Clearly, every extremal semiring is idempotent, but not every
idempotent semiring is extremal: The min-plus semiring over R∞+ is an idem-
potent and extremal semiring with min(a, b) serving as semiring addition and
ordinary addition as semiring multiplication. However, by generalising the do-
main to vectors of length k ∈ N, k ≥ 2, over R∞+ and applying semiring addition
and multiplication component-wise, we get an idempotent semiring that is not
extremal. If we restrict the domain of the min-plus semiring to N∞, it becomes
finitely generated (by {0,1,∞}) and, in fact, nice because 1 = 0 is its smallest
element. The extension to vectors is still nice.

Rather than working on ordinary graphs, in which edges have a single source
and a single target, we consider hypergraphs in which hyperedges may have mul-
tiple sources ordered as a sequence, but still only one target. This is particularly
convenient for representing sets of (ordered) trees: a hyperedge labelled f with
n sources corresponds to an occurrence of the symbol f of rank n in a tree. The
sources and the target represent the roots of the direct subtrees and of the tree
itself, respectively.

Definition 1 (Hypergraph). A hypergraph is a tuple G = (V,E, src, tar)
such that

• V and E are disjoint sets of vertices and hyperedges, respectively,

• src : E → V ∗ assigns to each e ∈ E a sequence of sources src(e), and

• tar : E → V assigns to each e ∈ E a target tar(e).

A vertex v ∈ V is called an end if v /∈ [src(e)] for all e ∈ E. A path in
G is a nonempty sequence of edges π = e0 · · · en such that, for all i ∈ [n],
tar(ei−1) ∈ [src(ei)]. The sources and the target of π are src(π) = src(e0) ∈ V ∗
and tar(π) = tar(en) ∈ V , respectively, and we say that tar(π) is reachable

4
34

from e0. The set of all paths in G is denoted paths(G). The set of vertices that
are descendants of v is given by

descendants(v) = {v} ∪
⋃

π ∈ paths(G),
v = tar(π)

[src(π)] .

If v′ ∈ descendants(v), then v′ is a descendant of v, and v is an ancestor of v′.

With this definition, hypergraphs can be infinite structures and may have
parallel hyperedges. Ordinary graphs are a special case of hypergraphs, namely
the one where each hyperedge has exactly one source. In the following, we shall
simply speak of graphs and edges instead of hypergraphs and hyperedges.

Given a graph G = (V,E, src, tar), we define hull : pow (V)→ pow (V) by

hull(U) = {tar(e) | e ∈ E, src(e) ∈ U∗}

for all U ⊆ V . Hence, hull(U) yields the set of all vertices that can be reached in
one step from edges all of whose sources are in U . In particular, hull(∅) is the set
of vertices that are targets of edges without sources (the leaves). Furthermore,
we let hull≤0(U) = U and hull≤n+1(U) = hull≤n(hull(U) ∪ U) for n ∈ N.

Definition 2 (Layered graph). A graph G is layered if (a) hull≤n(∅) is finite
for every n ∈ N, (b) for every vertex v ∈ V there are only finitely many paths
π such that tar(π) = v, and (c) V = tar(E).

In particular, layered graphs are acyclic by requirement (b). Requirement (c)
can be guaranteed by attaching to every vertex that is not the target of any edge
a dummy edge having the vertex in question as a target and no sources. How-
ever, this is only possible if there are only finitely many such vertices, because
otherwise it would make hull(∅) infinite, thus violating (a). Requirement (c)
makes sure that all of G can gradually be built up from the “bottom” by start-
ing with the empty set of vertices and repeatedly applying hull , thus following
edges upward from children to their parents. In this process requirement (a)
makes sure that the subgraph obtained always stays finite.

Example 2 (Layered graph). Definition 2 identifies a class of graphs for
which weight functions can be conveniently defined, and which can be searched
for optimal vertices by starting at the leaves and gradually expanding the search
area using the operation hull . Not all graphs are of this kind. Suppose for in-
stance that we have a non-trivial algebra and consider the graph in which every
term in this algebra is a vertex, and in which there is an edge from a term t to
a term s if t is a proper subterm of s. Clearly, every vertex has infinitely many
outgoing edges, so condition (a) of Definition 2 is not satisfied. However, as
every term has finitely many subterms, condition (b) is fulfilled. (Condition (c)
is not satisfied either, but this could be remedied in the way mentioned above.)

Consider then the graph in which the set of vertices is {u0, u1, u2, . . . } ∪
{v0, v1, v2, . . . } and where there are edges from ui to ui+1, from vi+1 to vi, and

5
35

u0

u1

u2

v0

v1

v2

Figure 1: A graph that satisfies condition (a) but not condition (b)

from ui to vi, for every i ∈ N (see Figure 1). Thus, u0 is the unique leaf and
v0 is the unique end. Since no vertex has more than two outgoing edges, the
hull of any finite set of vertices can be nothing but a finite set. As hull(∅) is
finite as well, condition (a) of Definition 2 is fulfilled. On the other hand, every
vertex vi can be reached from every uj such that j ≥ i and is, hence, the target
of infinitely many paths. Thus condition (b) is not met. In a weighted setting
such as the one developed below, such graphs do not seem to admit reasonably
defined weights unless the semiring is assumed to have infinite sums.

Finally, suppose that we have a non-deterministic Turing machine M and a
fixed initial configuration c0. We consider the graph in which the vertices are
the pairs (c, n) such that c is a configuration of M that is reachable from c0 in
n steps. There is an edge from (c, n) to (c′, n + 1) if c′ can be reached in one
step of M from c. Since the number of outgoing edges leaving each vertex is
finite and the number of configurations reached in at most n steps is also finite,
both condition (a) and (b) are satisfied. If we, in addition, mark (c0, 0) with a
sourceless edge, condition (c) is fulfilled as well.

Let A = (A,⊕,⊗,0,1) be a semiring. A graph with weights in A, also called
a weighted graph, is a tuple G = (V,E, src, tar ,wgt) such that (V,E, src, tar) is
a layered graph and wgt : E → A is its weight assignment. The induced weight
function w : V ∪ E → A determined by the following conditions:

• w(v) =
⊕

e∈tar−1(v) w(e) for every vertex v and

• w(e) = wgt(e)⊗⊗i∈[n] w(vi) for every edge e, where src(e) = v1 · · · vn.

To see that w is uniquely determined, let `(v) = 2m for every v ∈ V ,
where m is the maximum length of all paths π such that tar(π) = v. Due to

6
36

conditions (b) and (c) of Definition 2, the set of those paths is nonempty and
finite, and hence `(v) is well defined. For an edge e, let `(e) = `(tar(e))−1. Now,
induction on `(x) uniquely determines w(x) for all x ∈ V ∪ E, as follows. For
v ∈ V , if e1, . . . , em are the (finitely many!) pairwise distinct edges having v as
their target, then `(ei) < `(v) for all i ∈ [m]. Hence, the induction hypothesis
yields that w(ei) is uniquely determined for every i ∈ [m], which determines
w(v) =

⊕
i∈[m] w(ei). Similarly, for every edge e with src(e) = v1 · · · vn, we

have `(vi) < `(e) and thus, by the induction hypothesis, w(vi) is uniquely
determined for every i ∈ [n], which gives us w(e) = wgt(e)⊗⊗i∈[n] w(vi).

For m,m′ ∈ Nk, we let m ≤ m′ if m(i) ≤ m′(i) for all i ∈ [k]. An element
m ∈ M of a finite set M ⊆ Nk, is minimal if there is no m′ ∈ M such that
m′ < m. The subset of M of minimal elements is denoted min(M).

Given a semiring A = (A,⊕,⊗,0,1) and k ∈ N, we denote by Ak the
semiring whose domain is Ak and in which ⊕ and ⊗ are applied element-wise and
zero and one are the vectors 0k = (0, . . . ,0) and 1k = (1, . . . ,1), respectively.
It is easy to verify that Ak is a semiring, and that Ak is nice if A is nice.

3. Computing N-Best Vertices

Let us now define the N -best vertices problem. As is common for many
search applications where N -best problems are of interest (for example, shortest
path, maximum likelihood, least weight) one may restrict oneself to semirings
that are idempotent and choose their natural order as the order to be considered.
If the natural order of such an idempotent semiring A is furthermore well-
founded, we say that A is well-founded.

Definition 3 (N-best vertices). The N -best vertices problem is defined as
follows. An instance is a pair (G,V T , N) consisting of

• a layered weighted graph G = (V,E, src, tar ,wgt) with weights in a well-
founded semiring A,

• a set of target vertices V T ⊆ V such that each v ∈ V T is an end, and

• an integer N ∈ N∞ such that N ≤
∣∣V T

∣∣.

A solution is a sequence of N pairwise distinct elements v1, v2, · · · of V T such
that there do not exist i ∈ [N] and v ∈ V T \ {v1, . . . , vi} with w(v) <A w(vi).

The requirement that each v ∈ V T is an end deserves commenting on. The
N -best vertices problem could equally well be formulated for arbitrary sets of
target vertices. However, in this case there could be v, v′ ∈ V T such that
v ∈ hull≤i(∅) and v′ ∈ hull≤j(∅) \ hull≤i(∅) with i < j but w(v) > w(v′). The
algorithm devised below would then become more involved, as it would have to
account for the possibility to visit v on its way to discovering and outputting
v′, later on potentially having to reconsider v in order to output v itself. With
each vertex in V T being an end, there are fewer cases to consider.

7
37

The restriction of target vertices to ends is not severe, but mainly serves
to simplify the presentation. If a vertex v ∈ V T violates the restriction, one
may modify G by adding a new vertex v̂ and a single edge with weight 1 (i.e.,
the multiplicative unit) pointing from v to v̂, and then replacing v by v̂ in V T .
This rewriting process essentially creates new ‘dummy’ vertices that are ends,
to replace target vertices that are not. Clearly, if v̂1, . . . , v̂N is a solution to the
modified problem instance, then v1, . . . , vN is a solution to the original one.

In practical instantiations of Definition 3, the graph G can be used to model
the runs of an automaton, and V T to identify accepting states. This is for
instance the case in Section 4, where we compute the N best trees with respect
to a weighted tree automaton.

We note here that Definition 3 does not specify how G and V T are rep-
resented. Regarding V T , it is only assumed that there is a procedure that
computes the characteristic function of V T , in other words, that it decides for
a vertex v ∈ V whether v ∈ V T . As for the graph G, since it is layered we
know that for each vertex v the subgraph Gv is finite, where Gv consists of
all vertices and edges lying on a path π such that tar(π) = v. Below, we will
add the assumption that there are procedures that construct Gv or subgraphs
thereof, for certain vertices v. The algorithm will use this in order to construct
the portion of G needed to solve the N -best vertices problem.

Before continuing, let us verify that the N -best vertices problem is well
defined in the sense that a solution always exists. This is what the assumption
of well-foundedness is needed for.

Lemma 1. Every instance of the N -best vertices problem has a solution.

Proof. Choose (not necessarily constructively) any element u0 of V T and build
a sequence of vertices u0, u1, u2, . . . in V T with strictly decreasing weights. By
assumption, the natural order of A is well-founded. Therefore, every such se-
quence is finite. Thus, the process eventually arrives at a vertex v1 such that
no vertex of strictly lesser weight exists in V T . Now, fix v1 and repeat the
argument with V T \ {v1} instead of V T . Continue until N elements v1, . . . , vN
have been found (or ad infinitum in case N =∞). By construction, v1, . . . , vN
is a solution. �

Not all idempotent semirings are well-founded; examples showing this are
easy to construct. However, as we shall prove next, nice semirings are indeed
well-founded.

Lemma 2. Every nice semiring A is well-founded.

Proof. The proof is divided into two parts. We first show that every ele-
ment in A can be written as a sum of products of elements in a generating
set {a1, . . . , ak}. Due to idempotency and the definition of the natural order,
the value of this sum is decided by its minimal summands, and these can be
represented as vectors in Nk. In the second part, we show that if there were an
infinite strictly decreasing sequence of elements in A, then there would also be

8
38

an infinite non-increasing sequence of vectors in Nk. Dickson’s lemma, which
states that (Nk,≤) is a wqo, ensures us that this is not possible.

Let A be generated by {a1, . . . , ak}. For m ∈ Nk let ϕ(m) =
⊗

j∈[k] a
m(j)
j ,

and for a finite set M ⊆ Nk let Φ(M) =
⊕

m∈M ϕ(m), where Φ(∅) = 0. Then,
since ⊗ distributes over ⊕, every a ∈ A is represented by at least one finite set
M ⊆ Nk in the sense that a = Φ(M). We call such a set a representative of a.

Let us now prove that the value of Φ(M) is determined by the minimal
elements of M , i.e., that the following statement holds:

For finite M ⊆ Nk, Φ(M) = Φ(min(M)). (1)

Indeed, if m,m′ ∈M are such that m < m′, then we have ϕ(m′) = ϕ(m)⊗a
for a = ϕ(m′ −m). Since A is monotonic, ϕ(m) = ϕ(m) ⊗ 1 ≤A ϕ(m) ⊗ a =
ϕ(m′) and thus ϕ(m) ⊕ ϕ(m′) = ϕ(m) by the definition of ≤A. Every such
non-minimal element m′ ∈M can therefore be removed from M with no effect
on Φ(M), which proves (1).

Suppose there is a descending sequence s = b0 >A b1 >A b2 >A · · · and let
Mi be a representative of bi for all i ∈ N. By the definition of the natural order,
bi >A bi+1 implies that Φ(Mi ∪Mi+1) = Φ(Mi) ⊕ Φ(Mi+1) = Φ(Mi+1), so we
may assume that M0 ⊆ M1 ⊆ · · · and thus M0 (M1 (· · · because bi 6= bi+1

for all i ∈ N. Now, pick mi ∈ min(Mi) \ min(Mi−1) for all i > 0. Then
mi 6≤ mj for 0 < i < j since mi ≤ mj would imply mj /∈ min(Mj) \min(Mi).
In other words, the sequence m1,m2, . . . is non-increasing and must thus be
finite because (Nk,≤) is a wqo. This shows that the sequence s is finite, and
thus that A is well-founded. �

We shall now devise a simple algorithm that solves the N -best vertices prob-
lem. For the remainder of this section, we consider an instance (G,V T , N),
where G = (V,E, src, tar ,wgt), and take A to be nice. As mentioned earlier,
we require that G can be explored effectively by means of a few procedures
that represent G. What we provide is therefore a meta algorithm, in which dif-
ferent realisations of the procedures yield different instantiations of the overall
algorithm. These procedures are as follows (where u ∈ V):

• There is a procedure that computes hull(U) for every finite set U ⊆ V .

• The procedure minWeight(u) returns a minimal element of the set of all
w(v) such that v ∈ V T and v is reachable from u. If no vertex in V T is
reachable from u, then an error element > is returned, which is considered
to be larger than all elements ofA. Note that minWeight(u) is well-defined
owing to the well-foundedness of A (cf. the proof of Lemma 1).

• If minWeight(u) 6= > then bestAncestor(u) returns some v ∈ V T with
w(v) = minWeight(u) that is reachable from u.

• Finally, descendants(u) returns the set of vertices v of which u is an an-
cestor (including u itself). Note that this set is finite as G is layered.

9
39

Algorithm 1 Solving the generic N -best vertices problem

1: procedure BestVertices(G,V T , N)
2: U ← ∅;
3: for i = 1, . . . , N do
4: H ← hull(U) \ U ;
5: select u ∈ H such that minWeight(u) is minimal;
6: v ← bestAncestor(u);
7: output v;
8: U ← U ∪ descendants(v)
9: end for

10: end procedure

The pseudocode of our algorithm is given in Algorithm 1. We now show that
it is correct.

Lemma 3. After i ≤ N executions of the loop body in Algorithm 1, it will have
outputted i distinct vertices v1, . . . , vi ∈ V T such that

(1) there are no v ∈ V T \ {v1, . . . , vi} and j ∈ [i] such that v <A vj, and

(2) U =
⋃
j∈[i] descendants(vj).

Proof. We proceed by induction on i. For i = 0 the assertions are trivially true
as U is initialised to ∅. Thus, assume that (1) and (2) hold for some i− 1 < N
and consider the ith execution of the loop. Let H↑ be the set of all vertices
that are reachable from some vertex in H = hull(U) \ U . Thus, H↑ is the set
of vertices the algorithm chooses vi from. We show that exactly those vertices
not yet in U are reachable from a vertex in H, i.e. that H↑ = V \ U .

By (2) all descendants of every u ∈ U are in U as well. But H ∩ U = ∅,
which implies that no vertex in U is reachable from H, i.e., that U ∩H↑ = ∅. (If
a vertex u ∈ U would be reachable from h ∈ H then h ∈ descendants(u) ⊆ U ,
contradicting the fact that H ∩ U = ∅.) To show that H↑ = V \ U , it thus
remains to check that v ∈ H↑ for all v ∈ V \U . As G is layered, the set Π of all
paths π that satisfy tar(π) = v is nonempty (by condition (c)) and finite (by
condition (b)). It follows that one can construct a path π = e1 · · · en ∈ Π such
that tar(e1) /∈ U and [src(e1)] ⊆ U . (Start with any path of length 1 in Π. If
the current path is e1 · · · en but there is u ∈ [src(e1)]\U , extend it to e0e1 · · · en
where tar(e0) = u; note that e0 exists by condition (c), and that this process
must eventually stop by condition (b).) Thus tar(e1) ∈ H, which proves that
v ∈ H↑. This proves that, indeed, H↑ = V \ U . In particular, since all vertices
in V T are ends,

V T \ {v1, . . . , vi−1} = V T \
⋃

j∈[i]

descendants(vj) ⊆ V \ U = H↑ .

Since a solution does exist, this means that there is a vi ∈ (V T ∩ H↑) \ U
of minimal weight, which implies that {v1, . . . , vi} satisfies (1). It follows that

10
40

Line 5 assigns u this vertex vi (or another vertex in V T of the same weight),
that Line 6 assigns v the vertex bestAncestor(u), and that Line 7 outputs v.
Thus, (2) is now satisfied for i. �

It may be worthwhile noting that, since the set U in Algorithm 1 is always
of the form

⋃
j∈[i] descendants(vj) for the already outputted ends v1, . . . , vi,

the procedures hull(U), minWeight(u), and bestAncestor(u) only need to be
implemented for this special case.

4. Application to Weighted Tree Automata

Let us now discuss in which sense Algorithm 1 generalises the N -best al-
gorithm in [2] for weighted tree automata (wta) over the min-plus semiring
T = (R∞+ ,min,+,∞, 0) (also called the tropical semiring). To regain the origi-
nal algorithm in [2] from Algorithm 1, the auxiliary procedures hull , minWeight ,
bestAncestor , and descendants can be realised in the domain of computation
graphs generated by wta. For this it is useful to recall parts of the theoretical
framework of [2].

4.1. Weighted Tree Automata

For a set Σ, a Σ-labelled tree is a partial function t : N∗ → Σ such that the
domain dom (t) of t is a finite prefix-closed set, and for every v ∈ dom (t) there
exists a k ∈ N such that {i ∈ N | vi ∈ dom (t)} = [k]. An element v of dom (t)
is called a vertex of t, and k is the rank of v.

A ranked alphabet is a finite nonempty set of symbols Σ =
⋃
k∈N Σ(k) which

is partitioned into pairwise disjoint subsets Σ(k). For every k ∈ N and f ∈ Σ(k),
the rank of f is rank(f) = k. The set TΣ of all trees over Σ consists of all
Σ-labelled trees t such that the rank of every vertex v ∈ dom (t) equals the rank
of t(v).

The subtree of t ∈ TΣ rooted at v is the tree t/v defined by dom (t/v) = {u ∈
N∗ | vu ∈ dom (t)} and t/v(u) = t(vu) for every u ∈ N∗. If t(λ) = f and t/i = ti
for all i ∈ [k], where k is the rank of λ in t, then we denote t by f [t1, . . . , tk]. If
k = 0, then f [] is usually abbreviated as f . In other words, a tree t with domain
{λ} is identified with t(λ).

For a set T of trees we denote by Σ(T) the set of trees

{f [t1, . . . , tk] | k ∈ N, f ∈ Σ(k), and t1, . . . , tk ∈ T} .

Thus, Σ(T) consists of all trees which have a symbol from Σ at their root, with
direct subtrees in T .

We let � 6∈ Σ be a special symbol of rank 0. The set of contexts over Σ is

CΣ = {c ∈ TΣ∪{�} | there is exactly one v ∈ dom (c) with c(v) = �} .

Given a context c ∈ CΣ, where v ∈ dom (c) is the unique vertex such that
c(v) = �, we define the substitution of a tree t into c to be the tree c[[t]] given

11
41

as follows: dom (c[[t]]) = dom (c) ∪ {vu | u ∈ dom (t)} and, for w ∈ dom (c[[t]]),

c[[t]](w) =

{
c(w) if w ∈ dom (c) \ {v}, and
t(u) if w = vu for some u ∈ dom (t) .

A weighted tree language (over the min-plus semiring T) is simply a mapping
W : TΣ → T , where Σ is a ranked alphabet. A weighted tree automaton over T
is a system M = (Q,Σ, δ, ρ) where

• Q is a ranked alphabet of states, all of rank 0, called states;

• Σ is a ranked alphabet of input symbols disjoint with Q;

• δ : Σ(Q)×Q→ T is the transition function; and

• ρ : Q→ T is the assignment of final weights.

For q ∈ Q, δ inductively gives rise to a function δq : TΣ → T , as follows: For
all t = f [t1, . . . , tk] ∈ TΣ

δq(t) = minq1,...,qk∈Q

δ(f [q1, . . . , qk], q) +

∑

i∈[k]

δqi(ti)

 . (2)

Now, the weighted tree language WM : TΣ → T recognised by M is given by

WM (t) = minq∈Q (ρ(q) + δq(t)) for all t ∈ TΣ .

We extend δq, and thus WM to TΣ∪Q by defining δq(q) = 0 and δq(q
′) =∞

for all q′ ∈ Q \ {q}. It follows that, for all trees t and all contexts c,

WM (c[[t]]) = minq∈Q (WM (c[[q]]) + δq(t)) . (3)

For the sake of completeness, and for later reference, let us now recall the N -
best trees problem for this device. An instance of this problem is a pair (M,N)
consisting of a wta M = (Q,Σ, δ, ρ) over T and an integer N ∈ N∞. A solution
is a sequence of N pairwise distinct trees t1, t2, · · · such that there do not exist
i ∈ [N] and t ∈ TΣ \ {t1, . . . , ti} with WM (t) <T WM (ti). To make sure that
a solution always exists, we may for simplicity assume that Σ 6= Σ(0) 6= ∅, in
other words, that TΣ is an infinite set.

4.2. The Computation Graph of a Weighted Tree Automaton

Let M = (Q,Σ, δ, ρ) be a wta over T . In the following, we abbreviate
Q × TΣ by Q〈TΣ〉 and a pair (q, t) ∈ Q〈TΣ〉 by q〈t〉. The weighted graph
GM = (V,E, src, tar ,wgt) associated with M , which also has weights in T , is
given by the following components:

• V = Q〈TΣ〉 ∪ TΣ,

12
42

• For every t = f [t1, . . . , tk] ∈ TΣ and all q, q1, . . . , qk ∈ Q, there is an
edge e ∈ E with src(e) = q1〈t1〉 · · · qk〈tk〉, tar(e) = q〈t〉, and wgt(e) =
δ(f [q1, . . . , qk], q). Below, we denote this edge e by etq1···qk,q.

• Further, for every q ∈ Q and t ∈ TΣ, there is an edge e such that src(e) =
q〈t〉, tar(e) = t, and wgt(e) = ρ(q).

It is straightforward to show that GM is layered. The ends of GM are the
vertices in TΣ, and thanks to the edges of the second kind we have w(t) =
minq∈Q (ρ(q) + w(q〈t〉)) for every tree t ∈ TΣ. Thus, in order to establish the
desired equality w(t) =WM (t) we need to verify that w(q〈t〉) = δq(t). We prove
this by induction on t = f [t1, . . . , tk]. Thus, assume that the claim holds for all
trees smaller than t. Then the definition of the weight function of GM (on both
vertices and edges) yields

w(q〈t〉) = minq1,...,qk∈Q w(etq1···qk,q)

= minq1,...,qk∈Q

wgt(etq1···qk,q) +

∑

i∈[k]

w(qi〈ti〉)

= minq1,...,qk∈Q

δ(f [q1, . . . , qk], q) +

∑

i∈[k]

δqi(ti)

= δq(t)

as required. We have thus shown the following theorem:

Theorem 1. Let M = (Q,Σ, δ, ρ) be a wta over T and N ∈ N∞. Then a
solution to the N -best vertices problem for (GM ,TΣ, N) is also a solution to the
N -best trees problem for (M,N).

4.3. Specialisation of Algorithm 1

Since the min-plus semiring T is extremal, it is idempotent, and 1 = 0 is
its smallest element. However, it is not nice because it is not finitely generated.
Upon closer consideration, we see that the subset F of T that is actually used
in the computations of M is generated by 0, 1, the set {ρ(q) | q ∈ Q} of final
weights, and the set {δ(f [q1, . . . , qk], q) | k ∈ N, f ∈ Σ(k), q, q1, . . . , qk ∈ Q} of
edge weights. In other words, F is finitely generated. This makes Algorithm 1
applicable to (GM ,TΣ, N), and it follows from Theorem 1 that the result of
running it on (GM ,TΣ, N) is a solution to the N -best trees problem for (M,N).
What remains to obtain a concrete algorithm is to provide efficient implemen-
tations of hull , minWeight , bestAncestor , and descendants.

For simplicity, let us assume that there are at least N trees of finite weight.
We give only a rough description of how Algorithm 1 can be specialised to
this case, focusing on the main points rather than reiterating all the arguments
from [2].

13
43

For the sake of efficiency, an explicit search of H = hull(U) \ U should be
avoided in line 5 of Algorithm 1. To make this easier, we can assume that
WM (s) = ∞ for all proper subtrees s of trees of finite weight. As argued
in [2] this is easy to achieve by adding a special root symbol r to Σ(1). As a
consequence we can simplify our further considerations by removing all ends
(i.e., all vertices in TΣ) from H, as their weight is ∞ (due to the fact that t is
a subtree of a tree of finite weight for all q〈t〉 ∈ U). In other words, from now
on let H = (hull(U) \ U) ∩Q〈TΣ〉.

The algorithm in [2] was made to run in polynomial time by exploiting the
regular structure of wta computations. Consider a tree t, and suppose that we
want to minimise WM (c[[t]]) = w(c[[t]]) over all c ∈ CΣ. From Equation (3) we
know that w(c[[t]]) = minq∈QWM (c[[q]]) + δq(t). Therefore, we precompute a
set of contexts cq such that, for each q ∈ Q, WM (cq[[q]]) = minc∈CΣWM (c[[q]]).
As shown in [2] this can be done efficiently using an algorithm by Knuth [5].
Let then wq = WM (cq[[q]]) for all q ∈ Q, a quantity that we may also precom-
pute. Then it is very cheap to compute minWeight(p〈t〉) = minc∈CΣ

w(c[[t]]) =
minq∈Qwq + δq(t) (which is, in fact, independent of the state p). Moreover, if q
is the state that minimises the rightmost expression, then bestAncestor(p〈t〉) =
cq[[t]]. This yields Algorithm 2. Note that the computation of δq(t) in Line 5 is

Algorithm 2 Solving the N -best trees problem

1: procedure BestVertices(M,N)
2: U ← ∅;
3: for i = 1, . . . , N do
4: H ← Q〈Σ(U ∩ TΣ)〉 \ U ;
5: select q〈t〉 ∈ H such that wq + δq(t) is minimal;
6: s← cq[[t]];
7: output s;
8: U ← U ∪ {p〈s′〉 | p ∈ Q, s′ ∈ S} ∪ S where S = {s/v | v ∈ dom (s)}
9: end for

10: end procedure

inexpensive because the algorithm may, along with every tree t ∈ TΣ encoun-
tered during the run of the algorithm, keep the vector of weights δq(t), q ∈ Q.
When a tree t is encountered for the first time, the weight vectors of its subtrees
are already available, which means that the weight vector of t is obtained by
|Q| applications of Equation (2), not requiring any recursion.

To enable a quick selection of q〈t〉 in line 5 of Algorithm 2, the vertices in
H can be maintained in a priority queue K, where the priority of an element
q〈t〉 is determined by ∆(q〈t〉) = wq + δq(t), with lower-weighted vertices given
precedence. Since minWeight(q〈t〉) = minp∈Qwp + δp(t), it holds for the first
queue element q〈t〉 (though not in general) that ∆(q〈t〉) = minWeight(q〈t〉).
Furthermore, this minWeight(q〈t〉) is minimal over all enqueued trees. The
selection of an appropriate q〈t〉 ∈ H thus boils down to a dequeueing operation,

14
44

and a subsequent removal of all remaining elements in {p〈t〉 | p ∈ Q} from K.2

The procedure descendants is easily implemented, as shown in Line 8.
Finally, let us discuss briefly the pruning technique introduced in [2] to

make the algorithm run faster. The efficiency of the basic algorithm is less
than optimal because the queue K usually contains many more elements than
necessary if we populate it by all of H. The key observation is that, since we
are only interested in outputting N trees, for each q ∈ Q at most N of the
most promising (i.e. lowest-weight) vertices q〈t〉 ∈ U may indeed be needed.
In other words, U can be pruned down by keeping, for every q ∈ Q, only a
set of N vertices q〈t1〉, . . . , q〈tN 〉 ∈ U . These must be chosen in such a way

that
∑N
i=1 wq(ti) is minimised. (If U contains fewer than N vertices q〈t〉 for

the state q in question, no pruning takes place.) The usage of pruning makes
the algorithm much more efficient without affecting its correctness, leaving the
non-pruned version superfluous for this particular specialisation of Algorithm 1.

We omit a correctness proof and the accompanying running time estima-
tions because they carry over from [2] in a straightforward way. In particular,
assuming that the input alphabet is either fixed or the maximum rank of its
symbols is small compared to N , the time complexity of the resulting, pruning,
algorithm is O

(
N2 logN · n ·m

)
, where m and n are the number of transitions

and the number of states of M , respectively. The complexity of the less efficient,
non-pruning version has not been formally investigated. It is likely exponen-
tial unless particular care is taken in the graph-exploration step, that is, in the
computation of what is called hull in the present work and expand in [2].

4.4. Experiments

An implementation of both the pruning and the non-pruning version of the
N -best algorithm can be found in the BestTrees GitHub repository3. The dis-
tribution consists of the Java source code along with a number of wta examples.
There is also a runnable .jar file of the latest version for convenience.

The experiments were run on a family of wtas, language equivalent with the
wta M of Figure 2. Here, Σ = Σ(0) ∪ Σ(2) with Σ(0) = {a, b} and Σ(2) = {◦}.
Let ‖t‖σ (σ ∈ Σ(0)) denote the number of occurrences of σ in t ∈ TΣ, and let
‖t‖ denote the total number of leaves of t. Then we have

M(t) =

{
‖t‖+ min(‖t‖a, ‖t‖b) if ‖t‖ is even
∞ otherwise .

Algorithm 1 was first run on M itself, allowing N to range between 0 and 80.
The average run times are summarised in Fig. 3 and, with a logarithmic scale,
in Fig. 4. As expected, the pruning version is considerably more efficient. In
fact, without pruning the algorithm exhibits an exponential behaviour. For the

2In [2], the priority queue would not contain the trees q〈t〉, but only the trees t ∈ TΣ.
This difference does not affect the result because, as noted above, minWeight(q〈t〉) and
bestAncestor(q〈t〉) are independent of q.

3https://github.com/tm11ajn/besttrees

15
45

b

a

◦◦◦◦ ◦ ◦ ◦ ◦

pa pb

qa qb

2 1

1 2

Figure 2: The input wta used in our experiments, taken from [2]. Round nodes (with double
circles if final) represent states, and squares represent transitions. The consumed input sym-
bols are shown inside the squares. Solid arcs point to the right-hand side of the transition in
question and are labelled with the weight of the transition unless it is zero. In the case of input
symbol ◦ the two states in the left-hand side of a transition are indicated by incoming solid
and dashed arcs. Since the wta is symmetric, the latter distinction is, in fact, unnecessary.

pruning version, the run time remained below 10 seconds for the entire test
series, whereas the running time of the non-pruning version exceeded a quarter
of an hour for the higher values of N . While the theoretical worst case running
time of the pruning version is O(N2 logN) for a fixed wta, Fig. 4 indicates
that it may be nearly linear in practice, at least in this particular case. This is
strengthened by Fig. 5, which clearly shows the almost linear behaviour.

Further tests were then conducted on different-sized automata derived from
M by introducing redundancy. More specifically, we added new states and
transitions to count the height of subtrees up to a varying bound k. This means
that for any two distinct automata M ′ and M ′′ thus obtained, the automaton
for the smaller k is a subautomaton of the one for the larger k. The size
of the largest of these automata, measured as m + n, was 1500. Again the
value of N was varied, though now on the smaller range between 0 and 50,
and the algorithm was run both with and without pruning. The results are
shown in Figures 6 and 7. We see that the size of the wta does not matter
significantly for the version of the algorithm that does not use pruning. This
is not surprising since the same hulls are calculated during the execution of the

16
46

10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

·106

N

t
(m

s)
unpruned

pruned

Figure 3: The running time of both versions of the algorithm applied to the wta in Fig. 2 for
different values of N .

algorithm, regardless of the size of the wta (see footnote 2), and the number of
iterations is determined solely by N . As with the initial tests, the run time for
the pruning version was below 10 seconds on all instances, whereas the version
without pruning took minutes when N was close to 50.

20 40 60 80

2

4

6

N

lo
g

1
0
(t

)
(m

s) unpruned
pruned

Figure 4: The running time of both versions of the algorithm applied to the wta in Fig. 2 for
different values of N on a logarithmic scale.

17
47

10 20 30 40 50 60 70 80

1,000

2,000

3,000

4,000

N

t
(m

s)

Figure 5: The running time of the pruning version of the algorithm applied to the wta in
Fig. 2 for different values of N .

500
1,000

20

400

2,000

4,000

6,000

8,000

m+ n

N

T
im

e
(m

s)

pruned

Figure 6: The running time of the pruned version of the algorithm for different values of N
on different sized wtas (measured in m + n).

18
48

500
1,000

20

400

0.5

1

·105

m+ n

N

T
im

e
(m

s)

unpruned

Figure 7: The running time of the unpruned version of the algorithm for different values of N
on different sized wtas (measured in m + n).

5. Conclusion and Future Work

We have defined the N -best problem for layered graphs with edge-weights
in a nice semiring. Whenever the graph representation permits the procedures
hull,minWeight, bestAncestor, and descendants to be (efficiently) implemented,
so can our N -best algorithm. As we have seen, this is the case for weighted tree
automata over the min-plus semiring. Our initial experiments on this restricted
domain indicated furthermore that the pruning technique proposed in [2], which
carries over to the setting of the present paper, has the expected positive impact
on the running time of the algorithm.

To understand the practical applicability of Algorithm 1 to problems in
natural language processing, a study on real-world data is needed. Rather than
using the non-pruning version of the algorithm as a baseline, it seems reasonable
to use the state-of-the-art-approach, which is computing the N ′ best runs for
some N ′ >> N and discarding duplicates. On the theoretical side, we would like
to weaken the assumptions on the underlying graph and semiring. In particular,
it would be interesting to see whether there is a class of semirings beyond the
min-plus semiring which allows for an efficient implementation of the procedures
hull,minWeight, bestAncestor, and descendants in the case of wta, thus yielding
efficient solutions to the N -best trees problem based on Theorem 1.

A potentially rewarding line of future work is the instantiation of Algorithm 1
to work with less traditional types of objects, for example pictures. Suppose
that we are given an algebra consisting of a domain of pictures and a set Σ

19
49

of operations on them.4 Under suitable well-definedness conditions, a wta M
over Σ then defines a weighted picture language, the weight of a picture P
being the sum of all WM (t) such that t evaluates to P . (Alternative definitions
are possible as well, such as defining the weight of P to be equal to WM (t),
and requiring that different trees representing the same picture yield the same
weight.) Then the nodes of the input graph to the N -best vertices problem
would be pictures rather than trees, and the output would be a set of N best
pictures. Future work could try to make this rough idea more precise, in order
to discover solvable variants of the N -best pictures problem.

Acknowledgement

We thank Andreas Maletti and the participants at the 4th International
Workshop on Trends in Tree Automata and Tree Transducers (TTATT 2016),
where a preliminary and abridged version of the paper was presented, for their
insightful comments that led to various improvements. Last but by no means
least, we are grateful to the anonymous reviewers for pointing out flaws and
suggesting significant improvements in various places.

[1] Johanna Björklund, Frank Drewes, and Niklas Zechner. An efficient best-
trees algorithm for weighted tree automata over the tropical semiring. Re-
port UMINF 14.22, Ume̊a University, 2014.

[2] Johanna Björklund, Frank Drewes, and Niklas Zechner. An efficient best-
trees algorithm for weighted tree automata over the tropical semiring. In
Proc. 9th Intl. Conf. on Language and Automata Theory and Applications
(LATA 2015), volume 8977 of LNCS, pages 97–108, 2015.

[3] Matthias Büchse, Daniel Geisler, Torsten Stüber, and Heiko Vogler. n-best
parsing revisited. In Proceedings of the 2010 Workshop on Applications
of Tree Automata in Natural Language Processing, pages 46–54, Uppsala,
Sweden, July 2010. Association for Computational Linguistics.

[4] Frank Drewes. Grammatical Picture Generation – A Tree-Based Approach.
Texts in Theoretical Computer Science. An EATCS Series. Springer, 2006.

[5] Donald E. Knuth. A generalization of Dijkstra’s algorithm. Information
Processing Letters, 6:1–5, 1977.

[6] Mehryar Mohri. Semiring frameworks and algorithms for shortest-distance
problems. Journal of Automata, Languages and Combinatorics, 7(3):321–
350, 2002.

[7] Mehryar Mohri and Michael Riley. An efficient algorithm for the n-best-
strings problem. In Proceedings of the Conference on Spoken Language Pro-
cessing, 2002.

4See [4] for various types of such picture algebras.

20
50

III

A Comparison of Two N -Best Extraction
Methods for Weighted Tree Automata

Johanna Björklund, Frank Drewes, and Anna Jonsson(B)

Department of Computing Science, Ume̊a University, Ume̊a, Sweden
{johanna,drewes,aj}@cs.umu.se

Abstract. We conduct a comparative study of two state-of-the-art algo-
rithms for extracting the N best trees from a weighted tree automaton
(wta). The algorithms are Best Trees, which uses a priority queue
to structure the search space, and Filtered Runs, which is based on
an algorithm by Huang and Chiang that extracts N best runs, imple-
mented as part of the Tiburon wta toolkit. The experiments are run on
four data sets, each consisting of a sequence of wtas of increasing sizes.
Our conclusion is that Best Trees can be recommended when the input
wtas exhibit a high or unpredictable degree of nondeterminism, whereas
Filtered Runs is the better option when the input wtas are large but
essentially deterministic.

1 Introduction

Data-driven language processing involves as a rule weighted language models.
Rather than providing a definite answer as to whether a sentence belongs to a
target language, these return a probability or a fitness score. This reflects the
inherently ambiguous nature of human language and is convenient for statistical
machine learning, but it often complicates downstream processing. When the
output of a machine translation system is not limited to a small set of possible
translations, but is a weighted device ranking the universe of all possible outputs,
efficient algorithms are needed to find the highest-scoring solutions. This problem
is known as the N -best problem. The input is a weighted automaton M and a
natural number N , and task is to find N best-ranking elements with respect to
M . The difficulty of the problem, and indeed whether there is a unique or several
interchangeable solutions, largely depends on the type of automata at hand and
the domain from which weights are taken.

We consider the N -best problem for weighted tree automata [3,4], which are
useful in natural language processing, owing to their capability to rank parse
trees of context-free languages. This makes them useful for syntax-based forms
of processing, as demonstrated in, e.g., machine translation and program verifi-
cation. Weighted tree automata [2] are typically defined over algebras that have
at least as much structure as a semiring, but semifields or even fields are often
used. The weight of a computation (called a run) of an automaton on an input
tree is the semiring product of the weights of the rules applied, and the weight

c© Springer International Publishing AG, part of Springer Nature 2018
C. Câmpeanu (Ed.): CIAA 2018, LNCS 10977, pp. 97–108, 2018.
https://doi.org/10.1007/978-3-319-94812-6_9 53

98 J. Björklund et al.

of the tree is the semiring sum of the weights of all runs on this tree. We restrict
ourselves to the so-called tropical semiring, which means that the weight of a
run is the (ordinary) sum of the weights of the applied rules and the weight of
a tree is the minimum of the weights of its runs.

Our main contribution is an empirical evaluation of two N -best algorithms
for weighted tree automata (wta) M over the tropical semiring. Both algorithms
represent the state of the art, but operate in quite different ways. The first
of these is an indirect method based on an N -best runs (or derivations) algo-
rithm proposed by Huang and Chiang [5] and implemented in the wta toolkit
Tiburon [7]. The algorithm computes N best runs in time O(mN log N), where
m is the number of transitions of the wta. This can be used to compute N
best trees by generating a list of N ′ best runs of M , for some large enough
N ′ ≥ N . These runs are evaluated to the corresponding trees and duplicates are
discarded to obtain a list of N best trees. Henceforth, we refer to this method by
Filtered Runs. Filtered Runs thus takes a heuristic approach in the sense
that an unlucky user may request too large or small a number of best runs, either
wasting time or not gathering enough runs to find N unique best trees.

The second algorithm that we evaluate is Best Trees [1], a generalisation
of an N -best algorithm for string automata [8]. Intuitively, Best Trees imple-
ments a breadth-first search, while making extensive use of pruning to avoid a
combinatorial explosion. The running time of Best Trees is O(N2 ·(mn log N+
n3)) [1, slightly simplified], where m and n are the number of transitions and
states of the input wta. Hence, the algorithm is less efficient than the pure
N -best runs algorithm by Huang and Chiang, even though both are polynomial.
However, Best Trees is guaranteed to produce exactly the desired number
of trees without the need to discard duplicates, whereas Filtered Runs may
require the enumeration of a large number of runs. The latter can happen if
the input wtas exhibit a high degree of nondeterminism, i.e. if the number of
distinct trees among the N best runs grows slowly (logarithmically in the worst
case) with increasing N . Filtered Runs is thus expected to run faster even
on large wtas if there is no or very little nondeterminism, while the asymptotic
advantage of Best Trees should become apparent as the degree of nondeter-
minism increases. We perform empirical evaluations in order to (a) confirm this
expected behaviour and (b) get an idea about how the algorithms compare on
different kinds of wta and varying amounts of nondeterminism.

To study this in a setting where the type, size, and amount of nondeterminism
of input wtas can be varied in a controlled way, we run our experiments on a
range of synthesized wtas designed for this purpose rather than using “real life”
wtas. While the results mostly confirm the theoretical expectations, they show
that the precise behaviour is not as simple as the theoretical worst case analysis
suggests. In particular, the running time of Filtered Runs depends on aspects
other than the pure amount of nondeterminism, such as the order in which the
transition rules of the input wta are given.

54

A Comparison of Two N -Best Extraction Methods 99

2 Preliminaries

We write N for the set of nonnegative integers, N+ for N\{0}, and R+ for the set
of non-negative reals; N∞ and R∞

+ denote N ∪ {∞} and R+ ∪ {∞}, respectively.
For n ∈ N, [n] = {i ∈ N | 1 ≤ i ≤ n}. Thus, in particular, [0] = ∅ and [∞] = N.
The cardinality of a (countable) set S is written |S|, and the powerset of S is
denoted by pow (S). The n-fold Cartesian product of a set S with itself is denoted
by Sn. As usual, the set of all finite sequences over S is denoted by S∗, and the
empty sequence by λ.

For a set A, an A-labelled tree is a partial function t : N∗
+ → A whose domain

dom (t) is a finite non-empty set that is prefix-closed and closed to the left:
whenever vi ∈ dom (t) for some v ∈ N∗

+ and i ∈ N+, it holds that v ∈ dom (t)
(prefix-closedness) and vj ∈ dom (t) for all 1 ≤ j ≤ i (closedness to the left).
The size of t is |t| = |dom (t)|. An element v of dom (t) is called a node of t, and
|{i ∈ N+ | vi ∈ dom (t)}| is the rank of v. The subtree of t ∈ TΣ rooted at v is
the tree t/v defined by dom (t/v) = {u ∈ N∗

+ | vu ∈ dom (t)} and t/v(u) = t(vu)
for every u ∈ N∗

+. If t(λ) = f and t/i = ti for all i ∈ [k], where k is the rank of λ
in t, then we denote t by f [t1, . . . , tk], which may be identified with f if k = 0.

A ranked alphabet is a disjoint union of finite sets of symbols, Σ =
⋃

k∈N Σ(k).
For f ∈ Σ, the k ∈ N such that f ∈ Σ(k) is the rank of f , denoted by rank (f).
The set TΣ of ranked trees over Σ consists of all Σ-labelled trees t in which the
rank of every node v ∈ dom (t) equals the rank of t(v). For a set T of trees we
denote by Σ(T) the set of trees which have a symbol from Σ in their root, with
direct subtrees in T , i.e., {f [t1, . . . , tk] | k ∈ N, f ∈ Σ(k), and t1, . . . , tk ∈ T}.

In the following, let � 	∈ Σ be a special symbol of rank 0. The set of contexts
over Σ is the set CΣ of trees c ∈ TΣ∪{�} containing exactly one node v ∈ dom (c)
with c(v) = �. The substitution of another tree t into c results in the tree c[[t]]
given by dom (c[[t]]) = dom (c) ∪ {vu | u ∈ dom (t)} and

c[[t]](w) =

{
c(w) if w ∈ dom (c) \ {v}, and
t(u) if w = vu for some u ∈ dom (t)

for all w ∈ dom (c[[t]]).
Recall that the domain of the tropical semiring is R∞

+ , with min serving as
addition and real-valued addition as multiplication. A weighted tree language
over the tropical semiring is a mapping L : TΣ → R∞

+ , where Σ is a ranked
alphabet. Such languages can be specified by a weighted tree automaton with
final states (wta). A wta is a system M = (Q,Σ,R,Qf) consisting of

– a finite set Q of symbols of rank 0 called states;
– a ranked alphabet Σ of input symbols disjoint with Q;
– a finite set R of transition rules f [q1, . . . , qk]

w→ q, where q, q1, . . . , qk ∈ Q,
f ∈ Σ(k), and w ∈ R+; and

– a set Qf ⊆ Q of final states.

A transition rule r : f [q1, . . . , qk]
w→ q will also be viewed as a symbol of rank

k, so that R becomes a ranked alphabet. In addition, we view every state q ∈ Q

55

100 J. Björklund et al.

as a symbol of rank 0. We define the set runsq
M ⊆ TR∪Q of q-runs of M , their

resulting trees resultM (ρ), and their weights wtM (ρ) (for ρ ∈ runsq
M) inductively,

as follows:

1. For every state q ∈ Q, q ∈ runsq
M with resultM (q) = q and wtM (q) = 0.

2. For every r : f [q1, . . . , qk]
w→ q in R and all ρ1 ∈ runsq1

M , . . . , ρk ∈ runsqk

M , ρ =
r[ρ1, . . . , ρk] ∈ runsq

M with resultM (ρ) = f [resultM (ρ1), . . . , resultM (ρk)],
and wtM (ρ) = w +

∑
i∈[k] wtM (ρi).

The set of accepting runs is runsM = {runsq
M | q ∈ F}.

Now, the weighted tree language M : TΣ → R∞
+ recognised by M is given by

M(t) = min{wtM (ρ) | ρ ∈ runsq
M is accepting and resultM (ρ) = t}

for all t ∈ TΣ (where, by convention, min ∅ = ∞). In other words, M(t) is
the minimal weight of an accepting run of t. Note that we, by a slight abuse of
notation, denote by M both the wta and the weighted tree language it computes.

For a wta M and an N ∈ N∞ as input, the N -best runs problem is the
problem to compute a sequence of N accepting runs of minimal weight according
to M . More precisely, an algorithm solving the problem outputs a sequence
ρ1, ρ2, . . . of N pairwise distinct accepting runs such that there are no i ∈ [N]
and ρ ∈ runsM \ {ρ1, . . . , ρi} with wtM (ρ) < wtM (ρi). (If the total number N ′

of accepting runs is smaller than N , the algorithm only outputs N ′ runs.)
Similarly, the N -best trees problem asks to compute pairwise distinct trees

t1, t2, . . . in TΣ of minimal weight, i.e., such that there are no i ∈ [N] and
t ∈ TΣ \ {t1, . . . , ti} with M(t) < M(ti).

3 Previous Work

The difference between the two N -best problems is that, in the nondeterministic
case, distinct runs may result in the same tree. The wta toolkit Tiburon pro-
vides an implementation of the N -best runs algorithm by Huang and Chiang [5].
This yields an obvious procedure for solving the N -best trees problem: one sim-
ply computes N ′ best runs ρ1, ρ2, . . . for large enough N ′, and outputs those
resultM (ρi) for which resultM (ρi) /∈ {resultM (ρ1), . . . , resultM (ρi−1)}. This pro-
cedure is guaranteed to produce the desired result because any given tree has
at most an exponential number of runs, which means that the next tree will be
encountered after at most exponentially many steps. (If there are no more accept-
ing runs one can simply continue to enumerate arbitrary ones of the remaining
trees, whose weight will by definition be ∞.)

The N -best trees algorithm developed in [1] avoids the detour via N ′ best
runs. We now give a short summary of the reasoning that leads to this algorithm.
Let the size parameters of the input wta M be the following:

– m is the number |R| of transition rules of M ,
– n is the number of states, and

56

A Comparison of Two N -Best Extraction Methods 101

– r is the maximum rank of symbols.

The algorithm explores its search space by maintaining a priority queue K of
trees that are candidates of output trees. The trees in the queue mark the frontier
of the search space, the priority being determined primarily by the minimal value
of M(c[[t]]), where c ranges over all possible contexts. To determine this value,
note that the definition of M(t) works also for trees t ∈ TΣ∪Q. In particular, t
can be of the form c[[q]], where c is a context and q ∈ Q. This is useful because
of the following. For a run of the form ρ[[ρ′]] where ρ′ ∈ runsq

M we clearly have
wtM (ρ[[ρ′]]) = wtM (ρ) + wtM (ρ′). Hence, if we denote by Mq the wta obtained
from M by replacing its set of final states by {q}, then

M(c[[t]]) = min
q∈Q

(M(c[[q]]) + Mq(t))

for all contexts c and all trees t.
As M(c[[p]]) is independent of t, a context c that minimises it can be calculated

in advance. Such a context c, which we call a cheapest context1 of q and which is
henceforth denoted by cq, is thus a cheapest context into which a subtree t can
be embedded in order to reach a final state, once the state q has been reached
at the root of t. As was shown in [1], a family (cq)q∈Q of cheapest contexts can
efficiently be computed given M .

To solve the N -best trees problem, when looking at a tree t in the frontier of
our search space we are, intuitively, interested in the tree c[[t]] that has the least
possible weight. The smaller this weight is, the higher should the priority of t be.
Clearly, when comparing trees with regard to this, c can be assumed to be one of
the cheapest contexts cp. Thus, our aim has to be to determine the state q that
minimises the weight of cq[[t]]. We call such a state an optimal state for t, and
denote it by opt(t) (breaking ties arbitrarily). In the algorithm, optimal states
can efficiently be computed in an incremental way as trees are assembled from
subtrees, provided that a small amount of bookkeeping information is stored
along with each tree.

Now, the N -best trees algorithm maintains data structures T and K, where

– T is a set of trees that have already been processed and
– K is a priority queue of trees in Σ(T), the frontier of the search space.

The queue K initially contains the trees in Σ0. Its priority order <K is defined
by t <K t′ ⇐⇒ Δ(t) < Δ(t′), where Δ(s) = M(copt(s)[[s]]) for all s ∈ TΣ .

We reproduce the pseudocode of the base algorithm from [1] in Algorithm 1.
As discussed in detail in [1], the set of trees enqueued in line 13 can be pruned
because for every state q at most N trees for which q is an optimal state may
ever become relevant. An additional optimisation was used in the implementation
used for the experiments of this paper: once the algorithm has outputted i ≤ N
trees, it suffices to keep N − i rather than N trees in K for each optimal state.
Hence, the queue shrinks as progress is made. While this does not affect the
asymptotic running time, it does yield a significant improvement in practise.

1 In [1] the term smallest completion was used.

57

102 J. Björklund et al.

Algorithm 1. Compute N ∈ N∞ trees of minimal weight according to a wta M

1: procedures Best Trees(M, N)
2: compute cheapest contexts for all states
3: T ← ∅; K ← ∅
4: enqueue(K, Σ0)
5: i ← 0
6: while i < N ∧ K is nonempty do
7: t ← dequeue(K)
8: T ← T ∪ {t}
9: if M(t) = Δ(t) then

10: output(t)
11: i ← i + 1
12: end if
13: enqueue(K, expand(T, t))
14: end while
15: end procedures

4 Experiments

In this section, we experimentally verify the time complexity of Best Trees,
and then compare its performance with the indirect method Filtered Runs.

It is easy to construct worst-case scenarios in which Best Trees works
exponentially faster than Filtered Runs. For example, let Σ = Σ(0) ∪ Σ(1)

with Σ(0) = {a} and Σ(1) = {f}, and consider the wta M with two states q1, q2,

and the rules a
0→ qi and f [qi]

1→ qj for all i, j ∈ [2], where q1 is final. Then
M(t) = |t| for every tree t ∈ TΣ and thus Best Trees simply enumerates trees
by size. However, each tree t has 2|t| accepting runs, all of weight |t|, and thus
Filtered Runs needs to generate 2|t| − 1 best runs to discover t.

In the following, we conduct experiments on synthesized sets of wtas which,
rather than triggering this kind of worst-case behaviour, are designed to shed
light on particular aspects of the algorithms in less extreme (and thus perhaps
practically more relevant) cases. An annotated collection containing all of these
wta sets is available on the project web page2, along with the measured running
times for each wta. Due to space restrictions, we limit ourselves for the present
to brief descriptions of the data.

The experiments were run on a computer with 8 Intel i7 processors, each at a
speed of 3.6 GHz and with 16 GB memory allocated for the JVM. The efficiency
results are based on repeated experimentation, and each reported running time
is a mean value of five runs. As both Best Trees and Filtered Runs are
deterministic algorithms, the existing (but relatively low) variance in the running
times is due to variations in the execution environment, e.g., overall system load.
All plots show the running times in milliseconds as a function of N or wta size,
which is why we exclude the y axis labels from the figures.

2 http://people.cs.umu.se/aj/besttrees experiments/.

58

A Comparison of Two N -Best Extraction Methods 103

4.1 Data

Below follows a short presentation of the wta sets used in this paper. Each set
consists of a sequence of language-equivalent wtas of increasing sizes. The rela-
tively small wta sizes are due to the limitations of Tiburon: increasing the number
of states causes out-of-memory errors when adding more nondeterminism.

Basic Example. A sequence of 20 wtas, starting with the example wta in [1].
Each subsequent automaton was derived from its predecessor by mirroring an
existing run for some tree t by the addition of new states and rules resulting
in an alternative run on t. Thus, the numbers of states and transition rules
increase at the same rate, which allows us to check the running time as a
function of the number of states and rules on the one hand, and of N on the
other hand. The amount of nondeterminism, however, does not significantly
increase as only t gets one more accepting run.

Different Weights. A sequence of 16 wtas over a, b of rank 0 and 0, resp.,
and states q1, . . . , q4, in which all of the transition rules have different weights.
All states are final. The transition rules have the weight of the index of their
target state. The weight of transition rule b[qi, qj] → qk is ijk/100, where
ijk is interpreted as a number in decimal notation. The �-th wta (� ∈ [16])
consists of the first 4� of these rules if ordered according to decreasing weight.
As a consequence, the degree of nondeterminism is moderate throughout, but
is changing as the wta sizes grow, as the later rules result in the best runs.
In particular, the degree of nondeterminism of the final wta including all
transition rules is low because only the rules a → q1 and b[q1, q1] → q1 result
in cheapest runs.

Modified Different Weights. Similar to Different Weights, but transi-
tion rules on b are added in a different order, starting with b[q1, q1] → q1 (see
the project web page (see footnote 1) for details). Hence, the best runs in all
16 wtas are those which assign q1 to all nodes, which means that the degree
of nondeterminism is small and grows moderately with growing wta sizes.

Equal Weights. The wta set Equal Weights is also similar to the set
Different Weights, but the weights are equal (all 0) apart from the rules
on a, which have weight 4. Thus, this example has the highest possible degree
of nondeterminism.

4.2 Running Time of BEST TREES

Let us first compare the measured running times of Best Trees with the
theoretical bound O(N2 · (mn log N + n3)) derived in [1].3

A somewhat unexpected outcome of our experiments was that our implemen-
tation of the computation of the cheapest contexts in line 2 of Algorithm 1, which
makes use of an algorithm by Knuth [6], turned out to be slightly less efficient

3 For the sake of clarity, the expression is slightly simplified. In particular, the
maximum rank r of symbols is taken to be constant, as it is typically small in
practise.

59

104 J. Björklund et al.

0 0.5 1 1.5 2 ·105
0

1,000

2,000

3,000

Size parameter mn

Finding cheapest contexts
0.000024(mn)3/2

Fig. 1. Running time of finding the cheapest contexts for wtas of increasing size in the
set Basic Example.

than the theoretical upper bound O(mn log n). Plotted against the parameter
mn, O(mn log n) should basically become linear when finding the cheapest con-
texts for Basic Example. As can be seen in Fig. 1, the practical running time
appears to instead be proportional to (mn)3/2 on this type of input automata.
Further experiments revealed that when m was increased while n was kept
constant (suggesting a running time of Θ(m)), we instead acquired figures resem-
bling Θ(m2) very closely. Optimising the computation of the cheapest contexts
could therefore give a certain gain when N is small, but since the computation
time is independent of N , its influence vanishes as N grows. Due to this not
being optimised, we from here on disregard the time for finding the cheapest
contexts when presenting running times for Best Trees. This, however, only
affects the runs on Basic Example significantly.

The numbers of rules and states increase at a similar rate in the wta sequence
Basic Example; this behaviour allows us to vary the two parameters N and
mn. Based on the theoretical upper bounds, the running times should be in
O(N2 log N) and O((mn)3/2) (the latter because of the term n3 in the theoretical
estimation, which equals (mn)3/2 for m = n). This is confirmed by our results,
which are visualised in Fig. 2a for increasing N , and in Fig. 2b for increasing mn.
As may be expected, these running times are slightly better than the theoretical
worst-case estimations.

As N varies, the theoretical worst-case running time of O(N2 log N) is only
reached when the priority queue used by the algorithm is at its maximal length
throughout most of the execution. Simply put, this only happens when most
trees can reach most states. In practise, the running time is therefor likely
to be lower. This is for instance the case for the Basic Example test set.

60

A Comparison of Two N -Best Extraction Methods 105

50 100 150 200
0

2

4

6

·103

N

2.8N3/2 + 10

(a) Running time depending on N ; the
multiple lines represent the increasingly
large wtas of Basic Example .

0.5 1 1.5 2 ·105
0

2

4

6

8

·103

Size parameter mn

0.009mn+ 6000

(b) Running time depending on the size
of wtas; the multiple lines represent N ∈
{10, 20, ..., 200}.

Fig. 2. Running time of Best Trees on the Basic Example set.

Here, the algorithm exhibits the behaviour shown in Fig. 2a, which is roughly
proportional to N3/2.

The waviness of the plot is explained by the pattern of the language recog-
nised by the input wtas: it only contains trees with an even number of symbols of
rank 0. By there only being a binary symbol in addition to the rank 0 symbols,
all of the trees in the language have an odd number of binary symbols. When all
of the trees with 2i − 1 binary symbols have been found, the next accepted tree
is amongst the trees with 2i + 1 binary symbols. However, all of the possibilities
for 2i binary symbols have to be processed as well since a rule application adds
at most one binary symbol to the resulting tree. Thus, the jumps in the plot
represent going from finding the trees with 2i − 1 binary symbols to finding the
trees with 2i + 1 binary symbols.

The measured running time as a function of the size of wtas is also lower
than the theoretical upper bound O((mn)3/2) in this example, namely linear.

4.3 Comparison of BEST TREES and FILTERED RUNS

In these experiments, we used Tiburon v.1.0. We ran Tiburon on the input wta
to get dN runs where dN is the smallest number of runs that produces N distinct
trees. The number dN was found manually for each combination of input wta
and value of N . Then, the list of runs was filtered using a Python script such
that only the N best trees remained. The filtering was done by going through
the list top-down and collecting only the unseen trees (by comparing each to
the previously collected ones) until N trees were gathered. The time spent on

61

106 J. Björklund et al.

filtering is included in the reported running times but negligible compared to
the running time of Tiburon.

Figure 3 shows how the running times of Filtered Runs and Best Trees
compare on the two extreme example sets. Even though Best Trees is poly-
nomial on Basic Example (as confirmed above), it is much less efficient than
Filtered Runs, which can be explained with the insignificant degree of non-
determinism of the wtas in Basic Example. Turning to Equal Weights
instead, the situation changes: as seen in Fig. 3b, Best Trees remains poly-
nomial whereas Filtered Runs appears to exhibit the expected exponential
behaviour as it is sensitive to the high (and growing) degree of nondeterminism
in Equal Weights.

100 200 300 400 500
102

103

104

Number m of transition rules

Best Trees
Filtered Runs

(a) Comparison of Best Trees and Fil-
tered Runs when run on the Basic Ex-
ample wta set for N = 200.

20 40 60
101

102

103

104

105

106

Number m of transition rules

(b) Comparison of Best Trees and Fil-
tered Runs when run on the Equal
Weights wta set for N = 30.

Fig. 3. Best Trees and Filtered Runs when run on Basic Example and Equal
Weights for fixed N .

The results for the less extreme sets Different Weights and Modified
Different Weights are shown in Fig. 4. On the former, the running time
of Filtered Runs is quite erratic, which can be explained with the changing
degree of nondeterminism. In particular, the running time drops towards the end
because the degree of nondeterminism does. Because of the low, and slowly but
steadily growing degree of nondeterminism of Modified Different Weights,
Filtered Runs runs faster on this set and the behaviour is much smoother as
wta sizes increase.

4.4 Discussion

An obvious advantage of Best Trees is that its argument N is simply the
number of best trees desired. In contrast, using Filtered Runs with the current

62

A Comparison of Two N -Best Extraction Methods 107

20 40 60
0

0.5

1

1.5
·104

Number m of transition rules

(a) Comparison of Best Trees and Fil-
tered Runs when run on the Different
Weights wta set.

20 40 60
0

1

2

3
·103

Number m of transition rules

Best Trees
Filtered Runs

(b) Comparison of Best Trees and Fil-
tered Runs when run on the Modified
Different Weights wta set.

Fig. 4. Best Trees and Filtered Runs when run on Different Weights and
Modified Different Weights for N = 100.

interface of Tiburon makes it necessary to guess the number dN of runs needed
to produce sufficiently many best runs. To avoid a trial and error procedure, one
would have to compute an appropriate – and thus exponentially large – upper
bound N ′ on dN from N , resulting in a running time that is guaranteed to be
exponentially less efficient than Best Trees even in cases where the actual
dN equals N . However, note that this is not an intrinsic weakness of Filtered
Runs because the best runs algorithm of [5] allows for a lazy implementation
that outputs runs one by one upon request. It should thus not be difficult to
modify the Tiburon implementation so as to allow for N ′ = ∞, resulting in an
infinite (lazy) list of runs that can be inspected in Filtered Runs to extract
any number of best trees. The more serious limitation of Filtered Runs is
that its running time is directly related to the number N ′ of best runs required,
which is difficult to predict. The running times reported in our experiments are
therefore indicative of how many runs had to be computed for each value of N .

Overall, Best Trees shows a more predictable and smoother behaviour than
Filtered Runs, allowing us to predict its time consumption more reliably if
the structure of input wtas is not well known (see Fig. 4a).

During the experiments, the memory usage of Tiburon became too high when
running it on the nondeterministic wta sets for N > 10, forcing us to increase
the memory allocated for the JVM from 2–4 GB to 16 GB. In contrast, Best
Trees did not encounter such problems and thus seems to use less memory.

63

108 J. Björklund et al.

5 Conclusion

We have experimentally validated the running time of Best Trees, the N -best
algorithm for wtas proposed in [1], and the practical results were in line with
the theoretical predictions. We then continued to compare Best Trees with
Filtered Runs. Whereas Best Trees can be said to take a direct approach,
Filtered Runs is indirect in the sense that it computes a large number of best
runs, and then discards those that duplicate previously outputted trees.

As it is easy to create “artificial” examples that make Filtered Runs expo-
nentially less efficient than Best Trees, we used more benign input automata
in our experiments. The experimental results confirm that the degree of non-
determinism has a decisive influence on the relative efficiency of both methods.
The greater simplicity of Filtered Runs makes it preferable if the degree of
nondeterminism is low and the input wtas are large. Conversely, if the degree
of nondeterminism is high in comparison to the size of the wta, Best Trees is
the more efficient algorithm.

Another, more general, advantage of Best Trees is that it provides guar-
antees, and that it avoids unpredictable behaviour such as the one seen in
Fig. 4a, which may be important in applications where the structure of the input
automata is varied or unclear. Using the currently available implementation pro-
vided by Tiburon, one can also add that it is inconvenient to be forced to guess
the number of runs needed to get N distinct trees.

References

1. Björklund, J., Drewes, F., Zechner, N.: Efficient enumeration of weighted tree lan-
guages over the tropical semiring. J. Comput. Syst. Sci. (2017)

2. Fülöp, Z., Vogler, H.: Weighted tree automata and tree transducers. In: Droste,
M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata. Monographs
in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-01492-5 9

3. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó (1984). https://arxiv.
org/abs/1509.06233

4. Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.) Hand-
book of Formal Languages, vol. 3, Chap. 1, pp. 1–68. Springer, Heidelberg (1997).
https://doi.org/10.1007/978-3-642-59126-6 1

5. Huang, L., Chiang, D.: Better k-best parsing. In: Proceedings of the Conference
on Parsing Technology 2005, pp. 53–64. Association for Computational Linguistics
(2005)

6. Knuth, D.E.: A generalization of Dijkstra’s algorithm. Inf. Process. Lett. 6, 1–5
(1977)

7. May, J., Knight, K.: Tiburon: a weighted tree automata toolkit. In: Ibarra, O.H.,
Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094, pp. 102–113. Springer, Heidelberg
(2006). https://doi.org/10.1007/11812128 11

8. Mohri, M., Riley, M.: An efficient algorithm for the n-best-strings problem. In:
Proceedings of the Conference on Spoken Language Processing (2002)

64

Umeå University, SE-901 87, Umeå, Sweden
Department of Computing Science

www.cs.umu.se

UMINF 18.12
ISSN 0348-0542
ISBN 978-91-7601-964-1

