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Abstract. High-level natural language processing requires formal lan-
guages to represent semantic information. A recent addition of this kind
is abstract meaning representations. These are graphs in which nodes en-
code concepts and edges relations. Node-sharing is common, and cycles
occur. We show that the required structures can be generated through
the combination of (i) a regular tree grammar, (ii) a sequence of lin-
ear top-down tree transducers, and (iii) a fold operator that merges se-
lected nodes. Delimiting the application of the fold operator to connected
subgraphs gains expressive power, while keeping the complexity of the
associated membership problem in polynomial time.

1 Introduction

Machine learning has been successfully applied to natural-language processing
(NLP) tasks such as part-of-speech tagging [17], parsing [6] and machine trans-
lation [10]. In these works, features are predominately lexical and syntactic at-
tributes, but higher-order tasks such as summarisation and topic-identification
would benefit from the addition of semantic information. Banarecsu et al. [4]
recently proposed abstract meaning representations (AMR), a semantic repre-
sentation language that expresses logical meaning at the level of sentences. From
a mathematical perspective, AMRs are directed graphs, in which nodes encode
concepts, and edges relations. AMRs were presented by example with a bank of
several thousand hand-annotated sentences. A technical specification is provided
by Banarescu et al. [3], and a (simplified) sample is shown in Figure 1.

There is an ongoing evaluation of different devices to express the language
of AMRs, and various types of grammars have been investigated [18,15]. In this
work, we consider the possibility of modelling AMRs through a sequence of in
themselves simple devices; a regular tree grammar [5] followed by a sequence
of tree transducers [19], and a fold operator that turns the generated tree into
a graph. Henceforth, we refer to this chain as a regular tree folding (RTF).
The purpose of the grammar is to generate a tree t declares the main objects
and relations of the meaning representation, but treats each object as a distinct
entity and leaves the question of co-referencing open. In the following steps, a
sequence of tree transducers identifies sets of nodes in t that represent the same
concept and marks these for merging with an auxiliary alphabet ∆. In the final
step, the fold operator actuates the merging and turns the tree into a graph.
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Fig. 1: An AMR for “Jane wants Elisabeth to trust her, and Elisabeth claims
that she genuinely does. The outgoing edges of ‘want’, ‘trust’ and ‘claim’ labelled
arg0 represent the agent relation, whereas the edges labelled arg1 represent the
patient relation, and manner modifies the wanting.

The principal formalism for graph-based representation is hyper-edge replace-
ment grammars (HRGs) [11]. HRGs are a natural generalisation of context-free
grammars, in which nonterminals take the form of labelled hyperedges and pro-
vide restricted access to the intermediate graph. HRGs have been applied to
AMR generation by Quernheim and Knight [18], and also by Chiang et al. [7].
An alternative formalism, equivalent in expressive power, is s-grammars [15].
Here, terms over a small set of operators and a finite set of elementary graphs
are evaluated in the domain of node-labelled graphs. The operators are defined
modulo an auxiliary alphabet, and can merge nodes with identical labels, injec-
tively rename nodes, and clear node names.

The membership problem for HRGs and s-grammars require exponential time
in general, and it is known that HRGs can generate languages for which the prob-
lem is NP-complete [1]. However, if the node degree is bounded, then solutions
can be obtained in polynomial time [7,14]. Moreover, Lautemann [16] gave the
following sufficient condition for an HRG G to allow polynomial-time parsing:
Let kG be the maximum number of source nodes of any nonterminal in G. For
every graph g with node set VG generated by G, and every choice V ⊆ VG
of at most kG nodes, the graph g separates into at most O(log |Vg|) connected
components when the nodes in V are removed.

There is also a significant body of work on tree-to-graph transductions. Sev-
eral of these are closely related to HRGs and have the same level of expres-
siveness. This is for instance the case for the transductions based on monadic
second-order logic investigated by Courcelle [9], and for the transductions by [11]
and [13] that take HRG derivation trees to their corresponding output graphs.
As a result, the problem of deciding whether a graph is in the range of such a
transduction is as hard as the membership problem for HRGs.

The RTFs proposed here have less expressive power than HRGs and s-
grammars: It is straight-forward to simulate an RTF with an HRG, but any
language containing a disconnected graph is a witness to the infeasibility of the
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reverse construction. The advantage of RTFs is that their membership problem
is polynomial-time solvable, also in case when the node degree is arbitrarily high,
and when the graphs do not fulfill Lautemann’s decomposition condition.

The main contributions of this paper are: (i) the introduction of fold operators
and regular tree foldings; (ii) Theorem 1 which states that interconnectedness
(or treewidth) of the graphs generated by RTFs is bounded by the size of ∆; and
(iii) Theorem 2 which states that the non-uniform version of the membership
problem for RTFs is solvable in polynomial time.

2 Preliminaries

Sets, matrices, and relations. The set of non-negative integers is denoted by
N. For n ∈ N, [n] = {1, . . . , n} and [0] = ∅. The power set of a set S is written
2S . A multiset S′ is a set in which elements can have multiple instances. For
s ∈ S′, |S′|s = n denotes that S′ contains n instances of s.

Let N and V be finite sets, and S be any set. A N × V matrix M over a
set S is a mapping M : N × V → S, in which N indexes rows, and V columns.
The set of all N × V matrices over S is denoted MN,V

S . If |V | = 1, then M is an
N -vector. For v ∈ V , we denote by M(•, v) the vth column vector of M . This is
the N -vector defined by M(•, v)(A) = M(A, v), for every A ∈ N . The size of a
N -vector v over N is |v| =

∑
A∈N v(A), and the size of a N × V matrix over N

is
∑
v∈V |M(•, v)|.

Let S be a set and R,P ⊆ S × S relations. The composition of R and P is
R ◦P = {(s, s′′) | ∃s′ ∈ S : (s, s′) ∈ P ∧ (s′, s′′) ∈ R}. Similarly, the composition
of S and R is S ◦ R = {s′ | ∃s ∈ S : (s, s′) ∈ R}. When there is no risk
for confusion, we write the composition of R ◦ P as PR. The inverse of R is
R−1 = {(s′, s) | (s, s′) ∈ R}. The relation R is: The identity relation IS on S
if R = {(s, s) | s ∈ S}; reflexive if IS ⊆ R; transitive if RR ⊆ R; symmetric if
R = R−1; antisymmetric if R ∩R−1 ⊆ IS ; total if R ∪R−1 = S2; and a total
order if it is antisymmetric, reflexive, transitive, and total. The transitive closure
of R is the smallest superset R+ of R such that R+R ⊆ R+. The transitive and
reflexive closure of R is R∗ = R+ ∪ IS .

Graphs. To allow parallel edges, which are common in AMR, we define our
graphs in terms of source and target mappings. An alphabet is a finite nonempty
set of symbols. Let Σ be an alphabet. A (directed and labelled) graph over Σ is
a tuple g = (V,E, src, tar , lab) consisting of: Finite sets V and E of nodes and
edges, respectively; source and target mappings src : E → V and tar : E → V
assigning to each edge e its source src(e) and target tar(e); and a labelling
lab : V → Σ. The in-degree of v ∈ V is |{e ∈ E | tar(e) = v}|, and the out-degree
of v is |{e ∈ E | src(e) = v}|. A node with out-degree 0 is a leaf. The size of g is
|g| = |V |+ |E|. The set of graphs with node labels in Σ is denoted GΣ .

A path in the graph g = (V,E, src, tar , lab) is a finite and possibly empty
sequence p = e0, e1, . . . , ek of edges such that for each i ∈ [k] the target of ei−1 is
the source of ei. Here, we say that p is a path from src(e0) to tar(ek). The path p
is a cycle if src(e0) = tar(ek). The graph g is connected if for every pair of nodes
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v, v′ ∈ V , there is a path from v to v′ in the graph (V,E ∪ E′, src′, tar ′, lab′),
where E′ is the smallest set that contains, for every e ∈ E, an edge e′ with
src′(e′) = tar(e), tar ′(e′) = src(e) and lab′(e′) = lab(e).

The subgraph of g induced by the node set V ′ ⊆ V is the graph g[V ′] =
(V ′, E′, src′, tar ′, lab′), where the edge e ∈ E′ if {src(e), tar(e)} ⊆ V ′; src′(e) =
src(e) and tar ′(e) = tar(e) for every e ∈ E′, and lab′(v) = lab(v) for every
v ∈ V ′. The ports of the graph g[V ′], written ports(g[V ′]), is the set of nodes
{v ∈ V \ V ′ | ∃e ∈ E : (src(e) = v ∧ tar(e) ∈ V ′) ∨ (tar(e) = v ∧ src(e) ∈ V ′)}.

A single-rooted graph g is a tuple g = (V,E, src, tar , lab, v), where v ∈ V and
(V,E, src, tar , lab) is a graph. We refer to v as root(g). The notions of paths,
cycles, connectedness, etc., transfer to single-rooted graphs in the natural way.

For simplicity, our definition of graphs does not include edge labels. However,
AMRs such as that in Figure 1 have unordered edges, and therefore need edge
labels to distinguish between arguments. We note that such edge labels can be
modelled with auxiliary nodes, as is done by Chiang et al. [8].

Trees. A ranked alphabet is an alphabet Σ = Σ0 ∪Σ1 ∪Σ2 ∪ . . .. For every
i ∈ N, the symbols in Σi are said to have rank i, and we write σ(i) to indicate this.
The alphabet Σ is said to be unary if Σi = ∅ for every i ∈ N \ {1}. An (ordered
ranked) tree over Σ is tuple t = (g,≤), where g = (V,E, src, tar , lab, v) is a
connected single-rooted acyclic graph with labels in Σ, and ≤ is a binary relation
on E, such that (i) the out-degree of every node v ∈ V is in {n ∈ N | lab(v) ∈
Σn}, (ii) for every v ∈ V , ≤ is a total order on the set {e ∈ E | src(e) = v},
and (iii) src(e) 6= src(e′) implies e 6≤ e′. A node u ∈ V is an ancestor of v ∈ V
if there is a path in t from u to v, and a descendant of v if v is an ancestor of
u. We write the sets of ancestors and descendants of v as anc(v) and desc(v),
respectively.

Throughout the remainder of this paper, Σ is a ranked alphabet, and X =
{x1, x2, . . .} is a set of variables. When in the following sections a finite subset
of X is used as a ranked alphabet, the variables involved are taken to have rank
zero. In other words, they only label leaves.

Let k ∈ N, σ ∈ Σk, and t1, . . . , tk be trees over Σ with ti = (gi,≤i)
and gi = (Vi, Ei, srci, tar i, labi, vi), such that the node sets Vi, i ∈ [k], are
mutually disjoint, and similarly for the edge sets Ei, i ∈ [k]. Intuitively, the
top-concatenation of t1, . . . , tk with σ, denoted by σ[t1, . . . , tk] is the tree ob-
tained by attaching the trees t1, . . . , tk as children underneath σ. More formally,
σ[t1, . . . , tk] = ((V,E, src, tar , lab, v),≤) where:

– V = {v} ∪
⋃
i∈[k] Vi, for some v 6∈

⋃
i∈[k] Vi,

– E = {e1, . . . , ek} ∪
⋃
i∈[k]Ei, for some e1, . . . , ek 6∈

⋃
i∈[k]Ei,

– for every i ∈ [k], src(ei) = v, and for every e ∈ Ei, src(e) = srci(e),
– for every i ∈ [k] and u ∈ Vi, lab(u) = labi(u), and lab(v) = σ, and
– for every i ∈ [k], tar(ei) = root(ti), and for every e ∈ Ei, tar(e) = tar i(e).

For every e, e′ ∈ E, e ≤ e′ if ∃i ∈ [k] s.t. e ≤i e′, or if e = ei, e
′ = ej , and i ≤ j.

Top-concatenation is analogously defined for single-rooted graphs, so we may
write f [g1, . . . , gk] without risk for confusion. However, in this case, the edges
e1, . . . , ek that attach the subgraphs g1, . . . , gk are taken to be unordered.
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We also introduce a recursive definition of (ordered ranked) trees, equivalent
to that above, but more convenient for inductive arguments. Given a unary
alphabet Q, and a set S of trees, we denote by Q(S) the set of trees on the form
q[s], where q ∈ Q and s ∈ S. The set of trees TΣ(S) is the smallest superset
of S that is closed under top-concatenation with symbols in Σ. If S = ∅, we
simply write TΣ . A tree obtained by top-concatenating the trees t1, . . . , tk with
the symbol f (k) ∈ Σ is written f [t1, . . . , tk], or simply f if k = 0. A tree language
is a subset of TΣ .

Given a (partial) mapping θ : X → TΣ(X) and a tree t ∈ TΣ , the application
tθ is inductively defined: If t ∈ X, then tθ = θ(t), and if t = f [t1, . . . , tn], for
some f ∈ Σ, then tθ = f [t1θ, . . . , tnθ]. From here on, we write tθ as t[x← θ(x) |
x ∈ X ′], where X ′ is the subset of X on which θ is the non-identity.

Let x ∈ X and S be a set disjunct from X. A context over Σ indexed by S is
a tree in TΣ({x}∪S) containing exactly one occurrence of x. The set of contexts
over Σ indexed by S is written CΣ(S). The set of contexts over Σ is CΣ(∅) and
written CΣ . The substitution of t ∈ TΣ(S) into c ∈ CΣ(S) is c[[t]] = c[x ← t].
The tree t is a subtree of s ∈ TΣ(S) if there is a c ∈ CΣ(S), such that s = c[[t]].

Grammars and transducers. A regular tree grammar (RTG) is a tuple
(N,Σ, I,R), where: N is a ranked alphabet of symbols of rank 0 called nontermi-
nals; Σ is a ranked alphabet of input symbols; I ∈ N is the initial nonterminal ;
and R is a finite set of rules of the form A→ ξ where A ∈ N and ξ ∈ TΣ(N).

Let G be a RTG. The derivation relation induced by G is the binary relation
⇒G over the set TΣ(N), such that φ ⇒G ϕ if and only if there is: a context
β ∈ CΣ(N); a nonterminal A ∈ N ; and a rule A → ξ ∈ R; and these are such
that φ = β[[A]], and ϕ = β[[ξ]]. The language generated by G is L(G) = {t ∈ TΣ |
I ⇒∗G t}. A tree language is regular if it is generated by an RTG.

A (top-down) tree transducer (TDTT) is a tuple T = (Q,Σ,∆, q0, R), where:
Q is a ranked alphabet of unary symbols called states; Σ and ∆ are ranked
alphabets of input and output symbols, respectively; q0 is an initial state; and
R is a finite set of rules of the form q[σ[x1, . . . , xm]] → ξ, where q ∈ Q, σ is
an input symbol of rank m ∈ N, x1, . . . , xm are fixed but arbitrary, pair-wise
distinct, elements in X, and the right-hand side ξ is in T∆(Q({x1, . . . , xm})).
The transducer T is linear if for every q[σ[x1, . . . , xm]]→ ξ ∈ R, the variable xi,
i ∈ [m], occurs at most once in ξ.

Let T be a TDTT. The derivation relation induced by T is the binary relation
⇒T over the set T∆(Q(TΣ)), such that φ⇒T ϕ if and only if: There are a context
β ∈ C∆(Q(TΣ)); a state q ∈ Q; a number k ≥ 0 and a symbol σ ∈ Σ of rank
k; k trees s1, . . . , sk ∈ TΣ ; and these are such that φ = β[[q[σ[s1, . . . , sk]]]], and
ϕ = β[[ξ[x1 ← s1, . . . , xk ← sk]]], for some rule q[σ[x1, . . . , xk]] → ξ in R. The
transduction computed by T is a relation [[T ]] on TΣ × T∆ given by (t, s) ∈ [[T ]]
if and only if q0[t]⇒∗T s, for every (t, s) ∈ TΣ × T∆.

Example 1 (Composition). Consider the RTG G = ({I, A}, Σ, I, R) where Σ =
{a(0), f (1)} and R = {I → f [A], A → f [A], A → a}. Clearly, L(G) contains
monadic trees over f and a. Now let T = (Q,Σ,∆, q0, R

′), where Q = {q0, q1},



6 J. Björklund

∆ = {a(0), f (1), g(2)}, and R′ is:

{ q0[f [x]]→ f [q0[x]], q0[f [x]]→ f [q1[x]], q0[a]→ a,
q1[f [x]]→ g[q1[x], q1[x]], q1[a]→ a } .

Applied to trees in L(G), the transducer T non-deterministically chooses a
node v, and transform the subtree rooted at v into a balanced binary tree.

3 Tree-to-graph transductions and AMR modelling

The grammars and transducers recalled in Section 2 create and manipulate trees,
but in AMRs we find node sharing and sometimes even cycles. To accommodate
these structures, we introduce an operator that folds trees into graphs by merging
nodes labelled with an auxiliary alphabet. The operator is applied recursively,
top-down, taking the input tree as a term over a domain of graphs. The term is
then evaluated bottom-up into a set of output graphs.

Definition 1 (The fold operator F ). Let Σ be a ranked alphabet, and ∆ a
unary ranked alphabet, disjoint from Σ. We denote by Σ⊗∆ the ranked alphabet
Σ×∆, such that for every i ∈ N, (Σ⊗∆)i = Σi×∆. We write Γ for the ranked
alphabet Σ ∪ (Σ ⊗∆) ∪∆.

We associate with each δ ∈ ∆ a relation [[δ]] : GΓ → GΓ . When applied
to a single-rooted graph g = (V,E, src, tar , lab, v) ∈ GΓ , [[δ]] merges the set of
nodes Vδ = {v ∈ V | ∃σ ∈ Σ : lab(v) = 〈σ, δ〉} into a node u, and then
nondeterministically assigns u a label in {σ | ∃v ∈ Vδ : lab(v) = 〈σ, δ〉}. If
root(g) ∈ Vδ, then root([[δ]](g)) = u; otherwise root([[δ]](g)) = root(g).

The fold operator F (over Σ with folding symbols in ∆) is a relation TΓ →
GΓ , defined for every tree t = γ[t1, . . . , tk] ∈ TΓ by:

F (t) =

{⋃
s1∈F (t1)

[[γ]](s1) if γ ∈ ∆ (so k = 1),⋃
s1∈F (t1),...,sk∈F (tk)

γ[s1, . . . , sk] otherwise.

From here on, let Σ, ∆, and Γ be as above. The fold operator F extends to
sets of trees in the expected way: For L ⊆ TΓ , F (L) =

⋃
t∈L F (t).

Example 2 illustrates how the fold operator turns trees into – potentially
cyclic – graphs.

Example 2. Recall the RTG G and TDTT T of Example 1, and consider Fig-
ure 2. The tree in (a) is in L(G), and that in (b) is in L(G) ◦ [[T ]]. Now, let
∆ = {α, β} and let T ′ be a TDTT with input alphabet Σ and output alphabet
Γ . The transducer T ′ places the symbols in ∆ on top of the tree, and then ran-
domly decides for each node labelled σ ∈ Σ whether its label should be replaced
by one in {σ} ⊗ ∆. The tree t in (c) is thus in L(G) ◦ [[T ]] ◦ [[T ′]]. When the
evaluation of F (t) has reached β, the result is the graph in (d), and when the
entire tree has been evaluated, the graph in (e).
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Fig. 2: The generation of a tree t (a–c), and the application of F to t (d–e).

Definition 2 (Regular Tree Folding). A regular tree folding (RTF) R over
Γ is a tuple (G,T, F ), where G is an RTG, T = T1, . . . , Tn is a (possibly empty)
sequence of TDTTs, and a F is a fold operator. All devices are over the common
alphabet Σ, and F additionally has folding symbols in ∆. The graph language
computed by R is the composition L(G) ◦ [[T1]] ◦ · · · ◦ [[Tn]] ◦ F ⊆ GΣ, written
L(G ◦ T1 ◦ . . . ◦ Tn ◦ F ) for short.

Let us now apply the RTF R = (G,T, F ) to the generation of AMRs. The
grammar G generates a tree t with labels in {Jane, Elisabeth, Mary, Catherine,
Lydia, want, claim, trust, like, genuinely}. In the next step, the transducers in T
decide what nodes should be merged to introduce co-referencing. One possible
decoration of t is shown in Figure 3. After folding, the nondeterministic process
may arrive at the AMR in Figure 1, but could equally well produce an AMR for
“Mary wants Lydia to like her, and Lydia claims she genuinely does”.

A simpler, alternative, definition of the fold operator avoids node labels in
∆, and simply merges nodes with labels in Σ ×∆, whenever these labels agree
in their second argument. An advantage of our definition is that the node labels
in ∆ act as scoped operators and restrict foldings to limited subtrees. This
means that even though the alphabet ∆ is finite, the nodes can be divided into
an unbounded number of groups, each merged independently from the others.
Consider the tree in Figure 4 (a), which is decorated with two instances of the
auxiliary symbol α. After the application of F , the result is an AMR (Figure 4
(b)) concerning two different girls, one with more confidence, one with less. If
there had instead been a single root labelled α, then the AMR would describe a
girl with conflicting emotions. Yet another possibility is shown in Figures 4 (c)
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Fig. 3: A tree-based meaning representation, annotated with auxiliary symbols
(id-1, id-2, and rel) to instruct the fold operator F .

and (d) in which two folding symbols are used. The AMR now tells us that one
girl trusts another, but is rewarded with doubt.

4 Expressiveness and computational complexity

RTFs allow for the generalisation of finite AMR corpora to infinite graph lan-
guages. However, if these languages permit infinite node degree, then their con-
stituent graphs will share the following structural property:

Observation 1 Let L ⊆ TΓ be a tree language, such that the maximal degree
of any node in any tree in L is r, then for every g ∈ F (L) the following holds:
If v is a node in g with degree m, then there is a path in g of length dlogrme.

Intuitively, this is due to the generation being based on trees with bounded
rank: to create a node with high degree, a large set of nodes with small degree
must be merged, and the generation of this set requires a tall tree. Since the fold
operator preserves edges, the long paths that must necessarily exist in such a tree
remain. This limitation can be avoided if the trees are generated by unranked
devices, and we view this as a natural continuation of the present work.

Another structural property of the graph languages produced by RTFs is
that they, similar to the languages produced by HRGs, have bounded tree width.

Definition 3. Let g = (V,E, src, tar , lab) be a graph in GΣ. A tree decomposi-
tion of a graph g is a tree t = (Vt, Et, srct, tar t, labt, vt) ∈ T2V such that:
1. For every v ∈ V , there is a u ∈ Vt such that v ∈ labt(u).
2. For every e ∈ E, there is a u ∈ Vt such that {src(e), tar(e)} ⊆ labt(u).
3. For every v ∈ V , the subgraph of t induced by {u ∈ Vt | v ∈ labt(u)} is

connected.
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(a) A tree-based semantic representation relat-
ing to girls, trust, and doubt.
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(b) The tree in (a) after folding.
The resulting graph encodes the
meaning “One girl trusts herself,
and one girl doubts herself.”

α

β

and

trust doubt

〈one girl, α〉 〈one girl, β〉 〈one girl, β〉 〈one girl, α〉

arg0 arg1

arg0 arg1 arg0 arg1

(c) The same semantic representation as in Sub-
figure (a) above, with an alternative decoration
of auxiliary symbols.

and

trust doubt

one girl one girl

arg0 arg1

arg0
arg1

arg0
arg1

(d) The tree in Subfigure (c) after
folding. The meaning now becomes
“One girl trusts another, who in
turn doubts her.”

Fig. 4: The auxiliary symbols decide what output tree F will produce.

The width of t is (maxu∈Vt
|labt(u)|)−1, and the treewidth of g is the minimum

of the widths of its tree decompositions.

For instance, a tree has treewidth 1, a cycle has treewidth 2, and for every
k ∈ N \ {0}, the k-complete graph Kk has treewidth k − 1.

Once a fold operator has been applied to a set of nodes, these cannot be
included in later mergings. This limits the degree of interconnectedness that can
be achieved in the generated graphs. Before we continue our investigation, we
introduce some additional notation to make the argumentation more precise.

Let t = (Vt, Et, srct, tar t, labt, vt) ∈ TΓ , and let ∆t denote the set {δ ∈ ∆ |
∃v ∈ Vt : labt(v) = δ}. For every node v ∈ Vt \ {vt}, the parent of v, written
parent(v), is the unique ancestor of v from which there is a path to v of length
exactly 1. For every v ∈ VT , we denote by t/v the subtree of t rooted at v. Note
that t/vt = t.

Let P be a set, p ∈ P , and s a tree with node set Vs and node labels in 2P .
For every P ′ ⊆ P , the function replace(s, P ′, p) replaces every occurrence of an
element in P ′ in the node labels of s by p. This means that after an application
of replace(s, P ′, p), every set that labels a node in s is free from elements in P ′,
and may have become smaller (if it originally contained more than one element
in P ′), but not larger.
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For every k ∈ N and alphabet Σ = {σ}, the k-complete graph (over Σ) is
Kk = (V,E, src, tar , lab), where V = {v1, . . . , vk}; E = {〈vi, vj〉 | vi, vj ∈ V, i <
j}; src(〈vi, vj〉) = vi and tar(〈vi, vj〉) = vj for every 〈vi, vj〉 ∈ E; and lab(v) = σ
for every v ∈ V .

Lemma 1. For every t ∈ TΓ , the treewidth of F (t) is at most |∆t|+ 1, and this
is a tight upper bound.

Proof. Let t = (Vt, Et, srct, tar t, labt, vt) ∈ TΓ . To prove Lemma 2, we construct
a tree-decomposition for F (t) = g = (Vg, Eg, srcg, targ, labg) of width |∆t|+ 1.

The construction starts out from a tree s = (Vs, Es, srcs, tars, labs, vs), where
each component is initially identical to the corresponding component in t, except
for labs, which is given by labs(vt) = {vt} and labs(v) = {v, parent(v)} for every
v ∈ Vt \ {vt}. It is easy to verify that s is a tree-decomposition for t of width 1.

To relate the trees t and s, we use the mapping ϕ : Vt → Vs that takes each
node v ∈ Vt to its copy in Vs. The function ϕ is thus initially a bijection, but as
we start to restructure s, the function will cease to be injective.

The construction process now proceeds incrementally, paralleling the bottom-
up evaluation of F (t). Before we describe the modifications made to s, we give a
number of invariants that will hold at the completion of the evaluation at node
v ∈ Vt. The first of these is simply that:

1. The tree s/ϕ(v) is a tree-decomposition of F (t/v) of width at most
∣∣∆t/v

∣∣+1.

To keep track of the nodes in VF (t/v) that have previously been cleared of labels in
{δ}∪(Σ⊗{δ}) due to a merge with respect to δ ∈ ∆, we compute a mapping Hv :
∆→ 2VF (t/v) for every v ∈ Vt. We then define Jϕ(v)(δ) to be the nodes in s/ϕ(v)

with labels that intersect 2Hv(δ), i.e., Jϕ(v)(δ) = {u ∈ Vs/ϕ(v) | labs/ϕ(v)(u) ∩
Hv(δ) 6= ∅}.

At the completion of the evaluation at node v ∈ Vt, it will be the case that:

2. For every δ ∈ ∆, (s/ϕ(v))[Jϕ(v)(δ)] is a set of subtrees of s.

3. For every δ ∈ ∆ and u ∈ Hv(δ), we have labF (t/v)(u) ∈ Σ ∪ (Σ ⊗ (∆ \ {δ})).

Note that before any evaluation step has been made, Invariant 1–3 hold trivially.

Assume now that the evaluation of F has reached a node v ∈ Vt. There are
two cases:

1. t(v) ∈ Γ \∆. Here, s is kept unchanged and for every δ ∈ ∆, we let Hv(δ) =
∪u∈children(v)Hu(δ). This means in particular that Hv(δ) = ∅ if v is a leaf.
It is easy to verify that Invariant 1–3 continue to hold.

2. t(v) = δ for some δ ∈ ∆. Since ∆ is a unary alphabet, v has a unique child u,
and ϕ(v) has the unique child ϕ(u) in s. Let P be the set of nodes in F (t/u)
that have labels in Σ ⊗ {δ}. Due to the symbol δ labelling v, the set P will
be merged into a single node w with a label in Σ. To reflect this change, we
update s as follows:
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(a) First, we invoke replace(s/ϕ(u), P, w) to replace every occurrence of a
node in P in the labels of s/ϕ(u) by w. Intuitively, this implements to
the actual merging, and in combination with Step 2 (b) below guarantees
that Invariant 1 continues to hold. Invariant 3 ensures that no node in
Jϕ(u)(δ) is affected, as the nodes in Hu(δ) have previously been cleared
of labels in {δ} ∪ (Σ ⊗ {δ}).

(b) Second, the node w is added to the label of every node in s/ϕ(u) outside
of Js/ϕ(u)(δ). Since by Invariant 2, (s/ϕ(u))[Js/ϕ(u)(δ)] is a set of sub-
trees, the nodes outside this set will form a connected (though possibly
empty) subgraph of s/ϕ(u). This guarantees that Invariant 2 will con-
tinue to hold and combines with Step 2 (a) to ensure Invariant 1. Since
the label of w is in Σ, the addition of w will not violate Invariant 3 for
some other δ′ ∈ ∆.

(c) Third, we replace the subtree s/ϕ(v) in s by s/ϕ(u), so ϕ(v) now points
to the root of s/ϕ(u).

(d) Finally, we let Hv(δ) be the entire set of nodes of F (t/v), so Js/ϕ(v)(δ)
will be all of s/ϕ(v). As the set of node labels of F (t/v) is disjoint from
{δ} ∪ (Σ ⊗ {δ}), Invariant 3 continues to hold.

When the evaluation of t has reach the root vt, Invariant 1 ensures that s is
a tree-decomposition of F (t) of width at most |∆t|+ 1.

The bound is tight: When |∆| = n, it is straight-forward to construct a
grammar G such that L(G◦F ) = {Kn+2}. Since Km has treewidth m−1, Kn+2

has treewidth n+ 1. ut

Lemma 1 immediately yields Theorem 1.

Theorem 1. The treewidth of every g ∈ L(R) is less or equal to |∆|+ 1.

The folding depth of a tree t ∈ TΓ is the maximum number of symbols in ∆
on a path from the root to a leaf of t.

Lemma 2. Let t ∈ TΓ be a tree with folding depth k, then the treewidth of F (t)
is at most k + 1.

Proof. Let p be a leaf-to-root path through g on which there are k symbols in
∆. We prove by induction on the nodes v0, . . . , vm of p, starting at the leaf v0,
that after the recursive evaluation of F has been applied to node vi, i ∈ [m],
the treewidth of the resulting graph equals the number of symbols in ∆ on the
sub-path v0, . . . , vi.

For the base case, consider the situation at v0. Since ∆ is a unary alphabet,
labt(v0) 6∈ ∆. After the evaluation of F on v0, there have been n = 0 symbols
in ∆, and the resulting graph is a tree of size 1 with treewidth n + 1 = 1. For
the inductive case, assume that the computation has reached the node vi, that
we have processed k′ symbols in ∆, and that Theorem 1 holds for every node
below vi. If labt(vi) 6∈ ∆, then the graphs below vi are top-concatenated with
labt(vi) and the computation continues. As top-concatenation of disjoint graphs
does not increase the treewidth, the statement remains true.
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If labt(vi) ∈ ∆, then a set of nodes N in the graph h below vi is to be merged
into a single node. The merge can be done by (i) deleting the subgraph induced
by N , (ii) removing the set E of dangling edges in the remaining part h′ of h,
but remembering their attachment points, (iii) adding a new node u to h′, and
finally (iv) adding the edges E back in again, now attached at one end to u. By
the induction hypothesis, the treewidth of h is at most k′ + 1, and since h′ is a
subgraph of h, the same is true for h′. The addition and attachment of a new
node can cause the treewidth to increase by at most 1. To see this, note a tree
decomposition for the new graph can be created by simply adding the node u
to every label set. After the application of the (k′ + 1)th [[δ]], where δ ∈ ∆, the
treewidth is at most k′ + 2, so the statement of Theorem 1 remains valid. ut

The remainder of this section is dedicated the proof of Theorem 2 which states
that the membership problem for RTFs is solvable in polynomial time.

Problem 1. Let R = (H,T, F ) be an RTF over Γ . Given g ∈ GΓ , is g ∈ L(R)?

We outline a decision algorithm for Problem 1 and show that it runs in
polynomial time. The proof argument is standard: it is an induction on the tree
decomposition of the graph g. The proof hinges on edges in g being unordered,
which significantly limits the size of the search space.

Since the regular tree languages are closed under application of linear top-
down tree transducers [2, Proposition 3], and the size of the generating devices
are taken as constant, we can assume without loss of generality the existence
of an RTG G = (N,Γ, I,R) such that L(G) = L(H ◦ T1 ◦ . . . ◦ Tn), where
T1, . . . , Tn = T . For technical reasons, we also assume that G is in the normal
form where every right-hand side has height 1, and the nonterminal I does not
occur on any right-hand side [12, Theorem 3.22].

The main task of the algorithm is to decide whether the nodes in g can be
“unmerged” to recover a tree t in L(G), such that g ∈ F (t). It traverses g in
such an order, that the processed part of g is connected to a limited set of nodes
in the unprocessed part. The size of the set depends on the treewidth of g.

From here on, let g = (V,E, src, tar , lab) be a graph in GΓ with treewidth k.
To avoid a combinatorial explosion, the algorithm represents every subgraph h
of g as a relation Rh. This relation describes how the part of the input tree t
that gave rise to h would have interacted in a derivation with those parts of t
that ended up outside of h. The idea is illustrated in Figure 5: Subfigure (a)
shows the tree in Figure 2 (b), together with a witness annotation for g.

Definition 4 (Witness annotation). An edge labelling labw : E → N is a
witness annotation for g if it can be constructed as follows: Let t ∈ L(G)∩F−1(g)
and π : Vt → N be a node labelling that describes a successful derivation of t by
G (i.e., π is an accepting run of G on t, when G is viewed as an automaton).
Label every e ∈ Et by π(tar t(e)) and then apply F to fold t into g. After the
folding, E = Et, so the result is an edge labelling of E.

In Subfigure (b), the tree has been folded, and a subgraph h marked out
against a grey background. The same figure also shows the ports u, v, and w
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Fig. 5: Subfigure (a) shows the tree t in Figure 2 (b), annotated with nonterminals
according to a derivation in G. In (b), this witness annotation is projected onto
[[F ]](t). To represent the subgraph h (gray background), we compute the pair of
matrices (M,M ′) ∈ Rh shown in (c) and (d): M encodes that h receives one A
from each of u and v, and M ′ that h propagates one A to v, and two Bs to w.

that connect h to the rest of g. The algorithm abstracts away from h’s internal
structure, and only remembers what nonterminals are received from, and trans-
mitted to, each node in ports(h). In doing so, it makes use of the tuple attach
which counts how many edges h has to each node in ports(h).

Definition 5 (Attach). Let h = (Vh, Eh, srch, tarh, labh) be a subgraph of g,
and let U = ports(h). The tuple attach(h) = (v,v′), where v,v′ ∈ NU , is such
that for every u ∈ U , v(u) = |{e ∈ E | src(e) = u, tar(e) ∈ Vh}|, and v

′(u) =

|{e ∈ E | src(e) ∈ Vh, tar(e) = u}|. For v ∈ NU , we denote by MN,U,v
N the set

of N × U matrices of natural numbers, such that for every u ∈ U , the column
vector indexed by u ∈ U has size at most v(u).

The matrices in MN,U,v
N are useful to remember how many nonterminals of

each type are passed to (or received from) each port u in U , when we know that
there are v(u) edges between h and u.

We can now described the interaction between h and g as a binary relationRh
on matrices. Before we give the formal definition, we introduce some additional
notation: If t ∈ L(G) ∩ F−1(g), then we denote by F−1t (h) the subgraph of t
mapped by F to h, and by F−1t (u), where u ∈ Vg, the set of nodes in Vt that
were merged by F to form u.

Definition 6 (The relation Rh). Let h be a subgraph of g. A pair of matrices

(M,M ′) ∈MN,U,v
N ×MN,U,v′

N is in Rh if and only if the following holds: There is



14 J. Björklund

u1 u2

f g

w1 w2 w3

A B

C C A

u1 u2

g f

w1 w2 w3

AB

B C A

u1 u2

g g

w1 w2 w3

CC

C
B

A

u1 u2

f f

w1 w2 w3

B A

B
C

A

(a) (b) (c)

Fig. 6: The node in Subfigure (a) can be “unmerged” in several ways, includ-
ing those in Subfigure (b). For each resulting configuration, there are alterna-
tive ways to connect the edges to ports, assign node labels, and add a witness
annotation with nonterminals. Subfigure (c) shows four variants based on the
lower-right configuration in Subfigure (b).

a t ∈ L(G)∩F−1(g), and a witness annotation ρ such that for every A ∈ N and
u ∈ U , the subgraph F−1t (h) has M(A, u) incoming edges labelled by ρ with the
nonterminal A from the nodes in F−1t (u), and M ′(A, u) outgoing edges labelled
by ρ with the nonterminal A to the nodes in F−1t (u).

For example, Figure 5 (c) and (d) show the pair (M,M ′) of matrices included
in Rh, due to the combination of input tree, witness annotation, and folding
shown in (a) and (b). The relation Rh is computed inductively. Lemma 3 gives
us the complexity of the base case, where h consists of a single node.

Lemma 3. Let G = (N,Γ, I,R) be an RTG, v ∈ V , and r = max{r ∈ N | Σr 6=
∅}. If the subgraph h = g[v] is such that |ports(h)| = k ∈ N and attach(h) =
(v,v′), then Rh can be computed in time mO((k|G|)r), where m = |v|+ |v′|.

Proof. If g is the result of folding a tree t into a graph, then every node v with l
incoming edges must be the result of merging either l or l+ 1 nodes, depending
on whether the root of the input tree is in this set. Let us now decompose h into
a set of nodes, each with in-degree at most 1 and out-degree at most r. In this
step, we only need to remember how many nodes of each rank there are, and
do not distinguish between nodes of the same rank. Under these assumptions,
there are O(mr) possible configurations. This step is illustrated in Figure 6 (a)
and (b).

For each such configuration, we can select node labels, add nonterminals to
the edges, and attach edges to the k ports O

(
m(k|N ||Σ|)r) different ways (see

Figure 6 (c)). That fact that m does not appear in the exponent is due to the
fact that identically labelled edges to the same port cannot be distinguished,
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as the edges are not ordered. There are thus O
(
mr+(k|N ||Σ|)r), or mO((k|G|)r)

configurations to consider. This function is polynomial in the size of h, and
the local validity of each configuration can be checked against the rules R in
O(m |R|). If the configuration respects G, then a matrix representation (M,M ′)
of the configuration is added to Rh. After this factor has been included, the
overall complexity remains within mO((k|G|)r). ut

If Rhi is known for l disjoint subgraphs hi = g[Vi], i ∈ [l], Vi ⊆ V , then the
relation Rh for the subgraph h = g[∪i∈[l]Vi] can be efficiently computed:

Lemma 4. Given l disjoint subgraphs hi = g[Vi], i ∈ [l], Vi ⊆ V , such that
|ports(hi)| ≤ k, attach(hi) = (vi,v

′
i), and Rhi

is known. The relation Rh for

h = g[∪i∈[l]Vi] is computable in mO(l(k|G|)r) steps, where m =
∑l
i=1 |vi|+ |v′i|.

Proof. To derive Rh, the algorithm enumerates all consistent assignments of
nonterminals to the edges between between hi and ports(hi), i ∈ [l]. The num-

ber of elements 〈(M1,M
′
1), · · · , (Ml,M

′
l )〉 ∈ Rh1

× . . . × Rhl
is
∏l
i=1 |Rhi

|,
which is in

∏l
i(|vi| + |v′i|)O((k|G|)r), which in turn is in

∏l
im

O((k|G|)r), and so
in mO(l(k|G|)r). For each such combination, we verify that for every i, j ∈ [l],
i 6= j, the following holds: (1) For every vi ∈ Vi and vj ∈ Vj such that there
is an e ∈ E with src(e) = vi and tar(e) = vj , we have M ′i(•, vj) = Mj(•, vi).
If Condition 1 is true, then we note that ports(h) = (∪i∈[k]ports(hi)) \ ∪i∈[k]Vi,
and let M(•, u) =

∑
i∈[k]Mi(•, u) and M ′(•, u) =

∑
i∈[k]M

′
i(•, u), for every

u ∈ ports(h), and finally add the tuple (M,M ′) to the relation Rh. The veri-
fication of Condition 1 is in O

(
k2l2 |G|

)
, and as |G| is a constant (because we

are looking at the non-uniform version of the membership problem), the whole
operation is in mO(l(k|G|)r). ut

When combined, Lemma 3 and 4 yield the main result of this work:

Theorem 2. For every RTF R, Problem 1 is decidable in polynomial time in
the size of the input graph.

Proof. Let G be an RTG such that L(G) = L(H ◦ T1 ◦ . . . ◦ Tn), let g =
(V,E, src, tar , lab), and let s = (Vs, Es, srcs, tars, labs, vs) be a tree decompo-
sition of g with minimum width. For every v ∈ Vs, we address subsets of V with
the functions:

up(v) =
⋃
v′∈(anc(v)\{v}) labs(v

′) , mid(v) = up(v) ∪ labs(v) , and

down(v) =
⋃
v′∈desc(v) labs(v

′) \mid(v) .

To decide whether g ∈ L(G ◦ F ), the algorithm iterates over the nodes of s,
working from the leaves upwards. At the node v it computes the relation Rh,
where h = g[down(v)]. Let v ∈ Vs be an here-to unprocessed node, such that
every child vi ∈ Vs, i ∈ [c], c ∈ N, of v has been processed. If c > 1, we pick a
pair vi, vj , i 6= j, and compute Rh′ , where h′ = g[down(vi) ∪ down(vj)], from
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the known relations Rg[down(vi)] and Rg[down(vj)]. This process is repeated until
we have a single subgraph h′′ = g[∪i∈[c]down(vi)] below v.

The next step addresses v itself. We compute Rg[u] for every u ∈ U =
labs(v) \ up(v) and combine these relations with Rh′′ to obtain Rh. Due to the
structure of s, for every U ′ ⊆ U ,

ports(g[U ′ ∪
⋃
i∈[c]

down(vi)]) ⊆ labs(v) ,

so each step involves at most k + 1 subgraphs, attached to at most k nodes.
Let us now consider the overall amount of work. Each node v of g is converted

into a relationRg[v], with O(|g|) attaching edges to ports(g[v]). By Lemma 3, the

total work is in |g|O((k|G|)r)
. Smaller relations are combined into larger at most

|V |+ |s| times, and the size of s is in O(|g|k). Each combination involves at most
k+1 relations and |g| attaching edges, so by Lemma 4, the work needed per com-

bination is in |g|O((k+1)(k|G|)r)
and the total work for all steps in |g|O((k|G|)r+1),

that is, polynomial in |g|. ut

5 Conclusion

We have presented a fold operator that restructures trees into graphs. By apply-
ing the operator to a regular tree language, we can produce the type of node-
sharing and cyclic dependencies that are needed to model AMRs. A regular tree
folding, i.e., a regular tree grammar together with the fold operator, is strictly
less expressive than HRGs and s-grammars, as it cannot produce graphs that
are less connected than a tree. However, in contrast to these alternative devices,
the associated membership is solvable in polynomial-time.
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