
Identification and Tuning of
Algorithmic Parameters in

Parallel Matrix Computations:
Hessenberg Reduction and Tensor Storage

Format Conversion

Mahmoud Eljammaly

Licentiate Thesis
February 2018

Department of Computing Science
Ume̊a University

Sweden



Department of Computing Science
Ume̊a University
SE-901 87 Ume̊a, Sweden

mjammaly@cs.umu.se

Copyright c© 2018 by Mahmoud Eljammaly
Except Paper I, c© Springer, 2018

Paper II, c© M. Eljammaly, L. Karlsson, B. K̊agström, 2017

Paper III, c© M. Eljammaly, L. Karlsson, 2016

ISBN 978-91-7601-843-9
ISSN 0348-0542
UMINF 18.02

Printed by UmU Print Service, Ume̊a University
Ume̊a 2018



Abstract

This thesis considers two problems in numerical linear algebra and high perfor-
mance computing (HPC): (i) the parallelization of a new blocked Hessenberg
reduction algorithm using Parallel Cache Assignment (PCA) and the tunability
of its algorithm parameters, and (ii) storing and manipulating dense tensors
on shared memory HPC systems.

The Hessenberg reduction appears in the Aggressive Early Deflation (AED)
process for identifying converged eigenvalues in the distributed multishift QR
algorithm (state-of-the-art algorithm for computing all eigenvalues for dense
square matrices). Since the AED process becomes a parallel bottleneck it mo-
tivates a further study of AED components. We present a new Hessenberg
reduction algorithm based on PCA which is NUMA-aware and targeting rel-
atively small problem sizes on shared memory systems. The tunability of the
algorithm parameters are investigated. A simple off-line tuning is presented and
the performance of the new Hessenberg reduction algorithm is compared to its
counterparts from LAPACK and ScaLAPACK. The new algorithm outperforms
LAPACK in all tested cases and outperforms ScaLAPACK in problems smaller
than order 1500, which are common problem sizes for AED in the context of
the distributed multishift QR algorithm.

We also investigate automatic tuning of the algorithm parameters. The
parameters span a huge search space and it is impractical to tune them us-
ing standard auto-tuning and optimization techniques. We present a modular
auto-tuning framework which applies: search space decomposition, binning,
and multi-stage search to enable searching the huge search space efficiently.
The framework using these techniques exposes the underlying subproblems
which allows using standard auto-tuning methods to tune them. In addition,
the framework defines an abstract interface, which combined with its modular
design, allows testing various tuning algorithms.

In the last part of the thesis, the focus is on the problem of storing and
manipulating dense tensors. Developing open source tensor algorithms and
applications is hard due to the lack of open source software for fundamental
tensor operations. We present a software library dten, which includes tools for
storing dense tensors in shared memory and converting a tensor storage format
from one canonical form to another. The library provides two different ways to

iii



perform the conversion in parallel, in-place and out-of-place. The conversion
involves moving blocks of contiguous data and are done to maximize the size of
the blocks to move. In addition, the library supports tensor matricization for
one or two tensors at the same time. The latter case is important in preparing
tensors for contraction operations. The library is general purpose and highly
flexible.

iv



Preface

This licentiate thesis consists of an introduction, a summary and the following
three papers.

Paper I M. Eljammaly, L. Karlsson, B. K̊agström. On the Tunability
of a New Hessenberg Reduction Algorithm Using Parallel Cache
Assignment1. Proceeding of the 12th International Conference
on Parallel Processing and Applied Mathematics (PPAM 2017),
LNCS. Springer, (to appear).

Paper II M. Eljammaly, L. Karlsson, B. K̊agström. An Auto-Tuning Frame-
work for a NUMA-Aware Hessenberg Reduction Algorithm. NLA-
FET Working Note 18, 2017, and as Report UMINF 17.19, De-
partment of Computing Science, Ume̊a University, Sweden, 2017,
(a condensed version with the same title has been accepted to
the International Conference on Performance Engineering (ICPE
2018)).

Paper III M. Eljammaly, L. Karlsson. A Library for Storing and Manipu-
lating Dense Tensors. Report UMINF 16.22, Department of Com-
puting Science, Ume̊a University, Sweden, 2016.

1Reprinted by permission of Springer.

v





Acknowledgements

First of all, I thank the almighty God for giving me the strength to finish this
work.

I thank my supervisors Professor Bo K̊agström and Assoc. Professor Lars
Karlsson for their great support and guidance, without them this work would
not have been done.

I thank my friends in the Parallel and Scientific Computing research group,
my colleagues at the Department of Computing Science and HPC2N, and ev-
eryone in UMIT Research Lab for their help and support, and for creating a
great working environment. It was both exciting and fun to work in such en-
vironment.

I thank my parents, my siblings, and all my family for their great support
during my long journey.

Financial support has been received from the European Unions Horizon
2020 research and innovation programme under the NLAFET grant agreement
No 671633, and by eSSENCE, a strategic collaborative e-Science programme
funded by the Swedish Government via VR.

Mahmoud Eljammaly
Ume̊a February 2018

vii





Contents

1 Introduction 1
1.1 QR Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Hessenberg Reduction . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Automatic Tuning . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Dense Tensor Storage Formats and Matricization . . . . . . . . 4

2 Summary of Papers 7
2.1 Paper I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Paper II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Paper III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Future Work 11

Paper I 17

Paper II 31

Paper III 47

ix





Chapter 1

Introduction

1.1 QR Algorithm

Eigenvalue problems (EVPs) appear in many applications in Science and En-
gineering. Different methods exist for solving various types of EVPs and with
matrices of different structure (e.g., dense, sparse, non-symmetric, symmetric).
In this thesis we are interested in the standard eigenvalue problem (SEP) for
dense non-symmetric matrices, which has the form:

Ax = λx (x 6= 0), (1)

where A is a dense square matrix, λ is an eigenvalue (scalar) and x is a cor-
responding eigenvector. With A of size n × n, SEP has n eigenvalues and at
most n eigenvectors; if A has multiple eigenvalues it may not exist a full set of
eigenvectors. The classical and still most popular algorithm for computing all
eigenvalues of A is the QR algorithm [17, 18]. Given a dense square matrix A
with real entries, the QR algorithm computes the eigenvalues by transforming
A to a real Schur form in two main stages, illustrated in Figure 1. The first
stage performs a similarity transformation of the form:

QT
1 AQ1 = H, (2)

where Q1 is orthogonal and H is an upper Hessenberg matrix, i.e. H(i, j) = 0
for i > j + 1. This stage called Hessenberg reduction is performed in a finite
number of steps. The second stage computes the real Schur form such that:

QT
2HQ2 = S, (3)

where Q2 is orthogonal and S is blocked quasi-triangular matrix, i.e. each
diagonal block is either 1× 1 or 2× 2. This stage called Hessenberg QR algo-
rithm is performed in an iterative manner using so called QR iterations. The
eigenvalues of the input matrix A are then the eigenvalues of all the diagonal

1



A H S

Stage

1

Stage

2

Figure 1: Main stages of the distributed multi-shift QR algorithm.

blocks of S, where the 1 × 1 blocks are real eigenvalues and the 2 × 2 blocks
correspond to pairs of complex conjugate eigenvalues.

The QR algorithm has passed through many changes and improvements.
The state-of-the-art algorithm (blocked but sequential) is known as the multi-
shift QR algorithm [4, 5]. The QR iteration in the multi-shift QR algorithm
involves a robust but costly process called Aggressive Early Deflation (AED) [4,
5]. The purpose of this process is to detect and deflate the converged eigenval-
ues much faster than the classical process of only identifying tiny subdiagonal
elements in the Hessenberg form. However, the AED process becomes a bot-
tleneck in the parallel variant of the state-of-the-art algorithm, the distributed
multi-shift QR algorithm [20]. The AED process consists of three main compo-
nents acting on a so called AED window (diagonal submatrix): Schur decom-
position, eigenvalue reordering, and Hessenberg reduction. In Paper I and II
we focus on speeding up the Hessenberg reduction which is part of the AED.

1.2 Hessenberg Reduction

Hessenberg reduction is a similarity transformation (2) which transforms a
given dense square matrix A to upper Hessenberg form H. The algorithm
reduces the input matrix one column at a time from left to right. The state-
of-the-art algorithm [24], which our implementation is based on, performs the
reduction in a blocked manner. It divides the input matrix into groups of
adjacent columns, called panels, and iterates over the panels to reduce them
one by one, see Figure 2. In each iteration the algorithm performs two phases.
In the first phase (the reduction phase) a panel (the orange blocks in Figure 2)
is reduced one column at a time using a Householder reflector for each column.
The reflectors used to reduce the panel are accumulated and then used in the
second phase (the update phase) to update the trailing matrix (the cyan blocks
in Figure 2). The white trapezoidal blocks in Figure 2 only have zero entries.

In the context of AED, the Hessenberg reduction is applied to relatively
small problems (matrices of order hundreds) and within the distributed QR
algorithm it is supplied with relatively many more cores than needed. The AED
in the distributed QR algorithm uses only a subset of these cores. Hence, we
propose to use one shared-memory node with a shared-memory programming
model for the AED process. Based on that, in Paper I (which is a condensed
version of [14]) we present a new parallel Hessenberg reduction algorithm for

2



Start Iteration 1 Iteration 2 Iteration 3 End

Figure 2: Partitioning of the input matrix into panels and reducing them one
by one in the blocked Hessenberg reduction algorithm.

small problems on shared memory. The new algorithm is more efficient and
flexible compared to the state-of-the-art algorithms.

To improve on the parallel efficiency, we applied a technique known as
Parallel Cache Assignment (PCA) [6, 7, 21]. The blocked Hessenberg reduc-
tion is a memory-bound problem and the PCA technique is used to transform
memory-bound computations to cache-bound computations. The main idea
behind the PCA technique is to consider the cores’ aggregate cache memory as
local memory in a distributed memory system, and to assign work and data to
cores such that each core works on data it owns. The PCA technique fits very
well the modern shared-memory nodes architecture, which are mostly Non-
Unified Memory Access (NUMA). If we bind each thread to a single core and
each thread copies its assigned data to a buffer local to it, the algorithm which
applies PCA will become NUMA-aware.

To gain flexibility, the new algorithm has many tunable parameters. There
are four parameters at each iteration of the Hessenberg reduction: the panel
width, the number of threads to use in the reduction phase, the number of
threads to use in the update phase, and the parallelization strategy to use in
the reduction phase (there are two strategies, one of them introduces more
parallelism than the other, which is not desirable all the time).

1.3 Automatic Tuning

The performance of the new algorithm in Paper I depends greatly on the value
chosen for its algorithm parameters, which need to be tuned for different ma-
chines and for different problem sizes. The parameters span a huge search
space and they interact with each other such that it is impractical to tune
them manually. Instead we need an automatic tuning (or auto-tuning for short)
mechanism.

When it comes to auto-tuning we can divide the auto-tuning methods based
on when the tuning occurs into two groups, off-line and on-line tuning. The off-
line tuning occurs at installation or compile time, as in the ATLAS library [25],
while the on-line tuning occurs at runtime as in the FFTW library [19]. Despite
the difference between the two libraries in terms of when the tuning occurs,
both use what is called benchmark computation, that is, computation which is
not requested by the user and its results will be discarded. In on-line tuning,

3



however, there is also another option which is actual computation. This means,
one can use only computation requested by the user without any benchmark
computation. In Paper I we implemented a simple off-line auto-tuning mecha-
nism using univariate search to tune the parameters of the new algorithm. In
Paper II, we propose an auto-tuning framework which provides an efficient way
to search the huge search space and allows to test various auto-tuning methods
easily, both off-line and on-line. We tested the framework using the Nelder-
Mead method [23] in off-line tuning mode, but we aim to use the framework
with on-line tuning methods in the actual computations.

Paper I (and its longer version [14]) and Paper II are developed under the
Horizon 2020 project Parallel Numerical Linear Algebra for Future Extreme-
Scale Systems (NLAFET) [1] and the eSSENCE Strategic Research Program.

1.4 Dense Tensor Storage Formats and
Matricization

Tensors or multi-dimensional arrays are used in many multi-dimensional data
analysis applications. Yet, most of these applications are either application-
specific solutions or based on large commercial software environments. Devel-
oping open source tensor algorithms and applications which are independent
of commercial software environments is hard due to the lack of open source
software support for fundamental tensor operations.

Looking at the history of matrix computation applications we find many
similarities with the current state of tensor computation applications, where
most software include its own implementation of basic matrix operations. Li-
braries like BLAS [3, 8, 9, 10, 11, 12, 22] and LAPACK [2] have been developed
to unify the usage of basic matrix operations. A great benefit is that software
depending on matrix computations has become easier to maintain and now
exhibit portable performance. Unfortunately, the field of tensor computations
has not matured to the point that a standard interface can be settled on. In
addition, tensor algorithms differ in their nature from matrix algorithms so
following the same path may not be the best solution.

Nevertheless, we think that developing a software stack as in Figure 3 is a
good starting point. The stack consists of six components. Two of them are al-
ready established components: the Basic Linear Algebra Subprograms (BLAS)
and the Message Passing Interface (MPI). Most of the tensor computations
can be expressed in terms of fundamental matrix operations provided by high-
performance BLAS libraries, and MPI is the de-facto standard for communica-
tion between nodes in distributed memory HPC systems. The remaining four
components are tensor related. From top down these are: the tensor applica-
tions component, which includes various types of complete applications that
use large-scale tensor computations; the tensor algorithms component, which
includes basic numerical tensor algorithms like tensor contraction and tensor
decomposition algorithms; the tensor distribution component, which includes

4



tools for (re)distribution and communications of tensor; and the tensor storage
component, which includes storing and manipulating tensors in a distributed
memory system.

Tensor storage MPI

Tensor distribution BLAS

Tensor algorithms

Tensor applications

Figure 3: Software stack for tensor computation applications.

The two tensor related components at the bottom of the software stack
(data distribution and storage) form the fundamental components of the stack.
So, we propose to take a bottom up approach to realize the software stack.
Paper III discusses the tensor storage component. Specifically, the storage and
manipulation of dense tensors in a shared memory system, which is the fist step
toward storing and manipulating dense tensors in a distributed memory system.
One of the main points discussed is the relation between tensor matricization
(unfolding a tensor into a matrix) and storage format conversions. Indeed, any
tensor matricization can be realized as a storage conversion of the tensor from
one canonical format to another.

5





Chapter 2

Summary of Papers

This chapter briefly summarizes the papers in this thesis. Papers I and II
concern the tunability of a new Hessenberg reduction algorithm. Paper III
presents a library for storing and manipulating dense tensors.

2.1 Paper I

In Paper I [16], we propose a new implementation of the blocked Hessenberg
reduction algorithm and study the tunability of its parameters. The new algo-
rithm is parallel, NUMA-aware, and flexible, which are required characteristics
to reach high performance measures on different machines for various problem
sizes.

The motivation behind the work in this paper is a bottleneck in the dis-
tributed multi-shift QR algorithm [20], the state-of-the-art algorithm for com-
puting the Schur form and all eigenvalues of dense matrices. On the criti-
cal path of this algorithm lies a component called Aggressive Early Deflation
(AED) [4, 5] which identifies already converged eigenvalues in the Schur form
and accounts for a considerable amount of the total execution time. Hessenberg
reduction is one of three main components of the AED process.

The Hessenberg reduction is a memory-bound algorithm which makes it
hard to scale well on modern high performance machines. Even the state-of-
the-art algorithm [24], which our implementation is based on, suffers from that.
To minimize the cost for memory accesses, and to achieve high performance, the
new algorithm applies a technique called Parallel Cache Assignment (PCA) [6,
7, 21] which is used to transform memory-bound computations to cache-bound
computations. In addition, applying PCA in a specific way makes the algorithm
NUMA-aware.

To enable flexibility, the new algorithm has many tunable parameters.
Specifically, the panel width, the number of threads, and the parallelization
strategy must be chosen for each iteration in the reduction. The paper evalu-

7



ates the tunability of these parameters to find their impact on the performance
of the new Hessenberg reduction algorithm. Moreover, a simple off-line auto-
tuning mechanism is used to evaluate the performance of the new algorithm
after tuning these parameters.

A comparison between the new algorithm and its counterparts in LAPACK
and ScaLAPACK is included in the paper. The results show that the new
algorithm is faster than LAPACK for all the tested problem sizes and faster
than ScaLAPACK for small problem sizes (n . 1500) but competitive with it
for larger problems.

2.2 Paper II

In Paper II [15], we present a modular auto-tuning framework that gives sup-
port for tuning the parameters of the new algorithm in Paper I [16]. We
concluded in Paper I that at each iteration of the new Hessenberg reduction
algorithm there are parameters that need tuning, see Section 2.1. These param-
eters span a huge search space and they interact with each other which makes
it impractical to apply standard tuning and optimization techniques directly.

The proposed framework applies different techniques which expose the un-
derlying subproblems and allow us to search the huge search space efficiently.
The main idea is to tune the original problem (the huge search space) by tun-
ing the subproblems (which are lower-dimensional spaces) independently using
standard tuning and optimizing techniques. Moreover, the modular design of
the framework allows the testing of different tuning and optimization tech-
niques.

The framework consists of three modules: management, database, and
search modules, respectively. The management module binds things together,
including other modules, the Hessenberg algorithm, and the user I/O. The
database module keeps track of the subproblems’ tuning processes. Finally, the
search module performs the actual tuning for a subproblem. The search module
does not implement a specific tuning algorithm but defines an abstract interface
which allow us to encapsulate any tuning technique in the search module.

We implemented the Nelder-Mead algorithm [23] in the search module and
tested the framework. The results show that the overall performance of the
new Hessenberg reduction algorithm is improving over time when using the
auto-tuning framework.

2.3 Paper III

In Paper III [13], we present dten, a library for storing and manipulating dense
tensors (multi-dimensional arrays). The library provides tools for storing dense
tensors in canonical storage formats and converting between them efficiently

8



in parallel. In addition, dten provides different ways for tensor matricization.
The library is generic and have tunable parameters to increase its flexibility.

There are many ways to convert the storage format of a dense tensor from
one canonical format to another. dten finds the most efficient way, in the sense
of moving the largest contiguous blocks of data, to perform the conversion.
The library provides two ways to perform the conversion: out-of-place and in-
place. Out-of-place conversion imposes more parallelism than in-place but uses
much more memory while in-place conversion has the opposite characteristics.
Moreover, the paper discusses two different ways to implement the in-place
conversion.

When it comes to tensor matricization, dten performs the matricization
as a storage format conversion. The library provides matricization for one or
two tensors together. The latter is done to maximize the size of the moving
blocks in both tensors together to get the highest overall performance. This is
specially important when performing a tensor contraction.

9





Chapter 3

Future Work

The framework in Paper II allows us to test various auto-tuning algorithms
and techniques. We are interested to build an on-line auto-tuning mechanism
to tune the parameters of the algorithm from Paper I at run time. Also we are
interested to expose more flexibility and apply the ideas from the framework
with the on-line tuning to other numerical linear algebra algorithms besides
Hessenberg reduction. Creating a flexible linear algebra library which is ca-
pable of tuning the parameters of its routines at run time is crucial for high
performance algorithms on the future extreme scale systems.

Moreover, the software stack for tensor computation applications is still not
complete. We are interested in extending dten capabilities to handle tensors
in distributed memory to cover both the tensor storage and tensor distribution
components of the stack.

11





Bibliography

[1] http://www.nlafet.eu.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, third edition, 1999.

[3] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley, J. Dem-
mel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, et al. An Updated
Set of Basic Linear Algebra Subprograms (BLAS). ACM Trans. Math.
Softw., 28(2):135–151, 2002.

[4] K. Braman, R. Byers, and R. Mathias. The Multishift QR Algorithm.
Part I: Maintaining Well-Focused Shifts and Level 3 Performance. SIAM
J. Matrix Anal. Appl., 23(4):929–947, 2002.

[5] K. Braman, R. Byers, and R. Mathias. The Multishift QR Algorithm. Part
II: Aggressive Early Deflation. SIAM J. Matrix Anal. Appl., 23(4):948–
973, 2002.

[6] A. Castaldo and R. C. Whaley. Achieving scalable parallelization for the
Hessenberg factorization. In Cluster Computing (CLUSTER), 2011 IEEE
International Conference on, pages 65–73. IEEE, 2011.

[7] A. Castaldo, R. C. Whaley, and S. Samuel. Scaling LAPACK Panel Oper-
ations Using Parallel Cache Assignment. ACM Trans. Math. Softw., 39(4),
2013.

[8] J. Dongarra. Basic Linear Algebra Subprograms Technical (BLAST) Fo-
rum Standard. International Journal of High Performance Computing
Applications, 16(1,2):1–111,115–199, 2002.

[9] J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff. A Set of Level 3
Basic Linear Algebra Subprograms. ACM Trans. Math. Softw., 16(1):1–17,
March 1990.

13



[10] J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. Algorithm
656: An Extended Set of Basic Linear Algebra Subprograms: Model Im-
plementation and Test Programs. ACM Trans. Math. Softw., 14(1):18–32,
March 1988.

[11] J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An Extended
Set of FORTRAN Basic Linear Algebra Subprograms. ACM Trans. Math.
Softw., 14(1):1–17, March 1988.

[12] J. J. Dongarra, J. Du Cruz, S. Hammerling, and I. S. Duff. Algorithm 679:
A Set of Level 3 Basic Linear Algebra Subprograms: Model Implementa-
tion and Test Programs. ACM Trans. Math. Softw., 16(1):18–28, March
1990.

[13] M. Eljammaly and L. Karlsson. A Library for Storing and Manipulat-
ing Dense Tensors. Report UMINF 16.22, Dept. of Computing Science,
Ume̊a University, SE-901 87 Ume̊a, Sweden, 2016.

[14] M. Eljammaly, L. Karlsson, and B. K̊agström. Evaluation of the Tunabil-
ity of a New NUMA-Aware Hessenberg Reduction Algorithm. NLAFET
Working Note 8, December, 2016. Also as Report UMINF 16.22, Dept. of
Computing Science, Ume̊a University, SE-901 87 Ume̊a, Sweden.

[15] M. Eljammaly, L. Karlsson, and B. K̊agström. An Auto-Tuning Frame-
work for a NUMA-Aware Hessenberg Reduction Algorithm. In Proceedings
of the 9th ACM/SPEC on International Conference on Performance En-
gineering (ICPE 2018). ACM, submitted.

[16] M. Eljammaly, L. Karlsson, and B. K̊agström. On the tunability of a
new Hessenberg reduction algorithm using parallel cache assignment. In
Proceedings of the 12th International Conference on Parallel Processing
and Applied Mathematics (PPAM 2017). LNCS, Springer, To appear.

[17] J. G. F. Francis. The QR Transformation A Unitary Analogue to the LR
Transformation—Part 1. The Computer Journal, 4(3):265–271, 1961.

[18] J. G. F. Francis. The QR Transformation—Part 2. The Computer Journal,
4(4):332–345, 1962.

[19] M. Frigo and S. G. Johnson. The Design and Implementation of FFTW3.
Proceedings of the IEEE, 93(2):216–231, 2005. Special issue on “Program
Generation, Optimization, and Platform Adaptation”.

[20] R. Granat, B. K̊agström, D. Kressner, and M. Shao. ALGORITHM 953:
Parallel Library Software for the Multishift QR Algorithm with Aggressive
Early Deflation. ACM Trans. Math. Softw., 41(4):Article 29:1–23, 2015.

[21] M. R. Hasan and R. C. Whaley. Effectively Exploiting Parallel Scale for all
Problem Sizes in LU Factorization. In Parallel and Distributed Processing
Symposium, 2014 IEEE 28th International, pages 1039–1048. IEEE, 2014.

14



[22] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic Lin-
ear Algebra Subprograms for Fortran Usage. ACM Trans. Math. Softw.,
5(3):308–323, September 1979.

[23] J. A. Nelder and R. Mead. A simplex method for function minimization.
The computer journal, 7(4):308–313, 1965.

[24] G. Quintana-Ort́ı and R. van de Geijn. Improving the performance of
reduction to Hessenberg form. ACM Trans. Math. Softw., 32(2):180–194,
2006.

[25] R. C. Whaley and A. Petitet. Minimizing development and maintenance
costs in supporting persistently optimized BLAS. Software: Practice and
Experience, 35(2):101–121, February 2005.

15





Paper I

On the Tunability of a New Hessenberg Reduc-
tion Algorithm Using Parallel Cache Assignment

Mahmoud Eljammaly, Lars Karlsson, and Bo K̊agström

Proceeding of the 12th International Conference on Parallel Processing and
Applied Mathematics (PPAM 2017), LNCS. Springer, (to appear).





On the Tunability of a New Hessenberg
Reduction Algorithm Using Parallel Cache

Assignment

Mahmoud Eljammaly, Lars Karlsson, and Bo K̊agström

Ume̊a University, SE 901 87 Ume̊a, Sweden,
{mjammaly,larsk,bokg}@cs.umu.se

Abstract. The reduction of a general dense square matrix to Hessen-
berg form is a well known first step in many standard eigenvalue solvers.
Although parallel algorithms exist, the Hessenberg reduction is one of
the bottlenecks in AED, a main part in state-of-the-art software for the
distributed multishift QR algorithm. We propose a new NUMA-aware
algorithm that fits the context of the QR algorithm and evaluate the sen-
sitivity of its algorithmic parameters. The proposed algorithm is faster
than LAPACK for all problem sizes and faster than ScaLAPACK for the
relatively small problem sizes typical for AED.

Keywords: Hessenberg reduction, parallel cache assignment, NUMA-
aware algorithm, shared-memory, tunable parameters, off-line tuning.

1 Introduction

This work is motivated by a bottleneck in the distributed parallel multi-shift QR
algorithm for large-scale dense matrix eigenvalue problems [7]. On the critical
path of the QR algorithm lies an expensive procedure called Aggressive Early
Deflation (AED) [1, 2]. The purpose of AED is to detect and deflate converged
eigenvalues and to generate shifts for subsequent QR iterations. There are three
main steps in AED: Schur decomposition, eigenvalue reordering, and Hessenberg
reduction. This work focuses on the last step while future work will investigate
the first two steps.

In the context of AED, Hessenberg reduction is applied to relatively small
problems (matrices of order hundreds to thousands) and, since AED appears on
the critical path of the QR algorithm, there are relatively many cores available
for its execution. The distributed QR algorithm presented in [7] computes the
AED using a subset of the processors. We propose to select one shared-memory
node and use a shared-memory programming model (OpenMP) for the AED.
The aim is to develop a new parallel Hessenberg reduction algorithm which out-
performs the state-of-the-art algorithm for small problems by using fine-grained
parallelization and tunable algorithmic parameters to make it more efficient and
flexible. Tuning the algorithmic parameters of the new algorithm is not one of
the main concerns in this paper. Rather, this work focuses on the tunability
potential of the algorithmic parameters.

19



A shared-memory node within a distributed system commonly has a Non-
Uniform Memory Access (NUMA) architecture. Since Hessenberg reduction is a
memory-bound problem where matrix–vector multiplications typically account
for most of the execution time, high performance is obtained when the cost of
memory accesses is minimized. Therefore, our algorithm employs the Parallel
Cache Assignment (PCA) technique proposed by Castaldo and Whaley [4, 5, 8].
This technique leads to two benefits. First, the algorithm becomes NUMA-aware.
Second, the algorithm uses the aggregate cache capacity more effectively.

The rest of the paper is organized as follows. Section 2 reviews a blocked Hes-
senberg reduction algorithm and the PCA technique. Section 3 describes how
we applied the PCA technique to the blocked algorithm. Section 4 evaluates
the impact of tuning each parameter. Section 5 shows the new algorithm’s per-
formance after tuning and compares it with state-of-the-art implementations.
Section 6 concludes and highlights future work.

2 Background

2.1 Blocked Hessenberg Reduction

In this section we review the basics of the state-of-the-art algorithm in [11] on
which our algorithm is based. Hessenberg reduction transforms a given square
matrix A ∈ IRn×n to an upper Hessenberg matrix H = QTAQ, where Q is an
orthogonal matrix. A series of Householder reflections applied to both sides of
A are used to zero out—reduce—the columns one by one from left to right.

The algorithm revolves around block iterations, each of which reduces a block
of adjacent columns called a panel. After reducing the first k − 1 columns, the
matrix A is partitioned as in Fig. 1, where b is the panel width.

k − 1 b

n

n

A1,1

A2,1

A1,2 A1,3

A2,2 A2,3

b

Y1

Y2
V2

V1

V2

b

k

T

b

b

Fig. 1. Partitioning of A after reducing the first k− 1 columns, and Y , V and T to be
used for reducing A2,2.

20



The panel A2,2 (starting at the sub-diagonal) is reduced to upper triangular
form by constructing and applying a transformation of the form

A← (I − V TV T )TA(I − V TV T ) ,

where I − V TV T is a compact WY representation [12] of the b Householder
reflections that reduced the panel. In practice, the algorithm incrementally builds
an intermediate matrix Y = AV T to eliminate redundant computations in the
updates from the right. The matrix Y is partitioned as in Fig. 1. Each block
iteration consists of two phases. In the first phase, the panel A2,2 is reduced and
fully updated. This gives rise to a set of b Householder reflections, which are
accumulated into a compact WY representation I−V TV T . The first phase also
incrementally computes Y2 ← A2,2:3V T . In the second phase, Y1 ← A1,2:3V T is
computed, and blocks A1,2, A1,3, and A2,3 are updated according to

A← (I − V TV T )T (A− Y V T ) , (1)

where the dimensions of A, V , T and Y are derived from Fig. 1 according to
which block is to be updated.

Other Variants of Hessenberg Reduction. A multi-stage Hessenberg reduction al-
gorithm exists [9]. In this variant, some of the matrix-vector operations are sub-
stituted by matrix-matrix operations for the cost of performing more compute-
bound computations overall. Applying PCA to this variant will be much less
efficient since PCA is useful when we have repetitive memory-bound computa-
tions, as explained in Sect. 2.2.

2.2 PCA: Parallel Cache Assignment

Multicore shared-memory systems have parallel cache hierarchies with sibling
caches on one or more levels. In such systems, the aggregate cache capacity
might be able to persistently store the whole working set. To exploit this phe-
nomenon, Castaldo and Whaley proposed the PCA technique and applied it
to the panel factorizations of one-sided factorizations [5] as well as to the un-
blocked Hessenberg reduction algorithm [4]. They argued that PCA is able to
turn memory-bound computations of small problems into cache-bound (or even
compute-bound) computations by utilizing the parallel caches to transform the
vast majority of memory accesses into local cache hits.

The main idea of PCA is to consider sibling caches as local memories in a
distributed memory system and to assign to each core a subset of the data. Work
is then assigned using the owner-computes rule. In addition, one may explicitly
copy the data assigned to a specific core into a local memory to that core.

A pivotal aspect to benefit from using PCA is having a repeated memory-
bound computation for the same memory region. Applying PCA allows fetching
a large block of data from the main memory into several caches and use it repeat-
edly while still in the cache, which eliminates the slowdown penalty presented
by repeatedly using the memory buses.

21



3 Hessenberg Reduction Using PCA

The proposed algorithm (Algorithm 1) is a parallel variant of [11] using PCA and
aimed at small matrices. The algorithm consists of two nested loops. The inner
loop, lines 7–24, implements the first phase while the remainder of the outer loop,
lines 25–30, implements the second phase. In the following, we briefly describe
the parallelization of each phase. For more details see the technical report [6].

3.1 Parallelization of the First Phase

The first phase is memory-bound due to the large matrix–vector multiplications
on lines 17–18. The objective is to apply PCA to optimize the memory accesses.
We partition A, V , and Y as illustrated in Fig. 1. This phase consists of four main
steps for each column a = A2,2(:, j) of the panel: update a from the right (lines
9–10), update a from the left (lines 11–15), reduce a (line 16), augment Y and T
(lines 17–24). Two parallelization strategies are considered for this phase. In the
full strategy, all multiplications except triangular matrix–vector are parallelized.
In the partial strategy, only the most expensive computational step, lines 17–18,
is parallelized. The full strategy exposes more parallelism at the cost of more
overhead which makes it suitable only for sufficiently large problems.

To apply PCA, before each first phase the data are assigned to threads where
each thread mainly works on data it owns. The matrix–vector multiplications
in this phase involve mostly tall–and–skinny or short–and–fat matrices. For ef-
ficient parallelization in the full strategy, the matrices are partitioned along
their longest dimension into p1 parts assigned to p1 threads. To parallelize the
costly step in lines 17–18, A2,2:3 is first partitioned into p1 block rows then each
thread explicitly copies its assigned block into local memory, (line 6). Having
the assigned data from this block in a buffer local to the thread will reduce the
amount of remote memory accesses, cache conflicts and false sharing incidents,
which make the algorithm NUMA-aware. So even if the data did not fit into
the cache, the algorithm will still benefit from the data locality. In general, all
matrices are distributed among the threads in a round-robin fashion based on
memory-pages.

3.2 Parallelization of the Second Phase

The second phase is compute-bound and mainly involves matrix–matrix multi-
plications. The objective is to balance the workload and avoid synchronization
as much as possible. There are four main steps: updating A2,3 from the right
(lines 26–27), updating A2,3 from the left (line 28), computing Y1 (line 29), and
updating A1,2:3 (line 30). With conforming block partitions of the columns of
A2,3 and V T

2 , and of the block rows of A1,2:3 and Y1 (line 25) the computation
can be performed without any synchronization.

22



Algorithm 1: Parallel blocked Hessenberg reduction using PCA.

1 for k ← 1 : b : n− 2 do // Outer loop over panels

2 V ← 0n−k×0, T ← 00×0, Y ← 0n×0// Initialize intermediate matrices

3 if s = full then p̂← p1 else p̂← 1 // Select strategy

4 Partition A, V , and Y as in Fig. 1

5 Partition A2,2:3 into p1 row blocks A
(i)
2,2:3 for i = 1 . . . p1

6 Thread i copies A
(i)
2,2:3 to local memory

// First Phase

7 for j ← 1 : min{b, n− k − 1} do
8 Partition A2,2(:, j), V, V2,vj , Y2 and yj into p̂ row blocks

A
(i)
2,2(:, j), V (i), V

(i)
2 ,v

(i)
j , Y

(i)
2 and y

(i)
j for i = 1 . . . p̂

// Update column j of A22 from both sides

9 parfor i← 1 : p̂ do

10 A
(i)
2,2(:, j)← A

(i)
2,2(:, j)− Y (i)

2 V2(1, :)T

11 w(i) ← V iTA
(i)
2,2(:, j)

12 w← w(1) + · · ·+ w(p̂)

13 w← TTw
14 parfor i← 1 : p̂ do

15 A
(i)
2,2(:, j)← A

(i)
2,2(:, j)− V (i)w

16 Construct a Householder reflection (vj , τj) that reduces A2,2(j + 1 : n, j)
// Augment Y , T, and V

17 parfor i← 1 : p1 do

18 y(i) ← A
(i)
2,2:3(:, j + 1 : n)vj

19 parfor i← 1 : p̂ do

20 t(i) ← V
(i)
2

T
v
(i)
j

21 t← t(1) + · · ·+ t(p̂)

22 parfor i← 1 : p̂ do

23 y(i) ← τy(i) − Y (i)
2 t

24 Y ←
[
Y1 0
Y2 y

]
, T ←

[
T −τjT t
0 τj

]
, V ←

[
V vj

]

// Second Phase

25 Partition A2,3 into p2 column blocks A
(i)
2,3 and A1,2:3(:, 2 : n), Y1 and V2 into

p2 row blocks A
(i)
1,2:3(:, 2 : n), Y 1(i) and V

(i)
2 for i = 1 . . . p2

26 parfor i← 1 : p2 do
// Update A2,3 from the right

27 A
(i)
2,3 ← A

(i)
2,3 − Y2V

(i)
2

T

// Update A2,3 from the left

28 A
(i)
2,3 ← A

(i)
2,3 − V TTV TA

(i)
2,3

// Compute the top block of Y

29 Y
(i)
1 ← A

(i)
1,2:3(:, 2 : n)V T

// Update A1,2:3 from the right

30 A
(i)
1,2:3(:, 2 : n)← A

(i)
1,2:3(:, 2 : n)− Y (i)

1 V T

23



3.3 Algorithmic Parameters

There are four primary algorithmic parameters: the panel width, the paralleliza-
tion strategy, and the thread counts for both phases. The panel width b can be
set to any value in the range 1, . . . , n−2. The first phase can be parallelized using
either the full or the partial parallelization strategy, as described in Sect. 3.1.
The strategy s ∈ {full, partial} can be set independently for each iteration of
the outer loop. Using all available cores can potentially hurt the performance,
especially near the end where the operations are small-sized. The synchroniza-
tion overhead and cache interference may outweigh the benefits of using more
cores. Therefore, the number of threads to use in each phase (p1 and p2) are
tunable parameters that can be set independently in each outer loop iteration.
If the thread count is less than the number of available cores, then threads are
assigned to as few NUMA domains as possible to maximize memory throughput.

4 Evaluation of the Tuning Potential

This section evaluates the tuning potential of each algorithmic parameter while
keeping all the others at their default setting.

The experiments were performed on the Abisko system at HPC2N, Ume̊a
University. During the experiments, no other jobs were running on the same
node. One node consists of four AMD Opteron 6238 processors each containing
two chips with six cores each for a total of 48 cores. Each chip has its own memory
controller, which means that the node has eight NUMA domains. The PathScale
(5.0.0) compiler is used together with the following libraries: OpenMPI (1.8.1),
OpenBLAS (0.2.13), LAPACK (3.5.0), and ScaLAPACK (2.0.2). The default
parameter values in Table 1 were used in the experiments unless otherwise stated.
All reported data points is the median of 100 trials, unless otherwise stated.

Tuning Potential for the Panel Width. The panel width plays a key role in
shaping the performance since it determines the distribution of work. To find
how b depends on the problem size we used n ∈ {500, 1000, . . . , 4000}. Figure 2
shows the execution time of the new algorithm for different problem sizes and
panel widths. The stars correspond to the best b found for each problem size.
The algorithm execution time is sensitive to the choice of b which means b need
tuning.

Tuning Potential for the Parallelization Strategy. The partial strategy is expected
to be faster for small panels due to its lower parallelization overhead, while the
full strategy is expected to be faster for large panels due to its higher degree of
parallelism. Figure 3 shows the execution times per iteration of the outer loop for
both strategies for p = 48 and n = 4000. For the first 20 or so iterations, the full
strategy is faster, while the opposite is true for the remaining iterations. Hence,
s needs tuning to find which strategy to use for each iteration of a reduction.
For a smaller n and the same fixed parameters, the resulting figure is a subset
of Fig. 3, e.g., for n = 2000, the resulting figure consists of iterations 40 to 80 of
Fig. 3.

24



Table 1. Default values for the algorith-
mic parameters.

Parameter Default

Panel width b = 50
Thread count p1 = p2 = p
Parallelization strategy s = partial

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

Panel width

T
im

e
 i
n
 s

e
c
o
n
d
s

 

 500

1000

1500

2000

2500

3000

3500

4000

Fig. 2. Effect of the panel width on the
execution time for p = 48 and n ∈
{500, 1000, . . . , 4000} with all other pa-
rameters as in Table 1. The stars represent
the best b for each n.

Tuning Potential for the Thread Counts. The number of threads used in each
phase affects the performance since it affects both the cache access patterns and
the parallel overhead. To find the optimal configuration it suffices to know the
execution time of each of the two phases in every iteration for each thread count
since the phases do not overlap. These data can be obtained by repeating the
same execution with different fixed thread counts. The time measurements are
collected in two tables: T1 for the first phase and T2 for the second phase (not
explicitly showed). One row per thread count and one column per iteration. To
find the optimal thread count for a particular phase and iteration, one scans
the corresponding column of the appropriate table and selects the thread count
(row) with the smallest entry. Figure 4 compares the effect of varying the thread
counts as opposed to always using the maximum number (48). The result shows
that varying the thread counts is better, which means we need to tune the thread
counts for each phase and iteration.

More evaluation results. A more thorough evaluation is discussed in the tech-
nical report [6]. Specifically, the report includes an evaluation of varying the
panel width at each iteration of the reduction. The results show that the gain
is insignificant compared to varying the panel width once per reduction. The
evaluation of either performing the explicit data redistribution (copying to local
buffers) or not is also included. The results show that it is always useful to redis-
tribute the data. In addition, more cases for evaluating the effect of varying the
thread counts are considered. The cases include experimenting with varying ei-
ther p1 or p2 while fixing the other to the max, varying both but keeping p1 = p2,
testing for a different problem size (n = 4000), and distributing the threads to
the cores in two scheme: packed and round-robin. The general conclusion of all
these cases is that p1 and p2 need to be tuned independently.

25



0 10 20 30 40 50 60 70 80
0

0.02

0.04

0.06

0.08

0.1

0.12

Iterations

T
im

e
 i
n

 s
e

c
o

n
d

s

 

 

Partial

Full

Fig. 3. Comparison of the full and partial
strategies for p = 48 and n = 4000 with all
other parameters as in Table 1.

0 2 4 6 8 10 12 14 16 18 20
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

30

24

18

48

12

48

12

48

12

48

12

48

12

48

12

48

24

18

18

12

12

18

18

48

18

18

6

18

12

18

12

12

12

12

6

12

6

12

6

18

Iterations

T
im

e
 i
n
 s

e
c
o
n
d
s

 

 

p1

p2

Max

Vary

Fig. 4. Comparison of varying the thread
counts and using maximum number of
cores (48) for n = 1000 with all other pa-
rameters as in Table 1. The numbers at the
bottom of the figure are the thread counts
used in each iteration for each phase.

5 Performance Comparisons

This section illustrates the performance of the new parallel algorithm after tuning
and compares it with LAPACK and ScaLAPACK over a range of problem sizes.

Off-Line Auto-tuning. To tune the parameters we used several rounds of uni-
variate search. Our objective is not to come up with the best off-line auto-tuning
mechanism but rather to get a rough idea how the new algorithm performs after
tuning. Univariate search works by optimizing one variable at a time, in this
case through exhaustive search, while fixing the other variables. The parameters
are tuned separately for each problem size and number of cores.

Hessenberg reduction with and without PCA. Figure 5 shows the speed up of the
Hessenberg algorithm with PCA against without PCA. The LAPACK routine
DGEHRD was used as the variant without PCA since it is the closest in its im-
plementation to the new algorithm. The comparison made for square matrices
of size n ∈ {100, 300, . . . , 3900} using p ∈ {6, 12, . . . , 48}. To have a fair com-
parison, the parameters of the PCA variant are fixed to the default values in
Table 1. The results show that for most cases the PCA variant is faster.

Performance of The New Algorithm. To measure the new algorithm perfor-
mance, tests are run on square matrices of size n ∈ {100, 300, . . . , 3900} using
p ∈ {6, 12, . . . , 48} threads with 15 rounds of tuning. Figure 6 shows the per-
formance measured in GFLOPS of the new algorithm after tuning on different
numbers of cores. It is inconvenient to present all the parameter values in all
tests since there are thousands of them. The results show that for small prob-
lems (n . 2000), it is not optimal to use the maximum number of cores (48).

26



0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7

8

9

10

Matrix size

S
p

e
e

d
 u

p

 

 

6 cores

12 cores

18 cores

24 cores

30 cores

36 cores

42 cores

48 cores

Fig. 5. Speed up comparison between
the Hessenberg reduction algorithm with
PCA, using the default parameters in Ta-
ble 1, and without PCA.

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

50

60

70

80

Matrix size

G
F

L
O

P
S

 

 

6 cores

12 cores

18 cores

24 cores

30 cores

36 cores

42 cores

48 cores

Fig. 6. Performance of the new algorithm
using 1-8 NUMA domains.

Comparison with LAPACK and ScaLAPACK. Figure 7 shows the speed up
of the new algorithm after tuning against the DGEHRD routine from LAPACK
and the PDGEHRD routine from ScaLAPACK. The three routines are run using
p ∈ {6, 12, 18, · · · , 48} threads for each problem of size n ∈ {100, 300, · · · , 3900}.
The numbers in the figure indicate for each implementation which p gives the
best performance for each n. The comparison for each n is then made between the
best case of the three implementations. Table 2 shows the values of b and s which
are used in the new algorithm for each best case. For n ≥ 3100, the full strategy is
used for the first few iterations then the partial strategy is used. It is inconvenient
to present the values of p1 and p2 for each case. Instead, we summarize how they
change during the reduction. Generally, any reduction starts with p1 = p2 = p,
then p1 gradually decreases until it reaches the minimum number of threads
(6), while p2 decreases but less gradually and does not necessarily reaches the
minimum. The results show that the new algorithm outperforms LAPACK for all
the tested problems while it outperforms ScaLAPACK only for small problems
(n . 1500), a possible reason is that ScaLAPACK might be using local memory
access for both phases.

Comparison with other libraries. There are other libraries for numerical lin-
ear algebra than LAPACK and ScaLAPACK. The latest release (2.8) of the
PLASMA [3] library does not support Hessenberg reduction, while MAGMA [13]
uses GPU which is not our focus. On the other hand, libFLAME [14] uses the
LAPACK routine for a counterpart implementation, while the implementation
from Elemental library [10] produces comparable results to ScaLAPACK in the
best case speed up comparison.

27



Table 2. The panel widths and strategies
of the new algorithm after tuning for the
cases used in the comparison in Fig 7.

n b s n b s

100 30 partial 2100 60 partial
300 30 partial 2300 60 partial
500 30 partial 2500 60 partial
700 30 partial 2700 50 partial
900 40 partial 2900 60 partial
1100 40 partial 3100 60 full until 4
1300 40 partial 3300 60 full until 7
1500 40 partial 3500 60 full until 11
1700 50 partial 3700 60 full until 14
1900 60 partial 3900 60 full until 19

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6

6

6

18

6

18

6

12

18

12

36
36

12

36

12

36

12

36

12

36

12

48

12

48

12

48

12

48

12

48

12

48

12

48

12

48

12

48

36

PCA
6 6 12 12 12 18 24 24 36 36 42 48 48 48 48 48 48 48 48 48

Matrix size

S
p
e
e
d
 u

p

 

 

LAPACK

ScaLAPACK

Fig. 7. Best case speed up comparison be-
tween our new algorithm after tuning and
its counterparts in LAPACK and ScaLA-
PACK (block size 50×50). The numbers in
the figure show the value of p which gives
the best performance for each n.

6 Conclusion

We presented a new parallel algorithm for Hessenberg reduction which applies
the PCA technique to an existing algorithm. The algorithm is aimed to speed up
the costly AED procedure which lies on the critical path of the distributed par-
allel multi-shift QR algorithm [7]. The proposed algorithm has a high degree of
flexibility (due to tens or hundreds of tunable parameters) and memory locality
(due to the application of PCA). The impact of various algorithmic parameters
of the new algorithm were evaluated. The panel width, the parallelization strat-
egy and the thread counts found to have a significant impact on the algorithm
performance and though they need tuning. A basic off-line auto-tuning using
univariate search is used to tune the parameters. The proposed solution with
tuning outperforms LAPACK’s routine DGEHRD for all cases and ScaLAPACK’s
routine PDGEHRD for small problem sizes.

Future work includes designing an on-line auto-tuning mechanism. The aim
is to obtain an implementation that continuously improves itself the more it
is being used. A major challenge is how to effectively handle the per-iteration
parameters (thread count and parallelization strategy) as well as how to share
information across nearby problem sizes.

Acknowledgements. We thank the High Performance Computing Center North
(HPC2N) at Ume̊a University for providing computational resources and valu-
able support during test and performance runs. Financial support has been re-
ceived from the European Unions Horizon 2020 research and innovation pro-
gramme under the NLAFET grant agreement No 671633, and by eSSENCE, a

28



strategic collaborative e-Science programme funded by the Swedish Government
via VR.

References

1. Braman, K., Byers, R., Mathias, R.: The multishift QR algorithm. part I: Main-
taining well-focused shifts and level 3 performance. SIMAX 23(4), 929–947 (2002),
doi:10.1137/S0895479801384573

2. Braman, K., Byers, R., Mathias, R.: The multishift QR algorithm.
Part II: Aggressive early deflation. SIMAX 23(4), 948–973 (2002),
doi:10.1137/S0895479801384585

3. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled linear
algebra algorithms for multicore architectures. Parallel Computing 35(1) (2009),
doi:10.1016/j.parco.2008.10.002

4. Castaldo, A., Whaley, R.C.: Achieving scalable parallelization for the Hessenberg
factorization. In: Cluster Computing (CLUSTER), 2011 IEEE International Con-
ference on. pp. 65–73. IEEE (2011), doi:10.1109/CLUSTER.2011.16

5. Castaldo, A., Whaley, R.C., Samuel, S.: Scaling LAPACK panel operations using
parallel cache assignment. ACM TOMS 39(4) (2013), doi:10.1145/2491491.2491493

6. Eljammaly, M., Karlsson, L., K̊agström, B.: Evaluation of the Tunability of a
New NUMA-Aware Hessenberg Reduction Algorithm. NLAFET Working Note 8
(December, 2016), also as Report UMINF 16.22, Dept. of Computing Science,
Ume̊a University, SE-901 87 Ume̊a, Sweden.

7. Granat, R., K̊agström, B., Kressner, D., Shao, M.: ALGORITHM 953: Parallel
Library Software for the Multishift QR Algorithm with Aggressive Early Deflation.
ACM Trans. Math. Software 41(4), Article 29:1–23 (2015), doi:10.1145/2699471

8. Hasan, M.R., Whaley, R.C.: Effectively exploiting parallel scale for all problem sizes
in LU factorization. In: Parallel and Distributed Processing Symposium, 2014 IEEE
28th International. pp. 1039–1048. IEEE (2014), doi:10.1109/IPDPS.2014.109

9. Karlsson, L., K̊agström, B.: Parallel two-stage reduction to Hessenberg form using
dynamic scheduling on shared-memory architectures. Parallel Computing 37(12),
771 – 782 (2011), 6th International Workshop on Parallel Matrix Algorithms and
Applications (PMAA’10), doi:10.1016/j.parco.2011.05.001

10. Poulson, J., Marker, B., van de Geijn, R.A., Hammond, J.R., Romero,
N.A.: Elemental: A new framework for distributed memory dense ma-
trix computations. ACM Trans. Math. Softw. 39(2), 13:1–13:24 (Feb 2013),
doi:10.1145/2427023.2427030

11. Quintana-Ort́ı, G., van de Geijn, R.: Improving the performance of
reduction to Hessenberg form. ACM TOMS 32(2), 180–194 (2006),
doi:10.1145/1141885.1141887

12. Schreiber, R., Loan, C.V.: A storage efficient WY representation for products of
Householder transformations. Tech. Rep. 1 (1989), doi:10.1137/0910005

13. Tomov, S., Dongarra, J., Baboulin, M.: Towards dense linear algebra for hybrid
GPU accelerated manycore systems. Parallel Computing 36(5-6), 232–240 (2010),
doi:10.1016/j.parco.2009.12.005

14. Zee, F.G.V., Chan, E., van de Geijn, R.A., Quintana-Ort́ı, E.S., Quintana-Ort́ı,
G.: The libflame library for dense matrix computations. Computing in Science and
Engg. 11(6), 56–63 (Nov 2009), doi:10.1109/MCSE.2009.207

29





Paper II

An Auto-Tuning Framework for a NUMA-Aware
Hessenberg Reduction Algorithm

Mahmoud Eljammaly, Lars Karlsson, and Bo K̊agström

NLAFET Working Note 18, 2017, and as Report UMINF 17.19, Department
of Computing Science, Ume̊a University, Sweden, 2017, (a condensed version
with the same title has been accepted to the International Conference on Per-
formance Engineering (ICPE 2018)).





An Auto-Tuning Framework for a NUMA-Aware

Hessenberg Reduction Algorithm∗

Mahmoud Eljammaly
Department of

Computing Science
mjammaly@cs.umu.se

Lars Karlsson
Department of

Computing Science
larsk@cs.umu.se

Bo K̊agström
Department of Computing

Science and HPC2N
bokg@cs.umu.se

Abstract

The performance of a recently developed Hessenberg reduction al-
gorithm greatly depends on the values chosen for its tunable param-
eters. The search space is huge combined with other complications
makes the problem hard to solve effectively with generic methods and
tools. We describe a modular auto-tuning framework in which the un-
derlying optimization algorithm is easy to substitute. The framework
exposes sub-problems of standard auto-tuning type for which existing
generic methods can be reused. The outputs of concurrently execut-
ing sub-tuners are assembled by the framework into a solution to the
original problem.

Keywords: Auto-tuning, Tuning framework, Binning, Search space de-
composition, Multistage search, Hessenberg reduction, NUMA-aware.

1 Introduction

The motivation behind this work starts from the distributed parallel multi-
shift QR algorithm [9], which is the key step in solving large dense unsym-
metric eigenvalue problems. On the critical path of the distributed QR algo-
rithm lies a costly process known as Aggressive Early Deflation (AED) [2, 3].
The purpose of AED is two-fold: to detect and deflate converged eigenval-
ues and to generate shifts for subsequent QR iterations. Aggressive early
deflation is composed of three major parts: Schur decomposition, eigenvalue

∗NLAFET Working Note 18. Report UMINF 17.19, Dept. Computing Science, Ume̊a
University, SE 901 87 Ume̊a, Sweden.

33



reordering, and Hessenberg reduction. The AED process is currently a bot-
tleneck in the distributed QR algorithm and we aim to accelerate it in the
hopes of improving the performance and scalability of the QR algorithm. We
recently developed a new NUMA-aware Hessenberg reduction algorithm [7]
based on the Parallel Cache Assignment (PCA) technique [4, 5, 10]. The
performance of the new algorithm depends greatly on the values chosen
for its tunable parameters. Auto-tuning is required due to both the large
number of parameters (four per iteration; see Section 2.1 ahead) and the
interactions between different parameters.

In this paper, we propose a modular auto-tuning framework that helps
with the tuning process. In particular, the framework tries to search the huge
search space efficiently by partitioning the parameters into subsets that are
tuned independently, grouping similar sub-problems into the same bin and
tune them as one, and searching in multiple stages (first coarsely and then
finely). The framework by itself is not a complete solution. At the heart of
the framework is a generic module for optimizing a sub-problem of standard
type. The framework provides a clean interface to generic optimization
methods and extends them into an auto-tuner for the complex and non-
standard original problem. Besides the main benefit of reducing the complex
optimization problem into something more manageable, this architecture
has the added benefit of making it easy to experiment with different search
algorithms.

The framework works as pre- and post-processing layers around the Hes-
senberg algorithm. The interactions between the framework and the algo-
rithm are as follows. The user provides to the framework an input matrix
A ∈ Rn×n and the number, p, of available cores. Based on n and p, the
framework chooses specific values for all the algorithmic parameters of the
Hessenberg algorithm. The framework then executes the Hessenberg algo-
rithm on A with the specified parameters. The output matrices H and Q are
returned to the user. Simultaneously, the Hessenberg algorithm feeds back
internal time measurements to the framework for use in the tuning process.

The rest of the paper is organized as follows. Section 2 describes the
details of the new implementation of blocked Hessenberg reduction. The
algorithmic parameters and their interaction are identified and discussed in
Section 2.1. Section 3 describes techniques used within the framework to
efficiently search the huge search space. Section 4 describes the architecture
of the auto-tuning framework. Section 5 shows experimental results. Finally,
Section 6 sums up the paper and outlines future work.

2 NUMA-Aware Hessenberg Reduction

Hessenberg reduction is a similarity transformation that maps a matrix A ∈
Rn×n to an upper Hessenberg matrix H = QTAQ, where Q is an orthogonal

34



matrix. The current state-of-the-art algorithm [12] performs the reduction
in a blocked manner. The matrix is reduced iteratively one block of columns
(called a panel) at a time from left to right. Each panel is reduced column-
by-column using Householder reflectors. The reflectors are also applied to
the rest of the matrix to update it. Most of the work associated with the
updates are delayed. More precisely, one iteration consists of two phases:
a (panel) reduction phase, in which the panel is reduced, and an (delayed)
update phase, in which the delayed updates are fully applied. Let I−V TV T

denote the compact WY representation [13] of all reflectors from one panel
reduction. One iteration logically applies the similarity transformation

A← (I − V TV T )TA(I − V TV T ) = (I − V TV T )T (A− Y V T ), (1)

where Y = AV T ; see [12] for details. Our recently developed NUMA-aware
parallel variant of [12] is summarized in Algorithm 1.

Figure 1 shows the shapes of A, V , and Y after the first k columns of A
have been reduced. Here b refers to the width (number of columns) of the
next panel.

In the reduction phase, the panel A22 is reduced. To reduce a column in
A22, the column is first updated using (1), lines 6 to 7, and then reduced by a
Householder reflection, line 8. The reflection is augmented into the compact
WY representation. This process affects Y2, T , and V , lines 9 to 15.

The operations in the reduction phase are mainly matrix–vector oper-
ations, which therefore makes the whole phase memory-bound. The most
expensive operation is a large matrix–vector multiplication involving A2,2:3

during the computation of y, lines 9 to 10. To perform this multiplication
efficiently, our NUMA-aware algorithm [7] uses the PCA technique [5, 4, 10].
This makes for efficient utilization of the aggregate cache capacity and more
localized access to main memory. Applying PCA means to (logically or
physically) distribute the data over the threads/cores and then distribute
the work according to the owner-computes rule. Concretely, before the start
of the reduction phase, A2,2:3 is partitioned into uniform row blocks and each
block is assigned to one thread.

The NUMA-aware algorithm provides two alternative parallelization strate-
gies for the reduction phase. In the partial parallelization strategy, multi-
threading is used only for the most expensive multiplication (i.e., lines 9
to 10) while in the full parallelization strategy multi-threading is used for
most of the operations.

In the update phase, Y1 is efficiently computed directly from its definition
Y = AV T and A12, A13, and A23 are updated using (1), lines 16 to 19. All
operations in this phase are efficient matrix multiplications, which makes it
compute-bound. All computations in the update phase are parallelized.

35



Algorithm 1: Parallel blocked Hessenberg reduction using PCA.

// Outer loop over panels
1 foreach panel do

// Select strategy
2 if s = full then p← tr else p← 1
3 Partition A, V , and Y as in Figure 1 with panel width b
4 Assign and redistribute data to workers

// Reduction Phase
5 foreach column a in panel A2,2 do
6 parfor i← 1 : p do

7 Update column a(i) of A2,2

8 Construct a Householder reflection that reduces column a of
A2,2

9 parfor i← 1 : tr do

10 Compute column y(i) of Y2

11 parfor i← 1 : p do

12 Compute column t(i)

13 parfor i← 1 : p do

14 Update column y(i) of Y2 using t

15 Augment Y , T , and V

// Update Phase
16 parfor i← 1 : tu do
17 Update A2,3 from the right and left
18 Compute block Y1 of Y
19 Update A1,2:3 from the right

2.1 Algorithmic Parameters

There are four families of tunable parameters in the NUMA-aware algorithm
(see Table 1). There is one instance of each parameter per iteration of the
algorithm, which means that there are 4N parameters to tune if there are
N iterations. A complicating factor is that N in turn depends on the values
chosen for the panel width parameters (b). Since our particular context (as
a part of AED) implies that n might be relatively small compared to p, it
may turn out to be sub-optimal to use all available cores, especially towards
the end of the computation. The parameters tr and tu therefore specify the
number of threads/cores (≤ p) to use in the reduction and update phases,
respectively.

36



k b

n

n

A1,1

A2,1

A1,2 A1,3

A2,2 A2,3

A

b

Y1

Y2

Y

V1

V2

b

k

V

T

b

b

T

Reduced Zeros Reduce Update

Figure 1: Partitioning of matrix A after reducing the first k columns, and
Y and V will be used to reduce the panel A22.

Table 1: The four families of algorithmic parameters.
Parameter name Type Domain Affected

phases

Panel width (b) Integer {1, . . . , n− k} Both
Parallelization strategy (s) Category {Full,Partial} Reduction
No. of reduction threads (tr) Integer {1, . . . , p} Reduction
No. of update threads (tu) Integer {1, . . . , p} Update

3 Techniques Used within the Framework

At the heart of the framework is a search module (see Section 4.1 ahead),
which abstracts any standard auto-tuning method behind a generic interface.
The main aim of the framework is to extend the very limited capability of
the tuning algorithm within the search module into a complete auto-tuner
for the NUMA-aware algorithm. The framework achieves this by employing
three specific techniques described in this section.

3.1 Decomposition into Independent Sub-Problems

Since the algorithm consists of an outer loop with non-overlapping itera-
tions, it is reasonable to assume that parameters from different iterations
are largely uncoupled. However, the four parameters within an iteration do
strongly interact and must therefore be tuned together. This leads to the
thought of decomposing the problem of tuning all 4N parameters at once
into tuning N independent sets of 4 parameters. Yet, since the number of
iterations, N , depends on one of the parameter families (the panel width)

37



this idea cannot be directly applied.
By analyzing Algorithm 1 and Figure 1 it becomes clear that the shape

of A at the start of an iteration depends only on n and k. We (logically)
associate a sub-problem with each (valid) pair (n, k). The sub-problem for
(n, k) is defined as finding optimal parameter settings for the four parameters
in the upcoming iteration. But optimal in what sense? Minimizing the time
will not work since the panel width affects both the amount of work and the
progress made. Instead the objective function (for the sub-problem) is to
maximize the performance

P =
Fr + Fu

Tr + Tu
,

where Fr and Fu are the flop counts for the reduction and update phases,
respectively, and Tr and Tu are the corresponding wall clock times.

We collect the values of the parameters for one sub-problem into a 4-
tuple referred to as a parameter tuple. We arrange all the N parameter
tuples as columns (from left to right) of a table referred to as a parameter
table. The objective for the auto-tuner represented by the framework is to
find a parameter table that minimizes the total execution time.

3.1.1 Concurrent Solution of Several Sub-Problems.

The size of a parameter table depends on the number of iterations, which in
turn depends on the chosen panel widths. For an input matrix of fixed size n,
there are as many as n− 2 possible sub-problems (n, k) for k = 0, 1, . . . , n−
3. Any particular parameter table therefore consists of parameter tuples
extracted from some subset of the sub-problems.

One full execution of the Hessenberg algorithm uses N parameter tuples
provided by the framework and in turn feeds back time measurements used
by the framework to make progress on N sub-problems. In other words,
the framework can concurrently solve several sub-problems. But note, how-
ever, that exactly which subset of the n − 2 sub-problems are relevant for
a given execution depends on the chosen panel widths. See Figure 2 for
an illustration of the relationships between sub-problems, parameter tuples,
and parameter tables. The framework logically keeps track of n−2 partially
solved sub-problems and after each particular execution of the Hessenberg
algorithm is able to make progress on some subset of them.

3.2 Binning Similar Sub-Problems

Two distinct sub-problems (n, k) and (n′, k′) are similar if n ≈ n′ and k ≈ k′

simply because the shapes of all operands are similar. What this means is
that we could (with some loss of accuracy) treat the two as one single sub-
problem. This has several benefits. First, it reduces the total number of

38



0 6 1012k1 =
6
1
8
8

4
1
8
6

2
0
4
3

1
0
2
2

b1 =
s1 =
tr1 =
tu1 =

Parameter
table 1

0 1 2 3 4 5 6 7 8 9 101112k =

Parameter tuples

0 4 7 1012k2 =

4
1
9
8

3
1
7
6

3
1
7
4

2
0
4
3

1
0
2
1

b2 =
s2 =
tr2 =
tu2 =

Parameter
table 2

Figure 2: Two examples of parameter tables for n = 15.

sub-problems that need to be solved. Second, it allows the effort invested
into making progress on one sub-problem to benefit also other (similar) sub-
problems.

Specifically, we group adjacent sub-problems into bins and tune each bin
as if it represents a single sub-problem. The bins are rectangular of size
∆n ×∆k as illustrated by the example in Figure 3 for ∆n = 2 and ∆k = 3.
In particular, the sub-problems (10, 4) and (9, 6) belong to the same bin
(4, 2).

1 2 3 4 5 6 7 8 9 101112
3
4
5
6
7
8
9
10
11
12
13
14

n

k
(1,1)

(2,1) (2,2)

(3,1) (3,2)

(4,1) (4,2) (4,3)

(5,1) (5,2) (5,3) (5,4)

(6,1) (6,2) (6,3) (6,4)

∆k

∆n

Figure 3: Binning of (12× 12) space using bins of size (2× 3).

39



3.3 Searching in Multiple Stages

Parameter tuples that yield good performance have a strong tendency (in
this application) to cluster in one region of the search space. By performing
the search in multiple stages, we can (potentially) more rapidly localize the
search to this promising region. The idea is to start with a sparse but well
distributed subset of the search space in the first stage of the search. Once
(near-)convergence is reached, the search space is made denser and also
restricted to a region around the converged point in subsequent stages.

For example, consider the two-stage search in Figure 4 which involves
only tr and tu for simplicity. The goal is to optimize within the domain
{1, . . . , 10}. In the first stage, we choose the sparse but well distributed
sub-domain {1, 4, 7, 10} (large green dots). Suppose the search in the first
stage converges to the point (tr, tu) = (4, 7) (red cross). Then we include
more points and restrict the search in the second stage to the sub-domain
{2, 3, 4, 5, 6} for tr and {5, 6, 7, 8, 9} for tu.

tr

tu
1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

2D space tr

tu
1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

1st stage tr

tu
1

1
2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

2nd stage

Figure 4: Two-stage search for 2D parameter space.

4 The Framework’s Architecture

This section describes the software architecture of the framework. There
are three modules: the Search Module, the Management Module, and the
Database Module (see Figure 5).

4.1 The Search Module

The purpose of the Search Module is to encapsulate some standard auto-
tuning method behind an abstract interface. The framework does not pro-
vide any implementation of this module by itself.

The Search Module has two primary functions: choose a parameter tuple
for a given sub-problem and advance the search for a given sub-problem
by one step in response to feedback. The module implementation itself is
supposed to be state-less. A search state is instead encapsulated by the

40



Management

Module

A, n, p

H, Q

Bin ID
or State State

Database Module

Measurements
and

Results
(H,Q)

Hessenberg

Parameter
Table and
Inputs

(A, n, p)

Search
Module

State or
Parameter

Tuple

State
or

Feedback

Figure 5: Modular diagram of the auto-tuning framework and the interface
with the new Hessenberg reduction algorithm.

implementation into an opaque object1 that is externally managed by the
framework (see Sections 4.2 and 4.3 ahead). Since the specifics of what
constitutes a “search state” depends entirely on the implementation of the
Search Module, the framework views these objects as binary blobs2 with no
structure.

The Search Module exposes the following interface:

• Create–State: Creates a new state.

• Select–Parameters: Chooses a parameter tuple for the next itera-
tion.

• Receive–Feedback: Receives feedback from the previous execution.

• Update–State: Performs one search step using previous feedback.

• Check–Convergence: Check if the search has converged.

4.2 The Management Module

The Management Module provides the glue that binds all the other modules
together with the user input/output and the Hessenberg algorithm.

The core functions of the Management Module are as follows:

• Construct the next parameter table to use.

• Run the Hessenberg algorithm with the chosen parameter table.

1An object whose content and structure are not concretely known.
2Collection of data stored in binary as a single entry.

41



• Feed back measurements to the active sub-problems.

Construct parameter table. Starting from k = 0 and repeatedly calling
the Select–Parameters function of the Search Module (and updating
k ← k + b in between), a complete parameter table can be constructed
column by column from left to right. The search state to use is either fetched
from the Database Module or initialized using Create–State. Binning is
applied before looking up a search state. The process of constructing a
parameter table also implicitly selects the subset of active sub-problems,
i.e., sub-problems which are going to be used in the next execution. So
before calling Select–Parameters, the function Update–State is called
on to make one step in the optimization algorithm (except initially when
there is no feedback available). Furthermore, if the Check–Convergence
function signals convergence, then the state is re-initialized with the search
space used in the next stage of the multi-stage search.

Run the Hessenberg algorithm. The parameter table is passed along-
side the other inputs to the Hessenberg algorithm. The computed matrices
are output to the user.

Feed back measurements. The internal time measurements from each
iteration are fed back to the active sub-problem search states using the
Receive–Feedback function. The active states are kept in the Manage-
ment Module until the measurements are fed back and afterwards they sent
to the Database Module.

4.3 The Database Module

The Database Module stores the binary blobs representing the opaque search
states. The search states are indexed by the bin coordinates (bin ID).

5 Experimental Results

The framework by itself cannot be meaningfully tested since it is depen-
dent on an implementation of the Search Module. So in order to test the
framework we implemented the Search Module using the Nelder-Mead al-
gorithm [11]. This is neither the best nor the worst choice of algorithm.
Ultimately the choice is not so important since the aim of this section is to
show that the framework is able to make gradual improvements of the over-
all performance even though the actual optimization is only performed on
small sub-problems. What the most effective implementation of the Search
Module looks like is an open problem and something we do not contemplate
in this paper.

42



In the experiments we used bins of size 10 × 10 and multi-stage search
spaces as defined by Table 2, where b′, t′r, t

′
u refer to the best values found

in the first stage. Figure 6 shows the execution times (dots) of 500 execu-
tions for a matrix of order n = 1000. The curve shows a moving average
of 50 consecutive measurements. The results indicate that in general the
performance is indeed improving over time.

0 50 100 150 200 250 300 350 400 450 500

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

Number of runs

T
im

e
 i
n
e
 s

e
c
o
n
d
s

Figure 6: Execution time of 500 runs of the new Hessenberg reduction al-
gorithm for n = 1000 using the framework. The red curve represents the
moving average for a window of size 50.

Table 2: The search spaces used in multi-stage search.
Parameter symbol 1st stage domain 2nd stage domain

b 10 : 10 : 100 b′ − 9 : b′ + 10
s {Full,Partial} {Full,Partial}
tr 6 : 6 : 48 t′r − 5 : t′r + 6
tu 6 : 6 : 48 t′u − 5 : t′u + 6

6 Summary

In this paper we propose a modular auto-tuning framework that helps with
tuning the parameters of a recently developed Hessenberg reduction algo-
rithm. A brief description of the new algorithm and its parameters are
presented. The algorithm’s parameters interact with each other and span
a huge search space which makes using generic tuning methods and tools
like [1, 6, 8] not directly applicable. Such tools, despite been successfully

43



used in solving other problems, can not deal with a problem which has a vari-
able number of tunable parameters (like the one we have). Specially when
this number depends on the value chosen for some of the tuned parameters
them selves.

In contrast, the proposed framework facilitate that. The framework
applies several techniques which allow searching the huge search space effi-
ciently. Specifically, the framework decomposes the search space into smaller
subspaces revealing standard auto-tuning sub-problems which can be tuned
independently and concurrently. In addition, the framework groups simi-
lar sub-problems together in a single bin and tune them as one problem,
which reduces the total number of sub-problems that need to be tuned, and
propagate the progress made in tuning one sub-problem to other similar
sub-problems. The framework also applies a multi-stage search, which, in
one stage, allows for fast discovery of a promising region, where, in a later
stage, the search is localized.

Besides solving the complex problem of the huge search space, the frame-
work defines an abstract module with clear interface which can encapsu-
late any standard optimization methods or generic tuning tools, includ-
ing [1, 6, 8], to expand its capabilities. This abstract module allows the
experimentation with different tuning algorithms.

For testing the framework’s ability to improve the overall performance
of the new Hessenberg reduction algorithm, we used the Nelder-Mead algo-
rithm in the search module. The results show that the performance of the
new Hessenberg reduction algorithm is gradually improving over time.

Future work includes experimenting with both generic and specialized
tuning algorithms in the search module and apply the idea underlying the
framework to other linear algebra algorithms besides Hessenberg reduction.

Acknowledgements.

We thank the High Performance Computing Center North (HPC2N) at
Ume̊a University for providing computational resources and valuable sup-
port during test and performance runs. Financial support has been received
from the European Unions Horizon 2020 research and innovation programme
under the NLAFET grant agreement No 671633, and by eSSENCE, a strate-
gic collaborative e-Science programme funded by the Swedish Government
via VR.

References

[1] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U. O’Reilly, and S. Amarasinghe. OpenTuner: An Extensible Frame-
work for Program Autotuning. In International Conference on Parallel

44



Architectures and Compilation Techniques, Edmonton, Canada, August
2014.

[2] K. Braman, R. Byers, and R. Mathias. The Multishift QR Algo-
rithm. Part I: Maintaining Well-Focused Shifts and Level 3 Perfor-
mance. SIMAX J. Matrix Anal. Appl., 23(4):929–947, 2002.

[3] K. Braman, R. Byers, and R. Mathias. The Multishift QR Algorithm.
Part II: Aggressive Early Deflation. SIMAX J. Matrix Anal. Appl.,
23(4):948–973, 2002.

[4] A. Castaldo and R. Whaley. Achieving Scalable Parallelization for the
Hessenberg Factorization. In Cluster Computing (CLUSTER), 2011
IEEE International Conference on, pages 65–73. IEEE, 2011.

[5] A. Castaldo, R. Whaley, and S. Samuel. Scaling LAPACK Panel Op-
erations Using Parallel Cache Assignment. ACM Trans. Math. Softw.,
39(4), 2013.

[6] C. Ţăpuş, I. Chung, and J. Hollingsworth. Active Harmony: To-
wards Automated Performance Tuning. In Proceedings of the 2002
ACM/IEEE Conference on Supercomputing, SC ’02, pages 1–11. IEEE
Computer Society Press, 2002.

[7] M. Eljammaly, L. Karlsson, and B. K̊agström. Evaluation of the
Tunability of a New NUMA-Aware Hessenberg Reduction Algorithm.
NLAFET Working Note 8, December, 2016. Also as Report UMINF
16.22, Dept. of Computing Science, Ume̊a University, SE-901 87 Ume̊a,
Sweden.

[8] M. Gerndt, S. Benkner, E. César, C. Navarrete, E. Bajrovic, J. Dokulil,
C. Guillén, R. Mijakovic, and A. Sikora. A Multi-Aspect Online Tuning
Framework for HPC Applications. Software Quality Journal, May 2017.

[9] R. Granat, B. K̊agström, D. Kressner, and M. Shao. Algorithm 953:
Parallel Library Software for the Multishift QR Algorithm with Ag-
gressive Early Deflation. ACM Trans. Math. Softw., 41(4):29:1–29:23,
October 2015.

[10] M. Hasan and R. Whaley. Effectively Exploiting Parallel Scale for all
Problem Sizes in LU Factorization. In Parallel and Distributed Pro-
cessing Symposium, 2014 IEEE 28th International, pages 1039–1048.
IEEE, 2014.

[11] J. Nelder and R. Mead. A Simplex Method for Function Minimization.
The computer journal, 7(4):308–313, 1965.

45



[12] G. Quintana-Ort́ı and R. van de Geijn. Improving the Performance of
Reduction to Hessenberg Form. ACM Trans. Math. Softw., 32(2):180–
194, 2006.

[13] R. Schreiber and C. Van Loan. A Storage Efficient WY Representation
for Products of Householder Transformations. Technical report, Cornell
University, 1987.

46



Paper III

A Library for Storing and Manipulating Dense
Tensors

Mahmoud Eljammaly and Lars Karlsson

Report UMINF 16.22, Department of Computing Science, Ume̊a University,
Sweden, 2016.





A Library for Storing and Manipulating Dense

Tensors∗

Mahmoud Eljammaly
mjammaly@cs.umu.se

Lars Karlsson
larsk@cs.umu.se

Abstract

Aiming to build a layered infrastructure for high-performance dense
tensor applications, we present a library, called dten, for storing and
manipulating dense tensors. The library focuses on storing dense ten-
sors in canonical storage formats and converting between storage for-
mats in parallel. In addition, it supports tensor matricization in dif-
ferent ways. The library is general-purpose and provides a high degree
of flexibility.

Keywords: Dense tensors, canonical storage format, tensor matriciza-
tion, tensor storage format conversion, out-of-place conversion, in-place con-
version.

1 Introduction

Tensors or multi-dimensional arrays are used in a diverse set of multi-
dimensional data analysis applications. Many software products suitable
for tensor computations exist, such as the commercial MATLAB suite en-
hanced by various open source third party toolboxes. Unlike for computa-
tions with matrices where there is a long history of community developed
high-performance software libraries being widely used and incorporated into
commercial software products, there is yet no analog for computations with
tensors. Developing tensor computation algorithms and applications that
are open source and independent of large commercial software environments
is difficult in large parts due to a lack of open source software support for
fundamental tensor operations.

Tensor algorithms and applications tend to either depend on proprietary
functions provided by a large software environment or their own application-
specific software solutions. Many parallels can be drawn with the early his-
tory of the field of matrix computations where every software included its

∗Report UMINF 16.22, Dept. of Computing Science, Ume̊a University, Sweden.

49



own code for matrix–vector multiplication, scalar products, matrix transpo-
sition, and so on. The introduction and widespread adoption of core inter-
faces such as the BLAS [6, 9, 10, 11, 12, 13, 17, 18, 19] and LAPACK [2]
has meant that software reliant on matrix computations have become easier
to maintain and now exhibit portable performance. In contrast, the field
of tensor computations, especially parallel and high-performance computa-
tions, has not yet matured to the point where a standard set of interfaces
can be settled. The algorithms used are also much different in nature com-
pared to those used for matrix computations, so it is not clear that the best
approach is to mimic what has worked for matrices in the last couple of
decades.

Tensor storage MPI

Tensor distribution BLAS

Tensor algorithms

Tensor applications

Figure 1: Software stack for tensor computation applications.

Learning from insights made for matrix computations, we nevertheless
think that developing a software stack similar to the one depicted in Fig-
ure 1 would be a good starting point. The proposed stack consists of two
established components: the Basic Linear Algebra Subprograms (BLAS) for
high-performance fundamental matrix operations and the Message Passing
Interface (MPI) for communication between nodes in a distributed memory
system. Many fundamental tensor operations can be expressed largely in
terms of the BLAS, and MPI is available on virtually any distributed mem-
ory system, so there is little doubt that these components will be a part
of a future tensor computations software stack. In addition, there are four
tensor-specific components in the stack. From the top down: the tensor ap-
plications component consists of complete applications that use large-scale
tensor computations, the tensor algorithms component consists of numer-
ical tensor algorithms such as tensor decomposition algorithms and tensor
contraction, the tensor distribution component consists of such things as
communication and (re)distribution of tensors, and finally the tensor stor-
age component manages the local storage and manipulation of (sub)tensors
on each node in a distributed memory system.

The two components at the top (applications and algorithms) are large
and multi-faceted with new algorithms and applications being added as time
goes by. But the other two components (distribution and storage) are more

50



fundamental in nature and bounded in scope. We propose to start from
the bottom up in an effort to realize a first seed for a tensor computations
software stack.

This paper focuses on the tensor storage component (see Figure 1) and
more specifically on the storage and manipulation of dense tensors, i.e.,
tensors whose elements are mostly non-zero. The sister problem of storing
and manipulating sparse tensors has been recently addressed by Dahlberg,
see [8] and the references within.

Some of the main points of this paper are:

1. Any one-mode or multi-mode tensor matricization is equivalent to con-
verting the storage format of the tensor from one canonical format to
another.

2. A tensor stored in a canonical tensor storage format can be interpreted
as a matricization of that tensor stored in a canonical matrix storage
format.

3. Any tensor storage format conversion can be performed either out-of-
place by copying or in-place by in-place permutation.

4. The performance of matricization depends on whether the resulting
matrix should be stored in column-major or row-major format.

5. If the ordering of the rows and columns in a matricized tensor is not
important, then there exists an efficient way to matricize the tensor.

The rest of the paper is organized as follows. Section 2 gives a mathe-
matical background of tensor storage formats. Tensor storage formats are
defined and their relation to matrix storage formats is explained. In Section
3 we present the algorithms used in this paper. Different storage format
conversion techniques are discussed in addition to the potential for paral-
lelism. Section 4 provides details about the implementation and introduces
the library. Section 5 presents experiments that demonstrate the perfor-
mance and scalability of the library. Finally, in Section 6 some conclusions
and related work are described.

1.1 Notation and terminology

Zero-based indexing is used in order to simplify many of the formulas. We
denote by S(n) the set {0, 1, . . . , n− 1}.

A sequence is denoted by angle brackets, e.g., 〈0, 1, 2〉, and as a symbol
we use a bold lower case letter. The notation | · | denotes the length of a
sequence, i.e, the number of elements. The concatenation of two sequences a
and b is denoted by a⊕b, e.g., 〈0, 1〉⊕ 〈2, 3〉 = 〈0, 1, 2, 3〉. A subsequence is
obtained by deleting zero or more elements from a sequence. An extraction

51



of a sequence is denoted by σ and returns a permuted subsequence. An
extraction is defined by a sequence of indices, e.g., σ = 〈2, 1〉, that specify
which elements to extract and in which order. The application of σ to a
sequence a is denoted by σa. For example, applying the extraction σ = 〈2, 1〉
to the sequence a = 〈a0, a1, a2, a3〉 results in the permuted subsequence
〈a2, a1〉. Any extraction that selects the entire sequence degenerates into a
permutation and is then denoted by π.

A tensor A of order d and size n0 × n1 × · · · × nd−1 is a d-dimensional
array. The size of A is denoted by the sequence n = 〈n0, n1, . . . , nd−1〉. Each
element of A is identified by a unique index sequence k = 〈k0, k1, . . . , kd−1〉
where ki ∈ S(ni) is the index in mode i. The k’th element of A is denoted
by A(k).

2 Canonical tensor storage formats

2.1 Definition

A storage format for a dense tensor A of order d and size n is a one-to-
one mapping of the index sequence k to the set of integers S(N), where
N =

∏d−1
i=0 ni denotes the total number of elements. Formally, a tensor

storage format is a bijective function parameterized by the size n, i.e.,

φ : S(n0)× · · · × S(nd−1)→ S(N).

The function φ maps each index sequence k to a unique offset in a contiguous
memory area of N memory locations.

There are many potential tensor storage formats that fit this definition,
but only a few are interesting in practice. A particularly simple and useful
tensor storage format is obtained by defining

φ(k;n) =

d−1∑

i=0

ki

i−1∏

j=0

nj . (1)

Here, k is the argument and n is the parameter to the function. For example,
given tensor of size n = 〈n0, n1, n2〉, the function φ will map the index
sequence k = 〈k0, k1, k2〉 to a continues memory area of size N = n0n1n2
such that

φ(k;n) = k0 + k1n0 + k2n0n1.

A more general class of storage formats is obtained by permuting the
index sequence k (and size n) before applying φ. Formally, let π be any
permutation of a sequence of length d. Then the mapping φπ defined by

φπ(k;n) = φ(πk;πn) (2)

52



is also a valid tensor storage format. Since there are d! permutations of
a sequence of length d, there are d! different storage formats of this type.
These formats are known as the canonical (dense) tensor storage formats
and are the focus of this paper.

The concept of a canonical tensor storage format generalizes the row-
and column-major storage formats used for matrices. To see this, note that
a matrix is a tensor of order d = 2 and size n = 〈n0, n1〉, where n0 is the
number of rows and n1 the number of columns. Similarly, an index sequence
of the matrix takes the form k = 〈k0, k1〉, where k0 is the row index and
k1 the column index. Choosing the permutation π = 〈0, 1〉 in (2) gives the
column-major matrix storage format, as can be seen by

φ〈0,1〉(k;n) = φ(〈k0, k1〉, 〈n0, n1〉) = k0 + k1n0,

which we recognize as the column-major ordering. Conversely, choosing
π = 〈1, 0〉 in (2) gives the row-major matrix storage format:

φ〈1,0〉(k;n) = φ(〈k1, k0〉, 〈n1, n0〉) = k0n1 + k1.

In other words, applying the permutation π to the index sequence k de-
cides which index of the two will vary the fastest as one scans the memory;
π = 〈0, 1〉 means that index k0 will vary faster than index k1 and π = 〈1, 0〉
means that index k1 will vary faster than index k0. Generally, the leftmost
element in a permutation is the fastest varying one and the rightmost ele-
ment in a permutation is the most slowly varying one.

2.2 Matricization

A tensor of order d can be reshaped into a matrix, an operation that goes by
many names in the literature (e.g., matricization, unfolding, or flattening).
We prefer to use the term matricization in this paper. To view a tensor as
a matrix, the modes of the tensor need to be partitioned into two disjoint
subsets: one subset for the columns of the matrix and another subset for
the rows of the matrix. For example, consider a tensor A of order d =
4 and choose the mode subset {0, 1} for the rows of the matrix and the
complementary subset {2, 3} for the columns. The size of the resulting
matrix is n̂0 × n̂1, where n̂0 = n0n1 and n̂1 = n2n3. To map a tensor index
sequence to a matrix index sequence, we need to define two mappings of
the form (2) by specifying an extraction σrow for the row dimension and
another extraction σcol for the column dimension. For example, we can
define σrow = 〈0, 1〉 and σcol = 〈2, 3〉 to obtain the following translation from
the tensor index sequence k = 〈k0, k1, k2, k3〉 to the matrix index sequence
k̂ = 〈k̂0, k̂1〉:
〈k0, k1, k2, k3〉 7→ 〈φσrow(k;n), φσcol(k;n)〉 = 〈k0+k1n0, k2+k3n2〉 = 〈k̂0, k̂1〉.
The matricization defined in this way is denoted by Aσrow,σcol .

53



2.3 Matricization and storage format conversion

It turns out that storing a matricized tensor in either the column- or the row-
major storage format is equivalent to storing the tensor itself in a canonical
tensor storage format of the form (2) for some permutation π. For example,
storing the matricization A〈0,1〉,〈2,3〉 in the column-major storage format is
equivalent to storing the tensor as in (2) with π = 〈0, 1, 2, 3〉 = 〈0, 1〉⊕〈2, 3〉.
To see this, note that

φ〈0,1,2,3〉(k;n) = φ〈0,1〉(k;n)
︸ ︷︷ ︸

k̂0

+φ〈2,3〉(k;n)
︸ ︷︷ ︸

k̂1

·n0n1︸︷︷︸
n̂0

= k̂0 + k̂1n̂0,

which we recognize as the column-major ordering of A〈0,1〉,〈2,3〉. Similarly,
storing the matricization in the row-major storage format is equivalent to
choosing π = 〈2, 3, 0, 1〉 = 〈2, 3〉 ⊕ 〈0, 1〉 in (2).

In general, consider a tensor of order d stored in a canonical format
defined by the permutation π and a general matricization of this tensor
defined by the extractions σrow for the row dimension and σcol for the column
dimension. If π = σrow ⊕ σcol, then the storage mapping (2) for the tensor
can be rewritten in the form

φπ(k;n) = φσrow(k;n) + φσcol(k;n) ·
∏

i∈σrow
ni,

which means that the memory used to store the tensor can be reinterpreted
as the matricization Aσrow,σcol stored in the column-major format. Similarly,
if π = σcol ⊕ σrow, then the same holds but with the matricization stored in
the row-major format.

3 Tensor storage format conversion

Given a tensor stored in the format defined by πin and a target format
defined by πout, the problem of tensor storage format conversion consists
of permuting the tensor elements in memory such that the storage format
changes from πin to πout. There are two main types of conversions: out-of-
place (OOP) conversion involves the explicit copying of the tensor elements
to a separate memory area, but in-place (IP) conversion changes the format
by overwriting the old memory area and uses only a small constant amount
of additional memory.

The mapping from input memory location `in to output memory location
`out is a bijective function f : S(N)→ S(N) and is defined by

f(`in;n) = φπout(φ
−1
πin

(`in;n);n) = `out. (3)

The mapping consist of two steps: first φ−1πin maps the input memory location
`in to the corresponding index sequence k and then φπout maps this index

54



sequence to the output memory location `out. The function f determines
the memory transfer pattern and is completely determined by the size n and
the input and output formats πin and πout.

3.1 Efficient conversion by moving blocks of memory

For many pairs of formats, the memory transfers implied by f can be ar-
ranged into a set of efficient copies of contiguous blocks of memory. Exploit-
ing this feature of the problem whenever possible is important to obtain
high performance in the conversion process, since it will benefit from the
memory hierarchy and require fewer evaluations of f . In addition, the block
transfers is a source of parallelism since different blocks can be transferred
at the same time to speed up the process.

To see where the blocks come from and how big they are, suppose that
the formats πin and πout have a common prefix σpre of length m. In other
words, it is possible to write πin = σpre⊕σin and πout = σpre⊕σout for some
σin and σout. Consider the set of elements in the input tensor for which σink
are the same but the indices in σprek vary. This set consists of

∏
i∈σpre ni

elements and is stored contiguously in memory due to the structure of (2)
since the indices in σpre vary faster than the fastest varying index in σin.
The same holds for the output tensor, and the relative order of the elements
in each such block is preserved. Hence, the storage format conversion can
be carried out using

∏
i 6∈σpre ni block memory transfers of size

∏
i∈σpre ni.

3.2 Out-of-place versus in-place conversion

The OOP conversion technique involves creating a second tensor and copy-
ing each block to its new location in the output tensor. In contrast, the IP
conversion technique involves permuting the blocks inside the original mem-
ory area, thereby using roughly half of the memory required by the OOP
conversion technique. The block transfers form cycles (see Section 3.3) where
the blocks in a cycle are shifted within the cycle, see [14] and the references
within.

Figure 2 illustrates both the OOP and the IP conversion techniques. The
figure shows a tensor of order d = 4 and size n = 〈5, 3, 2, 4〉. The conversion
changes the tensor storage format from πin = 〈0, 1, 2, 3〉 to πout = 〈0, 3, 2, 1〉.
The in-place conversion consist of six cycles of which two are singleton cycles
(i.e., containing only one block). Each cycle is shown in the figure with a
unique color, while the singleton cycles share the same color (red).

3.3 In-place conversion techniques

The in-place conversion technique moves tensor blocks one by one from its
initial position to its final position within the same memory area. To avoid
overwriting the already occupied destination, that block must in turn first be

55



(a) Out-of-place conversion

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

(b) In-place conversion

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Figure 2: Illustration of the out-of-place and in-place tensor storage format
conversion techniques for a tensor of size 5× 3× 2× 4.

moved to its final position. This continues until a block is encountered whose
final position is the initial position of the first block moved. This completes
a cycle and the whole permutation consists of one or more such cycles of
potentially diverse lengths. Some cycles involve moving/shifting only one
block, which actually keeps the block in the same position and involves no
data movement at all. Such degenerate cycles are called singleton cycles and
for any permutation resulting from the mapping function f with at least two
blocks there are at least two singletons. See Figure 2 for an example.

3.3.1 Forward versus backward cycle shifting

Different techniques can be used in in-place conversion to make it more
efficient [14]. Specifically, a cycle can be shifted in one of two ways: forward
or backward.

In the forward shifting technique, the destination block is first moved
to a temporary memory area and then the source block is moved to the
now vacant destination block. If the number of blocks in the cycle is at
least four, then we need two temporary storage areas, each the size of one
block. Figure 3(a) shows the forward shifting technique applied to a cycle
consisting of six blocks. We start with block number 1 and its destination is
block number 8, so we move block number 8 to the temporary storage area
T1. Then we move block number 1 to block number 8. Now to move block
number 8 to its destination block number 17, we need to first save block
number 17 to the second temporary area T2. This process continues until
we reach the block whose destination is the first block in the cycle (block
number 1). For non-singleton cycles with b > 2 blocks, the forward shifting

56



(a) Forward shifting

1 8 17 22 15 6

T1 T2

1

2

3

4 5

6

7

8

9

10

(b) Backward shifting

1 8 17 22 15 6

T

345
1

2

7

Figure 3: Illustration of forward and backward shifting for a cycle with six
blocks. Numbers inside the blocks represent the block’s position in the tensor
(T is a temporary workspace block) while numbers on arrows represent the
ordering of the steps.

technique requires 2(b − 1) block memory transfers. In our case, the cycle
has b = 6 blocks and we need 2(6− 1) = 10 steps.

In the backward shifting technique, we begin by moving the first block
to a temporary storage area T . Then we loop backward in the cycle to the
block whose destination is the block we just copied. We move that block (in
this case block number 6) and repeat the procedure until we have traversed
the entire cycle. We end by transferring the initial block from the temporary
storage area to its now vacant destination. The number of steps required by
the backward shifting technique is only b+ 1. In our case, we need b+ 1 = 7
steps.

In conclusion we prefer the backward shifting technique not only because
it uses fewer steps to shift a cycle, but also because it uses the source block
in one step as the destination block in the next. If the block fits into the
cache, then the data will be reused.

3.3.2 Sub-blocking

If the blocks become too large to fit in the lowest level cache, then the
nice cache effects inherent in the backward shifting technique do not apply.
There is a simple scheme called sub-blocking that can be used to overcome

57



this issue and retain the beneficial cache behavior. The sub-blocking scheme
works by partitioning each block into smaller sub-blocks that fit inside some
desired level of the cache hierarchy. The backward cycle shifting is replaced
by several rounds of backward cycle shifting: one round for each sub-block.
Figure 4 illustrates the sub-blocking scheme with three sub-blocks per block
(and hence three rounds of cycle shifting per cycle). The figure shows the
sub-blocking of a cycle consisting of six blocks into three sub-blocks per
block. The first round moves the dark green blocks (subscript “1”). The
second round moves the green blocks (subscript “2”). Finally, the third
round moves the light green blocks (subscript “3”).

11 12 13

81 82 83

171 172 173

221 222 223

151 152 153

61 62 63

Figure 4: Illustration of the sub-blocking scheme to improve the cache be-
havior of the backward cycle shifting technique in in-place tensor storage
format conversion. Each of the six blocks in the cycle have been partitioned
into three sub-blocks. The numbers inside the blocks represent the block
number in the tensor while the subscript numbers represent the sub-block
number of that block.

3.4 Parallel conversion: Sources of concurrency

Both out-of-place and in-place conversion allow for parallel processing, but
the former has a higher degree of (inherent) parallelism. In out-of-place
conversion, parallelism is available when moving blocks since every block
can be simultaneously copied to their respective destinations. In in-place
conversion, the situation is quite different since the same memory area is
used for the input and the output and the blocks can therefore not be moved
simultaneously. But there is still potential for parallelism. Dependencies
between blocks exist only within a given cycle. Two different cycles can be
shifted at the same time and hence the cycles are a source of concurrency.

58



To exploit the available parallelism efficiently, we need to take care of the
load balance since the cycles do not all have the same length in general.
Distributing the blocks evenly over the processors increases the scalability
of the out-of-place conversion. In the in-place case, the aim is to distribute
the total work evenly over the processors. Such a balanced load can in many
cases be well approximated by using a dynamic load balancing scheme.

3.5 Matricization by storage format conversion

As described in Section 2.3, obtaining an explicit matricization is equivalent
to converting the tensor storage format. The input is a tensor stored in a
specific format defined by the permutation πin and a subset M ⊆ S(d) of the
modes to associate with the columns of the resulting matrix. The output is
the same tensor but stored in a format defined by some permutation πout
such that the stored tensor can be reinterpreted as a matricization of the
tensor in either the row-major or the column-major format with the modes
in M associated with the columns of the matrix. Figure 5 illustrates for a
third-order tensor that the choice of target matrix format can drastically
change the cost of the resulting tensor storage format conversion. In this
example, choosing the row-major storage format will result in no change of
the input tensor and is therefore entirely free. On the other hand, choos-
ing the column-major storage format will result in a costly conversion with
blocks of size one, which is the worst possible case.

Since the precise ordering of the rows and columns of the resulting matrix
is seldom important in applications, there are many candidate formats πout.
Specifically, the matrix may be stored in either the row-major or the column-
major format and the modes associated with the rows and columns may be
arbitrarily ordered. The choice of output format affects the performance of
the conversion process primarily because it determines the block size of the
conversion as described in Section 3.1.

For the column dimension of the matrix, we need to choose an extraction
σcol of S(d) of length |M |, and for the row dimension we need a complemen-
tary extraction σrow of S(d) of length |S(d) \M |. In addition, we need to
choose the target matrix format: row- or column-major. The output for-
mat πout is determined by these three choices as follows: if the target is the
column-major format, then πout = σrow ⊕ σcol, otherwise πout = σcol ⊕ σrow.

To maximize the block size in the conversion process, we need to maxi-
mize the length of the common prefix of the given πin and the chosen πout
subject to its constraints. The choice of target matrix format is governed
only by the first component of πin. If that component is in M and hence
associated with the columns and a member of σcol, the only way to get a
block size greater than one is to choose the row-major format since that
places σcol first in πout. Conversely, if the component is in S(d) \M , the
only reasonable choice is the column-major format. With the target matrix

59



1

0

2

0

0

1

1

1

2 3 3

4 5

5

7

Tensor

πin = 〈1, 0, 2〉

Column-major

σrow = 〈0, 2〉
σcol = 〈1〉

Row-major

σrow = 〈0, 2〉
σcol = 〈1〉

M = {1}M = {1}0 1 0 1

2 3 2 3

4 5 4 5

6 7 6 7

πout = 〈0, 2, 1〉 πout = 〈1, 0, 2〉
0 1 2 3 4 5 6 70 12 34 56 7

Figure 5: Tensor matricization can be performed in different ways depending
on the choice of target matrix format. On the left, the matricization results
in a matrix in column-major storage format but requires a very expensive
tensor storage format conversion with blocks of size one. On the right, the
same matricization results in a matrix in row-major storage format and
requires no memory transfers at all.

format fixed, the remaining components of σrow and σcol need to be chosen
such that the length of the common prefix of πin and πout is maximized. For
example, if πin = 〈0, 1, 2, 3〉 and M = {1, 3}, then by the reasoning above
we should choose the column-major format (since 0 /∈ M) and place 0 first
in σrow. Since the next component is in M and hence not in σrow, there is
no way to create a match between the second components of πin and πout.
There are in this particular case two solutions with the same block size n0:
πout = 〈0, 2, 1, 3〉 and πout = 〈0, 2, 3, 1〉.

To help visualize the matricization process, we represented πin as a num-
ber of ◦’s and ×’s, Figure 6 (a). The ◦ denotes a component in M and
× denotes a component in S(d) \M . The subscript numbers represent the
order of the components. For example, ×2 is the second component in πin
from S(d) \M and ◦1 is the first component in πin from M . πout is also
represented as a number of ◦’s and ×’s but initially without subscript num-
bers, Figure 6 (a). The goal is to map πin ×’s to πout ×’s and πin ◦’s to
πout ◦’s such that the block size is maximized. The mapping of a compo-
nent from πin to πout is represented as an arrow. The arrow points to the
component in πout that will be numbered, Figure 6 (b,c). The length of
the common prefix is defined by the number of leading contiguous vertical
arrows between πin and πout. In other words, the prefix size is captured by
the components coming before the first tilted arrow.

60



1 21 2 1 21 2 1 21 2

1 1 1

1 2

πin

πout

(a)Start (b)πout = 〈0, ?, ?, ?〉 (c)πout = 〈0, ?, 1, ?〉

Figure 6: Matricization algorithm: block size fixed after mapping 2 compo-
nents.

Using this notation, Figure 6 represents the matricization in the previous
example. Since the target format is column-major format, M components
come last in πout. In the first step, we map the first component in πin, which
is ×1, 0 in the example. In this case the arrow is vertical. In the next step,
we map the next component in πin, which is ◦1. The mapping arrow is
tilted in this case, which means that the block size of this matricization is
now known to be n0.

Algorithm 1 formalizes the steps required to build πout in a manner that
maximizes the block size.

We start with an empty σ× and σ◦. We check the first component in
πin, if it is from M we append it to σ◦ otherwise we append it to σ×. Then,
we move to the next component in πin. We keep doing that until we have
mapped all the components in πin.

After the mapping, we decide the order of σ× and σ◦ in πout based on
πin(0): if it’s from M then πout = σ◦ ⊕ σ× otherwise πout = σ× ⊕ σ◦.

3.6 Matricizing two tensors

A common operation in tensor computation is the process of combining
a subset of indices from one tensor with a subset of indices from another
tensor. This is called tensor contraction. A contraction can be performed
using matrix-matrix multiplication. In this case, the two tensors need to be
converted to matrices. We matricize each tensor over its contraction subset
then multiply the two matrices.

Given a tensor A of size nA stored in the format defined by πAin, a tensor
B of size nB stored in the format defined by πBin, a subset MA of the modes
of A, and a corresponding subset MB of the modes of B. We must decide
on a format πAout for A and a compatible format πBout for B. The formats are
compatible if and only if the modes in MA occur in πAout in the exact same
order as their corresponding elements in MB occur in πBout.

The constraint on the ordering of the elements of MA and MB in the
chosen formats implies that, at least in general, we cannot find optimal
formats for A and B independently. In other words, we seek an algorithm

61



Input : πin // Input storage format.

: M // Set of matricization modes.

Output: πout // Output storage format.

: γ // Block size.

: σ◦ // Extraction specifying the order of the

matricization modes.

1 begin
2 σ× ← 〈〉
3 σ◦ ← 〈〉
4 for i = 0 to d− 1 do
5 if πin(i) ∈M then
6 σ◦ ← σ◦ ⊕ πin(i)
7 else
8 σ× ← σ× ⊕ πin(i)
9 end

10 end
11 if πin(0) ∈M then
12 πout ← σ◦ ⊕ σ×
13 else
14 πout ← σ× ⊕ σ◦
15 end
16 Compute the block size γ
17 return πout, γ, σ◦
18 end

Algorithm 1: Matricization algorithm.

for finding an optimal pair of formats.
Given two sets of compatible formats, which is better? When matri-

cizing a single tensor, we assumed that a bigger block size implies a faster
conversion, see Section 3.5. When matricizing a pair of tensors, we have two
block sizes. Let h(α, β) be some measure of the execution rate of converting
A with block size α and B with block size β. We can reasonably assume that
h is non-decreasing in each parameter, i.e., that h(α + ∆, β) ≥ h(α, β) and
h(α, β + ∆) ≥ h(α, β) for every ∆ > 0 because increasing only one of the
block sizes improves the execution rate of that conversion while the other is
unaffected. See Section 4.4 for more details about h.

Consider how Algorithm 1 builds an optimal output format. It starts
off with an empty output and a block size of 1. In each iteration, one
additional element of the output format is determined. The block size will
increase in the first few iterations until the maximum block size is reached.
After that point, the block size will remain constant as the missing elements
of the output format are determined. Crucially, the leading elements (which
determine the block size) are uniquely determined. This means that even

62



though there could be several output formats that have the same optimal
block size, they will all have the same prefix that determines the optimal
block size.

Now consider running Algorithm 1 on both A and B at the same time.
In general, the two outputs will not be compatible. This happens if the two
executions produce a different ordering for the elements in MA and MB.
Instead, start the two executions and run them until the first iteration that
wants to map an element in MA respectively MB. Pause both executions. At
this point, the two partially defined formats are compatible. From this point
forward there are two cases, Figure 7. In the best case, the two elements that
are about to be mapped are in correspondence with one another, Figure 7(a).
In this case, we simply advance both executions to the next iteration; both
block sizes will be increased and the formats will remain compatible. In the
worst case, the two elements are not in correspondence with one another,
Figure 7(b). In that case, we must accept that one of the block sizes need
to be fixed in order to preserve compatibility. There are again two cases:
we fix the block size of either A or B. Let α and β denote the block sizes
obtained thus far by Algorithm 1. If we fix the block size α, then we can
proceed with the execution on B and obtain the block size β + ∆B for B.
On the other hand, if we fix the block size β, then we can proceed with the
execution on A and obtain the block size α + ∆A for A. Which is better
depends on h: if h(α + ∆A, β) < h(α, β + ∆B), then we should fix α and
otherwise we should fix β.

In conclusion, to compute an optimal pair of formats we use the following
procedure:

1. Run Algorithm 1 on A. Let α1 denote the resulting block size.

2. Run Algorithm 2, a modified version of Algorithm 1, on B that pro-
duces a format compatible with that produced in Step 1. Let β1 denote
the resulting block size.

3. Run Algorithm 1 on B. Let β2 denote the resulting block size.

4. Run Algorithm 2 on A to ensure compatibility with the format pro-
duced in Step 3. Let α2 denote the resulting block size.

5. If h(α1, β1) ≥ h(α2, β2) then use the formats from Steps 1 and 2 and
otherwise use the formats from Steps 3 and 4.

Algorithm 3 formalizes the steps required to build πAout and πBout in a
manner that maximizes the execution rate.

63



1 32

1 2 1 2 3

1 2

1 32

1 2 1 2 3

1 2

2 1 2 1

?

?

πA
in

πA
out

πB
in

πB
out

(a) (b)

Figure 7: Different scenarios for mapping an element from M .

Input : πin // Input storage format for tensor 2.

: M1 // Set of matricization modes of tensor 1.

: M2 // Set of matricization modes of tensor 2.

: σ1◦ // Extraction specifying the order of tensor 1

matricization modes.

Output: πout // Output storage format for tensor 2.

: γ // Block Size for tensor 2.

1 begin
2 σ× ← 〈〉
3 Using σ1◦ define an extraction σ◦ that orders the elements of M2

which keeps the correspondence between M1 and M2

4 for i = 0 to d− 1 do
5 if πin(i) 6∈M2 then
6 σ× ← σ× ⊕ πin(i)
7 end

8 end
9 if πin(0) ∈M2 then

10 πout ← σ◦ ⊕ σ×
11 else
12 πout ← σ× ⊕ σ◦
13 end
14 Compute the block size γ
15 return πout, γ

16 end
Algorithm 2: Modified version of Matricization algorithm.

64



Input : πAin // Input storage format of tensor A.

: πBin // Input storage format of tensor B.

: MA // Set of matricization modes of tensor A.

: MB // Set of matricization modes of tensor B.

Output: πAout // Output storage format of tensor A.

: πBout // Output storage format of tensor B.

1 begin

2 (π
A|A
out , γA|A, σ

A|A
◦ )← Algorithm 1(πAin,MA)

3 (π
B|A
out , γB|A)← Algorithm 2(πBin,MA,MB, σ

A|A
◦ )

4 (π
B|B
out , γB|B, σ

B|B
◦ )← Algorithm 1(πBin,MB)

5 (π
A|B
out , γA|B)← Algorithm 2(πAin,MB,MA, σ

B|B
◦ )

6 if h(γA|A, γB|A) < h(γA|B, γB|B) then

7 πAout ← π
A|B
out

8 πBout ← π
B|B
out

9 else

10 πAout ← π
A|A
out

11 πBout ← π
B|A
out

12 end
13 return πAout, π

B
out

14 end
Algorithm 3: Matricize-pair algorithm.

4 Software

A software library called dten has been written in the C programming lan-
guage with the OpenMP extension used to parallelize the core functions.

4.1 Features

Presently, dten contains two levels of functionality: basic and advanced. The
basic functionality consists of essential functions for allocating, deallocating,
initializing, printing, copying, and saving/loading to/from an HDF5-based
file format [24]. In addition, primitive functions for obtaining information
about the tensor such as its order and size are provided. The advanced
functionality consists of parallel tensor storage format conversion and wrap-
pers for efficient matricization. Both out-of-place (OOP) and in-place (IP)
conversion functions are provided. In the out-of-place function, the user can
choose which tensor (input or output) to traverse contiguously. The allo-
cation and initialization of the output tensor in the out-of-place conversion
is the responsibility of the user to potentially save the allocation and deal-
location time, which may be a factor affecting the conversion performance

65



specially for large tensors.
The matricization functionality, as described in Section 3.5, is split into

three functions. The first matricizes over a single mode, |M | = 1. The
second matricizes over a subset of the modes, |M | > 1. The third matri-
cizes a pair of tensors such that a contraction over a subset of the modes
can be performed afterwards using standard matrix–matrix multiplication
routines. For each matricization function, the user can specify the target
matrix format as well as the ordering of the modes associated with the rows
and/or the columns or choose to leave one or more of these choices to the
library.

In addition, if no initial permutation of a tensor is supplied to the alloca-
tion, then the library tries to maximize the potential block size by ordering
the indices based on their size in a descending order.

4.2 Tunable parameters

The library contains a few parameters that affect the performance of some of
the functions and can be tuned to give the best performance on a particular
machine. As mentioned in Section 3.4, the parallelism in the in-place conver-
sion function is done by shifting multiple cycles in parallel. The cycles need
to be identified first and since the number of cycles is potentially very large,
the number of cycles to generate before shifting them in parallel is bounded
by a tunable parameter. The cycle cache should be large enough to enable
effective load balancing (i.e., much larger than the number of threads), but
not too big as to waste a lot of memory. The effect on performance is neg-
ligible unless the cache is very small in which case there will not be enough
cycles to parallelize, leading to idle threads.

Another parameter is the size of the sub-blocks as described in Sec-
tion 3.3.2. This parameter affects the core of the conversion function and
has a large impact on the performance. The optimal choice depends on the
size and characteristics of the memory hierarchy.

4.3 Cycle shifting strategy

As mentioned in Section 3.3.1, there are two ways of shifting a cycle in
the in-place technique. The backward shifting technique is used due to the
advantages explained in Section 3.3.1.

4.4 Matricize-pair heuristic function

The matricize-pair algorithm described in Section 3.6 uses a heuristic func-
tion h to find which tensor to optimize. The heuristic function takes as an
input the block sizes, α and β, and returns an estimate of the execution rate
when using these two block sizes. For a given set of formats and correspond-
ing block sizes, we assume that the execution rates of the two conversions are

66



limited by the smallest block size among the two; so the heuristic function
returns the smallest block size, i.e., h(α, β) = min{α, β}, as an estimate of
the execution rate. In Algorithm 3 we get two sets of compatible formats
to matricize two tensors together. We evaluate the two sets and we choose
the one with the highest execution rate, i.e., the one that gives the highest
value for the heuristic function. In case the execution rates are equal, we
use the following tie-breaker:

1. Choose the set which leads to applying the smallest block size on the
shorter tensor.

2. If both tensors are equally large, maximize the largest block size.

5 Performance

This section presents the performance and the scalability of the conversion
function. The experiments were performed on one node of the high perfor-
mance computer Abisko, which is operated by High Performance Computing
Center North (HPC2N) at Ume̊a University. One node consists of four AMD
Opteron 6238 processors clocked at 2.6 GHz. Each processor contains two
chips with six cores each for a total of 48 cores per node. Each chip has
its own memory controller, which leads to eight NUMA domains per node.
Each group of six cores share a memory bus on Abisko, for that reason the
number of cores in our tests are multiple of six.

The main factor affecting the conversion performance is the block size. In
addition, the performance of the OOP conversion is affected by which tensor
will be accessed contiguously. While the performance of the IP conversion
is affected by whether the sub-blocking is used or not.

Figure 8 shows the change in memory bandwidth with respect to chang-
ing the block size. The figure contains different plots for four different cases,
OOP with contiguous access to the output tensor, OOP with contiguous ac-
cess to the input tensor, IP without sub-blocking and IP with sub-blocking.
The four cases were tested on 48 cores. The tensor chosen as a study case
is of order 6 with size n = 〈x, 8, 4, 4, 5, 2〉, where x was changed to give
different block sizes. The initial storage format was defined by φπin(k;n)
where πin = 〈0, 1, 2, 3, 4, 5〉 and the target storage format was defined by
φπout(k;n) where πout = 〈0, 3, 2, 1, 4, 5〉. The conversion contains 200 cycles,
most of them involve moving 7 blocks while the rest are singleton cycles.
The sub-blocking size used for the IP conversion is 8KB. The tested block
sizes were 8KB, 16KB, 32KB, . . . , 3.2MB.

The aggregate cache for the 48 cores on one node of Abisko is 96MB. If
the tensor size is more than that it will not fit into the cache. This explains
why there is a drop in the memory bandwidth for tensors of sizes larger than

67



the aggregate cache size. Recall that OOP conversion doubles the memory
used for tensor storage, see Section 3.2.

It is clear from Figure 8 that accessing either tensor contiguously is not
affecting the performance dramatically for the OOP conversion. On the
other hand, the IP conversion with sub-blocking improves the performance
drastically compared to omitting the sub-blocking for large size tensors.
These results influenced us to use OOP conversion with input tensor ac-
cessed contiguously and IP conversion with sub-blocking for the rest of the
conducted experiments.

10
3

10
4

10
5

10
6

10
7

0

10

20

30

40

50

60

70

80

Block Size (Byte)

M
e
m

o
ry

 B
a
n
d
w

id
th

 (
G

B
/s

)

 

 

OOP output contiguous

OOP input contiguous

IP w/o sub−blocking

IP with sub−blocking

10 MB

20 MB

40 MB

80 MB

160 MB
320 MB

640 MB 1.25 GB
4 GB2.5 GB

Figure 8: The effect of block size on performance.

To study the scalability of the conversion functions, different tensors are
tested. The tensor sizes were taken from the previous described experiment.
We chose the case where the aggregate cache is almost full, which is 40MB
tensor for the OOP conversion and 80MB tensor for the IP conversion. We
will call this case the cache fit case. In addition, 10MB, 640MB and 4GB
tensors were tested for both OOP and IP conversion. The real factor that
affects the scalability is the memory buses.

Figures 9 and 10 present the scalability of the OOP conversion and the
IP conversion functions, respectively. The figures show the number of cores
versus the efficiency E given by

E =
ts

p× tp
, (4)

where ts is the sequential execution time, tp is the parallel execution time and
p is number of cores. Both figures show acceptable efficiency for large tensor
sizes. The cache fit case gives slightly better performance due to efficient
use of cache memory while the small tensor case behave wildly because it is
too small to be parallelized.

68



5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Cores

E
ff
ic

ie
n
c
y

 

 

10 MB
40 MB
640 MB
4 GB

Figure 9: The scalability of OOP
conversion.

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
ff
ic

ie
n
c
y

Number of Cores

 

 

10 MB
80 MB
640 MB
4 GB

Figure 10: The scalability of IP
conversion.

6 Conclusion and related work

An n-dimensional tensor has n! canonical tensor storage formats. Converting
a tensor from one format to another can, in many cases, be done efficiently
by transferring memory blocks. But sometimes the blocks can degenerate
and consist of a single element. The maximum block size is determined by
the pair of formats and the size of the tensor. Putting the tensor dimensions
in a descending order of size can maximize the potential block size.

Converting a tensor format can be done using an out-of-place technique
or an in-place technique. The former uses another memory location to per-
form the conversion where the latter shifts the tensor blocks within the same
memory in cycles. Also the in-place technique requires almost half of the
memory but at the expense of exploiting lower degree of inherent parallelism.

We showed that shifting cycles in the in-place technique can be done in
two ways, from which the backward shifting is chosen because, compared
to the forward shifting, it is more cache efficient and requires less steps. In
addition, to benefit from the memory hierarchy and be more cache efficient,
the blocks could be divided into sub-blocks in the in-place conversion.

Furthermore, tensor matricization can always be performed using non-
degenerate blocks if the output matrix format (row- or column-major) can
be chosen freely.

6.1 Related work

Some work has been done in tensor computation and some tools are pre-
sented which target storage format of dense tensors. The MATLAB Ten-
sor Toolbox [4] provides a set of tensor related functions such as tensor
multiplication, matricization and various tensor decompositions. Another

69



MATLAB toolbox is Tensorlab [25] which supports complex optimization,
tensor factorization and tensor optimization. While the MATLAB tool-
box TT-Toolbox [22] provides basic tensor operations for tensors stored in
tensor-train format. The python library Scikit-tensor [21] supports basic
tensor operations and factorization. A famous software for symbolic com-
putation, Wolfram Mathematica [1], represents tensors as a list of lists. The
software supports many tensor operations and tensor related algorithms. In
Torch7 [7], a scientific computing framework for machine learning on GPU,
a tensor represents a view to a storage. The data in the tensor may not be
contiguous in memory. Yet, the framework provides tools for manipulating
and rearranging the data in storage. In [15] Albert Hartono et al. present
a way for permuting the indices of a tensor by generating multiple code
versions optimized during the library installation stage. Another automatic
code generator widely used is So Hirata’s Tensor Contraction Engine (TCE)
[16]. While the main focus is to generate optimized code for tensor con-
traction, Hirata proposed a way for tensor permutation where the tensor is
divided into tiles and the position of the tile for each required permutation
during a contraction is precomputed and stored in the memory. Ballared
G. et al. in [5] address the problem of symmetric tensors storage format
in their proposal for computing tensor eigenvalues on GPU. While Beverly
A. Sanders et al. in [23] are focusing more on distributed memory. Also
related to distributed memory, Austin W. et al. in [3] propose to distribute
the tensor among a processor grid and perform the matricization logically
without data movement. While Dmitry I. Lyakh in [20] is considering the
case where the block size is one.

Acknowledgments

The work was supported by eSSENCE, a strategic collaborative e-Science
program funded by the Swedish Government via the Swedish Research Coun-
cil (VR). The authors thank the High Performance Computing Center North
(HPC2N) for providing computational resources and valuable support dur-
ing test and performance runs.

References

[1] Wolfram Mathematica: symbolic computation software.
https://www.wolfram.com/mathematica/.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, third edition, 1999.

70



[3] W. Austin, G. Ballard, and T. Kolda. Parallel tensor compression
for large-scale scientific data. In Parallel and Distributed Processing
Symposium, 2016 IEEE International, pages 912–922. IEEE, 2016.

[4] B. W. Bader and T. G. Kolda. Algorithm 862: MATLAB tensor classes
for fast algorithm prototyping. ACM Transactions on Mathematical
Software, 32(4):635–653, December 2006.

[5] G. Ballard, T. Kolda, and T. Plantenga. Efficiently computing tensor
eigenvalues on a GPU. In Parallel and Distributed Processing Work-
shops and Phd Forum (IPDPSW), 2011 IEEE International Sympo-
sium, pages 1340–1348. IEEE, 2011.

[6] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R C. Whaley,
J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, et al. An
updated set of basic linear algebra subprograms (blas). ACM Transac-
tions on Mathematical Software, 28(2):135–151, 2002.

[7] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-
like environment for machine learning. In BigLearn, NIPS Workshop,
number EPFL-CONF-192376, 2011.

[8] T. Dahlberg. Compact Representation and Efficient Manipulation of
Sparse Multidimensional Arrays. Bachelor thesis, Ume University, De-
partment of Computing Science, 2014.

[9] J. Dongarra. Basic linear algebra subprograms technical (blast) forum
standard. International Journal of High Performance Computing Ap-
plications, 16(1,2):1–111,115–199, 2002.

[10] J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff. A set of
level 3 basic linear algebra subprograms. ACM Trans. Math. Softw.,
16(1):1–17, March 1990.

[11] J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. Algorithm
656: An extended set of basic linear algebra subprograms: Model imple-
mentation and test programs. ACM Trans. Math. Softw., 14(1):18–32,
March 1988.

[12] J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An
extended set of FORTRAN basic linear algebra subprograms. ACM
Trans. Math. Softw., 14(1):1–17, March 1988.

[13] J. J. Dongarra, J. Du Cruz, S. Hammerling, and I. S. Duff. Algorithm
679: A set of level 3 basic linear algebra subprograms: Model imple-
mentation and test programs. ACM Trans. Math. Softw., 16(1):18–28,
March 1990.

71



[14] F. Gustavson, L. Karlsson, and B. K̊agström. Parallel and cache-
efficient in-place matrix storage format conversion. ACM Transactions
on Mathematical Software (TOMS), 38(3):17, 2012.

[15] A. Hartono, Q. Lu, T. Henretty, S. Krishnamoorthy, H. Zhang,
G. Baumgartner, D.E. Bernholdt, M. Nooijen, R. Pitzer, J. Ramanu-
jam, and P. Sadayappan. Performance optimization of tensor contrac-
tion expressions for many-body methods in quantum chemistry. The
Journal of Physical Chemistry A, 113(45):12715–12723, 2009.

[16] S. Hirata. Tensor contraction engine: Abstraction and automated par-
allel implementation of configuration-interaction, coupled-cluster, and
many-body perturbation theories. The Journal of Physical Chemistry
A, 107(46):9887–9897, 2003.

[17] B. K̊agström, P. Ling, and C. Van Loan. GEMM-Based Level 3 BLAS:
High-Performance Model Implementations and Performance Evaluation
Benchmark. ACM Trans. Math. Software, 24(3):268–302, 1998.

[18] B. K̊agström, P. Ling, and C. Van Loan. Algorithm 784: GEMM-Based
Level 3 BLAS: Portability and Optimization Issues. ACM Trans. Math.
Software, 24(3):303–316, 1998.

[19] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic lin-
ear algebra subprograms for fortran usage. ACM Trans. Math. Softw.,
5(3):308–323, September 1979.

[20] D. I. Lyakh. An efficient tensor transpose algorithm for multicore CPU,
Intel Xeon Phi, and NVidia Tesla GPU. Computer Physics Communi-
cations, 189:84 – 91, 2015.

[21] M. Nickel. Scikit-tensor: Python library for multilinear algebra and
tensor factorizations. https://github.com/mnick/scikit-tensor.

[22] I. Oseledets, S. Dolgov, V. Kazeev, O. Lebedeva, and T. Mach. TT-
Toolbox 2.2, 2012. http://spring.inm.ras.ru/osel.

[23] B. A. Sanders, R. Bartlett, E. Deumens, V. Lotrich, and M. Ponton.
A block-oriented language and runtime system for tensor algebra with
very large arrays. In 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis, pages
1–11, Nov 2010.

[24] The HDF Group. Hierarchical Data Format, version 5, 1997-2017.
http://www.hdfgroup.org/HDF5/.

72



[25] N. Vervliet, O. Debals, and L. De Lathauwer. Tensorlab 3.0numeri-
cal optimization strategies for large-scale constrained and coupled ma-
trix/tensor factorization. In 2016 Conference Record of the 50th Asilo-
mar Conference on Signals, Systems and Computers. IEEE, 2016.

73




