
Towards an Efficient Sequential
Bulge-Chasing Kernel

Angelika Schwarz and Lars Karlsson

UMINF 17.20

Department of Computing Science



Towards an Efficient Sequential Bulge-Chasing Kernel

Angelika Schwarz
∗

angies@cs.umu.se
Lars Karlsson

larsk@cs.umu.se

ABSTRACT
The bulge-chasing kernel in the multi-shift QR algorithm is
invoked repeatedly on the critical path. The bulge-chasing
kernel operates on a computational window embedded in a
bigger matrix. It requires multiple calls to the bulge-chasing
kernel to chase all bulges; a highly optimised routine there-
fore reduces the length of the critical path and potentially
the overall execution time. Off-diagonal blocks are updated
with DGEMM operations. We provide an optimised sequential
implementation that runs at 50% of the peak performance
and is 5–15 times faster than DLAQR5, LAPACK’s standard
bulge-chasing routine.

1. INTRODUCTION
The multi-shift QR algorithm is the state-of-the-art method
[1, 2] for computing all eigenvalues of a real-valued dense
non-symmetric matrix A ∈ Rn×n and generalises the origi-
nal double implicit shift QR algorithm by Francis. It com-
putes a Schur decomposition A = QTQT where Q ∈ Rn×n

is orthogonal and T ∈ Rn×n is block upper triangular with
1-by-1 or 2-by-2 blocks on the diagonal. The blocks corre-
spond to real eigenvalues in the case of 1-by-1 blocks and to
complex conjugate pairs of eigenvalues for 2-by-2 blocks.

The multi-shift QR algorithm initially reduces the matrix
A to upper Hessenberg form H0 ← QT

0 AQ0. Then a Schur
decomposition is approximated iteratively. In each iteration,
a polynomial pk is computed in accordance with a shifting
strategy. The shifts σ1, . . ., σm, m� n are closed under
complex conjugation in order to avoid complex arithmetic.
A multi-shift QR step computes the QR factorisation

pk(Hk) = (Hk − σ1I)(Hk − σ2I) · · · (Hk − σmI) = QkRk

and updates Hk+1 ← QT
k HkQk. For a general matrix it

is difficult to merge multiple shifts. However, the upper
Hessenberg shape of Hk allows for implicit multi-shifts. A
Householder matrix is computed such that it transforms
pk(Hk)e1 into a multiple of e1. This reflection introduces
an (m+1)-by-(m+1) bulge in the top-left corner. The orig-
inal Hessenberg shape is restored through the bulge-chasing
procedure. For this purpose, a sequence of Householder ma-
trices is constructed, which chases the bulge along the sub-
diagonal until it vanishes in the bottom right corner.

The choice of m is delicate. Increasing m improves the arith-
metic intensity, but it also introduces shift blurring and neg-

∗Research supported by a DAAD (German Academic Ex-
change Service) scholarship.

b0

b1

b2
 

b0

b1

b2
Figure 1: Input and output of the bulge-chasing kernel.

atively affects the convergence rate. Braman, Byers and
Mathias [1] proposed a mathematically equivalent scheme,
the so-called small-bulge multi-shift QR algorithm. Instead
of introducing one big bulge, they pack multiple small bulges
in a chain and thereby process several iterations simultane-
ously. Chasing a chain of bulges rather than single bulges
increases the arithmetic intensity. For m = 2, their packing
scheme introduces a tightly packed chain of 3-by-3 bulges in
the top-left corner of the Hessenberg matrix. A good choice
for the number of bulges is nb = bn/6c, i.e., a half-way filled
computational window [1, 7]. This approach is implemented
in the LAPACK routine DLAQR5.

Karlsson, Kressner and Lang [7] presented an alternative
packing scheme. Instead of packing bulges as a chain of
3-by-3 bulges as in Figure 1, delaying updates of the last
row of bulges yields a tighter packing. The chain length can
be reduced from 3nb to 2nb + 1. This paper sticks to the
original packing proposed by Braman, Byers, and Mathias
because it is the packing used in DLAQR5, which we use as
reference to compare with.

In a task-parallel implementation, the bulge-chasing kernel
will be invoked repeatedly on a computational window em-
bedded in a bigger matrix. The bulge-chasing kernel is on
the critical path and limits the achievable speedup, espe-
cially near the limit of strong scalability. Then, in order to
obtain further speedup, the length of the critical path has
to be reduced. As the bulge-chasing kernel is hard to paral-
lelise, we advocate optimizing the sequential bulge-chasing
kernel. A faster implementation reduces the length of the
critical path and, in turn, the overall execution time. This
paper investigates how fast the sequential bulge-chasing ker-
nel can become.

The rest of the paper is organised as follows. Section 2
introduces the single-step bulge-chasing mechanism and a

1



h0,0 h0,1 h0,2 h0,3

h1,0 h1,1 h1,2 h1,3

h2,0 h2,1 h2,2 h2,3

h3,0 h3,1 h3,2 h3,3

0 0 0 h4,3

 

h0,0 h0,1 h0,2 h0,3
α h1,1 h1,2 h1,3

0 h2,1 h2,2 h2,3

0 h3,1 h3,2 h3,3

0 h4,3 h4,3 h4,3

Figure 2: Moving a bulge one step.

reference code. Based on this reference code we identify
a list of points that we discuss in Section 4 and Section 5
and finally lead to our optimised implementation presented
in Section 6. We compare our optimised implementation to
DLAQR5 and motivate why our kernel is well-suited to be used
within a task-based runtime system.

2. REFERENCE KERNEL
The input of the bulge-chasing kernel is an upper Hessen-
berg matrix H ∈ Rn×n perturbed with a chain of nb tightly
packed 3-by-3 bulges in the top left corner. The kernel chases
the bulges along the diagonal to the bottom right corner.
Figure 1 illustrates input and output. Note that we have
excluded the corner cases of introducing and removing the
bulges.

We exemplify the steps necessary to move a bulge with the
situation of Figure 2 (note that we number rows and columns
starting with 0 and not 1). The given bulge is moved one
step along the diagonal through the following operations.

1. Construct a 3-by-3 Householder reflector Q1 = I− τvvT

and reduce the first column of the bulge to a multiple
of the first unit vector:

QT
1

h1,0

h2,0

h3,0

 =

α0
0

 .

2. Compute the similarity transform H← QT
1 HQ1. Ap-

ply Q1 to rows 1:3 from the left and to columns 1:3
from the right

QT
1

h1,1 h1,2 h1,3

h2,1 h2,2 h2,3

h3,1 h3,2 h3,3

 and


h0,1 h0,2 h0,3

h1,1 h1,2 h1,3

h2,1 h2,2 h2,3

h3,1 h3,2 h3,3

0 0 h4,3

Q1.

3. Accumulate the reflector in the similarity transform
matrix Q.

For each move of a bulge a Householder reflector Qj is cre-
ated. The update H ← QT

j HQj moves the bulge one step
along the diagonal. Given a chain of bulges, the order of the
bulges must be preserved and there may not be any colli-
sions, i.e., bulges may never overlap. As the bulge-chasing
kernel operates in a computational window, the accumula-
tion of all reflectors Q = Q1Q2Q3... allows us to update
off-diagonal blocks with an efficient DGEMM operation [1, 7].

The state-of-the-art small-bulge multi-shift bulge-chasing rou-
tine is DLAQR5 in LAPACK. It is a generic routine, which can
be configured in several ways. As we intend to call the bulge-
chasing kernel as tasks processing a computational window,

Algorithm 1 Bulge Chasing Reference Kernel

Require: number of bulges nb, Hessenberg matrix per-
turbed with a chain of tightly packed bulges H ∈ Rn×n

Ensure: H with the chain of bulges in the bottom right
corner, transformation matrix Q ∈ Rn×n

function ChaseBulges(nb, H ∈ Rn×n, Q ∈ Rn×n)
for bulge b← 0, ..., nb − 1 do

b.mQ ← 3
b.nH ← n− 3b− 1
b.mH ← 3b+ 5

Q← I
for bulge b← nb − 1, ..., 0 do

for move i← 0, ..., n− 5− 3(nb − 1) do
t← 3b+ i
// Reduce first column of bulge b.
τ,v = Dlarfg(Ht+1:t+3,t)
// Update H.
LeftUpdate(Ht+1:t+3,t+1:t+b.mH , τ , v)
RightUpdate(H0:b.nH−1,t+1:t+3, τ , v)
// Accumulate reflectors in Q.
RightUpdate(Q3b+1:3b+b.mQ,t+1:t+3, τ , v)
// Update row and column counters.
b.nH ← b.nH − 1
b.mH ← b.mH + 1
if nb − b− 1 > i then

b.mQ ← b.mQ + 3
else

b.mQ ← b.mQ + 1

we want to accumulate the reflectors instead of applying
them directly. Moreover, DLAQR5 contains vigilant deflation
checks, which affect the runtime unpredictably. In order
to have a predictable kernel behaviour, we define a refer-
ence kernel. We eliminate the vigilant deflation checks and
replace the generic Householder reflector DLARFG with our
own routine, which is cheap to compute due to the absence
of exception checks and overflow protection. Otherwise, the
reference kernel follows the compute pattern of DLAQR5; de-
tails and differences are discussed below. We leave it to the
compiler to optimise the reference kernel and solely provide
compiler hints. The reference kernel by itself is more than
a factor of two faster than DLAQR5.

The purpose of this paper is to examine the speedup achiev-
able through manual optimisations. Hence, we incremen-
tally enhance the reference kernel with hand-tuned routines.
We refer to this manually tuned routine as optimized ver-
sion. In summary, we have three versions:

• LAPACK. The standard bulge-chasing routine DLAQR5
that relies on generic helper routines and exhibits hard-
to-predict behaviour.

• Reference kernel. A compiler-optimised kernel with
predictable behaviour that resembles DLAQR5 without
vigilant deflation checks using specialised helper rou-
tines.

• Optimised kernel. A manually optimised version of
the reference kernel.

2



↓

function RightUpdate(
H ∈ Rn×3, τ ∈ R, v ∈ R3×1)

for i← 0, . . . ,m− 1 do
s← τ(Hi,:v)
Hi,: ← Hi,: − svT

Figure 3: LAPACK-style right update.

→

function LeftUpdate(
H ∈ R3×n, τ ∈ R, v ∈ R3×1)

for j ← 0, . . . , n− 1 do
s← τ(vTH:,j)
H:,j ← H:,j − sv

Figure 4: LAPACK-style left update.

Algorithm 1 shows the reference kernel. Reflectors are com-
puted one at a time and directly applied to the compu-
tational window as well as the transformation matrix. In
order to do so, the reference implementation relies on the
compiler to optimise the dot-product-based matrix updates
illustrated in Figure 3 and Figure 4. We harness the spar-
sity patterns to apply the updates to the minimum number
of rows and columns. For this purpose, we introduce three
counters nH , mH and mQ for each bulge. More precisely,
nH stores the row count for the next right update of H; mH

tracks the column count for the next left update of H. Fi-
nally, mQ stores the column count for the next right update
of Q. After each move we update the counters accordingly.
Although it is possible to compute the exact counters based
on the bulge number and the move index, we prefer to main-
tain three counters since this allows us to move bulges more
freely.

Our implementation and the subsequent analysis are subject
to two assumptions. First, matrices are stored in column
major order. The storage scheme has profound impact on
the cost of the matrix updates. We choose column major or-
der to be compatible with LAPACK. Second, the computa-
tional window has a compact memory representation. This
assumption is feasible because in a bigger bulge-chasing ker-
nel it is reasonable to copy the computational window to a
more compact memory representation to avoid huge column
strides.

In contrast to our implementation, DLAQR5 first computes the
reflector vectors of all bulges. Afterwards, all reflectors are
applied to the Hessenberg matrix first from the left and then
from the right. In other words, the left update is completed
before the right update is started. The reference kernel, by
contrast, executes the left and the right update immediately
when a reflector is available. In other words, the left and
the right update are interleaved.

For a first analysis, we profile the reference implementation
on a half-way filled 120-by-120 window. The matrix updates
dominate the runtime; 60% of the time is spent in LeftUp-
date, 21% in RightUpdate and 17% in the accumulation
of the Q matrix. The performance gap between the two for-
mer matrix updates is striking. Although the computational
cost is roughly the same, the left update takes three times
longer than the right update.

We base the optimisations conducted in Section 4 and Sec-
tion 5 on the following observations.

1. Fixed number of moves. Bulges may not overtake
one another. As a consequence, a constant number of
n− 4− 3(nb − 1) moves is applied to each bulge.

2. Non-overlapping updates. The matrix updates con-
ducted in RightUpdate and LeftUpdate affect non-
overlapping entries in H for distinct bulges. Multiple
function calls to LeftUpdate can therefore be exe-
cuted at the same time, followed by multiple calls to
RightUpdate. This argument also holds for updates
to Q. Note that this – even when driven to the extreme
– does not coincide with the update pattern in DLAQR5

because we literally permit simultaneous updates in-
stead of applying the batch of reflectors successively.

3. Independent loops. The loop over the moves and
the loop over the bulges are independent and can be
exchanged. Visually this corresponds to either chas-
ing all bulges simultaneously or chasing the bulges one
after another. The two choices differ with respect to
cache utilization.

4. Local accumulation of Q. Updates to the Q ma-
trix Q = Q1Q2Q3Q4 . . . can be bracketed and com-
puted as Q = (Q1Q2)(Q3Q4) . . ., which is discussed in
Section 5.3. Thereby multiple updates can be applied
jointly at the expense of building the reflector matrix
explicitly.

5. Alignment. Vector loads and stores across cache line
boundaries impose performance penalties. Provided
that the Hessenberg matrix is aligned and its leading
dimension is a multiple of the vector width, RightUp-
date can benefit from aligned instructions.

6. Reflector type. The reflector I− τvvT incurs addi-
tional multiplications with the scalar τ when executing
the left and right update. Alternatively, a uniform re-
flector, i.e., τ = 1, is more expensive to compute, but
saves multiplications when updating the matrices. We
examine the choice of the reflector in Section 4.

7. Vectorisation of the left update. The left up-
date, H ← QT

j H, operates on a 3-by-n submatrix.
Since we store the matrices in column major order, the
columns of the submatrix are not consecutive in mem-
ory. As a result, the compiler cannot use vector load
and store instructions. While we have to accept the
strided memory access pattern, the insertion of artifi-
cial zeros allows us to manually vectorise this update,
see Section 5.2.

8. Grouped bulge chasing. Chasing all bulges simul-
taneously or one after another are just two extreme
choices. Another choice is moving the bulges in groups
to their final position. This promises computational
benefits while preserving good cache utilisation. The
group size is a tuning parameter.

3



3. TEST ENVIRONMENT
We employ three test platforms. First, we use an Intel
Xeon E5-2690 v3 (“Haswell”) machine operating at 2.6 GHz.
One core exhibits two 256-bit wide SIMD units processing
four double-precision operands each. It processes two fused-
multiply-add instructions per cycle. The peak performance
of one core therefore calculates 2.6 ·2 ·4 ·2 = 41.6 [Gflops/s].
Second, we use an Intel Xeon E5-2690 v4 (“Broadwell”) with
a base frequency of 2.6 GHz. Third, we use an Intel Core
i5-6600 (“Skylake”) with a base frequency of 3.3 GHz. The
latter two CPUs exhibit the same hardware characteristics
as the Haswell platform and have dynamic frequency scaling
enabled. The nominal peak performance therefore amounts
to 41.6 Gflops/s and 52.8 Gflops/s, respectively. We abbre-
viate the three test platforms in accordance to their microar-
chitecture with hsw, bdw, and skl. Note that the real peak
performance deviates from the nominal peak performance
because (a) the AVX core frequency is lower than the base
frequency and (b) the clock speed may be adapted so that
the processor meets power limits [5].

On all three platforms cache lines have a size of 64 bytes
[4]. In order to avoid performance penalties from loads and
stores that cut cache lines, we align the base pointers of all
matrices and introduce zero-padding to properly align all
columns. We inform the compiler about alignment wherever
appropriate.

All runtime results report the wall-clock time for double-
precision arithmetic. Throughout this report, we employ
the Intel compiler version 17.0.1 with the optimisation flags
-malign-double -qopt-prefetch -O3 -unroll-aggressive

-xHost -ipo. Results reported for the GNU compiler re-
fer to version 5.4.0. We consistently use the compile flags
-Ofast -march=native -funroll-loops -fprefetch-loop-

arrays -malign-double -LNO:prefetch and activate link
time optimisation -flto -O3. We make extensive use of
the restrict qualifier to allow for more aggressive compiler
optimisation. We observe that both compilers reliably vec-
torise a good proportion of the loops, unroll small-sized loops
and make heavy use of inlining.

All our measurements have been executed with exclusive
node access. The runtime exhibits very little variation on
the Haswell cluster. Results are also reliably reproducible
on the Skylake platform. We observe runtime differences of
up to 30% on the Broadwell cluster when run on distinct
nodes. The ratio between the code versions, however, scales
accordingly. We attribute this to different clock frequency
scaling behaviour of the nodes. We have ensured that all
comparisons have been executed on the same node to avoid
different node behaviours.

4. HOUSEHOLDER REFLECTORS
In order to move a bulge, Householder reflectors are con-
structed. Given a 3 × 3 bulge, the Householder reflector
transforms the first column of the bulge to a multiple of e1.
We use two reflector types. First, we use the standard re-
flector I− τvvT , which corresponds to LAPACK’s DLARFG.
Second, we define w :=

√
v and compute the uniform reflec-

tor I −wwT . This saves the multiplication with the scalar
τ when updating the Hessenberg matrix and the similarity
transform matrix.

hsw bdw skl
Reflector GNU Intel GNU Intel GNU

scalar instructions

standard 99.11 50.02 85.17 83.57 66.47
uniform 194.61 194.69 98.33 83.61 66.34

vector instructions

standard 62.52 51.53 90.11 88.56 47.25
uniform 119.55 115.43 113.58 110.35 55.57

Table 1: Median of 9 runs of the cumulated runtime to com-
pute 10M reflectors. Timings are given in ms.

0 100 200 300

0.9

0.95

1

1.05

n
R

u
n
ti

m
e

re
la

ti
v
e

to
st

a
n
d
a
rd

re
fl
ec

to
r

hsw (GNU) bdw (GNU)

skl (GNU)

Figure 5: Impact of the reflector choice when chasing bn/6c
tightly packed bulges as in Algorithm 1. The graph shows
the fraction runtime with uniform reflector / runtime using
standard reflector.

In contrast to the generic LAPACK implementation DLARFG,
we hardcode the constant size of the reflector vectors in
our implementation. The generic LAPACK implementa-
tion works in-place and uses the memory locations of the
input vector to return the reflector vector. We, by contrast,
explicitly overwrite the input vector and require additional
memory to return the reflector vector. Moreover, we omit
error checking because the first column of the bulge is known
to be a non-zero column. As a consequence, the implemen-
tation is shorter and inlined by the compiler, but also less
robust.

The compiler chooses scalar instructions to implement ei-
ther reflector. As we can reduce the first column of multiple
bulges at the same time, we vectorise the computation of
both reflector types by using AVX instructions. The usage
of AVX allows the computation of up to four reflectors at
a time. In summary, we compare the following four imple-
mentations: (1) standard reflector with scalar instructions,
(2) uniform reflector with scalar instructions, (3) standard
reflector with vector instructions and (4) uniform reflector
with vector instructions.

Table 1 shows a runtime comparison of the four implementa-
tions. The benefit of using AVX instructions depends on the
platform. On Haswell and Skylake the vectorised versions
are equally good or faster; on Broadwell the scalar imple-
mentation is consistently faster. The runtime results can
be traced to the throughput respectively the latency of the

4



packed respectively scalar division and squareroot instruc-
tion [4].

The choice of the reflector is apparently a hardware-dependent
one. Regarding the bulge-chasing kernel, this results in two
decisions. When should the standard reflector be used and
when the uniform reflector? In what cases does the vec-
torised implementation give better results?

There is a trade-off between (1) the more expensive uniform
reflector and cheaper matrix updates and (2) the cheaper
standard reflector and more expensive matrix updates. The
results of this trade-off are shown in Figure 5. The plot
takes the runtime using the standard reflector as reference.
For small matrices up to n = 60, the standard reflector is
faster than the uniform reflector. For bigger matrices, it
pays off to save multiplications and the uniform reflector is
faster. Since we consider 100-by-100 the minimum size of
the computational window, we conclude that the uniform
reflector is the preferred choice on all of our test platforms.

The decision whether the scalar or the vectorised uniform re-
flector is the better choice depends on the underlying hard-
ware. On Haswell and Skylake it is advantageous to use the
vectorised version. On Haswell, the performance difference
even suggests to use the vectorised implementation when
only a batch of three reflectors (with the fourth SIMD entry
left unused) is computed. On Broadwell, by contrast, the
scalar implementation is consistently the best option.

5. OPTIMISING THE MATRIX UPDATES
When a bulge is moved one step along the diagonal, an up-
date H← QT

j HQj is executed in the form of two updates.

We call H ← HQj the right update and H ← QT
j H the

left update. Further, we accumulate the reflectors into the
similarity transform matrix Q← QQj . The runtime of the
bulge-chasing kernel is dominated by these matrix updates.
We therefore compare different choices to select the fastest
possible implementation.

We define two test problems on a 100-by-100 computational
window with leading dimension 104, which we consider a
lower bound for the size of the computational window in a
bigger bulge-chasing kernel. Test 1 chases one bulge from the
top-left corner to the bottom right corner. Test 2 chases four
tightly packed bulges. We expect this test to give meaning-
ful results to evaluate the effectiveness of our optimisations
because (a) the computational intensity increases when we
chase a chain of bulges and (b) our optimisations will be in-
creasingly effective for bigger window sizes until a memory
requirement slightly greater than the L2 cache capacity is
exceeded. Our kernel is cache-friendly because it exhibits
temporal locality due to overlapping updates, spatial local-
ity for the right update and a predictable memory access
pattern for the left update the stride prefetcher can cope
with. However, the benefit of overlapping updates dimin-
ishes with larger computational windows; large updates no
longer benefit from temporal locality.

Inspired by work of Goto and van de Geijn [3] for DGEMM,
we distinguish between three layers of abstraction. We refer
to the three matrix updates as macro kernels. We split the
macro operations up into smaller structures, so-called micro

Tag Implementation Reflector Ratio

A LAPACK-style standard 13
B Figure 6 standard 52
C Figure 6, unrolled twice standard 104
D LAPACK-style uniform 12
E Figure 6 uniform 48
F Figure 6, unrolled twice uniform 96

Table 2: Implementations of H ← HQj . The right column
gives flops/iteration and indicates the degree of instruction-
level parallelism.

kernels, which are chosen in accordance with the underlying
architecture. The instruction level chooses the hardware
instructions necessary to realise the micro kernel.

5.1 Right Update of the Hessenberg Matrix
Each right update, H← HQj , operates on a tall-and-skinny
n-by-3 submatrix. The implementations can benefit from
consecutive memory accesses and alignment. A full list of
all tested implementations is given in Table 2.

The compiler-optimised LAPACK-style update, denoted by
variants A and D, serves as our reference implementation
and is illustrated in Figure 3. As the row count is a runtime
parameter and can attain any value, the compiler provides
two versions. The first version unrolls the dot products us-
ing scalar fused-multiply-add instructions and directly re-
sembles the row-wise dot products. The second version vec-
torises over the rows and uses packed fused-multiply-add
instructions. The routine is inlined across all test platforms.

Our implementations are very close to the compiler-generated
instruction sequence. We harness problem-specific knowl-
edge to improve them further. Figure 6 explains our imple-
mentation. Aiming for an in-place update, the submatrix is
split into micro kernels, here 4-by-3 blocks. The block height
is chosen in accordance with the vector width, which is 4 on
our test platforms. At instruction level, the columns of each
4-by-3 block are scaled with the appropriate broadcast en-
try of v. A register is used to accumulate the intermediate
result Hv. This register is multiplied with τ if the standard
reflector is used. The multiplication with vT remains. We
reuse the broadcast entries of v, multiply with the register
holding τHv and update the respective columns in the 4-by-
3 block. Note that the bottommost block in the panel may
not coincide with the row count. This is the reason why the
compiler is forced to provide two implementations, one with
scalar instructions and one with vector instructions. We, by
contrast, avoid this case distinction and instead round up
the row count to the next multiple of 4. Recall that the
computational window is copied to a compact memory rep-
resentation. As a consequence, the rounding is a safe step
to take because the window is easily sufficiently padded and
the additional flops are guaranteed to be zero flops. We
abbreviate these implementations as variants B and E, re-
spectively.

The performance of this implementation is hampered by lim-
ited instruction-level parallelism. We apply loop unrolling
in order to increase the performance. The first approach ex-
tends the micro kernel and process two consecutive 4-by-3

5



(a) Macro kernel.

(b) Decomposition into micro ker-
nels.

function RightUpdate(H ∈ Rn×3, τ ∈ R, v ∈ R3×1)
Broadcast entries of v ≡ (v0, v1, v2) and store them in registers
Broadcast τ and store in register

for each block in H do
Load columns into registers
Fused multiply-add

= �

v0

v0

v0

v0

+ �

v1

v1

v1

v1

+ �

v2

v2

v2

v2

Scale with τ
Update block in-place with fused multiply-add

− = �

v0

v0

v0

v0

; − = �

v1

v1

v1

v1

; − = �

v2

v2

v2

v2

;

Figure 6: Layered view of the implementation of H← H(I− τvvT ).

Figure 7: Alternative micro kernels striving for improved
instruction-level parallelism.

blocks at a time (variants C, F), see Figure 7 (right). Al-
though this increases the number of zero flops (up to 7 rows
can be unnecessary computation), we observe speedup. This
approach requires additional zero-padding of the computa-
tional window in order to safely process the final move of
the bottommost bulge. We pad the computational window
with four zero rows. Again, this step is feasible in a big-
ger bulge-chasing kernel because we copy the computational
window to a more compact memory representation to avoid
huge column strides.

The second approach to increase the instruction count per
iteration is to unroll panel-wise. Instead of one panel, mul-
tiple panels can be updated simultaneously, see Figure 7
(left). We abandon this idea because the performance gain
from grouped bulge-chasing outweighs the speedup obtain-
able through panel-wise loop unrolling for simultaneous bulge-
chasing.

Figure 8 and Table 3 display the performance results using
Test 1. Note the amount of zero flops, which is introduced
due to rounding up to the next multiple of four. In general
it is beneficial to use the uniform reflector. Furthermore, we
observe speedup of our manually optimised implementations
over the compiler-optimised implementation across all plat-
forms. The version with manual loop unrolling performs
best in all cases. It is especially effective on the Skylake
platform with a speedup of 1.48 (standard reflector) respec-
tively 1.67 (uniform reflector). On Haswell and Broadwell we
achieve a performance improvement between 1.10 and 1.29.
We attribute the observed speedup to the cases where we
trade two or three scalar instructions for one vector instruc-
tion (with zero flops), sufficient instruction-level parallelism
and less branching. While in general the uniform reflector

A B C D E F
0

200

400 363 348
329

309 307
267

362
325

299 307
289

248
R

u
n
ti

m
e

[m
s]

hsw GNU Intel

A B C D E F
0

200

400

600

405
367

317

250 245
216

386

337
297

246 230
201

R
u
n
ti

m
e

[m
s]

bdw

A B C D E F
0

200

400
316

228
213

288

198
172

R
u
n
ti

m
e

[m
s]

skl

Figure 8: Cumulated time spent on right updates,
H← HQj , needed to chase 1 bulge 100000 times in a
100× 100 window.

outperforms the standard reflector, we observe a significant
performance discrepancy on Broadwell. The additional pa-
rameter τ present only in the standard reflector seems to
incur a performance penalty.

6



hsw bdw skl
Tag Flops GNU Intel GNU Intel GNU

A 64220 (64220) 17.69 17.74 15.85 16.64 20.32
B 66092 (64220) 18.99 20.34 18.01 19.61 28.99
C 68536 (64220) 20.83 22.92 21.62 23.08 32.18
D 59280 (59280) 19.18 19.31 23.71 24.10 20.58
E 61008 (59280) 19.87 21.11 24.90 26.53 30.812
F 63264 (59280) 23.69 25.51 29.29 31.47 36.78

Table 3: Performance results for H← HQj in Gflops/s as measured for Figure 8. The flop count reports the number of total
flops; the number in brackets counts useful flops excluding zero flops.

function LeftUpdate(H ∈ R3×n, τ ∈ R, v ∈ R3×1)

Construct reflector matrix ≡ τvvT and store columns in registers

for each column ≡ (H0j , H1j , H2j , ∗)T in H do
Broadcast column entries H0j , H1j , H2j

Update column in-place with fused multiply-add

− = .∗

H0j

H0j

H0j

H0j

; − = .∗

H1j

H1j

H1j

H1j

; − = .∗

H2j

H2j

H2j

H2j

;

Figure 9: Implementation of H← (I− τvvT ) ·H

5.2 Left Update of the Hessenberg Matrix
The left update, H← QT

j H, applies the reflector to a 3-by-n
submatrix. The compiler-optimised LAPACK-style update
is based on dot products, as illustrated in Figure 4. Left
updates face the following performance penalties.

• Non-SIMD width row count. As we use column
major memory layout, the number of consecutive mem-
ory entries is limited to 3.

• Strides. The memory locations that have to be up-
dated are far away from each other.

• Misaligned memory accesses. The base pointer
of the 3-by-n submatrix may or may not be aligned.
Columns can be expected to be split across cache lines.

The performance of the left update on the test problems
is typically more than a factor of 2 worse than the right
update. On Broadwell, the performance discrepancy is even
close to a factor of 3. The compiler fails to vectorise the
LAPACK-style update.

As stated in [3], the key to fast updates is harnessing consec-
utive memory accesses. Due to the column major memory
layout, the left update has strided accesses and, as a conse-
quence, we cannot expect the left update to reach the same
performance level as the right update. We can, however,
implement optimisations that are beyond the scope of the
compiler.

We manually vectorise the left update. Figure 9 explains
our implementation. Although only a 3-by-n submatrix is
updated, a 4-by-n band is read and written to. The fourth
entry of each SIMD instruction yields a zero flop. For this
purpose, we explicitly construct the matrix vvT . We pad

Tag Implementation Reflector Ratio

A LAPACK-style standard 13
B Figure 9 standard 24
C LAPACK-style uniform 12
D Figure 9 uniform 24
E Figure 9 uniform 48
F Figure 9 uniform 72
G Figure 9 uniform 96

Table 4: Implementations of single-column left updates.
The right column gives flops/iteration and indicates the de-
gree of instruction-level parallelism.

the 3-by-3 matrix with zero entries and store the columns in
registers 

v0v0 v1v0 v2v0
v0v1 v1v1 v2v1
v0v2 v1v2 v2v2

0 0 0

 .

The explicit zero-padding allows us to avoid mask-based in-
structions with corresponding latencies for vector loads and
stores. In the case of the standard reflector, all matrix en-
tries are additionally scaled with τ .

We process the matrix update columnwise in the form of
matrix-vector multiplies H:,j − (vvT )H:,j . We load the 4-
by-1 vector H:,j into a register and additionally broadcast
its first three entries into registers. We multiply the i-th col-
umn of the reflector matrix with the broadcast i-th entry of
H:,j and update the register holding H:,j . The zero-padded
structure of the reflector matrix guarantees that the fourth
vector entry of H:,j is not changed. Consequently, 1/4th of
the flops are zero flops.

We have compared the following variants for the left update,
see Table 4. Variants A and C are the compiler-optimised

7



A B C D E F G
0

500

1,000

1,500

1,094

948 933

613 601 608 620

948
874 893

728 704
619 616

R
u
n
ti

m
e

[m
s]

hsw GNU Intel

A B C D E F G
0

500

1,000 926 899
825

602 598 626 600

885 853 847

717 677
602 600

R
u
n
ti

m
e

[m
s]

bdw

A B C D E F G
0

500

1,000

736
676 662

393 393 418 417

R
u
n
ti

m
e

[m
s]

skl

Figure 10: Cumulated time spent on left updates,
H← QT

j H, needed to chase 1 bulge 100000 times in a
100× 100 window.

LAPACK-style updates; the optimised variants B and D im-
plement the approach of Figure 9 with intrinsics for either
reflector.

Analogously to the right update, we apply manual loop un-
rolling aiming for improved instruction level parallelism. We
restrict our analysis to the uniform reflector. Variant E, F,
and G process 2, 3 or 4 columns per loop iteration.

Figure 10 lists the runtime results. The vectorised version
(D) is between 1.37 and 1.72 times faster than the LAPACK-
style updates (C). The performance more than doubles, see
Table 5. We do not observe any noteworthy benefit from
additional loop unrolling.

The combination of using the uniform reflector and manual
vectorisation (D) yields a performance improvement in the
range of 1.54 to 1.87 over the standard LAPACK-style up-
date (A). As such, the performance gap between left updates
and right updates persists.

Motivated by the idea of grouped bulge chasing mentioned
in Section 2, we test a specialised routine for a joint update
of four bulges. Instead of doing four calls to LeftUpdate

hsw bdw skl
Tag GNU Intel GNU Intel GNU

A 5.87 6.77 6.94 7.26 8.72
B 12.75 13.83 13.45 14.17 17.89
C 6.35 6.64 7.19 7.00 8.96
D 19.51 16.45 19.90 16.70 30.45
E 19.91 17.00 20.00 17.69 30.42
F 19.70 19.33 19.12 19.88 28.66
G 19.31 19.43 19.96 19.94 28.68

Table 5: Performance results in Gflops/s as measured for
Figure 10.

hsw bdw skl
Tag GNU Intel GNU Intel GNU

4 * D 84.08 95.13 73.22 83.99 55.96
joint 80.85 78.94 68.70 68.50 53.8209

Table 6: Cumulated runtime in ms spent on left updates
needed to chase four bulges 4000 times in a 100×100 window.

one after another, we update a 12-by-n subwindow. Analo-
gously to Figure 9, we load and store 4-by-1 vectors rather
than 3-by-1 vectors. Consequently, again 1/4th of the flops
are zero flops. In the 12-by-n window there are always two
non-overlapping 4-by-1 vectors available, whose processing
order does not matter. We harness this and attempt to
maximise the instruction-level parallelism while preserving
the correct read-and-write order of overlapping entries. We
notice that the efficiency of our implementation is highly
susceptible to the order of the instructions and, to a lesser
degree, to the choice of the compiler. Table 6 lists our run-
time measurements. The joint updates achieve a small per-
formance improvement over four successive calls to version
D, the best implementation of LeftUpdate. More impor-
tantly, we mitigate the performance gap between the Intel
and the GNU compiler and now have an implementation
which consistently performs well on all of our test platforms
independent of the choice of the compiler.

5.3 Updates to the Q matrix
The Q matrix accumulates all reflectors used within the
computational window. This allows us to use Q to later
on update off-diagonal windows with an efficient DGEMM op-
eration. In our kernels we initialise Q with the identity ma-
trix and successively apply all reflector vectors in the order
they arise. Due to the favourable memory access pattern,
we follow the accumulation scheme of DLAQR5 and multiply
all reflectors from the right Q = Q1Q2Q3 . . ..

While the reference bulge-chasing routine uses the identi-
cal LAPACK-style right update, H ← HQj , discussed in
Subsection 5.1, we cannot reuse the intrinsics implementa-
tion. As we initialise Q with the identity matrix and obtain
fill-in through successive application of the reflector vectors,
the update range may start at any, possibly unaligned ad-
dress. Consequently, our implementation has to rely on un-
aligned loads and stores. Otherwise we use the same set
of techniques discussed previously. In particular we trade
zero flops for SIMD instructions and apply manual loop un-
rolling. Again, the manually unrolled version performs best.
We observe, however, that the efficacy of these techniques

8



falls behind the one of H ← HQj . We attribute this to
the performance penalty arising from unaligned instructions
and the fact that due to the sparsity pattern in general less
flops are necessary.

As an alternative, the one-sided accumulation order allows
for various accumulation orders as long as the order of the
reflectors is preserved. We bracket Q = (Q1Q2)(Q3Q4) . . .
and construct 4-by-4 reflector matrices explicitly. Given two
reflector vectors vT

1 = (∗, ∗, ∗, 0) and vT
2 = (0, ∗, ∗, ∗), we

obtain

Q1Q2 = (I− v1v
T
1 )(I− v2v

T
2 )

= I− v1v
T
1 − v2v

T
2 + v1v

T
1 v2v

T
2 .

This scheme allows us to merge two successive moves of one
bulge. In our performance measurements we observe that
the bracketed scheme yields an increase in flops, which goes
along with an increased runtime. For our optimised routine
we therefore opt for the unrolled single-bulge update.

Consider, for example, a 4-by-4 matrix Q. If Q is updated
with two 3-by-3 reflectors, i.e., Q← (QQ1)Q2, 96 flops are
necessary. Here, we use the uniform reflector and implement
a row update with two dot products requiring 12 flops per
row (6 additions, 6 multiplications). The first reflector Q1

modifies the three leftmost columns of Q and yields 4 rows ·
12 flops/row = 48 flops. Then Q2 requires an equal amount
of 48 flops to modify the three rightmost columns of Q.
Together, the flops add up to 96 flops. If, by contrast, Q
is updated as in Q← Q(Q1Q2), then 128 flops are needed.
Neglecting the cost of constructing the 4-by-4 reflector, 32
flops are executed per row (two dot products, each with 8
multiplications and 8 additions). With 4 rows, the total
amount of flops equals 128 flops.

5.4 Benefit of Compile-time Parameters
Parameters such as the matrix size, the leading dimension
or the number of bulges can be regarded as compile-time
constants. The advantages are twofold. First, it allows the
compiler to propagate constants, which is especially effec-
tive because we activate link-time optimisation (GNU) re-
spectively interprocedural optimisation (Intel). Second, the
compiler can deduce that our column updates operate on
non-overlapping memory locations. As a result, further op-
timisations become available, or, at the very least, less case
distinctions have to be made.

We have experimentally passed n and nb as template pa-
rameters to our bulge-chasing routine. Further, we declared
the leading dimension as a compile-time constant. In other
words, all three parameters were known at compile-time.
We have actively used the compile-time constants to com-
pute the iteration counters and initialise the update range
counters nH and mH . Furthermore, the implementation of
RightUpdate can benefit from the additional knowledge
that aliasing cannot occur. This update affects three consec-
utive columns. Consider for example the LAPACK-style up-
date. The evaluation of the scalar s = τ(Hi,jv0 +Hi,j+1v1 +
Hi,j+2v2) computes the memory locations as H[i+j*ldH],
H[i+(j+1)*ldH] and H[i+(j+2)*ldH]. If the leading dimen-
sion is not known at compile-time, virtually any memory ac-

cess pattern can occur. Even if we exclude negative values,
an update could address overlapping memory locations if
ldH < n. Informing the compiler about the leading dimen-
sion is therefore another way to pass the knowledge that
the memory locations to be updated logically correspond to
disjoint columns.

The usage of template parameters has boosted the perfor-
mance of our kernel by 2 to 4 Gflops/s. On Haswell, for ex-
ample, we increased the maximum performance from 17.03
Gflops/s to 18.86 Gflops/s. On Skylake, the gain is bigger
with an increase from 26.5 Gflops/s to 30.19 Gflops/s. For
the time being we refrain from compile-time computations
because it makes the kernel inflexible for using in a bigger
bulge-chasing kernel. We think, however, that it is possible
to benefit from templated functions in a task-based context
when the partitioning of a big matrix can be computed at
compile time. The performance results we present in the
next section do not make use of template parameters.

5.5 Kernel Performance Comparisons
Given several optimised routines for the computation of the
reflector and the matrix updates, we merge these routines
now to obtain an optimised bulge-chasing mechanism within
the computational window.

We compare a total of six bulge-chasing kernels. On the one
hand, we have one reference version for each reflector type.
On the other hand, we use optimised routines and experi-
ment with different group sizes. We configure the optimised
kernels as follows.

• Dlarfg. We choose the uniform reflector across all
platforms. On Broadwell, we solely use the scalar im-
plementation; on Haswell and Skylake we prefer the
SIMD implementation for a group size of four and oth-
erwise use the scalar version.

• UpdateFromRight. We choose variant F, which is
consistently the fastest implementation.

• UpdateFromLeft. The choice of the implementation
is delicate because results suggest that it should be a
compiler-dependent one. We base this case study on
the GNU compiler and therefore opt for variant D. For
a group size of 4 we make use of the specialised routine
for jointly executing 4 updates.

We choose the leading dimension as (4 · dn/4e) + 4, where
n is the matrix size. In other words, we round up to the
nearest multiple of four and add an additional padding of
four. If this number is a power of two, we revise the leading
dimension by an additional pad of 4. This choice satisfies
the desired alignment properties and the demand for the
additional zero-padding.

Figure 12 shows the results. On all test platforms the opti-
mised bulge-chasing kernel reaches approximately 50% of the
peak performance for matrix sizes between 80 and 200 and
more than doubles the performance of the reference code.
The increase in performance is also visible in the runtime.
We obtain a speedup of a factor of 1.7 to 1.9 over the fastest

9



50 100 150 200 250 300
0

5

10

15

n

P
er

fo
rm

a
n
ce

in
G

fl
o
p
s/

s

Reference using I− τvvT Reference using I− vvT Optimised with group size 4

Optimised with group size 3 Optimised with group size 2 Optimised with group size 1

50 100 150 200 250 300
0

0.5

1

n

F
ra

ct
io

n
o
f

ru
n
ti

m
e

o
f

re
fe

re
n
ce

u
si

n
g

I
−
τ
v
v
T

(a) hsw

50 100 150 200 250 300
0

10

20

n

P
er

fo
rm

a
n
ce

in
G

fl
o
p
s/

s

50 100 150 200 250 300
0

0.5

1

n

F
ra

ct
io

n
o
f

ru
n
ti

m
e

o
f

re
fe

re
n
ce

u
si

n
g

I
−
τ
v
v
T

(b) bdw

50 100 150 200 250 300
0

10

20

n

P
er

fo
rm

a
n
ce

in
G

fl
o
p
s/

s

50 100 150 200 250 300
0

0.5

1

n

F
ra

ct
io

n
o
f

ru
n
ti

m
e

o
f

re
fe

re
n
ce

u
si

n
g

I
−
τ
v
v
T

(c) skl

Figure 12: Performance and time-to-solution measurements for the unblocked bulge-chasing routine.

10



reference implementation. Changing the leading dimension
from 224 to 228 eliminates the performance drop at n = 220,
which affects three of the optimised implementations and
both reference versions.

The impact of the group size depends on the matrix size. For
matrices n < 150 chasing bulges in groups is advantageous.
A group size of 4 reduces the time-to-solution by up to 15%
compared to a group size of 1. Increasing the group size
to up to 8 improves the performance further for small-sized
matrices with n < 80. For matrices greater than 150, it
becomes advantageous to reduce the group size to 2 or 1.
We attribute this to cache effects. For a group size of 4, we
observe a drop in performance when the L2 cache size is hit.
For larger matrices, the bulge-chasing kernel in groups of
size 1 or 2 likely benefits from better temporal locality due
to overlapping rows and columns in successive moves. This
effect diminishes for bigger matrix sizes and the performance
and runtime results of all variants converge. The runtime
improvement over the reference code shrinks accordingly.

In conclusion, the choice of the group size allows us to con-
figure the bulge-chasing kernel to sustain close to 50% of the
peak performance for n ∈ [80, 200]. The runtime improve-
ment ranges in 1.5 to 1.9. Though the choice is best left to
an offline-tuning procedure, we provide the following default
values. For n ≤ 150, we configure the bulge-chasing kernel
with gs = 4. For n ∈ (150, 200] we use gs = 2. For n > 200
we observe a performance drop, which we address next. We
identify the following hot spots.

• Uneven load. The left update is disproportionally
expensive. About 60% of the runtime is spent in left
updates, 19% in right updates and 18% in the accu-
mulation of the Q matrix. The performance penalties
persist and, if anything, worsen for bigger matrix sizes
because the stride grows.

• Memory moves. The positive effect of interleaving
and overlapping updates diminishes with increasing
matrix size. We observe an increased amount of mem-
ory moves, which we attribute to an increased amount
of cache misses.

• False sharing. Due to the memory access pattern for
left updates, the performance suffers from a lot of false
sharing. This exacerbates the memory traffic problem.

We implement a classic blocking scheme to sustain the per-
formance for bigger matrix sizes and to reduce the impact
of the left update on the overall performance.

6. FULLY BLOCKED BULGE CHASING
For bigger matrices, we consider the setup of Figure 13.
The bulge-chasing kernel is applied to a computational win-
dow; the reflectors are accumulated in the similarity trans-
form matrix Q. The matrix panels outside of the window
are updated with matrix-matrix multiplies Ht ← HtQ and
Hr ← QTHr.

The performance of the bulge-chasing kernel is tolerant to-
wards the choice of the window size in {80, 81, . . . , 200}.

W

Ht

Hr

Figure 13: Update of the off-diagonal blocks with DGEMM.

→ →

Figure 14: Initial positioning of the windows and reposition-
ing of the bottommost window after the first move.

Blocking allows us to provide an implementation which sus-
tains performance for any matrix size. The focus of the off-
diagonal updates is therefore on (a) finding an advantageous
window positioning, (b) harnessing the structure of the sim-
ilarity transform matrix in the matrix-matrix multiplies and
(c) tuning the kernel w.r.t. the window size.

6.1 Window Positioning
We define the computational windows subject to two con-
straints. First, the base pointer of each window is aligned
to a 32-byte aligned boundary. Second, the window size
ensures that after each bulge-chase in a window the next
window meets the alignment constraint as well. This allows
us to avoid performance penalties from loads and stores that
cut across cache lines boundaries and reduce false sharing.

Assume that a n-by-n window is positioned at an aligned
address (p, p). The base address of the window in the next
iteration is given by the position of the top bulge after the
execution of the bulge-chasing kernel. As each of the nb

bulges is moved by n− 4− 3(nb − 1) positions, the address
p+ n− 3nb − 1 must be aligned.

Consider for example a window with nb = 20 bulges span-
ning 60 entries. Let the window be positioned at an aligned
address (p, p). We seek a window size n such that the win-
dow in the next iteration is aligned as well. As the bulges
move along the subdiagonal, the new window is moved by
n−60−1 entries and starts at (p+n−61, p+n−61). This
becomes an aligned address for n = 121, which also satisfies
bn/6c ≈ nb.

Our implementation positions the windows from bottom to
top. Figure 14 illustrates the initial window positioning. Be-
ginning with the bottommost window, we position a n-by-n
candidate window such that it is filled half-way. The base
pointer of this window may or may not be aligned. In the lat-
ter case we extend the window to the top by adding bulges.
Due to the 3-by-3 structure of the bulges, it takes at most 3
bulges until an aligned address has been reached. Next, we
increment the window size until the window size guarantees
that the windows of all future iterations are aligned. As we
align to 32-byte boundaries, at most 3 increments are nec-

11



Figure 15: Sparsity pattern of Q for a chain of 5 tightly
packed bulges in a 30-by-30 computational window.

essary. The bottommost window is therefore typically more
than half-way filled.

Reconsider the 121-by-121 example window from above. As-
sume (p, p) is not an aligned address. Then adding bulges
to the top changes the start address to any of (p− 3, p− 3),
(p− 6, p− 6), (p− 9, p− 9). It is guaranteed that one these
choices is an aligned address. Instead of 20 bulges, the win-
dow contains 21, 22 or 23 bulges. As a consequence, the
window exhibits a window size of 124, 127 or 130 and is
overfilled.

We proceed with the tessellation with n-by-n windows and
adapt the start address and the window size analogously to
the bottommost window. The topmost window is automat-
ically aligned because it coincides with the matrix bound-
aries. Its window size is extended analogously with the other
windows. Our implementation always chooses the window
size as a multiple of 6 in order to avoid additional adjust-
ments needed to never cut through bulges.

Due to the uneven degree of filling, the windows are chased
one after another rather than simultaneously. The base win-
dow moves the bulges by n − 4 − 3(nb − 1) positions; an
overfilled bottommost window moves them by less positions.
Simultaneous moves would lead to windows overtaking the
bottommost window. Figure 14 illustrates this situation.
The overfilled bottommost window after repositioning over-
laps with the window second from bottom. This window
must not be processed until the bottommost window has
been moved because bulges may never overlap.

6.2 Off-diagonal Updates
As the bulge-chasing kernel initialises the transformation
matrix with the identity matrix, the resulting matrix ex-
hibits a certain sparsity pattern. An example is depicted
in Figure 15. Braman, Byers and Mathias [1] discuss how
the sparsity pattern of Q can be harnessed to update off-
diagonal blocks. The LAPACK routine DLAQR5 implements
two of their proposals. The first option disregards the spar-
sity pattern and updates off-diagonal blocks with one call
to DGEMM. For a half-way filled Hessenberg matrix this yields
approximately 38% zero flops. The second option partitions

Q =

(
Q11 Q12

Q21 Q22

)

100 150 200 250 300
9

10

11

12

13

w

A
v
er

a
g
e

ex
ec

u
ti

o
n

ti
m

e
o
f

1
0
0

ru
n
s

in
m

s

Dense 2-by-2 structure

4-by-4 structure 1-by-3 structure

Figure 16: Impact of the window size with either off-diagonal
update option for a 5000-by-5000 matrix using MKL on bdw.

where Q12 and Q21 are triangular matrices. Off-diagonal
blocks are updated with calls to DGEMM and DTRMM, respec-
tively. Reference [6] remarks that the second option may not
pay off if the implementation of DTRMM is not well-optimised.
Our experiments confirm this insight for small-sized compu-
tational windows. We therefore propose two different parti-
tioning schemes that solely rely on DGEMM. The first scheme
partitions the triangular blocks further and obtains the 4-
by-4 block structure

Q =

 Q11
Q13 0
Q23 Q24

Q31 Q32

0 Q42
Q44

 .

Despite the triangular shape of some submatrices (see Fig-
ure 15), we apply a total of eight DGEMM operations. As we
target computational windows ranging from 100 to 300, the
DGEMM operations can potentially be small. As larger ma-
trix multiplies generally perform better, the second scheme
partitions horizontally into non-evenly spaced panels

Q =

 ? ? ? 0
? ? ? ?
0 ? ? ?

 .

so that each DGEMM operates on a larger submatrix. We align
the panels of this 1-by-3 partitioning with the minor grid
of the 4-by-4 partitioning. Both schemes therefore save an
equal amount of approximately 12.5% zero flops compared
to one call to DGEMM.

Figure 16 compares the execution time for all four update
options subject to the window size w ∈ {90, 102, · · · , 294}
in steps of 12. The choice of the window size affects the
size of the off-diagonal updates and, in turn, the potential
saving through avoiding zero flops. A certain window size,
w ≥ 150, is necessary to achieve good performance. For
small window sizes a single dense DGEMM is a competitive op-
tion. Splitting into smaller matrices as done in the 4-by-4
partitioning does not pay off because DGEMM requires a cer-
tain size in order to be an efficient operation. The 2-by-2
update falls behind, which we attribute to the performance
of DTRMM. Bigger window sizes increase the gain from sav-
ing flops through exploiting the sparsity structure. Then
the performance of the sparsity-exploiting updates is very

12



similar. The 1-by-3 partitioning is the fastest option, but
underperforms given a saving of approximately 12.5% zero
flops. The speedup over a single DGEMM is less or equal to
5.0%. Increasing the matrix size increase the potential gain
from sparsity-exploiting updates. We therefore consider the
1-by-3 update an option worth being considered for bigger
bulge-chasing kernels.

For our 5000-by-5000 test matrix, we observe the best per-
formance with w ∈ {150, 162, · · · , 186} ∪ {222, 234}. Tests
with different matrix sizes and other platforms suggest that
the choice of the window size requires fine tuning. An intu-
itive explanation arises from the window positioning scheme.
The window size can be chosen such that all windows are
more or less evenly filled (and not end up with the topmost
window filled with only a few bulges). A half-way filled
computational window minimises the total amount of flops
needed to chase all bulges. We therefore add the window
size and the choice of the off-diagonal update to the list of
tuning parameters that should be configured in an offline-
tuning procedure.

6.3 Tuning
In Section 5 we have identified the window size as the key
parameter to fine-tune the bulge-chasing kernel. We choose
parameters such as the reflector type, the group size and
routines for the matrix updates subject to the window size.
Next we strive for a fully optimised bulge-chasing kernel. We
restrict our analysis to small- and medium-sized matrices
because for bigger matrices DGEMM dominates the runtime.

We compare the performance of the blocked and the un-
blocked scheme to determine the intersection point. Fig-
ure 17 displays the results for four different window sizes
(w ∈ {120, 150, 180, 210}) and matrices in the range of 300
to 2000. A comparison in terms of execution time is given
in Figure 18. It requires a certain matrix size to make the
blocked bulge-chasing kernel pay off. The turning point de-
pends on the platform and ranges from 300 on Broadwell to
800 on Haswell. The blocked bulge-chasing kernel levels off
at 0.5 of the runtime of the unblocked kernel. The bump
at n = 1400 results from an outlier of the unblocked bulge-
chasing kernel. This wiggle can again be fixed by choosing
a different leading dimension.

The impact of the window size on the performance is incon-
clusive. On Haswell and Broadwell the choice of the window
size has little effect on the runtime, which coincides with
the results from Figure 16. On Skylake, bigger window sizes
generally perform better.

In summary, an offline-tuning procedure has to address the
following parameters.

• Group size. The performance of the small-sized com-
putational window depends on how many bulges are
chased simultaneously. For different matrix sizes dis-
tinct group sizes are advantageous. The number of
case distinctions, the group sizes and the determina-
tion of the intersection points are subject to tuning.

• Window size. The choice of the window size influ-
ences the performance within the computational win-

500 1,000 1,500 2,000
0

0.5

1

1.5

n

R
u
n
ti

m
e

re
la

ti
v
e

to
u
n
b
lo

ck
ed

k
er

n
el

w = 120 w = 150
w = 180 w = 210

(a) hsw, MKL

500 1,000 1,500 2,000
0

0.5

1

n

R
u
n
ti

m
e

re
la

ti
v
e

to
u
n
b
lo

ck
ed

k
er

n
el

w = 120 w = 150
w = 180 w = 210

(b) bdw, MKL

500 1,000 1,500 2,000
0

0.5

1

1.5

n

R
u
n
ti

m
e

re
la

ti
v
e

to
u
n
b
lo

ck
ed

k
er

n
el

w = 120 w = 150
w = 180 w = 210

(c) skl, OpenBLAS

Figure 17: Runtime relative to the unblocked kernel.

dow, the amount of iterations (windows) needed to
chase all bulges, and the performance of the off-diagonal
updates.

• Off-diagonal update scheme. We accumulate the
Householder reflectors in the similarity transform ma-
trix to update the matrix panels outside of the com-
putational window. There are four schemes to execute
the update.

6.4 Comparison with LAPACK
Finally we compare our optimised bulge-chasing kernel with
the LAPACK implementation. The routine DLAQR5 creates
and chases a chain of bulges in the multi-shift QR algorithm.
As a consequence, a direct comparison with our implemen-
tation is impossible. Instead, we fall back to a derivative
of DLAQR5 in ScaLAPACK, DLAQR6. The latter routine has
an additional job argument, which permits us to only chase
(not create and chase) a chain of bulges. After the case
distinction due to the job argument, the reference code of
DLAQR5 and of DLAQR6 are identical. Note that DLAQR6 is

13



0 500 1,000 1,500 2,000
0

2

4

6

n

R
u
n
ti

m
e

in
m

s
DLAQR6 (kacc22 = 0)

DLAQR6 (kacc22 = 2)

Blocked (w = 180)

Unblocked

Reference kernel

0 500 1,000 1,500 2,000
0

10

20

30

n

R
u
n
ti

m
e

re
la

ti
v
e

to
B

lo
ck

ed

Figure 18: Race on bdw using MKL.

not an MPI code and therefore not placed at a disadvantage
when run sequentially.

We configure the call to DLAQR6 to mimic the behaviour of
our bulge-chasing kernel. The number of shifts is set to 2nb.
Furthermore, we accumulate the reflectors and use them to
update far-from-diagonal blocks. Interestingly, exploiting
the 2-by-2 structure of the Q matrix (kacc22 = 2) is slightly
faster than the single-step DGEMM update (kacc22 = 1), which
contradicts the preferable choice for our bulge-chasing ker-
nel. The kernel can also be configured to not accumulate any
reflectors and instead directly apply reflectors to the entire
matrix (kacc22 = 0). It is surprising that direct application
halves the runtime. Even if the similarity transform matrix
is not assumed to be the identity matrix initially, the ac-
cumulation should take at most 1/3 of the time given that
three matrix updates are necessary.

Figure 18 displays the runtime of two configuration of DLAQR6,
our final blocked implementation and, for comparison, the
unblocked implementation for n ∈ {100, 200, ..., 2000}. Our
blocked kernel is between 5 and 15 times faster than the
MKL implementation of DLAQR6 for realistic computational
window sizes. When the runtime is dominated by DGEMM up-
dates, the performance gap becomes narrower. Recall that
DLAQR6 includes vigilant deflation checks whose impact on
the runtime is unknown.

In Section 5.5 we showed that the innermost bulge-chasing
kernel can be configured in such a way that it runs at close
to 50% of the peak performance (including zero flops). Since
our blocked implementation relies on reasonably sized DGEMM

updates, we claim that our kernel can sustain this perfor-
mance result for any greater matrix size. It thereby quali-

fies as a kernel to be used in a runtime system to solve a big
bulge-chasing instance in a task-based fashion.

7. CONCLUSION
We have optimised the bulge-chasing kernel for a chain of
tightly packed bulges, as it arises in the multi-shift QR al-
gorithm. Our serial implementation sustains around 50% of
the peak performance for any reasonable problem size. Our
kernel can be used as a building block in a task-based bulge-
chasing routine. In a parallel setup the bulge-chasing kernel
is on the critical path and can be regarded a sequential bot-
tleneck. A well-tuned kernel therefore has the potential to
reduce the length of the critical path. The performance of
our implementation is insensitive to the matrix size. We
consider this predictable runtime behaviour advantageous
because it allows tuning of a parallel implementation to con-
centrate on other parameters.

8. ACKNOWLEDGEMENTS
We credit inspiring discussions on the topic of this paper
to Carl Christian Kjelgaard Mikkelsen and Björn Adler-
born. Furthermore, we credit support for this research to
Michael Bader and acknowledge the Leibniz Supercomput-
ing Centre (LRZ) for providing compute time on the mpp2-
serial Haswell cluster. Computing resources on the Broad-
well nodes of Kebnekaise at High Performance Computing
Center North (HPC2N) have been provided under the grant
SNIC 2016/1-536.

9. REFERENCES
[1] K. Braman, R. Byers, and R. Mathias. The multishift

QR algorithm. Part I: Maintaining well-focused shifts
and level 3 performance. SIAM Journal on Matrix
Analysis and Applications, 23(4):929–947, 2002.

[2] K. Braman, R. Byers, and R. Mathias. The multishift
QR algorithm. Part II: Aggressive early deflation.
SIAM Journal on Matrix Analysis and Applications,
23(4):948–973, 2002.

[3] K. Goto and R. A. van de Geijn. Anatomy of
High-Performance Matrix Multiplication. ACM
Transactions on Mathematical Software (TOMS),
34(3):12, 2008.

[4] Intel Corporation. Intel® 64 and IA-32 Architectures
Optimization Reference Manual, June 2016.

[5] Intel Corporation. Intel® Processor E5 v3 Product
Family, September 2016.

[6] L. Karlsson, B. K̊agström, and E. Wadbro.
Fine-Grained Bulge-Chasing Kernels for Strongly
Scalable Parallel QR Algorithms. Parallel Computing,
40(7):271–288, 2014.

[7] L. Karlsson, D. Kressner, and B. Lang. Optimally
packed chains of bulges in multishift QR algorithms.
ACM Transactions on Mathematical Software (TOMS),
40(2):12, 2014.

[8] D. Kressner. Numerical Methods for General and
Structured Eigenvalue Problems. Lecture Notes in
Computational Science and Engineering. Springer
Berlin Heidelberg, 2006.

[9] S. Williams, A. Waterman, and D. Patterson. Roofline:
An Insightful Visual Performance Model for Multicore
Architectures. Commun. ACM, 52(4):65–76, Apr. 2009.

14


