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Abstract

The performance of a recently developed Hessenberg reduction al-
gorithm greatly depends on the values chosen for its tunable param-
eters. The search space is huge combined with other complications
makes the problem hard to solve effectively with generic methods and
tools. We describe a modular auto-tuning framework in which the un-
derlying optimization algorithm is easy to substitute. The framework
exposes sub-problems of standard auto-tuning type for which existing
generic methods can be reused. The outputs of concurrently execut-
ing sub-tuners are assembled by the framework into a solution to the
original problem.

Keywords: Auto-tuning, Tuning framework, Binning, Search space de-
composition, Multistage search, Hessenberg reduction, NUMA-aware.

1 Introduction

The motivation behind this work starts from the distributed parallel multi-
shift QR algorithm [9], which is the key step in solving large dense unsym-
metric eigenvalue problems. On the critical path of the distributed QR algo-
rithm lies a costly process known as Aggressive Early Deflation (AED) [2, 3].
The purpose of AED is two-fold: to detect and deflate converged eigenval-
ues and to generate shifts for subsequent QR iterations. Aggressive early
deflation is composed of three major parts: Schur decomposition, eigenvalue
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reordering, and Hessenberg reduction. The AED process is currently a bot-
tleneck in the distributed QR algorithm and we aim to accelerate it in the
hopes of improving the performance and scalability of the QR algorithm. We
recently developed a new NUMA-aware Hessenberg reduction algorithm [7]
based on the Parallel Cache Assignment (PCA) technique [4, 5, 10]. The
performance of the new algorithm depends greatly on the values chosen
for its tunable parameters. Auto-tuning is required due to both the large
number of parameters (four per iteration; see Section 2.1 ahead) and the
interactions between different parameters.

In this paper, we propose a modular auto-tuning framework that helps
with the tuning process. In particular, the framework tries to search the huge
search space efficiently by partitioning the parameters into subsets that are
tuned independently, grouping similar sub-problems into the same bin and
tune them as one, and searching in multiple stages (first coarsely and then
finely). The framework by itself is not a complete solution. At the heart of
the framework is a generic module for optimizing a sub-problem of standard
type. The framework provides a clean interface to generic optimization
methods and extends them into an auto-tuner for the complex and non-
standard original problem. Besides the main benefit of reducing the complex
optimization problem into something more manageable, this architecture
has the added benefit of making it easy to experiment with different search
algorithms.

The framework works as pre- and post-processing layers around the Hes-
senberg algorithm. The interactions between the framework and the algo-
rithm are as follows. The user provides to the framework an input matrix
A ∈ Rn×n and the number, p, of available cores. Based on n and p, the
framework chooses specific values for all the algorithmic parameters of the
Hessenberg algorithm. The framework then executes the Hessenberg algo-
rithm on A with the specified parameters. The output matrices H and Q are
returned to the user. Simultaneously, the Hessenberg algorithm feeds back
internal time measurements to the framework for use in the tuning process.

The rest of the paper is organized as follows. Section 2 describes the
details of the new implementation of blocked Hessenberg reduction. The
algorithmic parameters and their interaction are identified and discussed in
Section 2.1. Section 3 describes techniques used within the framework to
efficiently search the huge search space. Section 4 describes the architecture
of the auto-tuning framework. Section 5 shows experimental results. Finally,
Section 6 sums up the paper and outlines future work.

2 NUMA-Aware Hessenberg Reduction

Hessenberg reduction is a similarity transformation that maps a matrix A ∈
Rn×n to an upper Hessenberg matrix H = QTAQ, where Q is an orthogonal



matrix. The current state-of-the-art algorithm [12] performs the reduction
in a blocked manner. The matrix is reduced iteratively one block of columns
(called a panel) at a time from left to right. Each panel is reduced column-
by-column using Householder reflectors. The reflectors are also applied to
the rest of the matrix to update it. Most of the work associated with the
updates are delayed. More precisely, one iteration consists of two phases:
a (panel) reduction phase, in which the panel is reduced, and an (delayed)
update phase, in which the delayed updates are fully applied. Let I−V TV T

denote the compact WY representation [13] of all reflectors from one panel
reduction. One iteration logically applies the similarity transformation

A← (I − V TV T )TA(I − V TV T ) = (I − V TV T )T (A− Y V T ), (1)

where Y = AV T ; see [12] for details. Our recently developed NUMA-aware
parallel variant of [12] is summarized in Algorithm 1.

Figure 1 shows the shapes of A, V , and Y after the first k columns of A
have been reduced. Here b refers to the width (number of columns) of the
next panel.

In the reduction phase, the panel A22 is reduced. To reduce a column in
A22, the column is first updated using (1), lines 6 to 7, and then reduced by a
Householder reflection, line 8. The reflection is augmented into the compact
WY representation. This process affects Y2, T , and V , lines 9 to 15.

The operations in the reduction phase are mainly matrix–vector oper-
ations, which therefore makes the whole phase memory-bound. The most
expensive operation is a large matrix–vector multiplication involving A2,2:3

during the computation of y, lines 9 to 10. To perform this multiplication
efficiently, our NUMA-aware algorithm [7] uses the PCA technique [5, 4, 10].
This makes for efficient utilization of the aggregate cache capacity and more
localized access to main memory. Applying PCA means to (logically or
physically) distribute the data over the threads/cores and then distribute
the work according to the owner-computes rule. Concretely, before the start
of the reduction phase, A2,2:3 is partitioned into uniform row blocks and each
block is assigned to one thread.

The NUMA-aware algorithm provides two alternative parallelization strate-
gies for the reduction phase. In the partial parallelization strategy, multi-
threading is used only for the most expensive multiplication (i.e., lines 9
to 10) while in the full parallelization strategy multi-threading is used for
most of the operations.

In the update phase, Y1 is efficiently computed directly from its definition
Y = AV T and A12, A13, and A23 are updated using (1), lines 16 to 19. All
operations in this phase are efficient matrix multiplications, which makes it
compute-bound. All computations in the update phase are parallelized.



Algorithm 1: Parallel blocked Hessenberg reduction using PCA.

// Outer loop over panels
1 foreach panel do

// Select strategy
2 if s = full then p← tr else p← 1
3 Partition A, V , and Y as in Figure 1 with panel width b
4 Assign and redistribute data to workers

// Reduction Phase
5 foreach column a in panel A2,2 do
6 parfor i← 1 : p do

7 Update column a(i) of A2,2

8 Construct a Householder reflection that reduces column a of
A2,2

9 parfor i← 1 : tr do

10 Compute column y(i) of Y2

11 parfor i← 1 : p do

12 Compute column t(i)

13 parfor i← 1 : p do

14 Update column y(i) of Y2 using t

15 Augment Y , T , and V

// Update Phase
16 parfor i← 1 : tu do
17 Update A2,3 from the right and left
18 Compute block Y1 of Y
19 Update A1,2:3 from the right

2.1 Algorithmic Parameters

There are four families of tunable parameters in the NUMA-aware algorithm
(see Table 1). There is one instance of each parameter per iteration of the
algorithm, which means that there are 4N parameters to tune if there are
N iterations. A complicating factor is that N in turn depends on the values
chosen for the panel width parameters (b). Since our particular context (as
a part of AED) implies that n might be relatively small compared to p, it
may turn out to be sub-optimal to use all available cores, especially towards
the end of the computation. The parameters tr and tu therefore specify the
number of threads/cores (≤ p) to use in the reduction and update phases,
respectively.
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Figure 1: Partitioning of matrix A after reducing the first k columns, and
Y and V will be used to reduce the panel A22.

Table 1: The four families of algorithmic parameters.
Parameter name Type Domain Affected

phases

Panel width (b) Integer {1, . . . , n− k} Both
Parallelization strategy (s) Category {Full,Partial} Reduction
No. of reduction threads (tr) Integer {1, . . . , p} Reduction
No. of update threads (tu) Integer {1, . . . , p} Update

3 Techniques Used within the Framework

At the heart of the framework is a search module (see Section 4.1 ahead),
which abstracts any standard auto-tuning method behind a generic interface.
The main aim of the framework is to extend the very limited capability of
the tuning algorithm within the search module into a complete auto-tuner
for the NUMA-aware algorithm. The framework achieves this by employing
three specific techniques described in this section.

3.1 Decomposition into Independent Sub-Problems

Since the algorithm consists of an outer loop with non-overlapping itera-
tions, it is reasonable to assume that parameters from different iterations
are largely uncoupled. However, the four parameters within an iteration do
strongly interact and must therefore be tuned together. This leads to the
thought of decomposing the problem of tuning all 4N parameters at once
into tuning N independent sets of 4 parameters. Yet, since the number of
iterations, N , depends on one of the parameter families (the panel width)



this idea cannot be directly applied.
By analyzing Algorithm 1 and Figure 1 it becomes clear that the shape

of A at the start of an iteration depends only on n and k. We (logically)
associate a sub-problem with each (valid) pair (n, k). The sub-problem for
(n, k) is defined as finding optimal parameter settings for the four parameters
in the upcoming iteration. But optimal in what sense? Minimizing the time
will not work since the panel width affects both the amount of work and the
progress made. Instead the objective function (for the sub-problem) is to
maximize the performance

P =
Fr + Fu

Tr + Tu
,

where Fr and Fu are the flop counts for the reduction and update phases,
respectively, and Tr and Tu are the corresponding wall clock times.

We collect the values of the parameters for one sub-problem into a 4-
tuple referred to as a parameter tuple. We arrange all the N parameter
tuples as columns (from left to right) of a table referred to as a parameter
table. The objective for the auto-tuner represented by the framework is to
find a parameter table that minimizes the total execution time.

3.1.1 Concurrent Solution of Several Sub-Problems.

The size of a parameter table depends on the number of iterations, which in
turn depends on the chosen panel widths. For an input matrix of fixed size n,
there are as many as n− 2 possible sub-problems (n, k) for k = 0, 1, . . . , n−
3. Any particular parameter table therefore consists of parameter tuples
extracted from some subset of the sub-problems.

One full execution of the Hessenberg algorithm uses N parameter tuples
provided by the framework and in turn feeds back time measurements used
by the framework to make progress on N sub-problems. In other words,
the framework can concurrently solve several sub-problems. But note, how-
ever, that exactly which subset of the n − 2 sub-problems are relevant for
a given execution depends on the chosen panel widths. See Figure 2 for
an illustration of the relationships between sub-problems, parameter tuples,
and parameter tables. The framework logically keeps track of n−2 partially
solved sub-problems and after each particular execution of the Hessenberg
algorithm is able to make progress on some subset of them.

3.2 Binning Similar Sub-Problems

Two distinct sub-problems (n, k) and (n′, k′) are similar if n ≈ n′ and k ≈ k′

simply because the shapes of all operands are similar. What this means is
that we could (with some loss of accuracy) treat the two as one single sub-
problem. This has several benefits. First, it reduces the total number of
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Figure 2: Two examples of parameter tables for n = 15.

sub-problems that need to be solved. Second, it allows the effort invested
into making progress on one sub-problem to benefit also other (similar) sub-
problems.

Specifically, we group adjacent sub-problems into bins and tune each bin
as if it represents a single sub-problem. The bins are rectangular of size
∆n ×∆k as illustrated by the example in Figure 3 for ∆n = 2 and ∆k = 3.
In particular, the sub-problems (10, 4) and (9, 6) belong to the same bin
(4, 2).
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Figure 3: Binning of (12× 12) space using bins of size (2× 3).



3.3 Searching in Multiple Stages

Parameter tuples that yield good performance have a strong tendency (in
this application) to cluster in one region of the search space. By performing
the search in multiple stages, we can (potentially) more rapidly localize the
search to this promising region. The idea is to start with a sparse but well
distributed subset of the search space in the first stage of the search. Once
(near-)convergence is reached, the search space is made denser and also
restricted to a region around the converged point in subsequent stages.

For example, consider the two-stage search in Figure 4 which involves
only tr and tu for simplicity. The goal is to optimize within the domain
{1, . . . , 10}. In the first stage, we choose the sparse but well distributed
sub-domain {1, 4, 7, 10} (large green dots). Suppose the search in the first
stage converges to the point (tr, tu) = (4, 7) (red cross). Then we include
more points and restrict the search in the second stage to the sub-domain
{2, 3, 4, 5, 6} for tr and {5, 6, 7, 8, 9} for tu.
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Figure 4: Two-stage search for 2D parameter space.

4 The Framework’s Architecture

This section describes the software architecture of the framework. There
are three modules: the Search Module, the Management Module, and the
Database Module (see Figure 5).

4.1 The Search Module

The purpose of the Search Module is to encapsulate some standard auto-
tuning method behind an abstract interface. The framework does not pro-
vide any implementation of this module by itself.

The Search Module has two primary functions: choose a parameter tuple
for a given sub-problem and advance the search for a given sub-problem
by one step in response to feedback. The module implementation itself is
supposed to be state-less. A search state is instead encapsulated by the
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implementation into an opaque object1 that is externally managed by the
framework (see Sections 4.2 and 4.3 ahead). Since the specifics of what
constitutes a “search state” depends entirely on the implementation of the
Search Module, the framework views these objects as binary blobs2 with no
structure.

The Search Module exposes the following interface:

• Create–State: Creates a new state.

• Select–Parameters: Chooses a parameter tuple for the next itera-
tion.

• Receive–Feedback: Receives feedback from the previous execution.

• Update–State: Performs one search step using previous feedback.

• Check–Convergence: Check if the search has converged.

4.2 The Management Module

The Management Module provides the glue that binds all the other modules
together with the user input/output and the Hessenberg algorithm.

The core functions of the Management Module are as follows:

• Construct the next parameter table to use.

• Run the Hessenberg algorithm with the chosen parameter table.

1An object whose content and structure are not concretely known.
2Collection of data stored in binary as a single entry.



• Feed back measurements to the active sub-problems.

Construct parameter table. Starting from k = 0 and repeatedly calling
the Select–Parameters function of the Search Module (and updating
k ← k + b in between), a complete parameter table can be constructed
column by column from left to right. The search state to use is either fetched
from the Database Module or initialized using Create–State. Binning is
applied before looking up a search state. The process of constructing a
parameter table also implicitly selects the subset of active sub-problems,
i.e., sub-problems which are going to be used in the next execution. So
before calling Select–Parameters, the function Update–State is called
on to make one step in the optimization algorithm (except initially when
there is no feedback available). Furthermore, if the Check–Convergence
function signals convergence, then the state is re-initialized with the search
space used in the next stage of the multi-stage search.

Run the Hessenberg algorithm. The parameter table is passed along-
side the other inputs to the Hessenberg algorithm. The computed matrices
are output to the user.

Feed back measurements. The internal time measurements from each
iteration are fed back to the active sub-problem search states using the
Receive–Feedback function. The active states are kept in the Manage-
ment Module until the measurements are fed back and afterwards they sent
to the Database Module.

4.3 The Database Module

The Database Module stores the binary blobs representing the opaque search
states. The search states are indexed by the bin coordinates (bin ID).

5 Experimental Results

The framework by itself cannot be meaningfully tested since it is depen-
dent on an implementation of the Search Module. So in order to test the
framework we implemented the Search Module using the Nelder-Mead al-
gorithm [11]. This is neither the best nor the worst choice of algorithm.
Ultimately the choice is not so important since the aim of this section is to
show that the framework is able to make gradual improvements of the over-
all performance even though the actual optimization is only performed on
small sub-problems. What the most effective implementation of the Search
Module looks like is an open problem and something we do not contemplate
in this paper.



In the experiments we used bins of size 10 × 10 and multi-stage search
spaces as defined by Table 2, where b′, t′r, t

′
u refer to the best values found

in the first stage. Figure 6 shows the execution times (dots) of 500 execu-
tions for a matrix of order n = 1000. The curve shows a moving average
of 50 consecutive measurements. The results indicate that in general the
performance is indeed improving over time.
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Figure 6: Execution time of 500 runs of the new Hessenberg reduction al-
gorithm for n = 1000 using the framework. The red curve represents the
moving average for a window of size 50.

Table 2: The search spaces used in multi-stage search.
Parameter symbol 1st stage domain 2nd stage domain

b 10 : 10 : 100 b′ − 9 : b′ + 10
s {Full,Partial} {Full,Partial}
tr 6 : 6 : 48 t′r − 5 : t′r + 6
tu 6 : 6 : 48 t′u − 5 : t′u + 6

6 Summary

In this paper we propose a modular auto-tuning framework that helps with
tuning the parameters of a recently developed Hessenberg reduction algo-
rithm. A brief description of the new algorithm and its parameters are
presented. The algorithm’s parameters interact with each other and span
a huge search space which makes using generic tuning methods and tools
like [1, 6, 8] not directly applicable. Such tools, despite been successfully



used in solving other problems, can not deal with a problem which has a vari-
able number of tunable parameters (like the one we have). Specially when
this number depends on the value chosen for some of the tuned parameters
them selves.

In contrast, the proposed framework facilitate that. The framework
applies several techniques which allow searching the huge search space effi-
ciently. Specifically, the framework decomposes the search space into smaller
subspaces revealing standard auto-tuning sub-problems which can be tuned
independently and concurrently. In addition, the framework groups simi-
lar sub-problems together in a single bin and tune them as one problem,
which reduces the total number of sub-problems that need to be tuned, and
propagate the progress made in tuning one sub-problem to other similar
sub-problems. The framework also applies a multi-stage search, which, in
one stage, allows for fast discovery of a promising region, where, in a later
stage, the search is localized.

Besides solving the complex problem of the huge search space, the frame-
work defines an abstract module with clear interface which can encapsu-
late any standard optimization methods or generic tuning tools, includ-
ing [1, 6, 8], to expand its capabilities. This abstract module allows the
experimentation with different tuning algorithms.

For testing the framework’s ability to improve the overall performance
of the new Hessenberg reduction algorithm, we used the Nelder-Mead algo-
rithm in the search module. The results show that the performance of the
new Hessenberg reduction algorithm is gradually improving over time.

Future work includes experimenting with both generic and specialized
tuning algorithms in the search module and apply the idea underlying the
framework to other linear algebra algorithms besides Hessenberg reduction.
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