
Negative Stride in the Column-Major Format
Makes Sense and has Useful Applications

Lars Karlsson and Carl Christian Kjelgaard Mikkelsen

Department of Computing Science, Umeå University
{larsk, spock}@cs.umu.se

Abstract

Two lower triangular or two upper triangular matrices of the same size can be
stored with minimal memory footprint. If both positive and negative strides are used,
then both matrices can be accessed as if they were stored in regular column-major
format.

1 Introduction
We say that a matrix A of size n×n is stored in the column-major format if element A(i, j)
is mapped to offset i + js relative to some pointer A. The integer s is referred to as the
stride. Typically, s = n to ensure that a dense matrix is mapped to a contiguous block of
memory. The column-major format is an example of a full storage format since it can be
used to store a fully dense matrix (i.e., no two distinct elements are mapped to the same
offset).

A compact storage format exploits a structural property to store the matrix using less
than n2 memory cells. For example, an upper triangular matrix can be stored compactly by
mapping A(i, j) to i + j(j + 1)/2. This maps the matrix to a contiguous block of memory
of size n(n + 1)/2. However, since the mapping from matrix element to memory offset
is different compared to the column-major format, existing codes that access the matrix
elements using the column-major mapping will be incompatible with this compact storage
format.

Apart from reducing the memory footprint, compact storage formats have positive
implications for the performance of communication. A triangular matrix stored in a full
storage format is non-contiguous in memory. To communicate such a matrix one must
either send the entire buffer, explicitly pack the matrix into a contiguous buffer, or use
some non-contiguous communication functionality. All these options are presently slower
than simply communicating a contiguous block of memory of minimal size. In other words,
a compact storage format can improve the performance of communication.

1



If we have more than one structured matrix, then one can potentially construct ways
of storing these matrices that requires less memory while at the same time allowing each
matrix to be accessed as if it was stored in the column-major format. We will demonstrate
this principle with an example. Let A be a lower triangular matrix of size n × n and let B
be an upper triangular matrix of the same size. Embed A and B into a matrix C of size
n × (n + 1) as illustrated below for n = 5:

C =


a00 b00 b01 b02 b03 b04
a10 a11 b11 b12 b13 b14
a20 a21 a22 b22 b23 b24
a30 a31 a32 a33 b33 b34
a40 a41 a42 a43 a44 b44

 .

Store C in the column-major format with pointer C and stride n. Element A(i, j) is
embedded at C(i, j) and is therefore stored at

C + i + jn.

In other words, the lower triangle of A is accessible as if A was stored in the column-major
format with pointer A = C and stride n. Similarly, element B(i, j) is embedded at C(i, j+1)
and is therefore stored at

C + i + (j + 1)n = (C + n) + i + jn.

In other words, the upper triangle of B is accessible as if B was stored in the column-major
format with pointer B = C + n and stride n.

As this example demonstrates, reducing the memory footprint while maintaining a
column-major mapping is possible. In Section 2 we show how the use of both positive and
negative strides allows us to extend this result to the case where both matrices are lower
(or upper) triangular.

2 The main idea
The lower triangular case is treated in Section 2.1 and the upper triangular case in Sec-
tion 2.2. A brief comparison is made in Section 2.3.

2.1 Lower triangular matrices
Let A and B be two lower triangular matrices of size n×n. There are at least two distinct
ways to embed A and B into a dense matrix C. These options are illustrated below for

2



n = 5:

C1 =



b44 b33 b22 b11 b00
a00 b43 b32 b21 b10
a10 a11 b42 b31 b20
a20 a21 a22 b41 b30
a30 a31 a32 a33 b40
a40 a41 a42 a43 a44


, C2 =


a00 b44 b33 b22 b11 b00
a10 a11 b43 b32 b21 b10
a20 a21 a22 b42 b31 b20
a30 a31 a32 a33 b41 b30
a40 a41 a42 a43 a44 b40

 .

The matrix C1 is stored in column-major format with pointer C1 and stride n + 1. The
matrix A has pointer A1 = C1 + 1 and stride n + 1, so that A(i, j) is stored at

A1 + i + j(n + 1).

The matrix B has pointer B1 = C1 + (n + 1)(n − 1) and stride −(n + 2), so that B(i, j) is
stored at

B1 + i + j(−n − 2).
The matrix C2 is stored in column-major format with pointer C2 and stride n. In this case
A has pointer A2 = C and stride n, so that A(i, j) is stored at

A2 + i + jn.

Similarly, B has pointer B2 = C + n2 and stride −(n + 1), so that B(i, j) is stored at

B2 + i + j(−n − 1).

At this point we have no reasons to prefer embedding C1 over embedding C2. After treating
the upper triangular case, we will explain why we prefer embedding C1.

2.2 Upper triangular matrices
If D and E are two upper triangular matrices of size n × n, then there are at least two
distinct ways to embed them into a dense matrix F . These options are illustrated below
for n = 5:

F1 =



e00 e01 e02 e03 e04
d04 e11 e12 e13 e14
d14 d03 e22 e23 e24
d24 d13 d02 e33 e34
d34 d23 d12 d01 e44
d44 d33 d22 d11 d00


, F2 =


d04 e00 e01 e02 e03 e04
d14 d03 e11 e12 e13 e14
d24 d13 d02 e22 e23 e24
d34 d23 d12 d01 e33 e34
d44 d33 d22 d11 d00 e44

 .

The matrix F1 is stored in column-major format with pointer F1 and stride n + 1. The
matrix D has pointer D1 = F1 + n(n + 1) − 1 and stride −(n + 2), so that D(i, j) is stored
at

D1 + i + j(−n − 2).

3



The matrix E has pointer E1 = F1 and stride n + 1, so that E(i, j) is stored at

E1 + i + j(n + 1).

The matrix F2 is stored in column-major format with stride n. In this case, the matrix D
has pointer D2 = F2 + n2 − 1 and stride −(n + 1), so that D(i, j) is stored at

D2 + i + j(−n − 1).

Similarly, E has pointer E2 = F2 + n and stride n, so that E(i, j) is stored at

E2 + i + jn.

2.3 Comparison of the upper and lower triangular case
At this time we have no strong reasons for preferring embedding C1 (F1) over C2 (F2).
However, embeddings C1 and F1 have an aesthetically pleasing property, which can perhaps
serve as a mnemonic device. For matrix C1 the first and the last entry is occupied by the
last entry of one of the two lower triangular matrices. For matrix F1 the first and the last
entry is occupied by the first entry of one of the two upper triangular matrices.

3 Conclusion
We have shown how to store any pair of triangular matrices of the same size with minimal
memory footprint and still access the relevant portions of the matrices as if they were
stored in the column-major format. The idea can be extended in various ways (e.g., to
any number of matrices, to matrices of different sizes, and to the row-major format) but
not always with minimal memory footprint. Applications include reducing the memory
footprint and increasing the rate of communication over a network or between host and
accelerator.

4


