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Abstract. Order-Preserving DAG Grammars (OPDGs) is a subclass of
Hyper-Edge Replacement Grammars that can be parsed in polynomial
time. Their associated class of languages is known as Ordered DAG Lan-
guages, and the graphs they generate are characterised by being acyclic,
rooted, and having a natural order on their nodes. OPDGs are useful
in natural-language processing to model abstract meaning representa-
tions. We state and prove a Myhill-Nerode theorem for ordered DAG
languages, and translate it into a MAT-learning algorithm for the same
class. The algorithm infers a minimal OPDG G for the target language
in time polynomial in G and the samples provided by the MAT oracle.

1 Introduction

Graphs are one of the fundamental data structures of computer science, and
appear in every conceivable application field. We see them as atomic structures
in physics, as migration patterns in biology, and as interaction networks in so-
ciology. For computers to process potentially infinite sets of graphs, i.e., graph
languages, these must be represented in a finite form akin to grammars or au-
tomata. However, the very expressiveness of graph languages often causes prob-
lems, and many of the early formalisms have NP-hard membership problems;
see, e.g., [15] and [8, Theorem 2.7.1].

Motivated by applications in natural language processing (NLP) that require
more light-weight forms of representation, there is an on-going search for gram-
mars that allow polynomial time parsing. A recent addition to this effort was
the introduction of order-preserving DAG grammars (OPDGs) [3]. This is a re-
stricted type of hyper-edge replacement grammars [8] that generate languages of
directed acyclic graphs in which the nodes are inherently ordered. The authors
provide a parsing algorithm that exploits this order, thereby limiting nondeter-
minism and placing the membership problem for OPDGs in O(n2 + nm), where
m and n are the sizes of the grammar and the input graph, respectively. This is
to be compared with the unrestricted case, in which parsing is NP-complete.

The introduction of OPDGs is a response to the recent application [5] of
Hyperedge Replacent Grammars (HRGs) to abstract meaning representations
(AMRs) [2]. An AMR is a directed acyclic graph that describes the semantics of a
natural language sentence. Although restricted, OPDGs retain enough expressive
power to capture AMRs.



In this paper, we continue to explore the OPDGs mathematical properties.
We provide an algebraic representation of their domain, and a Myhill-Nerode
theorem for the ordered DAG languages. We show that every ordered DAG
language L is generated by a minimal unambiguous OPDG G, and that this
grammar is unique up to renaming of nonterminals. In this context, ‘unambigu-
ous’ means that every graph is generated by at most one nonterminal. This is
similar the behaviour of deterministic automata, in particular that of bottom-up
deterministic tree automata which take each input tree to at most one state.

One way of understanding the complexity of the class of ordered DAG lan-
guages, is to ask what kind of information is needed to infer its members. MAT
learning [1], where MAT is short for minimal adequate teacher, is one of the most
popular and well-studied learning paradigms. In this setting, we have access to
an oracle (the teacher) that can answer membership queries and equivalence
queries. In a membership query, we present the teacher with a graph g and are
told whether g is in the target language L. In an equivalence query, we give
the teacher an OPDG H and receive in return an element in in the symmet-
ric difference of L(H) and L. This element is called a counterezample. If L has
been successfully inferred and no counterexample exists, then the teacher instead
returns the special token .

MAT learning algorithms have been presented for a range of language classes
and representational devices [1,16,17,9,11,4,13]. There have also been some re-
sults on MAT learning for graph languages. Okada et al. present an algorithm
for learning unions of linear graph patterns from queries [14]. These patterns
are designed to model structured data (HTML/XML). The linearity of the pat-
terns means that no variable can appear more than once. Hara and Shoudai
do MAT learning for context-deterministic regular formal graph systems [10].
Intuitively, the context determinism means that a context uniquely determines
a nonterminal, and only graphs derived from this nonterminal may be inserted
into the context. Both restrictions are interesting, but neither is compatible with
our intended applications.

2 Preliminaries

Sets, sequences and numbers. The set of non-negative integers is denoted by N.
For n € N| [n] abbreviates {1,...,n}, and (n) the sequence 1 - - - n. In particular,
[0] = 0 and (0) = A. We also allow the use of sets as predicates: Given a set
S and an element s, S(s) is true if s € S, and false otherwise. When = is an
equivalence relation on S, (S/ =) denotes the partitioning of S into equivalence
classes induced by =. The indez of = is |(S/ =)|. For s € S, [s]=, or simply [s],
is the equivalence class of s with respect to =.

Let S° be the set of non-repeating sequences of elements of S. We refer to
the ith member of a sequence s as s;. When there is no risk for confusion, we use
sequences directly in set operations, as the set of their members. Given a partial
order < on S, the sequence s; - - - 53 € S° respects = if 5; < s; implies 7 < j.



A ranked alphabet is a pair (X, rank) consisting of a finite set X of symbols
and a ranking function rank : X +— N which assigns a rank rank(a) to every
symbol a € ¥. The pair (X, rank) is typically identified with X', and the second
component is kept implicit.

Graphs. Let X be a ranked alphabet. A (directed edge-labelled) hypergraph over
XY is a tuple g = (V, E, sre, tar, lab) consisting of

— finite sets V and E of nodes and edges, respectively,

— source and target mappings src: E — V and tar: F — V° assigning to each
edge e its source src(e) and its sequence tar(e) of targets, and

— a labelling lab: E — X such that rank(lab(e)) = |tar(e)| for every e € E.

Since we are only concerned with hypergraphs, we simply call them graphs.

A path in g is a finite and possibly empty sequence p = eq, ea, ..., e of edges
such that for each ¢ € [k — 1] the source of e;4; is a target of e;. The length
of pis k, and p is a cycle if src(ey) appears in tar(ex). If g does not contain
any cycle then it is a directed acyclic graph (DAG). The height of a DAG G
is the maximum length of any path in ¢g. A node v is a descendant of a node

u if w = v or there is a nonempty path eq,...,e; in g such that u = src(ey)
and v € tar(eg). An edge €’ is a descendant edge of an edge e if there is a path
e1,...,e, in g such that e; = e and e, = ¢’.

The in-degree and out-degree of a node v € V' is |{e € E | u € tar(e)}| and
[{e € E | u= src(e)}|, respectively. A node with in-degree 0 is a root and a node
with out-degree 0 is a leaf. For a single-rooted graph g, we write root(g) for the
unique root node.

For anode u of a DAG g = (V, E, src, tar, lab), the sub-DAG rooted at u is the
DAG glwu induced by the descendants of u. Thus glu = (U, E', src’, tar’, lab")
where U is the set of all descendants of u, B/ = {e € E | sre(e) € U}, and
sre!, tar’, and lab’ are the restrictions of sre, tar and lab to E’. A leaf v of
glu is reentrant if there exists an edge e € E'\ E’ such that v occurs in tar(e).
Similarly, for an edge e we write gl e for the subgraph induced by src(e), tar(e),
and all descendants of nodes in tar(e). This is distinct from subggsrc(e) iff srce
has out-degree greater than 1.

Marked graphs. Although graphs, as defined above, are the objects we are ul-
timately interested in, we will mostly discuss marked graphs. When combining
smaller graphs into larger ones, whether with a grammar or algebraic operations,
the markings are used to know which nodes to merge with which.

A marked DAG is atuple g = (V, E, sre, tar, lab, X ) where (V, E, src, tar, lab)
is a DAG and X € V° is nonempty. The sequence X is called the marking of g,
and the nodes in X are referred to as external nodes. For X = vgvy - - - v, we
write head(g) = vo and ext(g) = vy - - - vg. We say that two marked graphs are
isomorphic modulo markings if their underlying unmarked graphs are isomor-
phic. The rank of a marked graph g is |ext(g)].



Graph operations. Let g be a single-rooted marked DAG with external nodes X
and |ext(g)] = k. Then g is called a k-graph if head(g) is the unique root of g,
and all nodes in ext(g) are leaves.

If head(g) has out-degree at most 1 (but is not necessarily the root of g),
and either head(g) has out-degree 0 or exzt(g) is exactly the reentrant nodes
of g | head(g), then g is a k-context. We denote the set of all k-graphs over
Y by G%, and the set of all k-contexts over ¥ by Ck. Furthermore, Gy =
UkeNGg and Cy = UkeN(C]E. Note that the intersection Gy NCjy; is typically not
empty. Finally, the empty contexrt consisting of a single node, which is external,
is denoted by €.

Given g € G% and ¢ € C%, the substitution c[g] of g into c is obtained
by first taking the disjoint union of ¢ and ¢, and then merging head(g) and
head(c), as well as the sequences ext(g) and ext(c) element-wise. The results is
a single-rooted, unmarked DAG.
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Fig. 1. A 2-context ¢, a 2-graph g, and the concatenation c[g]. Filled nodes convey the
marking of ¢ and g, respectively. Both targets of edges and external nodes of marked
graphs are drawn in order from left to right unless otherwise noted.

Let g be a graph in G%, e an edge and let h be the marked graph given by
taking g | e and marking the (single) root, and all reentrant nodes. Then the
quotient of g € G% with respect to h, denoted g/h is the unique context ¢ € C’g
such that c¢[h] = g. The quotient of a graph language L C Gy with respect to
g € Gy is the set of contexts L/g = {c| c[g] € L}.

Let A be a symbol of rank k. Then A® is the graph (V,{e}, src, tar, lab, X),
where V' = {vg,v1,...,05}, sre(e) = vo, tar(e) = vy...vx, lab(e) = A, and
X = vg...vk. Similarly, A® is the very same graph, but with only the root
marked, in other words, X = vy.

3 Well-ordered DAGs

In this section, we present two formalisms for generating languages of DAGs,
one grammatical and one algebraic. Both generate graphs that are well-ordered
in the sense defined below. We show that the two formalisms define the same
families of languages. This allows us to use the algebraic formulation as a basis
for the upcoming Myhill-Nerode theorem and MAT learning algorithm.



An edge e with tar(e) = w is a common ancestor edge of nodes u and v’ if
there are ¢ and ¢’ in w such that u is a descendant of ¢ and v’ is a descendant of
t'. If, in addition, there is no edge with its source in w that is a common ancestor
edge of u and 1/, we say that e is a closest common ancestor edge of u and u’.
If e is a common ancestor edge of u and v we say that e orders u and v, with u
before v, if tar(e) can be written as wtw’, where ¢ is an ancestor of u and every
ancestor of v in tar(e) can be found in w’.

The relation =, is defined as follows: u <, v if every closest common ancestor
edge e of u and v orders them with u before v. It is a partial order on the leaves
of ¢g[3]. Let g be a graph. We call g well-ordered, if we can define a total order <
on the leaves of g such that <,C <, and for every v € V and every pair u,u’ of
leaves of glv, u =41, v/ implies v < u'.

3.1 Order-preserving DAG grammars

Order-preserving DAG grammars (OPDGs) are essentially hyper-edge replace-
ment grammars with added structural constraints to allow efficient parsing.!
The idea is to enforce an easily recognisable order on the nodes of the gener-
ated graphs, that provides evidence of how they were derived. The constraints
are rather strict, but even small relaxations make parsing NP-hard; for details,
see [3]. Intuitively, the following holds for any graph g generated by an OPDG:

— ¢ is a connected, single-rooted DAG,
— only leaves of g have in-degree greater than 1, and
— g is well-ordered

Definition 1 (Order-preserving DAG grammar [3]). An order-preserving
DAG grammar is a system H = (X, N, I, P) where X and N are disjoint ranked
alphabets of terminals and nonterminals, respectively, I is the set of starting
nonterminals, and P is a set of productions. Each production is of the form

A — f where A€ N and f € GSS%A) satisfies one of the following two cases:

1. f consists of exactly two nonterminal edges ey and ez, both labelled by A,
such that src(er) = src(ez) = head(f) and tar(e1) = tar(es) = ext(f). In
this case, we call A — f a clone rule.

2. f meets the following restrictions:

— no node has out-degree larger than 1

— if a node has in-degree larger than one, then it is a leaf;

— if a leaf has in-degree exactly one, then it is an external node or its
unique incoming edge is terminal

— for every nonterminal edge e in f, all nodes in tar(e) are leaves, and

src(e) # head(f)
— the leaves of f are totally ordered by =; and ext(f) respects <y.

! In [3], the grammars are called Restricted DAG Grammars, but we prefer to use a
name that is more descriptive.
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Fig. 2. Examples right-hand sides f of normal form rules of types (a), (b), and (c) for
a nonterminal of rank 3.

A derivation step of H is defined as follows. Let p = A — f be a production, g
a graph, and g4 a subgraph of g isomorphic modulo markings to A®. The result
of applying p to g at g4 is the graph ¢ = (9/94)[f], and we write g =, ¢'.
Similarly, we write g =%, ¢’ if ¢’ can be derived from g in zero or more derivation
steps. The language L£(H) of H are all graphs g over the terminal alphabet X
such that S® =7% g, for some S € I. Notice that since a derivation step never
removes nodes and never introduces new markings, if we start with a graph g
with |ext(g)| = k, all derived graphs ¢’ will have |ext(¢’")| = k. In particular, if
we start from S°, all derived graphs will have |ext(g")| = rank(S).

Definition 2 (Normal form [3]). An OPDG H is on normal form if every
production A — f is in one of the following forms:

(a) The rule is a clone rule.

(b) [ has a single edge e, which is terminal.

(¢) f has height 2, the unique edge e with src(e) = head(f) is terminal, and all
other edges are nonterminal.

We say that a pair of grammars H and H' are language-equivalent if L(H) =
L(H"). As shown in [3], every OPDG H can be rewritten to a language-equivalent
OPDG H’ in normal form in polynomial time.

For a given alphabet X', we denote the class of graphs Uy is an opncL(H)
that can be generated by some OPDG by Hyx, and by H% the set of rank k
marked graphs that can be generated from a rank k& nonterminal.

3.2 DAG concatenation

In sections 4 and 5, we need algebraic operations to assemble and decompose
graphs. For this purpose, we define graph concatenation operations that mirror
the behaviour of our grammars and show that the class of graphs that can be
constructed in this way is equal to Hy.

In particular, we construct our graphs in two separate ways, mirroring the
cloning and non-cloning rules of the grammars:

— 2-concatenation, which takes 2 rank-m graphs and merges their external
nodes. This corresponds to the clone rules in Definition 2.



— a-concatenation, for a € X, takes an a-labelled rank(a) terminal edge and a
number (less than or equal to rank(a)) of marked graphs, puts the graphs
under targets of the terminal edge, and merges some of the leaves. This
corresponds to rules of type (b) or (c) in Definition 2.

The second operation is more complex, as we must make sure that the output
conforms to the ordering and structural constraints of OPDG. Given a terminal
a of rank k and a sequence g1, ..., g,, with n < k of marked graphs, we create
new graphs in the following way. We start with a® and, for each i € [n] identify
head(g;) with a unique leaf of a®, intuitively “hanging” g1,..., g, under an edge
labelled a. We then identify some of the leaves of the resulting graph, but only
in such a way that the resulting graph is well-ordered. The intuition is that we
mirror productions of type (b) and (c) from Definition 2, but instead of producing
a graph containing nonterminal edges, we immediately replace the nonterminals
by graphs that can be derived from them. More formally:

Definition 3 (2-concatenation). Let m € N and let g1,92 € G} be disjoint
graphs. A 2-concatenation 2[g1, ga] is obtained by merging the roots and external
nodes of g1 and go. The root and external nodes of 2[g1, go] are the merged roots
and external nodes, respectively.

Observation 4 (k-concatenation) An obvious extension of 2-concatenation
is to use an arbitrary number k of graphs from G% instead of just 2. Such
operations can be implemented using iterated 2-concatenations, and we refer to
them as k-concatenations.

2 — concat

Fig. 3. A 2-concatenation of two graphs

The second operation is more complex, since we must make sure that order
is preserved. Given a terminal a of rank k and a sequence g1, ..., gn, withn < k
of marked graphs, new graphs are created in the following way. We start with
a® and, for each i € [n] identify head(g;) with a unique leaf of a®, intuitively
“hanging” gy, ..., g, under an edge labelled a. We then identify some of the leaves
of the resulting graph. In order to fully specify the result of such a concatenation,
and to make sure that it preserves order, we need to parameterize it with the
following.



(1) A number m. This is the number of nodes we will merge the external nodes
of the graphs g1, ..., g, and the remaining leaves of the a-labelled edge into.

(2) A subsequence s = s1...s, of (k) of length n. This sequence defines under
which leaves of a® we are going to hang which graph.

(3) A subsequence z of (m). This sequence defines which of the leaves of the
resulting graph will be external.

(4) An order-preserving function ¢ that defines which leaves to merge. Its do-
main consists of the external leaves of the graphs ¢gi,...,g, as well as the
leaves of a® to which no graph from g1, ..., g, is assigned. Its range is [m].

Before we describe the details of the concatenation operation, we must go into
the rather technical definition of what it means for ¢ to be order-preserving. It
has to fulfil the following conditions:

(i) If both u and v are marked leaves of g;, for some ¢ € [n], and u comes
before v in ext(g;), then p(u) < p(v).
(ii) If |¢~1(i)] = 1, then either i € x or the unique node v with ¢(v) = i
belongs to a®.
(iii) If there are ¢ and j in [m], with ¢ < j such that no graph g, for ¢ € [n]
contains both a member of ¢~!(i) and a member of p~1(j), then there
exists a p € [k] such that either
— p is the gth member of s, and g, contains a member of o~ 1(q), or
— the pth member of tar(a) is in ¢~1(i)

and furthermore there is no r < p such that either
— r is the tth member of s and g; contains a member of p~1(35), or
— the rth member of tar(a) is itself in ¢ ~1(4)

Definition 5 (a-concatenation). Given a terminal a, the a-concatenation of
G1s-- -, Gn, parameterized by m,s,z, ¢ is the graph g obtained by doing the fol-
lowing. For each i € [n], identify head(g;) with the leaf of a® indicated by s;.
For each j € [m)], identify all nodes in ¢~'(5). Finally, ext(g) is the subsequence
of the m nodes from the previous step indicated by x.

We note that our concatenation operations can be seen as algebraic oper-
ations independent of their input. 2—concatenation is defined for any pair of
graphs, as long as both of them have the same rank. For the a—concatenations,
things are a little bit more complex, but once we fix the parameters m, s, z, ¢, we
can see (a,m, s, x, ) as a well-defined operator that can take any sequence of |s|

Fig. 4. The topmost terminal graph used in a-concatenation, for a rank-4 terminal
symbol a, with the subsequence s of (4) where subgraphs will be attached indicated as
filled leaves



(91,92,93) = ,

Fig.5. The (previously constructed) marked graphs, here used as arguments to our
example a-concatenation.
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Fig. 6. The nodes that leaves are being merged into in an a-concatenation. The sub-
sequence x of external nodes of the concatenated graph are indicated as filled nodes.

Fig. 7. A “halfway done” a-concatenation, where the input graphs has been hanged
underneath the terminal edge, but leaves have not yet been merged. The filled leaves
in the graph indicate the domain of ¢, and the dashed lines show which node in (m)
each leaf is merged into. As previously, x is given by the filled nodes of (m).



Fig. 8. The marked graphs that is result of the complete a-concatenation, including
the merges indicated by ¢

graphs as input, as long as their ranks match what ¢ expects. Indeed, instead of
defining the range of ¢ as the external nodes of the input graphs together with
the unused leaves of a®, i.e., those not indicated by s, we can see it as a function
from numbers and pairs of numbers in the following way. If ¢ is defined for a
leaf ¢ of a® whose position in tar(a) is i, then we redefine ¢ so that (i) = ().
If, on the other hand, ¢ is the jth member of ext(g;), then we set ¢(i,7) = @(¥).

We denote by As the class of marked graphs that can be assembled from X
through a- and 2-concatenation, and by A% C Ay the graphs of rank k.

Each concatenation operation can be defined as an algebraic operation that
takes a number of graphs (of certain ranks) and combines them.

Observation 6 Let ¢ be a concatenation operator and g1, ..., g, a sequence of
graphs for which it is defined. Let g = ¥(g1,...,9n). For some i € n, let ¢’ be a
graph of the same rank as g;. Then ¥(g1,...,9i-1,9,9i+1,---,9n) = (9/9:)[9']-

The following is the main result of this section.

Theorem 7. Ax = Hyx, and A% = 7—[’2 for all k.

Proof. The proof for Ay C Hy is by induction on the size of a graph g. For
the base step, we observe that all connected graphs consisting of a single edge
with the appropriate number nodes trivially belong to both Ayx and Hyx. For
the inductive step, there are two cases.

We first address 2-concatenation. Let g = 2[g1, g2], and assume both ¢; and
g2 are in both H%, and A, for £ = |ext(g)|. Thus, there are OPDGs H; and Ho
generating g and go with some derivations S? = f; =* g; for i € {1,2}. We can
construct an OPDG H that generates g by essentially merging H; and Hs, and
adding a new nonterminal S’ of rank ¢, with a cloning rule and the productions
S’ — f; for i € {1,2}. This will allow the grammar H to generate g, as well as
any k-concatenation involving any combination of the same two graphs.



For a-concatenation, we reason as follows. Let g be obtained from ¢1,...,gn
by applying a-concatenation, parameterized by m, s, x, . Since every g; is smaller
than g, it belongs to Hy, and hence there is an OPDG H; with initial nonter-
minal S;, such that S =* g;. We construct an OPDG H such that g € L(H)
as follows:

— We add all the productions, nonterminals etc. from H;, i € [n], keeping the
sets of nonterminals disjoint.

— We add a starting nonterminal S’ of rank |ezt(g)| and the production S’ = f
where f = (a,m,s,x,p)[ST,..., S0

By the context-freeness lemma for HRGs[8], there is a derivation f =* g. It
remains to be proved that f is a valid right-hand side, and thus H a valid OPDG.
The single edge connected to the root of f is terminal. There are no nodes of out-
degree greater than 1, and only a single layer of n nonterminal edges. Leaves of
in-degree 1 are either connected to the terminal or are external (or both). This
is ensured by item (ii) in the requirements for ¢ to be order-preserving. Any
nonexternal leaves are either connected to the terminal or at least of in-degree
2. Let us now check that the leaves are totally ordered by =<, and moreover
that ext(f) respects it. As there are no nodes of out-degree greater than 1, the
only way =<y can fail to be total is if two leaves u,v have two closest common
ancestor edges e;, e; such that u comes before v in tar(e;), but not in tar(e;).
However, the requirement that ¢ is order-preserving precludes this.

To prove the opposite direction, let H = (X, N, S, P) be an OPDG on normal
form. We show by induction on the length of the derivations that both the
terminal graphs and the intermediate graphs that arise during the derivations
are in Axypn.

Again, the base case is trivial — for any start symbol S, the graph S*® clearly
belongs Axyy. Moving on to the inductive step, we assume that we have a
derivation S® =* g =45 ¢’ with ¢ € Agyy. For the rule A — f to be
applicable, g must have a subgraph A that is isomorphic modulo markings to A®.
We know that ¢’ = (g/h)[f]. We first argue that if f € Asyn, then ¢’ € Asun.
For since h is a part of g, any construction of g using concatenation operators
must at some point use a concatenation operation ¥ (g1,...,gn), with g; = A®
for some i € [n], resulting in a graph h’. By Observation 6, if we use f instead
of A® in this operation, we get a graph (h'/A®)[f]. If in all later concatenations,
we use this graph instead of A/, then, by induction, we will in the end obtain
(g/h)[f] = ¢'. It remains to show that f € Axyn. There are three cases:

(1) A — f is a clone rule, in which case f = 2[A®, A®].
(2) f is a single terminal edge, in which case it is also clearly a member of Ajy;.
(3) f is of height 2, and the single edge of rank k connected to the root is

terminal. This closely mirrors an a-concatenation, where the graphs g1, ... g,

are graphs with just a single nonterminal edge each. The parameters of the

concatenation can be read directly from the form of f. The one thing to
notice is that the conditions that the leaves of f be totally ordered by <y
and that ext(f) respect <y ensures that we can find an order-preserving ¢

and make x be a subsequence of (m). O



4 A Myhill-Nerode theorem

We begin by defining the Nerode congruence for ordered DAG languages. From
here on, let L be such a language. Intuitively, a pair of graphs are equivalent
with respect to L if they can be freely substituted for one another in any context,
without disturbing the resulting graph’s membership in L. For our purposes, it
is useful to view the Nerode congruence as a corner case in a family of relations,
each focusing on a subset of Cy.

Definition 8. Let C' C Cyx. The equivalence relation =1, ¢ on Hsx is given by:
g=rc ¢ if and only if (L/g N C) = (L/g' N C). The relation =f, ¢, is known
as the Nerode congruence with respect to L and is written =y,.

It is easy to see that for two graphs to be equivalent, they must have equally
many external nodes. The graph g is dead (with respect to L) if L/g = @, and
graphs that are not dead are live. Thus, if =, has finite index, there must be a
k € N such that every g € ‘Hy with more than k external nodes is dead.

In the following, we use ¥(X) to denote the set of all concatenation operators
applicable to graphs over X.

Definition 9 (X-expansion). Given N C Ay, we write X(N) for the set:

{091, s9m) |V €V(X), 91, ,gm € N and ¥(g1,...,9m) is defined } .

In the upcoming Section 5, Theorem 13 will form the basis for a MAT learn-
ing algorithm. As is common, this algorithm maintains an observation table T
that collects the information needed to build a finite-state device for the target
language L. The construction of an OPDG G7T from T is very similar to that
from the Nerode congruence, so by introducing it here, we can make use of it
twice. Intuitively, the observation table is made up of two sets of graphs IV and
P, representing nonterminals and production rules, respectively, and a set of
contexts C used to explore the congruence classes of N U P with respect to L.

To facilitate the design of new MAT learning algorithms, the authors of [6]
introduce the notion of an abstract observation table (AOT); an abstract data
type guaranteed to uphold certain helpful invariants.

Definition 10 (Abstract observation table, see [6]). Let N C P C X(N) C
Ay, with N finite. Let C C Cx;, and let p: P — N. The tuple (N, P,C, p) is an
abstract observation table with respect to L if for every g € P,

1. L/g#0, and
2.¥9' e N\{p(9)}:9#Lc 9"

The AOT in [6] accommodates production weights taken from general semir-
ings. The version that we have recalled here has three modifications: First, we
dispense with the sign-of-life function that maps every graph g € N to an el-
ement in L/g. Its usages in [6] are to avoid dead graphs, and to compute the



weights of productions involving g. From the way new productions and nonter-
minals are discovered, we already know that they are live, and as we are working
in the Boolean setting, there are no transition weights to worry about. Second,
we explicitly represent the set of contexts C to prove that the nonterminals in
N are distinct. Both realisations of the AOT discussed in [6] collect such con-
texts, though it is not enforced by the AOT. Third, we do not require that
L(g) = L(p(g)), as this condition is not necessary for correctness, though it may
reduce the number of counterexamples needed. The data fields and procedures
have also been renamed to reflect the shift from automata to grammars. From
here on, we use a bold font when referring to graphs as nonterminals.

Definition 11. Let T = (N, P,C, p) be an AOT with respect to L. Then GT is
the OPDG (X, Nt 1T PT) where Nt = N, I = NN L, and

PT = {p(g) — 1/’(!’(91)7- . 7p(gm)) ‘ g= d)(glv cee 7gm) € P} .

In preparation for Theorem 13, we expand our technical vocabulary. Given
an ODPG G = (X, N, I, P) and a nonterminal f € N, Gy = (¥, N,{f}, P). The
grammar G is unambiguous if for every g,h € N, L(Gg) N L(Gr) # 0 implies
that g = h.

Lemma 12. If =} has finite index, then there is a k € Ny such that for graph
g € Hx with more than k external nodes, L/g is empty.

Proof. If |ext(g)| # |ext(g’)|, then L/g N L/g" = 0. By Definition 8, this means
that either L/g = L/g’ = 0, or that g #, ¢’. Since =, has finite index, {ext(g) |
L/g # 0} must be bounded from above. O

Theorem 13 (Myhill-Nerode theorem). The language L can be generated
by an OPDG if and only if =1, has finite index. Furthermore, there is a minimal
unambiguous OPDG Gy, with L(GL) = L that has one nonterminal for every
live equivalence class of =1, The OPDG G, is unique up to nonterminal names.

Proof. We begin by proving the “if” direction. Let D = {g € Ay | g is dead},
and N be a selection of representative elements of (Ax/ =1) \ {D}. Let P =
Y(N)\ D. Since L has finite index, N and P are finite sets. Finally, let C = Cx
and, for every g € P, let p(g) be the representative of [g]=, in N. It is easy to
verify that T = (N, P, C, p) is an abstract observation table.

Let us now argue by contradiction that (1) g € LZ(GZ(Q)) and g & /J(Gg,), for

every g € Ay \ D and ¢’ € N\ {pg}. Suppose that g ¢ L(Gz(g)). We decompose
g into ¢[¢’] such that Statement 1 is not true for ¢’ = ¥(¢g1,...,gm), but it is
true for every proper subgraph of ¢’.

By construction of T, there is a graph A’ = ¥(p(g1),...,p(gm)) € P, and
hence a production

p(h') = ¢¥(p(g1),....p(gm)) € P* .



Since g1 =1, p(g1), we have ¢ (p(g1), p(g2); - - - P(9m) =L (91, p(92); - - > p(gm))-
As g; =1 p(g;) for all i € [m], we can repeat the argument m — 1 times, and

learn that
B =1(p(g1),- -, p(gm)) =L (g1, 9m) =9

This means that g’ € L(G},.)) = L(G ), contrary to our initial assumption.
The “if” direction is completed by noticing that since g € £(G,T)(g))7

geLGT) = p(g) €l < plg) €L < gL .

Now for the proof of the “only if” direction. Assume that L is generated by the
OPDG H = (X,N,I,P). Forevery g € Hx,let NT(g) ={Ae€ N |ge L(Ha)}.
We show that if, for g,¢' € Hx, NT(g9) = NT(g'), then L/g = L/g'. Suppose
that NT'(g) = NT(g¢’) and that ¢ € L/g. This means that there is a derivation
I =* c[A] =* c[g]. Since A is also in NT'(g'), there is an alternative derivation
I =* c[A] =% c[g']. This is due to the context-freeness of the grammars; see,
e.g., [8], and implies that ¢ € L/g’ which proves the claim. As the powerset of
N is finite, so is the index of =j. This completes the “only if” direction.

To see that GT is an unambiguous OPDG, we note that if g,h € L(G"); for
some f € N, then g = h. There cannot be an unambiguous OPDG with fewer
nonterminals, since then two graphs belonging to different congruence classes
would be generated from the same nonterminal f, and since they can only be
generated from f, they would appear in exactly the same set of contexts. GT
has thus the minimal number of nonterminals. Neither can any production be
removed, as every production is used in the generation of some live graph g € P,
and removing it would cancel all graphs on the form c[g] from the language. We
conclude that GT is a minimal unambiguous OPDG for L, and that it is unique
up to renaming of nonterminals. a

Notice that when L only contains ordered ranked trees (i.e., when the root
has exactly one child and no node has more than one ancestor), then Theorem 13
turns into the Myhill-Nerode theorem for regular tree languages [12], and the
constructed device is essentially the minimal bottom-up tree automaton for L.

5 MAT learnability

In Section 4, the data fields N, P, and C of the AOT were populated with what
is usually called a characteristic set for L, to derive the minimal unambiguous
OPDG G, that generates L. In this section, we describe how the necessary in-
formation can be incrementally built up by querying a MAT oracle. The learning
algorithm interacts with the oracle through the following procedures:

— EQUALS?(H) returns a graph in L(H) S L ={g | L(H)(g9) # L(g)}, or L if
no such exists.
— MEMBER?(g) returns the Boolean value L(g).



The information gathered from the oracle is written and read from the AOT
through the procedures listed below. In the declaration of these, (N, P, C, p) and
(N',P,C",p') are the data values before and after application, respectively. The
procedures are then as follows:

— INITIALISE sets N/ = P/ = C' = (.

— ADDPRODUCTION(g) with g € ¥(N) \ P. Requires that L/g # (), and guar-
antees that N C N and PU {g} C P’.

— ADDNONTERMINAL(c, g) with g € P\ N and ¢ € Cx. Requires that V¢’ €
N : g #r,.cu{ey 9’5 and guarantees that N U {g} € N, P C P', and C C
' CCU{c}.

— GRAMMAR returns GT without modifying the data fields.

Algorithms 1 and 2 are recalled almost exactly as they stand in [6], with
the only adjustments being those needed to go from weighted automata to un-
weighted grammars. Algorithm 1 maintains an AOT T, from which it induces an
OPDG G™'. This OPDG is given to the language oracle LANG in the form of an
equivalence query. If the oracle responds with the token L, then the language has
been successfully acquired. Otherwise, the algorithm receives a counterexample
g € L(GT) & L, from which it extracts new facts about L through the procedure
EXTEND and includes these in T.

The technique used in Algorithm 2, EXTEND, is known as contradiction back-
tracking. We cover it superficially here; a closer discussion is available in [7]. The
contradiction backtracking essentially consists of simulating the parsing of the
counterexample g with respect to the OPDG GT. The simulation is done incre-
mentally, and in each step a subgraph h € X(N)\ N of g is nondeterministically
selected. If h is not in P, this indicates that a production is missing from GT
and the problem is solved by a call to ADDPRODUCTION. If A is in P, then the
algorithm replaces it by p(h) and checks whether the resulting graph ¢’ is in L.
If its membership has changed (i.e., if L(g) # L(g’)), then

evidence has been found that h and p(h) do not represent the same congru-
ence class and the algorithm calls ADDNONTERMINAL. If the membership has
not changed, then the procedure calls itself recursively with the graph ¢’ as argu-
ment, which has strictly fewer subgraphs not in P. Since g is a counterexample,
sois ¢'.

If this parsing process succeeds in replacing all of g with a graph ¢’ € N,
then L(g) = L(g) and g € L(G,,). Since ¢’ € N, L(G")(¢') = L(¢'). Tt follows
that £(G1)(g) = L(g) which contradicts g being a counterexample.

From [6], we know that if EXTEND adheres to the pre- and postconditions of
the AOT procedures, and the target language L can be computed by an OPDG,
then Algorithm 1 terminates and returns a minimal OPDG generating L. It thus
remains to add realisations of ADDPRODUCTION and ADDNONTERMINAL, and
to show that all procedures behave as desired.



Algorithm 1: Template learning algorithm [6]

T.INITIALISE();

while true do

G" + T.GRAMMAR();

g < LaNG.EQuaL?(GT);

if g = 1 then
| return GT
else

| T.EXTEND(g)

Algorithm 2: The procedure EXTEND [6]

Data: g€ L(GT) o L

Decompose g into g = c[h] where ¢ € Cx, h € X(N)\ N;

if h ¢ P then

| T.ADDPRODUCTION(h);

else

if LaANG.MEMBER?(c[h]) # LANG.MEMBER?(c[p(h)]) then
| T.ADDNONTERMINAL(c, h);

else

| Exrenn(cfo(h)]);

Consider the implementations of ADDPRODUCTION and ADDNONTERMINAL,
shown in Algorithm 3 and Algorithm 4, respectively. ADDPRODUCTION simply
adds its argument g to the set P of graphs representing productions. It then
looks for a representative ¢’ for g in N, such that ¢’ =1 ¢ g. If no such graph
exists, it simply chooses any ¢’ € N, or if N is empty, adds g itself to N with
a call to ADDNONTERMINAL. Similarly, ADDNONTERMINAL adds g to the set
N of graphs representing nonterminals. If g cannot be distinguished from p(g),
which is the only element in NV that could possibly be indistinguishable from g,
then ¢ is added to C to tell g and p(g) apart. Finally, the representative function
p is updated to satisfy Condition 2 of Definition 10.

It is easy to verify that (i) the proposed procedures deliver on their guarantees
if their requirements are fulfilled, (ii) that where they are invoked, the require-
ments are indeed fulfilled, and (iii) the conditions on the observation table given
in Definition 10 are always met. By [6, Corollary 8|, we arrive at Theorem 15.



Algorithm 3: The procedure ADDPRODUCTION
Data: p € X(N)\ P

P+ PU{g};
if 3¢ € N:g=r,c g then
| p(9) 45
else
if 3¢’ € N then
IO
else

| ADDNONTERMINAL(e, 9);

Algorithm 4: The procedure ADDNONTERMINAL
Data: g€ P\ N,c€Cx,and Vg ' € N: g #1 cufer 9
N+ NU{g}
if g =1,c p(g) then

L C+ CU{c}h
g < p(9);
for he p~'(¢') do
if h=r,c g then
| p(h) < g;

Lemma 14. For every g € P, g € E(GE(Q)),

Proof. We first prove that for every g € N, g € E(Gg). The argument is by
induction on the number of edges in g. If g consists of a single edge, then g = ¢
for some concatenation operator of rank 0, so the result is trivially true. Assume
now that g = ¥(g1,...,9m). Since N C P C X(N), there is a production
g — ¥(g1,---,9m) € PT and g; € N, i € [m]. By the induction hypothesis,
g9i € L(Gg,), i € [m]. It follows that g € L(G}).

Assume now that g = ¥(g1,...,9m) € P. Since P C ¥(N), g; € N, i € [m].
By the above argument, g; € E(G;) for every i € [m], and since g € P,

p(g) = U(p(91):---,p(gm)) = p(g) = ¥(g1,-.,gm) € P*
s0 g € L(GT) p(g)- O
Theorem 15. Algorithm 1 terminates and returns Gp,.

Proof. It should be clear that INITIALISE trivially fulfils the conditions of Def-
inition 10, and that GRAMMAR has no effect on the data fields at all. Since
ADDPRODUCTION depends on ADDNONTERMINAL, we begin verifying the lat-
ter.



We us assume that g € P\N, c € Cy, and that Vg’ € N : ¢’ #Z1, cugey g- Since
N is updated to NU{g}, and P is unchanged, the guarantees of ADDNONTERMI-
NAL are fulfilled. Condition 1 of Definition 10 is not affected, and the requirement
that Vg’ € N : ¢’ #1 cuje) ensures that Condition 2 continues to hold.

Let us now look at ADDPRODUCTION. Here, we assume that p € X(N) \ P,
¢ € Cx, and L/g # 0, which immediately fulfils Condition 1 of Definition 10,
and since N is not updated, Condition 2 is trivially met. Finally we note that
in the call to ADDNONTERMINAL, N = (), so ¢ trivially a separates g from every
other graph in N.

We conclude by ensuring that the ADDPRODUCTION and ADDNONTERMINAL
are called from EXTEND with their requirements met. In case of ADDPRODUC-
TION, we know that c[g] € L since g € P so c[g] € L(GT) and c[g] is supposed
to be a counterexample. This means in particular that {c} C L/g, so L/g is not
empty. Also the requirement of ADDPRODUCTION is met due to the if-clause
on Line 2, since by assumption V¢’ € N\ {p(9)} : ¢’ ZL,c ¢ and we know that
ceL/go L/p(g).

Since the Conditions of Definition 10 are respected, and the associated pro-
cedures have their requirements met and fulfil their guarantees, [6, Corollary 8]
ensures that the learning algorithm terminates and outputs Gp,. a

We close this section with a discussion of the complexity of Algorithm 1.
To infer the minimal unambiguous ODGP G, = (X, N, I, P) recognising L, the
algorithm must gather as many graphs as there are nonterminals and transitions
in G,. In each iteration of the main loop, it parses a counterexample g in poly-
nomial time in the size of g and T (the latter is limited by the size of G), and
is rewarded with at least one production or nonterminal. The algorithm is thus
polynomial in |GL| = |N| + |P| and the combined size of the counterexamples
provided by the MAT oracle.



References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75:87-106, 1987.

L. Banarescu, C. Bonial, S. Cai, M. Georgescu, K. Griffitt, U. Hermjakob,
K. Knight, P. Koehn, M. Palmer, and N. Schneider. Abstract meaning repre-
sentation for sembanking. In 7th Linguistic Annotation Workshop (ACL 2013
Workshop), 2013.

H. Bjorklund, F. Drewes, and P. Ericson. Between a rock and a hard place — uniform
parsing for hyperedge replacement DAG grammars. In A.-H. Dediu, J. Janousek,
C. Martin-Vide, and B. Truthe, editors, 10th International Conference on Language
and Automata Theory and Applications, Prague, Czech Republic, 2016, volume
9618 of Lecture Notes in Computer Science, pages 521-532. Springer, 2016.

J. Bjorklund, H. Fernau, and A. Kasprzik. Polynomial inference of universal au-
tomata from membership and equivalence queries. Information and Computation,
246:3-19, 2016.

D. Chiang, J. Andreas, D. Bauer, K. M. Hermann, B. Jones, and K. Knight.
Parsing graphs with hyperedge replacement grammars. In 51st Annual Meeting
of the Association for Computational Linguistics (ACL 2013), volume Volume 1:
Long Papers, pages 924-932. The Association for Computer Linguistics, 2013.

. F. Drewes, J. Bjorklund, and A. Maletti. MAT learners for tree series: an abstract

data type and two realizations. Acta Informatica, 48(3):165, 2011.

F. Drewes and J. Hogberg. Query learning of regular tree languages: How to avoid
dead states. Theory of Computing Systems, 40(2):163-185, 2007.

F. Drewes, H.-J. Kreowski, and A. Habel. Hyperedge replacement graph grammars.
In G. Rozenberg, editor, Handbook of Graph Grammars, volume 1, pages 95-162.
World Scientific, 1997.

F. Drewes and H. Vogler. Learning deterministically recognizable tree series. Jour-
nal of Automata, Languages and Combinatorics, 12(3):332-354, 2007.

S. Hara and T. Shoudai. Polynomial time MAT learning of c-deterministic regular
formal graph systems. In International Conference on Advanced Applied Informat-
ies (ITIAT AAT 2014), pages 204211, 2014.

J. Hégberg. A randomised inference algorithm for regular tree languages. Natural
Language Engineering, 17(02):203-219, 2011.

Dexter Kozen. On the Myhill-Nerode theorem for trees. Bulletin of the EATCS,
47:170-173, 1992.

A. Maletti. Learning deterministically recognizable tree series—revisited. In Alge-
braic Informatics, pages 218-235. Springer, 2007.

R. Okada, S. Matsumoto, T. Uchida, Y. Suzuki, and T. Shoudai. Exact learning of
finite unions of graph patterns from queries. In The 18th International Conference
on Algorithmic Learning Theory (ALT 2007), pages 298-312, 2007.

G. Rozenberg and E. Welzl. Boundary NLC graph grammars—basic definitions,
normal forms, and complexity. Information and Control, 69(1-3):136-167, 1986.
Y. Sakakibara. Learning context-free grammars from structural data in polynomial
time. Theoretical Computer Science, 76(2-3):223—-242, 1990.

H. Shirakawa and T. Yokomori. Polynomial-time MAT learning of c-deterministic
context-free grammars. Transaction of Information Processing Society of Japan,
34:380-390, 1993.



