
Robust Solution of Triangular Linear Systems ∗

Carl Christian Kjelgaard Mikkelsen, Lars Karlsson

May 30, 2017

Abstract

Let T ∈ Cn×n be a non-singular upper triangular matrix and let b ∈ Cn. We
show how to compute a scaling α ∈ (0, 1] and x ∈ Cn, such that not only is
Tx = αb, but all intermediate results are bounded by a threshold Ω. This problem
is relevant when estimating condition numbers or computing eigenvectors. Our
scalar algorithm is similar to xLATRS from LAPACK. We explain why it is difficult
to parallelize these algorithms. We then develop a robust blocked algorithm which
can be executed in parallel using a run-time systems such as StarPU.

Contents

1 Introduction 1

2 A scalar algorithm 2
2.1 Robust scalar divisions . 2
2.2 Robust linear updates . 4
2.3 Linear updates with linear growth . 6
2.4 Robust scalar backward substitution . 7

3 A blocked algorithm 8
3.1 Robust block solve . 9
3.2 Robust block update . 9
3.3 Robust blocked backward substitution . 10

4 A robust parallel algorithm 11

5 Conclusion 11

1 Introduction

Let T ∈ Cn×n be a non-singular upper triangular matrix and let b ∈ Cn. In this note we
study the problem of computing a scalar α ∈ (0, 1] such that the solution x ∈ Cn of the
scaled linear system

Tx = αb

∗NLAFET Working Note 9. Report UMINF 17.09, Dept. Computing Science, Ume̊a University, SE
901 87 Ume̊a, Sweden.

1

can be computed without exceeding a threshold Ω. Useful values of Ω are all less than
the largest value which can be represented.

This problem is relevant in the context of estimating condition numbers [1] and com-
puting eigenvectors [3]. In both cases it is necessary to solve triangular linear systems
which are potentially very ill-conditioned. When computing eigenvectors we are solving
systems of the form (T − λI)x = b where λ. If there are many nearby eigenvalues, then
overflow is a distinct possibility, because T − λI has many small diagonal elements.

The algorithms developed by Edward Anderson have been implemented in xLATRS

and the principles have been integrated into xTREVC which computes eigenvectors of tri-
angular matrices. ScaLAPACK contains complex flavors PCTREVC and PZTREVC which
call PxLATTRS to solve triangular linear systems robustly. These auxiliary routines have
been derived from xLATRS using PBLAS. This significantly limits the parallel efficiency
of PxTREVC when numerical scaling is required.

In this note we develop a scalar and a blocked algorithm for solving (1) with respect
to (α,x). The blocked algorithm can be executed in parallel using a task bask run-time
system such as StarPU [2]. The solve and update kernels are replaced with robust variants
which operate on augmented vectors 〈α,x〉 rather than regular vectors.

The parallel overhead is increased marginally compared with a task based implemen-
tation of non-robust backward substitution. In the long run, this will allow us to remove
the parallel bottleneck associated with the robust parallel computation of eigenvectors.

2 A scalar algorithm

In this section we derive a robust scalar algorithm for solving the scaled upper triangular
linear system (1). Our algorithm is closely related to the algorithm implemented in xLATRS

in LAPACK, [1]. Our primary contribution is to simplify and extend the analysis of the
underlying problem.

An upper triangular linear system can be solved using scalar backward substitution,
i.e., Alg. 1 ScalarSolve. It consists of a sequence of scalar divisions

x← b/t, t 6= 0 (1)

and linear updates
z ← y − tx.

In Section 2.1 and Section 2.2 we show how to prevent overflow for each of these funda-
mental operations. We then derive a robust variant of scalar backward substitution in
Section 2.4.

2.1 Robust scalar divisions

The scalar division (1) cannot exceed Ω, if |b| ≤ |t|Ω. In general, we seek a scaling α such
that

|αb| ≤ |t|Ω, (2)

which implies that the scaled division

y ← (αb)

t
(3)

cannot exceed Ω. The computation of a suitable scaling α is the subject of the following
theorem.

2

Algorithm 1: x = ScalarSolve(T , b)

Data: A non-singular upper triangular matrix T ∈ Cn×n and a vector b ∈ Cn.
Result: The solution x of the linear system Tx = b.

1 x← b;
2 for j = n, n− 1, . . . , 1 do
3 xj ← xj/tjj;
4 for i = 1, 2, . . . , j − 1 do
5 xi ← xi − tijxj;

6 return x;

|t| < Ω−1

|b| ≤ |t|Ω

1: α← 1

Yes

2: α← |t|Ω
|b|

No

Yes

1 ≤ |t|

3: α← 1

Yes

|b| ≤ |t|Ω

4: α← 1

Yes

5: α← |b|−1

No

No

No

Figure 1: Computing a scaling factor α such that the division (3) cannot overflow.

Theorem 1. Let b ∈ C and let t 6= 0 such that b/t is defined. If |b| ≤ Ω, then the scaling
factor α produced by the flowchart in Fig. 1 satisfies α ∈ (0, 1] and ensures that the result
of the scaled division (3) satisfies |y| ≤ Ω.

Proof. There are five cases to consider, one for each leaf shown in Fig. 1. In each case, the
proof consists of verifying that the central inequality (2) is satisfied for the given value of
α.

1. We already have |b| ≤ |t|Ω, so no scaling is necessary.

2. We have |b| > |t|Ω, which implies α = |t|Ω
|b| < 1 and |y| = α|b|

|t| = Ω.

3. We have 1 ≤ |t| and |b| ≤ Ω, which implies |b| ≤ |t|Ω. Therefore, no scaling is
necessary.

4. We already have |b| ≤ |t|Ω, so no scaling is necessary.

5. We have |t| ≥ Ω−1 and |b| > |t|Ω, so

α = |b|−1 < |t|−1Ω−1 ≤ 1.

Moreover,

|y| = α|b|
|t|

=
1

|t|
≤ Ω.

3

This completes the proof.

Remark 1. Thm. 1 requires |b| ≤ Ω. If we also have |t| ≤ Ω, then the right hand side
and the left hand side of each inequality in Fig. 1 can be evaluated without exceeding Ω.

Alg. 2 ProtectDivision summarizes how to safely compute a scaling factor which
prevents overflow in the scaled division (3).

Algorithm 2: α = ProtectDivision(b, t)

Data: Numbers b and t such that |b| ≤ Ω and t 6= 0.
Result: A scaling α ∈ (0, 1] such that the scaled division (3) cannot overflow.

1 α← 1;
2 if |t| < Ω−1 then
3 if |b| > |t|Ω then

4 α← |t|Ω
|b| ;

5 else
6 if |t| < 1 then
7 if |b| > |t|Ω then
8 α← |b|−1;

9 return α;

2.2 Robust linear updates

We consider more the general problem of computing a scaling ξ ∈ (0, 1], such that the
scaled linear transformation

Z ← ξY − T (ξX)

satisfies ‖Z‖∞ ≤ Ω. We begin by stating a condition which ensures that no scaling is
necessary.

Theorem 2. Let Y ,T and X be matrices such that Z = Y − TX is defined. If

‖Y ‖∞ + ‖T ‖∞‖X‖∞ ≤ Ω,

then overflow is impossible in the calculation of Z regardless of the order of the necessary
arithmetic operations.

Proof. By the triangle inequality we have the elementary estimate

|zij| ≤ ‖Z‖∞ ≤ ‖Y ‖∞ + ‖T ‖∞‖X‖∞.

It follows that each component of the final result Z is dominated by Ω, i.e., |zij| ≤ Ω.
There are many ways to evaluate the the expression

zij = yij −
∑
k

tikxkj,

but each intermediate result can be written as

zij(µ,σ) = µyij −
∑
k

σktikxkj, µ ∈ {0, 1}, σk ∈ {0, 1},

4

where the choice of, say, σk = 1 reflects that the corresponding term tikxkj has been
included in the calculation. In all cases, the triangular inequality implies

|zij(µ,σ)| ≤ |yij|+
∑
k

|tik||xkj| = |Y |ij + (|T ||X|)ij ≤

‖|Y |‖∞ + ‖|T ||X|‖∞ ≤ ‖Y ‖∞ + ‖T ‖∞‖X‖∞ ≤ Ω.

It follows, that all components of all intermediate results are bounded by Ω, regardless of
the order of the necessary arithmetic operations.

In general, we seek a scaling factor ζ such that the scaled linear transformation

Z ← (ζY)− T (ζX) (4)

can be computed without exceeding Ω. The computation of a suitable scaling ζ is the
subject of the following theorem.

Theorem 3. Let Y , T , and X be matrices, such that Z = Y − TX is defined. If

‖Y ‖∞ ≤ Ω, ‖T ‖∞ ≤ Ω,

then the scaling factor ζ produced by the flowchart in Fig. 2 satisfies ζ ∈ (0, 1] and prevents
overflow in the scaled linear update (4).

Proof. There are four cases to consider, one for each leaf shown in Fig. 2. In each case,
the proof consists of verifying that

‖ζY ‖∞ + ‖T ‖∞‖ζX‖∞ ≤ Ω (5)

for the given value of ζ. By Thm. 2 this ensures that the scaled linear update (4) cannot
overflow

1. In this case,
‖T ‖∞‖X‖∞ ≤ Ω− ‖Y ‖∞

and so the central inequality (5) is satisfied for all |ζ| ≤ 1.

2. In this case, we have ζ = 1
2
. We then use

‖Y ‖∞ ≤ Ω, ‖T ‖∞ ≤ Ω, ‖X‖∞ ≤ 1,

to estimate

‖Z‖∞ ≤ ‖ζY ‖∞ + ‖T ‖∞‖ζX‖∞ =
1

2
‖Y ‖∞ +

1

2
‖T ‖∞‖X‖∞ ≤ Ω.

3. In this case,

‖T ‖∞ ≤
Ω− ‖Y ‖∞
‖X‖∞

and so the central inequality (5) is satisfied for all |ζ| ≤ 1.

4. In this case ‖X‖∞ > 1, so ζ = 1
2‖X‖∞ < 1

2
. Moreover,

‖ζY ‖∞ + ‖T ‖∞‖ζX‖∞ <
1

2
(‖Y ‖∞ + ‖T ‖∞) ≤ Ω.

5

‖X‖∞ ≤ 1

‖T ‖∞‖X‖∞ ≤ Ω− ‖Y ‖∞

1: ζ ← 1

Yes

2: ζ ← 1
2

No

Yes

‖T ‖∞ ≤ Ω−‖Y ‖∞
‖X‖∞

3: ζ ← 1

Yes

4: ζ ← 1
2‖X‖∞

No

No

Figure 2: Computing a scaling factor ζ such that the linear update (4) cannot overflow.

This completes the proof.

Remark 2. Thm. 3 requires ‖Y ‖∞ ≤ Ω and ‖T ‖∞ ≤ Ω. If we also have ‖X‖∞ ≤ Ω,
then the right hand side and the left hand side of each inequality in Fig. 2 can be evaluated
without exceeding Ω.

Alg. 3 ProtectUpdate summaries how to safely compute a scaling such that the scaled
linear update (4) cannot overflow.

Algorithm 3: ζ = ProtectUpdate(ynorm, tnorm, xnorm,)

Data: Non-negative real numbers ynorm, tnorm and xnorm such that

‖Y ‖∞ ≤ ynorm ≤ Ω, ‖T ‖∞ ≤ tnorm ≤ Ω, ‖X‖∞ ≤ xnorm.

Result: A scaling factor ζ such that

ζ (ynorm + tnormxnorm) ≤ Ω,

which implies that the scaled linear update (4) cannot exceed Ω.
1 ζ ← 1;
2 if xnorm ≤ 1 then
3 if tnormxnorm > Ω− bnorm then
4 ζ ← 1/2;

5 else
6 if tnorm > (Ω− bnorm)/xnorm then
7 ζ ← 1/(2xnorm);

8 return ζ;

2.3 Linear updates with linear growth

The following theorem is a weaker result which is useful in the context of solving linear
systems.1 It does not require the computation of ‖Y ‖∞. We are interested in the situation
where Ω′ � Ω, i.e., when there is amble room for growth.

1This section will be moved and updated with additional information in the future.

6

Theorem 4. Let ξ be the scaling factor computed using the simplified flowchart in Fig. 3.
If ‖T ‖∞ ≤ Ω′ and ‖Y ‖∞ ≤ kΩ′, then Z = ξY − T (ξX) satisfies ‖Z‖∞ ≤ (k + 1)Ω′.

Proof. The proof is straightforward and consists of verifying the conclusion in each of the
three cases represented by the leaves in Fig. 3. In general, the triangle inequality implies

‖ξZ‖∞ ≤ ξ‖Y ‖∞ + ξ‖T ‖∞‖X‖∞. (6)

1. In this case, ξ = 1, ‖X‖∞ ≤ 1 and (6) implies, that

‖Z‖∞ ≤ ‖Y ‖∞ + ‖T ‖∞ ≤ kΩ′ + Ω′ = (k + 1)Ω′.

2. In this case, ξ = 1, ‖T ‖∞‖X‖∞ ≤ Ω′ and (6) implies, that

‖Z‖∞ ≤ kΩ′ + Ω′ = (k + 1)Ω′.

3. In this case ξ = 1
‖X‖∞ < 1 and

‖Z‖∞ ≤ ‖Y ‖∞ + ‖T ‖∞ ≤ (k + 1)Ω′.

This completes the proof.

‖X‖∞ ≤ 1

1 : ξ ← 1

Yes

‖T ‖∞ ≤ Ω′

‖X‖∞

2: ξ ← 1
Yes

3: ξ ← 1
‖X‖∞

No

No

Figure 3: A simplified computation which allows for linear growth, see Thm. 4.

2.4 Robust scalar backward substitution

In Sections 2.1 and 2.2 we have shown how to protect a division and a linear update
against overflow. It is straightforward to combine them into Alg. 4 RobustScalarSolve.

The reader should consider the assumptions placed on the input. Assumption (7)
ensures that ‖T1:j−1,j‖∞ ≤ Ω, so that cj = ‖T1:j−1,j‖∞ is a viable option. Assumption
(8) ensures that xxmax ≤ Ω initially. This critical property is preserved by virtue of the
properties of Alg. 2 ProtectDivision and Alg. 3 ProtectUpdate.

The reader should also consider the problem of parallelizing RobustScalarSolve. Any
scaling of x requires global communication as does the re-calculation of xmax at the end
of each iteration. It is clear that alternatives should be explored.

7

Algorithm 4: [α,x] = RobustScalarSolve(T , b)

Data: A non-singular upper triangular matrix T ∈ Cn×n, and b ∈ Cn, subject to
the following constraints

|tij| ≤ Ω for i < j, (7)

and
|bj| ≤ Ω. (8)

Result: A scaling α ∈ (0, 1] and the solution x of the scaled linear system

Tx = αb

where α ensures that x can be computed without exceeding Ω.
1 Find cj such that ‖T1:j−1,j‖∞ ≤ cj ≤ Ω for j = 2, 3, . . . , n.;
2 α← 1, x← b;
3 xmax ← ‖x‖∞;
4 for j ← n, n− 1, . . . , 1 do
5 β = ProtectDivision(xj, tjj);
6 if β 6= 1 then
7 x← βx;
8 α← βα;

9 xj ← xj/tjj;
10 if j > 1 then
11 β = ProtectUpdate(xmax, cj, |xj|);
12 if β 6= 1 then
13 x← βx;
14 α← βα;

15 x1:j−1 ← x1:j−1 − T1:j−1,jxj;
16 xmax ← ‖x1:j−1‖∞;

17 return [α,x];

3 A blocked algorithm

Let T ∈ Cn×n be a non-singular upper triangular matrix, let b ∈ Cn and partition the
linear system Tx = b conformally, i.e.,

Tx =


T11 T12 . . . T1N

T22 . . . T2N

. . .
...

TNN



x1

x2
...
xN

 =


b1

b2
...
bN

 = b. (9)

This system can be solved using blocked backward substitution as in Alg. 5 BlockedSolve.
In order to obtain a robust algorithm we must replace the two kernels

f(T , b) = T−1b, g(y,T ,x) = y − Tx

with robust variants. To this end, we will associate with each block xi of the solution x

8

Algorithm 5: x = BlockedSolve(T , b)

Data: A non-singular upper triangular matrix T ∈ Cn×n and b ∈ Cn partitioned
conformally as equation (9).

Result: The solution x of Tx = b.
1 x← b;
2 for j = N,N − 1, . . . , 1 do
3 xj ← f(Tjj,xj);
4 for i = 1, 2, . . . , j − 1 do
5 xi ← g(xi,Tij,xj);

6 return x;

a unique scaling factor αi ∈ (0, 1] and all operations will be performed on such pairs. At
this point, it is convenient to introduce the concept of an augmented vector.

Definition 1. An augmented vector 〈α,x〉 consists of a scalar α ∈ (0, 1] and a vector
x ∈ Cn and represents the vector y = α−1x. Two augmented vectors 〈α,x〉 and 〈β,y〉
are said be equivalent if they represent the same vector, i.e.,

〈α,x〉 ∼ 〈β,y〉 ⇔ α−1x = β−1y.

Two augmented vectors 〈α,x〉 and 〈β,y〉 are said to be consistently scaled if α = β.

3.1 Robust block solve

Let T ∈ Cn×n be an non-singular upper triangular matrix such that |tij| ≤ Ω for
i < j and let 〈β, b〉 be an augmented vector for which |bj| ≤ Ω. Then we can use
RobustScalarSolve to compute an augmented vector 〈γ,x〉 such that

Tx = γb,

where the scaling factor γ ensures that x can be computed without exceeding Ω. It follows
that

Tx = (γβ)β−1b

or equivalently
T (α−1x) = β−1b, α = γβ.

This procedure is formalized as Alg. 6.

3.2 Robust block update

Let 〈α,x〉 and 〈β,y〉 be a pair of augmented vectors and let T be a matrix such that
z = y − Tx is defined. In this section we show how to compute an augmented vector
〈ν,z〉 such that

ν−1z = β−1y − T (α−1x).

Moreover, the scaling ν will ensure that z can be computed without overflow. There are
two cases to consider, either α = β or α 6= β.

9

Algorithm 6: 〈α,x〉 = RobustBlockSolve(T , 〈β, b〉)
Data: A non-singular upper triangular matrix T and an augmented vector 〈β, b〉

such that
|tij| ≤ Ω, for i < j and |bj| ≤ Ω.

Result: An augmented vector 〈α,x〉 such that

T (α−1x) = β−1b.

Moreover, the computation of x cannot exceed Ω.
1 [γ,x]← RobustScalarSolve(T , b);
2 α← γβ;
3 return 〈α,x〉;

If α = β, then we can use Alg. 3 ProtectUpdate to compute a scaling ζ such that the
scaled linear update

z = ζy − T (ζx)

cannot exceed Ω. It follows immediately that

ν−1z = α−1y − T (α−1x),

provided that we choose ν = αζ.
If α 6= β, then we replace 〈α,x〉 with 〈γ,x′〉 and we replace 〈β,y〉 with 〈γ,y′〉 given

by
γ = min{α, β}, x′ = (γ/α)x, y′ = (γ/β)y. (10)

It is straightforward to verify that

〈α,x〉 ∼ 〈γ,x′〉, 〈β,y〉 ∼ 〈γ,y′〉.

Moreover, x′ and y′ can be computed without overflow, because (γ/α) ≤ 1 and (γ/β) ≤ 1.
Since 〈γ,x′〉 and 〈γ,y′〉 are consistently scaled, we can now use Alg. 3 ProtectUpdate to
compute a scaling ζ such that the scaled linear update

z = ζy′ − T (ζx′)

cannot exceed Ω. From equation (10) it follows that

z = ζ(γ/β)y − T (ζ(γ/α)x)

or equivalently
ν−1z = β−1y − T (α−1x),

provided that we choose ν = ζγ (as in the previous case).
The entire procedure is formalized as Alg. 7 RobustBlockUpdate.

3.3 Robust blocked backward substitution

Alg. 8 RobustBlockedSolve uses RobustBlockSolve and RobustBlockUpdate to solve
an upper triangular system in a robust manner using augmented vectors.

10

Algorithm 7: 〈ν,z〉 = RobustBlockUpdate(〈β,y〉,T , 〈α,x〉)
Data: Augmented vectors 〈α,x〉, 〈β,y〉 and a matrix T such that the linear

transformation
z = y − Tx

is defined and
‖y‖∞ ≤ Ω, ‖T ‖∞ ≤ Ω, ‖x‖∞ ≤ Ω.

Result: An augmented vector 〈ν,z〉 such that

ν−1z = β−1y − T (α−1x)

and the scaling ν ensures that the computation of z cannot exceed Ω.
1 γ = min{α, β};
2 x← (γ/α)x;
3 y ← (γ/β)y;
4 ζ ← ProtectUpdate(‖y‖∞, ‖T ‖∞, ‖x‖∞);
5 z ← ζy − T (ζx);
6 ν = ζγ;
7 return 〈ν,z〉;

The correctness of the algorithm follows from the correctness of the two kernels. It
is critical to examine the impact of the assumptions. Assumption (11) ensures that the
diagonal blocks ‖Tjj‖∞ satisfy the requirements of Alg. 6 RobustBlockedSolve. As-
sumption (12) ensures that the super diagonal blocks Tij satisfy the requirements of
Alg. 7 RobustBlockUpdate. Finally, assumption (13) ensures that the augmented vectors
〈αi, xi〉 are initialized in a manner which satisfy the requirements of both kernels. The
critical property, i.e., ‖xj‖∞ ≤ Ω, is then carried inductively through the execution of the
algorithm.

4 A robust parallel algorithm

It is clear that Alg. 8 RobustBlockedSolve is virtually identical to Alg. 5 BlockedSolve.
The robust algorithm has been obtained by replacing the two central kernels with robust
variants operating on augmented vectors. Both algorithms can be executed in parallel us-
ing a run-time system such as StarPU. The overhead for the robust algorithm is marginally
larger because each augmented vector contains a single extra element (the scaling) which
has to be communicated. Moreover, the robust algorithm requires one final exchange of
information in order to obtain a consistent scaling for all the augmented vectors. Other-
wise, the number of messages exchanged is the same for the two algorithms. If there are
multiple right hand sides, then consistent scalings can be obtained using a single exchange
of information.

5 Conclusion

We have carefully derived scalar and blocked algorithms for solving upper triangular linear
systems in a robust manner. The robust blocked algorithm can be executed in parallel

11

Algorithm 8: 〈α, x〉 = RobustBlockedSolve(T , b)

Data: A non-singular upper triangular matrix T ∈ Cn×n and b ∈ Cn partitioned
conformally as equation (9) and subject to the following constraints:

1. The matrix: All super diagonal elements tij must satisfy

|tij| ≤ Ω (11)

and all super diagonal blocks must satisfy

‖Tij‖∞ ≤ Ω. (12)

2. The right hand side: All elements must satisfy

|bj| ≤ Ω. (13)

Result: An augmented vector 〈α,x〉 such that

Tx = αb.

Moreover, the scaling ensures that calculation of x never exceeds Ω.
1 for i = 1, . . . , N do
2 〈αi,xi〉 ← 〈1, bi〉;
3 for j = N,N − 1, . . . , 1 do
4 〈αj,xj〉 ← RobustBlockSolve(Tjj, 〈αj,xj〉);
5 for i = 1, 2, . . . , j − 1 do
6 〈αi,xi〉 ← RobustBlockUpdate(〈αi,xi〉,Tij, 〈αj,xj〉)

7 α = min{α1, α2, . . . , αN};
8 for i = 1, 2, . . . , N do
9 xi ← (α/αi)xi;

10 return 〈α,x〉;

using a run-time system such as StarPU with a parallel overhead which is marginally
larger than the standard algorithm. The cost of obtaining a final consistent scaling can
be amortized over multiple right hand sides.

Acknowledgment

This work is part of a project that has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 671633. The authors
are very grateful to Sven Hammarling (NAG) because he carefully read the manuscript
and made several valuable suggestions and comments.

References

[1] Edward Anderson. Robust Triangular Solves for Use in Condition Estimation.
LAWN 36, Cray Research Inc., August 1991.

12

[2] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier.
StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore Ar-
chitectures. Concurrency and Computation: Practice and Experience, Special Issue:
Euro-Par 2009, 23:187–198, February 2011.

[3] Mark R. Fahey. New Complex Parallel Eigenvalue and Eigenvector Routines. LAWN
153, Computational Migration Group, August 2001.

13

	Introduction
	A scalar algorithm
	Robust scalar divisions
	Robust linear updates
	Linear updates with linear growth
	Robust scalar backward substitution

	A blocked algorithm
	Robust block solve
	Robust block update
	Robust blocked backward substitution

	A robust parallel algorithm
	Conclusion

