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Abstract

We show that the set of m×m complex skew-symmetric matrix polynomials
of odd grade d, i.e., of degree at most d, and (normal) rank at most 2r is the
closure of the single set of matrix polynomials with the certain, explicitly de-
scribed, complete eigenstructure. This complete eigenstructure corresponds
to the most generic m ×m complex skew-symmetric matrix polynomials of
odd grade d and rank at most 2r. In particular, this result includes the case
of skew-symmetric matrix pencils (d = 1).
Keywords: complete eigenstructure, genericity, matrix polynomials,
skew-symmetry, normal rank, orbits, pencils
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1. Introduction

The structure of the sets of matrix pencils and of matrix polynomials
with fixed grade and fixed rank is not trivial and, as a consequence, only
recently has been investigated in the literature [9, 12, 20], with the main
purpose of providing reasonably simple descriptions of these sets as the clo-
sures of certain “generic sets” of pencils and matrix polynomials that can
be easily described in terms of their eigenstructures or in terms of certain
parameterizations. One motivation for this type of research comes from its
applications in the study of the e↵ect of low rank perturbations on the spec-
tral information of pencils and matrix polynomials, since these problems
have received considerable attention in the last years. See for instance the
references [2, 3, 4, 8, 11, 17, 43] for di↵erent low rank perturbation prob-
lems related to matrix pencils, and the particular study in [10] on certain
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low rank perturbations of matrix polynomials. Moreover, low rank perturba-
tions of matrix pencils have been applied recently to some classical problems
as the eigenvalue placement problem [30] or the estimation of the distance
of a regular pencil to the nearest singular pencil [42]. Finally, from a more
theoretical perspective, the study of the sets of matrix pencils and of matrix
polynomials with fixed grade and fixed rank generalizes classical studies [48]
on the algebraic structure of the set of n×n singular pencils, i.e., those whose
rank is at most n − 1.

As can be observed in the titles of several of the references mentioned in
the paragraph above, some of the problems concerning low rank perturba-
tions of matrix pencils involve pencils with particular structures (symmetric,
Hermitian, palindromic, skew-symmetric, alternating, etc), since the pencils
and matrix polynomials arising in applications have often such particular
structures [37]. In this scenario, it is natural to consider the extension of
the results in [9, 12, 20] to the structured setting, with the aim of providing
simple descriptions of sets of structured matrix pencils and of structured ma-
trix polynomials with fixed grade and fixed rank in the case of the structures
appearing in applications. The results in this paper can be seen as the first
step available in the literature towards the solution of this ambitious and
wide problem. In particular, we prove that the set of m ×m complex skew-
symmetric matrix polynomials of odd grade d, i.e., of degree at most d, and
(normal) rank at most 2r is the closure of the single set of matrix polyno-
mials with the certain, explicitly described, complete eigenstructure, which
is termed as the unique generic eigenstructure of this set of skew-symmetric
matrix polynomials of odd grade d and rank at most 2r. By taking d = 1,
we obtain that such uniqueness also holds for skew-symmetric pencils. This
result greatly simplifies the description of the set of skew-symmetric polyno-
mials of fixed odd grade and fixed rank and illustrates how strong can be the
e↵ect of imposing a structure on this type of problems, since the correspond-
ing unstructured problem has many more generic complete eigenstructures.
More precisely, it has been proved in [9, 20] that there are rd + 1 generic
complete eigenstructures in the set of m×m complex general (unstructured)
matrix polynomials of odd grade d and rank at most r.

There are two reasons for restricting our attention to skew-symmetric ma-
trix polynomials of odd grade in this paper. The first one is that the general
(that is, without imposing any rank constraint) sets of skew-symmetric ma-
trix pencils and of skew-symmetric matrix polynomials of fixed odd grade d

have been deeply studied in the literature and their stratification hierarchies
are well understood [19, 22], while similar results for other classes of struc-
tured pencils and matrix polynomials are not yet known. The second reason
is that skew-symmetric pencils and matrix polynomials appear in a number
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of interesting applications, e.g., analysis of passive velocity field controllers
[36], bi-Hamiltonian systems [44], multisymplectic PDEs [7], investigation of
a product of two skew-symmetric matrices and particular symmetric factor-
izations of skew-symmetric rational matrices [40].

The paper is organized as follows. Section 2 includes some basic results on
general and skew-symmetric pencils, which allow us to describe in Section 3
the set of skew-symmetric matrix pencils with rank at most 2w as the closure
of the matrix pencils that have a single and simple skew-symmetric Kronecker
canonical form. Section 4 presents a number of preliminary results on general
and skew-symmetric matrix polynomials that combined with the results for
pencils of Section 3 allow us to prove our main result for skew-symmetric
matrix polynomials of fixed odd grade and fixed rank, i.e., Theorem 5.2 in
Section 5. Finally, the conclusions, some lines of future research, and some
di�culties for extending the results of this paper are discussed in Section 6.

The reader should bear in mind throughout this paper that all the ma-
trices that we consider have complex entries, and that the rank of any pencil
or any matrix polynomial is defined as the largest size of the minors that are
not identically zero scalar polynomials [29], which is sometimes called the
normal rank [26]. However, for brevity, we do not use the word “normal” in
this paper.

2. Preliminaries on skew-symmetric matrix pencils

We start by recalling the Kronecker canonical form (KCF) of general ma-
trix pencils and the canonical form of skew-symmetric matrix pencils under
congruence. Define C ∶= C∪∞. For each k = 1,2, . . ., define the k×k matrices

Jk(µ) ∶=
���������
µ 1

µ �� 1
µ

���������
, Ik ∶=

���������
1

1 �
1

���������
,

and for each k = 0,1, . . ., define the k × (k + 1) matrices

Fk ∶= �������
0 1� �

0 1

������� , Gk ∶= �������
1 0� �

1 0

������� .
All non-specified entries of Jk(µ), Ik, Fk, and Gk are zeros.

An m × n matrix pencil �A −B is called strictly equivalent to �C −D if
and only if there are non-singular matrices Q and R such that Q−1AR = C
and Q

−1
BR =D.
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Theorem 2.1. [29, Ch. XII, Sect. 4] Each m × n matrix pencil �A −B is
strictly equivalent to a direct sum, uniquely determined up to permutation of
summands, of pencils of the form

Ek(µ) ∶= �Ik − Jk(µ), in which µ ∈ C, Ek(∞) ∶= �Jk(0) − Ik,Lk ∶= �Gk − Fk, and LTk ∶= �GT
k − F T

k .

This direct sum is called the KCF of �A −B.

The regular part of �A−B consists of the blocks Ek(µ) and Ek(∞) correspond-
ing to the finite and infinite eigenvalues, respectively. The singular part of
�A−B consists of the blocks Lk and LTk corresponding to the column and row
minimal indices, respectively. The number of blocks Lk (respectively, LTk ) in
the KCF of �A −B is equal to the dimension of the right (respectively, left)
rational null-space of �A −B.

Define an orbit of �A−B under the action of the group GLm(C)×GLn(C)
on the space of all matrix pencils by strict equivalence as follows:

Oe(�A −B) = {Q−1(�A −B)R ∶ Q ∈ GLm(C),R ∈ GLn(C)}. (1)

The orbit of �A −B is a manifold in the complex 2mn dimensional space.
The space of all m × n matrix pencils is denoted by PENCILm×n. A

distance in PENCILm×n can be defined with the Frobenius norm of complex
matrices [32] as d(�A −B,�C −D) ∶= ��A −C�2F + �B −D�2F , which makes
PENCILm×n into a metric space. This metric allows us to consider closures of
subsets of PENCILm×n, in particular, closures of orbits by strict equivalence,
denoted by Oe(�A −B). By using these concepts, the following result from
[5], see also [27], describes all the possible changes in the KCF of a matrix
pencil under arbitrarily small perturbations. If in the KCF of a matrix pencil
the blocks X are changed to the blocks Y (X and Y of the same size) we
write X � Y .
Theorem 2.2. [5] Let P1 and P2 be two matrix pencils in KCF. Then,
Oe(P1) ⊃ Oe(P2) if and only if P1 can be obtained from P2 changing canon-
ical blocks of P2 by applying a sequence of rules and each rule is one of the
six types below:

1. Lj−1 ⊕Lk+1 � Lj ⊕Lk, 1 � j � k;
2. LTj−1 ⊕LTk+1 � LTj ⊕LTk , 1 � j � k;
3. Lj ⊕ Ek+1(µ)� Lj+1 ⊕ Ek(µ), j, k = 0,1,2, . . . and µ ∈ C;
4. LTj ⊕ Ek+1(µ)� LTj+1 ⊕ Ek(µ), j, k = 0,1,2, . . . and µ ∈ C;
5. Ej(µ)⊕ Ek(µ)� Ej−1(µ)⊕ Ek+1(µ), 1 � j � k and µ ∈ C;
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6. Lp⊕LTq ��t
i=1 Eki(µi), if p+q+1 = ∑t

i=1 ki and µi ≠ µi′ for i ≠ i′, µi ∈ C.
Observe that in the rules above any block E0(µ) should be understood as the
empty matrix.

An n×n matrix pencil �A−B is called congruent to �C −D if there is a
non-singular matrix S such that ST

AS = C and S

T
BS =D. In the following

theorem we recall the canonical form under congruence of skew-symmetric
matrix pencils, i.e., those satisfying (�A −B)T = −(�A −B).
Theorem 2.3. [45] Each skew-symmetric n×n matrix pencil �A−B is con-
gruent to a direct sum, determined uniquely up to permutation of summands,
of pencils of the form

Hh(µ) ∶= � � 0 Ih−Ih 0
� − � 0 Jh(µ)−Jh(µ)T 0

� , µ ∈ C,
Kk ∶= � � 0 Jk(0)−Jk(0)T 0

� − � 0 Ik−Ik 0
� ,

Mm ∶= � � 0 Gm−GT
m 0

� − � 0 Fm−F T
m 0

� .
This direct sum is called the skew-symmetric KCF of �A −B. Observe that
the block M0 is just the 1 × 1 zero matrix.

Similarly to KCF, the regular part of �A − B consists of the blocks Hh(µ)
and Kk corresponding to the finite and infinite eigenvalues, respectively. The
singular part of �A − B consists of the blocks Mm corresponding to the
right (column) and left (row) minimal indices, which are equal in the case of
skew-symmetric matrix pencils. Define an orbit of �A −B under the action
of the group GLn(C) on the space of all skew-symmetric matrix pencils by
congruence as follows:

Oc(�A −B) = {ST (�A −B)S ∶ S ∈ GLn(C)}. (2)

The orbit of �A −B is a manifold in the complex n

2 − n dimensional space
of skew-symmetric pencils.

The fact that two skew-symmetric matrix pencils are congruent if and
only if they have the same skew-symmetric KCF follows immediately from
Theorem 2.3, as well as the well-known property that skew-symmetric matrix
pencils have always even rank.
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3. Generic skew-symmetric matrix pencils with bounded rank

In this section we state and prove our main results about skew-symmetric
matrix pencils, in particular, we will find the most generic congruence orbit
of skew-symmetric matrix pencils of a fixed rank in Theorem 3.1, show its
irreducibility in Lemma 3.3, and count its codimension in (7). These results
will be used in Section 5 for obtaining similar results about skew-symmetric
matrix polynomials. In order to keep the arguments concise, we often use
expressions as “the pencil P1 is more generic than the pencil P2”, whose
precise meaning is that Oe(P1) ⊃ Oe(P2) or Oc(P1) ⊃ Oc(P2), depending of
the context. In this language, the most generic skew-symmetric pencil with
rank 2w is a pencil such that the closure of its congruence orbit includes
the congruence orbit of any other skew-symmetric pencil with di↵erent KCF
and with rank at most 2w. We denote the vector space of skew-symmetric
matrix pencils of size n × n by PENCILss

n×n. A distance in PENCILss
n×n can

be defined as d(�A − B,�C −D) ∶= ��A −C�2F + �B −D�2F , as in the case
of general pencils. With this distance at hand, we can consider closures of
subsets in PENCILss

n×n, as well as any other topological concept.

Theorem 3.1. Let n and w be integers such that n ≥ 2 and 2 ≤ 2w ≤ n − 1.
The set of n × n complex skew-symmetric matrix pencils with rank at most
2w is a closed subset of PENCILss

n×n equal to Oc(W), where
W = diag(M↵+1,�,M↵+1�����������������������������������������������������������������������������������

s

,M↵,�,M↵�������������������������������������������������������
n−2w−s

) (3)

with ↵ = �w�(n − 2w)� and s = wmod (n − 2w).
Proof. Taking into account [22, Lem. 3.8] (or the stronger result [22,
Thm. 3.1]), in this proof we work with KCF rather than with the skew-
symmetric KCF under congruence of Theorem 2.3, but we always apply
rules from Theorem 2.2 in pairs, such that the corresponding change of the
skew-symmetric KCF is obvious.

Each n × n skew-symmetric matrix pencil of the rank 2r1 less than or
equal to 2w has the following KCF:

diag(L�1 ,�,L�n−2r1 ,LT�1 ,�,LT�n−2r1 ,J ,J ), (4)

since left and right singular blocks are paired up according to Theorem 2.3,
the number of left singular blocks is equal to the dimension of the rational
left null-space of the pencil, i.e., is equal to n − 2r1, and the blocks J of the
regular part are also paired up.
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Note that KCF of a generic skew-symmetric matrix pencil of rank less
than or equal to 2w can not contain any regular part (otherwise rules 3
and 4 from Theorem 2.2 can be applied to obtain a more generic skew-
symmetric pencil). Moreover, the rank of any of the most generic skew-
symmetric matrix pencils of rank at most 2w is exactly 2w (otherwise, there is
an excess of singular blocks and rule 6 from Theorem 2.2 can be applied twice
to obtain a more generic skew-symmetric matrix pencil with strictly larger
rank). Therefore any of the most generic skew-symmetric matrix pencils of
rank at most 2w must have KCF consisting of n − 2w blocks L and n − 2w
blocks LT :

diag(L�1 ,�,L�n−2w ,LT�1 ,�,LT�n−2w). (5)

To each pencil (5) we can apply only rules 1 and 2 from Theorem 2.2 in order
to get more generic skew-symmetric matrix pencils of rank at most 2w, since
applying rule 6 would increase the rank and rules 3–5 involve regular blocks.
Thus we can only apply rule 1 to the blocks L of (5) (and, simultaneously for
preserving the skew-symmetric structure of the KCF, rule 2 to the blocks LT
of (5), respectively), which corresponds to finding the most generic w×(n−w)
matrix pencil (and the most generic (n−w)×w matrix pencil, respectively).
For the latter we refer to, e.g., [20, Thm. 2.6], see also [18, 27, 46]1. Therefore
the most generic skew-symmetric matrix pencil of rank at most 2w has the
KCF

diag(L↵+1,�,L↵+1�����������������������������������������������������������������
s

,L↵,�,L↵������������������������������������
n−2w−s

,LT↵+1,�,LT↵+1�����������������������������������������������������������������
s

,LT↵ ,�,LT↵���������������������������������������
n−2w−s

), (6)

or equivalently, has the skew-symmetric KCF (3).

Remark 3.2. The KCF in (6) is also one of the most generic KCFs of the
n × n general matrix pencils of rank less than or equal to 2w, obtained in
[9, Thm. 3.2]. Therefore proving the genericity of (3) could have been done
using [9, Thm. 3.2] and [22, Thm. 3.1] but we would still have to explain why
there are no more generic pencils (essentially, to repeat the proof of Theorem
3.1).

Observe that Theorem 3.1 does not cover the case 2w = n, which generi-
cally corresponds to regular skew-symmetric matrix pencils with even num-
ber of rows (and columns). In this easy case, the generic pencils clearly

1An equivalent, and more self-contained, argument is the following: since rule 1 (and
rule 2) in Theorem 2.2 can be applied to get more generic skew-symmetric pencils as long
as there are blocks L�i and L�j (and LT

�i
and LT

�j
) with ��i − �j � ≥ 2, the KCF of the most

generic skew-symmetric matrix pencils of rank at most 2w must have n − 2w blocks L�i

and n − 2w blocks LT
�i
, i = 1,2, . . . , n − 2w, with ��i − �j � ≤ 1, which is only possible if the

KCF is (6).
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have w di↵erent eigenvalues which are paired up according to Theorem 2.3,
i.e. the generic KCF is diag(H1(µ1),�,H1(µw)), where µi ≠ µj if i ≠ j, and
i, j ∈ {1,2, . . . , w}.

Similarly to results included in [9, 48] for closures of orbits under strict
equivalence, next we show that for any n×n skew-symmetric pencil P the set
Oc(P) (where the closure is taken in principle in the Euclidean metric defined
before Theorem 3.1) is irreducible in the Zariski topology of PENCILss

n×n.
The proof of such result also establishes that the closures of Oc(P) in the
Euclidean and in the Zariski topologies are equal. In particular, this irre-
ducibility implies the connectivity of Oc(P) in both the Zariski and Euclidean
topologies (recall that we work over C). Note also that by [6, Closed Or-
bit Lemma, p. 53], Oc(P) is open in its closure again in both the Zariski
and Euclidean topologies. These properties hold, of course, for the generic
pencil W in (3). The proof of Lemma 3.3 essentially repeats the proof of
[9, Lem. 3.4] where the analogous result for the general matrix pencils under
strict equivalence is derived.

Lemma 3.3. The closures in the Euclidean topology and in the Zariski topol-
ogy of the congruence orbit Oc(P) of any n×n complex skew-symmetric ma-
trix pencil P are equal in PENCILss

n×n. Moreover, Oc(P) is an irreducible
manifold in the Zariski topology of PENCILss

n×n.
Proof. We identify the space of skew-symmetric matrix pencils of size n × n
with Cn2−n (for the pencil P = �A − B we have (n2 − n)�2 parameters in
each of A and B). All the nonsingular matrices S ∈ Cn×n form a dense
open set U of Cn2

both in the Zariski and in the Euclidean topology. We
consider the polynomial mapping �M from Cn2

to Cn2−n defined by sending
S to �S

T
AS − ST

BS. Thus �M(U) = Oc(P). Notably, in any topology, for
a set V and a continuous mapping �, we have �(V ) ⊂ �(V ), which implies

�(V ) ⊂ �(V ). Therefore, we have �M(U) = �M(Cn×n), where the closures
can be taken either in the Zariski or the Euclidean topology, since in this
particular case they are equal. The remaining part of the proof is to note
that �M(Cn2) is an irreducible set in the Zariski topology, by [48, Sect. 1],
and is equal to Oc(P), by the discussion above.

For an n × n skew-symmetric pencil �A − B, define the dimension of
Oc(�A −B) to be the dimension of the tangent space to this orbit

Tc
�A−B ∶= {�(XT

A +AX) − (XT
B +BX) ∶X ∈ Cn×n}

at the point �A−B. The orthogonal complement (with respect to the Frobe-
nius inner product) to Tc

�A−B, is called the normal space to Oc(�A −B) at
8



the point �A −B. The dimension of the normal space is the codimension of
the congruence orbit of �A−B and is equal to n(n−1) minus the dimension
of the congruence orbit of �A−B. Explicit expressions for the codimensions
of congruence orbits of skew-symmetric pencils in PENCILss

n×n are presented
in [23] and implemented in the MCS (Matrix Canonical Structure) Tool-
box [21, 33]. Using [23, Thm. 3], see also [21, Thm. 2.8], applied to the
skew-symmetric pencil W in (3), the codimension of Oc(W) in PENCILss

n×n
is codOc(W) = ∑i<j(2max{mi,mj} + "ij), where mi and mj are the indices
of theM blocks (either ↵ or ↵ + 1), "ij = 2 if mi =mj and "ij = 1 otherwise,
resulting in:

codOc(W) = (n − 2w − s)(n − 2w − s − 1)(2↵ + 2)�2+ s(s − 1)(2(↵ + 1) + 2)�2 + s(n − 2w − s)(2(↵ + 1) + 1)= (n − 2w − s)(n − 2w − s − 1)(↵ + 1) + s(s − 1)(↵ + 1) + s(s − 1)+ 2s(n − 2w − s)(↵ + 1) + s(n − 2w − s)= (↵ + 1)((n − 2w − s)(n − 2w − 1) + s(n − 2w − 1)) + s(n − 2w − 1)= (n − 2w)(n − 2w − 1)(↵ + 1) + s(n − 2w − 1)= (n − 2w − 1)((n − 2w)↵ + s + n − 2w) = (n − 2w − 1)(n −w).
(7)

4. Preliminaries on skew-symmetric matrix polynomials

We consider skew-symmetric m×m matrix polynomials P (�) of grade d,
i.e., of degree less than or equal to d, over C:

P (�) = �d
Ad + ⋅ ⋅ ⋅ + �A1 +A0, A

T
i = −Ai, Ai ∈ Cm×m for i = 0, . . . , d.

Denote the vector space of the m×m skew-symmetric matrix polynomials of
the grade d by POLss

d,m×m. Observe that POLss
1,n×n is PENCILss

n×n. If there
is no risk of confusion we will write POL instead of POLss

d,m×m. As in the
case of pencils, see Sections 2 and 3, by using the Frobenius matrix norm
of complex matrices [32] a distance on POLss

d,m×m is defined as d(P,P ′) =�∑d
i=0 ��Ai −A′i��2F � 12 , making POLss

d,m×m to a metric space with the induced
Euclidean topology. For convenience, define the Frobenius norm of the matrix

polynomial P as ��P (�)��F = �∑d
i=0 ��Ai��2F � 12 .

Two matrix polynomials P (�) and Q(�) are called unimodularly congru-
ent if F (�)TP (�)F (�) = Q(�) for some unimodular matrix polynomial F (�)
(i.e. detF (�) ∈ C�{0}), see also [40].

Theorem 4.1. [40] Let P (�) be a skew-symmetric m×m matrix polynomial.
Then there exists r ∈ N with 2r � m and a unimodular matrix polynomial
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F (�) such that

F (�)TP (�)F (�) = � 0 g1(�)−g1(�) 0
�⊕ ⋅ ⋅ ⋅ ⊕ � 0 gr(�)−gr(�) 0

�⊕ 0m−2r =∶ S(�),
where gj is monic for j = 1, . . . , r and gj(�) divides gj+1(�) for j = 1, . . . , r−1.
Moreover, the canonical form S(�) is unique.

Similarly to the unimodular congruence, two matrix polynomials P (�)
and Q(�) are called unimodularly equivalent if U(�)P (�)V (�) = Q(�)
for some unimodular matrix polynomials U(�) and V (�) (i.e.
detU(�),detV (�) ∈ C�{0}). Note that the canonical form in Theorem 4.1 is
the skew-symmetric version of the well-known Smith form for matrix poly-
nomials under unimodular equivalence [29, 40].

Define the (normal) rank of the matrix polynomial P (�) to be the integer
2r from Theorem 4.1. All gj(�), j = 1, . . . , r, are called invariant polynomials
of P (�), and each of them can be uniquely factored as

gj(�) = (� − ↵1)�j1 ⋅ (� − ↵2)�j2 ⋅ . . . ⋅ (� − ↵lj)�jlj ,
where lj � 0, �j1, . . . , �jlj > 0 are integers. If lj = 0 then gj(�) = 1. The
complex numbers ↵1, . . . ,↵lj are finite eigenvalues of P (�). The elementary
divisors of P (�) associated with each finite eigenvalue ↵k is the collection of
factors (� − ↵k)�jk (possibly with repetitions).

If zero is an eigenvalue of revP (�) ∶= �d
P (1��) then we say that � = ∞

is an eigenvalue of the matrix polynomial P (�) of grade d. The elementary
divisors �

�k
,�k > 0, for the zero eigenvalue of revP (�) are the elementary

divisors associated with the infinite eigenvalue of P (�).
For anm×nmatrix polynomial P (�), define the left and right null-spaces,

over the field of rational functions C(�), as follows:
Nleft(P ) ∶= {y(�)T ∈ C(�)1×m ∶ y(�)TP (�) = 01×n},Nright(P ) ∶= {x(�) ∈ C(�)n×1 ∶ P (�)x(�) = 0m×1}.

Each subspace V of C(�)n has bases consisting entirely of vector polynomials.
A basis of V consisting of vector polynomials whose sum of degrees is minimal
among all bases of V consisting of vector polynomials is called a minimal
basis of V . The ordered list of degrees of the vector polynomials in any
minimal basis of V is always the same. These degrees are called the minimal
indices of V [28, 35]. This allows us to define the minimal indices of a matrix
polynomial: let the sets {y1(�)T , ..., ym−r(�)T} and {x1(�), ..., xn−r(�)} be
minimal bases of Nleft(P ) and Nright(P ), respectively, ordered so that 0 �
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deg(y1) � . . . � deg(ym−r) and 0 � deg(x1) � . . . � deg(xn−r). Let ⌘k = deg(yk)
for k = 1, . . . ,m− r and "k = deg(xk) for k = 1, . . . , n− r. Then the scalars 0 �
⌘1 � ⌘2 � . . . � ⌘m−r and 0 � "1 � "2 � . . . � "n−r are, respectively, the left and
right minimal indices of P (�). Note also that for a skew-symmetric matrix
polynomial we have that xi(�) = yi(�) and thus ⌘i = "i, for i = 1, . . . ,m − r.

Define the complete eigenstructure of a matrix polynomial P (�) as all the
finite and infinite eigenvalues, the corresponding elementary divisors, and the
left and right minimal indices of P (�). The set of matrix polynomials of the
same size, grade, and with the same complete eigenstructure as P (�) is called
an orbit of P (�), denoted O(P ). In this paper, if P (�) is skew-symmetric,
then O(P ) contains all the skew-symmetric polynomials of the same size,
grade, and with the same complete eigenstructure as P (�).

A matrix pencil LP (�) is called a linearization of a matrix polynomial
P (�) if they have the same finite elementary divisors, the same number of
left minimal indices, and the same number of right minimal indices [15]. If in
addition, revLP (�) is a linearization of revP (�) then LP (�) is called a strong
linearization of P (�) and, then, LP (�) and P (�) have also the same infinite
elementary divisors. Linearizations are powerful tools for investigation of
matrix polynomials [15, 31].

From now on we restrict to skew-symmetric matrix polynomials of odd
grades. The reason is that there is no skew-symmetric linearization-template
(i.e., a skew-symmetric companion form in the language of [15, Sects. 5 and
7]) for skew-symmetric matrix polynomials of even grades [15, 40].

The following pencil-template is known to be a skew-symmetric strong
linearization of all the skew-symmetric m ×m matrix polynomials P (�) of
odd grade d [40], see also [1, 38]:

LP (�)(i, i) = ��������Ad−i+1 +Ad−i if i is odd,

0 if i is even,

LP (�)(i, i + 1) = �������−Im if i is odd,−�Im if i is even,
LP (�)(i + 1, i) = �������Im if i is odd,

�Im if i is even,

where LP (�)(j, k) denotes an m ×m matrix pencil which is at the position(j, k) of the block pencil LP (�) and j, k = 1, . . . , d. The blocks of LP (�) in
positions which are not specified above are zero. We rewrite this strong

11



linearization template in a matrix form:

LP (�) = �
��������������

Ad � �� 0 −I
I A3

0 −I
I A1

��������������
−
��������������

−Ad−1 I−I 0 �� � −A2 I−I 0 −A0

��������������
. (8)

For a skew-symmetric matrix polynomial, strong linearization (8) preserves
finite and infinite elementary divisors of P (�) but does not preserve the
left and right minimal indices of P (�). Nevertheless, the relations between
the minimal indices of a skew-symmetric matrix polynomial P (�) and its
linearization (8) are derived in [19], see also [13, 14].

Theorem 4.2. [19] Let P (�) be a skew-symmetric m×m matrix polynomial
of odd grade d � 3, and let LP (�) be its linerization (8) given above. If
0 � "1 � "2 � . . . � "t are the right (=left) minimal indices of P (�) then

0 � "1 + 1

2
(d − 1) � "2 + 1

2
(d − 1) � � � "t + 1

2
(d − 1)

are the right (=left) minimal indices of LP (�).
The linearization LP (�) (8) is crucial for obtaining the results in Section 5.

Therefore we define the generalized Sylvester space consisting of the lineariza-
tions LP (�) of all the m×m skew-symmetric matrix polynomials of odd grade
d:

GSYLss
d,m×m = {LP (�) ∶ P (�) are m ×m skew-symmetric

matrix polynomials of odd grade d}. (9)

If there is no risk of confusion we will write GSYL instead of GSYLss
d,m×m,

specially in explanations and proofs. The function d(LP (�) = �A−B,LP ′(�) =
�A

′−B′) ∶= (��A −A′��2F + ��B −B′��2F ) 12 mentioned in Sections 2 and 3 is a dis-
tance on GSYL and it makes GSYL a metric space. Since d(LP (�),LP ′(�)) =
d(P,P ′), there is a bijective isometry (and therefore a homeomorphism):

f ∶ POLss
d,m×m → GSYLss

d,m×m such that f ∶ P � LP .
Next we define the orbit of the skew-symmetric linearizations of type (8) of
a fixed skew-symmetric matrix polynomial P

O(LP ) = {(STLP (�)S) ∈ GSYLss
d,m×m ∶ S ∈ GLn(C), n =md}. (10)
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We emphasize that all the elements of O(LP ) have the block structure of
the elements of GSYLss

d,m×m. Thus, in particular, O(P ) = f−1(O(LP )), as a
consequence of the properties of strong linearizations and Theorem 4.2, and
O(P ) = f−1(O(LP )), as a consequence of f being a homeomorphism. More-
over, we also have that for any m ×m skew-symmetric matrix polynomials
P,Q of odd grade d, O(P ) ⊇ O(Q) if and only if O(LP ) ⊇ O(LQ), where it
is essential to note that the closures are taken in the metric spaces POL and
GSYL, respectively, defined above. Note that similarly to the matrix pencil
case, O(LP ) is open in its closure in the relative Euclidean topology, and so
is O(P ) since f is a homeomorphism.

We will use in Section 5 the fact that for anym×m skew-symmetric matrix
polynomial P (�) a su�ciently small arbitrary skew-symmetric perturbation
of the pencil LP (�) produces another pencil that although, in general, is not
in GSYLss

d,m×m is congruent to a pencil in GSYLss
d,m×m that is very close toLP (�), see [19]. This type of results for the general matrix polynomials is

presented in e.g., [24, 34, 47].

Theorem 4.3 (Theorems 8 and 9 in [19]). Let P (�) be an m × m skew-
symmetric matrix polynomial with odd grade d and let LP (�) be its skew-
symmetric linearization (8). If E is any arbitrarily small (entrywise) md ×
md skew-symmetric pencil, then there exist a nonsingular matrix C and an
arbitrarily small (entrywise) m ×m skew-symmetric polynomial F (�) with
grade d such that

C

T (LP (�) + E)C = LP (�)+F (�) .
It is interesting to emphasize that the extension of Theorem 4.3 for sym-

metric, Hermitian, skew-Hermitian, palindromic, anti-palindromic, and alter-
nating matrix polynomials of odd grade and for the linearization (8) follows
immediately from the proof of Theorem 8 in [19]. An extension of Theorem
4.3 to all the structures mentioned above and to a wider class of structure-
preserving companion linearizations which include (8) can be obtained as a
corollary of a much more general result recently obtained in [25, Thm. 6.12].

5. Generic skew-symmetric matrix polynomials with bounded rank

and fixed grade

In this section we present the complete eigenstructure of the genericm×m
skew-symmetric matrix polynomial of a fixed rank 2r and odd grade d. As
in the case for general matrix polynomials [20, Lem. 3.1] we present the
following lemma revealing a key relation between O(LP ), where the closure is
taken in GSYLss

d,m×m, and Oc(LP ), where the closure is taken in PENCILss
n×n,

with n =md.
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Lemma 5.1. Let P be an m×m skew-symmetric matrix polynomial with odd
grade d and LP be its linearization (8) then O(LP ) = Oc(LP ) ∩GSYLss

d,m×m.
Proof. By definition O(LP ) = Oc(LP ) ∩ GSYL and thus O(LP ) =
Oc(LP ) ∩GSYL (the closure here is taken in the space GSYL). For any LQ ∈
Oc(LP ) ∩GSYL there exists an arbitraly small (entrywise) skew-symmetric
pencil E such that (LQ + E) ∈ Oc(LP ). Therefore by Theorem 4.3, there
exists an arbitrarily small (entrywise) skew-symmetric matrix polynomial
F with grade d such that LQ+F ∈ Oc(LP ). Thus LQ ∈ Oc(LP ) ∩GSYL, and

Oc(LP )∩GSYL ⊆ Oc(LP ) ∩GSYL. Since Oc(LP ) ∩GSYL ⊆ Oc(LP )∩GSYL,
we have that Oc(LP ) ∩GSYL = Oc(LP )∩GSYL, and the result is proved.

Lemma 5.1 is the key to prove our main result about skew-symmetric
matrix polynomials which uses and generalizes Theorem 3.1.

Theorem 5.2. Let m,r and d be integers such that m ≥ 2, d ≥ 1 is odd, and
2 ≤ 2r ≤ (m − 1). The set of m ×m complex skew-symmetric matrix polyno-
mials of grade d with rank at most 2r is a closed subset of POLss

d,m×m equal

to O(W ), where W is an m×m complex skew-symmetric matrix polynomial
of degree exactly d and rank exactly 2r with no elementary divisors at all,
with t left minimal indices equal to (� +1) and with (m−2r− t) left minimal
indices equal to �, where � = �rd�(m − 2r)� and t = rd mod (m − 2r), and
with the right minimal indices equal to the left minimal indices.

Proof. Note that Theorem 5.2 for d = 1 coincides with Theorem 3.1.
Denote the complete eigenstructure from the statement of Theorem 5.2

(consisting only of the left and right minimal indices) by

W ∶ � left minimal indices���������������������������������������������������������������������������������������������������������������������������������������������������
� + 1, . . . ,� + 1�������������������������������������������������������������������������������

t

,�, . . . ,��������������������������
m−2r−t

,

right minimal indices���������������������������������������������������������������������������������������������������������������������������������������������������
� + 1, . . . ,� + 1�������������������������������������������������������������������������������

t

,�, . . . ,��������������������������
m−2r−t

�. (11)

First we show that there exists an m×m skew-symmetric matrix polynomial
W of degree exactly d and rank exactly 2r that has the complete eigenstruc-
ture W (11). By [19, Thm. 3.3] it is enough to show that the sum of the left
(or right) minimal indices of W is equal to rd:

t�
1

(� + 1) + m−2r−t�
1

� = m−2r�
1

� + t = (m − 2r)�rd�(m − 2r)� + t = rd.
For every m×m matrix polynomial P of grade d and rank at most 2r, the

linearization LP has rank at most 2r +m(d− 1), because LP is unimodularly

14



equivalent to P ⊕ Im(d−1). The linearization LW of the matrix polynomial W
is an md×md skew-symmetric matrix pencil with the rank m(d−1)+2r and
by Theorem 4.2 the KCF of LW is the direct sum of the following blocks:

{L�+⌘+1, . . . ,L�+⌘+1�����������������������������������������������������������������������������������������������������
t

,L�+⌘, . . . ,L�+⌘��������������������������������������������������������������������������
m−2r−t

,LT�+⌘+1, . . . ,LT�+⌘+1�����������������������������������������������������������������������������������������������������
t

,LT�+⌘, . . . ,LT�+⌘��������������������������������������������������������������������������
m−2r−t

}, (12)

where ⌘ = 1
2(d−1). We show that the KCF of LW coincides with the KCF of

the most generic skew-symmetric matrix pencil W of rank 2w =m(d−1)+2r
and size n × n, where n =md, given in Theorem 3.1:

{L↵+1, . . . ,L↵+1��������������������������������������������������������������������������
s

,L↵, . . . ,L↵���������������������������������������������
n−2w−s

,LT↵+1, . . . ,LT↵+1��������������������������������������������������������������������������
s

,LT↵ , . . . ,LT↵�����������������������������������������������
n−2w−s

}. (13)

Or equivalently, we show that the numbers and the sizes of the L and LT
blocks in (12) and (13) coincide, i.e., � + (d− 1)�2 = ↵, s = t, and m− 2r − t =
n − 2w − s.

For the sizes of the blocks we have

� + d − 1
2
= � rd

m − 2r� + d − 1
2
= �(m − 2r)(d − 1) + 2rd

2(m − 2r) � (14)

= � m(d − 1) + 2r
2(md − (m(d − 1) + 2r))� = � 2w

2(n − 2w)� = ↵. (15)

For the numbers of the blocks, we have

t = rd mod (m − 2r) = ((m − 2r)(d − 1)�2 + rd) mod (m − 2r)= (m(d − 1) + 2r)�2 mod (md − (m(d − 1) + 2r))= w mod (n − 2w) = s
and

m − 2r − t =md −m(d − 1) − 2r − t = n − 2w − s.
Thus LW is congruent to the most generic skew-symmetric matrix pencilW of rank 2w obtained in Theorem 3.1, since they both are skew-symmetric

and have the same KCF. Therefore Oc(LW ) = Oc(W).
By Theorem 3.1 for each m×m skew-symmetric matrix polynomial P of

grade d and rank at most 2r we have that Oc(W) ⊇ Oc(LP ), thus Oc(LW ) ⊇
Oc(LP ). Therefore Oc(LW )∩GSYL ⊇ Oc(LP )∩GSYL, which is equivalent to
Oc(LW ) ∩GSYL ⊇ Oc(LP ) ∩GSYL by Lemma 5.1, and, by definition, is also
equivalent to O(LW ) ⊇ O(LP ), which according to the discussion after (10),
is equivalent to O(W ) ⊇ O(P ). Therefore any m×m skew-symmetric matrix
polynomial of grade d with rank at most 2r is in the closed set O(W ).
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For any P ∈ POLss
d,m×m, we define the codimension of O(P ) ⊂ POLss

d,m×m
of the set of all the skew-symmetric matrix polynomials with the same eigen-
structure as P to be codO(P ) ∶= codO(LP ). By [19, Sect. 6], O(LP ) is a
manifold in the space of skew-symmetric matrix pencils PENCILss

n×n, where
n = md, and codO(LP ) = codOc(LP ), where the codimension of O(LP )
is considered in the space GSYLss

d,m×m and the codimension of Oc(LP ) in
PENCILss

n×n. Therefore, for the generic m ×m skew-symmetric polynomial
W with grade d identified in Theorem 5.2, we deduce from the proof of this
theorem that codO(W ) = codOc(LW ) = codOc(W), where W is the pencil
in Theorem 3.1 with the identifications n = md and w = (m(d − 1) + 2r)�2.
Therefore, we get from (7)

codO(W ) = (md −m(d − 1) − 2r − 1)�md −md − 1
2
− r�

= 1

2
(m − 2r − 1)(m(d + 1) − 2r) .

6. Conclusions and future work

This paper establishes that there is only one generic complete eigenstruc-
ture for skew-symmetric matrix polynomials of rank at most 2r and odd
grade d. In order to obtain this result, first, the corresponding result for
skew-symmetric pencils is proved, i.e., when d = 1, and, second, this result
is extended to skew-symmetric matrix polynomials of arbitrary odd grades
by means of a structure preserving strong-linearization template (also known
as a structure preserving companion linearization [15]) and a delicate trans-
lation of the topological properties of the space of skew-symmetric pencils
into the space of skew-symmetric matrix polynomials. To the best of our
knowledge, this is the first result of this kind obtained for a class of struc-
tured matrix polynomials of fixed (bounded) rank and fixed grade and it is
in stark contrast to the results for general (unstructured) matrix polynomials
and pencils available in the literature [9, 12, 20], which establish that there
are rd + 1 generic complete eigenstructures for arbitrary matrix polynomials
of rank at most r and grade d, instead of only one. This striking reduction
in the number of generic eigenstructures is related, among the other reasons,
to the equality of the left and the right minimal indices of skew-symmetric
matrix polynomials.

The results in this paper call to natural extensions to other classes of
structured matrix polynomials (and pencils), but there are a number of obsta-
cles that make such extensions challenging and nontrivial. The most obvious
extension one could have in mind is to skew-symmetric matrix polynomials
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of rank at most 2r and even grade d, but in this case a structured compan-
ion linearization is not available in the literature and, in fact, it has been
proved that it does not exist for m ×m skew-symmetric matrix polynomials
when m is odd [15, Thm. 7.21]. Therefore, the techniques used in this paper
cannot be used for skew-symmetric matrix polynomials of even grade. For
several other structured classes of matrix polynomials of odd grade there are
indeed structure preserving companion linearizations [16, 38, 39] (see also
[15, Sect. 7] and [41], and the references therein), but there are no strati-
fication results available in the literature for these structures. Since in this
paper the stratification results for skew-symmetric pencils and polynomials
previously developed in [19, 22] have played a key role, we see again that
the techniques of this paper cannot be directly used to get similar results for
other structured matrix polynomials.
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