
A Library for Storing and Manipulating Dense Tensors∗

Mahmoud Eljammaly
mjammaly@cs.umu.se

Lars Karlsson
larsk@cs.umu.se

Abstract

Aiming to build a layered infrastructure for high-performance dense tensor applica-
tions, we present a library, called dten, for storing and manipulating dense tensors. The
library focuses on storing dense tensors in canonical storage formats and converting be-
tween storage formats in parallel. In addition, it supports tensor matricization in different
ways. The library is general-purpose and provides a high degree of flexibility.

Keywords: Dense tensors, canonical storage format, tensor matricization, tensor storage
format conversion, out-of-place conversion, in-place conversion.

1 Introduction
Tensors or multi-dimensional arrays are used in a diverse set of multi-dimensional data anal-
ysis applications. Many software products suitable for tensor computations exist, such as the
commercial MATLAB suite enhanced by various open source third party toolboxes. Unlike
for computations with matrices where there is a long history of community developed high-
performance software libraries being widely used and incorporated into commercial software
products, there is yet no analog for computations with tensors. Developing tensor computa-
tion algorithms and applications that are open source and independent of large commercial
software environments is difficult in large parts due to a lack of open source software support
for fundamental tensor operations.

Tensor algorithms and applications tend to either depend on proprietary functions pro-
vided by a large software environment or their own application-specific software solutions.
Many parallels can be drawn with the early history of the field of matrix computations where
every software included its own code for matrix–vector multiplication, scalar products, matrix
transposition, and so on. The introduction and widespread adoption of core interfaces such as
the BLAS [6, 9, 10, 11, 12, 13, 17, 18, 19] and LAPACK [2] has meant that software reliant on
matrix computations have become easier to maintain and now exhibit portable performance.
In contrast, the field of tensor computations, especially parallel and high-performance com-
putations, has not yet matured to the point where a standard set of interfaces can be settled.
The algorithms used are also much different in nature compared to those used for matrix
computations, so it is not clear that the best approach is to mimic what has worked for
matrices in the last couple of decades.

Learning from insights made for matrix computations, we nevertheless think that de-
veloping a software stack similar to the one depicted in Figure 1 would be a good starting
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Figure 1: Software stack for tensor computation applications.

point. The proposed stack consists of two established components: the Basic Linear Algebra
Subprograms (BLAS) for high-performance fundamental matrix operations and the Message
Passing Interface (MPI) for communication between nodes in a distributed memory system.
Many fundamental tensor operations can be expressed largely in terms of the BLAS, and MPI
is available on virtually any distributed memory system, so there is little doubt that these
components will be a part of a future tensor computations software stack. In addition, there
are four tensor-specific components in the stack. From the top down: the tensor applica-
tions component consists of complete applications that use large-scale tensor computations,
the tensor algorithms component consists of numerical tensor algorithms such as tensor de-
composition algorithms and tensor contraction, the tensor distribution component consists of
such things as communication and (re)distribution of tensors, and finally the tensor storage
component manages the local storage and manipulation of (sub)tensors on each node in a
distributed memory system.

The two components at the top (applications and algorithms) are large and multi-faceted
with new algorithms and applications being added as time goes by. But the other two com-
ponents (distribution and storage) are more fundamental in nature and bounded in scope.
We propose to start from the bottom up in an effort to realize a first seed for a tensor
computations software stack.

This paper focuses on the tensor storage component (see Figure 1) and more specifically
on the storage and manipulation of dense tensors, i.e., tensors whose elements are mostly
non-zero. The sister problem of storing and manipulating sparse tensors has been recently
addressed by Dahlberg, see [8] and the references within.

Some of the main points of this paper are:

1. Any one-mode or multi-mode tensor matricization is equivalent to converting the storage
format of the tensor from one canonical format to another.

2. A tensor stored in a canonical tensor storage format can be interpreted as a matricization
of that tensor stored in a canonical matrix storage format.

3. Any tensor storage format conversion can be performed either out-of-place by copying
or in-place by in-place permutation.

4. The performance of matricization depends on whether the resulting matrix should be
stored in column-major or row-major format.
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5. If the ordering of the rows and columns in a matricized tensor is not important, then
there exists an efficient way to matricize the tensor.

The rest of the paper is organized as follows. Section 2 gives a mathematical background
of tensor storage formats. Tensor storage formats are defined and their relation to matrix
storage formats is explained. In Section 3 we present the algorithms used in this paper.
Different storage format conversion techniques are discussed in addition to the potential
for parallelism. Section 4 provides details about the implementation and introduces the
library. Section 5 presents experiments that demonstrate the performance and scalability of
the library. Finally, in Section 6 some conclusions and related work are described.

1.1 Notation and terminology

Zero-based indexing is used in order to simplify many of the formulas. We denote by S(n)
the set {0, 1, . . . , n− 1}.

A sequence is denoted by angle brackets, e.g., 〈0, 1, 2〉, and as a symbol we use a bold lower
case letter. The notation |·| denotes the length of a sequence, i.e, the number of elements. The
concatenation of two sequences a and b is denoted by a ⊕ b, e.g., 〈0, 1〉 ⊕ 〈2, 3〉 = 〈0, 1, 2, 3〉.
A subsequence is obtained by deleting zero or more elements from a sequence. An extraction
of a sequence is denoted by σ and returns a permuted subsequence. An extraction is defined
by a sequence of indices, e.g., σ = 〈2, 1〉, that specify which elements to extract and in which
order. The application of σ to a sequence a is denoted by σa. For example, applying the
extraction σ = 〈2, 1〉 to the sequence a = 〈a0, a1, a2, a3〉 results in the permuted subsequence
〈a2, a1〉. Any extraction that selects the entire sequence degenerates into a permutation and
is then denoted by π.

A tensor A of order d and size n0 × n1 × · · · × nd−1 is a d-dimensional array. The size
of A is denoted by the sequence n = 〈n0, n1, . . . , nd−1〉. Each element of A is identified by
a unique index sequence k = 〈k0, k1, . . . , kd−1〉 where ki ∈ S(ni) is the index in mode i. The
k’th element of A is denoted by A(k).

2 Canonical tensor storage formats

2.1 Definition

A storage format for a dense tensor A of order d and size n is a one-to-one mapping of the
index sequence k to the set of integers S(N), where N =

∏d−1
i=0 ni denotes the total number

of elements. Formally, a tensor storage format is a bijective function parameterized by the
size n, i.e.,

φ : S(n0)× · · · × S(nd−1)→ S(N).

The function φ maps each index sequence k to a unique offset in a contiguous memory area
of N memory locations.

There are many potential tensor storage formats that fit this definition, but only a few
are interesting in practice. A particularly simple and useful tensor storage format is obtained
by defining

φ(k; n) =
d−1∑
i=0

ki

i−1∏
j=0

nj . (1)
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Here, k is the argument and n is the parameter to the function. For example, given tensor
of size n = 〈n0, n1, n2〉, the function φ will map the index sequence k = 〈k0, k1, k2〉 to a
continues memory area of size N = n0n1n2 such that

φ(k; n) = k0 + k1n0 + k2n0n1.

A more general class of storage formats is obtained by permuting the index sequence k
(and size n) before applying φ. Formally, let π be any permutation of a sequence of length d.
Then the mapping φπ defined by

φπ(k; n) = φ(πk;πn) (2)

is also a valid tensor storage format. Since there are d! permutations of a sequence of length d,
there are d! different storage formats of this type. These formats are known as the canonical
(dense) tensor storage formats and are the focus of this paper.

The concept of a canonical tensor storage format generalizes the row- and column-major
storage formats used for matrices. To see this, note that a matrix is a tensor of order d = 2 and
size n = 〈n0, n1〉, where n0 is the number of rows and n1 the number of columns. Similarly,
an index sequence of the matrix takes the form k = 〈k0, k1〉, where k0 is the row index and k1
the column index. Choosing the permutation π = 〈0, 1〉 in (2) gives the column-major matrix
storage format, as can be seen by

φ〈0,1〉(k; n) = φ(〈k0, k1〉, 〈n0, n1〉) = k0 + k1n0,

which we recognize as the column-major ordering. Conversely, choosing π = 〈1, 0〉 in (2) gives
the row-major matrix storage format:

φ〈1,0〉(k; n) = φ(〈k1, k0〉, 〈n1, n0〉) = k0n1 + k1.

In other words, applying the permutation π to the index sequence k decides which index
of the two will vary the fastest as one scans the memory; π = 〈0, 1〉 means that index k0 will
vary faster than index k1 and π = 〈1, 0〉 means that index k1 will vary faster than index k0.
Generally, the leftmost element in a permutation is the fastest varying one and the rightmost
element in a permutation is the most slowly varying one.

2.2 Matricization

A tensor of order d can be reshaped into a matrix, an operation that goes by many names
in the literature (e.g., matricization, unfolding, or flattening). We prefer to use the term
matricization in this paper. To view a tensor as a matrix, the modes of the tensor need to be
partitioned into two disjoint subsets: one subset for the columns of the matrix and another
subset for the rows of the matrix. For example, consider a tensor A of order d = 4 and choose
the mode subset {0, 1} for the rows of the matrix and the complementary subset {2, 3} for
the columns. The size of the resulting matrix is n̂0× n̂1, where n̂0 = n0n1 and n̂1 = n2n3. To
map a tensor index sequence to a matrix index sequence, we need to define two mappings of
the form (2) by specifying an extraction σrow for the row dimension and another extraction
σcol for the column dimension. For example, we can define σrow = 〈0, 1〉 and σcol = 〈2, 3〉
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to obtain the following translation from the tensor index sequence k = 〈k0, k1, k2, k3〉 to the
matrix index sequence k̂ = 〈k̂0, k̂1〉:

〈k0, k1, k2, k3〉 7→ 〈φσrow(k; n), φσcol(k; n)〉 = 〈k0 + k1n0, k2 + k3n2〉 = 〈k̂0, k̂1〉.

The matricization defined in this way is denoted by Aσrow,σcol .

2.3 Matricization and storage format conversion

It turns out that storing a matricized tensor in either the column- or the row-major storage
format is equivalent to storing the tensor itself in a canonical tensor storage format of the
form (2) for some permutation π. For example, storing the matricization A〈0,1〉,〈2,3〉 in the
column-major storage format is equivalent to storing the tensor as in (2) with π = 〈0, 1, 2, 3〉 =
〈0, 1〉 ⊕ 〈2, 3〉. To see this, note that

φ〈0,1,2,3〉(k; n) = φ〈0,1〉(k; n)︸ ︷︷ ︸
k̂0

+φ〈2,3〉(k; n)︸ ︷︷ ︸
k̂1

·n0n1︸ ︷︷ ︸
n̂0

= k̂0 + k̂1n̂0,

which we recognize as the column-major ordering of A〈0,1〉,〈2,3〉. Similarly, storing the ma-
tricization in the row-major storage format is equivalent to choosing π = 〈2, 3, 0, 1〉 =
〈2, 3〉 ⊕ 〈0, 1〉 in (2).

In general, consider a tensor of order d stored in a canonical format defined by the permu-
tation π and a general matricization of this tensor defined by the extractions σrow for the row
dimension and σcol for the column dimension. If π = σrow ⊕ σcol, then the storage mapping
(2) for the tensor can be rewritten in the form

φπ(k; n) = φσrow(k; n) + φσcol(k; n) ·
∏

i∈σrow

ni,

which means that the memory used to store the tensor can be reinterpreted as the matriciza-
tion Aσrow,σcol stored in the column-major format. Similarly, if π = σcol⊕σrow, then the same
holds but with the matricization stored in the row-major format.

3 Tensor storage format conversion
Given a tensor stored in the format defined by πin and a target format defined by πout, the
problem of tensor storage format conversion consists of permuting the tensor elements in
memory such that the storage format changes from πin to πout. There are two main types
of conversions: out-of-place (OOP) conversion involves the explicit copying of the tensor
elements to a separate memory area, but in-place (IP) conversion changes the format by
overwriting the old memory area and uses only a small constant amount of additional memory.

The mapping from input memory location `in to output memory location `out is a bijective
function f : S(N)→ S(N) and is defined by

f(`in; n) = φπout(φ−1
πin(`in; n); n) = `out. (3)

The mapping consist of two steps: first φ−1
πin

maps the input memory location `in to the cor-
responding index sequence k and then φπout maps this index sequence to the output memory
location `out. The function f determines the memory transfer pattern and is completely
determined by the size n and the input and output formats πin and πout.
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3.1 Efficient conversion by moving blocks of memory

For many pairs of formats, the memory transfers implied by f can be arranged into a set
of efficient copies of contiguous blocks of memory. Exploiting this feature of the problem
whenever possible is important to obtain high performance in the conversion process, since it
will benefit from the memory hierarchy and require fewer evaluations of f . In addition, the
block transfers is a source of parallelism since different blocks can be transferred at the same
time to speed up the process.

To see where the blocks come from and how big they are, suppose that the formats πin
and πout have a common prefix σpre of length m. In other words, it is possible to write
πin = σpre ⊕ σin and πout = σpre ⊕ σout for some σin and σout. Consider the set of elements in
the input tensor for which σink are the same but the indices in σprek vary. This set consists
of

∏
i∈σpre ni elements and is stored contiguously in memory due to the structure of (2) since

the indices in σpre vary faster than the fastest varying index in σin. The same holds for the
output tensor, and the relative order of the elements in each such block is preserved. Hence,
the storage format conversion can be carried out using

∏
i 6∈σpre ni block memory transfers of

size
∏
i∈σpre ni.

3.2 Out-of-place versus in-place conversion

The OOP conversion technique involves creating a second tensor and copying each block to its
new location in the output tensor. In contrast, the IP conversion technique involves permuting
the blocks inside the original memory area, thereby using roughly half of the memory required
by the OOP conversion technique. The block transfers form cycles (see Section 3.3) where
the blocks in a cycle are shifted within the cycle, see [14] and the references within.

Figure 2 illustrates both the OOP and the IP conversion techniques. The figure shows
a tensor of order d = 4 and size n = 〈5, 3, 2, 4〉. The conversion changes the tensor storage
format from πin = 〈0, 1, 2, 3〉 to πout = 〈0, 3, 2, 1〉. The in-place conversion consist of six cycles
of which two are singleton cycles (i.e., containing only one block). Each cycle is shown in the
figure with a unique color, while the singleton cycles share the same color (red).

3.3 In-place conversion techniques

The in-place conversion technique moves tensor blocks one by one from its initial position to
its final position within the same memory area. To avoid overwriting the already occupied
destination, that block must in turn first be moved to its final position. This continues until a
block is encountered whose final position is the initial position of the first block moved. This
completes a cycle and the whole permutation consists of one or more such cycles of potentially
diverse lengths. Some cycles involve moving/shifting only one block, which actually keeps the
block in the same position and involves no data movement at all. Such degenerate cycles are
called singleton cycles and for any permutation resulting from the mapping function f with
at least two blocks there are at least two singletons. See Figure 2 for an example.

3.3.1 Forward versus backward cycle shifting

Different techniques can be used in in-place conversion to make it more efficient [14]. Specif-
ically, a cycle can be shifted in one of two ways: forward or backward.
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(a) Out-of-place conversion

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

(b) In-place conversion

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Figure 2: Illustration of the out-of-place and in-place tensor storage format conversion tech-
niques for a tensor of size 5× 3× 2× 4.

(a) Forward shifting

1 8 17 22 15 6

T1 T2

1
2

3

4 5
6

7

8

9

10

(b) Backward shifting

1 8 17 22 15 6

T

345
1

2

7

Figure 3: Illustration of forward and backward shifting for a cycle with six blocks. Numbers
inside the blocks represent the block’s position in the tensor (T is a temporary workspace
block) while numbers on arrows represent the ordering of the steps.
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In the forward shifting technique, the destination block is first moved to a temporary
memory area and then the source block is moved to the now vacant destination block. If the
number of blocks in the cycle is at least four, then we need two temporary storage areas, each
the size of one block. Figure 3(a) shows the forward shifting technique applied to a cycle
consisting of six blocks. We start with block number 1 and its destination is block number 8,
so we move block number 8 to the temporary storage area T1. Then we move block number
1 to block number 8. Now to move block number 8 to its destination block number 17, we
need to first save block number 17 to the second temporary area T2. This process continues
until we reach the block whose destination is the first block in the cycle (block number 1).
For non-singleton cycles with b > 2 blocks, the forward shifting technique requires 2(b − 1)
block memory transfers. In our case, the cycle has b = 6 blocks and we need 2(6 − 1) = 10
steps.

In the backward shifting technique, we begin by moving the first block to a temporary
storage area T . Then we loop backward in the cycle to the block whose destination is the
block we just copied. We move that block (in this case block number 6) and repeat the
procedure until we have traversed the entire cycle. We end by transferring the initial block
from the temporary storage area to its now vacant destination. The number of steps required
by the backward shifting technique is only b+ 1. In our case, we need b+ 1 = 7 steps.

In conclusion we prefer the backward shifting technique not only because it uses fewer
steps to shift a cycle, but also because it uses the source block in one step as the destination
block in the next. If the block fits into the cache, then the data will be reused.

3.3.2 Sub-blocking

If the blocks become too large to fit in the lowest level cache, then the nice cache effects
inherent in the backward shifting technique do not apply. There is a simple scheme called
sub-blocking that can be used to overcome this issue and retain the beneficial cache behavior.
The sub-blocking scheme works by partitioning each block into smaller sub-blocks that fit
inside some desired level of the cache hierarchy. The backward cycle shifting is replaced by
several rounds of backward cycle shifting: one round for each sub-block. Figure 4 illustrates
the sub-blocking scheme with three sub-blocks per block (and hence three rounds of cycle
shifting per cycle). The figure shows the sub-blocking of a cycle consisting of six blocks into
three sub-blocks per block. The first round moves the dark green blocks (subscript “1”). The
second round moves the green blocks (subscript “2”). Finally, the third round moves the light
green blocks (subscript “3”).

3.4 Parallel conversion: Sources of concurrency

Both out-of-place and in-place conversion allow for parallel processing, but the former has
a higher degree of (inherent) parallelism. In out-of-place conversion, parallelism is available
when moving blocks since every block can be simultaneously copied to their respective desti-
nations. In in-place conversion, the situation is quite different since the same memory area is
used for the input and the output and the blocks can therefore not be moved simultaneously.
But there is still potential for parallelism. Dependencies between blocks exist only within a
given cycle. Two different cycles can be shifted at the same time and hence the cycles are a
source of concurrency. To exploit the available parallelism efficiently, we need to take care
of the load balance since the cycles do not all have the same length in general. Distributing
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11 12 13

81 82 83

171 172 173

221 222 223

151 152 153

61 62 63

Figure 4: Illustration of the sub-blocking scheme to improve the cache behavior of the back-
ward cycle shifting technique in in-place tensor storage format conversion. Each of the six
blocks in the cycle have been partitioned into three sub-blocks. The numbers inside the blocks
represent the block number in the tensor while the subscript numbers represent the sub-block
number of that block.

the blocks evenly over the processors increases the scalability of the out-of-place conversion.
In the in-place case, the aim is to distribute the total work evenly over the processors. Such
a balanced load can in many cases be well approximated by using a dynamic load balancing
scheme.

3.5 Matricization by storage format conversion

As described in Section 2.3, obtaining an explicit matricization is equivalent to converting
the tensor storage format. The input is a tensor stored in a specific format defined by the
permutation πin and a subset M ⊆ S(d) of the modes to associate with the columns of the
resulting matrix. The output is the same tensor but stored in a format defined by some
permutation πout such that the stored tensor can be reinterpreted as a matricization of the
tensor in either the row-major or the column-major format with the modes in M associated
with the columns of the matrix. Figure 5 illustrates for a third-order tensor that the choice
of target matrix format can drastically change the cost of the resulting tensor storage format
conversion. In this example, choosing the row-major storage format will result in no change of
the input tensor and is therefore entirely free. On the other hand, choosing the column-major
storage format will result in a costly conversion with blocks of size one, which is the worst
possible case.

Since the precise ordering of the rows and columns of the resulting matrix is seldom
important in applications, there are many candidate formats πout. Specifically, the matrix
may be stored in either the row-major or the column-major format and the modes associated
with the rows and columns may be arbitrarily ordered. The choice of output format affects
the performance of the conversion process primarily because it determines the block size of
the conversion as described in Section 3.1.

For the column dimension of the matrix, we need to choose an extraction σcol of S(d) of
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0
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1
1
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4 5

5

7

Tensor
πin = 〈1, 0, 2〉

Column-major
σrow = 〈0, 2〉
σcol = 〈1〉

Row-major
σrow = 〈0, 2〉
σcol = 〈1〉

M = {1}M = {1}0 1 0 1

2 3 2 3

4 5 4 5

6 7 6 7

πout = 〈0, 2, 1〉 πout = 〈1, 0, 2〉

0 1 2 3 4 5 6 70 12 34 56 7

Figure 5: Tensor matricization can be performed in different ways depending on the choice
of target matrix format. On the left, the matricization results in a matrix in column-major
storage format but requires a very expensive tensor storage format conversion with blocks
of size one. On the right, the same matricization results in a matrix in row-major storage
format and requires no memory transfers at all.

length |M |, and for the row dimension we need a complementary extraction σrow of S(d) of
length |S(d) \M |. In addition, we need to choose the target matrix format: row- or column-
major. The output format πout is determined by these three choices as follows: if the target
is the column-major format, then πout = σrow ⊕ σcol, otherwise πout = σcol ⊕ σrow.

To maximize the block size in the conversion process, we need to maximize the length of
the common prefix of the given πin and the chosen πout subject to its constraints. The choice
of target matrix format is governed only by the first component of πin. If that component is in
M and hence associated with the columns and a member of σcol, the only way to get a block
size greater than one is to choose the row-major format since that places σcol first in πout.
Conversely, if the component is in S(d) \M , the only reasonable choice is the column-major
format. With the target matrix format fixed, the remaining components of σrow and σcol need
to be chosen such that the length of the common prefix of πin and πout is maximized. For
example, if πin = 〈0, 1, 2, 3〉 and M = {1, 3}, then by the reasoning above we should choose
the column-major format (since 0 /∈M) and place 0 first in σrow. Since the next component is
inM and hence not in σrow, there is no way to create a match between the second components
of πin and πout. There are in this particular case two solutions with the same block size n0:
πout = 〈0, 2, 1, 3〉 and πout = 〈0, 2, 3, 1〉.

To help visualize the matricization process, we represented πin as a number of ◦’s and
×’s, Figure 6 (a). The ◦ denotes a component inM and × denotes a component in S(d)\M .
The subscript numbers represent the order of the components. For example, ×2 is the second
component in πin from S(d) \M and ◦1 is the first component in πin from M . πout is also
represented as a number of ◦’s and ×’s but initially without subscript numbers, Figure 6 (a).
The goal is to map πin ×’s to πout ×’s and πin ◦’s to πout ◦’s such that the block size is
maximized. The mapping of a component from πin to πout is represented as an arrow. The
arrow points to the component in πout that will be numbered, Figure 6 (b,c). The length of
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the common prefix is defined by the number of leading contiguous vertical arrows between
πin and πout. In other words, the prefix size is captured by the components coming before the
first tilted arrow.

1 21 2 1 21 2 1 21 2

1 1 1

1 2
πin

πout

(a)Start (b)πout = 〈0, ?, ?, ?〉 (c)πout = 〈0, ?, 1, ?〉

Figure 6: Matricization algorithm: block size fixed after mapping 2 components.

Using this notation, Figure 6 represents the matricization in the previous example. Since
the target format is column-major format, M components come last in πout. In the first step,
we map the first component in πin, which is ×1, 0 in the example. In this case the arrow is
vertical. In the next step, we map the next component in πin, which is ◦1. The mapping
arrow is tilted in this case, which means that the block size of this matricization is now known
to be n0.

Algorithm 1 formalizes the steps required to build πout in a manner that maximizes the
block size.

We start with an empty σ× and σ◦. We check the first component in πin, if it is from M
we append it to σ◦ otherwise we append it to σ×. Then, we move to the next component in
πin. We keep doing that until we have mapped all the components in πin.

After the mapping, we decide the order of σ× and σ◦ in πout based on πin(0): if it’s from
M then πout = σ◦ ⊕ σ× otherwise πout = σ× ⊕ σ◦.

3.6 Matricizing two tensors

A common operation in tensor computation is the process of combining a subset of indices from
one tensor with a subset of indices from another tensor. This is called tensor contraction. A
contraction can be performed using matrix-matrix multiplication. In this case, the two tensors
need to be converted to matrices. We matricize each tensor over its contraction subset then
multiply the two matrices.

Given a tensor A of size nA stored in the format defined by πAin, a tensor B of size nB
stored in the format defined by πBin, a subset MA of the modes of A, and a corresponding
subsetMB of the modes of B. We must decide on a format πAout for A and a compatible format
πBout for B. The formats are compatible if and only if the modes in MA occur in πAout in the
exact same order as their corresponding elements in MB occur in πBout.

The constraint on the ordering of the elements of MA and MB in the chosen formats
implies that, at least in general, we cannot find optimal formats for A and B independently.
In other words, we seek an algorithm for finding an optimal pair of formats.

Given two sets of compatible formats, which is better? When matricizing a single tensor,
we assumed that a bigger block size implies a faster conversion, see Section 3.5. When
matricizing a pair of tensors, we have two block sizes. Let h(α, β) be some measure of the
execution rate of converting A with block size α and B with block size β. We can reasonably
assume that h is non-decreasing in each parameter, i.e., that h(α + ∆, β) ≥ h(α, β) and
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Input : πin // Input storage format.
: M // Set of matricization modes.

Output: πout // Output storage format.
: γ // Block size.
: σ◦ // Extraction specifying the order of the matricization modes.

1 begin
2 σ× ← 〈〉
3 σ◦ ← 〈〉
4 for i = 0 to d− 1 do
5 if πin(i) ∈M then
6 σ◦ ← σ◦ ⊕ πin(i)
7 else
8 σ× ← σ× ⊕ πin(i)
9 end

10 end
11 if πin(0) ∈M then
12 πout ← σ◦ ⊕ σ×
13 else
14 πout ← σ× ⊕ σ◦
15 end
16 Compute the block size γ
17 return πout, γ, σ◦
18 end

Algorithm 1: Matricization algorithm.
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h(α, β+ ∆) ≥ h(α, β) for every ∆ > 0 because increasing only one of the block sizes improves
the execution rate of that conversion while the other is unaffected. See Section 4.4 for more
details about h.

Consider how Algorithm 1 builds an optimal output format. It starts off with an empty
output and a block size of 1. In each iteration, one additional element of the output format is
determined. The block size will increase in the first few iterations until the maximum block
size is reached. After that point, the block size will remain constant as the missing elements
of the output format are determined. Crucially, the leading elements (which determine the
block size) are uniquely determined. This means that even though there could be several
output formats that have the same optimal block size, they will all have the same prefix that
determines the optimal block size.

Now consider running Algorithm 1 on both A and B at the same time. In general, the
two outputs will not be compatible. This happens if the two executions produce a different
ordering for the elements in MA and MB. Instead, start the two executions and run them
until the first iteration that wants to map an element in MA respectively MB. Pause both
executions. At this point, the two partially defined formats are compatible. From this point
forward there are two cases, Figure 7. In the best case, the two elements that are about to be
mapped are in correspondence with one another, Figure 7(a). In this case, we simply advance
both executions to the next iteration; both block sizes will be increased and the formats will
remain compatible. In the worst case, the two elements are not in correspondence with one
another, Figure 7(b). In that case, we must accept that one of the block sizes need to be
fixed in order to preserve compatibility. There are again two cases: we fix the block size of
either A or B. Let α and β denote the block sizes obtained thus far by Algorithm 1. If we
fix the block size α, then we can proceed with the execution on B and obtain the block size
β + ∆B for B. On the other hand, if we fix the block size β, then we can proceed with the
execution on A and obtain the block size α + ∆A for A. Which is better depends on h: if
h(α+ ∆A, β) < h(α, β + ∆B), then we should fix α and otherwise we should fix β.

In conclusion, to compute an optimal pair of formats we use the following procedure:

1. Run Algorithm 1 on A. Let α1 denote the resulting block size.

2. Run Algorithm 2, a modified version of Algorithm 1, on B that produces a format
compatible with that produced in Step 1. Let β1 denote the resulting block size.

3. Run Algorithm 1 on B. Let β2 denote the resulting block size.

4. Run Algorithm 2 on A to ensure compatibility with the format produced in Step 3. Let
α2 denote the resulting block size.

5. If h(α1, β1) ≥ h(α2, β2) then use the formats from Steps 1 and 2 and otherwise use the
formats from Steps 3 and 4.

Algorithm 3 formalizes the steps required to build πAout and πBout in a manner that maxi-
mizes the execution rate.
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Figure 7: Different scenarios for mapping an element from M .

Input : πin // Input storage format for tensor 2.
: M1 // Set of matricization modes of tensor 1.
: M2 // Set of matricization modes of tensor 2.
: σ1
◦ // Extraction specifying the order of tensor 1 matricization

modes.
Output: πout // Output storage format for tensor 2.

: γ // Block Size for tensor 2.
1 begin
2 σ× ← 〈〉
3 Using σ1

◦ define an extraction σ◦ that orders the elements of M2 which keeps the
correspondence between M1 and M2

4 for i = 0 to d− 1 do
5 if πin(i) 6∈M2 then
6 σ× ← σ× ⊕ πin(i)
7 end
8 end
9 if πin(0) ∈M2 then

10 πout ← σ◦ ⊕ σ×
11 else
12 πout ← σ× ⊕ σ◦
13 end
14 Compute the block size γ
15 return πout, γ

16 end
Algorithm 2: Modified version of Matricization algorithm.
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Input : πAin // Input storage format of tensor A.
: πBin // Input storage format of tensor B.
: MA // Set of matricization modes of tensor A.
: MB // Set of matricization modes of tensor B.

Output: πAout // Output storage format of tensor A.
: πBout // Output storage format of tensor B.

1 begin
2 (πA|Aout , γA|A, σ

A|A
◦ )← Algorithm 1(πAin,MA)

3 (πB|Aout , γB|A)← Algorithm 2(πBin, σ
A|A
◦ ,MB,MB)

4 (πB|Bout , γB|B, σ
B|B
◦ )← Algorithm 1(πBin,MB)

5 (πA|Bout , γA|B)← Algorithm 2(πAin, σ
B|B
◦ ,MB,MA)

6 if h(γA|A, γB|A) < h(γA|B, γB|B) then
7 πAout ← π

A|B
out

8 πBout ← π
B|B
out

9 else
10 πAout ← π

A|A
out

11 πBout ← π
B|A
out

12 end
13 return πAout, π

B
out

14 end
Algorithm 3: Matricize-pair algorithm.

4 Software
A software library called dten has been written in the C programming language with the
OpenMP extension used to parallelize the core functions.

4.1 Features

Presently, dten contains two levels of functionality: basic and advanced. The basic function-
ality consists of essential functions for allocating, deallocating, initializing, printing, copying,
and saving/loading to/from an HDF5-based file format [24]. In addition, primitive functions
for obtaining information about the tensor such as its order and size are provided. The ad-
vanced functionality consists of parallel tensor storage format conversion and wrappers for
efficient matricization. Both out-of-place (OOP) and in-place (IP) conversion functions are
provided. In the out-of-place function, the user can choose which tensor (input or output) to
traverse contiguously. The allocation and initialization of the output tensor in the out-of-place
conversion is the responsibility of the user to potentially save the allocation and deallocation
time, which may be a factor affecting the conversion performance specially for large tensors.

The matricization functionality, as described in Section 3.5, is split into three functions.
The first matricizes over a single mode, |M | = 1. The second matricizes over a subset of
the modes, |M | > 1. The third matricizes a pair of tensors such that a contraction over a
subset of the modes can be performed afterwards using standard matrix–matrix multiplication
routines. For each matricization function, the user can specify the target matrix format as
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well as the ordering of the modes associated with the rows and/or the columns or choose to
leave one or more of these choices to the library.

In addition, if no initial permutation of a tensor is supplied to the allocation, then the
library tries to maximize the potential block size by ordering the indices based on their size
in a descending order.

4.2 Tunable parameters

The library contains a few parameters that affect the performance of some of the functions
and can be tuned to give the best performance on a particular machine. As mentioned in
Section 3.4, the parallelism in the in-place conversion function is done by shifting multiple
cycles in parallel. The cycles need to be identified first and since the number of cycles is
potentially very large, the number of cycles to generate before shifting them in parallel is
bounded by a tunable parameter. The cycle cache should be large enough to enable effective
load balancing (i.e., much larger than the number of threads), but not too big as to waste a
lot of memory. The effect on performance is negligible unless the cache is very small in which
case there will not be enough cycles to parallelize, leading to idle threads.

Another parameter is the size of the sub-blocks as described in Section 3.3.2. This param-
eter affects the core of the conversion function and has a large impact on the performance.
The optimal choice depends on the size and characteristics of the memory hierarchy.

4.3 Cycle shifting strategy

As mentioned in Section 3.3.1, there are two ways of shifting a cycle in the in-place technique.
The backward shifting technique is used due to the advantages explained in Section 3.3.1.

4.4 Matricize-pair heuristic function

The matricize-pair algorithm described in Section 3.6 uses a heuristic function h to find which
tensor to optimize. The heuristic function takes as an input the block sizes, α and β, and
returns an estimate of the execution rate when using these two block sizes. For a given set
of formats and corresponding block sizes, we assume that the execution rates of the two
conversions are limited by the smallest block size among the two; so the heuristic function
returns the smallest block size, i.e., h(α, β) = min{α, β}, as an estimate of the execution rate.
In Algorithm 3 we get two sets of compatible formats to matricize two tensors together. We
evaluate the two sets and we choose the one with the highest execution rate, i.e., the one that
gives the highest value for the heuristic function. In case the execution rates are equal, we
use the following tie-breaker:

1. Choose the set which leads to applying the smallest block size on the shorter tensor.

2. If both tensors are equally large, maximize the largest block size.

5 Performance
This section presents the performance and the scalability of the conversion function. The
experiments were performed on one node of the high performance computer Abisko, which
is operated by High Performance Computing Center North (HPC2N) at Umeå University.
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One node consists of four AMD Opteron 6238 processors clocked at 2.6 GHz. Each processor
contains two chips with six cores each for a total of 48 cores per node. Each chip has its own
memory controller, which leads to eight NUMA domains per node. Each group of six cores
share a memory bus on Abisko, for that reason the number of cores in our tests are multiple
of six.

The main factor affecting the conversion performance is the block size. In addition, the
performance of the OOP conversion is affected by which tensor will be accessed contiguously.
While the performance of the IP conversion is affected by whether the sub-blocking is used
or not.

Figure 8 shows the change in memory bandwidth with respect to changing the block size.
The figure contains different plots for four different cases, OOP with contiguous access to the
output tensor, OOP with contiguous access to the input tensor, IP without sub-blocking and
IP with sub-blocking. The four cases were tested on 48 cores. The tensor chosen as a study
case is of order 6 with size n = 〈x, 8, 4, 4, 5, 2〉, where x was changed to give different block
sizes. The initial storage format was defined by φπin(k; n) where πin = 〈0, 1, 2, 3, 4, 5〉 and the
target storage format was defined by φπout(k; n) where πout = 〈0, 3, 2, 1, 4, 5〉. The conversion
contains 200 cycles, most of them involve moving 7 blocks while the rest are singleton cycles.
The sub-blocking size used for the IP conversion is 8KB. The tested block sizes were 8KB,
16KB, 32KB, . . . , 3.2MB.

The aggregate cache for the 48 cores on one node of Abisko is 96MB. If the tensor size
is more than that it will not fit into the cache. This explains why there is a drop in the
memory bandwidth for tensors of sizes larger than the aggregate cache size. Recall that OOP
conversion doubles the memory used for tensor storage, see Section 3.2.

It is clear from Figure 8 that accessing either tensor contiguously is not affecting the
performance dramatically for the OOP conversion. On the other hand, the IP conversion with
sub-blocking improves the performance drastically compared to omitting the sub-blocking for
large size tensors. These results influenced us to use OOP conversion with input tensor
accessed contiguously and IP conversion with sub-blocking for the rest of the conducted
experiments.

To study the scalability of the conversion functions, different tensors are tested. The
tensor sizes were taken from the previous described experiment. We chose the case where
the aggregate cache is almost full, which is 40MB tensor for the OOP conversion and 80MB
tensor for the IP conversion. We will call this case the cache fit case. In addition, 10MB,
640MB and 4GB tensors were tested for both OOP and IP conversion. The real factor that
affects the scalability is the memory buses.

Figures 9 and 10 present the scalability of the OOP conversion and the IP conversion
functions, respectively. The figures show the number of cores versus the efficiency E given by

E = ts
p× tp

, (4)

where ts is the sequential execution time, tp is the parallel execution time and p is number of
cores. Both figures show acceptable efficiency for large tensor sizes. The cache fit case gives
slightly better performance due to efficient use of cache memory while the small tensor case
behave wildly because it is too small to be parallelized.
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6 Conclusion and related work
An n-dimensional tensor has n! canonical tensor storage formats. Converting a tensor from
one format to another can, in many cases, be done efficiently by transferring memory blocks.
But sometimes the blocks can degenerate and consist of a single element. The maximum
block size is determined by the pair of formats and the size of the tensor. Putting the tensor
dimensions in a descending order of size can maximize the potential block size.

Converting a tensor format can be done using an out-of-place technique or an in-place
technique. The former uses another memory location to perform the conversion where the
latter shifts the tensor blocks within the same memory in cycles. Also the in-place technique
requires almost half of the memory but at the expense of exploiting lower degree of inherent
parallelism.
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We showed that shifting cycles in the in-place technique can be done in two ways, from
which the backward shifting is chosen because, compared to the forward shifting, it is more
cache efficient and requires less steps. In addition, to benefit from the memory hierarchy and
be more cache efficient, the blocks could be divided into sub-blocks in the in-place conversion.

Furthermore, tensor matricization can always be performed using non-degenerate blocks
if the output matrix format (row- or column-major) can be chosen freely.

6.1 Related work

Some work has been done in tensor computation and some tools are presented which target
storage format of dense tensors. The MATLAB Tensor Toolbox [4] provides a set of tensor
related functions such as tensor multiplication, matricization and various tensor decompo-
sitions. Another MATLAB toolbox is Tensorlab [25] which supports complex optimization,
tensor factorization and tensor optimization. While the MATLAB toolbox TT-Toolbox [22]
provides basic tensor operations for tensors stored in tensor-train format. The python library
Scikit-tensor [21] supports basic tensor operations and factorization. A famous software for
symbolic computation, Wolfram Mathematica [1], represents tensors as a list of lists. The
software supports many tensor operations and tensor related algorithms. In Torch7 [7], a
scientific computing framework for machine learning on GPU, a tensor represents a view to
a storage. The data in the tensor may not be contiguous in memory. Yet, the framework
provides tools for manipulating and rearranging the data in storage. In [15] Albert Hartono et
al. present a way for permuting the indices of a tensor by generating multiple code versions
optimized during the library installation stage. Another automatic code generator widely
used is So Hirata’s Tensor Contraction Engine (TCE) [16]. While the main focus is to gen-
erate optimized code for tensor contraction, Hirata proposed a way for tensor permutation
where the tensor is divided into tiles and the position of the tile for each required permuta-
tion during a contraction is precomputed and stored in the memory. Ballared G. et al. in
[5] address the problem of symmetric tensors storage format in their proposal for computing
tensor eigenvalues on GPU. While Beverly A. Sanders et al. in [23] are focusing more on
distributed memory. Also related to distributed memory, Austin W. et al. in [3] propose to
distribute the tensor among a processor grid and perform the matricization logically without
data movement. While Dmitry I. Lyakh in [20] is considering the case where the block size is
one.
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