
Minimization of finite state automata
through partition aggregation

Johanna Björklund1 and Loek Cleophas1,2

1 Ume̊a University, Dept. of Computing Science, Ume̊a, Sweden
2 Stellenbosch University, Dept. of Information Science, Stellenbosch, South Africa

johanna@cs.umu.se, loek@fastar.org

Abstract. We present a minimization algorithm for finite state au-
tomata that finds and merges bisimulation-equivalent states, identified
through partition aggregation. We show the algorithm to be correct and
run in time O

(
n2d2 |Σ|

)
, where n is the number of states of the input

automaton M , d is the maximal outdegree in the transition graph for
any combination of state and input symbol, and |Σ| is the size of the
input alphabet. The algorithm is slower than those based on partition
refinement, but has the advantage that intermediate solutions are also
language equivalent to M . As a result, the algorithm can be interrupted
or put on hold as needed, and the derived automaton is still useful. Fur-
thermore, the algorithm essentially searches for the maximal model of
a characteristic formula for M , so many of the optimisation techniques
used to gain efficiency in SAT solvers are likely to apply.

1 Introduction

Finite-state automata form one of the key concepts of theoretical computer sci-
ence, and their computational and representational complexity is the subject of a
great body of work. In the case of deterministic finite state automata (dfa), there
is for every dfaM a minimal language-equivalent dfaM ′, and this M ′ is canon-
ical with respect to the recognized language. In the general, non-deterministic
case, no analogous result exists. In fact, nfa minimization is PSPACE com-
plete [14] and the solution is not guaranteed to be unique. Moreover, given an
nfa with n states, the minimization problem cannot be efficiently approximated
within a factor o(n), unless P = PSPACE [9].

Since nfa minimization is inherently difficult, attention has turned to effi-
cient heuristic algorithms, that often, if not always, perform well. In this category
we find bisimulation minimization. Intuitively, two states are bisimulation equiv-
alent if every transition that can be made from one of them, can be mirrored
starting from the other. More formally, an equivalence relation E on the states Q
of a nfa M is a bisimulation relation if the following holds: (i) the relations re-
spects the separation in M of final and non-final states, and (ii) for every p, q ∈ Q
such that (p, q) ∈ E , if p′ ∈ Q can be reached from p on the symbol a, then there
exists a q′ ∈ Q that can be reached from q on a, and (p′, q′) ∈ E .

The transitive closure of the union of two bisimulation relations is again a
bisimulation relation, so there is a unique coarsest bisimulation relation E of
every nfaM . When each equivalence class of E is merged into a single state, the
result is a smaller but language-equivalent nfa. If M is deterministic, then this
approach coincides with regular dfa minimization. The predominant method
of finding E is through partition refinement. The states are initially divided
into final and non-final states, and the algorithm resolves contradictions to the
bisimulation condition by refining the partition until a fixed point is reached.
This method is fast, and requires O(m logn) computation steps [17], where m is
the size of M ’s transition function. The drawback is that up until termination,
merging equivalence classes into states will not preserve the recognized language.

In Section 4, we present an nfa minimization algorithm in which also the
intermediate solutions are language-equivalent with M . Similarly to previous
approaches, the algorithm computes the coarsest bisimulation relation E on M .
However, the initial partition is entirely made up of singleton classes, and these
are repeatedly merged until a fixed point is reached. The algorithm runs in time
O
(
n2d2 |Σ|

)
, where d is the maximal outdegree in the transition graph for any

combination of state and input symbol, and Σ is the input alphabet.
The use of aggregation was inspired by a family of minimization algorithms

for dfa (see Section 1.1), and we lift the technique non-deterministic devices.
In the deterministic case, our algorithm runs in O

(
n2 |Σ|

)
, which is the same as

for the fastest aggregation-based dfa minimisation algorithms.
Another contribution is the computational approach: we derive a character-

istic propositional-logic formula wM for the input automaton M , in which the
variables are pairs of states. The algorithm entails finding the maximal model v̂
of wM , in the sense that v̂ assigns ‘true’ to as many variables as possible. We
show that if wM is satisfiable, then v̂ is unique and efficiently computable by a
greedy algorithm, and v̂ encodes the coarsest bisimulation relation on M .

1.1 Related work

dfa minimization has been studied extensively since the 1950s [12, 15, 10]. Ten
Eikelder observed that the equivalence problem for recursive types can be formu-
lated as a dfa reachability problem, and gave a recursive procedure for deciding
equivalence for a pair of dfa states [19]. This procedure was later used by Wat-
son to formulate a dfa minimization algorithm that works through partition
aggregation [20]. The algorithm runs in exponential time, and two mutually
exclusive optimization methods were discussed in [21]. One uses memoziation
to limit the number of recursive invocations; the other bases the implementa-
tion on the union-find data structure [2, 18, 11]. The latter method reduces the
complexity from O

(
|Σ|n−2n2

)
to O

(
α(n2)n2

)
, where α(n), rougly speaking, is

the inverse of Ackermann’s function. The value of this function is less than 5 for
n ≤ 22

16

, so it can be treated as a constant. The original version of the algorithm
has been lifted to deterministic tree automata (a generalisation of finite state
automata) both as an imperative sequential algorithm and in terms of communi-
cating sequential processes [7]. In [8, Chapter 7], Daciuk continues the discussion

of aggregation-based dfa minimization, starting from the work reported in [21].
He simplifies the presentation and generally improves the algorithm, including
the removal of an incorrect combination of memoization and restricted recursion
depth. The fact that this combination was problematic had been pointed out by
Marco Almeida, and is also reported in [3]; Almeida had found apparently rare
dfa cases in which the Watson-Daciuk algorithm returned non-minimal dfas.
In [3], Almeida et al. also present a simpler version, doing away with presum-
ably costly dependency list management. Assuming a constant alphabet size,
they state that their algorithm has a worst-case running time of O

(
α(n2)n2

)
for

all practical cases, yet also claim it to be faster than the Watson-Daciuk one.
Based on Almeida’s reporting, Daciuk in [8, Section 7.4] provides a new ver-
sion, presented as a compromise between the corrected Watson-Daciuk and the
Almeida-Moreira-Reis algorithm, but does not discuss its efficiency. nfa minimi-
sation has also received much attention, but we restrict ourselves to heuristics
that compute weaker relations than the actual Nerode congruence (recalled in
Section 2). In [17], three partition refinement algorithms were presented, one
of which is essentially bisimulation minimization for nfa. The technique was re-
vived in [1], then in the domain of finite-state tree automata. The paper was soon
followed by bisimulation-minimization algorithms for weighted and unranked
tree automata [4, 5], and also algorithms based on more general simulation re-
lations [1, 13]. This work is to the best of our knowledge the first in which the
bisimulation relation is computed through aggregation.

2 Preliminaries

Sets and numbers. We write N for the set of natural numbers including 0. For
n ∈ N, [n] = {i ∈ N | 1 ≤ i ≤ n}. Thus, in particular, [0] = ∅. The cardinality of
a set S is written |S| and the powerset of S by pow (S).

Relations. A binary relation is an equivalence relation if it is reflexive,
symmetric and transitive. Let E and F be equivalence relations on S. We say
that F is coarser than E (or equivalently: that E is a refinement of F), if E ⊆ F .
The equivalence class of an element s in S with respect to E is the set [s]E =
{s′ | (s, s′) ∈ E}. Whenever E is obvious from the context, we simply write [s]
instead of [s]E . It should be clear that [s] and [s′] are equal if s and s′ are in
relation E , and disjoint otherwise, so E induces a partition (S/E) = {[s] | s ∈ S}
of S. We denote the identity relation {(s, s) | s ∈ S} on S by IS .

Strings. An alphabet is a finite nonempty set. The empty string is denoted
by ε. For an alphabet Σ, a string is a sequence of symbols from Σ, in other
words, an element of Σ∗. A string language is a subset of Σ∗.

Finite automata. A non-deterministic finite state automaton (or nfa, for
short) is a tuple M = (Q,Σ, δ,QI , QF), where Q is a finite set of states; Σ
is an alphabet of input symbols; δ = (δf)f∈Σ is a family of transition functions
δf : Q→ pow (Q); QI ⊆ Q is a set of initial states; and QF ⊆ Q is a set of final
states. The size of M is |M | = |δ|.

We immediately extend δ to (δ̂w)w∈Σ∗ where δ̂w : pow (Q) → pow (Q) as
follows: For every w ∈ Σ∗ and P ⊆ Q,

δ̂w(P) =

{
P if w = ε, and⋃
p∈P δ̂w′(δf (p)) if w = fw′ for some f ∈ Σ, and w′ ∈ Σ∗.

The language recognised by M is L(M) = {w ∈ Σ∗ | δ̂w(QI) ∩ QF 6= ∅}. From

here on, we identify δ with δ̂. If |QI | ≤ 1, and if |δf ({q})| ≤ 1 for every f ∈ Σ
and q ∈ Q, then M is said to be deterministic.

Let E be an equivalence relation on Q. The aggregated nfa with respect to
E is the nfa (M/E) = ((Q/E), Σ, δ′, Q′I , Q

′
F) given by δ′f ([q]) = {[p]|p ∈ δf (q)}

for every q ∈ Q and f ∈ Σ; Q′I = {[q] | q ∈ QI}; and Q′F = {[q]|q ∈ QF }.
The right language of q ∈ Q is

→
L (q) = {w ∈ Σ∗ | δw({q}) ∩ QF 6= ∅}.

The Nerode congruence [16] is the coarsest congruence relation E on Q w.r.t the

right-languages
→
L (q); i.e. E(p, q) if and only if

→
L (p) =

→
L (q) for all p, q ∈ Q.

Propositional logic. We assume that the reader is familiar with proposi-
tional logic, but recall a few basics to fix the terminology. The Boolean values
true and false are written as > and ⊥, respectively, and we use B for {>,⊥}.
Let L be a propositional logic over the logical variables V , and let WF(L) be the
set of well-formed formulas over L. An interpretation of L is a partial function
V → B. Given interpretations v and v′, we say that v′ is an extension of v if
v′(π) = v(π) for all π ∈ dom (v). The set of all such extensions is written Ext(v).

A substitution of formulas for variables is a set {x1 ← w1, . . . , xn ← wn},
where each xi ∈ X is a distinct variable and each wi ∈WF(L) is a formula. The
empty substition is defined by the empty set.

Let θ = {x1 ← w1, . . . , xn ← wn} and σ = {y1 ← w′1, . . . , yk ← w′k} be two
substitutions. Let X and Y be the sets of variables substituted for in θ and σ,
respectively. The composition θσ of θ and σ is the substitution {xi ← wiσ | xi ∈
X} ∪ {yj ← wj | yj ∈ Y \ X}. The application of θ to a formula w is denoted
wθ and defined by (simultaneously) replacing every occurrence of each xi in w
by the corresponding wi. Finally, given a set of formulas W ⊆ WF(L), we let
Wθ = {wθ | w ∈W}.

Every interpretation v of L can be seen as a substitution, in which π ∈ dom (v)
is replaced by v(π). This allows us to extend v to a function WF(L)→ B where
v(w) = > if wv is a tautology, v(w) = ⊥ if wv is a contradiction, and v(w) is
undefined otherwise. The formula w is resolved by v if v(w) ∈ {>,⊥}, and v is
a model for w if v(w) = >. The set of models of w is denoted by Mod(w).

3 Logical framework

In this section, we express the problem of finding the coarsest simulation relation
on a finite automaton, as a problem of computing the maximal model of a
propositional-logic formula. Due to space restrictions, the argumentation is kept
at an intuitive level 3.
3 Detailed proofs are provided in the appendix.

From here on, let M = (Q,Σ, δ,QI , QF) be a fixed but arbitrary nfa.

Definition 1 (Bisimulation, cf. [6, Definition 3.1]). Let E be a relation
on Q. It is a bisimulation relation on M if for every (p, q) ∈ E, (1) p ∈ QF if
and only if q ∈ QF ; and (2) for every symbol f ∈ Σ,

for every p′ ∈ δf (p) there is a q′ ∈ δf (q) such that (p′, q′) ∈ E
and for every q′ ∈ δf (q) there is a p′ ∈ δf (p) such that (p′, q′) ∈ E .

Condition 2 of Definition 1 can be expressed in a propositional logic, in which
the variables are pairs of automata states. The variable corresponding to the pair
〈p, q〉 is true if and only if p and q satisfy Condition 2.

Definition 2 (Characteristic formula). Let VM = {〈p, q〉 | p, q ∈ Q} be a set
of propositional variables. For π = 〈p, q〉 ∈ VM and f ∈ Σ, we denote by wfπ the
negation-free CNF formula∧

p′∈δf (p)

∨
q′∈δf (q)

〈p′, q′〉 ∧
∧

q′∈δf (q)

∨
p′∈δf (p)

〈p′, q′〉

and by wπ the formula
∧
f∈Σ waπ. Observe that wπ is negation-free. Finally, we

denote by wM the conjunction
∧
π∈VM

π → wπ.

We could also model Condition 1 in the formula wM , but that would intro-
duce negations and require a more complex algorithm than that which we are to
present. To find the coarsest bisimulation relation for M , we instead start out
from a partial interpretation of VM satisfying Condition 1 of Definition 1 and
search for a ‘maximal’ extension that also satisfies Condition 2. By ‘maximal’
we mean that it assigns as many variables as possible the value >.

Definition 3 (Maximal model). Let v and v′ be interpretations of VM . Then
v ∨ v′ denotes the interpretation of VM given by (v ∨ v′)(π) = v(π) ∨ v′(π), for
every π ∈ VM . We say that v ∈ Mod(w) is maximal if v ∨ v′ = v for every
v′ ∈ Ext(v) ∩Mod(w).

Due to the structure of wM , its models are closed under variable-wise ‘or’. In
other words, if v, v′ ∈ Mod(wM), then v∨v′ ∈ Mod(wM). From this we conclude
that when a solution exists, it is unique.

Lemma 1. Let v be a partial interpretation of VM . If Ext(v) ∩Mod(wM) 6= ∅,
then there is a v̂ ∈ Ext(v) that is a maximal model for wM , and v̂ is unique.

To translate our logical models back into the domain of bisimulation relations,
we introduce the notion of their associated relations.

Definition 4 (Associated relation). We associate with every (partial) inter-
pretation v of VM a relation ∼v on VM , given by p ∼v q ⇐⇒ v(〈p, q〉) = >. We
say that the interpretation v is reflexive, symmetric, and transitive, respectively,
whenever ∼v is.

Note that Definition 4 makes no difference between a state pair π for which
v(π) = ⊥, and a state pair for which v is undefined.

If v is an arbitrary model for wM , then its associated relation need not be
an equivalence relation, but for the maximal model, it is.

Lemma 2. Let v be a partial interpretation of VM such that ∼v is an equivalence
relation, and let v̂ be an extension of v that is a maximal model of VM , then
also ∼v̂ is an equivalence relation.

We introduce a partial interpretation v0 to reflect Condition 1 of Definition 1
and use this as the starting point for our search.

Definition 5. Let v0 be the partial interpretation of VM such that

v0(〈p, p〉) = > for every p ∈ Q
v0(〈p, q〉) = ⊥ for every p, q ∈ Q with p ∈ QF 6≡ q ∈ QF

and v0 undefined on all other state pairs.

Lemma 3. v0 ∈ Mod(wM) and ∼v0 is an equivalence relation.

Theorem 1. There is a unique maximal extension v̂ of v0 in Mod(wM), and
the relation ∼v̂ is the coarsest bisimulation relation on M .

4 Algorithm

Aggregation-based algorithms for automata minimization start with a singleton
partition, in which each state is viewed as a separate equivalence class, and it-
eratively merge partitions found to be equivalent. When all states are mutually
distinguishable, the algorithm terminates. We use the same approach for the
more general problem of minimizing nfas with respect to bisimulation equiva-
lence. The procedure is outlined in Algorithm 1 and the auxiliary Algorithm 2.

The input to Algorithm 1 is an nfa M = (Q,Σ, δ,QI , QF). The algorithm
computes an interpretation v̂ of the set of variables VM = {(p, q) | p, q ∈ Q},
where v̂(π) = > means that π is a pair of equivalent states, and v̂(π) = ⊥ that
π is a pair of distinguishable states. The interpretation v̂ is an extension of v0
as in Definition 5, and a maximal model for the characteristic formula wM . Due
to the structure of wM such a model can, as we shall see, be computed greedily.

The construction of v̂ is done by incrementally building up a substitution σi
that replaces state pairs by logical formulas. This is done in such a way that (i)
the substitution is eventually a total function, and (ii) no right-hand side of the
substitution contains a variable that is also in the domain of the substitution. In
combination, this means that when the algorithm terminates, the logical value
of every variable is resolved to > or ⊥. The substitution thus comes to represent
a total interpretation of VM . In the computations, σi is a global variable. It
is initialised such that it substitutes > for each pair of identical states, and ⊥
for each pair of states that differ in their finality (see Line 2 of Algorithm 1).

Algorithm 1 Aggregation-based bisimulation minimization algorithm.

1: function minimize(M)

2: σ0 ::= {〈q, q〉 ← > | q ∈ Q} ∪ {〈p, q〉 ← ⊥ | (p ∈ QF) 6≡ (q ∈ QF)}
3: for π ∈ VM \ dom (σi) do

4: equiv(π, {π})
5: end for

6: return (M/ ∼σi)
7: end function

Algorithm 2 Point-wise computation of π ∈ VM
1: function equiv(π, S)

2: while ∃π′ ∈ var(wπ) \ dom (σi) \ S and wπσi is not resolved do

3: equiv(π′, S ∪ {π′})
4: end while

5: if wπσi is resolved then

6: σi+1 ::= σi{π ← wπσi}
7: else

8: σi+1 ::= σi{π ← wπσi{π ← >}}
9: end if

10: end function

Following this initialisation, the function equiv (see Algorithm 2) is called for
each pair of states not yet resolved by the substitution.

Function equiv has two parameters: the pair of states π for which equivalence
or distinguishability should be determined, and a set S of such pairs. This set
consists of pairs of states that are under investigation in earlier, though not yet
completed invocations of the function. In other words, S contains pairs that
are higher up in the call hierarchy. The function recursively invokes itself with
those pairs of states that occur as a variable in formula wπ, but which have
note yet been resolved, nor form part of the call stack S. After these calls have
been completed and we have exited the while loop, wπσi may or may not have
been resolved. If it has, then we extend the substitution with the appropriate
substitution rule, that is, one which replaces occurrences of π by the value of
wπσi. If wπσi has not been resolved, then we first rewrite wπσi by replacing every
occurrence of π by > and then extend the substitution with a rule substituting π
by wπσi{π ← >}. These operations clear cyclic dependencies, and the maximal
model for the updated formula is the maximal model for the original one.

4.1 Correctness

Lemma 7 below says that during every point of the computation, the set of
variables that occur in the domain of σi is disjoint from the set of variables that
occur in wπσi, π ∈ VM . This avoids circular dependencies, and helps us prove
that eventually, every variable will be resolved. Intuitively, it holds because every

time we update σi by adding a particular π to its domain, the assignment on
Line 8 clears π from wπ in such a way that Mod(wMσi) is kept unchanged.

It can be shown that throughout the computation, var(wπσi)∩dom (σi) = ∅,
for every π ∈ VM . Furthermore, it is always the case that v̂(v0(wM)) = v̂(wMσi).

We now make the following observation: Let σt be σi at the point of ter-
mination. Let σt be the interpretation of VM given by σt(π) ≡ wπσt. Since
var(wπσt) = ∅, for every π ∈ VM , the interpretation σt is total.

Theorem 2. Algorithm 1 terminates, and when it does, the relation ∼σt is the
unique coarsest bisimulation equivalence on M .

4.2 Complexity

We now analyse the asymptotic running time of Algorithm 1. We use the pa-
rameter r to capture the amount of nondeterminism in M . It is defined as
r = maxq∈Q,f∈Σ |δf (q)|. In particular, r ≤ 1 whenever M is deterministic.

Lemma 4. The function equiv is called at most once for each pair of states.

Let us denote the union of all wπ, π ∈ VM , i.e. that appear as right-hand
sides in wM , by rhsM . In the update of σi on Line 8, some of these formulas
may be copied into others, so the growth of rhsMσi is potentially exponential.
For the sake of compactness we therefor represent rhsMσi as a directed acyclic
graph (DAG) and allow node sharing between formulas. In the initial DAG,
only nodes representing variables and the logical constants > and ⊥ are shared,
but as the algorithm proceeds, greater parts of the graph come to overlap. The
construction is straight-forward but rather technical, so readers that are satisfied
with a high-level view may want to continue to Theorem 3.

Definition 6 (DAG representation of formulas). Let L be the proposition
logic (VM , {∨,∧,>,⊥}) and let w ∈ WF(L). The (rooted, labelled) DAG repre-
sentation D(w) of w is recursively defined. For every x ∈ VM ∪ {>,⊥},

D(x) = ({v}, ∅, {(v, x)}) with root(D(x)) = v.

The DAG D(x) thus consists of a single node v labelled x, and v is the root of
D(x). For ⊗ ∈ {∨,∧} and w,w′ ∈ WF(L), we derive D(w ⊗ w′) from D(w) =
(V,E, l) and D(w′) = (V ′, E′, l′) by letting

D(w ⊗ w′) = (V ∪ V ′ ∪ {v},
E ∪ E′ ∪ {(v, root(D(w))), (v, root(D(w′)))},
l ∪ l′ ∪ {(v,⊗)}) ,

where root(D(w ⊗ w′)) = v, and then merging leaf nodes with identical labels.

Given the above definition, we obtain the many-rooted DAG representation
D(rhsM) of rhsM by taking the disjoint union of D(wπ), wπ ∈ rhsM , and merging

∧∨

∧∨ ∧∨ ∧∨

∧∨ ∧∨ ∧∨

π′′ π′ π π′′′

π′ ∧∨

∧∨ ∧∨ ∧∨

∧∨ ∧∨ ∧∨

π

Fig. 1. Sketch of DAG D(rhsMσi), corresponding to wπ′ and wπ parts; references refrhs
are depicted by double-lined arrows. ∧∨ denotes a node labeled by either ∧ or ∨.

∧∨

∧∨ ∧∨ ∧∨

∧∨ ∧∨ ∧∨

π′′ π′ π π′′′

π′ ∧∨

∧∨ ∧∨ ∧∨

∧∨ ∧∨ ∧∨

π

>⊥

Fig. 2. Sketch of DAG D(rhsMσi), corresponding to wπ′ and wπ parts, case where π
gets resolved to either > or ⊥ (depicted by >⊥). ∧∨ denotes a node labeled by either ∧
or ∨. The update to wπ for the aforementioned case is depicted in green (new edges,
node relabelling, and propagation) and gray (removed edges and nodes).

all leaf nodes that have identical labels. Thus, for each state pair π and for each
of > and ⊥, there is a single leaf node in D(rhsM).

Throughout the computation, we maintain a DAG representing D(rhsMσi).
This is initialised to D(rhsM∅) and then immediately updated to D(rhsMσ0).
On top of this DAG, we assume that for each pair π, we have a reference refrhs(π)
to wπ, i.e. to the corresponding right hand side representation in the DAG. Part
of the initial DAG is depicted in Figure 1.

During the computation, graph D(rhsMσi) is reorganised by changing the
targets of certain edges, but the size of D(rhsMσi) never grows, apart from a
potential once-off addition of > and ⊥ labelled nodes during initialisation in
Algorithm 1, and the addition of a single outgoing edge to each of the initial
leave nodes. Moreover, every time a variable is resolved, D(rhsMσi) is updated
to reflect this; while the refrhs(π)’s will continue to point at wπσi, expression
wπσi changes to reflect the latest σi, and will be simplified as much as possible.

There are two kinds of updates to a variable that can occur in our algorithm.
The first is the resolution of wπσ to either > or ⊥, which happens during ini-

∧∨

∧∨ ∧∨ ∧∨

∧∨ ∧∨ ∧∨

π′′ π′ π π′′′

π′ ∧∨

∧∨ ∧∨ ∧∨

∧∨ ∧∨ ∧∨

π

>

Fig. 3. Sketch of DAG D(rhsMσi), corresponding to wπ′ and wπ parts, case where π
gets resolved to either > or ⊥ (depicted by >⊥). ∧∨ denotes a node labeled by either
∧ or ∨. Cyan indicates new edges in wπ for the aforementioned case, as well as the
following upward propagation to simplify wπσi+1; leftmost oddly dashed arrow depicts
the replacement of leaf node π’s label by a reference to the simplified wπσi+1. Removed
edges in wπσi+1 are depicted dotted in gray. Note that if upward propagation reaches
the root of the DAG part representing wπσi+1, propagation continues upwards through
the DAG part for w′

πσi+1, similar to Figure 2.

tialisation of σ on Line 2 of Algorithm 1, on Line 6 of Algorithm 2, and possibly
on Line 8 of that algorithm as well. In this case, as sketched in Figure 2, three
things must happen to our graph D(rhsMσi) to ensure that it reflects the up-
dated wπσi+1: Firstly, formula wπσi in D(rhsMσi) must be replaced by > or ⊥
as the case may be. Thus, graph D(rhsMσi) is modified to remove the nodes and
edges of such wπσi (barring the shared leaf nodes for elements of VM). Secondly,
the unique shared leaf node representing π in the DAG must be re-labeled to
> or ⊥. Thirdly, this re-labeling must be propagated upwards along each DAG
branch leading to this node, now labeled > respectively ⊥, as this resolution of
π may lead subtrees rooted further up this branch to resolve to either ⊥ or > as
well. In the case of ⊥, if the immediate parent is labeled by ∧, it can be resolved
to (i.e. its subtree replaced by a reference to) ⊥; with parent ∨, simplification
is possible, i.e. getting rid of a child; in the case of > and parent ∨, it can be
resolved to >; with parent ∧, simplification is possible, i.e. getting rid of a child;
and so on upwards until no more change is made.

The second kind of update, sketched in Figure 3, is that corresponding to
Line 8 of Algorithm 2 extending σi by a substitution for π by wπσi{π ← >} in
case the latter does not correspond to ⊥ or >. Again, a number of things must
happen to D(rhsMσi). Firstly, references in wπσi to the unique shared leaf node
for π itself must be replaced by references to >. Secondly, this change must be
propagated upwards along each DAG branch leading to this reference to >, as
this local resolution of π may either simplify (in case of ∧) or resolve (in case
of ∨) subtrees rooted further up in rhsMσi. The resulting modified right hand
side wπσi+1 may either resolve to >, or still be a proper tree. In the first case,

the unique shared leaf node representing π in the DAG must be re-labeled to >,
and this change propagated upwards, as per steps two and three of the first kind
of update, described in the previous paragraph. In the second case, the unique
node π that may still be used in right-hand sides other than wπσi+1, needs to
have its label removed and replaced by a reference to the modified wπσi+1.

Theorem 3 (Complexity). Algorithm 1 is in O
(
n2r2 |Σ|

)
.

Recall that bisimulation minimization coincides with classical minimization
in the case of dfa. Since r ≤ 1 for such devices, the run time of our algorithm
is comparable to that of the algorithm in [21].

4.3 Lazy evaluation

We argued from the outset that one advantage of the aggregation approach is
that also intermediate solutions are language-equivalent with the original au-
tomaton. Let us now show that every time that the call hierarchy returns to the
level of Algorithm 1 (i.e., the function minimize), the status of all pairs on which
equiv has been called is known.

We use var(σi) as shorthand for ∪π∈dom (σi)var(σi(π)).

Lemma 5. Throughout the computation, the following invariants hold: Firstly,
var(σi) ⊆ S. Secondly, from the point the function equiv has reached Line 5 on
the pair π, we have var(wπσi) ⊆ S for every subsequent σi.

Theorem 4. Every time the process control returns to minimize, every pair π
on which equiv has been called is resolved.

5 Conclusion

We have presented a minimization algorithm for nfa that identifies and merges
bisimulation-equivalent states. In terms of running time, it is as efficient as any
existing aggregation-based minimisation algorithm for dfa, but less efficient than
current refinement-based minimisation algorithms for nfa. However, compared
to the latter group, it has the advantage that intermediate solutions are usable
for language-preserving reduction of the input automaton M . Thus, implementa-
tions can be interrupted in time-constrained settings, to save memory by trans-
forming the input to a reduced, not necessarily minimal, equivalent automaton.

The algorithm is the first to compute the coarsest bisimulation relation on M
through partition aggregation. Also the logical framework used for representation
and computation appears to be new for this application. For this reason, the
investigation of optimization techniques similar to those used in SAT solvers is
an interesting future endeavour. Furthermore the generalization of the algorithm
to, e.g., nondeterministic graph automata could be considered.

Certain highly connected automata might lead the algorithm to only converge
in the final iteration. As future work, an empirical investigation of its behaviour
on various automata would also be interesting.

References

1. P. A. Abdulla, L. Hoĺık, L. Kaati, and T. Vojnar. A uniform (bi-)simulation-based
framework for reducing tree automata. Electronic Notes in Theoretical Computer
Science, 251(0):27 – 48, 2009.

2. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The design and analysis of computer
algorithms. Addison-Wesley, Reading, Massachusetts, 1974.

3. M. Almeida, N. Moreira, and R. Reis. Incremental DFA minimisation. RAIRO –
Theoretical Informatics and Applications, 48(2):173–186, 2014.

4. J. Björklund, A. Maletti, and J. May. Backward and forward bisimulation mini-
mization of tree automata. Theoretical Comp. Sci., 410(37):3539–3552, 2009.

5. J. Björklund, A. Maletti, and H. Vogler. Bisimulation minimisation of weighted
automata on unranked trees. Fundamenta Informatica, 92(1-2):103–130, 2009.

6. P. Buchholz. Bisimulation relations for weighted automata. Theoretical Computer
Science, 393(13):109 – 123, 2008.

7. L. Cleophas, D. G. Kourie, T. Strauss, and B. W. Watson. On minimizing de-
terministic tree automata. In J. Holub and J. Žďárek, editors, Prague Stringology
Conference, Prague, Czech Republic, 2009, pages 173–182, 2009.

8. J. Daciuk. Optimization of Automata. Gdańsk University of Technology Publishing
House, 2014.

9. G. Gramlich and G. Schnitger. Minimizing NFA’s and regular expressions. Journal
of Computer and System Sciences, 73(6):908–923, Sept. 2007.

10. J. E. Hopcroft. An n log n algorithm for minimizing the states in a finite au-
tomaton. In Z. Kohavi, editor, The Theory of Machines and Computations, pages
189–196. Academic Press, 1971.

11. J. E. Hopcroft and J. D. Ullman. Set merging algorithms. SIAM Journal on
Computing, 2(4):294–303, 1973.

12. D. A. Huffman. The synthesis of sequential switching circuits. Journal of the
Franklin Institute, 257:161–190 and 275–303, 1954.

13. A. Maletti. Minimizing weighted tree grammars using simulation. In Finite-State
Methods and Natural Language Processing, Pretoria, South Africa, 2009, pages
56–68, Berlin, Heidelberg, 2010. Springer.

14. A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions
with squaring requires exponential space. In 13th Annual IEEE Symposium on
Switching and Automata Theory, pages 125–129, 1972.

15. E. F. Moore. Gedanken-experiments on sequential machines. In C. Shannon
and J. McCarthy, editors, Automata Studies, pages 129–153. Princeton University
Press, Princeton, New Jersey, 1956.

16. A. Nerode. Linear automaton transformations. Proceedings of the American Math-
ematical Society, 9(4):541–544, 1958.

17. R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM Journal on
Computing, 16(6):973–989, 1987.

18. R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of
the ACM, 22(2):215–225, 1975.

19. H. ten Eikelder. Some algorithms to decide the equivalence of recursive types.
Technical Report 93/32, Department of Mathematics and Computer Science, Tech-
nische Universiteit Eindhoven, 1991.

20. B. W. Watson. Taxonomies and Toolkits of Regular Language Algorithms. PhD
thesis, Dept. of Mathematics and Comp. Sci., TU Eindhoven, 1995.

21. B. W. Watson and J. Daciuk. An efficient incremental DFA minimization algo-
rithm. Natural Language Engineering, 9(1):49–64, 2003.

A Appendix

A.1 Lemma 6

Lemma 6. If v, v′ ∈ Mod(wM), then v ∨ v′ ∈ Mod(wM).

Proof. The interpretation v ∨ v′ fails to satisfy wM if there is some π such
that (v ∨ v′)(π → wπ) is false. This can only happen if (v ∨ v′)(π) = > but
(v ∨ v′)(wπ) ≡ ⊥. However, we know that v(π) = > or v′(π) = >. Assume the
former, without loss of generality. Then v(wπ) = > since v ∈ Mod(wM). Now,
that fact that more variables are assigned the value > in v ∨ v′ cannot cause
wπ to become false, since it is negation-free. Hence (v ∨ v′)(wπ) ≡ > too, which
gives us a contradiction. ut

A.2 Lemma 1

Proof. If v cannot be extended to a model for wM then the statement is trivially
true. If it can be extended to a model, then by Lemma 6 the union of all such
extensions is a model for wM . ut

A.3 Lemma 2

Proof. Since v is reflexive, v′(〈p, p〉) = > for every p ∈ V , so the associated
relation of every extention of v is also reflexive.

Since the logical operators ∨ and ∧ commute, every extension v′ of v in which
v(〈p, q〉) = > can be turned into a model v′′ in which v′′(〈q, p〉) = > by swapping
the order of every pair in VM . By taking the element-wise ‘or’ of v′ and v′′, we
arrive at a greater model v′∨v′′ in which (v′∨v′′)(〈q, p〉) = (v′∨v′′)(〈p, q〉) = >.
Since v̂ is the maximal model of v, it is necessarily already symmetric.

A similar argument holds for transitivity. Assume that the extension v′ of v
is such that v′(〈p, q〉) = v′(〈q, r〉) = >. Using q as a bridge, it can be shown that
v′(w〈p,r〉) ≡ >, so v′ can be extended by assigning 〈p, r〉 the value ‘true’. Since
v̂ is already maximal, it has to be transitive. ut

A.4 Lemma 3

Proof. We note that ∼v0= IVM
, so by construction, v0(wM) ≡ >. Furthermore,

IVM
is clearly an equivalence relation, namely the finest one in which each state

is an equivalence class of its own. ut

A.5 Theorem 1

Proof. From Lemma 3 we have that v0 is a model for wM and encodes an equiv-
alence relation. From Lemma 1 we know that v0 can be extended to a unique
maximal model v̂ for wM . That v̂ encodes a bisimulation relation follows from
Definition 1 and 2, and that it is an equivalence relation from Lemma 2. ut

A.6 Lemma 7

Lemma 7. At every point of the computation, var(wπσi) ∩ dom (σi) = ∅, for
every π ∈ VM .

Proof. We prove the invariant by induction. Lemma 7 is trivially true after the
initialisation of σ0 in Algorithm 1.

Consider the assignment to σi+1 on Line 6 of Algorithm 2. Due to Line 5 we
know that wπσi ∈ {>,⊥}. Assume without loss of generality that wπσi = >.
By induction, var(wπ′σi) ∩ dom (σi) = ∅ for every π′ ∈ VM , so var(wπ′σi{π ←
>}) ∩ (dom (σi) ∪ {π}) = ∅.

Finally, consider the assignment to σi+1 at the end of Algorithm 2. By the
induction hypothesis, var(wπσi) ∩ dom (σi) = ∅. Since π 6∈ var(wπσi{π ← >}),
it follows that π 6∈ var(wπ′σi{π ← wπσi{π ← >}}) for every π′ ∈ VM , so σi can
safely be updated to σi{π ← wπσi{π ← >}} without invalidating Lemma 7. ut

A.7 Lemma 8

Lemma 8. Algorithm 1 terminates.

Proof. We need only consider calls to function equiv . Since S grows with each
recursive call to equiv on Line 3 of Algorithm 2, the recursion is finite. Looking
at lines 5 − 9, each call to equiv terminates with dom (σi) greater than before,
hence the number of calls of the while-loop in Algorithm 1 is also finite. ut

A.8 Lemma 9

Lemma 9. Throughout the execution of Algorithm 1, v̂(v0(wM)) = v̂(wMσi).

Proof. The proof is by induction on σi. By construction, v0(wM) ≡ wMσ0, so
v̂(v0(wM)) = v̂(wMσi).

In the main body of the algorithm, σi is updated on Line 6 and Line 8.
Consider first the assignment on Line 6. Since the value of wπσi is resolved,

there are two cases:

– In the first, wπσi = ⊥. By the induction hypothesis, v̂(v0(vM)) = v̂(wMσi),
so since there is no extension of wMσi that sets π to >, there is no ex-
tension v of wMσi that does so either. If there were, then v̂(v0(vM)) ∪
v ∈ Ext(v0(vM)), which contradicts the maximality of v̂(v0(vM)). Hence,
v̂(v0(wM)) = v̂(wMσi+1).

– In the second, wπσi = >. Since there is at least one extension of wπσi in
which π is assigned >, the same must hold for v0(wM), so by Lemma 6 and
Lemma 1, π is assigned > in v̂(v0(wM)) = v̂(wMσi+1).

Consider then the assignment on Line 8. We divide it into two steps. First,
we note that for every π ∈ VM , π → wπ ≡ π → (wπ{π ← >}), and that
π 6∈ var(wπ{π ← >}). Furthermore, if π 6∈ var(wπ), then wM ≡ wM{π ← wπ}.
Hence, wMσi ≡ wMσi+1. ut

A.9 Lemma 4

Proof. When function equiv is called with argument π, it adds π to S, which
prevents it from being used as an argument again when the algorithm makes
its recursive calls in the while loop. After the while loop, the substitution σi is
extended to have π in its domain, and this prevents π from ever being used as
an argument to equiv again. ut

A.10 Theorem 3

Proof. The initialisation of σ0 in Algorithm 1 can be done it O(n2), whereupon
the algorithm proceeds to call Algorithm 2, which is in total called O(n2) times.

Let us look closer at the body of Algorithm 2. To satisfy the existence
clause in the while loop of Algorithm 2, we traverse down the left-most path of
D(rhsMσi), and this can be done inO(log n2). Since we keep the DAGD(rhsMσi)
in a simplified form, the if clause on Line 5 can be decided in constant time.

The update to σi on Line 6 is where the majority of the work is done. Here,
we start at the node labelled π and follow all edges in D(rhsMσi) backwards,
updating the graph structure to reflect the truth value of π. Everytime we follow
and edge, we are able to simplify D(rhsMσi) by removing at least one edge
and one node. This means that the total amount of work done at Line 6 is in
O(|D(rhsMσi)|) = O(n2r2 |Σ|) when summed over every call to Algorithm 2.

Local substitution wπσi{π ← >} on Line 8 requires O(r2 |Σ|) steps, and the
update of σi to σi+1 only takes constant time, requiring rerouting of one pointer.

To summarize, the complexity of Algorithm 2 is

n2 · (logn2 + r2 |Σ|) + n2r2 |Σ|

which is in O(n2r2 |Σ|) if logn2 ≤ r2 |Σ|. ut

A.11 Lemma 5

Proof. (Sketch) The proof is by induction. When equiv is invoked the first time,
var(σ0) = ∅ and equiv has not reached Line 5 for any π, so both invariants are
trivially true.

We consider the effect Line 5, 6, and 8 have on Invariants 1 and 2.
Line 5 only affects Invariant 2. Consider then the case when equiv reaches

Line 5 for a variable π. Every π′ in var(wπσi) has two possible origins;

– either π′ was left because π′ ∈ S, so Invariant 2 is trivially true,
– or π′ ∈ var(σi(π

′′)) for some π′′ ∈ var(wπ) \ S, and by the induction hy-
pothesis, Invariant 2 is true.

Line 6 affects both invariants. The state is such that π ∈ S, but as the func-
tion is about to exit, π will be taken out of S. The assignment to σi+1 replaces
π by a constant, so π 6∈ var(σi). In combination with the induction hypothesis,

Invariant 1 holds. Using the propagation technique described in Section 4.2, π is
also removed from wπ′ for every previously called pair π′, so Invariant 2 holds.

Line 8 also affects both invariants. Again, the algorithm is about to remove
π from S. The application {π ← >} to σi in combination with the induction
hypotheses for both invariants means that π 6∈ var(σi+1), so Invariant 1 holds.
Propagation to wπ′ for every previously pair guarantees Invariant 2. ut

A.12 Theorem 4

Proof. Every time the call hierarchy returns to minimize, the stack S empties.
Let σi be the state of the substitution when this happens. Due to Invariant 2,
var(wπσi) = ∅, so wπσi is resolved. ut

