
Performance Problem Diagnosis in
Cloud Infrastructures

Olumuyiwa Ibidunmoye

LICENTIATE THESIS, MAY 2016
DEPARTMENT OF COMPUTING SCIENCE

UMEÅ UNIVERSITY
SWEDEN

Department of Computing Science
Umeå University
SE-901 87 Umeå, Sweden

muyi@cs.umu.se

Copyright c© 2016 by the author(s)
Except Paper I, c© ACM Press, 2015

Paper II, c© ACM Press, 2015

ISBN 978-91-7601-500-1
ISSN 0348-0542
UMINF 16.14

Printed by Print & Media, Umeå University, 2016

Abstract

Cloud datacenters comprise hundreds or thousands of disparate application services,
each having stringent performance and availability requirements, sharing a finite set
of heterogeneous hardware and software resources. The implication of such complex
environment is that the occurrence of performance problems, such as slow application
response and unplanned downtimes, has become a norm rather than exception result-
ing in decreased revenue, damaged reputation, and huge human-effort in diagnosis.
Though causes can be as varied as application issues (e.g. bugs), machine-level fail-
ures (e.g. faulty server), and operator errors (e.g. mis-configurations), recent studies
have attributed capacity-related issues, such as resource shortage and contention, as
the cause of most performance problems on the Internet today. As cloud datacenters
become increasingly autonomous there is need for automated performance diagnosis
systems that can adapt their operation to reflect the changing workload and topology
in the infrastructure. In particular, such systems should be able to detect anomalous
performance events, uncover manifestations of capacity bottlenecks, localize actual
root-cause(s), and possibly suggest or actuate corrections.

This thesis investigates approaches for diagnosing performance problems in cloud
infrastructures. We present the outcome of an extensive survey of existing research
contributions addressing performance diagnosis in diverse systems domains. We also
present models and algorithms for detecting anomalies in real-time application per-
formance and identification of anomalous datacenter resources based on operational
metrics and spatial dependency across datacenter components. Empirical evaluations
of our approaches shows how they can be used to improve end-user experience, ser-
vice assurance and support root-cause analysis.

iii

iv

Preface

This thesis contains an introduction to performance management and diagnosis in
cloud computing infrastructures, and the following papers.

Paper I Ibidunmoye, O., Hernández-Rodriguez, F., and Elmroth, E. Performance
Anomaly Detection and Bottleneck Identification. ACM Computing Sur-
veys (CSUR): Volume 48, Issue 1, July 2015.

Paper II Metsch, T., Ibidunmoye, O., Bayon-Molino, V., Butler, J., Hernández-
Rodriguez, F., and Elmroth, E. Apex Lake: A Framework for Enabling
Smart Orchestration. Proceedings of the Industrial Track of the 16th
International Middleware Conference, December, 2015.

Paper III Ibidunmoye, O., Metsch, T., Bayon-Molino, V., and Elmroth, E. Perfor-
mance Anomaly Detection using Datacenter Landscape Graphs. To be
submitted, 2016.

Paper IV Ibidunmoye, O., Metsch, T., and Elmroth, E. Real-time Detection of Per-
formance Anomalies for Cloud Services. To be submitted, 2016.

This work has been funded in part by the Swedish Research Council (VR) under
grant agreement C0590801 (Cloud Control), the Swedish Strategic Research Program
eSSENCE, and the European Union’s Seventh Framework Programme under grant
agreement 610711 (CACTOS).

v

vi

Acknowledgments

To Erik Elmroth, my supervisor, I express my deepest gratitude for believing in me
enough to accept me into his group and most importantly for mentoring, advising
and guiding me through the on-going doctoral journey. I also appreciate my former
assistant supervisor, Francisco Hernandez Rodriguez, for his guidance in the early
periods of my study.

I’m really honoured to be part of the Distributed Systems group, how else could I
ever have met such resourceful set of people. You guys have and are continuing to im-
pact and challenge me in ways that are simply unquantifiable. I appreciate the senior
colleagues (Erik, Johan, P-O, Cristian, and Luis) for the conducive environment; the
freshly minted doctors (Mina, Ahmed, and Ewnetu) for constantly inspiring me, as
well as colleagues still in the race (Selome, Jakub, Gonzalo, Amardeep, Abel, and
Chanh) for the good friendship and support base. It’s a privilege to have these pro-
fessional software developers next door; Lars and Peter, you two have been helpful
many a time. And to past members of the group, Daniel, Petter and Viali!, it’s en-
couraging to see you guys do well in your careers and even more assuring to know that
you’re always there when we beckon. Again, special thanks to Cristian and Ewnetu
for the many discussions, deliberation, tools, and guidance.

Many thanks to all staff of the IT-Support unit, especially Tomas Forsman, for
always helping with technicalities and knotty IT stuff. I also appreciate the support of
the Cloud Services Lab, Intel Labs Europe, Ireland; to Thijs Metsch I say thanks so
much!

To God Almighty, I say a big ’Thank You!’ for bringing me this far and for giving
me the grace, courage and strength to push forward against all odds. I appreciate my
parents and other members of my family for their moral support and good wishes.
What could I do without my loving wife, my source of peace and courage in those
dark times and in the face of weakness? Wemimo, I can’t be grateful enough to you
for delaying your career and comfort to stick up with me far away from home. Thanks
for having my back always.

Umeå, May 2016
Olumuyiwa Ibidunmoye

vii

viii

Contents

1 Introduction 1

2 Cloud Computing 3
2.1 Clouds Deployment Models 3
2.2 Cloud Delivery Models 4
2.3 Cloud Stakeholders, Roles and SLA 5
2.4 Cloud Datacenters 5

2.4.1 Software-defined Infrastructures 6

3 Cloud Performance Management 9
3.1 Cloud Performance Diagnosis 11

3.1.1 Challenges 12
3.1.2 Categories of performance problems 13
3.1.3 Activities in performance diagnosis 13

4 Summary of Contributions 15
4.1 Paper I 16
4.2 Paper II & III 16
4.3 Paper IV 17
4.4 Future Work 18

Paper I 31

Paper II 71

Paper III 83

Paper IV 99

ix

x

Chapter 1

Introduction

The fundamental idea behind cloud computing was first conceived by John
McCarthy as far back as 1961. He envisioned that “computation may someday
be organized as a public utility” so as to reduce the cost of computing, increase
reliability, and efficiency by relieving users from the need to own and operate
complex computing infrastructure [1, 2]. Advancement in legacy technologies
such as distributed systems, commodity computing, virtualization, and Grid
computing has led to the realization of the cloud computing paradigm [3].

As the flexibility and scalability provided by cloud computing continues to
improve the agility, responsiveness, and effectiveness of large-scale applications
and organizations, meeting reliability, availability, and performance requirements
remain a major source of concern. Studies [4, 3] have demonstrated through
extensive experiments that performance variability is an important concern
for cloud application providers because of its impact on end-user’s quality of
experience. In severe cases, unstable performance may manifest high-level
symptoms such as degraded quality of service (e.g. slow page response) and
service downtimes (e.g. unreachable service end-points). The reason for such
performance problems is multi-faceted. Unhealthy resource interference due
to time-sharing of heterogeneous application services [5], capacity shortages or
exhaustions due to unpredictable surge in user traffic [6], and correlated fault
in the underlying infrastructure [7, 8] are factors that have been reported to
induce undesirable performance behaviour and service outages.

Performance variability and degradation impact the reliability of infrastruc-
ture and services and may hinder the ability to meet both service-level and
operational objectives. Improving service performance and reliability is thus
important since the volume of service traffic and the revenue relates to the
quality of service (QoS) experienced by end-users [8]. Here are some concrete
examples. The Aberdeen Group [9] found that a one-second increase in page
response time can decrease page views, end-user satisfaction, and revenue by
11%, 16%, and 7%, respectively. On June 29th 2010, Amazon.com suffered
a 3-hour intermittent performance problems such as high page latency and

1

incomplete product search results, which led to a loss of $1.75m in revenue
per hour [10]. On the 16th of October 2015, several Apple services including
iTunes and App Store suffered outages spanning many hours. Other popular
global services such as Twitter, Netflix, Instagram, Google services (Drive, Docs,
and Sheets), and PayPal also experienced hours of unplanned and disruptive
outages in the same month [11]. Even national services such as the Swedish Tax
Agency (Skatteverket) has on different occasions experienced outages and poor
performance during the yearly income tax declarations [12, 13]. Besides revenue
loss and damaged reputation, enterprises spend many work-hours diagnosing
and restoring services[14].

Due to financial and operational implications of these incidents, performance
diagnosis has thus become a major challenge in the day-to-day operation of cloud
services and infrastructure. Operators must discover anomalous performance
behaviour quickly, identify symptoms and root-causes, and deploy corrective
strategies to remediate problems. The need to improve user experience, achieve
stable performance, and reduce diagnosis time has given rise to many systems
and methods. The contribution of this thesis is as follows. In Paper I we
present an extensive survey of existing systems and methods. The aims are
a) to classify existing methods based on their objectives and methodologies,
and b) to assess research trends and open challenges. Paper III elaborates on
a system for identifying capacity bottlenecks in a logical graph of datacenter
components. It is presented as a use-case within Intel’s Apex Lake framework.
The Apex Lake is framework is being developed at the Cloud Service Labs, Intel
Ireland and is introduced in Paper II. Finally, Paper IV proposes two adaptive
mechanisms for detecting point anomalies in real-time performance behaviour
of a web application in a cloud environment.

The remainder of this thesis introduction is organized as follows. Chapter 2
introduces the general concepts of cloud computing and challenges for achieving
good performance. Chapter 3 discusses concepts in performance management
and diagnosis in cloud datacenters. Chapter 4 summarizes the contributions of
this thesis and discusses opportunities for future work. Papers produced in the
course of this work are appended.

2

Chapter 2

Cloud Computing

Cloud computing is a paradigm shift in the way computation is delivered and
consumed. It is based on the vision that information processing can be done
more efficiently on large farms of computing and storage systems accessible via
the Internet [15]. It provides as set of technologies that allow computational
resources (e.g. compute and storage) to be provisioned as a service over the
Internet on a pay-per-use and on-demand manner [16]. The growing adoption
rate of the cloud is due to two appeal factors a) it offers seamless scalability
and elasticity to users without the huge initial capital expenditure b) resources
that can be metered so users are billed for only what they used [3]. These have
led to a radical change in the way IT departments and application providers
deploy and manage IT services [17].

2.1 Clouds Deployment Models

Cloud infrastructures can be classified based on ownership and how they are
managed.

• Private clouds are infrastructures managed and utilized by individual
organizations. Many organizations adopt private clouds to gain the benefits
of cloud computing (such as flexibility and scalability) while having full
control on the infrastructure and its security [15].

• Public clouds are virtualized infrastructures managed by an organization
but leased on a pay-per-use basis to third-parties e.g. Google Cloud
Platform, Amazon Web Services, Microsoft Azure, and RackSpace.

• Community clouds are shared by group of organizations or individuals
with a common interest (e.g. mission, security, regulatory and compliance
considerations). The North Carolina Education Cloud (NCEdCloud) is a
community cloud [18].

3

• Hybrid clouds allow large enterprises who typically host their core IT
infrastructure (compute and storage) on private or community clouds
to team up with at least a public cloud for the purpose of extending
the capacity of their private clouds arbitrarily by leasing public cloud
resources to meet sudden surge in user demand through a mechanism
known as cloud bursting [3].

• Federated clouds are an emerging type of clouds composed of only public
clouds, only private clouds or both to provide seemingly infinite service
computing utility [19, 20] to end-users. A typical instance of federated
clouds is one established among multiple datacenters owned by a single
cloud provider. Federation enables high compatibility and interoperability
between disparate cloud services through open APIs that allows cloud
users to deploy services based on offerings from different vendors or move
data easily across platforms.

2.2 Cloud Delivery Models

Public clouds offer three major service delivery models based on the level of
abstraction at which the service is offered [3, 21, 15].

• Software as a Service (SaaS)– delivery of finished applications, along
with required software, operating system, network and hardware, to
end-users and accessible through various client devices over the Internet.
Though it is has minimal customization, the users generally have limited
control on the application, platform and underlying infrastructure. SaaS
applications include Customer Relationship Management (e.g. Salesforce,
and ServiceNow), accounting/ERP systems (e.g. NetSuite) and Web 2.0
applications (e.g. LinkedIn, and WordPress).

• Platform as a Service (PaaS)—provides the capability for cloud users
to build, deploy and manage applications using application development
tools, APIs, operating systems, and hardware supported by the provider.
The user only has control on the application, its architecture and hosting
environment configuration but not on the underlying operating system,
network, storage, or servers. Google App Engine, Windows Azure, and
Amazon’s Elastic Beanstalk are some of the most popular PaaS offerings
today.

• Infrastructure as a Service (IaaS)—provisioning of fundamental computing
resources such as servers, network, and storage; users are responsible
for the installation of the operating system and can use application
development tools of choice to develop arbitrary applications. Examples
of IaaS providers are Amazon EC2, Google Cloud Platform, Microsoft
Azure Infrastructure and Rackspace.

4

4

Compute / Storage / Network
Infrastructure

Platform

Application

Workload
Requests

IaaS

Cloud
User

End
User

Cloud
Provider

SaaS

(a) Environment using IaaS
interface.

Compute / Storage / Network
Infrastructure

Platform

Application

Workload
Requests

PaaS
Cloud

User

End
User

Cloud
Provider

SaaS

(b) Environment using PaaS
interface.

Compute / Storage / Network
Infrastructure

Platform

Application

Workload
Requests SaaS

End
User

Cloud
Provider

(c) Environment with only a
SaaS interface.

Fig. 1: Three common application provisioning models. End Users generate workload requests
for applications hosted on (typically) virtualized infrastructure based on compute servers,
storage devices and networking equipment. Applications are often run on specialized software
platforms that provide software abstractions and application provisioning functionality. The
roles of End User, Cloud User, and Cloud Provider can be adopted by a single organization
(in the case of a private cloud) or by di↵erent organizations (in a public cloud).

Cloud User: uses public clouds to host applications that it o↵ers to its End Users.

It is responsible for meeting SLAs agreed with its customers (i.e., End Users) and

is typically concerned with doing so in a manner that minimizes its costs and

maximizes its profits by ensuring that the level of resources leased from the Cloud

Provider scales in line with demands from its End Users;

End User: generates the workloads (application usage sessions) that are processed

using cloud resources. She typically does not play a direct role in resource man-

agement,1 but her behavior can influence, and can be influenced by, the resource

management decisions of the Cloud User and Cloud Provider.

2.2 Management Objectives

Actors in a cloud computing environment each have objectives they seek to achieve

through configuring, or otherwise influencing, resource management processes. Many

management objectives are possible. For brevity, we limit the discussion here to the

scenario in which the Cloud Provider and Cloud User are di↵erent organizations and

where, as depicted in Fig. 1(a), the Cloud User leases resources from the Cloud Provider

via an IaaS interface.

In the IaaS context, the Cloud Provider will seek to satisfy SLAs it has agreed

with Cloud Users regarding the provision of virtual infrastructure via its data center

resources. An SLA is a formal agreement between the Cloud Provider and the Cloud

User, defining in quantitative terms the functional and non-functional aspects of the

service being o↵ered. SLAs vary widely in scope and specificity; typically, they en-

compass aspects of, inter alia, service availability, service performance, security and

privacy, data access, problem resolution, change management and dispute mediation.

Of these, the quantifiable Service Level Objectives (SLOs) pertaining to availability

1 A notable exception is the ability for an End User to configure the behavior of certain
non-delay sensitive, computation focussed distributed applications, for example those based
on the MapReduce framework.

(a) IaaS

4

Compute / Storage / Network
Infrastructure

Platform

Application

Workload
Requests

IaaS

Cloud
User

End
User

Cloud
Provider

SaaS

(a) Environment using IaaS
interface.

Compute / Storage / Network
Infrastructure

Platform

Application

Workload
Requests

PaaS
Cloud

User

End
User

Cloud
Provider

SaaS

(b) Environment using PaaS
interface.

Compute / Storage / Network
Infrastructure

Platform

Application

Workload
Requests SaaS

End
User

Cloud
Provider

(c) Environment with only a
SaaS interface.

Fig. 1: Three common application provisioning models. End Users generate workload requests
for applications hosted on (typically) virtualized infrastructure based on compute servers,
storage devices and networking equipment. Applications are often run on specialized software
platforms that provide software abstractions and application provisioning functionality. The
roles of End User, Cloud User, and Cloud Provider can be adopted by a single organization
(in the case of a private cloud) or by di↵erent organizations (in a public cloud).

Cloud User: uses public clouds to host applications that it o↵ers to its End Users.

It is responsible for meeting SLAs agreed with its customers (i.e., End Users) and

is typically concerned with doing so in a manner that minimizes its costs and

maximizes its profits by ensuring that the level of resources leased from the Cloud

Provider scales in line with demands from its End Users;

End User: generates the workloads (application usage sessions) that are processed

using cloud resources. She typically does not play a direct role in resource man-

agement,1 but her behavior can influence, and can be influenced by, the resource

management decisions of the Cloud User and Cloud Provider.

2.2 Management Objectives

Actors in a cloud computing environment each have objectives they seek to achieve

through configuring, or otherwise influencing, resource management processes. Many

management objectives are possible. For brevity, we limit the discussion here to the

scenario in which the Cloud Provider and Cloud User are di↵erent organizations and

where, as depicted in Fig. 1(a), the Cloud User leases resources from the Cloud Provider

via an IaaS interface.

In the IaaS context, the Cloud Provider will seek to satisfy SLAs it has agreed

with Cloud Users regarding the provision of virtual infrastructure via its data center

resources. An SLA is a formal agreement between the Cloud Provider and the Cloud

User, defining in quantitative terms the functional and non-functional aspects of the

service being o↵ered. SLAs vary widely in scope and specificity; typically, they en-

compass aspects of, inter alia, service availability, service performance, security and

privacy, data access, problem resolution, change management and dispute mediation.

Of these, the quantifiable Service Level Objectives (SLOs) pertaining to availability

1 A notable exception is the ability for an End User to configure the behavior of certain
non-delay sensitive, computation focussed distributed applications, for example those based
on the MapReduce framework.

(b) PaaS

4

Compute / Storage / Network
Infrastructure

Platform

Application

Workload
Requests

IaaS

Cloud
User

End
User

Cloud
Provider

SaaS

(a) Environment using IaaS
interface.

Compute / Storage / Network
Infrastructure

Platform

Application

Workload
Requests

PaaS
Cloud

User

End
User

Cloud
Provider

SaaS

(b) Environment using PaaS
interface.

Compute / Storage / Network
Infrastructure

Platform

Application

Workload
Requests SaaS

End
User

Cloud
Provider

(c) Environment with only a
SaaS interface.

Fig. 1: Three common application provisioning models. End Users generate workload requests
for applications hosted on (typically) virtualized infrastructure based on compute servers,
storage devices and networking equipment. Applications are often run on specialized software
platforms that provide software abstractions and application provisioning functionality. The
roles of End User, Cloud User, and Cloud Provider can be adopted by a single organization
(in the case of a private cloud) or by di↵erent organizations (in a public cloud).

Cloud User: uses public clouds to host applications that it o↵ers to its End Users.

It is responsible for meeting SLAs agreed with its customers (i.e., End Users) and

is typically concerned with doing so in a manner that minimizes its costs and

maximizes its profits by ensuring that the level of resources leased from the Cloud

Provider scales in line with demands from its End Users;

End User: generates the workloads (application usage sessions) that are processed

using cloud resources. She typically does not play a direct role in resource man-

agement,1 but her behavior can influence, and can be influenced by, the resource

management decisions of the Cloud User and Cloud Provider.

2.2 Management Objectives

Actors in a cloud computing environment each have objectives they seek to achieve

through configuring, or otherwise influencing, resource management processes. Many

management objectives are possible. For brevity, we limit the discussion here to the

scenario in which the Cloud Provider and Cloud User are di↵erent organizations and

where, as depicted in Fig. 1(a), the Cloud User leases resources from the Cloud Provider

via an IaaS interface.

In the IaaS context, the Cloud Provider will seek to satisfy SLAs it has agreed

with Cloud Users regarding the provision of virtual infrastructure via its data center

resources. An SLA is a formal agreement between the Cloud Provider and the Cloud

User, defining in quantitative terms the functional and non-functional aspects of the

service being o↵ered. SLAs vary widely in scope and specificity; typically, they en-

compass aspects of, inter alia, service availability, service performance, security and

privacy, data access, problem resolution, change management and dispute mediation.

Of these, the quantifiable Service Level Objectives (SLOs) pertaining to availability

1 A notable exception is the ability for an End User to configure the behavior of certain
non-delay sensitive, computation focussed distributed applications, for example those based
on the MapReduce framework.

(c) SaaS

Figure 1: Roles of stakeholders under the three service delivery models [3].

2.3 Cloud Stakeholders, Roles and SLA

Stakeholders in cloud computing environments are generally categorized into
one of three roles depending on the service delivery models [3]. According to
Fig. 1, the responsibility of the Cloud Provider or Infrastructure Provider (IP)
varies from provisioning only infrastructures in IaaS, provisioning both platforms
and infrastructures in PaaS, to provisioning entire cloud stack (infrastructure,
platforms, and application) in SaaS. A Cloud User or Service Provider (SP)
is prominent under the IaaS and PaaS model. The service provider uses
infrastructure and/or platform provided by the IP to host application services
that are consumed by the End User. An End User generates application
workloads that are processed by a cloud providers resources in the case of SaaS,
or by a service provider in the case of PaaS and IaaS.

Interactions between the roles, especially, between the cloud and service
providers may be governed by a formal contract document called the Service
Level Agreement (SLA). An SLA describes expected quality of service (QoS)
and legal guarantees [22]. A typical SLA contains, among others, important
items such as the service guarantees and service credits. The service guarantees
specifies functional metrics (e.g. availability, response time, and security) which
a cloud provider strives to meet over a service guarantee time period. The
service credit is an amount credited to the customer or applied towards a
future payment when a cloud provider could not meet service guarantees [23].
For example, Amazon EC2, currently offer between 99% to 99.95% service
availability guarantees with up to 10% of original service rate as service credits
[24].

2.4 Cloud Datacenters

Cloud computing is powered by datacenters housing several servers, communi-
cations and storage systems co-located because of their common environmental,
physical security, and maintenance requirements [8]. Consolidation is a method

5

used in cloud datacenters to ensure efficient utilization of these resources. By
sharing server resources among multiple applications cloud providers prevent
under-utilization and server sprawl in datacenters [10, 8].

Virtualization technology makes consolidation and sharing better by provid-
ing performance isolation among co-located applications. It is also cost-effective
since consolidation reduces capital and operational expenses as well as energy
consumption [25]. The two mainstream platforms for realizing virtualization
today are hypervisor-based virtualization and container-based virtualization
[26]. Hypervisor-based virtualization emulates a machine hardware and allows
instances of the emulation (i.e., virtual machines (VMs)) to run on another
physical machine managed by a specialized operating system (OS)–called the
hypervisor. This approach is OS agnostic since the guest OS (i.e., OS installed
on the VM) may differ from the host OS (i.e., OS running on the physical host
of the VM). Xen [27], KVM [28], and Hyper-V [29] are examples of popular
hypervisors [15, 30]. Rather than emulating an hardware platform, container-
based virtualization provides virtualization at the OS-level in order to reduce
performance and speed overhead of hypersor-based virtualization [31]. OS-level
virtualization allows multiple isolated Linux environments (i.e., containers) to
share the base kernel of the host OS [26, 32]. Docker [33, 34], LXC [35], and
OpenVZ [36] are examples of container-based virtualization platforms.

Though containers are now enjoying growing adoption, VMs remain the
common unit of cloud deployments due to the maturity of the technology. VMs
are manageable software-defined units and facilitate the elasticity of the cloud.
They can be easily moved (migration) from one server to another in order to
balance the load across the datacenter or to consolidate workloads on fewer
servers. They can also be replicated across servers (horizontal scaling) and their
resource capacity (e.g. CPU cores) can be increased or decreased to address
overload or underload situations (vertical scaling).

A major challenge in IaaS datacenters is resource allocation, which is con-
cerned with how to optimally share or allocate computing, storage and network
resources among a set of VMs in a manner that attempts to jointly meet service
objectives of both the service providers and cloud provider [3, 37]. This has
been identified as a difficult task [38, 39] due to the scale of datacenters, the
plurality of applications and their complex architectures.

2.4.1 Software-defined Infrastructures

The growing adoption of cloud computing for running mission-critical and
performance-sensitive applications such as analytics [40], machine-to-machine
communications [41], mobile services [42] and the IoT 1 [43] is driving a higher
demand for performance, agility, cost and energy efficiency. The need for
increased automation and programmability of the infrastructure to meet these

1IoT is an acronym for Internet of Things, a term used to refer to the ever-increasing
network of physical objects through the Internet, Radio Frequency IDentification (RFID) and
other sensor network technologies.

6

requirements has led to recent trend towards Software-defined Infrastructures
(SDI).

Many studies have applied autonomic computing [44] techniques in various
aspects of managing existing clouds such as resource allocation and scheduling
[45, 46, 47] as well as energy management [48, 49, 50] to facilitate automa-
tion. SDIs are envisioned to transform the compute, storage and network
infrastructures to software-defined and dynamically programmable entities [51].
According to Kandiraju et al [52] an SDI is an infrastructure that is continuously
transforming itself by appropriately exploiting heterogeneous capabilities, using
insights gained from built-in deep monitoring, to continuously honor consumer
SLAs amidst provider’s constraints (e.g. cost and energy constraints). While
only a few SDI products or platforms are currently available–e.g. VMware’s
EVO:RAIL [53] and Google’s Andromeda [54]–many aspects of the SDI tech-
nology are still evolving. However, the core architectural components of SDIs
are described below;

• Software-defined Compute (SDC): increases the programmability of exist-
ing virtualized compute resources (e.g. VMs, containers, virtual CPUs,
memory) and dynamically leverages specialized processing units such
as graphical processing units (GPUs), field-programmable gate arrays
(FPGAs), and other accelerators [52]. SDC decouples provisioning of het-
erogeneous compute resources from the underlying hardware or operating
system so that provisioning is based on specified or discovered workload
requirements [55].

• Software-defined Network (SDN): separates control and management
functions of the network infrastructures away from the hardware to the
server for improved programmability, performance isolation, efficiency and
security [51]. Through virtualization, SDN allows network resources to be
transformed to virtual devices (e.g. switches, links and end-points) that
connects different virtual compute and storage instances [52].

• Software-defined Storage (SDS): is responsible for managing huge volume
of data by isolating the control and management functions from the data
storage system and dynamically leverages specialized storage when avail-
able [51]. The advantage of such isolation is that it reduces management
complexity and also the cost of infrastructure [56]. The basic unit of a
SDS is the virtual storage—an abstraction of a combination of different
storage capabilities (e.g. access bandwidth (IOPS), solid-state disk, RAID,
block storages, distributed file systems) to guarantee SLAs [52].

The SDI components are managed by a SDI controller that provides the control
intelligence required to meet workload requirements and SLA. The SDI controller
uses the classical MAPE loop [57] to continuously keep track of the current
state of SDI entities and acts on virtual and physical infrastructure to ensure
SLA compliance [52].

7

8

Chapter 3

Cloud Performance
Management

The performance of a system can be defined in terms of the system’s ability to
perform a given task correctly. If it does, then its performance is measured by
the time taken to perform the task, the rate at which the task is performed, and
the resources consumed while performing the task [58]. Hence, performance is
composed of two major components [58, 59] namely;

• Time behaviour : The degree to which the response time, execution time
and throughput rates of a system meet requirements when performing its
functions.

• Resource utilization: The degree to which the amounts and types of re-
sources used by a system meet requirements when performing its functions.

In general, the efficiency of a system can thus be expressed in terms of per-
formance. That is its time behaviour relative to its resource utilization under
stated conditions. The most commonly used performance metrics are [58];

• Response time–is time interval between the end of a request submission
and the end of the corresponding response from the system for interactive
users in a timeshared system (also known as latency). For batch jobs, it
is the time between the submission of a batch job and the completion of
its output (also called turnaround time). The latency of a web request
may be expressed in milliseconds or even in minutes.

• Throughput–is the rate (requests per unit of time) at which application
requests can be serviced by a system. For a batch job, throughput may be
expressed in terms of jobs/tasks completed per unit time. For interactive
applications, throughput can be described in terms of the number of
requests or transactions completed over a given period of time.

9

• Utilization–is the fraction of time a resource is busy servicing requests. A
simple model of CPU utilization is to compute the ratio of busy time to
total elapsed time over a given period (expressed in percentage).

Performance is related to the majority of obstacles for adoption and growth of
cloud computing such as availability, capacity bottlenecks, scalability, reliability
and security [60]. Hence, it is important for user satisfaction and guaranteed
service assurance [61, 8]. Cloud computing relies on effective performance
management to meet service-level objectives (SLO) and SLA. Performance
management in a cloud environment involves the monitoring and measurement
of relevant performance metrics of hosted application services and infrastructure
in order to assess their performance. It also encompasses the analysis and
visualization of the data, as well as detection and diagnosis of performance
problems.

Performance management can be viewed from two perspectives depending
on the of role a cloud stakeholder [62]. Figure 2 presents these perspectives in
the context of an IaaS cloud.

Figure 2: Performance perspectives in IaaS clouds.

The service perspective is a top-down approach to performance management
and is in the purview of the service provider. It is concerned with performance
and workload modeling and analysis for capacity planning (resource estimation),
online resource control, anomaly detection, SLA monitoring, as well as end-
user experience and behaviour learning. According to Gregg et al [62], the
target metrics in this perspective includes requests rates–workload applied to the
service, latency–responsiveness of the service, and completion–error rates. While
the service provider generally has little to no knowledge about the external
runtime environment, she has complete control on her service architecture,
operating systems, source codes; and thus can perform drilled-down analysis.

The infrastructure perspective provides a bottom-up view of the entire
infrastructure from physical infrastructure (compute, network, storage) through
the virtual infrastructure (VMs, containers, etc) to the hosted services. Though
the cloud provider has limited access to the behaviour and performance of hosted

10

applications and platforms, she is responsible for monitoring and analyzing the
operational metrics of physical infrastructure components. The cloud provider
must ensure that statistically multiplexing limited hardware resources among
disparate applications black-boxes (VMs) do not affect the SLA and performance
of those applications. Resource analysis is a major task in this perspective. It
involves analysis of performance metrics of resources such as CPUs, memory,
disks, network interfaces, buses and interconnects [62]. Results of the analysis
are applicable in two associated activities a) performance diagnosis–identifying
resource bottlenecks, faults or other root-causes to explain reported service-
level anomalies or SLA violations, and b) capacity planning–this includes
resource demand profiling, resource estimation, and resource scaling. Resource
throughput, utilization, and saturation are commonly used metrics in this case.

The perspectives also affect how datacenter components are monitored.
The service perspectives allows activities such as request/transaction tracing
or tagging, source-code instrumentation, profiling of virtual resources by the
service provider; while the cloud provider can only perform infrastructure
monitoring such as physical resource profiling and kernel instrumentation in
the host operating system. The monitoring aspect of performance management
in cloud computing is treated extensively in [63, 64]. The focus of this thesis is
on analyzing performance metrics data for diagnosing performance problems in
cloud infrastructure.

3.1 Cloud Performance Diagnosis

The occurrence of performance issues is a norm, rather an exception in large
scale systems [65]. Performance anomalies and unexpected variability are
common even in large-scale infrastructures such as in Google clusters [5] and
Amazon Web Services [4]. Apart from damaging end-user experience and service
reputation, performances problems sometimes lead to unplanned outages. The
far-reaching consequences of performance problems drives the need for techniques
and systems to automatically detect problems and guide operators to potential
root-causes and solutions.

In general, the goal of performance diagnosis in a datacenter is (a) to detect
both expected and unexpected performance events, (b) analyze operational
metrics to gather evidences for localizing root-cause(s) responsible for observed
behaviour, and (c) to either recommend strategies that may resolve the problem
or automatically actuate the remediation.

From the service performance perspective, this thesis deals only with post-
deployment diagnosis (i.e. during operation). Pre-deployment diagnosis of
performance anti-patterns when testing for software quality during development
phase [66, 67, 68] is beyond the scope of this work.

11

3.1.1 Challenges

The following are cloud-specific factors that we consider as obstacles to effective
performance diagnosis in datacenters.

1. Scale: A single datacenter may host up to tens of thousands servers.
Multiple datacenters owned by a large vendor such as Microsoft or Google
may contain up to one million servers in total from multiple datacenters
[69]. Through consolidation, each server can host tens or even hundreds
of VMs and applications.

2. Complexity : The topology of the cloud infrastructure is complex; they
span single facility to geographically dispersed facilities. Cloud datacenters
support a heterogeneous mix of application services ranging from latency-
sensitive services (e.g. multi-tier web applications) to batch-oriented
services (e.g. scientific simulations). Also, applications often have varying
and sometimes conflicting performance objectives. Diagnosing problems
in this environment is further aggravated by limited observability due to
separation of control between cloud and service providers.

3. Dynamism: Cloud applications contain multiple inter-dependent compo-
nents sharing equally inter-dependent physical resources. The ensuing
complex dependency is bound to induce dynamic behaviours and cascad-
ing bottleneck or faults. While co-location of multiple applications on
the same server improves datacenter resource and energy utilization, it
has been reported to cause severe variability in performance of latency-
sensitive services [5] due to lack of performance isolation. Due to dynamic
resource management, the execution context of services is also constantly
changing as load continuously flow in and out of the datacenter.

4. Autonomics: Datacenters have become highly autonomous since manual
management is not practical from a performance perspective [70]. Such
advancement require performance diagnosis systems that can learn and
operate in on-line scenario. Offline analysis and detection, as well as
ticket-based manual resolution may not fit this environment.

5. Monitoring and the data deluge: The performance of services and infras-
tructure is currently monitored using diverse tools [62]. The resulting
data end up in varying format and semantics with noises that sometimes
mask anomalies. Also, datacenters produce a staggering amount of stream-
ing operational data [70] that can easily overwhelm operators and alert
systems.

6. Complex problem structure: The notion of performance is generally sub-
jective [62]. What constitute normal or anomalous behaviour varies from
service to service and from one infrastructure provider to another. Also,
the occurrence of anomalies is dynamic. Some anomalies are highly con-
textual because they occur under specific workload and usage situations.

12

There could be a wide variety of potential root-cause even for a minute
drop in latency. Each problem has a characteristic behaviour visible only
by certain performance metrics. Some problem symptoms are recurrent
in nature; so eliminating a manifestation may not necessarily eliminate
the actual root-cause nor solve the problem [68].

3.1.2 Categories of performance problems

Wert et al [68] proposed that performance problems can be categorized into
three layers namely; symptoms–externally visible indicators of a performance
problem, manifestation–internal performance indicators or evidences, and root-
causes–physical factors whose removal thereof eliminates the manifestations and
symptoms of a performance incident. We adopt their classification to categorize
common performance problems in Table 3.1.

3.1.3 Activities in performance diagnosis

Performance diagnosis activities can be broadly divided into two subtasks:

• Identification: The goal of performance problem identification is two-fold.
First task is to, in a timely manner, discover performance symptoms (e.g.
degraded response time) and/or deviations from expected behaviour based
on thresholds, baselines, models, or SLAs. This is known as Performance
Anomaly Detection (PAD). SEAD [71], EbAT [72], PAD [73], and UBL
[74] perform this task. Once a symptom is detected, next task is to figure
out if it is similar to a previously seen problem so that a known root-cause
and solution can be recommended. This speeds up the diagnosis process
and avoids escalation [65]. If it is a new symptom, the system must find
evidences or manifestations that partly explains the anomaly and help
narrow search path for potential root-causes. Fingerprinting is a common
technique for summarizing and persisting previously seen problems [65].
Example systems includes Spectroscope [75], Prepare [76], vPerfGuard
[77], PerfCompass [78], and Orion [79].

• Root-cause analysis : This involves analysis of identified symptoms (anoma-
lies) and manifestations to determine the potential root-causes and sug-
gesting actions to correct them. Accurate localization of the problem is
important to mitigate performance problems, restore the system to good
state, and for future recall. Examples of such systems include X-ray [80],
PerfScope [81], PeerWatch [82].

In addition to problem diagnosis, performance management also include the
remediation of performance problems. This involves taking actions to restore
the system to normal state. It relies on information and recommendations from
the two phases of the diagnosis process. Systems such as CloudPD [83] and
CPI2 [5] propose strategies for correcting performance problems due to capacity
related causes.

13

Table 3.1: Classification of common systems performance problems.

Problem Category Perspective Instances

Increasing response time Symptoms Service
Non-responsive application,
Unexpected slow down in file transfer,
Degraded video quality or resolution.

Throughput degradation
under load

Symptoms Service
Dropped requests or packets,
Incomplete search results,
Degraded video resolution.

Service unavailability Symptoms Service
Service hanging or
crashing under heavy load,
Unreachable service.

SLA violation Symptoms Service Availability < 99%, Latency > 3ms.

Sudden latency spikes Symptoms Service Latency > (mean latency + 6sd)

Resource under-utilization
under load

Manifestation Service/Infrastructure
Low IO utilization
under heavy IO workload.

Resource over-utilization Manifestation Service/Infrastructure High CPU utilization (near 100%)

High resource saturation Manifestation Service/Infrastructure
100% CPU utilization
High average resource queue length,
Excessive dropping of network packets.

Resource contention or
interference

Manifestation Service/Infrastructure
High CPU steal time,
High cycle-per-instruction (CPI).

Resource dependency Manifestation Service/Infrastructure High CPU waiting time due to IO

Network congestion Root-cause Service/Infrastructure
Packet loss, Queueing delays,
Blocking of new connections.

Unexpected workload
spikes

Root-cause Service/Infrastructure
Sudden spike in update requests,
Flash-crowd behaviour.

Periodic load behaviour Root-cause Service/Infrastructure
Expected workload fluctuation,
Diurnal workload pattern.

Application-level issues Root-cause Service/Infrastructure

Component or dependency failure,
Bugs in application codes,
Exhausted thread pools,
Failed application upgrade,
Corrupted data error

Capacity bottlenecks Root-cause Service/Infrastructure
Resource hogging and contention,
Memory leaks,
Unanticipated interference.

Platform & OS issues Root-cause Service/Infrastructure
Transient events e.g.
Memory hardware errors,
JVM garbage collector issues.

Machine-level faults Root-cause Infrastructure

Faulty server components,
DRAM soft-errors or disk errors,
OS kernels bugs, abnormal reboots,
Unplanned power outage or overheating.

Routine system
maintenance

Root-cause Service/Infrastructure
Routine backups,
Forklift replacement,
OS upgrade.

Operator errors Root-cause Service/Infrastructure

Misconfiguration error,
Inadvertent database locks,
Erroneous overwrite or data deletion,
Wrong price setting.

Security violations Root-cause Service/Infrastructure
Denial of service attacks,
Worms and virus infection, or Theft.

14

Chapter 4

Summary of Contributions

This thesis contributes to the understanding of performance problem diagnosis
in systems especially in cloud environments and also propose new techniques
to improve the process. Firstly, we carried out an extensive survey of the
research area, covering the classification and review of different approaches.
We found that application-level performance diagnosis still rely on simplistic
threshold-based techniques. Considering the impact of performance problems
on SLA/SLO compliance, it is surprising why this is the case. Hence, we
propose techniques for automatically detecting anomalies (symptoms) in real-
time service performance behaviour in order to improve end-user experience as
well as prevent SLA violations or service outages. Furthermore, we devised a
knowledge-driven technique for identifying performance problem manifestations
in datacenter resources within the context of Apex Lake1. The approach is based
on combining certain performance metrics with the logical dependencies across
resources. The significance of the work in this thesis is to drive performance
diagnosis to be more automated improve the quality of service, user experience
as well as the speed of diagnosis. The thesis contributions also include scientific
publications and software prototypes.

Research Methodology. The methodology used in this thesis is exper-
imental. We begin by definition of problems, literature review, design and
implementation of algorithms, design of experiments and analysis of results.
There are generally two evaluation approaches in this area. The first is to
evaluate proposed algorithms using public datasets. The other is through ac-
tive perturbation [84] whereby algorithms are evaluated empirically on a real
testbed with realistic load and fault injections to bring it close to the real
environment being emulated. Though the former suffers from the lack of public
application/systems performance data for broad use-cases, it is better suited for
evaluating algorithms on independent data especially when the data is labeled.
On the other hand, it is challenging to recreate desired behaviour in the later.

1Apex Lake is a framework developed at Intel for enhancing smarter orchestration in
clouds especially in SDIs.

15

The later approach is taken to evaluate techniques proposed in Paper III and
IV. We collect data from actual applications running in a virtualized testbed
with emulated capacity bottlenecks via active perturbation.

4.1 Paper I

The ubiquity of performance problems has led to many interesting diagnosis
techniques. However, there exist no classification of the objectives and charac-
teristics of proposed approaches. In order to assess progress, identify trends and
open challenges we conducted a survey of over forty research articles spanning
over ten years (2002–2014) covering systems from a wide range of application
domains (e.g. dedicated environments, distributed and grid systems, as well as
multi-tier web services).

The survey, published by the ACM Computing Survey, gives a background
of aspects of the problem, and categorizes existing solutions using multiple
factors such as goals, domain of application, and methodology. Research trend
shows that research volume and complexity of detection methodologies seem to
follow the increasing complexity of systems. The task of detecting performance
anomalies (i.e. symptoms of problems) dominates research contributions in
this area; accounting for 53% of reviewed works. It is followed by problem
identification (identifying bottlenecks or root-causes to explain anomalies) which
accounts for 29% of reviewed papers. Hybrid systems combining the two tasks
account for 18% of reviewed papers. Existing techniques exploit many strategies
such as static thresholding, fine-grain workload models, fingerprints, flow paths
or dependencies, expert knowledge (e.g. rules). Though statistical models
and tests are popularly used, availability of cheap computing power has led
to increasing adoption of machine learning techniques. While end-to-end,
autonomous, and distributed diagnosis remain open challenges, the lack of open-
source performance data and problem taxonomy hinder the pace of performance
diagnosis research.

4.2 Paper II & III

Landscape colouring was introduced as a use-case within Intel’s Apex Lake

framework introduced in Paper II. While Apex Lake is being developed by Cloud
Services Lab (CSL), Intel Labs Europe, Ireland, since 2014, Ume̊a University
worked together with CSL to collaboratively develop and write Paper II as well
as proposed the concept of landscape colouring as a use case for Apex Lake.
Paper III refines and extends the original idea of landscape colouring as well as
demonstrates it with preliminary experiments.

This work is motivated by the concerns of low datacenter utilization [8]
and the need for tighter orchestration [51] in modern datacenters, such as
software-defined environments, where the logical topology and composition of
the datacenter is dynamic. We propose landscape colouring, a technique that

16

combines dynamic topology information with operational metrics of individual
datacenter components (applications, servers, VMs, etc.) in order to reason
about anomalies (or manifestations) such as resource over-utilization and satura-
tion. We employed components of Apex Lake as follows. The landscaper is used
to automatically and continuously organize the datacenter into a three-layer
graph structure of service, virtual and physical entities. Cimmaron monitors
operational metric, such as node (utilization) and the amount of tasks on its
queue (saturation), that are used to characterize node behaviour into discrete
operational states using a fuzzy inference system. Nodes are flagged anomalous
if they persist in a specified set of undesirable states. When many nodes are
flagged simultaneously, we rank anomalous nodes according to how important
they are in the graph to enhance the resolution process. The rank score is a
function of the influence of a node’s neighbours, the layer it belongs, and the
number of anomalous nodes depending on it.

We performed two experiments to demonstrate our approach in a virtualized
environment with emulated CPU and IO saturation bottlenecks. Results show
that the technique is able to identify and rank nodes with anomalies (e.g
CPU contentions due to inter-node dependency). We plan to perform more
experiments with multiple applications on a larger testbed (where the topology
is truly dynamic) to investigate the scalability of technique and to correlate
service-level symptoms with capacity bottlenecks in the infrastructure. We will
also be exploring how the technique can be used to trigger corrective actions
automatically or to drive other datacenter optimizations within the Apex Lake
framework.

4.3 Paper IV

Application performance degradation (e.g. high latency) is common on the
Internet today; and have been reported to be mostly due to capacity-related
issues rather than application bugs or machine-level faults [65, 8]. However, it
has received less research attention and existing studies are largely based on
simplistic threshold-based techniques.

Due to the correlation between application performance and end-user satis-
faction, we proposed and evaluated two schemes for detecting point anomalies
in real-time service latency measurements. The first exploited the fact that
applications sometimes have known baselines. We devised a behaviour-based
anomaly detection technique using adaptive Kernel Density Estimation (KDE)
and its KD-tree variants to detect deviations from given baseline. The second
scheme is for the case where a known baseline behaviour does not exist, we
proposed a prediction-based method to discover point anomalies. Significant
deviations in prevailing service behaviour are detected by predicting service
latency using Holt-Winter’s forecasting and applying adaptive EWMA control
chart limits on the prediction errors.

We evaluated the schemes using a web application benchmark on a virtualized

17

testbed with realistic load and bottleneck injections. We observed that the tree
variant of the adaptive KDE algorithm offers lower error rates than the standard
KDE. Under appropriate parameter settings, the prediction-based scheme is able
to follow the trends in service behaviour and detect out-of-control anomalies.
Results suggest that many service performance anomalies could be explained
by system-level capacity bottlenecks but not all low-level bottlenecks lead to
service-level anomalies. In the future, we plan to further evaluate accuracy of
the techniques using labeled datasets from public system traces.

4.4 Future Work

This work can be extended on multiple fronts. In general, we aim to improve the
evaluation of the proposed techniques. Though it is hard to perform substantial
statistical evaluations of the anomaly detection using an experimental approach,
we hope to accomplish this when we address root-cause analysis and problem
remediation. We plan to evaluate techniques introduced in Paper IV using
labeled datasets from real systems logs so that we can quantify their accuracy
and false alarm rates. The experiments in Paper III are preliminary, we plan
to assess the scalability of proposed method on a larger testbed with multiple
applications; and to quantify accuracy with suitable statistical analysis.

Furthermore, the prediction-based anomaly detection technique will be
extended with low-level resource metrics. By modeling relationships between
application-level metrics and resource metrics, we may be able to pinpoint
bottleneck resources to explain an observed anomaly. The static thresholds of
the fuzzy membership functions in Paper III could be learned on-line to reflect
prevailing workloads in the system. Also, in addition to ranking anomalous
node, it could adapt the method to differentiate victim nodes from antagonist
nodes when there is a resource contention.

Most performance problems are recurrent in nature [68] with well known
causes. We shall attempt to structure domain knowledge about capacity-related
anomalies and bottleneck in cloud infrastructure. By linking symptoms to
manifestations and to root-causes, we posit this will contribute towards the
realization of automated problem remediation since it will be easy to associate
root-causes with potential remediation strategies. For example, upon detecting
a latency spike (symptom), the fuzzy inference system may find CPU utilization
to be consistently high (manifestation). Further analysis may expose unexpected
workload spike (root-cause) as the actual culprit. A possible solution would be
to scale CPU resource to meet the workload demand.

The overall goal of our research is to close the performance problem manage-
ment loop; from problem identification through root-cause analysis to problem
remediation. Specifically, we plan to investigate existing strategies and develop
techniques for automatically rectifying observed problems. Such a technique
could, for instance, adjust number of replicas or CPU cores of a VM to correct
sustained latency growth caused by a workload spike or CPU bottleneck. On the

18

other hand, it could migrate a noisy VM to an idle host or enforce policy-based
resource throttling, to correct throughput degradation in a batch job.

19

20

Bibliography

[1] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing and Grid Com-
puting 360-degree Compared,” in Grid Computing Environments Workshop,
2008. GCE’08, pp. 1–10, IEEE, 2008.

[2] Q. Guan, C.-C. Chiu, and S. Fu, “CDA: A Cloud Dependability Analysis
Framework for Characterizing System Dependability in Cloud Comput-
ing Infrastructures,” in 18th Pacific Rim International Symposium on
Dependable Computing (PRDC), pp. 11–20, IEEE, 2012.

[3] B. Jennings and R. Stadler, “Resource Management in Clouds: Survey
and Research Challenges,” Journal of Network and Systems Management,
vol. 23, no. 3, pp. 567–619, 2015.

[4] A. Iosup, N. Yigitbasi, and D. Epema, “On the Performance Variability of
Production Cloud Services,” in 11th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), pp. 104–113, IEEE,
2011.

[5] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and J. Wilkes,
“CPI 2: CPU Performance Isolation for Shared Compute Clusters,” in
Proceedings of the 8th ACM European Conference on Computer Systems,
pp. 379–391, ACM, 2013.

[6] C. Klein, M. Maggio, K.-E. Årzén, and F. Hernández-Rodriguez,
“Brownout: Building more Robust Cloud Applications,” in Proceedings
of the 36th International Conference on Software Engineering, pp. 700–711,
ACM, 2014.

[7] C. Klein, A. V. Papadopoulos, M. Dellkrantz, J. Durango, M. Maggio, K.-E.
Arzen, F. Hernández-Rodriguez, and E. Elmroth, “Improving Cloud Service
Resilience using Brownout-aware Load-balancing,” in 33rd International
Symposium on Reliable Distributed Systems (SRDS), pp. 31–40, IEEE,
2014.

[8] L. A. Barroso, J. Clidaras, and U. Hölzle, “The Datacenter as a Computer:
An Introduction to the Design of Warehouse-scale Machines,” Synthesis
lectures on computer architecture, vol. 8, no. 3, pp. 1–154, 2013.

21

[9] Aberdeen Group, “The Performance of Web Applications: Cus-
tomers are Won or Lost in One Second (Research Report).”
http://www.aberdeen.com/research/5136/ra-performance-web-
application/content.aspx, May, 2015. Accessed: 2016-03-31.

[10] C. Wang, S. P. Kavulya, J. Tan, L. Hu, M. Kutare, M. Kasick, K. Schwan,
P. Narasimhan, and R. Gandhi, “Performance Troubleshooting in Data
centers: An Annotated Bibliography?,” ACM SIGOPS Operating Systems
Review, vol. 47, no. 3, pp. 50–62, 2013.

[11] CloudEndure, “The Top 9 Outages that made Headlines in Q4 2015 :
CloudEndure.” https://www.cloudendure.com/blog/top-9-outages-made-
headlines-q4-2015/, 2015. Accessed: 2016-03-31.

[12] Göteborgs-Posten, “E-deklarationer överbelastade Skatteverket - Sverige
- Göteborgs-Posten.” http://www.gp.se/nyheter/sverige/1.2703888-e-
deklarationer-overbelastade-skatteverket, 2015. Accessed: 2016-04-03.

[13] Aftonbladet, “Nyfikna skattebetalare sänkte sajten.”
http://www.aftonbladet.se/nyheter/article22488308.ab, 2016. Accessed:
2016-04-03.

[14] Evolven Software, “Downtime, Outages and Failures–Understanding
Their True Costs.” http://www.evolven.com/blog/downtime-outages-and-
failures-understanding-their-true-costs.html, September, 2011. Accessed:
2016-04-18.

[15] D. C. Marinescu, “Cloud Computing: Theory and Prac-
tice.” http://www.scopus.com/inward/record.url?eid=2-s2.0-
84902054996&partnerID=tZOtx3y1, 2013.

[16] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud Computing: State-of-the-art
and Research Challenges,” Journal of Internet Services and Applications,
vol. 1, no. 1, pp. 7–18, 2010.

[17] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging it platforms: Vision, hype, and reality for deliver-
ing computing as the 5th utility,” Future Generation Computer Systems,
vol. 25, no. 6, pp. 599–616, 2009.

[18] EDUCAUSE, “Spotlight on Cloud Computing: Community Clouds.”
https://net.educause.edu/ir/library/pdf/LIVE1017b.pdf, 2010. Accessed:
2016-04-01.

[19] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M. Llorente,
R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres, et al., “The Reservoir
Model and Architecture for Open Federated Cloud Computing,” IBM
Journal of Research and Development, vol. 53, no. 4, pp. 4–1, 2009.

22

[20] B. Rochwerger, A. Galis, E. Levy, J. A. Caceres, D. Breitgand, Y. Wolfsthal,
I. M. Llorente, M. Wusthoff, R. S. Montero, and E. Elmroth, “Reservoir:
Management Technologies and Requirements for Next Generation Service
Oriented Infrastructures,” in Proceedings of the 11th IFIP/IEEE inter-
national conference on Symposium on Integrated Network Management,
pp. 307–310, IEEE Press, 2009.

[21] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,” Na-
tional Institute of Standards and Technology, vol. 53, no. 6, p. 50, 2009.

[22] M. Alhamad, T. Dillon, and E. Chang, “Conceptual SLA Framework
for Cloud Computing,” in 4th IEEE International Conference on Digital
Ecosystems and Technologies (DEST), pp. 606–610, IEEE, 2010.

[23] S. A. Baset, “Cloud SLAs: Present and Future,” ACM SIGOPS Operating
Systems Review, vol. 46, no. 2, pp. 57–66, 2012.

[24] Amazon, Inc., “Amazon EC2 Service Level Agreement.”
http://aws.amazon.com/ec2/sla/. Accessed: 2016-04-04.

[25] G. Jung, M. A. Hiltunen, K. R. Joshi, R. D. Schlichting, and C. Pu,
“Mistral: Dynamically Managing Power, Performance, and Adaptation Cost
in Cloud Infrastructures,” in 30th International Conference on Distributed
Computing Systems (ICDCS), pp. 62–73, IEEE, 2010.

[26] W. Li and A. Kanso, “Comparing Containers versus Virtual Machines for
Achieving High Availability,” in Cloud Engineering (IC2E), 2015 IEEE
International Conference on, pp. 353–358, IEEE, 2015.

[27] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and The Art of Virtualization,”
ACM SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 164–177, 2003.

[28] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM: The
Linux Virtual Machine Monitor,” in Proceedings of the Linux symposium,
vol. 1, pp. 225–230, 2007.

[29] A. Velte and T. Velte, Microsoft Virtualization with Hyper-V. McGraw-Hill,
Inc., 2009.

[30] N. Antonopoulos and L. Gillam, Cloud computing: Principles, Systems
and Applications. Springer Science & Business Media, 2010.

[31] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
“Container-based Operating System Virtualization: A Scalable, High-
performance Alternative to Hypervisors,” in ACM SIGOPS Operating
Systems Review, vol. 41, pp. 275–287, ACM, 2007.

23

[32] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An Updated Per-
formance Comparison of Virtual Machines and Linux Containers,” in
Performance Analysis of Systems and Software (ISPASS), 2015 IEEE
International Symposium On, pp. 171–172, IEEE, 2015.

[33] D. Merkel, “Docker: Lightweight Linux Containers for Consistent Develop-
ment and Deployment,” Linux J., vol. 2014, Mar. 2014.

[34] Docker, Inc., “Docker: The Linux Container Engine.”
https://www.docker.com/. Accessed: 2016-04-18.

[35] “LXC: LinuX Container.” https://linuxcontainers.org/. Accessed: 2016-04-
18.

[36] “OpenVZ Linux Containers.” https://openvz.org/. Accessed: 2016-04-18.

[37] J. G. et al., “Survey on Cloud Computing Resource Allocation Models and
Methods,” International Journal of Computer Science and Management
Research, vol. 1, December 2012.

[38] A. Gulati, G. Shanmuganathan, A. Holler, and I. Ahmad, “Cloud-scale
Resource Management: Challenges and Techniques,” in Proceedings of
the 3rd USENIX conference on Hot topics in cloud computing, pp. 3–3,
USENIX Association, 2011.

[39] P. Xiong, “Dynamic Management of Resources and Workloads for RDBMS
in Cloud: A Control-theoretic Approach,” in Proceedings of the on SIG-
MOD/PODS 2012 PhD Symposium, pp. 63–68, ACM, 2012.

[40] D. Talia, “Toward cloud-based big-data analytics,” IEEE Computer Science,
pp. 98–101, 2013.

[41] I. Stojmenovic, “Fog computing: a cloud to the ground support for smart
things and machine-to-machine networks,” in Telecommunication Networks
and Applications Conference (ATNAC), 2014 Australasian, pp. 117–122,
IEEE, 2014.

[42] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing: A
survey,” Future Generation Computer Systems, vol. 29, no. 1, pp. 84–106,
2013.

[43] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[44] M. C. Huebscher and J. A. McCann, “A Survey of Autonomic Com-
puting—degrees, Models, and Applications,” ACM Computing Surveys
(CSUR), vol. 40, no. 3, p. 7, 2008.

24

[45] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes, “AGILE: Elastic
Distributed Resource Scaling for Infrastructure-as-a-Service,” in Proceed-
ing of the USENIX International Conference on Automated Computing
(ICAC’13). San Jose, CA, 2013.

[46] H. Nguyen Van, F. Dang Tran, and J.-M. Menaud, “Autonomic Virtual
Resource Management for Service Hosting Platforms,” in Proceedings of
the 2009 ICSE Workshop on Software Engineering Challenges of Cloud
Computing, CLOUD ’09, (Washington, DC, USA), pp. 1–8, IEEE Computer
Society, 2009.

[47] A. Roytman, A. Kansal, S. Govindan, J. Liu, and S. Nath, “PACMan:
Performance Aware Virtual Machine Consolidation,” in Proceedings of the
10th International Conference on Autonomic Computing (ICAC 13), (San
Jose, CA), pp. 83–94, USENIX, 2013.

[48] Q. Zhang, M. F. Zhani, S. Zhang, Q. Zhu, R. Boutaba, and J. L. Hellerstein,
“Dynamic energy-aware capacity provisioning for cloud computing environ-
ments,” in Proceedings of the 9th international conference on Autonomic
computing, pp. 145–154, ACM, 2012.

[49] M. Guazzone, C. Anglano, and M. Canonico, “Energy-efficient resource
management for cloud computing infrastructures,” in Cloud Computing
Technology and Science (CloudCom), 2011 IEEE Third International Con-
ference on, pp. 424–431, IEEE, 2011.

[50] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” in ACM SIGARCH Computer Architecture
News, vol. 35, pp. 13–23, ACM, 2007.

[51] C. Li, B. Brech, S. Crowder, D. M. Dias, H. Franke, M. Hogstrom,
D. Lindquist, G. Pacifici, S. Pappe, B. Rajaraman, et al., “Software
defined Environments: An Introduction,” IBM Journal of Research and
Development, vol. 58, no. 2/3, pp. 1–1, 2014.

[52] G. Kandiraju, H. Franke, M. Williams, M. Steinder, and S. Black, “Software
defined Infrastructures,” IBM Journal of Research and Development, vol. 58,
no. 2/3, pp. 2–1, 2014.

[53] VMware, Inc., “EVO:RAIL Hyper-Converged Infrastructure Appliance.”
http://www.vmware.com/products/evorail/. Accessed: 2016-04-19.

[54] Google, Inc., “Enter the Andromeda zone - Google Cloud Platform’s Latest
Networking Stack.” https://cloudplatform.googleblog.com/2014/04/enter-
andromeda-zone-google-cloud-platforms-latest-networking-stack.html. Ac-
cessed: 2016-04-19.

25

[55] Guru Rao, “Software Defined Compute Provides Workload-aware In-
frastructure and Optimization through Automation and Open Technologies.”
https://www.ibm.com/developerworks/community/blogs/ibmsyssw/entry
/software defined compute provides workload aware infrastructure
and optimization through automation and open technologies?lang=en,
January, 2014. Accessed: 2016-04-05.

[56] Y. Jararweh, M. Al-Ayyoub, E. Benkhelifa, M. Vouk, A. Rindos, et al.,
“Software defined Cloud: Survey, System and Evaluation,” Future Genera-
tion Computer Systems, 2015.

[57] J. O. Kephart and D. M. Chess, “The Vision of Autonomic Computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[58] R. Jain, The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation, and Modeling. John
Wiley & Sons, New York, 1991.

[59] L. Bautista, A. Abran, and A. April, “Design of a Performance Measurement
Framework for Cloud Computing,” 2012.

[60] A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, and I. Stoica, “Above the Clouds: A Berkeley View of Cloud
Computing,” Dept. Electrical Eng. and Comput. Sciences, University of
California, Berkeley, Rep. UCB/EECS, vol. 28, no. 13, p. 2009, 2009.

[61] Shailesh Paliwal, “Performance Challenges in Cloud Comput-
ing.” https://www.cmg.org/wp-content/uploads/2014/03/1-Paliwal-
Performance-Challenges-in-Cloud-Computing.pdf, 2014. Accessed:
2016-04-05.

[62] B. Gregg, Systems Performance: Enterprise and the Cloud. Pearson
Education, 2014.

[63] G. Aceto, A. Botta, W. De Donato, and A. Pescapè, “Cloud monitoring:
A Survey,” Computer Networks, vol. 57, no. 9, pp. 2093–2115, 2013.

[64] K. Fatema, V. C. Emeakaroha, P. D. Healy, J. P. Morrison, and T. Lynn, “A
survey of Cloud Monitoring Tools: Taxonomy, Capabilities and Objectives,”
Journal of Parallel and Distributed Computing, vol. 74, no. 10, pp. 2918–
2933, 2014.

[65] H. Malik and E. M. Shakshuki, “Classification of Post-deployment Perfor-
mance Diagnostic Techniques for Large-scale Software Systems,” Procedia
Computer Science, vol. 37, pp. 244–251, 2014.

[66] C. Trubiani and A. Koziolek, “Detection and Solution of Software Perfor-
mance Antipatterns in Palladio Architectural Models,” in ACM SIGSOFT
Software Engineering Notes, vol. 36, pp. 19–30, ACM, 2011.

26

[67] K. C. Foo, Z. M. Jiang, B. Adams, A. E. Hassan, Y. Zou, and P. Flora,
“Mining Performance Regression Testing Repositories for Automated Per-
formance Analysis,” in 10th International Conference on Quality Software
(QSIC), pp. 32–41, IEEE, 2010.

[68] A. Wert, “Performance Problem Diagnostics by Systematic Experimen-
tation,” in Proceedings of the 18th international doctoral symposium on
Components and architecture, pp. 1–6, ACM, 2013.

[69] StorageServers, “Facts and Stats of Worlds Largest Data cen-
ters.” https://storageservers.wordpress.com/2013/07/17/facts-and-stats-of-
worlds-largest-data-centers/, July 2013. Accessed: 2016-04-07.

[70] J. Murphy, “Performance Engineering for Cloud Computing,” in Computer
Performance Engineering, pp. 1–9, Springer, 2011.

[71] H. S. Pannu, J. Liu, and S. Fu, “A Self-evolving Anomaly Detection
Framework for Developing Highly Dependable Utility Clouds,” in Global
Communications Conference (GLOBECOM), 2012 IEEE, pp. 1605–1610,
IEEE, 2012.

[72] C. Wang, V. Talwar, K. Schwan, and P. Ranganathan, “Online Detection of
Utility Cloud Anomalies using Metric Distributions,” in Network Operations
and Management Symposium (NOMS), 2010 IEEE, pp. 96–103, IEEE, 2010.

[73] M. Peiris, J. H. Hill, J. Thelin, S. Bykov, G. Kliot, and C. Konig, “PAD:
Performance Anomaly Detection in Multi-server Distributed Systems,” in
7th International Conference on Cloud Computing (CLOUD), pp. 769–776,
IEEE, 2014.

[74] D. J. Dean, H. Nguyen, and X. Gu, “UBL: Unsupervised Behavior Learning
for Predicting Performance Anomalies in Virtualized Cloud Systems,” in
Proceedings of the 9th international conference on Autonomic computing,
pp. 191–200, ACM, 2012.

[75] R. R. Sambasivan, A. X. Zheng, M. De Rosa, E. Krevat, S. Whitman,
M. Stroucken, W. Wang, L. Xu, and G. R. Ganger, “Diagnosing Perfor-
mance Changes by Comparing Request Flows,” in NSDI, 2011.

[76] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and D. Rajan,
“Prepare: Predictive Performance Anomaly Prevention for Virtualized
Cloud Systems,” in Distributed Computing Systems (ICDCS), 2012 IEEE
32nd International Conference on, pp. 285–294, IEEE, 2012.

[77] P. Xiong, C. Pu, X. Zhu, and R. Griffith, “vPerfGuard: An Automated
Model-driven Framework for Application Performance Diagnosis in Con-
solidated Cloud Environments,” in Proceedings of the 4th ACM/SPEC
International Conference on Performance Engineering, pp. 271–282, ACM,
2013.

27

[78] D. J. Dean, H. Nguyen, P. Wang, and X. Gu, “PerfCompass: Toward
Runtime Performance Anomaly Fault Localization for Infrastructure-as-
a-service Clouds,” in Proceedings of the 6th USENIX conference on Hot
Topics in Cloud Computing, pp. 16–16, USENIX Association, 2014.

[79] I. Laguna, S. Mitra, F. A. Arshad, N. Theera-Ampornpunt, Z. Zhu,
S. Bagchi, S. P. Midkiff, M. Kistler, and A. Gheith, “Automatic Problem
Localization via Multi-dimensional Metric Profiling,” in 32nd International
Symposium on Reliable Distributed Systems (SRDS), pp. 121–132, IEEE,
2013.

[80] M. Attariyan, M. Chow, and J. Flinn, “X-ray: Automating Root-cause
Diagnosis of Performance Anomalies in Production Software,” in Presented
as part of the 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 12), pp. 307–320, 2012.

[81] D. J. Dean, H. Nguyen, X. Gu, H. Zhang, J. Rhee, N. Arora, and G. Jiang,
“Perfscope: Practical Online Server Performance Bug Inference in Pro-
duction Cloud Computing Infrastructures,” in Proceedings of the ACM
Symposium on Cloud Computing, pp. 1–13, ACM, 2014.

[82] H. Kang, H. Chen, and G. Jiang, “PeerWatch: A Fault Detection and
Diagnosis Tool for Virtualized Consolidation Systems,” in Proceedings of
the 7th international conference on Autonomic computing, pp. 119–128,
ACM, 2010.

[83] B. Sharma, P. Jayachandran, A. Verma, and C. R. Das, “CloudPD: Problem
Determination and Diagnosis in Shared Dynamic Clouds,” in 43rd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), pp. 1–12, IEEE, 2013.

[84] R. Apte, L. Hu, K. Schwan, and A. Ghosh, “Look Who’s Talking: Discov-
ering Dependencies between Virtual Machines Using CPU Utilization,” in
HotCloud, 2010.

28

I

Paper I

Performance Anomaly Detection and Bottleneck
Identification

Olumuyiwa Ibidunmoye, Francisco Hernandez-Rodriguez,
Erik Elmroth

Dept. Computing Science, Umeå University
SE-901 87 Umeå, Sweden

{muyi, francisco, elmroth}@cs.umu.se
http://www.cs.umu.se/ds

Abstract: In order to meet stringent performance requirements, system adminis-
trators must effectively detect undesirable performance behaviours, identify potential
root causes and take adequate corrective measures. The problem of uncovering and
understanding performance anomalies and their causes (bottlenecks) in different sys-
tem and application domains is well studied. In order to assess progress, research
trends and identify open challenges, we have reviewed major contributions in the area
and present our findings in this survey. Our approach provides an overview of anomaly
detection and bottleneck identification research as it relates to the performance of com-
puting systems. By identifying fundamental elements of the problem, we are able to
categorize existing solutions based on multiple factors such as the detection goals,
nature of applications and systems, system observability, and detection methods.

31

32

4

Performance Anomaly Detection and Bottleneck Identification

OLUMUYIWA IBIDUNMOYE, FRANCISCO HERNÁNDEZ-RODRIGUEZ,
and ERIK ELMROTH, Umeå University

In order to meet stringent performance requirements, system administrators must effectively detect unde-
sirable performance behaviours, identify potential root causes, and take adequate corrective measures. The
problem of uncovering and understanding performance anomalies and their causes (bottlenecks) in different
system and application domains is well studied. In order to assess progress, research trends, and identify
open challenges, we have reviewed major contributions in the area and present our findings in this survey.
Our approach provides an overview of anomaly detection and bottleneck identification research as it relates
to the performance of computing systems. By identifying fundamental elements of the problem, we are able
to categorize existing solutions based on multiple factors such as the detection goals, nature of applications
and systems, system observability, and detection methods.

Categories and Subject Descriptors: C.4 [Computer-Communication Networks]: Performance of
Systems—Reliability, availability, and serviceability; D.4.8 [Operating Systems]: Performance—
Measurement, modeling and prediction

General Terms: Performance, Reliability

Additional Key Words and Phrases: Systems performance, performance anomaly detection, bottleneck
detection, performance problem identification

ACM Reference Format:
Olumuyiwa Ibidunmoye, Francisco Hernández-Rodriguez, and Erik Elmroth. 2015. Performance anomaly
detection and bottleneck identification. ACM Comput. Surv. 48, 1, Article 4 (July 2015), 35 pages.
DOI: http://dx.doi.org/10.1145/2791120

1. INTRODUCTION

Modern enterprise applications and systems most often function well but are still
known to sometimes exhibit unexpected and unwanted performance behaviours with
associated cost implications and failures [Pertet and Narasimhan 2005]. These per-
formance behaviours or anomalies are often the manifestations of bottlenecks in the
underlying system. In fact, many factors such as varying application load, application
issues (e.g., bugs and updates), architectural features, and hardware failure have been
found to be sources of performance degradation in large-scale systems [Cherkasova
et al. 2009; Magalhaes and Silva 2010]. Regardless of the sources of the problem, the
challenge is how to detect performance anomalies and how to identify potential root-
causes. The scale, dynamics, and heterogeneity of today’s IT infrastructure further
aggravate the problem.

This work is supported by the Swedish Research Council (VR) under contract number C0590801 for the
Cloud Control project and the European Union’ s Seventh Framework Programme under grant agreement
610711 (CACTOS).
Authors’ addresses: Department of Computing Science, Umeå University, Umeå SE-90187, Sweden; emails:
{muyi, elmroth, francisco}@cs.umu.se.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 0360-0300/2015/07-ART4 $15.00

DOI: http://dx.doi.org/10.1145/2791120

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015.33

4:2 O. Ibidunmoye et al.

Performance bottlenecks and anomalies are barriers to achieving predictable perfor-
mance guarantees in enterprise applications and often come with significant cost impli-
cations. Studies [Kissmetrics 2014] have shown that there exist correlations between
the end-user performance and sales or number of visitors in popular web applications
and how consistently high page latency increases the page abandonment rate. It was
also shown that for a small-scale e-commerce application with a daily sales of $100,000,
a 1-second page delay could lead to about 7% loss in sales annually. Also according to
Huang [2011], Amazon experiences a 1% decrease in sales for an additional 100ms
delay in response time while Google reports a 20% drop in traffic due to 500ms delay
in response time. These implications show not only the importance but also the po-
tential economical value of robust and automated solutions for detecting performance
problems in real time.

Similarly, if left unattended, performance bottlenecks may eventually lead to system
failure and outages spanning minutes to weeks. Bottleneck conditions, such as system
overload, and resource exhaustion have been reported to cause prolonged and inter-
mittent system downtimes [Pertet and Narasimhan 2005]. Global web services such
as Yahoo Mail, Amazon Web Services, Google, LinkedIn, and Facebook have recently
suffered from such failures [McHugh 2013]. Unplanned downtimes have significant
cost implications [Evolven 2011] not just in lost sales but also in man-hours spent on
recovery. To achieve guaranteed service reliability, performance, and Quality of Service
(QoS), timely detection of performance issues before they trigger unforeseen service
downtime is critical for service providers [Guan et al. 2011]

Considerable efforts have been made to address this issue in the academia with
interesting proposals. Many of these solutions leverage the power of statistical and
machine learning techniques. Though many of these efforts have been concentrated on
solving the problem in specific application domains, the characteristics of the problem
and proposed solutions are similar. A basic performance anomaly detection and bottle-
neck identification (PADBI) system observes, in real time, the performance behaviours
of a running system or application, collects vital measurements at discrete time inter-
vals to create baseline models or profiles of typical system behaviours. It continuously
observes new measurements for deviations in order to detect expected or unexpected
performance anomalies and carry out root-cause analysis to identify associated bottle-
necks. This survey aims at providing an overview of the problem and research on the
topic. We provide a basic background on the problem with respect to the fundamental
elements of the process, methods, and techniques while identifying research trends
and open challenges.

1.1. Our Contribution

This work is an attempt to provide thorough description of the performance anomaly
detection and bottleneck identification problem and to present the extensive research
done in this area. The diverse nature of works addressing this problem informs this
work, and we herein present our findings. A similar survey on the general problem
of anomaly detection is presented in Chandola et al. [2009]. We start by giving a
general background while identifying core elements of the problem. Then we discuss
the main contributions of various authors organized in terms of the systems, goals,
and techniques used. We conclude by discussing research trends, future directions, and
specific requirements for Cloud computing.

1.2. Organization

We introduce the article in Section 1. Section 2 presents a background of the prob-
lem and discusses the concept of performance anomalies and bottlenecks, their root-
causes, and other fundamental concepts. In Section 3, we address the various detection

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015.34

Performance Anomaly Detection and Bottleneck Identification 4:3

strategies and techniques employed in existing literature. Section 4 summarizes past
and present research trends while also describing specific Cloud computing require-
ments in Section 5. Section 6 discusses important concerns about detection methods
and presents future directions in terms of challenges and open issues. We conclude in
Section 7.

2. BACKGROUND

2.1. Basic Concepts

The performance of computer systems is typically characterized in terms of the duration
taken to perform a given set of tasks or the rate at which these tasks are performed
with respect to the amount of system resources consumed within a time interval [Gregg
2013].

Performance metrics are key performance indicators (KPI) derived from fundamen-
tal system measurements (such as count, duration, and size) to describe the state of
operation of a computer system. The two most popular metrics are the response rime
(or latency) and throughput. Latency is broadly used to describe the time for any op-
eration to complete, such as an application request, a database query, a file system
operation. The throughput of a system is the rate of work performed. For instance, in
web applications, throughput is the number of users’ requests completed within a time
interval (e.g., requests or transactions completed per second) [Gregg 2013].

System resources includes physical components such as the CPU, memory, disk,
caches, network and virtual components such as the network connections (e.g., sockets),
locks, file handles or descriptors [Gregg 2013]. Resource capacity describes the storage
size or processing strength of a given resource, such as the number of CPUs, and the
size of physical memory or disk.

Resource utilization of an application typically captures the amount of capacity used
with respect to the available capacity. For example, CPU usage is measured as the
amount of time (in percentage) the CPU is busy executing instructions from an appli-
cation, while memory utilization measures (in percentage) amount of storage capacity
consumed by a particular process or application. Utilization of network resources may
capture the ratio of number of packet transmitted to the full transmission capacity of
a network link in a given time interval [Shallahamer 1995; Lilja 2005].

In the following sections, we present various aspects of the PADBI problem.

2.2. Performance Anomalies

Generally, anomalies can be seen on a graph, as a point or group of data points lying
outside an expected normal region [Das 2009]. In performance studies, the data points
are discrete measurements of a performance metric, throughput, for example. Figure
1(a) is a plot of latency against time for an hypothetical system. The two homogeneous
clusters (N1 and N2) represent the normal operating region, while the points (p1 and
p2) or group of points (O) falling outside the normal regions are anomalies or outliers.
Figure 1(b) captures another example of throughput anomaly, the group of points P
represent a short dip in system throughput.

2.2.1. Types of Anomalies. Chandola et al. [2009] identify three basic types of anoma-
lies: point, collective, and contextual. These types only capture anomaly in terms of
individual or contiguous data points; however, performance metrics are also known to
commonly exhibit characteristic shapes when a resource is saturated [Gunther 2004].
Therefore, we present one more type of anomaly, the pattern anomaly, which character-
izes performance behaviours in terms of the structure or shapes of their curves rather
than finite data points [Gunther 2011].

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015. 35

4:4 O. Ibidunmoye et al.

Fig. 1. Illustration of anomalies.

Fig. 2. Latency anomalies.

(1) Point anomalies. A point anomaly is any point that deviates from the range of ex-
pected values in a given set of data. For example, a memory usage value 3 standard
deviation from the mean (i.e. >= μ ± 3σ) may be considered a point anomaly if
the expected behaviour is 1 standard deviation from the mean (i.e., <= μ ± 1σ).
In Figure 1(a), points labeled p1 and p2 are point anomalies. Point anomalies are
the dominant type of anomalies in majority of literature that we reviewed. They
commonly manifest as spikes in application latency or system resource utilization
measurements. Figure 2(b) shows a plot of application latency with respect to time.
The solid dots indicates detected point anomalies.

(2) Collective anomalies. Collective anomaly is a homogeneous group of data points
deviating from the normal regions of the rest of the data. Though the individual data
points may not be anomalous with respect to the group, their occurrence together as
a collection is anomalous. An unexpected streak of low-throughput values may be
considered anomalous when compared with higher-throughput behaviour in past
observation windows. In Figure 1, the group of points labeled O in Figure 1(a) and
points labeled P in Figure 1(b) are collective anomalies.

(3) Contextual anomalies. Some performance anomalies manifest only under specific
execution environments or contexts. The contexts may be defined by load levels
(e.g., high, moderate, load, or bursty), type of payloads (e.g., IO-bound, CPU-bound,
read-heavy, write-heavy or mixed), system states (e.g., system configurations), or
by the nature of underlying computing infrastructure (e.g., virtualized or shared-
hosting environments), and so on.

(4) Pattern anomalies. The shapes of some performance metrics when plotted are
known to exhibit specific pattern that can be used to identify anomalous behaviours

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015.36

Performance Anomaly Detection and Bottleneck Identification 4:5

Fig. 3. CPU saturation bottleneck.

[Gunther 2011]. For example, application latency is known to exhibit an asymp-
totic growth as seen in Figure 2(a). The shape or pattern of performance metric
may be anomalous if it does not conform to the shape of typical behaviour. Pattern
anomalies may be considered a generalized form of collective anomalies because
the anomalous shape is made up of a set of data points that are also collective
anomalies.

2.3. Performance Bottlenecks

A bottleneck is a resource or an application component that limits the performance of
a system [Gregg 2013]. Malkowski et al. [2009] describe a bottleneck component as a
potential root-cause of undesirable performance behaviour caused by a limitation (e.g.,
saturation) of some major system resources associated with the component [Lee et al.
2012]. Such components often exhibit frequent congestion of load [Mi et al. 2008a]. Also,
application or system metrics correlating with an observed performance limitation are
referred to as bottleneck metrics [Parekh et al. 2006].

2.3.1. Types of Bottlenecks.
2.3.1.1 Resource Saturation Bottlenecks. A resource is saturated when its capacity is

fully utilized or past a set threshold [Gregg 2013]. For example, Figure 3 depicts a satu-
rated CPU past the threshold usage level of 70%. According to Gregg [2013], saturation
may also be estimated in terms of the length of a resource queue of jobs or request to
be served by that resource. Saturation causes different system resources to be bot-
tlenecked differently with varying performance impact. CPU—near 100% utilization
resulting in congested queue and growing latency. Memory—constrained capacity due
to limited physical memory or deprivation caused by memory leaks1 leading to constant
paging and swapping. Disk Saturation—constant disk access beyond available band-
width forcing new IO requests to queue up. Network saturation—network congestion
due to fully utilized bandwidth causing new traffic to be delayed or dropped.

2.3.1.2. Resource Contention Bottlenecks. In multitasking environments, application
processes contend for limited system resources such as CPU cycles, IO bandwidth, and
physical memory, and also software resources such as buffers, queues, semaphores, and
mutexes. The impact of such contention is well pronounced in cloud data centers due
to resource interference between multiple cloud tenants. The noisy neighbours effect
is an analogy for this interference [Pu et al. 2010]. Several contention scenarios are
well known for different system resources: (1) CPU contention—multiplexing the CPU

1Memory leak is a classical memory bottleneck scenario where an application indiscriminately allocate
memory spaces that are never deallocated thereby saturating the memory and starving other users.

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015. 37

4:6 O. Ibidunmoye et al.

Fig. 4. Cause-effect relationships of performance anomalies and bottlenecks.

between multiple processes causes frequent congested queue and performance inter-
ference in virtualized systems especially in the presence of CPU hogging2 programs.
Memory contention—sharing limited memory bandwidth and processor-memory in-
terconnect among processes may result in significant performance impact. (3) Disk
Contention—the processor-IO performance gap and restricted disk payload3 causing
substantial performance loss especially in IO workloads. (4) Network Contention—
excess demands for communication links at peak times lowers the effective bandwidth
offered resulting in undesirable network contention delays.4

2.3.2. Bottlenecks Behaviours. Performance bottlenecks manifests in different ways de-
pending on applications and systems.

(1) Single Bottlenecks. Single bottlenecks exhibit predominant saturation at a single
resource or component. An inherent characteristic of the bottleneck component is
a near-linear load-dependent growth in resource usage. Malkowski et al. [2009].

(2) Multiple Bottlenecks. Two or more system resources or component may saturate
simultaneously, or concurrently due to interdependency. Malkowski et al. [2009]
classifies multiple saturation behaviours as simultaneous, oscillatory, and concur-
rent depending on saturation frequency given the presence of another saturation.

(3) Shifting Bottlenecks. Shifting bottlenecks are a special case of multiple ones. Due
to fluctuating loads and the cascading nature of web requests, an application may
experience shifts in bottleneck between two or more application components—the
domino effects—due to interdependency between them.

2.4. Sources of Performance Anomalies and Bottlenecks

Figure 4 is an extended Fish-bone diagram explaining the interrelationships between
performance bottlenecks, anomalies and their causes. The green boxes on the left are
the main categories of root-causes, the red horizontal arrows are example of primary
causes that further explain each category. The orange rectangles on the right are
the main effects of the primary causes. Secondary causes that further explain primary
causes and effects are represented with red slanted arrows. The thick horizontal arrow,

2CPU hogging programs place excessive demand on compute resources thereby impacting the performance
of other applications on the same host.
3Disk payload is in terms of size (in bytes) and number of IO requests (read/write) per second.
4Network contention delay is expressed as ratio of possible demand for a given network link to its maximum
capacity.

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015.38

Performance Anomaly Detection and Bottleneck Identification 4:7

the spline, depicts how primary and secondary causes can be used to explain main
effects from left to right.

2.4.1. Application Issues. Application-level issues such as incorrect tuning, buggy codes,
and software updates are examples of bottleneck sources [Kelly 2005a]. Incorrect ap-
plication configuration and updates may introduce unexpected resource bottlenecks
[Cherkasova et al. 2009].

2.4.2. Workload. Bursty application loads are characterized by periods of continuous
peak arrival rates that significantly deviate from the average or expected workload
intensity. Internet phenomena such as flash-crowds5 culminate into workload bursti-
ness [Mi et al. 2008a]. The undesirable effects of such load behaviour include congested
queues, oversubscribed threading resources, present of short and uneven peaks in re-
source and performance measurements [Casale et al. 2009].

2.4.3. Architectures and Platforms. Transient events such as those introduced by under-
lying system architecture or operating systems (e.g., memory hardware errors), occur
over short timespan. Multiple occurrence of such transient errors and events results in
bottlenecks that are hard to detect. Wang et al. [2013a] and Mi et al. [2008a] have shown
how JVM garbage collection and Intel SpeedStep technology can induce bottlenecks. In
modern systems with multicore NUMA architecture, the location of memory relative
to a processor may affect application performance especially those with memory-bound
workloads [Panourgias 2011].

2.4.4. System Faults. Faults in system resources and components may considerably
affect application performance [Muppala et al. 1991] with significant cost. System
failures may be intermittent, transient. or even permanent. Reasons for such failures
can be attributed to software bugs, operator error, hardware faults, environmental
issues, and security violations. In recent times, many popular web application services
have been hit by failures that temporarily disrupt their application services for some
time [Pertet and Narasimhan 2005].

2.5. Core Elements of the Problem

2.5.1. Nature of the Problem. The complexity of today’s systems makes the process of
detecting performance issues and identifying root-causes nontrivial. We identify the
following as the major challenges:

(1) Dynamic Dependency. At scale, applications comprise of multiple interdependent
components deployed in data centers servers with heterogeneous and equally inter-
dependent resources. This dependency results in dynamic behaviours. For example,
hard-to-detect alternating or cascading bottlenecks between two or more compo-
nents and resources is very common in large datacenters [Wang et al. 2013b].

(2) Dynamic Anomaly Characteristics. Today’s systems are by nature highly dynamic
with characteristic unpredictable behaviours. It follows that defining a priori all
possible behaviours (normal or anomalous) of an application is technically unreal-
istic. Similarly, the notion of normality, anomalies and their characteristics vary
widely across applications, execution environments, and load contexts. Therefore,
it is hard to precisely distinguish normal application behaviours from anomalous
behaviours at runtime [Lan et al. 2010].

(3) Nature of Data. There exist a diverse set of data collection tools, each generating
output data in different formats and semantics. This makes it difficult to consume

5A flash-crowd is an Internet phenomenon where a network suddenly receives a huge influx of traffic due to
breaking news, major events, natural disasters, and so on.

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015. 39

4:8 O. Ibidunmoye et al.

Table I. Recent Literature by Goals

PAD PBI PADBI
Zhang et al. [2007b] Chen et al. [2002] Cohen et al. [2004]
Gunter et al. [2007] Malkowski et al. [2007] Kelly [2005a]
Yang et al. [2007] Chung et al. [2008] Jung et al. [2006]
Cherkasova et al. [2008] Ben-Yehuda et al. [2009] Agarwala et al. [2007]
Lan et al. [2010] Iqbal et al. [2010] Kandula et al. [2009]
Fu [2011] Xiong et al. [2013] Malkowski et al. [2009]
Sambasivan et al. [2011] Wang et al. [2013b] Magalhães and Silva [2011]
Tan et al. [2012] Magalhaes and Moura Silva [2011]
Pannu et al. [2012] Lee et al. [2012]
Wang et al. [2012] Kang et al. [2012]
Guan and Fu [2013b] Dean et al. [2014]
Yu and Lan [2013]
Sharma et al. [2013]
Huang et al. [2013]
Wang et al. [2014]

the data in a uniform manner [Lan et al. 2010]. Also, due to the influence of varying
data collection mechanisms, processing and transmission errors, performance data
may suffer from the presence of noise whose values may be similar to anomalies.
This complicates the detection problem, as noise often masquerades as anomalies
resulting in high false-positive detections.

Furthermore, today’s systems generate huge quantity of health or operational
data that can easily overwhelm analysis and detection process. Finding anomalies
and bottleneck symptoms in such datasets is analogous to finding a needle in a
haystack.

2.5.2. System Goals. The general research questions behind PADBI systems are:

(1) How to automatically detect anomalous performance behaviours?
(2) How to automatically identify the root cause of an observed performance anomaly?
(3) Which system resource or component is responsible for an observed violation of a

performance objective?

We refer to the goal of systems addressing the first question as performance anomaly
detection (PAD). Systems addressing the second and third question are classified as per-
formance bottleneck identification (PBI). In many cases, we observed a blurred line be-
tween papers addressing anomaly detection and those addressing bottleneck detection.
We categorize such systems (i.e., addressing all the three questions) as performance
anomaly detection and bottleneck identification (PADBI).

Table I classifies recent literature according to their goals, with PAD, PBI and PADBI
systems accounting for 53%, 29% and 18% respectively of all literature reviewed as
presented in Table IX and X of Appendix A.

Generally, the output of PADBI systems may include a set of anomalous performance
indices, a timestamp (time of incident), a set of anomalous metrics, a label (in case of
learning based systems)—an assigned class to which a sample belongs e.g. normal or
anomaly, and an anomaly score—the degree to which a case is considered anomalous.
The performance of PADBI systems themselves and their sensitivity are evaluated
based on the following metrics:

(1) Precision. This is the ratio of correctly detected anomaly to the sum of correctly
and incorrectly detected anomalies. It is also referred to as the positive predictive
value (PPV) in literature.

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015.40

Performance Anomaly Detection and Bottleneck Identification 4:9

(2) Recall. Also known as the confidence score or true positive (TP) rate. Recall is the
ratio of correctly detected anomalies to all anomalous instances in a given dataset.
It may be referred to as densitivity in some literatures. Conversely, the ratio of
correctly detected normal instances to the total count of normal instances in the
dataset is called specificity or the true negative (TN) rate.

(3) Accuracy. This is the ratio of the count of all correct detections (anomalies or not)
to the total number of cases in the system.

2.5.3. Systems. PADBI have been studied in many system domains and application
architectures. These include distributed applications (such as web-based client-server
and multitier application) deployed in dedicated and shared server environments. Dis-
tributed applications are composed of highly specialized application entities integrated
to achieve some high-level system objectives [Peiris et al. 2014]. While the Grid [Yang
et al. 2007] is known for running short- and long-term applications performing large
computations across distributed nodes, cloud infrastructures [Gong et al. 2010] allows
diverse applications to share virtualized system resources (storage, compute, and net-
work). The complexity of a system can be estimated by the number of resources and
the composition of its applications.

System Resources. Resource demands are essential indicators of performance prob-
lems. The number of resources determines the size of the metric space and the volume
of data that are eventually gathered. The interdependencies between system resources
enables faults to propagate the system in a cascade manner (e.g. Disk and CPU re-
sources).

Application Components. Modern applications are composed of heterogeneous soft-
ware components distributed across separate and often geographically dispersed phys-
ical servers. In virtualized environments, application components are deployed in vir-
tual machines (VMs) that can be migrated from one physical node to another within
and across data centers. This complex composition and deployment brings special re-
quirements for localization of performance problems.

Table II is a classification of research contributions according to system and applica-
tion domains addressed.

2.5.4. Data. Performance data are a time series of the values of a set of performance
metrics, systematically sampled over a regular interval. In this section, we briefly
outline important aspects of such data.

Characteristics of Performance Data. Performance data are quantitative in nature. A
performance metric is an attribute of a system or its component parts defining a state
of the system. In general terms, metrics may also be referred to as features in some
literature. A case or instance is a set of closely related features—a vector capturing a
particular state of system at a point in time.

Sources of Performance Data. The bulk of performance data come from extensive
measurements of metrics at two levels. Application metrics are foreground or in-band
metrics that captures the current state or health of an application. Examples include
application response time and throughput, number of application users, and database
connections. System metrics are background or out-of-band metrics that capture the
current state of the underlying system. Background metrics encompass not only re-
source utilization metrics but also hardware counters and error events. Examples are
CPU utilization, number of IO read/write requests, IO wait time, and CPU queue
length.

2.5.5. Data Collection. Monitoring is used to observe the runtime performance of a
system by collecting both application- and system-level metrics using automated

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015. 41

4:10 O. Ibidunmoye et al.

Table II. Recent Literature on Systems

Dedicated Virtualized,
Reference Server Cloud Grid Distributed Web Multitier
Wang et al. [2014] � � �
Dean et al. [2014] �
Peiris et al. [2014] �
Xiong et al. [2013] � � � �
Guan and Fu [2013a] � �
Wang et al. [2013] � �
Yu and Lan [2013] �
Nguyen et al. [2013] � � � �
Sharma et al. [2013] � � � �
Tan and Adviser-Gu [2012] � � � �
Dean et al. [2012] � �
Casale et al. [2012] � �
Fu et al. [2012] � � �
Rathfelder et al. [2012] � � �
Kang et al. [2012] � � �
Magalhaes and Moura Silva
[2011]

� � � �

Yu et al. [2011] � � � �
Do et al. [2011] � � � �
Lan et al. [2010] �
Ben-Yehuda et al. [2009] � �
Kandula et al. [2009] � �
Gu and Wang [2009] � �
Mi et al. [2008a] � � �
Gunter et al. [2007] � �
Yang et al. [2007] � �
Malkowski et al. [2007] � � � �
Agarwala et al. [2007] � � � �

third-party tools or via built-in Kernel counters. The efficiency of the detection pro-
cess is influenced by three major aspects of data collection that are discussed next.

System Observability: White, gray or black box? The observability property of an
application is greatly dependent on the type of infrastructure. In dedicated cluster
environment, administrators have access to both application source codes and under-
lying infrastructure (white-box), such that both profiling and deep source tracing are
possible possible. Whereas in cloud environments, cloud providers see applications as
black-boxes while service providers (application owners) lack a global view of the in-
frastructure outside of their VMs. In general, white-box and gray-box systems allows
for full and partial source code instrumentation, respectively. Such modifications are
generally intrusive with significant runtime overhead. Black-box applications expose
detail visibility into the application, thus limiting the amount of insights achievable
but they are profiled in a nonintrusive manner [Nguyen et al. 2013].

Profiling vs. Tracing. Profiling extends beyond logging the state of system to studying
the resource consumption behaviour and dependencies in order to assess the overall
performance of the system. It also involves establishing analytical models that may
be used to describe the dynamics of the system and predict performance [Shende
1999]. Examples of popular profiling tools include ps, sysstat, htop, top, collectd, Nagios,
Ganglia, apachetop, dstat, and iftop.

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015.42

Performance Anomaly Detection and Bottleneck Identification 4:11

Tracing is used to track fine-grained network or source-level events and misbe-
haviour via source code instrumentation. In addition to tracking the occurrence of
certain events, tracing may reveal the execution flow, actions performed, caller-thread,
and time spent in specific code blocks [Passing 2005]. Runtime code instrumentation is
a common tracing method. Tracing platforms such as Aspect Oriented Programming
[Tarby et al. 2007] and Java Byte Code instrumentation [Lee and Zorn 1997; Binder
et al. 2007] have been used to observe applications. Examples of third-party tracing
tools are KProbe, AspectJ, JimysProbe, Dtrace, Magpie, and Strace.

Influence of sampling interval. The volume of data generated by monitoring depends
not only on metric space but also the rate at which we collect them. Shorter sam-
pling intervals give finer resolutions than longer ones with additional compute and
storage overheads. Longer sampling intervals produce lighter data but may miss out
on transient performance events. An adaptive and selective monitoring is proposed in
[Magalhaes and Moura Silva 2011]. The technique begins with a baseline sampling
interval and continuously adjust the interval on the fly to adapt to the changing appli-
cation behaviour. Also, metrics may be sampled selectively on demand.

3. SOLUTION STRATEGIES AND METHODS

Conventionally, the approach to detecting performance problems involves continuous
estimation of models of normal system behaviours at specific points of interest. New
performance observations that fail to match (within some acceptable confidence levels)
existing models are flagged anomalous and system administrators alerted accordingly
[Sharma et al. 2013]. However, many solutions employ more complicated techniques
(such as statistical and learning methods) while following one or more strategies to
achieve some detection goals. Different detection strategies and techniques are pre-
sented in Sections 3.1 and 3.2, respectively.

3.1. Detection Strategies

Existing PADBI systems often follow one or more strategies for robustness. A strategy
defines the set of policies to achieve a detection goal. The choice of strategy is greatly
influenced by system observability as well as whether the detection is to take place
in either offline or online mode. Offline detection is a “post-mortem” identification and
analysis of performance issues. Online detection is performed at run-time.

All strategies use thresholding to prune and complement detection decisions in one
way or the other. A threshold is a limit value or range of values for parameters or
metrics of interest beyond which an event is raised. Example thresholds include the
p-value and R2 (coefficient of determination) in statistical detection, distance from
centroid (clustering), and entropy bounds (information theoretic) in machine learning
detection. Setting thresholds becomes cumbersome when many parameters and metrics
are involved. Modern system exhibit dynamic behaviours that consistently violates the
ideal set thresholds. It is therefore expedient that the right thresholds are estimated.
Threshold values are also expected to evolve with respect to change in underlying
execution environment. In addition, it is crucial to understand the sensitivity of varying
thresholds on detection accuracy.

Based on existing literature, we have identified four important strategies presented
in Sections 3.1.1 through and 3.1.4. References of research contributions in each cate-
gory can be found in Tables IX and X of Appendix A.

3.1.1. Signature-Based Detection. Applications exhibit specific behaviours at runtime
that characterizes their performance such as their resources utilization, their per-
formance, and load saturation rates. Such runtime characteristics are called signa-
tures, fingerprints, or profiles. PADBI systems generate signatures as compact runtime

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015. 43

4:12 O. Ibidunmoye et al.

representations of important performance behaviours of an application. A signature
may capture a normal system state or a deviation from that anomaly signature.
Signature-based detection is a data-driven approach that consumes output of appli-
cation profiling or tracing. Baseline signatures of prevailing system behaviour are
generated in real-time and are then used to filter new observations for unwanted be-
haviours. An important attribute of signature-based detection is that signatures are
discovered at runtime and may not require that a signature history is maintained.
Generally, signature-based strategies require domain knowledge of and global snap-
shot of system state to achieve high accuracy. They usually record low false-positive
detection and are suitable for known anomalies [Bodik et al. 2010; Bodı́k et al. 2008;
Mi et al. 2008b; Cohen et al. 2005; Cherkasova et al. 2009].

3.1.2. Observational Detection. Applications can be observed through direct experimen-
tation, staging (usually in a controlled environment) followed by in-depth analysis
of observed anomalies and root-cause identification. To collect data, applications are
either profiled in a black-box manner or source code instrumented for tracing. This ap-
proach covers both real-time analysis and “post-mortem” analysis of log files to discover
sources of problems. Observational detection may also involve the staging of applica-
tions and systems where faults, anomalies, and bottlenecks are deliberately injected
in order to understand system behaviour under such conditions. This approach is ben-
eficial in various ways. First, it helps to prevent the limitation of hasty assumptions
found in systems based only on analytical and simulation models. Second, it enables
the understanding and identification of intrinsic behaviours of a system. Because this
approach depends mostly on experiential and cognitive knowledge, it yields high accu-
racy in detecting known and unknown anomalies. This however, makes it difficult to
implement in real-time situations because the experiential knowledge of right thresh-
olds, transient anomaly behaviours have to be encoded into an automatic mechanism
[Pu et al. 2007; Magalhaes and Moura Silva 2011; Tan et al. 2010].

3.1.3. Knowledge-Driven Detection. In specific enterprise systems, performance issues
are often periodic with known root-causes and potential remedies. Many research
and industrial systems leverage on such known anomalies and bottleneck definitions
to identify and address performance problems. Knowledge-based detection approach
identifies performance issues and their causes based on historical records of previously
observed anomalies. It maintains a dynamic store (knowledge base) where definitions
of known anomalies, their possible root-causes are maintained. The detection of new
issues often trigger an update of the knowledge base. These definitions are converted
into a set of formal rules that can be manipulated by an inference engine to detect
performance issues and identify the root-causes. Although there exists some similar-
ity between knowledge-based and signature-based detections, generation of rules and
definitions does not necessarily have to be entirely at run-time in the former. This con-
trasts the online generation of signatures in the latter and does not require specialized
inference engines. Knowledge-based detection is typically a data-driven approach and
also require a great deal of understanding of the application and system domains. This
strategy have high true-positive detection of known performance issues [Chung et al.
2008; Koehler et al. 2011; Li and Malony 2006].

3.1.4. Flow and Dependency Analysis. By studying the flow of communication across com-
ponents in distributed applications, performance anomalies and hotspots can be easily
identified. This approach typically involves real-time collection and analysis of traffic
data (such as SNMP and TCP packets). In black-box systems, in-bound and out-bound
network traffic may be observed to understand the performance behaviour of specific
application components. Similarly, in white- or gray-box environments, dynamic code

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015.44

Performance Anomaly Detection and Bottleneck Identification 4:13

tracing may be used to trace application requests or method invocations across code
segments or network boundaries to better understand performance issues, their con-
texts and to pinpoint their sources. To detect anomalies and their causes, frequency,
correlation, and causal path analysis are usually performed. Of great concern is the
potential data collection overhead involved in this approach especially in large-scale
systems with hundreds of applications and components. This approach often yield
fine-grained detection with high true positives in black-box environments. Conversely,
observing and understanding in-out traffic of hundreds of black-box components with-
out prior knowledge may yield high false-positive detections [Ben-Yehuda et al. 2009;
Sambasivan et al. 2011; Agarwala et al. 2007; Aguilera et al. 2003; Nguyen et al. 2013].

3.2. Detection Methods

To detect performance anomalies and identify associated bottlenecks, methods from
diverse fields have been used, prominently from the domain of statistical analysis,
machine learning (ML). We focus our discussion on statistical and learning techniques
due to the volume of literature on them. However, signal processing methods such as
Extended Window Averaging, Adaptive Filtering, and Fourier Transforms have also
been used in Yang et al. [2007] and Malkowski et al. [2009]. We describe the commonly
used techniques in literatures along with relevant references in Sections 3.2.1 and
3.2.2.

3.2.1. Statistical Detection. Statistical techniques provide capabilities to detect trends or
drifts in critical performance metrics. Typically, researchers and system administrators
observe system behaviours over time to make sense of underlying system dynamics.
They construct models to hypothesize their observations, and employ some methods to
estimate key model parameters and the relationship between them. Many statistical
methods assume that some characteristics of the data are known a priori or can be in-
ferred. For example, assuming the probability density of a performance metric follows
a Gaussian (normal) distribution. These are called parametric statistical techniques.
Examples of such methods are Tukey limits, ANOVA tests, Pearson correlation, Grubb’s
Maximum normed residual, and the Student-t tests. Nonparametric methods also exist
that require little or no assumptions about the underlying nature of the data. Instead
of assuming distribution of data as Gaussian, methods such Histogram or Kernel func-
tions are used to estimate data distributions [Chandola et al. 2009; Rajasegarar et al.
2008]. The Median, CUSUM, Spearman correlation, Kruskal-Wallis, and Wilcoxon’s
tests are examples of nonparametric statistics [Burke 2001].

In general, statistical analysis provide a strong theoretical basis for detecting, and
quantifying the influence of anomalies and bottlenecks on system performance. The
assumption that the distribution of data is known a priori in many cases qualifies
them for identifying well-known anomalies. However, many statistical methods exhibit
sensitivity to variation especially when assumptions about the distribution of the data
do not hold.

3.2.1.1. Gaussian-Based Detection. Gaussian-based techniques generally exploit
the assumption that underlying data distribution is normal. Such techniques build
Gaussian models parameterized by the mean μ, and variance σ 2 (i.e., X ∼ N(μ, σ 2))
[Chandola et al. 2009; Markou and Singh 2003].

The Tukey [1977] limits detect anomalous data points based on the distance from
the distribution mean. The lower and upper normal thresholds are set at (Q1 −k∗ IQR)
and (Q3 + k ∗ IQR), respectively, where Q1, Q3 and IQR (computed as Q3 − Q1) are
the 1st quantile, 3rd quantile, and the interquantile range, respectively. Data points
outside this range are flagged anomalous. Though the threshold limit k is by default

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015. 45

4:14 O. Ibidunmoye et al.

1.5, it can be set to an appropriately chosen scalar for specific application [Wang et al.
2011].

The density distribution may also be exploited for detecting anomalous data points
based on the Gaussian Mixture Model (GMM) [Markou and Singh 2003]. GMMs are
parametric models of the probability distribution of continuous random variables esti-
mated using the iterative Expectation-Maximization (EM) algorithm [Reynolds 2009].

Given a dataset X composed of n normally distributed features {x(1), x(2), . . . , x(n)}
with corresponding parameters {μ1, μ2, . . . , μn} and {σ 2

1 , σ 2
2 , . . . , σ 2

n }, the Gaussian prob-
ability density function (PDF) for each feature x(i) is defined as P(x(i); μi, σ

2
i) =

1
σi

√
2π

exp(− 1
2 (x(i)−μi

σi
)2). The detection procedure proceeds first by estimating parame-

ters μi and σi for each feature xi. A new observation of the form X = {x(1), x(2), . . . , x(n)}
is classified anomalous if P(X) < ε, where P(X) is the sample’s probability of being
normal. The combined PDF of the dataset P(X), is estimated as the product of the
PDFs of each feature, that is, P(X) = ∏n

i=1 P(x(i); μi, σi
2). The value of ε can be varied

depending on application requirements [Hodge and Austin 2004; Walck 2007].
Other density-based methods include the Parzen Windows Estimation [Parzen 1962],

the Grubb’s test [Grubbs 1969] and the Student’s t-test [Markou and Singh 2003].

3.2.1.2. Regression Analysis. Regression analysis is a methodology for investigating
relationships between performance metrics and to quantify the statistical significance
of such relationships. For instance, regression analysis may explain how variation
in load influences a given KPI with the assumption that the relationship (linear or
nonlinear) between them is known a priori. The goal of regression is to estimate the set
of model parameters that minimizes the absolute or the squared error. Commonly used
algorithms for estimating model parameters include Ordinary Least Squares (OLS),
Least Angle (LA) and Recursive Least Square (RLS) [Kleinbaum et al. 2013].

For example, given a linear model of the form T = α(Ucpu) describing the relationship
between throughput and CPU utilization, a regression-based PADBI system first fits
this model on a training data to estimate parameter α, the standardized p value, and
the coefficient of determination (R2). And for each test instance, the model computes
the residuals—the variability in the test instance not explained by the model. The
magnitude of the residuals are used to determine an anomaly score [Chandola et al.
2009]. New observations falling outside the confidence interval produced by the model
may be classified as anomalous [Courtois and Woodside 2000; Lee and Brooks 2006].
An interesting use of regression models in modeling enterprise web applications is in
generating Transaction Mix (TM) models. These models are used to describe applica-
tion performance as a function of the mix of transactions (or requests) processed per
unit time and their corresponding resource utilization. They are generally used for
capacity planning and detecting transaction performance problems. Table III outlines
literatures based on regression models.

3.2.1.3. Correlation Analysis. Correlation quantifies the degree of association between
performance metrics. The interdependency of variables are estimated as a coefficient
R in the range −1 to +1. Positive R values indicates a trend of increase in one variable
as the other increases. Negative R values is a trend of decrease in one variable as the
other increases. Variables sharing no association have R values of 0.0. Commonly used
algorithms to estimate R are; the Pearson, the Kendal rank and the Spearman corre-
lation [Magalhaes and Silva 2010]. Lets look at a simple example of how correlation
may be used for detecting anomaly behaviour. Assume the correlation coefficient be-
tween two performance metrics Aand B have been estimated in the confidence interval
[Rmin, Rmax] based on some training datasets. New observations of A and B over a time

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015.46

Performance Anomaly Detection and Bottleneck Identification 4:15

Table III. Literature on Regression-Based Approaches

Author Methodology
Kelly [2005a] Presents a Regression-based TM model for identifying performance

anomalies in geographically distributed applications. Tested with
commercial applications such as ACME, FT, and VDR.

Zhang et al. [2007a] Proposes an approach using Nonnegative Least Square (NLS)
regressive TM models for estimating resource demands by different
client transactions and applicability in resource provisioning.

Cherkasova et al. [2008] Presents signature-based anomaly detection built on Zhang et al.
[2007a]

Cherkasova et al. [2009] Demonstrates how stepwise linear regression addresses model
“overfitting” problem in Zhang et al. [2007a] and further present a
segmentation-based method (as an extension of Cherkasova et al.
[2008]) for detecting performance changes in enterprise web
applications.

Kang et al. [2012] Present a Regression-based diagnostic framework for analyzing
performance anomalies and potential causes of SLA violations in
virtualized systems. Their approach is based on Lassio, a variant of the
Least Angle Regression (LAR) algorithm to identify suspicious system
metrics accounting for observed performance anomaly.

Yang et al. [2007] Models the relationship between application metrics and system
metrics for metric selection, reduction, and anomaly detection.

window [t1, tn] in the form Wa = {a1, a2, . . . , an} and Wb = {b1, b2, . . . , bn} are anomalous
if the R value between Wa and Wb falls outside the expected range [Rmin, Rmax].

Canonical correlation is an advanced method that has been demonstrated for finding
the linear association between one or more performance metrics. Given a vector of
metrics X = {x1, x2, x3, . . . xn} and Y = {y1, y2, y3, . . . yn}, the method computes the
canonical variates (u, and v), the orthogonal linear combination of X and Y , that
best capture the variability within and between X and Y . Kernel canonical correlation
[Huang et al. 2006] is a popular variant of this method. See Table IV for references
relating to correlation-based systems.

3.2.1.4. Statistical Process Control. Statistical process control (SPC) [Oakland 2008],
is a quality control method widely used to monitor production processes for early de-
tection of undesirable variation in process output. SPC provides a set of control charts,
such as CUSUM, Shewart (ImR or XmR) charts, for monitoring process stability and
variation. According to Bereznay and Permanente [2006], SPC is not suitable for in-
terval based sampling data such as system performance traces. This motivates the
development of the Multivariate Adaptive Statistical Filtering (MASF) method. MASF,
Buzen and Shum [1995] is a SPC framework for detecting changes in a Gaussian dis-
tribution. MASF uses parameters mean (μ), standard deviation (σ), and variance (σ 2)
of data collected during normal system operations as the basis for filtering subsequent
system measurements for anomalous behaviours. For example, a MASF-based detec-
tion policy may set a control limit (CL) at the mean μ, a upper control limit (UCL) at
(μ + 3σ) and a lower control limit (LCL) at (μ − 3σ). These control limits describe the
range of expected variability in the data over a period of time. When new observations
fall outside outside the set control limits, they are detected as anomalies and their
cause(s) must be identified and corrected [Wang et al. 2011].

3.2.1.5. Statistical Intervention Analysis. Statistical Intervention Analysis (SIA) [Box
and Tiao 1975] measures the form and magnitude of shifts in timeseries data. The
shift is considered a consequence of a change, an intervention or shock in the data. It is
particularly useful for studying the impact of an interventions (e.g., change in policy,
natural disaster, or breaking news reports) on the behaviours of physical systems. In

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015. 47

4:16 O. Ibidunmoye et al.

Table IV. Literature on Correlation-Based Approaches

Author Methodology
Agarwala et al. [2007] Presents a performance management system where correlation

analysis is used to identify important performance metrics and
estimate the influence of specific application services and system
resources on such them.

Magalhaes and Silva
[2010] and Magalhaes
and Moura Silva [2011]

Proposes an approach to identify potential root-causes of observed
performance variation as either due to workload change or application
update by computing the Pearson coefficient of correlation between
aggregated workload, latency, and system metrics over some time
window.

Kang et al. [2012] Presents a method using correlation analysis to selecting model
parameters. By filtering metrics showing collinearity relationships
above a set threshold, they are able to reduce the dimension of models
for detecting performance anomalies in virtualized infrastructures.

Sharma et al. [2013] Uses correlation analysis to identify variations in performance metrics
in a cluster of Virtual Machines (VM). They also show a technique to
characterize anomalies by defining anomaly signatures in terms of
changes to correlation between VMs in the cluster.

Wang et al. [2013] and Do
et al. [2011]

Presents a Kernel-based Canonical correlation method to discover the
correlation between workloads and performance in Internetware and
how this is used for anomaly detection.

Gambi and Toffetti [2012] Presents a novel Kriging-based model of system performance as a
function of dynamic resource allocation and workloads to predict and
detect performance problems.

Peiris et al. [2014] Proposes a correlation-based method for automatic identification of
associations among performance counters in a distributed system and
how the association is used for detecting anomalies.

Table V. Literature on other Statistical Methods

Method Highlight Reference
ANOVA Root-cause identification, and Change

detection
Magalhães and Silva [2011] and
Bereznay and Permanente
[2006]

Index of Dispersion Workload burstiness and variability
detection in web applications

Mi et al. [2008a] and Casale
et al. [2012]

Mean Standard
Deviation, Cummulative
Density Function

Anomaly detection in Grid application Gunter et al. [2007]

Student’s t-test Localization of anomalous metrics Wang et al. [2014]
Markov Model Prediction of anomalous performance

metrics and fault localization
Nguyen et al. [2013], Tan et al.
[2012], Tan and Gu [2010], and
Gu and Wang [2009]

Kernel Density
Estimation

Estimation density functions using
Kernel regression for inferring
resource saturation

Malkowski et al. [2009]

Probability Models Anomaly prediction and detection Cohen et al. [2004], Zhang et al.
[2005], Kandula et al. [2009],
and Tan et al. [2010]

Statistical Process
Control

Detection of performance transient
and persistent anomalies and
identification of anomalous correlation
in database and enterprise systems

Trubin and Merritt [2004],
Trubin [2005], Brey and Sironi
[1990], Lee et al. [2012], Wang
et al. [2013], and Bereznay and
Permanente [2006]

Statistical Intervention
Analysis

Bottleneck identification Malkowski et al. [2007]

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015.48

Performance Anomaly Detection and Bottleneck Identification 4:17

Internet applications, interventions are similar to phenomenal such as Internet flash-
crowds, the slashdot effect, or a node failure.

3.2.2. Machine Learning Detection. Learning algorithms sift through massive metric
space to identify patterns of interests or indistinct relationships [Rogers and Girolami
2011]. In performance studies, these patterns may be unexpected behaviours or
symptoms of unplanned failures. Machine learning algorithms can be classified
into two broad categories based on the nature of input and expected output of the
algorithms [Alpaydin 2014].

Supervised Learning. Supervised learning algorithms require well-labeled datasets.
Each data instance in a training dataset is assumed to belong to one of several
classes (e.g., normal or anomaly). The goal is to build a generalized model that
the captures the relationship between the feature set and each class during the
training phase. These models are later used to classify new test instances dur-
ing the testing phase. The need for well-labeled training data greatly limit the
scope of their application for real-time use. They are, however, well suited for
recognizing well-known anomalies. The use of supervised techniques in dynamic
environments such as cloud data centers is hampered by the cost of retraining
due to dynamic reconfiguration of application components and change in under-
lying execution environments. Supervised learning techniques do not easily lend
themselves to frequent updates of training the dataset.

Unsupervised Learning. Unsupervised learning algorithms require no training data
and no labeled data. The objective is to discover hidden patterns or regularities
in the data, similar to density estimation in statistical. Unsupervised learning
techniques cluster input data into classes based solely on their statistical prop-
erties. No assumption, however, is made of the distribution of the underlying
data. For improved accuracy, it expected that normal data instances are more
frequent in the dataset than abnormal instances. Techniques in this category are
amenable to changes in the underlying system environment because no training
is involved. And are particularly suitable for detecting unknown anomalies in
cloud data centers where precise definition of anomaly characteristics may not
always exist.

Semisupervised Learning. An emerging approach is to maximize the best of su-
pervised and unsupervised learning. Semisupervised algorithms assume a small
chunk of the dataset is labeled usually the normal class and the remaining unla-
beled instances are anomalous. They often outperform their supervised and un-
supervised counterparts as they leverage the presence of labeled data to identify
inherent structure in the data. A similar approach is called the weakly-supervised
or bootstrapping method. This method begins by training the classifier with a few
training examples. When the classifiers finds positive test instances, it augments
the original training data with the new instance and retrains the classifier. The
performance of bootstrapping improves as the size of training data grows given
false-positive detection is minimal. Bootstrapping is well suited for large-scale
infrastructure where definitions of normality and abnormality evolve according
to changing execution context.

The operation of a learning based PADBI system is often enhanced by two prepro-
cessing tasks.

Dimensionality Reduction. To handle problems with many performance metrics, the
metric space may be reduced by projecting the metrics to a new space where only
the most relevant is preserved. Principal Component Analysis (PCA) is common

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015. 49

4:18 O. Ibidunmoye et al.

Table VI. Supervised PADBI Systems

Reference Technique Methodology
Tan and Adviser-Gu [2012]
and Tan et al. [2010]

Bayesian classifier and Tree
augmented networks (TAN)

Presents a method for predicting and
classifying anomalies.

Fu [2011] Decision trees and TAN Presents a technique for reducing metric
dimensions based on Mutual Information
and PCA and identifying performance
anomalies Tree-based classifier.

Jung et al. [2006] Decision tree Presents a decision-tree based automated
approach for detecting performance
bottlenecks.

Cohen et al. [2004] Tree augmented Bayesian
networks (TAN)

Proposes a method exploring TANs as a
basis for detecting SLO violations and
identifying sets of system metrics that
caused the violation in multi-tier web
applications.

Gu and Wang [2009] Bayesian classification A stream-based anomaly detection
method is used to detect anomaly
symptoms and infer their root-causes.

Parekh et al. [2006] TAN, Bayesian networks,
LogicBoost, C4.5 decision
tree.

Explores the performance of various
machine learning classifiers with regards
to bottleneck detection in an enterprise
applications.

Powers et al. [2005] Bayesian classifiers,
Auto-regressive models,
Multivariate regression

Presents a comparative study of the
performance of three machine learning
and statistical methods to predict the
number of performance SLA violations.

method for doing this. PCA takes k correlated metrics as input and reduces them
to m ≤ k nondependent metrics. These m metrics can be interpreted as linear
combinations of the original set [Guan et al. 2012; Fu 2011]. Other methods for
dimension reduction include factor analysis, independent component analysis,
and nonlinear PCA [Fodor 2002].

Similarity Identification. Metrics with high similarity affects the efficiency of learn-
ing algorithms such as clustering. A common method of evaluating similarities
between features is based on the Mutual Information algorithm from the domain
of Information Theory [Steuer et al. 2002; Battiti 1994].

Unlike statistical detection, learning techniques do not make assumptions about the
underlying distribution of data. We identify a few references of each type of learning
in Tables VI, VII, and VIII.

We further describe commonly used learning techniques in literature in Sections
3.2.2.1 through 3.2.2.4.

3.2.2.1. Classification-based Techniques. Classification-based learning algorithms
are special cases of supervised learning. The objective is to determine if data instances
in a given feature space belongs to one class or multiple classes. During a training
phase, the algorithm identify classes and learn a model that associate each class label
with the characteristics of features present in the data. The testing phase use these
models to classify new data samples. Ruled-based detection systems are a specific ex-
ample of how classification learning can be used in detecting anomalous behaviours.
Common classification techniques include Decision Trees, Support Vector Machines,
Artificial Neural Networks, and Bayesian Networks [Kotsiantis 2007].

Rule-based techniques. The goal is to learn as many rules that captures normal
behaviours of a system as possible. First they discover rules from the training data

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015.50

Performance Anomaly Detection and Bottleneck Identification 4:19

Table VII. Unsupervised PADBI Systems

Reference Technique Methodology
Wang et al. [2012,
2014]

Local Outlier Factor (LOF) Proposes an online anomaly detection
approach for web applications present an
incremental clustering algorithm for
training workload patterns online, and
employ LOF in the recognized workload
pattern to detect anomalies.

Dean et al. [2012] Self-Organizing Maps (SOM) Presents an anomaly detection
mechanism in IaaS Cloud using SOMs to
learn emergent system behaviour and
predict unknown anomalies.

Guan et al. [2012] Bayesian ensemble models Proposes an hybrid learning approach by
characterizing normal execution states of
the system as an ensemble of
unsupervised Bayesian models and uses
decision tree to predict and detect system
failures in a Cloud environment.

Huang et al. [2013] Local Outlier Factor (LOF) Presents an adaptive method extending
the Local Outlier Factor algorithm for
detecting both contextual and unknown
anomalies in a Cloud system.

Yu and Lan [2013] Nonparametric clustering Proposes a decentralized approach for
detecting anomalies in Hadoop clusters
based on Hierarchical Grouping and
majority voting.

Table VIII. Semisupervised PADBI Systems

Reference Technique Methodology
Lan et al. [2010] Principal and Independent

Component Analysis
Presents an automated anomaly detection
mechanisms for identifying system nodes
whose behaviours are deviating from
others in a cloud data center.

Pannu et al. [2012] Classification, Clustering,
Support Vector Machines

Presents a self-evolving mechanism for
predicting and detecting of system
failures in Cloud systems.

Smith et al. [2010] Bayesian Networks, Principal
Component Analysis, Clustering

Presents an autonomic mechanism for
anomaly detection in a compute Cloud
system using PCA and Bayesian models
for feature extraction and Expectation
Maximization clustering algorithm for
anomaly detection.

Bhaduri et al. [2011] K-Nearest Neighbours Proposes an automated failure detection
system employing distance-based
anomaly rules to identify faulty machines
in a cluster.

Guan and Fu [2013b]
and Guan et al. [2013]

Wavelets Presents a method analyzing performance
metrics in both time and frequency
domains in order to identify anomalous
behaviors in a Cloud environment.

Fu et al. [2012] Support Vector Machines (SVM) Proposes an hybrid self-evolving anomaly
detection framework using one-class and
two-class SVM.

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015. 51

4:20 O. Ibidunmoye et al.

using Decision Trees, Association Rules, C4.5 classification. During the testing
phase, for each test instance, the best rule that captures the instance is used
to compute an anomaly score for designating the test instances as anomalous or
normal. A rule has an associated confidence score proportional to the ratio between
the number of correct classification by the rule and total number of cases covered
by the rule. The anomaly score is computed as the inverse of the confidence score
associated with a given rule [Chandola et al. 2009].

The complexity of classification techniques depends on the algorithms used. Training
decision trees is often faster than training techniques such as SVM that involves
quadratic optimization. The testing phase is also faster. Classification methods rely
heavily on accurately labeled data, and also produces class labels which may not be
useful in cases where an associated score is required.

3.2.2.2. Neighbour-based Techniques. Unlike classification-based approaches,
neighbour-based techniques are unsupervised learning systems that evaluates data
instances based on its local neighbourhood. The assumption is that normal data usu-
ally occur in dense neighbourhoods while abnormal data occur far from their closest
neighbour [Chandola et al. 2009]. It is also required that a distance or similarity mea-
sure is estimated between two data instances depending on the data type. Different
methods exist for calculating similarity measures such as Euclidean Distance for con-
tinuous data and Mutual Information for categorical data. A popular neighbourhood
method is the kth-Nearest Neighbour which estimates the distance of a given instance
to its nearest neighbours and evaluate the distance against a predefined domain spe-
cific threshold [Liao and Vemuri 2002; Lazarevic et al. 2003]. The Local Outlier Factor
(LOF) algorithm is another neighbour-based technique that detect anomalous instances
by estimating the density of each instance. Instances in low-density neighbourhoods
are classified as anomalous [Wang et al. 2012]. Basic neighbour-based and LOF meth-
ods has a time complexity of O(N2). Its testing phase is computationally intensive
because distance score of a test instance to others is required. It is also difficult to
create distance measures for complex data (e.g., spatial and streaming data).

3.2.2.3. Clustering-based Techniques. Clustering is another type of unsupervised
learning that groups similar data instances into clusters according to hidden relation-
ships between instances in a cluster [Berkhin 2006]. The goal is to find clusters of
similar data points such that each cluster is well separated. Detection of anomalous
instances can be based on the density of the clusters (e.g., dense or sparse) or distance
of instances from the closest centroid in the cluster [Chandola et al. 2009]. The Eu-
clidean distance, Mahalanobis distance, and Cosine similarity are example of distance
measures for such cases. Examples of clustering algorithms include the K-means clus-
tering, Expectation Maximization (EM), and Self-Organizing Maps (SOM) [Hodge and
Austin 2004]. Time complexity of clustering depends on the algorithm in use. Testing
phase is faster since test instances are compared with only a few cluster.

3.2.2.4. Information Theoretic Techniques. Information theory provides many
measures for estimating the degree of dispersal or concentration of the information
content of a data set [Wang et al. 2010]. The primary assumption of these methods
is that anomalies induce irregularities in the information content of a given dataset
[Chandola et al. 2009]. Also they are very generic in nature with no need for parame-
terization [Wagner and Plattner 2005]. The Entropy information measure or Shannon-
Wiener Index [Shannon 2001] estimates the degree of uncertainty in a given dataset.
Given a random variable X, its entropy is computed as H(X) = −∑n

i=1 P(xi) log(P(xi)),
where P(x) is the probability distribution of X. The entropy H(X) lies in the range

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015.52

Performance Anomaly Detection and Bottleneck Identification 4:21

[0, log(n)]. Higher entropy values indicate more randomness in the data and may be
more anomalous than data with lower H(X) values [Navaz et al. 2013]. The degree of
randomness between two random variables with probability distributions P(x) and Q(x)
can be estimated by their Relative Entropy, H(Q|P) = ∑

Q(x) log Q(x)
P(x) . An application of

this is to compare the entropy values of two different windows of observation of a metric
for detecting changes. The smaller the relative entropy the better. A H(Q||P) value of 0
indicates that the probability distributions P(X) and Q(X) exhibit the same randomness
[Lee and Xiang 2001]. Entropy-based methods have been applied to study malicious
behaviours in network traffic in Wagner and Plattner [2005] and Lee and Xiang [2001].
Wang et al. [2009, 2010] present entropy-based methodologies for detecting anomalies
in a cloud computing environment by analyzing metric distributions. Entropy generally
provide more fine-grained insights of the data than traditional classification methods
[Nychis et al. 2008] and suitable for online unsupervised detection of unknown
anomalies [Wang et al. 2010] since no assumptions of underlying distribution is
made.

4. RESEARCH TRENDS

Before the 2000s, contributions focused primarily on the detection of coarse-grained
performance issues such as identifying hardware, software bottlenecks in the operating
systems [Mahapatra and Venkatrao 1999; Breese and Blake 1995], networks [Melander
et al. 2000], and client-server applications [Neilson et al. 1995].

Due to the emergence of the Internet, the early 2000s witnessed a slow trend towards
web and distributed applications hosted in dedicated environments. Chen et al. [2002],
Aguilera et al. [2003], and Barham et al. [2003] proposed techniques for uncovering
performance failures and anomalies with regards to web and distributed systems. By
the mid to late 2000s, efforts concentrated on building improved detection mechanisms
targeting enterprise applications running in shared-hosting environments, grid, and
large-scale infrastructures. This period witnessed the development of analytical ap-
proaches and tools such as transaction mix models [Kelly 2005b], queuing-theoretic
models [Kelly 2005a], signature models [Mi et al. 2008b; Cherkasova et al. 2008], and
statistical techniques [Malkowski et al. 2007; Cherkasova et al. 2009]. While efforts
such as in Jung et al. [2006] and Malkowski et al. [2009] propose an experimental
approach, Chung et al. [2008] and Agarwala et al. [2007] demonstrate the potential of
analyzing the flow of messages across distributed components as a suitable method for
detecting performance abnormalities.

From the late 2000s until now, the research contributions have been largely consol-
idated on achieving dependability [Guan and Fu 2013b; Lee et al. 2012] predictable
performance [Tan et al. 2010], root-cause identification [Magalhaes and Moura Silva
2011; Bhaduri et al. 2011; Yu and Lan 2013] and meeting performance guarantees
[Kang et al. 2012; Lan et al. 2010] in cloud computing applications and systems. Simi-
larly, there are systems tailored to detecting and resolving workload related anomalies
[Wang et al. 2012, 2014]. Perhaps due to scale and the special requirements imposed
by the cloud, advanced machine learning techniques have found extensive use in bot-
tleneck and anomaly detection research [Dean et al. 2012, 2014; Huang et al. 2013;
Sharma et al. 2013]. Even though existing research contribution is dominated by reac-
tive solutions, there is increasing shift toward proactive approach. Predictive anomaly
and bottleneck detection offers better system reliability by raising in advance, just-
in-time alerts and detecting potential bottlenecks before a performance issue occur.
Examples of such approach can be found in Guan et al. [2011] and Tan and Adviser-Gu
[2012].

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015. 53

4:22 O. Ibidunmoye et al.

Following the trends, we observe that cloud computing systems and applications
will continue to attract the attention of performance anomaly detection and bottleneck
identification research. Characteristics of the cloud systems such as heterogeneity of
resources and application services, variable load, and performance variation compli-
cate the problem of detecting performance issue [Gong et al. 2010]. We describe these
challenges in detail in Section 5.

5. PADBI SYSTEMS IN THE CLOUD: SPECIFIC REQUIREMENTS

Cloud computing enables computing resources to be provisioned on demand as an
utility over the Internet and dynamically scale in response to unpredictable demands
and application workloads. A cloud infrastructure is typically characterized by a pool
of heterogeneous hardware and software resources that are shared by many applica-
tion services with disparate performance objectives [Zhang et al. 2010; Jennings and
Stadler 2014]. The resulting resource contention and performance interference caused
by resource sharing have significant impact on the performance of cloud services and
systems [Sharma et al. 2013; Wang et al. 2010].

Inherent characteristics of the cloud such as the heterogeneity of resource types and
their interdependencies; the variability and unpredictability of load; and the complex
architecture of cloud services; make the task of detecting and resolving performance
problems more difficult. To meet stringent performance objectives and to achieve pre-
dictable performance, PADBI systems must take into consideration specific cloud re-
quirements as described in the following text.

(1) Scale. Medium- to large-scale cloud infrastructures run up to thousands of applica-
tions on limited computing resources. It is daunting to keep track of the execution
status of such huge applications base [Tan et al. 2012; Dean et al. 2012]. Consid-
ering that these applications are composed of multiple service components and the
complex topology of the infrastructure, the potential metric space is huge. Wang
et al. [2010] estimates this to the Exa scale. That is up to 1018 metrics to moni-
tor and process in real time! This require PADBI systems to be lightweight with
negligible performance and storage overhead. Also, they must be able to oper-
ate in an online fashion in order to keep up with the time varying nature of the
cloud.

(2) Multitenancy. Multitenancy enables different applications (deployed in virtual ma-
chines (VMs)) to be colocated on the same physical server. These VMs concurrently
share and compete for virtualized resources (such as CPU and memory) and non
virtualized resources (such as network and caches). Such a tight execution envi-
ronment has been shown to account for 40% in performance degradation in some
applications [Sharma et al. 2013]. This makes it essential for PADBI techniques to
be aware of prevailing execution contexts.

(3) Complex Application Architecture. The cloud run an heterogeneous mix of applica-
tions with time-varying workload patterns, ranging from long-running MapReduce
jobs and HPC scientific workflows; to interactive web-based social media platforms,
e-commerce, and media streaming applications [Wang et al. 2010]. Also, many of
these applications share temporal dependency such as two applications having
similar workload behaviours. Moreover, services in IaaS clouds come in black-boxes
with limited visibility by the cloud infrastructure provider. This limits the extent to
which performance degradation issues can be diagnosed and resolved [Dean et al.
2012; Tan et al. 2012].

(4) Dynamic Resource Management. Due to the continuous flow of load in and out of the
cloud, resource management tasks such as dynamic reconfiguration, consolidation
and migration constantly change the operational context in which applications runs

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015.54

Performance Anomaly Detection and Bottleneck Identification 4:23

[Tan et al. 2012; Wang et al. 2010]. This leads to a higher frequency of anomalies.
Faulty VM reconfigurations, and spontaneous live migrations have been observed
to impact performance by up to 30% and 10%, respectively [Sharma et al. 2013]. In
such environments, it is nearly difficult to determine what performance behaviour
is normal and which is not [Dean et al. 2012].

(5) Autonomic Management. Today’s data centers are powered by highly automated
mechanisms. Autonomic resource managers dynamically provision resources based
on adaptive system policies to meet expected quality of service (QoS) and achieve
optimal resource utilization levels [Buyya et al. 2012; Hasan et al. 2012]. Delayed
detection and manual resolutions do not fit the cloud model, as they can cause
prolonged performance violations with huge financial penalty and failure [Dean
et al. 2012; Tan et al. 2012]. Therefore, PADBI systems for the cloud are must be
dynamic and proactive in nature [Sharma et al. 2013; Wang et al. 2010].

6. DISCUSSIONS AND FUTURE DIRECTIONS

The motivation for detecting unexpected performance behaviours and their root-causes
is due to the significant impact they have on smooth operation of systems, the criticality
of information they bear, and the costly penalties due to loss of dissatisfied users. The
choice of detection is influenced not only by the characteristics of the anomalies and
bottlenecks of interest but also by the nature of data and system under test.

PADBI systems based on statistical methods are only as correct as the correctness
of the data, the assumption of its distribution and the fitness of the analysis. It is very
important to collect the right data and quantity. Care must be taken to balance the
proportion of normal samples to anomaly samples in the dataset to avoid the ”needle in
a haystack” 6 problem. Though parametric techniques assume known data distribution
and best at identifying well-known anomalies, nonparametric methods are resistant to
high variation in the data without knowledge of data distribution.

Machine learning solutions can quickly sift through a massive metric space to iden-
tify patterns of interests or indistinct relationships. Learning techniques expect that
normal data instances are more frequent in the data; otherwise, they suffer from high
false detection. While most classification, clustering, and statistical techniques have
expensive training phases, they provide fast testing with high false-positive detection
when unknown anomalous data is frequent. On the other hand, neighbour-based learn-
ing methods require no training phase and are highly suitable for real-time detection.
However, they are computationally expensive.

Further advancement in hybrid solutions holds great potential for today’s system
such as proposed in Fu et al. [2012]. Rigid assumptions (regarding distribution and
density of performance data) imposed by statistical techniques do not always work in
dynamic environments. In addition, unsupervised algorithms are known to perform
poorly in cases where anomalies occur more frequently in the test data than normal.
When deciding the choice of methods to use in a given case, it is important to consider
the tradeoff between online and offline detection as well as the cost incurred when
there is a requirement for frequent model updates. Today’s systems are dynamic with
constant changing execution contexts, application composition, and configurations. It
is also expected that anomaly detection and bottleneck identification mechanisms are
able to adapt as well. Methods that require extensive training phase is inadequate
in this case. Focus then must be on techniques that support online updates of model
parameters and variables.

6A situation where it is nearly impossible to detect anomalous instances in the dataset because only a few
anomalous instances exist in the training data.

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015. 55

4:24 O. Ibidunmoye et al.

Tables IX and X of Appendix A summarize major references used in this work based
on the essential characteristics of the PADBI problem. Furthermore, we have identified
a few promising directions and open challenges within the scope of the problem and
briefly outline them in the following text:

(1) Multilevel bottleneck detection. Current efforts must extend toward the detection
of performance bottlenecks at different levels considering the complexity of today’s
infrastructure and application. For instance, it should be possible to identify bot-
tlenecks from a set of top-level application service components and further down
through the virtualization layer to system resource bottlenecks. Similarly, anomaly
detection should be viewed from three perspectives: workload, resource demand and
performance.

(2) Taxonomy of performance bottlenecks and anomalies. A taxonomy of performance
issues under various operational condition (e.g., workload, platform) and mani-
festation will be highly essential for industry and academia. The challenge here
is that these behaviours are inherently intrinsic to the applications and their
manifestations vary from one application to another. However, we believe little
steps can be made toward this especially for common performance anomalies
and bottlenecks. A similar direction is documented in Pertet and Narasimhan
[2005].

(3) Open performance datasets. Their lack of open performance datasets hinders the
pace of research in this area because such data are often considered highly sensitive
or classified. Google Cluster [Reiss et al. 2011] trace serves a similar purpose. How-
ever, the Google data is an old 29-day trace of a 12,000-machine cluster covering
jobs, tasks, resource usage, and machine events measurement from 2011. Similarly,
the Yahoo Webscope [Yahoo! 2014] project provides system measurements of the
infrastructure running its cloud serving benchmark system [Cooper et al. 2010].
However, the data covers only resource usage across system components over a
mere 30-minute period. Due to sensitivity, these datasets do not contain perfor-
mance metrics such as throughput and latency. Similar lack of dataset for failure
detection research is acknowledged by Schroeder et al. [2010].

(4) Anomaly-resistant resource allocation. The autonomic nature of modern IT infras-
tructures demands tight integration of proactive anomaly detection mechanisms
with autonomic resource managers. Alerting administrators of an anomaly de-
lays the detection and resolutions of performance problems. This semiautomated
approach does not fit today’s model of system management, where prolonged per-
formance violations may induce significant unplanned downtimes.

(5) Context-aware detection. Frequent performance variations exhibited by cloud appli-
cations have been attributed to the changing execution context of the underlying
environment. This is often due to frequent workload variation and dynamic re-
source reconfiguration. The challenge is identifying and characterizing execution
contexts as they evolve over time. Context-aware solutions capable of achieving
this in addition to adapting to nonstationary cloud behaviours will greatly improve
application performance. Tan et al. [2010] and Tan and Gu [2010], and Sharma
et al. [2013] present interesting directions in this case.

(6) Distributed detection. A huge chunk of current research focus is on centralized
detection. Modern enterprise systems are inherently distributed with components
spanning multiple physical domains (servers or data centers). Often times the
collection of data across such domains is impractical or difficult due to potential
system overheads and proprietary and privacy regulations. This implication calls
for a decentralized approach that fits naturally with such systems. A theoretical

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015.56

Performance Anomaly Detection and Bottleneck Identification 4:25

attempt is presented in Lazarevic et al. [2009], while a similar case study for failure
detection is studied in Bhaduri et al. [2011].

7. CONCLUDING REMARKS

We present a review of the performance anomaly detection and bottleneck identifica-
tion problem and identify relevant research questions, challenges, contributions, trends
and open issues. For clarity, we highlight different types of commonly observed per-
formance anomalies and bottlenecks in computing systems. Existing PADBI systems
operate based on one or more detection strategies and methods. Statistical and ma-
chine learning are the two predominant methods in literature. We have highlighted
major classes of techniques in both methods along with interesting references. The
choice of strategies and techniques is largely influenced by the goal of the system
and the core elements of the problem such as the nature of the system or appli-
cation, the performance data, and the extent to which the system can be observed.
Based on trends, the problem of detecting performance issues and their root-causes
will continue to attract research attention, especially in cloud services. We also high-
lighted specific requirements for effective anomaly and bottleneck detection in cloud
computing infrastructures. However, the problem of multilevel bottleneck detection,
distributed detection, and accessible performance datasets still remain open research
issues.

A. APPENDIX A

B. GENERAL OVERVIEW OF PADBI SYSTEMS

Table IX. Overview of PADBI Systems

Reference Goal System Observability Strategy Method Techniques
Chen et al.
[2002]

PBI Distributed,
Web-based,
Component
bottlenecks

White-box,
Source Tracing

Flow &
Dependency

Hybrid Clustering,
Correlation

Cohen et al.
[2004]

PADBI Multi-tier,
Web-based,
System metrics

Black-box,
Profiling

Observational Machine
Learning

Tree
Augmented
Bayesian
Networks

Kelly
[2005a]

PAD Distributed,
Web-based,
Application &
System metrics

Gray-box,
Profiling

Observational Statistical Regression,
Transaction
mix Model

Cohen et al.
[2005]

PAD Distributed,
Enterprise,
Application &
System metrics

Black-box,
Profiling

Signature-
based

Machine
Learning

Clustering,
Tree-
Augmented
Naive Bayes
Models

Jung et al.
[2006]

PADBI Multi-tier,
Application &
System metrics

Black-box,
Profiling

Observational Machine
Learning

C4.5
Decision Tree

Malkowski
et al. [2007]

PBI Web-based,
System metrics

Gray-box,
Profiling

Knowledge-
based

Statistical SIA

(Continued)

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015. 57

4:26 O. Ibidunmoye et al.

Table IX. Continued

Reference Goal System Observability Strategy Method Techniques
Agarwala
et al. [2007]

PADBI Distributed,
Multi-tier,
Application &
System metrics

White-box Flow &
Dependency

Statistical Correlation

Zhang et al.
[2007b]

PAD Multi-tier,
System &
Application
metrics

Gray, Profiling Observational Statistical Regression,
TM models,
Queuing
model

Gunter et al.
[2007]

PAD Grid, System
metrics

Black-box,
Logging

Observational Statistical MSD, CDF,
EWMA

Yang et al.
[2007]

PAD Grid, System
resource
metrics

Black-box,
Profiling

Observation,
Flow &
Dependency

Statistical,
Signal
Processing

Extended
Window
Averaging,
Regression

Chung et al.
[2008]

PBI HPC, Resource
bottlenecks

Gray, Profiling Knowledge-
based

- Inference
Engine

Cherkasova
[et al. 2008]

PAD Web-based,
Multi-tier,
Application &
System metrics

Gray, Profiling Signature-
based

Statistical Regression,
Transaction
mix Model

Bodı́k et al.
[2008]

PAD Distributed
Systems,
System metrics

Black-box,
Profiling

Signature-
based

Machine
Learning

Logistic
Regression
with L1 Reg-
ularization

Malkowski
et al. [2009]

PADBI Multi-tier,
Application &
System metrics

Gray Observational Statistical,
Signal
Processing

Kernel
Density
Estimation,
Adaptive
Filtering

Wang et al.
[2009]

PBI Multi-tier Gray Observational - Heuristics

Kandula
et al. [2009]

PADBI Enterprise
Systems

Gray-box Knowledge-
based, Flow &
Dependency

Statistical
Learning

Probability
Models,
Inference
Engine

Ben-Yehuda
et al. [2009]

PBI Virtualized,
Component &
Resource
bottlenecks

Black-box,
Profiling

Flow &
Dependency

Statistical,
Queueing
Theory

Percentile
Testing,
Little’s Law

Iqbal et al.
[2010]

PBI Cloud,
Multi-tier,
Resource
bottlenecks

Black-box,
Profiling

Observational - -

Bodik et al.
[2010]

PAD Distributed
Systems,
Cloud, System
metrics

Black-box,
Profiling

Signature-
based

Statistical
and
Machine
Learning

Quantile
Summariza-
tion, Logistic
Regression
with L1 Reg-
ularization

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015.58

Performance Anomaly Detection and Bottleneck Identification 4:27

Ta
bl

e
X

.O
ve

rv
ie

w
of

PA
D

B
IS

ys
te

m
s

(c
on

t.)

R
ef

er
en

ce
G

oa
l

S
ys

te
m

O
bs

er
va

bi
li

ty
S

tr
at

eg
y

M
et

h
od

T
ec

h
n

iq
u

es
L

an
et

al
.

[2
01

0]
P

A
D

C
lo

u
d,

H
os

t/
N

od
e

bo
tt

le
n

ec
ks

B
la

ck
-b

ox
,

P
ro

fi
li

n
g

O
bs

er
va

ti
on

al
M

ac
h

in
e

L
ea

rn
in

g
P

ri
n

ci
pa

la
n

d
In

de
pe

n
de

n
t

C
om

po
n

en
t

A
n

al
ys

is
M

ag
al

h
ae

s
an

d
M

ou
ra

S
il

va
[2

01
1]

P
A

D
B

I
W

eb
-b

as
ed

,A
pp

li
ca

ti
on

m
et

ri
cs

W
h

it
e-

bo
x,

R
eq

u
es

t
tr

ac
in

g
F

lo
w

&
D

ep
en

de
n

cy
S

ta
ti

st
ic

al
C

or
re

la
ti

on
A

n
al

ys
is

,
A

N
O

V
A

F
u

[2
01

1]
P

A
D

C
lo

u
d,

S
ys

te
m

m
et

ri
cs

B
la

ck
-b

ox
,

P
ro

fi
li

n
g

K
n

ow
le

dg
e-

ba
se

d
M

ac
h

in
e

L
ea

rn
in

g
M

u
tu

al
In

fo
rm

at
io

n
,

P
C

A
,S

em
i-

su
pe

rv
is

ed
D

ec
is

io
n

-t
re

e
S

am
ba

si
va

n
et

al
.[

20
11

]
P

A
D

D
is

tr
ib

u
te

d,
S

to
ra

ge
,

N
et

w
or

k
re

qu
es

t
fl

ow
s

G
ra

y,
T

ra
ci

n
g

F
lo

w
&

D
ep

en
de

n
cy

H
yb

ri
d

C
4.

5,
R

eg
re

ss
io

n
T

re
e

T
an

et
al

.
[2

01
2]

P
A

D
C

lo
u

d,
W

eb
-b

as
ed

,
S

ys
te

m
m

et
ri

cs
B

la
ck

-b
ox

,
P

ro
fi

li
n

g
O

bs
er

va
ti

on
al

H
yb

ri
d

M
ar

ko
v-

m
od

el
,T

re
e

A
u

gm
en

te
d

B
ay

es
P

an
n

u
et

al
.

[2
01

2]
P

A
D

C
lo

u
d,

S
ys

te
m

m
et

ri
cs

B
la

ck
-b

ox
,

P
ro

fi
li

n
g

K
n

ow
le

dg
e-

dr
iv

en
M

ac
h

in
e

L
ea

rn
in

g
S

u
pe

rv
is

ed
,O

n
e-

cl
as

s
S

V
M

L
ee

et
al

.
[2

01
2]

P
A

D
B

I
D

is
tr

ib
u

te
d,

S
to

ra
ge

,
A

pp
li

ca
ti

on
m

et
ri

cs
B

la
ck

-b
ox

,
P

ro
fi

li
n

g
K

n
ow

le
dg

e-
ba

se
S

ta
ti

st
ic

al
S

P
C

K
an

g
et

al
.

[2
01

2]
P

A
D

B
I

C
lo

u
d,

A
pp

li
ca

ti
on

&
S

ys
te

m
m

et
ri

cs
B

la
ck

-b
ox

,
P

ro
fi

li
n

g
O

bs
er

va
ti

on
al

H
yb

ri
d

R
eg

re
ss

io
n

(L
A

R
),

C
lu

st
er

in
g

D
ea

n
et

al
.

[2
01

2]
P

A
D

B
I

C
lo

u
d,

S
ys

te
m

m
et

ri
cs

B
la

ck
-b

ox
,

P
ro

fi
li

n
g

O
bs

er
va

ti
on

al
M

ac
h

in
e

L
ea

rn
in

g
S

el
f-

O
rg

an
iz

in
g

M
ap

s

W
an

g
et

al
.

[2
01

2]
P

A
D

W
eb

-b
as

ed
,S

ys
te

m
m

et
ri

cs
G

ra
y-

bo
x,

P
ro

fi
li

n
g

O
bs

er
va

ti
on

al
M

ac
h

in
e

L
ea

rn
in

g
C

lu
st

er
in

g,
L

O
F (C

on
ti

n
u

ed
)

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015. 59

4:28 O. Ibidunmoye et al.

Ta
bl

e
X

.C
on

tin
ue

d

R
ef

er
en

ce
G

oa
l

S
ys

te
m

O
bs

er
va

bi
li

ty
S

tr
at

eg
y

M
et

h
od

T
ec

h
n

iq
u

es
N

gu
ye

n
et

al
.[

20
13

]
P

A
D

B
I

C
lo

u
d

B
la

ck
-b

ox
F

lo
w

&
D

ep
en

de
n

cy
S

ta
ti

st
ic

al
,

S
ig

n
al

P
ro

ce
ss

in
g

C
U

S
U

M
,F

F
T

F
il

te
ri

n
g

G
u

an
an

d
F

u
[2

01
3b

]
P

A
D

C
lo

u
d,

S
ys

te
m

m
et

ri
cs

B
la

ck
-b

ox
,

P
ro

fi
li

n
g

O
bs

er
va

ti
on

al
M

ac
h

in
e

L
ea

rn
in

g
W

av
el

et
,S

li
di

n
g

W
in

do
w

W
an

g
et

al
.

[2
01

3b
]

P
B

I
M

u
lt

it
ie

r,
C

om
po

n
en

t
&

R
es

ou
rc

e
bo

tt
le

n
ec

ks
B

la
ck

bo
x

O
bs

er
va

ti
on

-
F

in
e-

gr
ai

n
ed

L
oa

d,
T

h
ro

u
gh

pu
t

A
n

al
ys

is
X

io
n

g
et

al
.

[2
01

3]
P

A
D

D
is

tr
ib

u
te

d,
R

es
ou

rc
e

m
et

ri
cs

B
la

ck
bo

x,
P

ro
fi

li
n

g
O

bs
er

va
ti

on
S

ta
ti

st
ic

al
C

or
re

la
ti

on
A

n
al

ys
is

S
h

ar
m

a
et

al
.[

20
13

]
P

A
D

C
lo

u
d,

W
eb

-b
as

ed
,

S
ys

te
m

m
et

ri
cs

B
la

ck
-b

ox
,

P
ro

fi
li

n
g

O
bs

er
va

ti
on

al
M

ac
h

in
e

L
ea

rn
in

g
H

id
de

n
M

ar
ko

v
M

od
el

,
k-

N
ea

re
st

N
ei

gh
bo

u
r,

K
-m

ea
n

s
C

lu
st

er
in

g
H

u
an

g
et

al
.

[2
01

3]
P

A
D

C
lo

u
d,

S
ys

te
m

m
et

ri
cs

B
la

ck
-b

ox
,

P
ro

fi
li

n
g

K
n

ow
le

dg
e-

ba
se

d
M

ac
h

in
e

L
ea

rn
in

g
L

O
F

Y
u

an
d

L
an

[2
01

3]
P

A
D

D
is

tr
ib

u
te

d,
H

ad
oo

p
C

lu
st

er
s,

C
om

po
n

en
t

an
d

H
os

t
bo

tt
le

n
ec

ks

B
la

ck
-b

ox
,

P
ro

fi
li

n
g

O
bs

er
va

ti
on

al
M

ac
h

in
e

L
ea

rn
in

g
N

on
-p

ar
am

et
ri

c
C

lu
st

er
in

g

W
an

g
et

al
.

[2
01

4]
P

A
D

W
eb

-b
as

ed
,S

ys
te

m
m

et
ri

cs
G

ra
y-

bo
x,

P
ro

fi
li

n
g

O
bs

er
va

ti
on

M
ac

h
in

e
L

ea
rn

in
g

C
lu

st
er

in
g,

L
O

F

D
ea

n
et

al
.

[2
01

4]
P

A
D

B
I

C
lo

u
d,

S
ys

te
m

m
et

ri
cs

B
la

ck
-b

ox
,

S
ys

te
m

-c
al

l
tr

ac
in

g

O
bs

er
va

ti
on

S
ta

ti
st

ic
al

T
u

ke
y

L
im

it
s

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015.60

Performance Anomaly Detection and Bottleneck Identification 4:29

REFERENCES

Sandip Agarwala, Fernando Alegre, Karsten Schwan, and Jegannathan Mehalingham. 2007. E2EProf: Au-
tomated end-to-end performance management for enterprise systems. In Proceedings of the 37th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’07). IEEE, 749–758.

Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and Athicha Muthitacharoen. 2003.
Performance debugging for distributed systems of black boxes. ACM SIGOPS Operating Systems Review
37, 74–89.

E. Alpaydin. 2014. Introduction to Machine Learning. MIT Press.
Paul Barham, Rebecca Isaacs, Richard Mortier, and Dushyanth Narayanan. 2003. Magpie: Online modelling

and performance-aware systems. In Proceedings of the 9th Workshop on Hot Topics in Operating Systems
(HotOS IX). 85–90.

Roberto Battiti. 1994. Using mutual information for selecting features in supervised neural net learning.
IEEE Transactions on Neural Networks 5, 4, 537–550.

Muli Ben-Yehuda, David Breitgand, Michael Factor, Hillel Kolodner, Valentin Kravtsov, and Dan Pelleg.
2009. NAP: A building block for remediating performance bottlenecks via black box network analysis.
In Proceedings of the 6th International Conference on Autonomic Computing. ACM, 179–188.

Frank M. Bereznay and Kaiser Permanente. 2006. Did something change? using statistical techniques to
interpret service and resource metrics. In Proceedings of the International CMG Conference. 229–242.

Pavel Berkhin. 2006. A survey of clustering data mining techniques. In Grouping Multidimensional Data.
Springer, 25–71.

Kanishka Bhaduri, Kamalika Das, and Bryan L. Matthews. 2011. Detecting abnormal machine characteris-
tics in cloud infrastructures. In Proceedings of the IEEE 11th International Conference on Data Mining
Workshops (ICDMW’11). IEEE, 137–144.

Walter Binder, Jarle Hulaas, and Philippe Moret. 2007. Advanced java bytecode instrumentation. In Pro-
ceedings of the 5th International Symposium on Principles and Practice of Programming in Java. ACM,
135–144.

Peter Bodı́k, Moises Goldszmidt, and Armando Fox. 2008. HiLighter: Automatically building robust signa-
tures of performance behavior for small-and large-scale systems. In SysML. USENIX Association.

Peter Bodik, Moises Goldszmidt, Armando Fox, Dawn B. Woodard, and Hans Andersen. 2010. Fingerprinting
the datacenter: Automated classification of performance crises. In Proceedings of the 5th European
Conference on Computer Systems. ACM, 111–124.

George E. P. Box and George C. Tiao. 1975. Intervention analysis with applications to economic and envi-
ronmental problems. J. Amer. Statist. Assoc. 70, 349, 70–79.

John S. Breese and Russ Blake. 1995. Automating computer bottleneck detection with belief nets. In Pro-
ceedings of the 11th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann, 36–45.

Jack Brey and Rick Sironi. 1990. Managing at the knee of the curve (The use of SPC in managing a data
center). In Proceedings of the International CMG Conference. 895–901.

Shaun Burke. 2001. Missing values, outliers, robust statistics & non-parametric methods. LC-GC Europe
Online Supplement, Statistics & Data Analysis 2, 19–24.

Rajkumar Buyya, Rodrigo N. Calheiros, and Xiaorong Li. 2012. Autonomic cloud computing: Open challenges
and architectural elements. In Proceedings of the 3rd International Conference on Emerging Applications
of Information Technology (EAIT’12). IEEE, 3–10.

Jeffrey P. Buzen and Annie W. Shum. 1995. Masf-multivariate adaptive statistical filtering. In Proceedings
of the International CMG Conference. 1–10.

Giuliano Casale, Amir Kalbasi, Diwakar Krishnamurthy, and Jerry Rolia. 2009. Automatic stress test-
ing of multi-tier systems by dynamic bottleneck switch generation. In Proceedings of the 10th
ACM/IFIP/USENIX International Conference on Middleware. Springer-Verlag New York, 20.

Giuliano Casale, Ningfang Mi, Ludmila Cherkasova, and Evgenia Smirni. 2012. Dealing with burstiness in
multi-tier applications: Models and their parameterization. IEEE Transactions on Software Engineering
38, 5, 1040–1053.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection: A survey. ACM Computing
Surveys (CSUR) 41, 3, 15.

Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric Brewer. 2002. Pinpoint: Problem
determination in large, dynamic internet services. In Proceedings of International Conference on De-
pendable Systems and Networks. IEEE, 595–604.

Ludmila Cherkasova, Kivanc Ozonat, Ningfang Mi, Julie Symons, and Evgenia Smirni. 2008. Anomaly? ap-
plication change? or workload change? Towards automated detection of application performance anomaly

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015. 61

4:30 O. Ibidunmoye et al.

and change. In Proceedings of the IEEE International Conference on Dependable Systems and Networks
with FTCS and DCC. IEEE, 452–461.

Ludmila Cherkasova, Kivanc Ozonat, Ningfang Mi, Julie Symons, and Evgenia Smirni. 2009. Automated
anomaly detection and performance modeling of enterprise applications. ACM Transactions on Computer
Systems (TOCS) 27, 3, 6.

I-Hsin Chung, Guojing Cong, David Klepacki, Simone Sbaraglia, Seetharami Seelam, and Hui-Fang Wen.
2008. A framework for automated performance bottleneck detection. In Proceedings of the IEEE Inter-
national Symposium on Parallel and Distributed Processing (IPDPS’08). IEEE, 1–7.

Ira Cohen, Jeffrey S. Chase, Moises Goldszmidt, Terence Kelly, and Julie Symons. 2004. Correlating instru-
mentation data to system states: A building block for automated diagnosis and control. In OSDI, Vol. 4.
16–16.

Ira Cohen, Steve Zhang, Moises Goldszmidt, Julie Symons, Terence Kelly, and Armando Fox. 2005. Capturing,
indexing, clustering, and retrieving system history. In ACM SIGOPS Operating Systems Review, Vol. 39.
ACM, 105–118.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. 2010. Benchmark-
ing cloud serving systems with YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing.
ACM, 143–154.

Marc Courtois and Murray Woodside. 2000. Using regression splines for software performance analysis. In
Proceedings of the 2nd International Workshop on Software and Performance. ACM, 105–114.

Kaustav Das. 2009. Detecting patterns of anomalies. Technical Report CMU-ML-09-101. PhD thesis.
Carnegie Mellon University, Department of Machine Learning.

Daniel Joseph Dean, Hiep Nguyen, and Xiaohui Gu. 2012. Ubl: Unsupervised behavior learning for predicting
performance anomalies in virtualized cloud systems. In Proceedings of the 9th International Conference
on Autonomic Computing. ACM, 191–200.

Daniel J. Dean, Hiep Nguyen, Peipei Wang, and Xiaohui Gu. 2014. PerfCompass: Toward runtime per-
formance anomaly fault localization for infrastructure-as-a-service clouds. In Proceedings of the 6th
USENIX Conference on Hot Topics in Cloud Computing. USENIX Association, 16–16.

Anh Vu Do, Junliang Chen, Chen Wang, Young Choon Lee, Albert Y. Zomaya, and Bing Bing Zhou. 2011.
Profiling applications for virtual machine placement in clouds. In Proceedings of the IEEE International
Conference on Cloud Computing (CLOUD’11). IEEE, 660–667.

Evolven. 2011. Downtime, Outages and Failures—Understanding Their True Costs. Retrieved March 11,
2015 from http://www.evolven.com/blog/downtime-outages-and-failures-understanding-their-true-costs.
html.

Imola K. Fodor. 2002. A survey of dimension reduction techniques. Technical Report UCRL-ID-148494.
Lawrence Livermore National Laboratory.

Song Fu. 2011. Performance metric selection for autonomic anomaly detection on cloud computing systems.
In Proceedings of the Global Telecommunications Conference (GLOBECOM’11). IEEE, 1–5.

Song Fu, Jianguo Liu, and Husanbir Pannu. 2012. A Hybrid anomaly detection framework in cloud computing
using one-class and two-class support vector machines. In Advanced Data Mining and Applications.
Springer, 726–738.

Alessio Gambi and Giovanni Toffetti. 2012. Modeling cloud performance with kriging. In Proceedings of the
2012 International Conference on Software Engineering. IEEE Press, 1439–1440.

Chunye Gong, Jie Liu, Qiang Zhang, Haitao Chen, and Zhenghu Gong. 2010. The characteristics of cloud
computing. In Proceedings of the 39th International Conference on Parallel Processing Workshops
(ICPPW’10). IEEE, 275–279.

Brendan Gregg. 2013. Systems Performance: Enterprise and the Cloud. Pearson Education.
Frank E. Grubbs. 1969. Procedures for detecting outlying observations in samples. Technometrics 11, 1, 1–21.
Xiaohui Gu and Haixun Wang. 2009. Online anomaly prediction for robust cluster systems. In Proceedings

of the IEEE 25th International Conference on Data Engineering (ICDE’09). IEEE, 1000–1011.
Qiang Guan and Song Fu. 2013a. Adaptive anomaly identification by exploring metric subspace in cloud

computing infrastructures. In Proceedings of the IEEE 32nd International Symposium on Reliable Dis-
tributed Systems (SRDS’13). IEEE, 205–214.

Qiang Guan and Song Fu. 2013b. Wavelet-based multi-scale anomaly identification in cloud computing
systems. In Proceedings of the Global Communications Conference (GLOBECOM’13). IEEE, 1379–1384.

Qiang Guan, Song Fu, Nathan DeBardeleben, and Sean Blanchard. 2013. Exploring time and frequency
domains for accurate and automated anomaly detection in cloud computing systems. In Proceedings
of the IEEE 19th Pacific Rim International Symposium on Dependable Computing (PRDC’13). IEEE,
196–205.

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015.62

Performance Anomaly Detection and Bottleneck Identification 4:31

Qiang Guan, Ziming Zhang, and Song Fu. 2011. Proactive failure management by integrated unsupervised
and semi-supervised learning for dependable cloud systems. In Proceedings of the 6th International
Conference on Availability, Reliability and Security (ARES’11). IEEE, 83–90.

Qiang Guan, Ziming Zhang, and Song Fu. 2012. Ensemble of bayesian predictors and decision trees for
proactive failure management in cloud computing systems. Journal of Communications 7, 1, 52–61.

Dan Gunter, Brian L. Tierney, Aaron Brown, Martin Swany, John Bresnahan, and Jennifer M. Schopf. 2007.
Log summarization and anomaly detection for troubleshooting distributed systems. In Proceedings of
the 8th IEEE/ACM International Conference on Grid Computing. IEEE, 226–234.

Neil J. Gunther. 2004. Benchmarking blunders and things that go bump in the night. CoRR. http://arxiv.
org/abs/cs.PF/0404043

Neil J. Gunther. 2011. Analyzing Computer System Performance with Perl:: PDQ. Springer.
Masum Z. Hasan, Edgar Magana, Alexander Clemm, Lew Tucker, and Sree Lakshmi D. Gudreddi. 2012.

Integrated and autonomic cloud resource scaling. In Proceedings of the Network Operations and Man-
agement Symposium (NOMS’12). IEEE, 1327–1334.

Victoria J. Hodge and Jim Austin. 2004. A survey of outlier detection methodologies. Artificial Intelligence
Review 22, 2, 85–126.

Cheng Huang. 2011. Public DNS System and Global Traffic Management. Retrieved April 15, 2014 from
http://research.microsoft.com/en-us/um/people/chengh/slides/pubdns11.pptx.pdf.

Su-Yun Huang, Mei-Hsien Lee, and Chuhsing Kate Hsiao. 2006. Kernel canonical correlation analysis and
its applications to nonlinear measures of association and test of independence. Institute of Statistical
Science: Academia Sinica, Taiwan.

Tian Huang, Yan Zhu, Qiannan Zhang, Yongxin Zhu, Dongyang Wang, Meikang Qiu, and Lei Liu. 2013. An
LOF-based adaptive anomaly detection scheme for cloud computing. In Proceedings of the IEEE 37th
Annual Computer Software and Applications Conference Workshops (COMPSACW’13). IEEE, 206–211.

Waheed Iqbal, Matthew N. Dailey, David Carrera, and Paul Janecek. 2010. SLA-driven automatic bottleneck
detection and resolution for read intensive multi-tier applications hosted on a cloud. In Advances in
Grid and Pervasive Computing. Springer, 37–46.

Brendan Jennings and Rolf Stadler. 2014. Resource management in clouds: Survey and research challenges.
Journal of Network and Systems Management, 1–53.

Gueyoung Jung, Galen Swint, Jason Parekh, Calton Pu, and Akhil Sahai. 2006. Detecting bottleneck in
n-tier it applications through analysis. In Large Scale Management of Distributed Systems. Springer,
149–160.

Srikanth Kandula, Ratul Mahajan, Patrick Verkaik, Sharad Agarwal, Jitendra Padhye, and Victor Bahl.
2009. Detailed diagnosis in computer networks. In ACM SIGCOMM.

Hui Kang, Xiaoyun Zhu, and Jennifer L. Wong. 2012. DAPA: diagnosing application performance anomalies
for virtualized infrastructures. In Presented as part of the 2nd USENIX Workshop on Hot Topics in
Management of Internet, Cloud, and Enterprise Networks and Services. USENIX.

Terence Kelly. 2005a. Detecting performance anomalies in global applications. In Proceedings of the 2nd
Workshop on Real, Large Distributed Systems (WORLDS’05).

Terence Kelly. 2005b. Transaction mix performance models: Methods and application to performance
anomaly detection. In Proceedings of the 20th ACM Symposium on Operating Systems Principles. ACM,
1–3.

Kissmetrics. 2014. How Loading Time Affects Your Bottom Line. Retrieved April 15, 2014 from http://
blog.kissmetrics.com/loading-time/.

David Kleinbaum, Lawrence Kupper, Azhar Nizam, and Eli Rosenberg. 2013. Applied Regression Analysis
and Other Multivariable Methods. Cengage Learning.

Seth Koehler, Greg Stitt, and Alan D. George. 2011. Platform-aware bottleneck detection for reconfigurable
computing applications. ACM Transactions on Reconfigurable Technology and Systems (TRETS) 4, 3,
30.

S. B. Kotsiantis. 2007. Supervised Machine Learning: A review of classification techniques. Informatica 31,
249–268.

Zhiling Lan, Ziming Zheng, and Yawei Li. 2010. Toward automated anomaly identification in large-scale
systems. IEEE Transactions on Parallel and Distributed Systems 21, 2, 174–187.

Aleksandar Lazarevic, Levent Ertöz, Vipin Kumar, Aysel Ozgur, and Jaideep Srivastava. 2003. A comparative
study of anomaly detection schemes in network intrusion detection. In Proceedings of SIAM International
Conference on Data Mining. SIAM, 25–36.

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015. 63

4:32 O. Ibidunmoye et al.

Aleksandar Lazarevic, Nisheeth Srivastava, Ashutosh Tiwari, Josh Isom, Nikunj C. Oza, and Jaideep
Srivastava. 2009. Theoretically optimal distributed anomaly detection. In Proceedings of the IEEE
International Conference on Data Mining Workshops (ICDMW’09). IEEE, 515–520.

Benjamin C. Lee and David M. Brooks. 2006. Accurate and efficient regression modeling for microarchitec-
tural performance and power prediction. In ACM SIGPLAN Notices, Vol. 41. ACM, 185–194.

Donghun Lee, Sang K. Cha, and Arthur H. Lee. 2012. A performance anomaly detection and analysis
framework for DBMS development. IEEE Transactions on Knowledge and Data Engineering 24, 8,
1345–1360.

Han Bok Lee and Benjamin G. Zorn. 1997. BIT: A Tool for instrumenting java bytecodes. In Proceedings of
the USENIX Symposium on Internet Technologies and Systems. 73–82.

Wenke Lee and Dong Xiang. 2001. Information-theoretic measures for anomaly detection. In Proceedings of
IEEE Symposium on Security and Privacy (S&P’01). IEEE, 130–143.

Li Li and Allen D. Malony. 2006. Model-based performance diagnosis of master-worker parallel computations.
In Euro-Par 2006 Parallel Processing. Springer, 35–46.

Yihua Liao and V. Rao Vemuri. 2002. Use of k-nearest neighbor classifier for intrusion detection. Computers
& Security 21, 5, 439–448.

David J. Lilja. 2005. Measuring Computer Performance: A Practitioner’s Guide. Cambridge University Press.
Joao Paulo Magalhaes and L. Moura Silva. 2011. Adaptive profiling for root-cause analysis of performance

anomalies in web-based applications. In Proceedings of the 10th IEEE International Symposium on
Network Computing and Applications (NCA’11). IEEE, 171–178.

Joao Paulo Magalhaes and Luis Moura Silva. 2010. Detection of performance anomalies in web-based applica-
tions. In Proceedings of the 9th IEEE International Symposium on Network Computing and Applications
(NCA’10). IEEE, 60–67.

João Paulo Magalhães and Luis Moura Silva. 2011. Root-cause analysis of performance anomalies in web-
based applications. In Proceedings of the 2011 ACM Symposium on Applied Computing. ACM, 209–216.

Nihar R. Mahapatra and Balakrishna Venkatrao. 1999. The processor-memory bottleneck: Problems and
solutions. Crossroads 5, 3es, 2.

Simon Malkowski, Markus Hedwig, Jason Parekh, Calton Pu, and Akhil Sahai. 2007. Bottleneck detection
using statistical intervention analysis. In Managing Virtualization of Networks and Services. Springer,
122–134.

Simon Malkowski, Markus Hedwig, and Calton Pu. 2009. Experimental evaluation of N-tier systems: Ob-
servation and analysis of multi-bottlenecks. In Proceedings of the IEEE International Symposium on
Workload Characterization (IISWC’09). IEEE, 118–127.

Markos Markou and Sameer Singh. 2003. Novelty detection: A review part 1: Statistical approaches. Signal
processing 83, 12, 2481–2497.

Andrew McHugh. 2013. Top 10 Web Outages of 2013. Retrieved March 11, 2015 from http://blog.smartbear.
com/performance/top-10-web-outages-of-2013/.

Bob Melander, Mats Bjorkman, and Per Gunningberg. 2000. A new end-to-end probing and analysis method
for estimating bandwidth bottlenecks. In Proceedings of the Global Telecommunications Conference
(GLOBECOM’00). IEEE, Vol. 1. IEEE, 415–420.

Ningfang Mi, Giuliano Casale, Ludmila Cherkasova, and Evgenia Smirni. 2008a. Burstiness in multi-tier
applications: Symptoms, causes, and new models. In Proceedings of the 9th ACM/IFIP/USENIX Inter-
national Conference on Middleware. Springer-Verlag, New York, 265–286.

Ningfang Mi, Ludmila Cherkasova, Kivanc Ozonat, Julie Symons, and Evgenia Smirni. 2008b. Analysis of
application performance and its change via representative application signatures. In Proceedings of the
Network Operations and Management Symposium. IEEE, 216–223.

Jogesh K. Muppala, Steven P. Woolet, and Kishor S. Trivedi. 1991. Real-time systems performance in the
presence of failures. Computer 24, 5, 37–47.

A. S. Navaz, V. Sangeetha, and C. Prabhadevi. 2013. Entropy based anomaly detection system to pre-
vent ddos attacks in cloud. International Journal of Computer Applications (0975-8887) 62, 15.
http://arxiv.org/abs/1308.6745

John E. Neilson, C. Murray Woodside, Dorina C. Petriu, and Shikharesh Majumdar. 1995. Software bottle-
necking in client-server systems and rendezvous networks. IEEE Transactions on Software Engineering
21, 9, 776–782.

Hiep Nguyen, Zhiming Shen, Yongmin Tan, and Xiaohui Gu. 2013. FChain: Toward black-box online fault
localization for cloud systems. In Proceedings of the IEEE 33rd International Conference on Distributed
Computing Systems (ICDCS’13). IEEE, 21–30.

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015.64

Performance Anomaly Detection and Bottleneck Identification 4:33

George Nychis, Vyas Sekar, David G. Andersen, Hyong Kim, and Hui Zhang. 2008. An empirical evaluation
of entropy-based traffic anomaly detection. In Proceedings of the 8th ACM SIGCOMM conference on
Internet Measurement. ACM, 151–156.

John S. Oakland. 2008. Statistical Process control. Routledge.
Husanbir S. Pannu, Jianguo Liu, and Song Fu. 2012. A self-evolving anomaly detection framework for

developing highly dependable utility clouds. In Proceedings of the Global Communications Conference
(GLOBECOM’12). IEEE, 1605–1610.

Iakovos Panourgias. 2011. NUMA Effects on Multicore, Multisocket Systems. The University of Edinburgh.
Jason Parekh, Gueyoung Jung, Galen Swint, Calton Pu, and Akhil Sahai. 2006. Issues in bottleneck detection

in multi-tier enterprise applications. In Proceedings of the 14th IEEE International Workshop on Quality
of Service (IWQoS’06). IEEE, 302–303.

Emanuel Parzen. 1962. On estimation of a probability density function and mode. The Annals of Mathemat-
ical Statistics, 1065–1076.

Johannes Passing. 2005. Profiling, monitoring and tracing in SAP web application server. Seminar Systems
Modelling, Hasso Plattner Insitute for Software Systems Engineering.

Manjula Peiris, James H. Hill, Jorgen Thelin, Sergey Bykov, Gabriel Kliot, and Christian Konig. 2014. PAD:
Performance anomaly detection in multi-server distributed systems. In Proceedings of the 7th IEEE
International Conference on Cloud Computing (CLOUD’14). IEEE.

Soila Pertet and Priya Narasimhan. 2005. Causes of failure in web applications (cmu-pdl-05-109). Parallel
Data Laboratory, 48.

Rob Powers, Moises Goldszmidt, and Ira Cohen. 2005. Short term performance forecasting in enterprise
systems. In Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in
Data Mining. ACM, 801–807.

Calton Pu, Akhil Sahai, Jason Parekh, Gueyoung Jung, Ji Bae, You-Kyung Cha, Timothy Garcia, Danesh
Irani, Jae Lee, and Qifeng Lin. 2007. An observation-based approach to performance characterization of
distributed n-tier applications. In IEEE 10th International Symposium on Workload Characterization.
IISWC 2007. IEEE, 161–170.

Xing Pu, Ling Liu, Yiduo Mei, Sankaran Sivathanu, Younggyun Koh, and Calton Pu. 2010. Understanding
performance interference of i/o workload in virtualized cloud environments. In Proceedings of the IEEE
3rd International Conference on Cloud Computing (CLOUD’10). IEEE, 51–58.

Sutharshan Rajasegarar, Christopher Leckie, and Marimuthu Palaniswami. 2008. Anomaly detection in
wireless sensor networks. Wireless Communications, IEEE 15, 4, 34–40.

Christoph Rathfelder, Stefan Becker, Klaus Krogmann, and Ralf Reussner. 2012. Workload-aware system
monitoring using performance predictions applied to a large-scale e-mail system. In Proceedings of the
Joint Working IEEE/IFIP Conference on Software Architecture (WICSA) and European Conference on
Software Architecture (ECSA’12). IEEE, 31–40.

Charles Reiss, John Wilkes, and Joseph L. Hellerstein. 2011. Google cluster-usage traces: Format+ schema.
Google Inc., White Paper.

Douglas Reynolds. 2009. Gaussian mixture models. Encyclopedia of Biometrics, 659–663.
S. Rogers and M. Girolami. 2011. A First Course in Machine Learning. Taylor & Francis.
Raja R. Sambasivan, Alice X. Zheng, Michael De Rosa, Elie Krevat, Spencer Whitman, Michael Stroucken,

William Wang, Lianghong Xu, and Gregory R. Ganger. 2011. Diagnosing performance changes by com-
paring request flows. In Proceedings of the 8th USENIX Conference on Networked Systems Design and
Implementation. USENIX Association, 43–56.

Bianca Schroeder, Garth Gibson, and others. 2010. A Large-scale study of failures in high-performance-
computing systems. IEEE Transactions on Dependable and Secure Computing 7, 4, 337–350.

Craig A. Shallahamer. 1995. Predicting Computing System Capacity and Throughput. Oracle Corporation
White Paper. Retrieved from http://www.orapub.com.

Claude Elwood Shannon. 2001. A mathematical theory of communication. ACM SIGMOBILE Mobile Com-
puting and Communications Review 5, 1, 3–55.

Bikash Sharma, Praveen Jayachandran, Akshat Verma, and Chita R. Das. 2013. CloudPD: Problem de-
termination and diagnosis in shared dynamic clouds. In Proceedings of the 43rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN’13). IEEE, 1–12.

Sameer Shende. 1999. Profiling and tracing in Linux. In Proceedings of the Extreme Linux Workshop, Vol. 2.
Citeseer.

Derek Smith, Qiang Guan, and Song Fu. 2010. An anomaly detection framework for autonomic management
of compute cloud systems. In Proceedings of the IEEE 34th Annual Computer Software and Applications
Conference Workshops (COMPSACW’10). IEEE, 376–381.

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015. 65

4:34 O. Ibidunmoye et al.

Ralf Steuer, Jürgen Kurths, Carsten O. Daub, Janko Weise, and Joachim Selbig. 2002. The mutual informa-
tion: Detecting and evaluating dependencies between variables. Bioinformatics 18, Suppl 2, S231–S240.

Yongmin Tan and Xiaohui Helen Adviser-Gu. 2012. Online Performance Anomaly Prediction and Prevention
for Complex Distributed Systems. North Carolina State University.

Yongmin Tan and Xiaohui Gu. 2010. On predictability of system anomalies in real world. In Proceedings of
the IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommu-
nication Systems (MASCOTS’10). IEEE, 133–140.

Yongmin Tan, Xiaohui Gu, and Haixun Wang. 2010. Adaptive system anomaly prediction for large-scale
hosting infrastructures. In Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing. ACM, 173–182.

Yongmin Tan, Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Chitra Venkatramani, and Deepak Rajan. 2012.
Prepare: Predictive performance anomaly prevention for virtualized cloud systems. In Proceedings of the
IEEE 32nd International Conference on Distributed Computing Systems (ICDCS’12). IEEE, 285–294.

Jean-Claude Tarby, Houcine Ezzedine, José Rouillard, Chi Dung Tran, Philippe Laporte, and Christophe
Kolski. 2007. Traces using aspect oriented programming and interactive agent-based architecture for
early usability evaluation: Basic principles and comparison. In Human-Computer Interaction. Interac-
tion Design and Usability. Springer, 632–641.

Igor Trubin. 2005. Capturing workload pathology by statistical exception detection system. In Proceedings
of the Computer Measurement Group. Citeseer.

Igor A. Trubin and Linwood Merritt. 2004. Mainframe global and workload level statistical exception detec-
tion system, based on MASF. In Proceedings of the International CMG Conference. 671–678.

John Wilder. 1977. Exploratory data analysis. Addison-Wesley, Reading, Mass.
Arno Wagner and Bernhard Plattner. 2005. Entropy based worm and anomaly detection in fast IP networks.

In 14th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative En-
terprise. IEEE, 172–177.

Christian Walck. 2007. Handbook on statistical distributions for experimentalists. Internal Report SUF-
PFY/96-01, University of Stockholm.

Chengwei Wang, Karsten Schwan, and Matthew Wolf. 2009. Ebat: An entropy based online anomaly tester
for data center management. In Proceedings of the IFIP/IEEE International Symposium on Integrated
Network Management-Workshops. IEEE, 79–80.

Chengwei Wang, Vanish Talwar, Karsten Schwan, and Parthasarathy Ranganathan. 2010. Online detection
of utility cloud anomalies using metric distributions. In Proceedings of the Network Operations and
Management Symposium (NOMS’10). IEEE, 96–103.

Chengwei Wang, Krishnamurthy Viswanathan, Lakshminarayan Choudur, Vanish Talwar, Wade Satterfield,
and Karsten Schwan. 2011. Statistical techniques for online anomaly detection in data centers. In
Proceedings of the IFIP/IEEE International Symposium on Integrated Network Management (IM’11).
IEEE, 385–392.

Haichuan Wang, Qiming Teng, Xiao Zhong, and Peter F. Sweeney. 2009. Understanding cross-tier de-
lay of multi-tier application using selective invocation context extraction. In Proceedings of the 10th
ACM/IFIP/USENIX International Conference on Middleware. Springer-Verlag, New York, 34.

Qingyang Wang, Yasuhiko Kanemasa, Jack Li, Deepal Jayasinghe, Toshihiro Shimizu, Masazumi Matsub-
ara, Motoyuki Kawaba, and Calton Pu. 2013a. Detecting transient bottlenecks in n-tier applications
through fine-grained analysis. In Proceedings of the IEEE 33rd International Conference on Distributed
Computing Systems (ICDCS’13). IEEE, 31–40.

Qingyang Wang, Yasuhiko Kanemasa, Jack Li, Deepal Jayasinghe, Toshihiro Shimizu, Masazumi Matsubara,
Motoyuki Kawaba, and Calton Pu. 2013b. An experimental study of rapidly alternating bottlenecks
in n-tier applications. In Proceedings of the IEEE 6th International Conference on Cloud Computing
(CLOUD’13). IEEE, 171–178.

Tao Wang, Jun Wei, Feng Qin, WenBo Zhang, Hua Zhong, and Tao Huang. 2013. Detecting performance
anomaly with correlation analysis for Internetware. Science China Information Sciences 56, 8, 1–15.

Tao Wang, Jun Wei, Wenbo Zhang, Hua Zhong, and Tao Huang. 2014. Workload-aware anomaly detection
for web applications. Journal of Systems and Software 89, 19–32.

Tao Wang, Wenbo Zhang, Jun Wei, and Hua Zhong. 2012. Workload-aware online anomaly detection in
enterprise applications with local outlier factor. In Proceedings of the IEEE 36th Annual Computer
Software and Applications Conference (COMPSAC’12). IEEE, 25–34.

Pengcheng Xiong, Calton Pu, Xiaoyun Zhu, and Rean Griffith. 2013. vPerfGuard: An automated model-driven
framework for application performance diagnosis in consolidated cloud environments. In Proceedings of
the ACM/SPEC International Conference on Performance Engineering. ACM, 271–282.

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015.66

Performance Anomaly Detection and Bottleneck Identification 4:35

Yahoo! 2014. Webscope dataset—Computer System Data. Retrieved from http://webscope.sandbox.
yahoo.com/catalog.php?datatype=s.

Lingyun Yang, Chuang Liu, Jennifer M. Schopf, and Ian Foster. 2007. Anomaly detection and diagnosis in
grid environments. In Proceedings of the 2007 ACM/IEEE Conference on Supercomputing. IEEE, 1–9.

Li Yu and Zhiling Lan. 2013. A scalable, non-parametric anomaly detection framework for Hadoop. In
Proceedings of the 2013 ACM Cloud and Autonomic Computing Conference. ACM, 22.

Minlan Yu, Albert Greenberg, Dave Maltz, Jennifer Rexford, Lihua Yuan, Srikanth Kandula, and Changhoon
Kim. 2011. Profiling network performance for multi-tier data center applications. In Proceedings of
Symposium on Networked System Design and Implementation. 57–70.

Qi Zhang, Lu Cheng, and Raouf Boutaba. 2010. Cloud computing: State-of-the-art and research challenges.
Journal of Internet Services and Applications 1, 1, 7–18.

Qi Zhang, Ludmila Cherkasova, Guy Mathews, Wayne Greene, and Evgenia Smirni. 2007b. R-capriccio: A
capacity planning and anomaly detection tool for enterprise services with live workloads. In Middleware
2007. Springer, 244–265.

Qi Zhang, Ludmila Cherkasova, and Evgenia Smirni. 2007a. A regression-based analytic model for dynamic
resource provisioning of multi-tier applications. In Proceedings of the 4th International Conference on
Autonomic Computing (ICAC’07). IEEE, 27–27.

Steve Zhang, Ira Cohen, Moises Goldszmidt, Julie Symons, and Armando Fox. 2005. Ensembles of models
for automated diagnosis of system performance problems. In Proceedings of International Conference on
Dependable Systems and Networks. IEEE, 644–653.

Received December 2014; revised March 2015; accepted May 2015

ACM Computing Surveys, Vol. 48, No. 1, Article 4, Publication date: July 2015. 67

68

II

Paper II

Apex Lake: A Framework for Enabling Smart
Orchestration

Thijs Metsch*, Olumuyiwa Ibidunmoye**,
Victor Bayon-Molino*, Joe Butler*,

Francisco Hernandez-Rodriguez**, Erik Elmroth**

*Intel Labs Europe
Collinstown Industrial Park, Leixlip, Ireland

{thijs.metsch, victor.bayon-molino, joe.m.butler}@intel.com
**Dept. Computing Science, Umeå University

SE-901 87 Umeå, Sweden
{muyi, francisco, elmroth}@cs.umu.se

http://www.cs.umu.se/ds

Abstract: The introduction of a Software-defined infrastructures brings additional
challenges to the management of cloud infrastructure. With the impending conver-
gence of telecommunications and cloud infrastructures, datacenters become an essen-
tial part of an overall integrated environment. The potential scale of such environ-
ments has significant implications as traditional orchestration approaches cannot scale
appropriately. However, the combination of infrastructure topology, fine-grained op-
erational data and advanced analytics, has the potential to deliver a scalable approach
to facilitate orchestration and resource management. In this paper we introduce Apex
Lake, a framework designed to address the question of “how to efficiently define and
maintain a physical and logical resource and service landscape enriched by operational
data, to support orchestration for optimized service delivery?” We also demonstrate
with a use-case illustrating how functionalities provided by Apex Lake can be used
dealing with performance anomalies.

71

72

Apex Lake: A Framework for Enabling Smart Orchestration

Thijs Metsch
Intel Labs Europe

Collinstown Industrial Park
Leixlip, Ireland

thijs.metsch@intel.com

Olumuyiwa Ibidunmoye
Dept. of Computing Science

Umeå University
Umeå 90187, Sweden
muyi@cs.umu.se

Victor Bayon-Molino
Intel Labs Europe

Collinstown Industrial Park
Leixlip, Ireland
victor.bayon-

molino@intel.com
Joe Butler

Intel Labs Europe
Collinstown Industrial Park

Leixlip, Ireland
joe.m.butler@intel.com

Francisco
Hernández-Rodriguez

Dept. of Computing Science
Umeå University

Umeå 90187, Sweden
francisco@cs.umu.se

Erik Elmroth
Dept. of Computing Science

Umeå University
Umeå 90187, Sweden

elmroth@cs.umu.se

ABSTRACT
The introduction of a Software-defined infrastructures brings
additional challenges to the management of cloud infras-
tructure. With the impending convergence of telecommu-
nications and cloud infrastructures, datacenters become an
essential part of an overall integrated environment. The
potential scale of such environments has significant impli-
cations as traditional orchestration approaches cannot scale
appropriately. However, the combination of infrastructure
topology, fine-grained operational data and advanced ana-
lytics, has the potential to deliver a scalable approach to
facilitate orchestration and resource management. In this
paper we introduce Apex Lake, a framework designed to ad-
dress the question of“how to efficiently define and maintain a
physical and logical resource and service landscape enriched
by operational data, to support orchestration for optimized
service delivery?” We also demonstrate with a use-case illus-
trating how functionalities provided by Apex Lake can be
used dealing with performance anomalies.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer Com-
munication Networks-Distributed Systems; K.6.4 [Computing
Milieux]: Management of Computing and Information Sys-
tems, System Management

General Terms
Management, Measurement, Performance

Keywords
Cloud monitoring and orchestration, Resource Management,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
Middleware Industry ’15, December 07-11 2015, Vancouver, BC, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3727-4/15/12...$15.00
http://dx.doi.org/10.1145/2830013.2830016.

Datacenter Management, Software-defined Infrastructure

1. INTRODUCTION
Increase in cloud adoptions, the proliferation of mobile

communication and impending convergence of telecommu-
nications and cloud infrastructures is driving massive
growth in the size and capability of today’s IT infrastruc-
tures [1]. This trend is further fueled by the reduction in cap-
ital expenditure and increasing capacity. Thus the task of
managing datacenter resources and large-scale applications
is becoming increasingly complex due to scale, demands on
robustness, performance, and efficiency.

The leading edge of today’s cloud resource management
embrace two distinctly different approaches. On one hand,
are those focusing on resource management, resulting in so-
phisticated solutions to highly granular subproblems such
as, capacity scaling [2], VM scheduling [3], server consoli-
dation [4], etc, sometimes taking service component depen-
dencies into account [5]. The resulting systems are typically
based on very specific but high-level monitoring informa-
tion, such as CPU load or service request rate. On the other
hand, there are systems that are able to provide robust re-
source management at large scales, but in order to achieve
the necessary scale they, adhere to more simplistic manage-
ment methods [6, 7]. Design objectives are primarily focused
on providing robust functionality and systems whose behav-
ior is easy to understand and configure rather than to base
individual decisions on deep analysis and predictions.

To combine the strengths of both perspectives, there is a
need to aggregate low- and high-level monitoring data, with
topology information, extract appropriate insights (such as
identifying correlations– in space and time, and causalities in
performance events,) and to make this knowledge available
to resource managers in time. This is at the core of what
Apex Lake does by combining topology information with
multi-hertz monitoring data and providing versioned views
on that to support orchestration in large scale environments
such as Software-defined infrastructures (SDI).

1.1 Problem Statement – Orchestration in
Software-defined infrastructures

In current cloud infrastructures, virtualization logically

1

73

divides physical hardware into smaller, abstracted, contain-
ers allowing different means to control the system. Similarly,
Software-defined Network (SDN) decouples the data plane
from the control plane while Software-defined Storage (SDS)
permits managing storage systems independently from the
hardware [8]. Each approach provides a control plane to a
specific subsystem, thus leading to increase in the number of
the control functions (or actuation points). As a result, the
question emerges with regards to what control functions are
suitable and what interdependencies exist between them?
Fortunately these sub-systems have one thing in common
which is that they are amenable to instrumentation-oriented
monitoring. Therefore their behavior - albeit on a high level,
can be understood through the application of appropriate
analytics. However as each sub-system is not used in iso-
lation it is crucial to understand their composition and the
entities they control.

Orchestration is an approach to automatically1 and at
scale coordinate and control complex management tasks [9].
We use the term Service Orchestration to describe the or-
chestration of services in an infrastructure while Infrastruc-
ture Orchestration as the orchestration of the infrastructure
itself. The increasing scale of systems makes effective orches-
tration more challenging in large heterogeneous systems. Es-
pecially for service orchestration, components need to sup-
port control from edge devices (smartphones, IoT sensors
etc.) to services hosted in (hybrid) clouds. The implication
is that the resources become more heterogeneous in nature.
For example, a simple architecture may consists mobile de-
vices at the edge connected to a compute platform running
big data and HPC applications on heterogeneous hardware.

In order to address these issues, the Apex Lake framework
is developed to support orchestration (and related manage-
ment tasks) by providing extensive monitoring data; struc-
turing the information about hardware, virtual, and service
entities in a dynamic information repository; and providing
insights at decision points through an analytics engine. In
Section 2, we present an overview of the system.

2. APEX LAKE
Apex Lake is a research framework developed at the Cloud

Services Lab, Intel Labs Europe, with a clear vision of ef-
ficiently defining and maintaining a landscape of the phys-
ical and logical resources and associated services enriched
by end-to-end monitoring, to support setup and run-time
orchestration for optimized service delivery as shown in Fig-
ure 1.

The key goal is to provide a framework which enables
numerous orchestration oriented use-cases in SDIs. In gen-
eral such use-cases can be categorized to those dealing with
initial placement decisions (e.g. placement of complex ser-
vices), re-balancing actuations (e.g. migrating service in-
stance to ensure SLA compliance), and capacity planning
(e.g. forklift upgrades of the hardware). Our empirical anal-
ysis identified a commonality in required functionalities to
achieve this, namely: a full-stack telemetry system, an in-
formation repository and an analytics pipeline which collec-
tively form the core functional components of Apex Lake.
The framework is loosely coupled to existing cloud orches-

1Automation does not take the administrator out of the loop
- results of optimizations can be presented to humans for
active guidance.

Figure 1: Apex Lake overview.

tration and resource management frameworks such as Open-
Stack2, Apache Mesos3 or Kubernetes4.

The following subsections describe the three functional
components of Apex Lake.

2.1 Telemetry: Full stack instrumentation
Today, system administrators use a combination of diverse

monitoring tools to extract data from the different layers
within the operating system. The number of software lay-
ers across the stack has also increased by a factor of ∼ 23

in virtualized servers [10]. Moreover, data from the differ-
ent layers need to be synchronized, integrated, preprocessed,
analyzed and presented to users or machine. Therefore full-
stack visibility and cross-layer analysis is crucial.

To meet these requirements a robust telemetry framework
called Cimmaron has been implemented. Cimmaron is a
scalable and integrated instrumentation framework allowing
users to deploy highly configurable and advanced instrumen-
tation agents coupled with analysis and visualization func-
tionality tailored for performance evaluation workflows. The
core functionalities are in two folds. Instrumentation and
monitoring– extensive monitoring of both kernel and user
spaces, encompassing application and service metrics. It
integrates time-series metric data from multiple sources, fil-
ters, aggregates and performs data preprocessing at source,
in-transit, or at the point of final data aggregation.

Cimmaron’s high-resolution and low-overhead event data
collection is vital to the orchestration system. It is used
to collect extensive data ranging from service-level metrics
(per-query latency), system metrics (e.g. per-core, per-socket
utilization), hardware counters (e.g. Intel PCM) and envi-
ronmental metrics (e.g. temperature and energy consump-
tion). In Figure 2, a typical deployment architecture of Cim-
maron with scalable back-ends, a control interface, and a
visualization front-end is shown.

Cimmaron also offers some key features that makes it suit-
able for large-scale instrumentation and performance anal-
ysis. It provides a unified data storage layer that can be
navigated or consumed uniformly. Existing specialized mon-
itoring tools can be connected as controllable plugins. Ad-
ditionallly, operational parameters and configurations can
be modified at runtime. An extensible (and pluggable) set
of statistical analysis and graphical charts are available via
a web-based user interface to view in real-time system be-
haviors, discover relationships, detect performance issues

2http://www.openstack.org
3https://mesos.apache.org/
4http://www.kubernetes.io

2

74

Figure 2: Cimmaron’s deployment architecture.

and/or bottlenecks.

2.2 The Information Core
The information core (Info Core) is a dynamic repository

encapsulating the datacenter as a set of multidimensional
planes. The primary responsibility of the Info Core is, to
manage the configuration, attributes and spatial information
of datacenter entities. This enables us to link the physical
and logical topology of the infrastructure with contextual in-
formation such as availability, utilization patterns, etc. The
Info Core is made up of two parts namely; the landscape;
and a contextual database of the landscape. We present
them in sections 2.2.1 and 2.2.2.

2.2.1 Landscape
The landscape is a graph-based model representing the

topology and composition of the SDI, its resources and hosted
services. Live data from OpenStack is used to organize the
entities into three major layers as shown in Figure 3. All
hosted application services and their components currently
running on the infrastructure are aggregated in the Service
Layer. The Virtual Layer maps all active software-defined
entities (e.g. virtual machines, containers, networks ports
and block storage). The Physical Layer contains all physi-
cal resources (e.g. RAM, disks, CPUs, NICs switches, etc).

The landscape is automatically and continuously updated,
versioned and maintained in a concurrent state with the SDI.
Subgraphs can be extracted from the overall landscape to
capture specific scopes within the SDI at any point in time.
For example, a service subgraph can be used to identify the
components of the service within each layer. Given a service
subgraph, it is possible to characterize service performance
and identify issues such as interference with other services
sharing the same set of resources at the virtual and physical
layers.

Nodes of a landscape graph are identified by a set of im-
mutable properties (such as name, type, layer and, category)
together with mutable state information (such as VM capac-
ity, MAC and IP address, CPU flags, etc.). Edges represent
semantic relationships or associations between nodes across
or within layers. We currently implement five edge labels
such as depends on, requires, and internal for intra-layer
relationships, and runs on and deployed on for inter-layer
relationships.

In general, the landscape is useful for understanding the
topology and dynamic composition of the SDI, and for track-
ing its evolution over time. It captures the key features of
each entity, its KPIs as well as capacities. More impor-
tantly, such data can easily be interpreted to support in-

Figure 3: Layers within an E2E landscape.

formed orchestration and to identify performance problems
(e.g. to identify performance interference). When enriched
with telemetry data the landscape offers multiple planes on
which we can identify hot- and/or cold-spots in the infras-
tructure.

2.2.2 Contextual Information
The purpose of contextual information is to capture the

temporal nature of telemetry data and landscape models.
Apex Lake provides three types of such information.
Fingerprints are compact, versioned, representations of

the runtime behaviours of entities in a SDI. A fin-
gerprint is a tuple f = (g,Q, t) where g is a service
subgraph, Q is the set of entity states of all nodes in
g, and t is a time-stamp. At every sampling interval, a
snapshot of a subgraph is captured and for each node,
its state q is appended to Q. An entity state is made up
of measured Utilization, Saturation, and Error (see the
USE methodology in [11]) rates derived through sum-
mary statistics (e.g. average, median or histogram). A
time-series of fingerprints are thus suitable for charac-
terizing the behaviour of the SDI at specific points in
time or to reason over its evolution.

Heuristics and models are derived by applying machine
learning and data mining algorithms to telemetry and
landscape data. Models can be used to express, for
example, degradation of disks or performance impact
of an IntelR© XeonR© E5 CPU versus E7. Models are
expressed using indicators: I = F (X|Y) which maps
to indicator I a function of parameter X given Y . The
parameter Y holds information about the landscape
and the entities within.

Recipes are used to translate insights (in form of heuristics
and models) back into the orchestrator. They are com-
posed of simple process flows statements that enable
orchestrators and controllers to automatically make
decisions. Because they are versioned, different recipes
are enabled for different decision points and time. For
example, outcomes of scheduling decisions may vary
according to the time of the day.

3

75

Figure 4: Foreground/Background flows in an Apex
Lake enabled environment

2.3 Analytics Engine
The analytics engine is implemented as a cloud-native

PaaS service providing a plugable framework for analyz-
ing telemetry and landscape data to produce heuristics and
models. It interfaces with Cimmaron and the Info Core via
a set of RESTful APIs. Analytics procedures can be imple-
mented as workbooks using the Python5 programming lan-
guage however they can also be easily integrated with statis-
tical computing environments such as R6. Such workbooks
are used to analyze incoming data in a manner that is simi-
lar to complex event processing systems to generate heuris-
tics and models. Recipes are derived from these heuristics
and models to drive decisions that can trigger actuation and
control functions within the underlying orchestration and
resource management framework. This is achieved through
the (internal and remote) APIs of the orchestrators and con-
trollers or with the aid of standards such as OCCI[12].

2.3.1 Analytics for Orchestration
In SDIs, a major concern relates to the feasibility of in-

strumentation considering the ever increasing depth across
infrastructure and services. Apex Lake’s solution to this
question is based on Netflix’s [13] approach. This approach
supports inspection of the system through multiple levels of
magnifications in order to access different levels of detail.
Consequently Cimmaron, the landscape, and Info Core pro-
vide views with configurable granularity. The 10x magnifi-
cation provides high-level views such as service subgraphs.
At 100x, it is possible to zoom into any node in a sub-
graph to access finer detail about performance and opera-
tional state of the entities. The 1000x provides the finest
view of the landscape. At this level it is possible to drill-
down into individual entities to evaluate their behaviors.

Data and control signals flow through Apex Lake via two
basic process flows; the foreground and background flows.
Foreground Flow includes a set of steps that are used to

receive and process front-facing events such as process-
ing a customer’s service requests or change requests as
shown in Figure 4. It is also designated as the fast
loop.

Background Flow supports deriving contextual informa-
tion such as the retraining of heuristics and models.

5Python offers a wide varieties of packages for analyzing
different kinds of data. Examples are numpy, python pandas,
scikit-learn, r2py, scipy, networkx, statsmodels, etc
6http://www.r-project.org/

As processing of the data can take significant amount
of time, this flow is designated the slow loop. The slow
loop follows a Watch-Learn-Decide cycle as in Figure 4.

It is important to determine which decisions can be en-
hanced using the process flows. The life-cycle of services
(and sub-components) offers a good starting point. A ser-
vice life-cycle from initial request through provisioning to
retirement has numerous decision points associated with it.
Since orchestration spans all these phases, it is crucial to
determine which decisions can be enhanced by results of
analytics. This can be a) for service orchestration such as
scaling as well as b) for infrastructure orchestration such as
re-balancing the landscape.

In general, there exists many use cases for analytics-based
orchestration as provided by Apex Lake. A use case is pre-
sented in Section 3, showing how functionalities such as
telemetry, information core and analytics are combined to
achieve intuitive just-in-time problem identification.

2.4 Deployment
The landscape is stored in a Neo4j7 graph database in-

stance. To demonstrate the scale of the landscape: a simple
OpenStack testbed with 50 active VMs results in a land-
scape with approximately 1000 nodes describing compute,
network and storage resources, within the three layers. As
changes in the landscape are tracked, versioning informa-
tion over a one week time-frame scales the graph to excess
of 20,000 nodes. For the same setup, Cimmaron generates
over 12,000 data points per second. The data is stored in a
HBase8 cluster with query support via an OpenTSDB9 data-
store. Because Neo4j currently provides no feature to store
versioned graphs, contextualized fingerprints are stored in
a NoSQL database provided by RethinkDB10. Empirically,
Apex Lake has low runtime performance overhead (compute
and memory) on the underlying system. Cimmaron agent
for example only accounts for less than 1 percent of CPU
utilization.

3. USE CASE: LANDSCAPE COLOURING
Systems administrators typically navigate and analyze huge

volume of data to diagnose performance issue such as re-
source bottlenecks and failures[14]. Typically, this type of
data does not include topology information. Landscape colour-
ing leverages the functionalities provided by Apex lake to
classify landscape nodes based on their prevailing states.
Machine readable coloured graphs or their subgraphs are
then used for detecting anomalous changes in the states of
entities. Due to the sheer size of landscape graphs, multi-
ple nodes may be classified anomalous concurrently. In such
cases anomalous nodes are ranked to identify high-risk ones.

This use case was conducted on an OpenStack testbed
comprising four application services deployed as virtual ma-
chines on two physical servers with different configurations.
First, using the entity definitions within OpenStack, a full-
stack graph G of the landscape is constructed. G is an in-
complete digraph having 21, 22, and 38 nodes in the service,
virtual and physical layers respectively. The total number of
edges is 102 and with a density of 0.02. For this experiment

7http://neo4j.com/
8http://hbase.apache.org/
9http://opentsdb.net/

10http://rethinkdb.com/

4

76

we injected three classical performance issues namely disk
failure, CPU saturation and network saturation.

Characterizing entity behaviours. The state of an entity
(e.g. compute, network, memory, and storage) in a land-
scape at time t is a tuple of its utilization and saturation,
yt = (ut, st) derived from summary statistics. Consequently,
a rule-based mechanism assigns yt to a state according to
which regions it falls in a two-dimensional map of st against
ut. The error state may correspond to a faulty entity such
as a disk failure characterized by a high queuing rates and
an unusually low utilization. The hot state is indicative of
an over-utilized entity characterized by high queuing and
utilization values. An under-utilized landscape entity with
low queuing and utilization rates falls into the cold region
while the warm state is characterized by moderate to high
utilization and low saturation rates. The bounds of states
are parameterized by empirically threshold.

Detecting anomalous entities. The severity of an entity
remaining in an error or hot state for long is greater than
the cold and warm states. Hence, the error and hot states
are classified as undesirable while the cold and warm states
are classified as desirable. A threshold-based change detec-
tion algorithm is applied to identify anomalous entities. The
threshold, a hanging length, l, is the maximum amount of
time an entity is allowed to remain in the undesirable state.
Overtime, the state of each entity is monitored against the
hanging length. Alarms are raised when the threshold is
broken. To improve speed and robustness, a careful choice
of l is desired so that l is large enough to prevent false alarms
and small enough to accommodate transient events.
Figure 5 shows alarm points for a landscape whose zoomed-
in snapshot is shown in Figure 6(a). The plots demonstrate
the detection of a cascading disk failure in a virtual layer
storage entity, vsd1 deployed on sdb1, a physical storage de-
vice. With hanging length l = 3, sdb1 is first flagged at
t = 53 and remains so until t = 57 when it is restored. Cor-
responding alarms are observed for vsd1 and other virtual
storage entities due to dependency on sdb1. Once entities
are flagged as anomalous, they are reflected in bold colors
in the landscape graph (see Figure 6(b)).

Ranking anomalous entities. Due to the size of the land-
scape, multiple alarms are possible which can easily over-
whelm administrators and management tools (Figure 6(b)).
Moreover, the criticality of alarms, should they be rectified
later, differ depending on the influence of the entities. In-
fluential entities in a landscape graph are those high-risk
nodes with high upper-layer dependencies. Such nodes are
similar to hub and authority nodes in web information re-
trieval. Hence it is necessary to prioritize anomalous en-
tities according to their influence. Our approach exploits
the inherent structure of landscape graph itself to iden-
tify correlations and dependencies within and across lay-
ers. The ranking of anomalous entities is based on the clas-
sic PageRank [15] algorithm. Given a colored landscape di-
graph, G′ = (V,E), the influence rank of an entity v is

computed as ir(v) = (1− α) + α
∑

v′∈V ′
ir(v′)

outdeg(v′) . v′ ∈ V ′
containing all entities that depends on v. With outdeg(v′),
each entity spreads its influence out evenly among all enti-
ties they depend on. The share of influence contributed by

v′ to v is given by
∑

v′∈V ′
ir(v′)

outdeg(v′) . The individual influ-

ence contributed by each entity depending on v is ”damped
down” by the parameter 0 < α < 1, set to 0.85 in this case.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

time (t)

error

cold

warm

hot

en
tit

y
st

at
e

sdb1

(a) Physical layer storage entity: sdb1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

time (t)

error

cold

warm

hot

en
tit

y
st

at
e

vsd1

(b) Virtual layer storage entity: vsd1

Figure 5: Detection of cascading anomalies

The (1 − α) term makes up for entities in the leaves of the
physical layer having no out-going links. Ranking results
are automatically generated as in Figure 7.

Finally, the influence ranks are then converted to recipes
that instruct the orchestrator on how to resolve the anoma-
lies11. For example, Figure 7 shows that the network device
em0 is the most influential at the given time followed by
sdb1 and vndn0 respectively. The colors and sizes of points
on the graph correspond to their influence.

Enhancing orchestration with Landscape Colouring. Land-
scape colouring is a completely automatic process that can
be used as a starting point for root-cause analysis of per-
formance and fault issues in the datacenter. Apex Lake is
configured to provide colouring continuously or selectively
either for the whole landscape or its subset in the back-
ground loop of Figure 4. By continuously monitoring and
coloring the landscape a view is created which represents
the prevailing states of entities in the landscape and their
dependencies. This view shows the implications of nodes on
their neighbors. A node and its neighbors might be man-
aged by different subsystems (like SDN or SDS) but thanks
to Apex Lake their interplay can be shown and accounted
for.

By creating this view and storing it in the Info Core as
contextual information, orchestration components are en-
riched with appropriate just-in-time information. This view
can be utilized as an input parameter at multiple actuation
points. In order to rectify observed anomalies, the orches-

11Coloured landscapes can also serve a basis for visual in-
spection in smaller landscapes such as scoped or service sub-
graphs

5

77

(a) Initial landscape t = 0

(b) Colored landscape at t = 53

Figure 6: Testbed landscapes

trator may take scaling or re-balancing decisions and trigger
actuation actions to realized required changes. The orches-
trator can also use this information to steer new workloads
away from physical layer entities exhibiting intermittent bot-
tlenecks behaviors.

4. RELATED WORK
Components of the Apex Lake framework, such as the

analytics pipeline, are designed to optimize orchestration
in OpenStack and Mesos as well as for realizing demand
predictions such as AGILE [16] and SCADS [17].

Nagios and Ganglia already provide monitoring in dis-
tributed environments. Closely related to Cimmaron’s scal-
able monitoring and data management is Netflix’s Atlas [18]
albeit with emphasis on visualization and query optimiza-
tions. Our graph-based landscapes extends beyond service
and network layer components as in [19] to the architectural
level. Although the concept of fingerprints have been used
in diverse systems domains for characterizing operational

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

In
flu

en
ce

ra
nk

vnd2
mem1

mem0
vsd1 mem1

em0

vndn1

vndn0

vsd2

vnd3 vnd0

sdb1

mem0

Figure 7: Ranking simultaneous anomalous entities

states [20], fingerprints in Apex Lake extends this idea with
topology information to easily assess time-varying depen-
dencies.

5. CONCLUSIONS
The realization of smart orchestration to support Software

Defined Infrastructures is predicated on the availability of
an integrated platform offering 1) a scalable data collection
system, 2) a robust information repository and 3) a seam-
less analytic service. In this paper, we have demonstrated
the viability of Apex Lake to realize this goal. A general
overview of the framework and its component parts (i.e.
Telemetry, Information Core, and Analytics) has been pre-
sented. In particular, the use of rich multi-hertz telemetry
data to support contextualization of infrastructure and ser-
vice landscapes from which heuristics and models are learned
is described. Finally, a use-case demonstrating how Apex
Lake supports intelligent root-cause analysis for detecting
and ranking anomalous SDI entities is outlined.

Apex Lake is being developed by Intel Labs Europe’s
Cloud Services Lab, Ireland, since 2014. Ume̊a University
made use of Apex Lake to demonstrate the concept of land-
scape colouring.

A number of use cases for future work have also been de-
fined, which will drive the evolution of the Apex Lake frame-
work. Examples include a) use cases which extend beyond
the datacenter to the edge of SDIs such as IoT scenarios
b) analysis of interdependent policy enforcement on subsys-
tems which have dependencies on each other (such as SDN
and SDS) c) development of control-theoretic autonomics
for meeting system-wide objectives.

6. ACKNOWLEDGMENTS
We acknowledge the contributions of members of the Cloud

Services Labs at Intel Labs Europe, towards the Apex Lake
Framework as well as Michael Mcgrath for proofreading and
providing constructive feedback.

This work is also supported by the Swedish Research Coun-
cil (VR) through the Cloud Control project (C0590801).
Apex Lake builds upon results of collaborative research funded
by the EU Projects: SLA@SOI (#216556), Mobile-Cloud
Networking (#318109), T-Nova (#619520), RESERVOIR,
and IOLanes (#248615).

6

78

7. REFERENCES
[1] X. Zhiqun, C. Duan, H. Zhiyuan, and S. Qunying.

Emerging of telco cloud. Communications, China,
10(6):79–85, 2013.

[2] A. Ali-Eldin, J. Tordsson, and E. Elmroth. An
adaptive hybrid elasticity controller for cloud
infrastructures. In Network Operations and
Management Symposium (NOMS 2012), IEEE, pages
204–212. IEEE, 2012.

[3] W. Li, J. Tordsson, and E. Elmroth. Virtual machine
placement for predictable and time-constrained peak
loads. In Proceedings of the 8th International
Workshop on Economics of Grids, Clouds, Systems,
and Services (GECON 2011), pages 120–134. Lecture
Notes of Computing Science, Vol. 7150,
Springer-Verlag, 2012.

[4] C. Subramanian, A. Vasan, and A. Sivasubramaniam.
Reducing data center power with server consolidation:
Approximation and evaluation. In High Performance
Computing (HiPC), 2010 International Conference on,
pages 1–10. IEEE, 2010.

[5] D. Espling, L. Larsson, W. Li, J. Tordsson, and
E. Elmroth. Modeling and placement of structured
cloud services. IEEE Transactions on Cloud
Computing, Accepted, 2014.

[6] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes. Omega: flexible, scalable schedulers for
large compute clusters. In Proceedings of the 8th ACM
European Conference on Computer Systems, pages
351–364. ACM, 2013.

[7] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes. Large-scale Cluster
Management at Google with Borg. In Proceedings of
the Tenth European Conference on Computer Systems,
page 18. ACM, 2015.

[8] G. Kandiraju, H. Franke, M. Williams, M. Steinder,
and S. Black. Software defined infrastructures. IBM
Journal of Research and Development, 58(2):1–13,
2014.

[9] C. Liu, Y. Mao, J. Van der Merwe, and M. Fernandez.
Cloud resource orchestration: A data-centric
approach. In Proceedings of the biennial Conference on
Innovative Data Systems Research (CIDR), pages 1–8,
2011.

[10] V. Bayon-Molino, M. Marazakis, Y. Klonatos, R. Nou,
and J. Giralt. Iolanes deliverable d5.2: Tools for

experimental monitoring and logging and tools for
analytical evaluation, 2012.

[11] B. Gregg. Use method: Linux performance checklist.
http://www.brendangregg.com/USEmethod/

use-linux.html, September 2013.

[12] A. Edmonds, T. Metsch, A. Papaspyrou, and
A. Richardson. Toward an open cloud standard.
Internet Computing, IEEE, 16(4):15–25, July 2012.

[13] C. Watson, S. Emmons, and B. Gregg. A microscope
on microservices. http://techblog.netflix.com/
2015/02/a-microscope-on-microservices.html,
February 2015.

[14] O. Ibidunmoye, F. Hernández-Rodriguez, and
E. Elmroth. Performance anomaly detection and
bottleneck identification. ACM Computing Surveys
(CSUR), 48(1):4, 2015.

[15] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Computer networks
and ISDN systems, 30(1):107–117, 1998.

[16] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and
J. Wilkes. Agile: Elastic distributed resource scaling
for infrastructure-as-a-service. In Proc. of the USENIX
International Conference on Automated Computing
(ICAC 13). San Jose, CA, 2013.

[17] B. Trushkowsky, P. Bod́ık, A. Fox, M. J. Franklin,
M. I. Jordan, and D. A. Patterson. The scads director:
Scaling a distributed storage system under stringent
performance requirements. In FAST, pages 163–176,
2011.

[18] H. Brian and R. Roy. Introducing atlas: Netflix’s
primary telemetry platform.
http://techblog.netflix.com/2014/12/

introducing-atlas-netflixs-primary.html,
December 2014.

[19] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A.
Maltz, and M. Zhang. Towards highly reliable
enterprise network services via inference of multi-level
dependencies. In ACM SIGCOMM Computer
Communication Review, volume 37, pages 13–24.
ACM, 2007.

[20] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and
H. Andersen. Fingerprinting the datacenter:
automated classification of performance crises. In
Proceedings of the 5th European conference on
Computer systems, pages 111–124. ACM, 2010.

7

79

80

III

Paper III

Performance Anomaly Detection using Datacenter
Landscape Graphs

Olumuyiwa Ibidunmoye*, Thijs Metsch**,
Victor Bayon-Molino**, Erik Elmroth*

*Dept. Computing Science, Umeå University
SE-901 87 Umeå, Sweden

{muyi, elmroth}@cs.umu.se
http://www.cs.umu.se/ds

**Intel Labs Europe
Collinstown Industrial Park,Leixlip, Ireland

{thijs.metsch, victor.bayon-molino}@intel.com

Abstract: The migration of mission-critical workloads to the cloud and automa-
tion of various aspects of datacenter management is contributing to the evolution of
software-defined infrastructures. One implication of this evolution is that the com-
position (both physical and virtual) and logical topology of datacenters is becoming
even more dynamic. Identification of performance problems (e.g. bottlenecks) in such
environments needs to be aware of this dynamic topology to understand the impact of
dependencies among components. We introduce a technique that a) employs expert
knowledge to identify bottleneck components using associated performance metrics,
and b) uses dynamic dependencies across components to rank problem components.
We demonstrated the technique experimentally on an OpenStack testbed with realistic
load and bottleneck injection. We observed that the technique is able to detect and
rank problem nodes; and may facilitate diagnosis effort.

83

84

Performance Anomaly Detection using Datacenter
Landscape Graphs

Olumuyiwa Ibidunmoye∗, Thijs Metsch†, Victor Bayon-Molino† and Erik Elmroth∗
∗ Department of Computing Science

Umeå University
SE-901 87 Umeå, Sweden

Email: {muyi, elmroth}@cs.umu.se
† Intel Labs Europe

Collinstown Industrial Park
Leixlip, Ireland

Email: {thijs.metsch, victor.bayon-molino}@intel.com

Abstract—The migration of mission-critical workloads to
the cloud and the automation of various aspects of datacenter
management is contributing to the evolution of software-defined
infrastructures. One implication of this evolution is that the
composition (both physical and virtual) and logical topology of
datacenters is becoming even more dynamic. Identification of
performance problems (e.g. bottlenecks) in such environments
needs to be done with awareness of this dynamic topology to
understand the impact of dependencies among components.
We introduce a technique that a) employs expert knowledge to
identify bottleneck components using associated performance
metrics, and b) utilizes dynamic dependencies to rank problem
components. We demonstrated the technique experimentally
on an OpenStack testbed with realistic load and bottleneck
injection. We observed that the technique is able to detect and
rank problem nodes; and may facilitate diagnosis efforts.

I. INTRODUCTION

Increasing workload requirements, advancements in vir-
tualization and associated cloud computing technologies are
contributing to the recent development of software-defined
infrastructures (SDIs). Traditional computing resources, such
as compute, storage and network are, as a result becoming
increasingly software-defined and programmable [1]. Trou-
bleshooting operational problems (e.g. service downtimes,
server faults, capacity shortages, etc.) in such environment
will be a challenge considering the dynamic nature of the
logical topology and composition of the entire computing
stack.

Performance troubleshooting in datacenters typically in-
volve monitoring many performance metrics, such as ap-
plication performance, and resource and energy utilization
counters, to determine if hosted services and resources are
meeting target service-level objectives (SLO) [2]. Although,
analyzing such high-level metrics is indispensable, real-
time information about changing dependencies within the
datacenter is equally important in order to understand, detect,
and circumvent performance issues. This is also essential for
enhancing the agility of services and datacenter resources.

Existing datacenter management frameworks and mid-

dlewares such as OpenStack1, Kubernetes2, and OpenDay-
Light3 already provide a growing set of functionalities for
managing the large heterogeneous pools of compute, stor-
age and networking resources in a uniform and distributed
manner. However, they lack functionalities for tracking and
managing topology information dynamically. Also, there is
lack of appropriate analytics subsystems to extract insights
from real-time operational and topology data to support run-
time orchestration for optimized service delivery.

Intel’s Apex Lake [3] is a framework for handling
numerous orchestration use cases in datacenters especially
in SDIs. One major feature of Apex Lake is its concept of
landscapes which are graph-based models of the temporal
datacenter topology. Landscape graphs continuously orga-
nize both physical and logical entities (e.g. compute, storage
and network resources, and application services) of a data-
center into a multi-dimensional graph structure. Apex Lake
combines landscapes with appropriate analytics to discover
insights and heuristics to derive datacenter optimizations,
such as initial placements, re-balancing, etc. Preliminary
deployments of Apex Lake indicated that the ability to
quickly discover performance deviations from target SLOs
and to identify suspect landscape nodes is an essential use
case of the Apex Lake framework. This work is an attempt
to address this need. The specific research question is:

How to efficiently exploit real-time operational
metrics and dynamic spatial relationships in order
to identify anomalous landscape entities?

We propose landscape colouring, a problem identifica-
tion mechanism for classifying anomalous nodes (or enti-
ties) in landscape graphs. Anomalous nodes are datacenter
components showing manifestation of bottlenecks (e.g. CPU
saturation, or crashed disk storage). Landscape colouring
leverages expert knowledge to identify anomalous nodes
based on associated performance metrics, and utilizes inter-
node spatial dependencies to rank multiple anomalous nodes.

1https://www.openstack.org/
2http://kubernetes.io/
3https://www.opendaylight.org/

85

This paper is organized as follows. This section is con-
cluded with a brief review of related works in Section I-A.
Section II introduces Apex Lake. We describe the construc-
tion of landscape graphs in Section III. The methodology
used by landscape colouring to identify anomalous landscape
entities is discussed in Section IV. We describe a short
experiment conducted on an OpenStack testbed in Section V
to demonstrate our approach. We conclude in sections VI
and VII.

A. Related work

Performance troubleshooting research have explored the
dependencies among distributed components for problem
determination as found by recent survey of the field [4],
[5]. This has led to many systems and algorithms in-
cluding Pinpoint [6], Sherlock [7], LWT [8], Net-Cohort
[9], E2EPROF [10], Orion [11], and ADD [12]. However,
many of these systems are white-box in nature, and are
designed from the application perspective. Hence they typ-
ically model only application components without physical
resources. Dynamic dependencies across components are
mostly derived through source-code instrumentation, tracing
application transactions, requests, or call-graphs.

The closest study to this work is VFocus as proposed
in [13]. VFocus utilizes graph analytics for troubleshooting
and managing datacenters. While VFocus are realized via
distributed data-processing graphs (DPG), the graph nodes
are data processing agents and may not correspond to an
actual datacenter entity. Landscape colouring is based on
Apex Lake’s landscape graphs whose nodes are directly
associated with at least one physical or virtual datacenter
entity.

II. APEX-LAKE: SMART ORCHESTRATION IN SDIS

Apex Lake [3] is a framework for supporting smarter
orchestrations in cloud datacenters especially in SDIs. It
is being actively developed by the Cloud Service Lab of
Intel Labs Europe. The main vision of the framework is
‘efficiently defining and maintaining a landscape of the phys-
ical and logical resources and associated services enriched
by end-to-end monitoring, to support setup and run-time
orchestration for optimized service delivery’ [3]. The frame-
work provides functionalities that enables various orchestra-
tion use cases in SDIs. Orchestration use cases include initial
placement decisions (e.g. placement of complex services),
re-balancing actuations (e.g. migrating service replica to
ensure SLA compliance), and capacity planning (e.g. auto-
scaling and hardware upgrades).

Apex Lake consists of three major subsystems that
have been identified as required components for smart
orchestration. Figure 1 shows the overall architecture of
the framework showing these components and the control
flows within the context of an SDI. Apex Lake operates
according to two control flows, the foreground flow and
the background flow. The foreground flow handles front-
facing requests and events while the background flow de-
livers key insights to make better/smarter decisions via a
Watch-Learn-Decide cycle.

Fig. 1: Overview of Apex Lake showing its major com-
ponents (Telemetry, Landscape, Analytics Engine, and Info
Core) , managed entities (application services; compute,
storage, and network resources) and control flows (Fore-
ground flow (green lines), Background flow (orange lines)
[3].

Telemetry. Cimmaron is Apex Lake’s distributed teleme-
try system for collecting extensive operational indicators
about datacenter entities at different granularity (the watch
step). Examples of operational data include in-band metrics
(e.g. service latency, OS kernel counters), out-of-band met-
rics (e.g. rack controller counters) and environmental metrics
(e.g. temperature and energy consumption). Cimmaron’s
data can be uniformly consumed through its unified data
storage layer and can be easily configured to consume
data from existing monitoring tools in a publish-subscribe
manner. Also it provides a web-based user interface for
analysis and visualization.

Landscape. The landscape aggregates datacenter into
three layers as in Figure 2, representing both the physical
topology and spatial connections (or dependencies) between
entities in the datacenter at any point in time. There exist
a landscape agent responsible for continuously monitoring
changes in the spatial relationships and composition of
datacenter.

Fig. 2: A snapshot of the aggregation of datacenter entities
into landscape graphs; showing the service, virtual, and
physical layers as well as the dependency between them [3].

2

86

Analytics Engine. This is a PaaS service exposing a
set of RESTful API through which the other component
(e.g. telemetry and the background flow) consume its func-
tionalities. Aggregated telemetry information are linked to
entities in specific scoped landscape graphs and tagged
with timestamps to obtain what is known as contextualized
fingerprints. These fingerprints can be analyzed using data
mining and machine learning techniques to derive real-time
insights (the learn step). The outcome of such analysis can
be used for correlating a landscape subgraph (representing
a service, a server, or a customer) to the telemetry of its
nodes.

Information Core. The Info Core is a dynamic repos-
itory for managing entity configurations, monitoring data
(e.g. availability, utilization, etc.), landscape data, and finger-
prints. In general, the Info Core maintains multiple versions
of its content in order to capture the temporal nature of
the infrastructure. In addition, the background flow can
apply machine learning or data mining algorithms on its
content to derive heuristics and models (e.g. decision trees,
classification rules, etc.). These heuristics and models are
subsequently converted to recipes that are used to optimize
the behaviour of one or more datacenter entities towards
a service objective (the decide step). Apex Lake’s recipes
are machine-readable decision flow (e.g. an auto-scaling
or migration procedure) expressed in high-level declarative
language.

The current implementation of Apex Lake persists
telemetry data collected by Cimmaron in a HBase4 cluster
with query support via an OpenTSDB5 datastore. Also,
landscape graphs are maintained in a Neo4j6 graph database.
RethinkDB7 is used to store contextual information such as
entity behaviour due to scalability issues with Neo4j.

III. LANDSCAPE GRAPHS

The landscape is a graph-based model of the composition
of the SDI, the physical topology and spatial relationships
(or dependencies) among entities in the datacenter at any
point in time. Datacenter entities include servers, server
resources, such as compute, memory, storage, and network,
as well as components of running application services. The
landscape agent in Figure 1 constructs the landscape using
live data from OpenStack and organizes the entities into
three planes namely; service, virtual and physical layers.

Service Layer. This encompasses all hosted application
service components currently running in the datacenter.
A service may be composed of web, application and
database servers.

Virtual Layer. This layer maps all active software-defined
entities in the datacenter such as virtual machines
(VM), Linux containers, load balancers, virtual network
(e.g. ports, router, etc), and virtual storage (block and
object) devices.

Physical Layer. This refers to all physical servers and
associated system resources to which virtual entities

4http://hbase.apache.org/
5http://opentsdb.net/
6http://neo4j.com/
7http://rethinkdb.com/

are mapped. Example of physical entities are servers,
RAM, disks, NICs, CPUs, switches, routers, PDUs, etc.

Fig. 3: Schema of a typical landscape graph showing entities
(nodes), their dependencies (edges) and specific scopes or
subgraphs. Edge label dep_on abbreviates depends_on.

Figure 3 is a hypothetical landscape of a small datacenter
showing the layers, four running service stacks (A, B, C
and D), the scope of three customers (X, Y, Z), and the
dependency across entities. Each landscape node is asso-
ciated with a set of immutable attributes (e.g. name, type,
and layer) and mutable attributes (e.g. VM capacity, floating
IP addresses) maintained in the Info Core. Graph edges are
semantic relationships or associations between nodes and
are directed to indicate intra or inter dependencies. The list
and description of available edge labels are presented in
Table I. For simplicity, the relationship between a service
layer and virtual layer node is directed and one-to-one (e.g.
components of an e-commerce service can run in individual
VM or together in a single VM). However, the connection
between virtual entities and physical entities is many-to-one
(e.g. many VMs sharing a server).

The graph structure of the landscape lends itself to in-
teractive visualization and powerful graph analytics in SDIs.
For example, subgraphs of specific scopes (or views) can be
extracted to support multiple use cases. Based on Figure 3,
a subgraph of service D, containing 1 service layer node,
1 virtual node, and 5 physical nodes (having 1 server), can
be used to optimize its performance. Similarly, a subgraph
of Customer X, containing 1 service stack with 1 service
layer node, 2 virtual nodes, and 10 physical nodes (having
2 servers), can be used to optimize total operating cost. The
landscape may also be scoped along or across layers, to
optimize datacenter utilization or energy consumption. The
landscape agent continuously monitors the SDI for changes
due to addition and/or deletion of nodes or edges. Based on
this, the background flow of Figure 1 persists in the Info
Core versioned fingerprints composed of a given subgraph
as well as the mutable attributes and performance metrics of
its nodes.

Landscape fingerprints can be analyzed to serve many
purposes such as (a) for understanding the topology and
composition of services and datacenter components, and
tracking how they evolve over time (b) to serve as basis
for service or infrastructure orchestration, (c) for identifying
problem nodes (e.g. SLO-violation, capacity bottlenecks and

3

87

contention) and automatic correction. Section IV of the
paper address the last purpose.

IV. LANDSCAPE COLOURING

Landscape colouring is a mechanism for automatic
identification of anomalous nodes in a landscape graph.
It addresses the question posed in Section I for a given
landscape graph. The concept of ‘colouring’ is similar to
page colouring or cache colouring when mapping virtual
memory to physical memory in operating systems [14]. Page
colouring ensures that adjacent or consecutive virtual pages
are not mapped to the same physical memory pages which
may lead to cache contention. Colouring is done so that
physical memory pages with different colours are allocated
to different blocks in cache memory. Therefore, to avoid
cache conflicts, consecutive virtual pages are mapped to
different (but consecutive) colors in physical memory. This
scheme thus exploits spatial locality so that conflicts only
occur between pages whose virtual addresses differ by a
multiple of the cache set size [15].

The idea is that based on real-time performance mea-
surements of landscape entities we can easily classify their
behaviour into one of a number of discrete states. The state
of a node can then be used to reason if a given node
is anomalous or not. Based on spatial relationships with
other entities, anomalous nodes can be ranked according
to the spatial influence within the given landscape. The
assigned states and spatial influence then become some sort
of logical colouring that can be used for (a) visualization,
(b) for optimizing placement and re-balancing decisions,
(c) for identifying performance hot-spots and to ‘guide’ an
orchestrator or a human operator when correcting the hot-
spots. In this paper we focus on visualization and identi-
fication of anomalous nodes. Given a landscape graph, the
landscape colouring technique utilize performance metrics of
and spatial relationships among nodes to classify and rank
landscape nodes in an online manner.

Landscape colouring rely on core components of Apex
Lake to classify nodes of landscapes. Performance metrics
(e.g. availability, utilization, saturation, etc.) of each land-
scape node are provided by Cimmaron, and are versioned,
and persisted in the Info Core through the background flow
of Figure 1. The landscape colouring processing is also
offloaded to the back-end analytics engine.

A. Characterizing landscape nodes

A landscape graph is a directed acyclic graph g =
(V,E), g ⊆ G, where G is the overall landscape of a
datacenter or cluster, V is the set of its vertices or nodes,
while E a set of edges. A node, v ∈ V , belongs to at
most one layer, and may represent a web server, a virtual
machine, or an Intel Xeon E5 processor. An edge, e ∈ E,
is a link indicating the type (Table I) of logical dependency
between two landscape nodes. Associated with each virtual
and service layer node v is a behaviour tuple b = (U ,S),
where U and S are each a vector of length k, representing the
k most recent values of the node’s utilization and saturation

metrics respectively. The metric choice is based on the USE8

[16] methodology for identifying performance bottlenecks in
datacenters.

Utilization. This is the usage of corresponding landscape
node (in percentage) in terms of degree to which a
resource is busy or what amount of its capacity is
consumed.

Saturation. The length of associated resource queue, e.g.,
CPU run queue, disk requests queue, etc. It captures the
quantity of queued work that cannot be serviced given
the current capacity of a resource. To keep utilization
and saturation metrics uniform, Cimmaron computes
saturation as the percentage of time a non-zero queue
length was observed over the same interval in which
the corresponding utilization value was averaged.

Note that this node definition applies only to virtual and
physical layer entities that have a run-time (i.e. deployed
within a VM, container, or physical server). The behaviour
attribute b of a service node is a k-length vector representing
the k most recent observation of the node’s application-level
performance metric such as service latency or throughput
etc.

Technically, not all nodes of the landscape have as-
sociated utilization and saturation metrics (e.g. it is only
intuitive to talk of the utilization of a server’s CPU resource
rather than the server itself). Hence, we classify landscape
nodes in the physical and virtual layers as either minor or
major entities. Minor entities represent resources internal
to a virtual or physical server such as CPU, RAM, network,
disk storage, etc., while major entities are those with a
runtime and contains a number of resources e.g. VM, server,
container, or a software-based router running in a VM.

Low Medium High

Utilization

Low

High

S
at

ur
at

io
n

1 3 5

642

Fig. 4: 2-dimensional map of entity behaviour. The numeric
labels indicate six possible states when the utilization and
saturation behaviour of a node is plotted on the map.

Figure 4 is a 2-dimensional map showing the possible
combination of the two behaviour metrics after they have
been discretized into levels. While the saturation of a re-
source is either Low or High, its utilization may be Low,
Medium, or High. The real-time behaviour measurements

8The USE methodology proposes that by analyzing the Utilization,
Saturation (e.g. amount extra work waiting on queue), and/or Error (e.g.
amount of error events) metrics of individual system resource we can easily
characterize capacity bottlenecks at the system-level.

4

88

TABLE I: List of landscape edge labels and their semantic meaning.

Label Description Type
depends_on Service layer relationship e.g. a web server may depend on a database server Intra layer
runs_on Service to virtual layer relationship e.g. an application component runs in a virtual layer container (e.g. VM) Inter layer
deployed_on Virtual to physical layer relationship e.g. a VM deployed on a physical server Inter layer
requires Virtual layer relationship e.g. a VM requiring a virtual NIC Intra layer
internal Connections between physical entities e.g. a CPU is internal to a physical server Intra layer

of landscape entities are characterized by computing the
region it falls in on the 2D map. In this paper, the numbered
regions are referred to as states. Some states have more
meaningful interpretations than others depending on the op-
timization objective. For example, state 2 can be interpreted
as an error state or failure for a disk exhibiting high queuing
rates and an unusually low utilization. Likewise, state 6 may
suggests an over-utilized landscape entity, such as a fully-
utilized CPU with a growing queue. An under-utilized (cold)
entity is characterized by low queuing and utilization rates.
State 5 is a desirable objective in datacenters, we want to
achieve high resource utilization with little or no queuing.

Interpretation of regions or states depends on what
objective the infrastructure or service provider is trying to
optimize. For energy efficiency staying in states 1 or 3 for
too long may perhaps be undesirable since the server is
kept running while being under-utilized. Migrating jobs from
such server to others and shutting it down may potentially
improve server and energy utilization on the long run. Hence,
for a given goal, we group the states into desirable and
undesirable (anomalous) states. An entity state is classified
anomalous if it remains in undesirable state for most of the
time in a observation window.

B. Identifying anomalous nodes

The identification of anomalous landscape nodes are
realized through fuzzy classification. The approach is similar
to what is proposed in [17]. Fuzzy logic allows for logically
reasoning about uncertainty in a given domain in a traceable
and interpretable manner. Expert knowledge or heuristics
such as the interpretation of states in Section IV-A can easily
be formalized in terms of rules and membership functions
[18]. In systems literature, hard thresholds are generally
used to express vague heuristics such as high utilization
when CPU utilization is above 70%, for example, and low
utilization otherwise. Such heuristics generally assume that
membership to either levels is binary, i.e., 1 (belong) or 0
(does not belong). Fuzzy logic allows for membership that
takes on continuous values within the range [0,1], hence
expressing imprecise knowledge such as Very High or
Medium utilization becomes realistic. This accounts for the
softness in the boundaries between regions in Fig 4.

The first step in fuzzy classification is fuzzification, a
transformation of crisp values of a behaviour pair b =
(Ut,St) into fuzzy inputs. Continuous utilization values are
mapped into 3 fuzzy sets, Low, Medium, and High, while
saturation values take membership in 2 fuzzy sets, Low and
High. The terms Low, Medium or High are referred to
as linguistic variables. Elements of a fuzzy set may have
varying degrees of membership in the set. Let X be the
domain of a metric of interest (e.g. utilization). A fuzzy set

A in X is a range of continuous values in X and defined as
A = {(x, µA(x))|x ∈ X}. The term µA(x) is a membership
function µA : x → [0, 1] describing degree to which a
value x belong in A. Typically, the shape of µA(x) can take
different forms such as triangular, trapezoidal, singleton, and
bell waveforms [19]. We use the trapezoidal membership
functions for the Low and High fuzzy sets and the bell-
shape waveform for Medium. Figure 5 shows membership
functions of CPU utilization and saturation.

To determine the state of an entity at time given its
behaviour pair bt = (Ut,St) at time t, we fuzzify Ut and
St according to Fig 5a and Fig 5b respectively. Next we
combine the fuzzy inputs using fuzzy rules. A fuzzy rule
expresses a given knowledge in terms of linguistic terms as
shown in (1). It associates a set of conditions (antecedent)
to an output or conclusion (consequent).

Ri : IF x1 isA1. . . and xn is An︸ ︷︷ ︸
rule antecedent

THEN g∗ is i︸ ︷︷ ︸
rule consequent

.
(1)

For example, the degree of membership behaviour pair bt =
(Ut,St) in region 1 is computed using:

Ri : IF Utilization is Low and
Saturation is Low

THEN g∗ is i
(2)

where g∗ is one of six states in the 2D maps. The member-
ship function of the g∗ is a singleton. Fuzzy operators and is
based on the Mamdani-type fuzzy system. The output of (2)
is also called the support or firing strength for the rule. We
generated five more rules in addition to (2) corresponding
to the six states in the 2D map. Since an input behavior
pair may belong to multiple states at different degrees, we
aggregate the supports of all rules using the Max method. Let
τ be the set of supports for all rules for input bt = (Ut,St),
then, the state of bt is the consequent of Ri∗ , where

i∗ = argmax
i=1..6

τi

Recall that each landscape node is contextualized with
behaviour b = (U ,S) where U and S are vectors containing
k most recent observations of the two metrics in the current
window. We classify each observation using the procedure
above, the state of the entity for the window is determined
by majority vote. A node is anomalous if its derived state
belongs to the set of undesirable states. The states and
classes of nodes are then used to colour the landscape by
appending them to the mutable attributes of corresponding
nodes.

5

89

0 20 40 60 80 100

Utilization

0.0

0.2

0.4

0.6

0.8

1.0

M
e
m

b
e
rs

h
ip

Low

Medium

High

(a) Membership function of CPU utilization

0 20 40 60 80 100

Saturation

0.0

0.2

0.4

0.6

0.8

1.0

M
e
m

b
e
rs

h
ip

Low

High

(b) Membership function of CPU saturation

Fig. 5: Conversion of crisp metric values for CPU utilization (a) and saturation (b) metrics to fuzzy sets
using trapezoidal and bell-shape membership functions. The bell membership function of the Medium fuzzy set in (a)
is parameterized by mean µ = 55 and standard deviation σ = 14.

C. Ranking anomalies

Due to the size of landscape graphs, many anomalous
nodes may be identified at the same time which may easily
overwhelm administrator, alert management system, or the
orchestrator. Also, some landscape entities are more impor-
tant than others in terms of the number of upper layer nodes
that depend on them. Intuitively, such nodes should be given
priority when identified as anomalous. Similarly, due to
long-range dependencies and correlated faults in datacenters,
anomalous nodes having many higher-level anomalous nodes
may be given more priority than others. Hence there is a
need to prioritize the list of anomalous entities not only in
terms of their influence but also in terms of the impact on
SLOs. To quantify the influence of individual entities in the
landscape, we exploit the inherent dependency structure in
the landscape to guess correlations and dependencies within
and across layers.

We define an influence rank using the PageRank [20]
algorithm, to estimate how important a node is within a
landscape. PageRank is a link analysis algorithm used by
Google Search to quantify the relative quality of websites.
A website is said to be of high quality if it receives links
from important websites. Hence, a landscape node assumes
higher influence rank if it receives links from important
nodes. Given a coloured landscape digraph, G′ = (V,E),
the influence rank, InfRank, of an entity v is computed as

InfRank(v) = (1− α) + α
∑

v′∈V ′

InfRank(v′)
outdeg(v′)

(3)

where v′ ∈ V ′ is a set containing all upper layer entities that
directly depend on v. With outdeg(v′), each entity spreads
its influence out evenly among all entities they depend on.
The share of influence contributed by v′ to v is given by∑
v′∈V ′

InfRank(v′)
outdeg(v′) . The individual influence contributed by

each entity depending on v is damped down by the parameter
0 < α < 1. The (1 − α) term makes up for entities in the
leaves of the physical layer having no out-going links.

Furthermore, to quantify the impact of anomalous enti-
ties, we define an impact rank, ImpRank, which is derived

based on the influence rank as follows:

ImpRank(v) = InfRank(v)(1 + βλ+ n) (4)

where β is a weight for an entity being anomalous or not
while λ is a weight a entity being from the physical, virtual
or service layers of the landscape and n is the number of
upper layer nodes that are also anomalous and is computed
dynamically. Parameter β of an anomalous entity is set to 1
and to very small value otherwise (e.g. 0.01). Also, λ is set
so as to express the importance of the layers. For example,
(λphysical = 0.6, λvirtual = 0.2, λservice = 0.1,), expresses
that anomalous nodes in the physical layer should be priori-
tized than the other layers. While the influence rank already
captures spatial dependencies, parameter n, is a means to
propagate correlated anomalies in the landscape, such that
anomalous physical layer entities with greater number of
anomalous virtual layer entities will have higher impact
rank. This approach can be used to prioritize resource nodes
depending on workload mix. With an additional parameter
we can indicate how resource nodes should be prioritized,
such as ranking storage entities higher under an I/O-intensive
workload in the second.

Finally, anomalous landscape entities are sorted accord-
ing to ImpRank in descending order. High ImpRank
implies an important anomalous entity that should be at-
tended quickly otherwise may results in SLO violations
in the immediate future. Such priority list can then be
followed to issue alarm emails to human operators, serve as
recommendation for remediation by automated management
systems such as Apex Lake’s orchestrator. In order to rectify
observed anomalies, the orchestrator may take scaling or re-
balancing decisions and trigger actuation actions to realize
required optimization.

D. The Algorithm

Given a landscape graph g contextualized with telemetry
from the recent k-length window, Algorithm 1 applies the
above procedure to identify and rank anomalous entities
in g based on a set of parameters described in Table II.

6

90

The algorithm proceeds in two passes. In the first pass,
we compute the influence rank of all nodes in g using
the PageRank algorithm, we visit all minor nodes in the
physical and virtual layers, classify their behaviour using the
fuzzy classifier, and compute the associated impact ranks.
In the second pass, we update the rank score of anomaly
nodes previously identified in the first pass. This is done by
counting the number of anomalous minor nodes in the virtual
layer that is directly dependent on the the predecessor of an
anomalous minor node in the physical layer. The output is
a set of anomalous entities ranked according to their impact
score and classification of each node.

The implementation of Algorithm 1 is realized using
NetworkX9 which provide support for attributed digraphs,
fast graph manipulation and efficient computation of vari-
ous measures such as degrees, density, hub and authority
scores, and page ranks. The fuzzification and inference
operations are implemented using modules provided by
scikit-fuzzy10.

V. EVALUATION

In this section, we present two experimental case studies
to demonstrate the effectiveness of our landscape colouring
technique. We examine the ability to identify anomalous
nodes under a strictly compute-intensive workload in the
first scenario, and under a mix of compute-intensive and
I/O-intensive workloads. The experiments were performed
on an Apex-Lake-enabled OpenStack testbed.

The setup is an OpenStack testbed composed of 2 HP
Proliant physical servers across which 5 VMs running 2
services are distributed as shown in Fig 6. The capacity of
the physical servers include; 8-core Intel(R) Xeon(R) CPU
E5320 1.86 GHz processor, 7 GB RAM, 60 GB RAID disks
and Gigabit Ethernet. Each VM is configured with 4 virtual
CPUs, 20 GB storage, and 1 GB memory, running Ubuntu
14.04. The original landscape of the testbed consists nearly a
hundred nodes. For clarity, we scaled the landscape to show
only the major nodes in Figure 6 while the landscape used
in our demonstration contains both minor and major nodes
as in Figure 11. We deploy two application stacks, A and B,
with similar workloads running on VMs, (vm1, vm2, vm3),
and (vm4, vm5), respectively. While vm1, vm2, and vm5

are deployed on physical machines pm1, vm3 and vm4 are
mapped to pm2. This static landscape is used through out
the experiments, we leave the dynamical landscapes case for
future work.

Case 1: We show that our landscape colouring approach
is able to identify and rank correctly anomalous compute
nodes. The experiment involves putting load on the system
so as to inject compute contentions in the testbed. We
deployed stress11 to emulate CPU-intensive job in each
VM by spawning a number of workers executing sqrt()
in C. The duration of the experiment is for 1 hour, which is
further divided into four 15-minute periods. In each period
we configured stress to induce some VMs to consume

9NetworkX is a Python library for graph creation, manipulation and
processing. Available: http://networkx.github.io/

10http://pythonhosted.org/scikit-fuzzy/
11http://people.seas.harvard.edu/~apw/stress/

Algorithm 1: Landscape colouring and ranking
Input: g = (V,E), b, α, λ, β, s∗
Output: A*, C
Initialization
A← []
C ← []
Identification pass:
InfRank← (1− α) + α

∑
v′∈V ′

InfRank(v′)
outdeg(v′)

for v ∈ V do
c← FALSE
if v is minor and (physical or virtual) then

~u,~s← b[v]
s← fuzzyclassifier(~u,~s)
if s ∈ s∗ then

c← TRUE
A← append(A, v)

end
end
C[v]← c
let l← layer of v
ImpRank[v]← InfRank[v](1 + β[c] · λ[l])

end
Rank update pass:
for v∗ ∈ A do

m← 0
if v∗ is minor and physical then

Pv∗ ← predecessor(v∗)
Vv∗ ← predecessor(Pv∗)
for n ∈ Vv∗ do

v∗suc ← successor(n)
for v′ ∈ v∗suc do

if v′ is minor and C[v′] then
m← m+ 1

end
end

end
end
ImpRank[v∗]← ImpRank[v∗] + InfRank[v∗] ·m

end
A∗ ← sort_descending(A, ImpRank)
return A∗, C

TABLE II: Description of parameters
Parameters Description

g A landscape graph, a service or scoped subgraph
α Damping factor for computing PageRank
β A vector of weights for normal and anomalous entities
λ A vector of weights associated with each layer
b A vector of pairs of entity behaviour (~u,~s)
s∗ A set of undesirable states derived from Figure 4

InfRank Influence ranks of nodes
ImpRank Impact ranks of nodes
A List of anomalous nodes
A∗ List of anomalous nodes after ranking and sorting
C Dictionary of nodes’ classifications
m Number of anomalous virtual layer nodes dependent on an anomalous physical

node

more CPU than available. The mapping of VM to period is:
W1 ← vm1, vm4, pm2, pm1

W2 ← vm1, vm3, vm4, vm5, pm1

W3 ← vm3, vm4, pm1

7

91

de
plo

ye
d on

deploye
d on

deployed
on

runs
on

deployed on

ru
ns

on

deployed on

runs on

runs
on

runs on

AB

pm1pm2

vm4 vm5 vm2vm3 vm1

Fig. 6: Experiment setup with 2 servers

W4 ← vm1, vm3, vm2, pm1

Given this schedule we expect that contention for CPU
resources will occur in one or more nodes; and should
CPU node of pm2, for example, be anomalous, it should
be ranked higher than other CPU nodes, since many virtual
CPUs depend on it.

Cimmaron reports telemetry (utilization and saturation
metrics) about each entity per second which is further aggre-
gated at 1 minute level to smooth out spikes. Identification
of anomalies is performed at a 5-minute interval window. At
each time window, the landscape graph g is contextualized
using the metric values within that window and serves as
input to Algorithm 1. Parameters of the algorithms are
defined as follows: α = 0.85, βnormal = 0.01, βanomaly = 1,
λphysical = 0.6, λvirtual = 0.3, λservice = 0.1. The detection
objective in this case is to detect and rank entities showing
signs of over-utilization for at least 3-minute in the 5-minute
window. Hence, using the 2D map in Figure 4 we designate
region 6 (hot state), as well as 2 and 4 (error states) as
undesirable anomalous state. Based on our objective, regions
1 (cold), 3 (cool) and 5 (warm) will be desirable. It is
easy to see that when the objective is to minimize energy
consumption for example, then states 1 and 3 will unlikely
be desirable. It would be better to offload jobs from an under-
utilized server to others for example.

Figure 12 is the graph obtained at the end of period W1

with compute node of vm1, vm4, vm5, and pm1 highlighted
as anomalous. This landscape corresponds to window 6
of Figure 7 showing the state evolution of culprit nodes
as step functions12. The state of an entity according to a
majority vote is plotted against each 5-minute window. It is
clear that the algorithm correctly identifies the over-utilized
nodes corresponding in window 6. While vm1, vm3, vm5,
and pm1 are expectedly anomalous, vm3 however is not
anomalous. This may be due to VCPU scheduling effects
in host pm2. Since both vm3 and vm4 are deployed on the
same host with total CPU demand greater than physically
available, vm4 may get more CPU time than vm3 due
to stolen CPU cycles which effectively starves vm3 [21].
According to our ranking strategy, CPU node of pm1 is
ranked higher than others in Figure 8 because it is a physical
entity and has 2 VCPUs dependent on it. The ranking
intuitively enforce a differentiation of entities. Anomalous
nodes are those that will result in most impact on SLA and

12Only the step functions of anomalous nodes highlighted in Figure 12
are plotted.

SLO compliance.

0 2 4 6 8 10 12 14

window

cold
error
warm

hot

(a) CPU node of pm1

0 2 4 6 8 10 12 14

window

cold
error
warm

hot

(b) CPU node of vm1

0 2 4 6 8 10 12 14

window

cold
error
warm

hot

(c) CPU node of vm4

0 2 4 6 8 10 12 14

window

cold
error
warm

hot

(d) CPU node of vm5

Fig. 7: Case 1: Step functions showing how the behaviour
of each compute node evolved over time.

0.05

0.00

0.05

0.10

0.15

0.20

In
fl
u
e
n
ce

 r
a
n
k

pm1.cpu

vm4.cpu vm5.cpu vm1.cpu

Fig. 8: Case 1: Impact ranks of anomalous nodes. The size
of each cycle corresponds to the rank score of associated
entity. Entities with the same colors have the same rank
score.

Case 2: The objective remain the same as the first case
except that we deal with a mixed workload (CPU and disk
IO). We used stress to generate CPU load as in Case
1 and also to emulate IO jobs by spawning 1 disk worker
writing megabytes of disk pages without disk caching in
each VM. The duration, parameters and window size remain
the same. In addition to the schedule of CPU load in Case
1, VMs with induced IO load are mapped to periods as
follows:

8

92

W1 ← vm3 (200 MB), vm5 (50 MB)
W2 ← vm1 (100 MB), vm2 (100 MB)
W3 ← vm3 (50 MB), vm4 (100 MB), vm5 (200 MB)
W4 ← vm3 (100 MB)
Using this complex setup we expect to induce both compute
and disk I/O contention that at some point. According to
Figure 13, our algorithm identified 7 anomalous nodes in-
cluding 2 storage entities at the last period corresponding to
windows 10-13 in Figure 913. Notice that the occurrence of
anomalous events is not entirely deterministic. For example,
while the storage entity of vm3 is clearly anomalous during
the first five windows (Figure 9c), but constantly writing 100
MB disk pages in windows 10-13 (period 4) does not seem to
saturate the disk I/O bandwidth enough. The storage node of
pm1 is anomalous at this time due to the spatial dependency
between vm5 and pm1 and temporal dependency between
consecutive periods and windows. Note that the storage node
of vm5 was injected with a 200 MB IO load together with
vm3 in the previous period. The combined IO load perhaps
results in queuing of disk requests on pm1 which makes
its storage node to be fully utilized in the fourth period.
We show step functions of only the interesting anomalous
entities.

VI. DISCUSSION

Landscape colouring is a completely automatic process
that can be used as a starting point for root-cause analysis
of performance issues in the datacenter. By continuously
monitoring and colouring the landscape we can capture
the prevailing states of entities, quantify and rank their
implications on neighboring entities and the landscape as
a whole. Such insights can then be used to enrich multiple
decision points. For instance, it could prevent impending a
service performance violation before it happens by raising
alerts once some physical or virtual layer entities of a service
stack start showing signs of problems. In a large datacen-
ter with many resources and services, the ranking scores
could give an indication of what order corrective actions be
taken. This is not only useful for automated remediation of
problems, it could refine and save operators’efforts. Though
it is primarily proposed as an anomaly detection use case
for Apex Lake, landscape colouring can also be used to
support other management operations (e.g. initial placement,
re-balancing, etc.). For example, Apex Lake’s could use
insights from coloured landscapes to guide an orchestrator to
steer workloads away from physical layer entities exhibiting
intermittent anomalous behaviour.

The fuzzy membership functions (in Figure 5) use pre-
defined thresholds to define the range of values for the fuzzy
sets. The values used in our experiments are obtained from
literature and recommendation by system administrators.
However, these thresholds are highly contextual and depend
on what customers use the datacenter, which workloads
they run (storage or network bound), and what objectives
the datacenter operator is trying to optimize for (e.g. low
CPU utilization for mobile applications vs higher CPU
utilization for HPC jobs). Ideally the system should learn
these values automatically to reflect changes in workloads

13Only the step functions of anomalous nodes highlighted in Figure 13
are plotted.

0 2 4 6 8 10 12 14

window

cold
error
warm

hot

(a) CPU node of vm3

0 2 4 6 8 10 12 14

window

cold
error
warm

hot

(b) CPU node of pm1

0 2 4 6 8 10 12 14

window

cold
error
warm

hot

(c) Storage node of vm3

0 2 4 6 8 10 12 14

window

cold
error
warm

hot

(d) Storage node of vm5

0 2 4 6 8 10 12 14

window

cold
error
warm

hot

(e) Storage node of pm1

Fig. 9: Case 2: Step functions showing how the behaviour
of each compute node evolved over time.

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

In
fl
u
e
n
ce

 r
a
n
k pm1.cpu pm1.disk

pm2.cpu

vm5.disk vm1.cpu vm3.cpu vm2.cpu

Fig. 10: Case 2: Impact ranks of anomalous nodes at
window 6. The size of each cycle corresponds to the rank
score of associated entity. Entities with the same colors have
the same rank score.

and service objectives. Though the temporal dependency
between consecutive entity behaviours is not explored, this
property could be exploited for predicting future entity

9

93

states.

To improve the quality of detection and ranking it
is desirable to integrate service-level anomaly correlation
with landscape colouring. This will allows us to correlate
application-level anomaly events with infrastructure-level
bottlenecks so that alarms are raised for only relevant
anomalies that result in actual SLA violations. Presently,
we are working on testing our approach on a larger testbed
running real applications and one where edges between
landscape nodes actually vary over time in order to evaluate
its scalability and accuracy. Subsequently, how the technique
could be used to trigger corrective actions automatically and
to enrich other datacenter optimizations within the Apex
Lake framework will be explored.

VII. CONCLUSION

We presented the design and implementation of land-
scape colouring, a mechanism for automatic identification of
anomalous nodes in landscape graphs of datacenter entities.
Our algorithm combines telemetry data about individual
nodes, spatial dependencies across landscapes, and goal-
specific heuristics to characterize prevailing behaviour of
entities and detect nodes with suspicious behaviour. To
enhance automatic corrective actions and to minimize load
on human operators, we ranked anomalous entities according
to their impact on the neighbouring nodes and on specific
service objectives. Through experimental case studies on an
OpenStack testbed, we have demonstrated that our mecha-
nism is able to detect and rank problem nodes. In the future,
we plan to conduct more experiments on a larger testbed to
evaluate the scalability of the technique.

VIII. ACKNOWLEDGMENTS

We acknowledge the contributions of members of the
Cloud Services Labs at Intel Labs Europe, towards the Apex
Lake Framework especially Surya Narayanan Natarajan for
helping with the experiments. This work is supported by the
Swedish Research Council (VR) through the Cloud Control
project (C0590801).

REFERENCES

[1] C. Li, B. Brech, S. Crowder, D. M. Dias, H. Franke, M. Hogstrom,
D. Lindquist, G. Pacifici, S. Pappe, B. Rajaraman et al., “Software
Defined Environments: An Introduction,” IBM Journal of Research
and Development, vol. 58, no. 2/3, pp. 1–1, 2014.

[2] L. A. Barroso, J. Clidaras, and U. Hölzle, “The Datacenter as
a Computer: An Introduction to the Design of Warehouse-scale
Machines,” Synthesis Lectures on Computer Architecture, vol. 8,
no. 3, pp. 1–154, 2013.

[3] T. Metsch, O. Ibidunmoye, V. Bayon-Molino, J. Butler, F. Hernández-
Rodriguez, and E. Elmroth, “Apex Lake: A Framework for Enabling
Smart Orchestration,” in Proceedings of the Industrial Track of
the 16th International Middleware Conference, ser. Middleware
Industry ’15. New York, NY, USA: ACM, 2015, pp. 1:1–1:7.
[Online]. Available: http://doi.acm.org/10.1145/2830013.2830016

[4] O. Ibidunmoye, F. Hernández-Rodriguez, and E. Elmroth,
“Performance Anomaly Detection and Bottleneck Identification,”
ACM Comput. Surv., vol. 48, no. 1, pp. 4:1–4:35, Jul 2015. [Online].
Available: http://doi.acm.org/10.1145/2791120

[5] C. Wang, S. P. Kavulya, J. Tan, L. Hu, M. Kutare, M. Kasick,
K. Schwan, P. Narasimhan, and R. Gandhi, “Performance Trou-
bleshooting in Data Centers: An Annotated Bibliography?” ACM
SIGOPS Operating Systems Review, vol. 47, no. 3, pp. 50–62, 2013.

[6] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer,
“Pinpoint: Problem Determination in Large, Dynamic Internet Ser-
vices,” in In Proceedings of International Conference on Dependable
Systems and Networks. IEEE, 2002, pp. 595–604.

[7] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and
M. Zhang, “Towards Highly Reliable Enterprise Network Services
via Inference of Multi-level Dependencies,” in ACM SIGCOMM
Computer Communication Review, vol. 37, no. 4. ACM, 2007,
pp. 13–24.

[8] R. Apte, L. Hu, K. Schwan, and A. Ghosh, “Look Who’s Talking:
Discovering Dependencies between Virtual Machines Using CPU
Utilization,” pp. 17–17, 2010.

[9] L. Hu, K. Schwan, A. Gulati, J. Zhang, and C. Wang, “Net-
cohort: Detecting and Managing VM Ensembles in Virtualized Data
Centers,” in Proceedings of the 9th international conference on
Autonomic computing. ACM, 2012, pp. 3–12.

[10] S. Agarwala, F. Alegre, K. Schwan, and J. Mehalingham, “E2EProf:
Automated End-to-end Performance Management for Enterprise
Systems,” in 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks. IEEE, 2007, pp. 749–758.

[11] X. Chen, M. Zhang, Z. M. Mao, and P. Bahl, “Automating Network
Application Dependency Discovery: Experiences, Limitations, and
New Solutions.” in OSDI, vol. 8, 2008, pp. 117–130.

[12] A. Brown, G. Kar, and A. Keller, “An Active Approach to Char-
acterizing Dynamic Dependencies for Problem Determination in a
Distributed Environment,” in IEEE/IFIP International Symposium on
Integrated Network Management Proceedings. IEEE, 2001, pp. 377–
390.

[13] C. Wang, K. Schwan, B. Laub, M. Kesavan, and A. Gavrilovska,
“Exploring Graph Analytics for Cloud Troubleshooting,” in 11th
International Conference on Autonomic Computing (ICAC 14), 2014,
pp. 65–71.

[14] R. E. Kessler and M. D. Hill, “Page Placement Algorithms for Large
Real-indexed Caches,” ACM Transactions on Computer Systems
(TOCS), vol. 10, no. 4, pp. 338–359, 1992.

[15] E. Bugnion, J. M. Anderson, T. C. Mowry, M. Rosenblum, and
M. S. Lam, “Compiler-directed Page Coloring for Multiprocessors,”
in ACM SIGPLAN Notices, vol. 31, no. 9. ACM, 1996, pp. 244–255.

[16] B. Gregg, Systems Performance: Enterprise and the Cloud. Pearson
Education, 2013.

[17] S. Cateni, V. Colla, and M. Vannucci, “A Fuzzy Logic-based Method
for Outliers Detection.” in Artificial Intelligence and Applications,
2007, pp. 605–610.

[18] J. A. Roubos, M. Setnes, and J. Abonyi, “Learning Fuzzy Classifica-
tion Rules from Labeled Data,” IEEE Trans. Fuzzy Systems, vol. 8,
no. 5, pp. 509–522, 2001.

[19] Y. Bai and D. Wang, “Fundamentals of Fuzzy Logic Control—Fuzzy
Sets, Fuzzy Rules and Defuzzifications,” in Advanced Fuzzy Logic
Technologies in Industrial Applications. Springer, 2006, pp. 17–36.

[20] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Computer networks and ISDN systems, vol. 30, no. 1,
pp. 107–117, 1998.

[21] R. van Riel, “Measuring Resource Demand on Linux,” in Linux
Symposium, 2006, p. 287.

10

94

APPENDIX

internal

in
te

rn
al

internal in
te

rn
al

internal

deployed
on

internal

runs
on

de
pl

oy
ed

on

internal

in
te

rn
al

in
te

rn
al

internal

de
plo

ye
d

on

in
te

rn
al

runs on

runs
on

in
te

rn
al

deployed on

internal

internal

in
te

rn
al

in
te

rn
al

ru
ns

on

in
te

rn
al

in
te

rn
al

de
plo

ye
d

on

internalin
te

rn
al

in
te

rn
al

internal

internal

internal

runs on

internal

internalin
te

rn
al

in
te

rn
al

cpudisk

net

net disk

net

mem

net

pm2

mem netcpu

mem

A

disk

B

pm1

mem

net

cpudisk disk

vm4 vm5 vm2vm3 vm1

disknetmemmem cpu cpucpu

cpu

diskmem

Fig. 11: Initial landscape graph. A node represent an application, a VM, a resource (e.g. CPU), or physical server. Colors:
service layer nodes are in green, virtual entities in purple, while physical entities are in orange.

in
te

rn
a
l

in
te

rn
al

in
te

rn
a
l in

te
rn

al

in
te

rn
a
l

deployed-on

internal

ru
n
s-o

n

d
e
p
lo

ye
d
-o

n

internal

in
te

rn
a
l

in
te

rn
a
l

in
te

rn
a
l

de
pl

oy
ed

-o
n

in
te

rn
al

runs-o
n

runs-on

in
te

rn
al

deployed-on

internal

internal

in
te

rn
a
l

in
te

rn
a
l

ru
n
s-

o
n

in
te

rn
al

in
te

rn
a
l

de
pl

oy
ed

-o
n

in
te

rn
a
lin

te
rn

al

in
te

rn
al

in
tern

al

in
te

rn
a
l

internal

runs-on

internal

in
te

rn
a
lin

te
rn

a
l

in
te

rn
a
l

cpudisk

net

net disk

net

mem

net

pm2

mem netcpu

mem

A

disk

B

pm1

mem

net

cpudisk disk

vm4 vm5 vm2vm3 vm1

disknetmemmem cpu cpucpu

cpu

diskmem

Fig. 12: Case 1: Coloured landscape showing anomalous compute entities (highlighted in red) at window 6.

11

95

in
te

rn
a
l

in
te

rn
al

in
te

rn
a
l in

te
rn

al

in
te

rn
a
l

deployed-on

internal

ru
n
s-o

n

d
e
p
lo

ye
d
-o

n

internal

in
te

rn
a
l

in
te

rn
a
l

in
te

rn
a
l

de
pl

oy
ed

-o
n

in
te

rn
al

runs-o
n

runs-on

in
te

rn
al

deployed-on

internal

internal

in
te

rn
a
l

in
te

rn
a
l

ru
n
s-

o
n

in
te

rn
al

in
te

rn
a
l

de
pl

oy
ed

-o
n

in
te

rn
a
lin

te
rn

al

in
te

rn
al

in
tern

al

in
te

rn
a
l

internal
runs-on

internal

in
te

rn
a
lin

te
rn

a
l

in
te

rn
a
l

cpudisk

net

net disk

net

mem

net

pm2

mem netcpu

mem

A

disk

B

pm1

mem

net

cpudisk disk

vm4 vm5 vm2vm3 vm1

disknetmemmem cpu cpucpu

cpu

diskmem

Fig. 13: Case 2: Coloured landscape showing anomalous compute and storage entities (highlighted in red) at window.

12

96

IV

Paper IV

Real-time Detection of Performance Anomalies for
Cloud Services

Olumuyiwa Ibidunmoye*, Thijs Metsch**, Erik Elmroth*

*Dept. Computing Science, Umeå University
SE-901 87 Umeå, Sweden

{muyi, elmroth}@cs.umu.se
http://www.cs.umu.se/ds

**Intel Labs Europe
Collinstown Industrial Park, Leixlip, Ireland

{thijs.metsch}@intel.com

Abstract: In order to prevent violation of service-level objectives and to guaran-
tee good user experience, detection of symptoms such as slow application response,
degraded transaction throughput, and service outages, is crucial. We propose a black-
box approach for detecting such symptoms in service performance behaviour without
intrusive application instrumentation. In case a known baseline behaviour exists, we
employ kernel density estimation to discover deviations from a given set of base-
line measurements. Conversely, when no baseline exists, we apply statistical process
control charts on prediction errors obtained from Holt-Winter’s double exponential
smoothing to identify anomalies in metric time-series. We evaluate our methods on
tail response times traces collected from experiments conducted in a real testbed un-
der realistic load and fault injections. Results show the applicability of our approach
for improving service assurance and also demonstrate how service level anomalies
correlate with system-level events such as resource contention and bottlenecks.

99

100

Real-time Detection of Performance Anomalies for
Cloud Services

Olumuyiwa Ibidunmoye
Department of Computing Science

Umeå University
SE-901 87 Umeå, Sweden
Email: muyi@cs.umu.se

Thijs Metsch
Intel Labs Europe

Collinstown Industrial Park
Leixlip, Ireland

thijs.metsch@intel.com

Erik Elmroth
Department of Computing Science

Umeå University
SE-901 87 Umeå, Sweden
Email: elmroth@cs.umu.se

Abstract—In order to prevent violation of service-level
objectives and to guarantee good user experience, detection
of symptoms such as slow application response, degraded
transaction throughput, and service outages, is crucial. We
propose a black-box approach for detecting such symptoms
in service performance behaviour without intrusive application
instrumentation. In case a known baseline behaviour exists, we
employ kernel density estimation to discover deviations from
a given set of baseline measurements. Conversely, when no
baseline exists, we apply statistical process control charts on
prediction errors obtained from Holt-Winter’s double exponen-
tial smoothing to identify anomalies in metric time-series. We
evaluate our methods on tail response times traces collected
from experiments conducted in a real testbed under realistic
load and fault injections. Results show the applicability of our
approach for improving service assurance and also demonstrate
how service level anomalies correlate with system-level events
such as resource contention and bottlenecks.

I. INTRODUCTION

Modern application services are characterized by com-
plex architectures and unpredictable load traffic (such as
load spikes and flash-crowd1 behaviour). These factors often
explain performance anomalies such as slow application
response, degraded transaction throughput, and outages in
cloud-based application services today. Also, the nature
of the underlying virtualized infrastructure in which most
services are hosted affects service performance in many
ways. Cloud infrastructure platforms, such as Amazon EC2,
package and provision computational resources in virtual
machines (VMs) to numerous service providers in an on-
demand manner. Though the initial capital expenditure is
greatly minimized for service providers, the co-location of
heterogeneous services from multiple providers is sometimes
a source of concern for service owners.

According to our previous survey [1], cloud service
performance anomalies are often the manifestation of many
problems ranging from application-level bugs, workload
spikes, and correlated systems faults (e.g. resource con-
tention). Fig. 1 is schematic diagram of the cause-effect
relationships between issues from disparate sources and how
they together induce capacity bottlenecks and eventually
anomalies in service performance.

1Internet phenomenon where a network suddenly receives a huge influx
of traffic due to incidents such as breaking news, natural disasters, demise
of famous persons, etc.

Fig. 1: Causes of performance anomalies in systems (source:
[1]).

1) Applications: Application-level issues such as incorrect
parameter settings, buggy codes, and software updates
may induce unexpected performance behaviour [2].

2) Workload: Bursty workloads, such as caused by flash-
crowds, and change in seasonal load patterns may
induce undesirable effects such as congested queues,
oversubscribed threading resources, and eventually in-
termittent or sustained spikes in performance measure-
ments.

3) Architectures and Platforms: Sometimes transient errors
or events in the underlying architecture or operating
system–such as the JVM & Intel SpeedStep technology
[3], may introduce hard-to-detect transient bottlenecks
in systems.

4) Systems: System-level issues such as misconfiguration,
faulty components, or capacity bottlenecks may induce
performance anomalies in many ways. In cloud envi-
ronments, one major culprit is the inherent performance
interference experienced when applications with similar
resource needs and workload patterns are co-located on
a single server.

Due to the complexity of the runtime environment,
diagnosing service performance issues has become a ma-
jor task in the life-cycle of virtualized services. Service
providers generally want to be able to detect unwanted
behaviour quickly and in real-time. In our survey [1], we
observed that, while there exist many studies focusing on
the detection of anomalies in multi-dimensional system-level
performance metrics (as done in [4] [5] and [6]), studies
on detecting application performance anomalies are few.
Existing approaches for detecting anomalies in application

101

performance metrics (e.g. response time and throughput)
either resort to simplistic mechanisms based on thresholding
(such as in [7], [8], and [9]) or require intrusive application
instrumentation (such as tracing request flows in [10] and
[11]).

In this paper, we focus on achieving robust anomaly
detection in application performance metrics (APM) under
two scenarios. In the first scenario, we assume there exist
a baseline profile–a collection of known or typical metric
values collected over a period of stable service workload and
configuration. The task is to detect deviations from the given
baseline. This is informed by trends in the fields of network
[12] and database [13] management, where deviations in
real-time traffic measurements from known baseline (typical)
behaviour are considered as anomalies [14]. In the second
scenario, the notion of typical behaviour is unknown a
priori and we must detect deviations in prevailing service
behaviour. We phrase these two cases in the following
questions:

Q1: How to detect deviations in real-time service per-
formance measurements based on a given baseline
profile?

Q2: How to detect deviations in real-time service per-
formance measurements when a baseline is a priori
unknown ?

To address Q1, we perform a behaviour-based anomaly
detection by exploiting the probability distribution of the
given baseline profile. A non-parametric kernel density es-
timation (KDE) technique is used to detect point anomalies
in real-time APM measurements. Given that there exist
no baseline in case of Q2, we perform prediction-based
anomaly detection instead. The prediction-based approach
performs a one-step ahead forecast of metric value, tracks
the residual errors and flags points where statistical proper-
ties (such as mean shift) of the residuals change abruptly.
Forecasting is done using trend-preserving double exponen-
tial filtering while exponentially weighted moving average
(EWMA) control chart is used to detect mean shifts.

In Section II, we layout details of the behaviour-based
approach using the KDE model while Section III describes
how the forecasting and control chart methods are con-
structed for predictive anomaly detection. We describe the
experimental approach for evaluating the techniques in Sec-
tion IV. Evaluations and results are presented in Section V.
We conclude with some discussions, description of related
works and conclusion in sections VI, VII, and VIII respec-
tively.

II. BEHAVIOUR-BASED ANOMALY DETECTION

Traditionally, APM values are said to be anomalous when
they violate a reference point (i.e. threshold). For example,
suppose X = {xi}ni=1 is a set of n observations of a given
performance metric, a threshold-based anomaly detection
scheme may define a threshold T as T = kσX +µX where
µX and σX are the mean and standard deviation of values in
X respectively and k is a multiplicative factor of the standard
deviation. An observations xi ∈ X is classified anomalous
if it satisfies the condition, xi ≥ T . The idea behind this

threshold is that normal values of the performance metric
are expected to be within k standard deviations (σX) about
the mean µX . There are some obvious limitations to this
approach. First, the assumption is that the distribution of
APM values will be Gaussian (i.e. normally distributed) and
therefore will result in greater false alarms on data with
arbitrary or non-Gaussian distribution. Secondly, thresholds
are hard to appropriately specify and may soon become out-
dated due to changing runtime environment and workload
patterns. It is also not suitable for scenarios where the
reference point is a set of baseline measurements rather than
a scalar value. Such [13].

In this section we present a non-parametric approach
(similar to [15]) to address the aforementioned issues with
scalar thresholds. Given a set of baseline measurements,
our method estimates a model of the unknown probability
distribution of the baseline using Kernel Density Estimation
(KDE). We subsequently classify new observations (such
as real-time metric measurements) based on the conditional
densities estimated by the KDE model. However, the stan-
dard KDE algorithm is known to produce spurious density
approximations due to the use of global bandwidths. We
implement an adaptive KDE following the procedure in
[16] by incorporating local bandwidths to account for local
variations in the data. Due to the time complexity of the
KDE we also implement both the standard and adaptive
KDE using k-dimensional trees [17] and compare their
performance later in Section V.

A. Kernel Density Estimation (KDE)

The basic idea of the behaviour-based anomaly detection
has to do with exploiting the probability density function
(PDF) or density of the given baseline values. The PDF
or density of a continuous random variable is a function
that relates the relative likelihood for the random variable to
assume a given value in a population [18]. Given comparable
capacity configurations and workload characteristics, metric
values obtained from a running application should reveal
similar metric distribution as the baseline from the same
application under normal conditions. Significant deviations
from the baseline distribution may indicate an anomaly.
Some existing studies have proposed similar approaches in
performance studies such as in [19] and [20].

The KDE is a proximity-based technique for detecting
novel patterns in data with the assumption that normal
instances are far more frequent than anomalous instances
[21]. Given a univariate set of metric values X : IRn×1,
the unknown density function f̂(X) can be estimated by
aggregating a set of scaled kernel functions as follows;

f̂(x) =
1

nh

n∑

i=1

Kh(
x− xi
h

) (1)

Each kernel function Kh(·) is centered at each data point
with width controlled by a bandwidth parameter h. The
bandwidth h, acts as a smoothing factor controlling the vari-
ance from one point to another in the data. Since h remains
the same for all kernels, it is also referred to as a global
bandwidth. The scaled kernel Kh(·) of the form 1

hK(·h) is
any symmetric, function that satisfies

∫∞
−∞Kh(·)d(·) = 1

2

102

and Kh(·) ≥ 0 [22]. We have used a set of Gaussian
kernels for computing the density estimate f̂(x) according
to Eq. 1. Though other standard kernels such as the Tophat,
Epanechnikov, Exponential, etc., exist, the Gaussian kernel is
most commonly used in density estimation due to its ability
to produce smooth density estimates [23]. A Gaussian kernel
is defined as [21]:

Kh(y) =
1

h
√

2π
exp(− y2

2h2
) (2)

The choice of kernel Kh(·) does not significantly affect the
accuracy of the estimate as much as the bandwidth parameter
h. High values of h produce very smooth estimates but may
ignore local variance while low values produce less smooth
but potentially more accurate estimates [15]. The value of
h may be set to an arbitrary value, to a plug-in values such
as the AMISE and Silverman’s approximations [24], or to
values derived through grid-search cross-validation.

B. Adaptive KDE (AKDE)

The use of a fixed global bandwidth, h in Eq.1 ignores
local variations in density from one data point to another
[21]. We follow the procedure in [16] to adapt the amount
of smoothing based on the local density in the data (i.e.
the bandwidth, h, is allowed to vary from one data point to
another). First, a pilot density f̂∗(x), is estimated from the
entire dataset using Eq. (1), such that f̂∗(xi) > 0,∀i. Then
individual local density is computed using the square root
rule as, λi =

{ f̂∗(xi)
g

}−α
where g is the geometric mean of

f̂∗(xi) i.e. log(g) = n−1
∑n
i=1 log(f̂∗(xi)). The adaptive

KDE estimate becomes:

f̂(x) =
1

n

n∑

i=1

1

hλi
Kh(

x− xi
hλi

) (3)

The term hλi now acts as the local bandwidths such that
the width of the kernel placed at each xi is equal to hλi.
Setting α = 0.5 is generally recommended as it offers good
estimate in most cases [16]. Equation (3) is equivalent to (1)
when α = 0 since λi = 1. Note that the same value of h
used to obtain the pilot, f̂∗(xi), must be used in computing
Eq. (3) so as to ensure that the actual estimate is sensitive
to the same scale as the pilot.

C. Computational issues with density estimation

The KDE belongs to a class of statistical learning
problems called the generalized n-body problems with the
complexity of a naive solution being O(n2). Riegel et
al [25] has shown that problems in this category can be
efficiently computed in O(n log n) using specialized data
structures such as the k-dimensional trees [17]. A KD-tree
is a spatial data structure for organizing data points in k-
dimensional space and readily offer O(n log n) k-nearest
neighbour computations. The implementation of the KDE
models is based on the idea that if a data point x0 ∈ X
is geometrically distant from a set of points ~y ⊂ X , then
it is sufficient to compute the density estimate of x0 only
from the set X − ~y, i.e., the k-nearest neighbours of x0. To
implement the standard and adaptive KDE models we used
the KD-Tree class in scikit-learn [26].

D. Detecting anomalies based on the density estimation

Given a baseline profile B containing a set X = {xi}ni=1
of performance metric values. First we learn a model, θB
corresponding to the kernel density estimate, f̂B(X), of the
baseline values. To classify an observed data point, x0, we
compute a conditional density p(x0|θB)–the likelihood of X
taking on the value of x0 given its probability distribution
θB. For a suitably chosen parameter, ε, x0 is classified
anomalous if p(x0|θB) < ε implying that x0 is not likely
to have been generated by θB. Samples with relatively small
p(x0|θB) are considered anomalous and those for which
p(x0|θB) is high lie in dense regions and thus are normal
data.

III. PREDICTION-BASED ANOMALY DETECTION

The approach in Section II is based on training a model
to recognize new independent data that do not belong to
distribution of typical or normal data. In some use cases, it
maybe difficult to obtain a baseline or may quickly become
obsolete. The challenge is to monitor the service in order
to detect unknown events or unexpected changes in service
performance behaviour that may suggests workload spikes,
system-level faults or resource bottlenecks due to contention
among co-located services. The prediction-based anomaly
detection exploits the temporal dependency in time series
of successive APM measurements to detect abrupt changes
in the underlying statistical property of the data (e.g. mean
shift). The assumption is that such property is expected to
exhibit little or no variation from one time step to another.
Consistent shift of a certain magnitude may suggest a change
in the time series behaviour and hence an anomaly. In
this section we present an online mechanism for achieving
predictive anomaly detection using a combination of Holt-
Winters forecasting and EWMA control charts.

A. Residual generation using Holt-Winters forecasting

We consider a sequence of APM measurements as a
time series of the form X = {x1, · · · , xt−1, xt, xt+1 · · · }.
Exponential smoothing is a common method in statistical
forecasting literature and have been successfully used in
diverse domains of applications. The basic idea is to forecast
future values using weighted averages of past observations,
with weights decaying exponentially over time [27]. Holt-
Winters [28] forecasting extends basic exponential smooth-
ing to account for trends and seasonality in a time series
data. Holt-Winters is based on the assumption that observed
time series can be decomposed into three components: a
level component (the intercept of a signal), `t, a linear
trend (the long term direction or slope), bt, and a seasonal
(the systematic, calendar related movement) component, st.
Studies such as in [29] has shown the basic component form
of the Holt-Winters model to not produce good estimates
for the level and seasonal components. Their work suggests
methods for correcting estimates produced by the method.
According to Hyndman et al in [27], the additive and error
correction form of the smoothing equations is given as:

`t = `t−1 + bt−1 + αet (4)
bt = bt−1 + αβet (5)
st = st−m + γet (6)

3

103

where α, β and γ are smoothing parameters for the level,
trend, and seasonal components respectively and are set
to values in the range [0, 1]. The index of seasonality, m,
denotes the length of a season (e.g. m = 12 for monthly
data with yearly trend). The one-step-ahead forecast at time
t using previous forecast of the level, trend and seasonality
at time t − 1 is thus x̂t|t−1 = `t−1 + bt−1 + st−m. The
corresponding forecast error or residual, et, is computed as
et = xt−x̂t|t−1, where xt is the observed value at time t and
x̂t|t−1 is the predicted value using the most recent smoothed
components from time t− 1. The statistical property of the
time series of residuals, E = {e1, · · · , et−1, et, et+1 · · · },
will be exploited in the next section for anomaly detection.

The Mean Absolute Percentage Error (MAPE) is a com-
monly used measure of forecast accuracy [27]. The MAPE
is defined as MAPE = 1

n

∑n
t=1

|yt−ŷt
yt
| × 100, where yt is

the observation at time t and ŷt is the forecast of yt. The
optimal settings for parameters α, β, and γ are those that
minimize the MAPE. We will use this strategy to determine
optimal parameter settings in Section V.

B. Detecting deviations using EWMA control chart

Statistical process control (SPC) is a collection of tools
widely used to achieve stability and monitor variability in
production processes [18]. A control chart is a graphical
display showing individual values of a quality characteristic,
Y , against the sample number or time. The chart contains
a center line (CL), the mean of Y under normal conditions.
The upper control limit (UCL) and lower control limits
(LCL) are horizontal lines drawn above and below the CL
respectively [18]. Generally, control charts operate under the
premises that output of the monitored process are normally
distributed and so appropriates values for the LCL and UCL
can be determined from a normal bell curve. Therefore
they are not suitable to be applied directly on time series
of APM measurements with unknown distribution, trend,
or seasonal variation. Instead we apply control charts on
forecast residuals obtained in Section III-A.

The most commonly used control charts are the She-
whart’s x̄, s, and R control charts. However, these charts
are not suitable for APM measurements as they either
assume normality or that measurements arrive in batches.
We employ the Exponentially Weighted Moving Average
(EWMA) control chart. EWMA control charts have been
shown in studies [30] to be robust against non-normality
and are particularly suitable for case where measurements
arrive sequentially rather than in batches [18]. Given forecast
residuals e1, · · · , et−1, et, et+1 · · · . We construct an EWMA
chart of the form:

e′t = λet + (1− λ)e′t−1 (7)

Equation (7) exponentially smooth the forecast residuals
over time controlled by parameter λ (0 < λ ≤ 1). The
center line and control limits for the EWMA control charts
is then defined as follows [18]:

(UCL,LCL) = µ0 ± Lσ
√

λ

(2− λ)

[
1− (1− λ)2t

]
(8)

where λ and L are design parameters for the EWMA charts,
while λ controls the rate of smoothing, L is a multiple of the
standard deviation and controls how sensitive the chart is to
shifts around the center line. Parameter L, is generally set to
3 in literature [31]. Suppose the residuals ei are independent
random variables with mean µ0 = 1

T

∑T
t=1 et, the CL, and

with variance σ2, then the variance of each e′i is given as
σ2
e′
i

= σ2 λ
(2−λ)

[
1− (1− λ)2t

]
.

The limitation of this formulation is the assumption that
entire time series measurements are available so that we can
easily estimate parameters µ0 and σ a priori before setting up
the control chart. This is not always possible when dealing
with dynamic service performance data with storage con-
straints. Variation in service workload may cause the center
line and in turn the upper and lower limits, to shift over time.
To overcome this issue we modify Eq. 8 so that parameters
µ and σ are computed adaptively as measurements arrive
using the Welford algorithm [32]. The Welford technique
iteratively updates the mean and variance online using data
observed up to each time step. The implication of this is that
the control limits UCL and LCL will also vary along with
the center line and variance. However, as t grows the term
[1− (1− λ)2t] approaches unity and the control limits will
converge to asymptotic (steady-state) limits µ0±Lσ

√
λ

(2−λ)
[18].

Observations that violate the control limits are in sta-
tistical literature said to be out-of-control. Such observation
are what we call anomalies since they are indications of
changes in the time series behaviour due to load spikes,
bottlenecks, bugs or faults. To detect anomalies, we monitor
consecutive values of the smoothed forecast errors (e′t),
and out-of-control observations are classified as anomalies.
Specifically, out-of-control observations are those for which
the predicates e′t > UCL or e′t < LCL hold.

A general measure of the effectiveness of control charts
is the Average Run Length (ARL). The ARL is the average
number of points that must be plotted before a point indicates
an out-of-control condition [18]. For EWMA control charts
there exists a trade-off between the number of out-of-control
detection and the ARL based on the value of parameter λ.
Lower values of λ yield lower ARL and in turn higher of out-
of-control anomalies. Conversely, when λ is close to unity
a high ARL is observed and as a result fewer anomalies
are recorded. In general, λ should be high enough so as to
reduce the false alarm rate and to ensure greater sensitivity
to anomalies.

We describe data specific issues such as parameter ini-
tialization in Section V when we evaluate the algorithms on
specific datasets.

IV. EXPERIMENTAL DESIGN

The goal of our experiments is to evaluate the two
anomaly detection schemes (in sections II and III) on
real performance traces obtained from a benchmark web
application under realistic load and fault injections deployed
in a virtualized environment. In this section we describe
the experimental testbed, the test application, workload
emulation and the experimental methodology.

4

104

Fig. 2: Experimental testbed.

A. The Testbed

The experiments were conducted on a HP ProLiant phys-
ical machine (PM) equipped with a total of 32 CPU cores2,
56 GB of memory, four 500G SATA disks in RAID10 and
Gigabyte Ethernet. The server is virtualized using the Xen
Hypervisor [33]. The testbed (in Fig. 2) consists 3 virtual
machines, VMhttpmon running the load emulator, VMrubis
(configured with 16 VCPUs, 4GB memory and 25GB stor-
age capacity), hosting RUbiS benchmark application, and
an antagonist, VMneighbour (6 VCPUs, 4GB memory and
25GB storage), used to inject faults into the environment.
We deploy VMrubis and VMhttpmon on the same PM with
compute-level isolation in order to reduce network delays.
Compute isolation is achieved by partitioning physical CPUs
into two non-overlapping pools, A (10 cores) and B (22
cores) using Xen’s CPUpools policies3. Each pool may have
entirely different scheduler and VMs are assigned to pools
on creation and can be moved from one pool to another.
VMhttpmon is allocated to Zone A while the other two are
allocated to Zone B.

Fig. 3: A model of workload mix generated by httpmon

1) Benchmark Applications: The benchmark web ap-
plication used in our experiments is RUBiS4. RUBiS is
an eBay-like web-based e-commerce application that pro-
vides selling, browsing and bidding functionalities. The
PHP variant of RUBiS is deployed in VMrubis. The VM

2Two 2.1GHz AMD OpteronTM 6272 processors, with 16 cores each.
3http://wiki.xenproject.org/wiki/Cpupools Howto
4http://rubis.ow2.org/index.html

0 20 40 60 80 100

time

0

20

40

60

80

100

120

140

160

180

n
u
m

b
e
r

o
f

u
se

rs

Fig. 4: Workload intensity

is running Apache 2.0 as its web server (with mod-
ule Apache MPM prefork enabled for thread safety
and request isolation), and MySQL 5.0 as the database
server. The MaxClients, ServerLimit parameters for
Apache have been set to relatively high values to ac-
commodate high load. Also, to introduce compute and IO
perturbations into the environment, we used the open-source
stress5 tool deployed in VMneighbour.

2) Workload and Performance metric: Fig. 3 is a simple
model of how the workload mix used in our experiments are
is generated. It shows the pattern of interactions between
emulated clients and RUBiS. The interaction consist of a
dynamic set of users concurrently sending HTTP requests to
a main task such as fetching a random product page. With
probability α, they exit the application or proceed to perform
an optional task (e.g. requesting all past comments about the
product) with probability β and/or perform another optional
task (e.g. submitting a remark about the product) with
probability γ. End-users are emulated using, httpmon6, a
versatile HTTP (GET or POST) traffic generator. We adapted
httpmon to support the use of arbitrary workload intensity
(Fig. 4) and mix (Fig. 3). The thinktime parameter of
httpmon is set to 900ms in OPEN loop mode for all
experiments, while the concurrency is held constant for
one minute per observation from the workload intensity
profile. This technique allows us to stage realistic workload
and application behaviour.

The performance of the benchmark application is as-
sessed by the Response Time (RT) or latency of individual
HTTP (GET/POST) request. RT is the time elapsed from
when the first byte of a request is sent to the time the last
byte of its response is received. HTTPMON measures request
latencies and aggregates by taking the 95th percentile latency
of all requests observed over a given time interval. The
choice of tail (95th percentile) response time (P95-RT) is be-
cause (a) RT metric are commonly used to reason about user
satisfaction and quality of experience in Internet services
(b) 95th percentile aggregation enables consistent latency
measurements [34] and correlates more with violation of
service-level objectives (SLO) than averages (which is easily
skewed by spikes).

5http://people.seas.harvard.edu/∼apw/stress/
6https://github.com/cloud-control/httpmon

5

105

(a) Timeline of experiment 1. (b) Timeline of experiment 2. (c) Timeline of experiment 3.

Fig. 5: Ghant charts showing the timeline of experiments and the injection of anomaly-inducing events. Gray boxes in red
border correspond to periods where workload spikes have been injected into the test workload while the red corresponds to
injection of CPU and IO contention.

3) Experiment Process: The first step is to generate
the baseline used for behaviour-based anomaly detection
in subsequent experiments. This is accomplished by run-
ning the benchmark (VMrubis) for about an hour without
VMneighbour in the setup in order to eliminate unwanted
noise. We injected the synthetic workload intensity and mix
according to Fig. 4 and Fig. 3 respectively. The workload
mix probabilities are initialized as α = 0.60, β = 0.35, γ =
0.05. We randomly sample the P95-RT over consecutive
three-minutes windows to obtain 21 baseline values. The
distribution of values in the baseline is shown in Fig. 6.
The green region is shown for mere aesthetic since negative
latency values are unreasonable. In the evaluation section,
we will describe how the SLO-violation annotation is used
to quantify the accuracy of the KDE models. We perform

0.2 0.1 0.0 0.1 0.2 0.3 0.4

P95RT (s)

0

2

4

6

8

10

12

d
e
n
si

ty

SLO violation: P95RT>0.136s

Fig. 6: Distribution of the baseline P95-RT.

three similar experiments to emulate how load spikes and
resource contention due to VM co-location cause anomalies
in service-level performance metric behaviour. Each experi-
ment runs for two hours following the same workload profile
as the baseline experiment. The P95-RT of the application is
sampled at 20 seconds interval. A Ghant chart describing
the timeline and composition of the testbed as well as the
injection of anomaly-inducing events for each experiment
is shown in Fig. 5. The entire duration is divided into
four 30-minutes long periods. The test workload event
refers to running VMrubis while the CPUhog and IOhog
events refer to running VMneighbour to emulate compute and
IO contention in the execution environment. For compute
contention, we configured stress so that it aggressively
consumes as much CPU as available in Zone B. Also,
stress is used to induce IO contention by writing blocks
of bytes into the disk without disk caching. In addition,
we injected workload spikes (by arbitrarily increasing the
number of users) between period two to three in experiment

2 and 3, as well as within period one and two in experiment
2.

TABLE I: Description of acronyms and symbols
Acronym / Symbol Method Description

KDE, AKDE Behaviour-based Standard and adaptive kernel density estimation
KDETree, AKDETree Behaviour-based k-dimensional tree variants of KDE and AKDE

EWMA Prediction-based Exponentially weighted moving average control chart
ARL Prediction-based Average run length of the control chart

CL, UCL, LCL Prediction-based Center line, upper and lower control limits
τ Behaviour-based SLO violation threshold (Section V-A)
h Behaviour-based The global kernel bandwidth (Eq. 1 & 3)
ε Behaviour-based The conditional density threshold (Section II-D)
α, β Prediction-based Holt-Winter’s smoothing parameters (Eq. 4 - 6)
`t, bt Prediction-based Time series level and trend components (Eq. 4 - 6)
λ Prediction-based Smoothing parameter for EWMA chart (Eq. 7)
L, σ Prediction-based Control limit parameters (Eq. 8)
et, e

′
t Prediction-based Forecast and smoothed errors (Eq. 7)

V. EVALUATION

In this section, we evaluate the proposed anomaly de-
tection schemes based on three experiments described in
the previous section. To enhance readability, we describe
acronyms and symbols used so far in Table I.

A. Behaviour-based anomaly detection

The KDE models described in this paper and the raw data
from our experiments are unsupervised in nature, hence it
is not so straightforward to quantify the accuracy of the
models. We follow the approach in supervised anomaly
detection where a label is provided for each observation in
the dataset distinguishing which ones are anomalous and
which are not [21]. To label our data, we define a threshold
τ equal to the 95th percentile of the values in the baseline
(see Fig. 6). The dataset is then labeled according to the
following rule:

yi =

{
0, if xi < τ,

1, xi ≥ τ.
(9)

xi and yi are the value and class label of observation i
respectively. Observations with yi = 0 are normal (below
the SLO violation threshold) while yi = 1 are anomalies
(above the SLO violation threshold). Fitting a KDE model
as described in Section II requires setting global bandwidth h
to an optimal value. It also requires choosing the conditional
density threshold ε that guarantees good model accuracy. To
select the right parameters we tried different combinations
of h and ε. We used grid search cross-validation to optimize
the value of h which resulted in h = 10, a rather high
value compared to the Silverman’s [23] approximation,
h = 3n

4

− 1
5 ≈ 0.57 (recall n = 21). We tried different

h within the range (0.5, 10) while varying ε as well. The

6

106

0 1e-06 1e-05 0.0001 0.001 0.01 0.05 0.1

Threshold (ε)

0

20

40

60

80

100

E
rr

o
r

R
a
te

(%
)

akdetree

kde

akde

kdetree

(a) Misclassification rate

0 1e-06 1e-05 0.0001 0.001 0.01 0.05 0.1

Threshold (ε)

0

20

40

60

80

100

S
e
n
si

ti
v
it

y
(%

)

akdetree

kde

akde

kdetree

(b) Sensitivity

0 1e-06 1e-05 0.0001 0.001 0.01 0.05 0.1

Threshold (ε)

0

20

40

60

80

100

S
p
e
ci

fi
ci

ty
(%

)

akdetree

kde

akde

kdetree

(c) Specificity

Fig. 7: Performance of the KDE models for behaviour-based anomaly detection in terms of (a) the overall misclassification
rate, (b) ability to correctly identify anomalies, and (c) ability to correctly distinguish normal observations.

0 500 1000 2000 3000

Baseline dataset sizes

3

2

1

0

1

2

3

4

5

S
co

ri
n
g
 t

im
e

kde

kdetree

akde

akdetree

Fig. 8: Time requirement of KDE models at varying test data
sizes (in log scale).

observation is that higher bandwidths (h > 1.5) result in
over-fitting leading the model to mis-classify anomalies as
normal observations.

Fig. 7 shows the performance of the KDE models as
well as their tree implementations for h = 1.5 with varying
ε while Fig. 7a is the misclassification rate of the model.
Fig. 7b is the represents the percentage of actual anomalies
in the test dataset that are correctly identified and Fig. 7c
is the percentage of normal data instances that are correctly
identified by the model. It can be observed that the AKDE
model and the tree variants offer consistently low error rates
at thresholds below 0.01 after which only the tree variants
remain low. Though Fig. 7b indicates that the tree variants
are not able to correctly detect anomalies as much as the
non-tree variants at lower thresholds, Fig. 7c shows that
they are however better at identifying normal data even at
higher thresholds. For the given baseline, a threshold of 0.01
seems to offer the best trade-off between model accuracy
and sensitivity to anomalies. At this threshold, the tree
implementation of AKDE is the preferred model because it
offers the best trade-off between mode accuracy and ability
to correctly classify both anomalies and normal samples.
Furthermore, we fit the models on data obtained from
experiments 2 and 3 with parameter settings h = 1.5 and
ε = 0.01. The tree-based AKDE model also performed better
than the rest at error rates of 8% and 14%, and sensitivity

of 95% and 99% for experiments 2 and 3 respectively.

Fig. 8 confirms the O(n2) complexity of the standard
KDE model under varying test data sizes. The plot illustrate
the number of seconds required (in log scale) to completely
compute the conditional density of observations in test
datasets of varying sizes. With their O(n log n) time com-
plexity, the tree variants offer greater speed.The tree models
thus become scalable and faster as the data size increase
in comparison to the standard implementations. However,
the AKDE model demands additional time requirement for
computing local density bandwidth using the pilot estimate
which can get somewhat expensive for large baseline data.

B. Prediction-based anomaly detection

In this section, we use the same datasets from experi-
ments 1, 2 and 3 as in Fig. 5 to evaluate the capability of
the predictive anomaly detection scheme to detect anomalies
in service performance. The most important part of this
is parameterizing the Holt-Winter’s forecasting algorithm
and the EWMA control chart. The Holt-Winter’s forecasting
scheme described in Section III incorporates seasonality
in the data through the st term of Eq. 6, controlled by
parameter γ. Since datasets from our experiments do not
exhibit any seasonality, we set γ to zero. This reduces the
problem to only finding the optimal values for α and β
needed to control the time series level and trend respectively.
Recall that lower values of α gives more importance to
observations in the past than the recent. The same applies
to β, values close to zero means that trends in the distant
past affect the current forecast than the recent trends. We
searched over a grid of possible combinations of α and β,
and for each pair we fit the Holt-Winter’s model and select
the pair with low mean absolute percentage error (MAPE).
Hence, we obtained α = 0.9 and β = 0.3 for the Holt-
Winter’s forecasts. To initialize Holt-Winter’s forecasting we
set `0 = x1 and b0 = x2−x1, where x1 and x2 are the first
and second observation of the time series respectfully.

For each test data, the Holt-Winter’s method is used to
generate forecast residuals on which the EWMA control
chart is applied. The parameter L of Eq. 8 controls how wide
the control limits are and in turn the sensitivity to shifts in the
behaviour of measurements. We set L to the value of 3 (i.e.
3σ) as commonly done in literature [18] [30]. Equation 7
requires that parameter λ is set appropriately to control both

7

107

0

5

10

15

20

25

O
ut

 o
f c

on
tr

ol

A
ve

ra
g

R
un

 L
en

gt
h

0

5

10

15

20

25

0.0 0.2 0.4 0.6 0.8 1.0
Smoothing parameter (lambda)

(a) Experiment 1

0

20

40

60

80

O
ut

 o
f c

on
tr

ol

A
ve

ra
g

R
un

 L
en

gt
h

0

10

20

30

40

0.0 0.2 0.4 0.6 0.8 1.0
Smoothing parameter (lambda)

(b) Experiment 2

0

20

40

60

80

O
ut

 o
f c

on
tr

ol

A
ve

ra
g

R
un

 L
en

gt
h

0

5

10

15

20

25

30

0.0 0.2 0.4 0.6 0.8 1.0
Smoothing parameter (lambda)

(c) Experiment 3

Fig. 9: Predictive anomaly detection: Plots showing how the number of anomalies detected and the Average Run Length
(ARL) vary with respect to λ at L = 3.

0 100 200 300

−
10

−
5

0
5

time(s)

F
or

ec
as

t r
es

id
ua

ls

LCL

UCL

CL

(a) Experiment 1 (λ = 0.81)

0 100 200 300

−
20

−
15

−
10

−
5

0
5

10

time(s)

F
or

ec
as

t r
es

id
ua

ls

LCL

UCL

CL

(b) Experiment 2 (λ = 0.6)

0 100 200 300
−

20
−

10
−

5
0

5
10

15
time(s)

F
or

ec
as

t r
es

id
ua

ls

LCL

UCL

CL

(c) Experiment 3 (λ = 0.61)

Fig. 10: Predictive anomaly detection: Adaptive EWMA control chart applied to smoothed Holt-Winter’s forecast errors using
α = 0.9, and β = 0.3. The indicated control limits are obtained using L = 3 (i.e. 3σ). Anomalies are the out-of-control
points in green.

the rate at which out-of-control alarms are raised and the
average run length (ARL). In Fig. 9 we illustrate the trade-
off between number of out-of-control (anomalies) detection
and the ARL when λ is varied between 0 and 1. Control
charts with higher ARL are generally known to have fewer
out-of-control detections and false alarms. Hence, λ should
be chosen to yield lower ARL while sensitive enough to
shifts of varying magnitude in the time series behaviour.
Using Fig. 9, we set the value of λ to 0.81, 0.6, and 0.61 for
experiments 1, 2 and 3 respectively. These values correspond
to the intersection of the growing ARL line and the decaying
out-of-control line that partitions the plots into two regions;
a region of low ARL and high out-of-control detection and
a region of high ARL but low out-of-control detection. To
initialize the EWMA control chart, we set e′0 = e1, CL to
the mean of the first k = 3 residuals and σ2 to the variance
of this mean as described in Section III.

Fig. 10 are the control charts obtained when the adaptive
EWMA control chart scheme is applied to Holt-Winter’s
forecast residuals from the experiments. Notice how the
control limits (UCL, CL and LCL) follows the trend and
shift in the signal. The out-of-control points (i.e. anomalies)
are the indicated green points on the plots. The three control
charts clearly detect more anomalies at points corresponding
to between periods 2 and 4 respectively of the time-line in
Fig. 5, indicated as a period of unstable shifts in the time

series around the center line. The workload spikes injected
in experiments 2 and 3 does not seem to induce as much
shift in the data as resource contention between periods
2 and 4. Hence, fewer anomalies are detected within that
period. This behaviour suggests that sometimes low-level
events such as resource saturation may not readily manifest
as anomalies in service performance. By manual observation
of the pages accessed by requests to VMrubis and its system
metrics, most of the spikes between period 2 and 4 in the
charts is due to CPU saturation and database reads and writes
that coincide with IO noise from VMneighbour. In addition,
spikes in the beginning of the charts are due to initial disk
activity before the disk cache is sufficiently warmed up and
the initial phase through which the control charts adjusts to
the steady behaviour of the time series.

VI. DISCUSSIONS

The behaviour-based scheme is useful for two scenarios
(a) when a baseline profile is available and the task is
to identify anomalies in previously unseen APM measure-
ments and (b) when a baseline is not explicitly provided
but the entire set of APM dataset is and the task is to
identify anomalous values in the given data off-line. The
first scenario, then the algorithm described in Section II is
applicable directly. In the second scenario, the task is to
identify anomalous measurements from the entire data off-
line. The behaviour-based technique is still applicable by

8

108

using the entire data as both the baseline and test data. First
we fit the AKDE model on the data and an appropriate value
is determined for the density threshold ε. In one more pass
over the data, the model is used to classify each observation
as anomaly or normal. The prediction-based approach on the
hand is best for the second scenario and most suitable when
measurements arrive sequentially in a pre-defined interval.

In comparison, the EWMA control chart technique gen-
erally detects fewer anomalies and false alarms than the
KDE models due to its adaptive nature. The exponential
smoothing of the residuals means that spurious spikes are
smoothed out and alarms are only raised for sustained
anomalies. The KDE model however detects more anomalies
accurately than the control chart scheme some of which
are false alarms. To reduce occasional spurious alarms due
to spiky data, on method is to define a hanging window
within which we set a threshold on the maximum number of
consecutive anomalies. For example, let A, be the number of
sequential anomalies detected within a k-length window,W ,
an alarm is raised when A > L, where L is the maximum
number of permissible consecutive anomalies.

For longer experiment periods, we would expect the
performance of the KDE to worsen in time as the baseline
becomes obsolete. The technique can however be adapted
for use in an on-line manner like the predictive scheme
by taking recent windows of observations as the baseline
and using the trained model to predict in the next window.
The classification threshold ε can also be set to reflect
changing SLO thresholds. However, deciding whether to
use the tree variants of the standard KDE or adaptive KDE
will depend on the trade-off between speed and accuracy
of detection. On one hand, the adaptive KDE will yield
fast O(n log n) complexity but require significant time for
computing local bandwidths through pilot density estimation
especially for large baseline data. On the other hand, the
tree implementation of the KDE will offer fast classification
without prior pilot estimate at the expense of accuracy.

Though the prediction-based technique is easily
amenable to real time deployment, it does require getting
the parameter settings right. Also the fact that out-of-control
samples are also included in computing the control limits
may also cause the control limits to be too wide at certain
points that it masks actual anomalies. Moreover, the fact
that few to no anomalies were generated in some periods
(e.g. between period 1 to 2) of experiment 3 is interesting.
It suggests that because a service has not yet exhibited
anomalous behaviour does not mean there are no suspicious
events at the system-level that may soon portend harm.

VII. RELATED WORK

In our previous survey in [1], we have carried out
extensive review of of performance anomaly detection and
bottleneck identification research in distributed and cloud en-
vironments. In this section, we describe some related works
from the survey in addition to recent studies. Performance
anomaly Detection (PAD) is concerned with identifying
problem symptoms and anomalies in performance metrics
of computer systems. Many recent work in this area gen-
erally focus on detecting problems in system-level metrics

using predominantly statistical learning techniques. SEAD
[35] adapts Support Vector Machines (SVM) to achieve a
self-evolving mechanism for detecting anomalies in system
metrics. EbAT [36], analyses entropy time-series of metric
distributions to automatically identify anomalies in datacen-
ter servers. Dean et al [5] propose UBL, an unsupervised
framework for identifying performance anomalies in systems
metrics using Self-Organizing Maps (SOMs). A workload-
aware technique for localizing anomalous requests and met-
rics in web applications using Local Outlier Factor (LOF)
and the Student-t test is presented in [6]. The limitation of
these works is that they ignore the cause-effect relationship
and correlation between anomalies at the service level and
system-level events such as capacity bottlenecks and faults.

Moreover, existing approaches for detecting anomalies
in application performance metrics (e.g. response time and
throughput) either resort to simplistic mechanisms based on
thresholding or require intrusive application instrumentation
(such as tracing request flows in [10] and [11]). Iqbal et al
in [7] [37] employ hard SLA thresholds to detect anomalies
in service response times. CloudPD [8] performs automated
end-to-end problem detection, diagnosis and classification
of faults in cloud environments. CloudPD detects anoma-
lous response time and throughput measurements using
percentage-based thresholds. E2EProf [10] analyzes causal
paths of service requests to identify end-to-end requests
delays and faulty components in distributed services. Spikes
in requests delays are detected by point maxima (e.g. 3σ+µ)
thresholds. Zhang et al [19] detects anomaly behaviour in
jobs (applications) running in a Google web-search cluster
based on a 2σ deviation in the job’s cycle-per-instruction
(CPI) metric distribution.

The behaviour-based anomaly detection method pro-
posed in this paper is closely related to approaches proposed
in [14] and [15] for intrusion detection in network traffic.
The predictive anomaly detection scheme is similar to the
work of Munz et al [30] and Ye et al [38] focusing on the
use of statistical control charts in anomaly detection. Time
series forecasting have also been used in dynamic resource
provisioning in cloud environments such as in [39] and [40].

VIII. CONCLUSION

We have proposed and evaluated two schemes for de-
tecting anomalies in real-time service performance metric
measurements. In use cases where deviations from a known
metric baseline is classified as anomalous, we have pre-
sented a technique that automatically detects deviations from
the given baseline using non-parametric statistical learning.
To address cases where a baseline is unknown, we have
exploited the temporal dependency in service performance
metric measurements to identify anomalies. Deviations in
service performance behaviour are detected by applying
adaptive control limits on residuals of Holt-Winter’s fore-
casts using EWMA control charts. Our evaluation is based
on tail service latency traces obtained from experiments
in a real virtualized testbed under realistic load and fault
injections. Results show the applicability of our approach
for anomaly detection and also suggest that many service
performance anomalies may be explained by system-level
events such as resource contention and capacity bottlenecks.

9

109

In the future, we plan to extend our approach for automatic
root-cause analysis. By correlating system-level events with
service-level anomaly detection, the resulting system may be
able to diagnose observed anomalies, identify potential root-
causes and remediations. Also, we plan to further evaluate
accuracy of the techniques using labeled datasets from public
system traces.

ACKNOWLEDGMENT

This work is supported by the Swedish Research Coun-
cil (VR) under contract number C0590801 for the Cloud
Control project, the Swedish Strategic Research Program
eSSENCE, and the European Unions Seventh Framework
Programme under grant agreement 610711 (CACTOS).

REFERENCES

[1] O. Ibidunmoye, F. Hernández-Rodriguez, and E. Elmroth,
“Performance Anomaly Detection and Bottleneck Identification,”
ACM Comput. Surv., vol. 48, no. 1, pp. 4:1–4:35, Jul. 2015.
[Online]. Available: http://doi.acm.org/10.1145/2791120

[2] T. Kelly, “Detecting Performance Anomalies in Global Applications,”
in WORLDS, vol. 5, 2005, pp. 42–47.

[3] Q. Wang, Y. Kanemasa, J. Li, D. Jayasinghe, T. Shimizu, M. Matsub-
ara, M. Kawaba, and C. Pu, “Detecting Transient Bottlenecks in n-tier
Applications through Fine-grained Analysis,” in 33rd International
Conference on Distributed Computing Systems (ICDCS). IEEE,
2013, pp. 31–40.

[4] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and D. Rajan,
“Prepare: Predictive performance anomaly prevention for virtualized
cloud systems,” in 32nd International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2012, pp. 285–294.

[5] D. J. Dean, H. Nguyen, and X. Gu, “UBL: Unsupervised Behavior
Learning for Predicting Performance Anomalies in Virtualized Cloud
Systems,” in Proceedings of the 9th international conference on
Autonomic computing. ACM, 2012, pp. 191–200.

[6] T. Wang, J. Wei, W. Zhang, H. Zhong, and T. Huang, “Workload-
aware anomaly detection for web applications,” Journal of Systems
and Software, vol. 89, pp. 19–32, 2014.

[7] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, “Sla-driven
Automatic Bottleneck Detection and Resolution for Read Intensive
Multi-tier Applications Hosted on a Cloud,” in Advances in Grid and
Pervasive Computing. Springer, 2010, pp. 37–46.

[8] B. Sharma, P. Jayachandran, A. Verma, and C. R. Das, “Cloudpd:
Problem determination and diagnosis in shared dynamic clouds,” in
43rd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 2013, pp. 1–12.

[9] D. J. Dean, H. Nguyen, P. Wang, and X. Gu, “Perfcompass: Toward
runtime performance anomaly fault localization for infrastructure-as-
a-service clouds,” in Proceedings of the 6th USENIX conference on
Hot Topics in Cloud Computing. USENIX Association, 2014, pp.
16–16.

[10] S. Agarwala, F. Alegre, K. Schwan, and J. Mehalingham, “E2eprof:
Automated end-to-end performance management for enterprise sys-
tems,” in 37th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks. IEEE, 2007, pp. 749–758.

[11] R. Filipe, S. Boychenko, and F. Araujo, “On client-side bottleneck
identification in http servers,” in 10th International Conference on
Internet and Web Applications and Services. IARIA, 2015, pp.
22–27.

[12] P. Carden. (2013) Network design manual: Network baselining
and performance management. [Online]. Available: http://www.
networkcomputing.com/netdesign/base1.html

[13] N. Bhatia, “Proactive Detection of Performance problems using
Adaptive thresholds,” 2010. [Online]. Available: https://neerajbhatia.
files.wordpress.com/2010/10/Adaptive-thresholds.pdf

[14] Y. Gu, A. McCallum, and D. Towsley, “Detecting Anomalies in Net-
work Traffic Using Maximum Entropy Estimation,” in Proceedings
of the 5th ACM SIGCOMM conference on Internet Measurement.
USENIX Association, 2005, pp. 32–32.

[15] D.-Y. Yeung and C. Chow, “Parzen-window Network Intrusion
Detectors,” in Proceedings of the 16th International Conference on
Pattern Recognition, vol. 4. IEEE, 2002, pp. 385–388.

[16] F. J. G. Gisbert, “Weighted Samples, Kernel Density Estimators and
Convergence,” Empirical Economics, vol. 28, no. 2, pp. 335–351,
2003.

[17] A. Moore, “A Tutorial on KD-Trees,”
http://www.cs.cmu.edu/simawm/papers.html, 1991, Extract from
PhD Thesis.

[18] D. C. Montgomery, Introduction to Statistical Quality Control. John
Wiley & Sons, 2007.

[19] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and
J. Wilkes, “CPI2: CPU Performance Isolation for Shared Compute
Clusters,” in Proceedings of the 8th ACM European Conference on
Computer Systems. ACM, 2013, pp. 379–391.

[20] S. Malkowski, M. Hedwig, and C. Pu, “Experimental Evaluation
of N-tier Systems: Observation and Analysis of Multi-bottlenecks,”
in International Symposium on Workload Characterization, IISWC.
IEEE, 2009, pp. 118–127.

[21] C. C. Aggarwal, Outlier Analysis. Springer Science & Business
Media, 2013.

[22] B. E. Hansen, “Lecture Notes on Nonparametrics,” 2009. [Online].
Available: http://www.ssc.wisc.edu/∼bhansen/718/NonParametrics1.
pdf

[23] B. W. Silverman, Density Estimation for Statistics and Data Analysis.
CRC press, 1986, vol. 26.

[24] B. E. Hansen, “Bandwidth Selection for Nonparametric Distribution
Estimation,” Manuscript, University of Wisconsin, 2004.

[25] R. N. Riegel, “Generalized n-body problems: a framework for
scalable computation,” Ph.D. dissertation, Georgia Institute of Tech-
nology, 2013.

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine Learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[27] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and
practice. OTexts, 2014, accessed: 2016-02-10.

[28] P. R. Winters, “Forecasting Sales by Exponentially Weighted Moving
Averages,” Management Science, vol. 6, no. 3, pp. 324–342, 1960.

[29] R. Lawton, “How Should Additive Holt–Winters Estimates be Cor-
rected?” International Journal of Forecasting, vol. 14, no. 3, pp.
393–403, 1998.

[30] G. Munz and G. Carle, “Application of Forecasting Techniques and
Control Charts for Traffic Anomaly Detection,” in Proceedings of the
19th ITC Specialist Seminar on Network Usage and Traffic. Citeseer,
2008.

[31] NIST/SEMATECH, “e-Handbook of Statistical Methods,” 2012,
[Online; accessed 10-February-2016]. [Online]. Available: http:
//www.itl.nist.gov/div898/handbook/pmc/section4/pmc431.htm

[32] B. Welford, “Note on a Method for Calculating Corrected Sums of
Squares and Products,” Technometrics, vol. 4, no. 3, pp. 419–420,
1962.

[33] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” ACM SIGOPS Operating Systems Review, vol. 37,
no. 5, pp. 164–177, 2003.

[34] D. Desmeurs, C. Klein, A. V. Papadopoulos, and J. Tordsson, “Event-
Driven Application Brownout: Reconciling High Utilization and Low
Tail Response Times,” in International Conference on Cloud and
Autonomic Computing (ICCAC), 2015.

[35] H. S. Pannu, J. Liu, and S. Fu, “A self-evolving anomaly detection
framework for developing highly dependable utility clouds,” in
Global Communications Conference (GLOBECOM). IEEE, 2012,
pp. 1605–1610.

10

110

[36] C. Wang, V. Talwar, K. Schwan, and P. Ranganathan, “Online
detection of utility cloud anomalies using metric distributions,” in
Network Operations and Management Symposium (NOMS), 2010
IEEE. IEEE, 2010, pp. 96–103.

[37] W. Iqbal, M. Dailey, and D. Carrera, “Sla-driven adaptive resource
management for web applications on a heterogeneous compute
cloud,” in Cloud Computing. Springer, 2009, pp. 243–253.

[38] N. Ye, S. Vilbert, and Q. Chen, “Computer Intrusion Detection
through EWMA for Autocorrelated and Uncorrelated Data,” IEEE
Transactions on Reliability, vol. 52, no. 1, pp. 75–82, 2003.

[39] H. Engelbrecht and M. van Greunen, “Forecasting Methods for Cloud
Hosted Resources, a Comparison,” in 11th International Conference
on Network and Service Management (CNSM). IEEE, 2015, pp.
29–35.

[40] C. Vazquez, R. Krishnan, and E. John, “Time Series Forecasting of
Cloud Data Center Workloads for Dynamic Resource Provisioning,”
Journal of Wireless Mobile Networks, Ubiquitous Computing, and
Dependable Applications (JoWUA), vol. 6, no. 3, pp. 87–110, 2015.

11

111

112

