
Parallel Algorithms and Library Software
for the Generalized Eigenvalue Problem

on Distributed Memory Computer Systems

Björn Adlerborn

Licentiate Thesis

DEPARTMENT OF COMPUTING SCIENCE
UMEÅ UNIVERSITY, SWEDEN

Department of Computing Science
Umeå University
SE-901 87 Umeå, Sweden

adler@cs.umu.se

Copyright c© 2016 by Björn Adlerborn
Except Paper I, c© SIAM J. Scientific Computing, 2015

Paper II, c©Björn Adlerborn, Bo Kågström, and Lars Karlsson, 2016
Paper III, c©Björn Adlerborn, Bo Kågström, and Daniel Kressner, 2015

ISBN 978-91-7601-491-2
ISSN 0348-0542
UMINF 16.11

Printed by Print & Media, Umeå University, 2016

Abstract

We present and discuss algorithms and library software for solving the generalized
non-symmetric eigenvalue problem (GNEP) on high performance computing (HPC)
platforms with distributed memory. Such problems occur frequently in computational
science and engineering, and our contributions make it possible to solve GNEPs fast
and accurate in parallel using state-of-the-art HPC systems. A generalized eigenvalue
problem corresponds to finding scalars λ and vectors x such that Ax = λBx, where
A and B are real square matrices. A nonzero x that satisfies the GNEP equation is
called an eigenvector of the ordered pair (A,B), and the scalar λ is the associated
eigenvalue. Our contributions include parallel algorithms for transforming a matrix
pair (A,B) to a generalized Schur form (S,T), where S is quasi upper triangular and
T is upper triangular. The eigenvalues are revealed from the diagonals of S and T .
Moreover, for a specified set of eigenvalues an associated pair of deflating subspaces
can be computed, which typically is requested in various applications. In the first
stage the matrix pair (A,B) is reduced to a Hessenberg-triangular form (H,T), where
H is upper triangular with one nonzero subdiagonal and T is upper triangular, in a
finite number of steps. The second stage reduces the matrix pair further to generalized
Schur form (S,T) using an iterative QZ-based method. Outgoing from a one-stage
method for the reduction from (A,B) to (H,T), a novel parallel algorithm is devel-
oped. In brief, a delayed update technique is applied to several partial steps, involving
low level operations, before associated accumulated transformations are applied in a
blocked fashion which together with a wave-front task scheduler makes the algorithm
scale when running in a parallel setting. The potential presence of infinite eigenvalues
makes a generalized eigenvalue problem ill-conditioned. Therefore the parallel algo-
rithm for the second stage, reduction to (S,T) form, continuously scan for and robustly
deflate infinite eigenvalues. This will reduce the impact so that they do not interfere
with other real eigenvalues or are misinterpreted as real eigenvalues. In addition, our
parallel iterative QZ-based algorithm makes use of multiple implicit shifts and an ag-
gressive early deflation (AED) technique, which radically speeds up the convergence.
The multi-shift strategy is based on independent chains of so called coupled bulges
and computational windows which is an important source of making the algorithm
scalable. The parallel algorithms have been implemented in state-of-the-art library
software. The performance is demonstrated and evaluated using up to 1600 CPU
cores for problems with matrices as large as 100000× 100000. Our library software
is described in a User Guide. The software is, optionally, tunable via a set of param-
eters for various thresholds and buffer sizes etc. These parameters are discussed, and
recommended values are specified which should result in reasonable performance on
HPC systems similar to the ones we have been running on.

iii

iv

Preface

The Licentiate Thesis consists of the the following three papers and an introduction
including a summary of the papers.

Paper I Björn Adlerborn, Bo Kågström, and Daniel Kressner. A parallel QZ algo-
rithm for distributed memory HPC systems1. In SIAM J. Scientific Com-
puting, 36(5), pages 480–503. 2015.

Paper II Björn Adlerborn, Bo Kågström, and Lars Karlsson. Distributed One-
Stage Hessenberg-Triangular Reduction with Wavefront Scheduling. Re-
port UMINF 16.10. Dept. of Computing Science, Umeå University, Swe-
den, 2016 (to be submitted).

Paper III Björn Adlerborn, Bo Kågström, and Daniel Kressner. PDHGEQZ User
Guide. Report UMINF 15.14. Dept. of Computing Science, Umeå Uni-
versity, Sweden, 2015.

1 Reprinted by permission of Society for Industrial and Applied Mathematics.

v

vi

Acknowledgements

First of all, I would like to thank my supervisors Bo Kågström and Lars Karlsson, for
their great enthusiasm, inspiration, and encouragement, and for providing exceptional
knowledge and support, and for always making so much of their time available.

Thanks go to Meiyue Shao, Daniel Kressner and Robert Granat for fruitful discus-
sions on parallel QZ algorithms.

Thanks also to the colleagues and staff at the High Performance Computer Center
North (HPC2N), for access to the HPC systems Abisko and Akka and for their excel-
lent user support.

I also would like thank Anna for being there for me, making me a better person,
making my life valuable, and giving birth to and being such a great mother and inspi-
ration for our dearest daughter Emelie.

Financial support has been provided by the Swedish Research Council (VR) under
grant A0581501, and by eSSENCE, a strategic collaborative e-Science programme
funded by the Swedish Government via VR. This work was also partly funded from
the European Unions Horizon 2020 research and innovation programme under the
NLAFET grant agreement No 671633.

Umeå, May 2016

Björn Adlerborn

vii

viii

Contents

1 Introduction 1
1.1 Background 2
1.2 Data distribution 4
1.3 Memory hierarchies and operations 5
1.4 Redundant computing 6

2 Summary of papers 9
2.1 Paper I 9
2.2 Paper II 10
2.3 Paper III 10

3 Future work 13

Paper I 21

Paper II 53

Paper III 83

ix

x

Chapter 1

Introduction

Solving large-scale problems efficiently and effectively on modern parallel high
performance computing (HPC) platforms requires both a good parallel algo-
rithm for the considered problem as well as very good knowledge of the under-
lying computer architecture. To facilitate the use of such parallel HPC systems,
it is important to provide various software tools so that engineers and scien-
tists can focus on solving their applications. With long tradition, numerical
software libraries that include ready to use computational routines provide a
well-functioning tool for this purpose. In this way, the burden of handling the
architecture issues is mainly laid on the developers of parallel algorithms and
software.

Today’s parallel HPC architectures are hierarchical and are getting more
and more heterogeneous in several dimensions (e.g., multicore processors, ac-
celerators, high-speed interconnect networks). In this thesis, we focus on dis-
tributed memory architectures with multicore nodes, but common for all par-
allel HPC systems is that they have a complex memory hierarchy that must
be utilized and given special attention in order to obtain a high portion of the
theoretical peak performance. How to succeed is highly dependent on what
problems to solve. Some of them lead to algorithms that are straightforward
to parallelize, while many have strong dependencies between computational
steps and associated data flows; the latter is the case for the dense matrix
computational problems studied in this thesis.

One paramount issue concerns the management of complex memory hier-
archies, which aim at avoiding unnecessary data movements between memory
layers defined by on chip multi-level caches and local as well as remote memory.
In practice, this means that matrix elementwise computations are restructured
(or new algorithms are designed) so that blocked (submatrix) operations are
used as much as possible. Ideally, if most computations can be expressed as
matrix-matrix operations, it makes it possible to reuse data as much as pos-
sible at the different memory layers and thereby obtain near to optimal per-
formance. Equally important is to balance the computational load (defined

1

by tasks) across all participating processes, keep them active and avoid them
from going idle. To restructure and rebalance the computational load during
execution, which even may include redundant computations, can be an efficient
way of reducing communication and idle time.

In this thesis, we investigate and propose parallel algorithms for solving the
generalized non-symmetric eigenvalue problem (GNEP)

Ax = λBx (x 6= 0), (1.1)

for dense real square matrices A and B, using a two-stage method, execut-
ing on distributed memory machines. GNEPs emerge frequently, for example
when solving differential-algebraic equations, in model reductions, and in the
linearization of (non-linear) quadratic eigenvalue problems, and boil down to
finding eigenvalues, eigenvectors and deflating subspaces of a general matrix
pair (A,B). In many applications, e.g., in control system design and analysis,
eigenvectors are not needed and it is enough to know a pair of deflating sub-
spaces associated with a specified spectrum. An example is stable subspaces
associated to all eigenvalues within the unit circle (or in the left complex plane).

When B is nonsingular, equation (1.1) can be transformed to a standard
eigenvalue problem Cx = λIx with C = B−1A, but this is not recommended
since if B is close to singular (i.e. ill-conditioned) the computation of C may
affect the conditioning of other well-conditioned finite eigenvalues. Moreover,
if B is a singular matrix, the GNEP has one or several infinite eigenvalues and
in finite precision arithmetic there is a big risk that large finite and infinite
eigenvalues are mixed up. Therefore, in practice the GNEP formulation is kept
and (A,B) is treated as a matrix pair in all computations.

The two-stage method, illustrated in Figure 1 for 10 × 10 matrices, first
reduces the matrix pair to an upper Hessenberg-triangular form (H,T), where
H is an upper Hessenberg matrix (has one nonzero subdiagonal below the
main diagonal) and T is an upper triangular matrix. The second stage further
reduces the pair (H,T) to generalized real Schur form (S, T), where S is an
upper quasi-triangular matrix, possibly with 2×2 blocks along the diagonal, and
T remains upper triangular. Each 2×2 diagonal block of (S, T) corresponds to a
complex conjugate pair of eigenvalues and each 1×1 block (si,i, ti,i) corresponds
to a finite eigenvalue λi = si,i/ti,i for ti,i 6= 0 and to an infinite eigenvalue
∞ when ti,i = 0. The two-stage reductions are performed using novel parallel
two-sided transformation based algorithms, where each algorithm computes two
sequences of matrix transformations that are applied to the matrix pair (A,B)
from left and right, respectively.

1.1 Background

Already in 1973, Moler and Stewart [24] presented a two-stage transforma-
tion based algorithm, that follow the description above, for solving the dense
generalized eigenvalue problem. In the first stage, the matrix pair (A,B) is

2

→ →

(A,B) (H,T) (S, T)

1

Figure 1: Reduction of a general matrix pair (A,B) to generalized real Schur
form (S, T) using a two-stage method. In the first stage, (A,B) is reduced
to upper Hessenberg-triangular form (H,T). In the second stage, the pair
(H,T) is further reduced to (S, T) with 1× 1 and 2× 2 blocks along the main
diagonal, corresponding to infinite or real eigenvalues and complex conjugate
pair of eigenvalues, respectively.

reduced to HT form in a finite number of steps; the columns of A and B are
reduced from left to right where a crucial step is to remove the undesirable
fill-in caused by left and right transformations. In the second stage, the pair is
further reduced to generalized real Schur form (S, T) by an iterative method,
known as the QZ algorithm, which is a generalization and extension of the QR
algorithm, independently proposed by Francis [15] and Kublanovskaya [23] for
the standard eigenvalue problem. Throughout the years, several improvements
have been proposed, and here follows a brief description of the most relevant
for our study.

A cache-blocked approach was proposed by Dackland and K̊agström, [12],[13],
dividing the HT reduction into two separate sub-stages, first to a block HT
form (H-part has several nonzero subdiagonals, algorithm is rich in matrix-
matrix operations), followed by a procedure based upon Givens rotations that
completes the reduction to proper upper HT form. Another one-stage cache-
blocked approach using mainly level-3 BLAS, i.e. matrix-matrix operations,
was proposed by K̊agström, Kressner, E.S. Quintana-Ort́ı, and G. Quintana-
Ort́ı [22]. The latter showed that dividing the HT reduction into two separate
stages is not always better than to keep it as a single stage.

A blocked approach for the QZ algorithm, was proposed by Dackland and
K̊agström [14], that showed a speedup of 2–5 obtained over the unblocked
algorithm. The QR algorithm, used to reduce a Hessenberg matrix to real
Schur form when solving the standard eigenvalue problem, extended with im-
proved use of several shifts and a technique for speeding up convergence, called
aggressive early deflation(AED), was proposed by Braman, Byers, and Math-
ias [10, 11]. The multishift and AED techniques were later extended to the QZ
algorithm by K̊agström and Kressner [21], which greatly increased the perfor-
mance when comparing with previous blocked and unblocked versions.

My master thesis, a parallel formulation for the reduction from a block
HT form to proper upper HT form, together with [13] formed the first, to
our knowledge, parallel reduction of a general matrix pair (A,B) to HT form,

3

see [1]. This parallel two-staged HT reduction approach shows that although
the first stage involves much more flops than the second stage, the latter dom-
inates the overall execution time. However, the second stage scales somewhat
better than the first stage.

In [2, 4], we propose a parallel solution for the complete reduction of a gen-
eral matrix pair to generalized Schur form. The parallel QZ reduction stage is
based on and extend [14] but, despite having a more favorable flop count, it
dominates the total execution time, leaving room for improvements. However,
this implementation is significantly faster than the corresponding parallel QR
implementation [20], despite that the flop count for QZ is about two times
more than for QR. This is explained by the preliminary use of AED, efficient
multishift strategies and accumulated updates applied in a matrix-matrix man-
ner. However, the parallel QR algorithm did later undergo a complete revision,
adopting the new efficient multishift strategies and AED, resulting in an effi-
cient parallel solver on (hybrid) distributed memory machines, see [18, 19].

The Papers I–III, in this thesis, present further novel contributions (al-
gorithms and software) to the parallel solution of the generalized eigenvalue
problem.

1.2 Data distribution

The target parallel platform is distributed memory machines, where each pro-
cess has it own set of memory, and the problem is split among the participat-
ing processes. However, in practice and in most modern HPC systems, the
processes are grouped into compute units which have some shared memory,
leading to so called hybrid distributed memory machines. The programming
model used in this thesis is message passing and any available shared memory
at the CPU nodes is treated and allocated as separate memory units to each
process.

Using a two-dimensional block-cyclic data distribution schema of the ma-
trices A and B ensures that each process has a part, of roughly the same size,
of the problem data and the computational workload. The P processes are
logically arranged into to a Pr × Pc grid, not necessarily square. Moreover,
the N × N matrices A and B are partitioned into Nb × Nb sized blocks, and
scattered cyclically across the Pr × Pc grid, see Figure 2 for an illustration.

ScaLAPACK [9], a state-of-the-art library of high-performance linear alge-
bra routines for parallel distributed memory machines, uses the two-dimensional
block cyclic distribution schema, generalized such that the data blocks need
not be square, where each distributed object is represented by two objects—a
pointer to the local data and a globally defined descriptor to define the parti-
tioning and a communication context.

ScaLAPACK is based upon, and includes, the software package BLACS
for handling communication and offers point-to-point non blocking send and
blocking receive, as well as broadcast send and receive and global summation

4

(0,0) (0,1) (0,2) (0,0) (0,1) (0,2)

(1,0) (1,1) (1,2) (1,0) (1,1) (1,2)

(2,0) (2,1) (2,2) (2,0) (2,1) (2,2)

(0,0) (0,1) (0,2) (0,0) (0,1) (0,2)

(1,0) (1,1) (1,2) (1,0) (1,1) (1,2)

(2,0) (2,1) (2,2) (2,0) (2,1) (2,2)

Figure 2: Block cyclic data distribution of a matrix exemplified using a 3 × 3
grid, where the residence for each of the 36 matrix blocks is given by its process
coordinate (pr, pc) with 0 ≤ pr < 3 = Pr and 0 ≤ pc < 3 = Pc.

routines. Our algorithms and software are designed to fit into the ScaLAPACK
suite of routines, and is therefore restricted to use the communication primi-
tives offered by BLACS. The lack of a non blocking receive limits the degree
of algorithmic freedom a bit, but in general, communication via BLACS and
operating on distributed objects in ScaLAPACK is straightforward.

Operations on distributed data typically requires communication, for exam-
ple, when one process holds part of data that other processes need to complete
an operation. In order to reduce communication, the data can be reorganized,
temporarily, to a subgrid before the computation is performed. Using less pro-
cesses, means that each process that participates in the computation, will own
more data, and potentially reduce the need for communication. After complet-
ing the computation, data is typically restored to the original grid to continue
using all allocated processes for the remaining computation. ScaLAPACK pro-
vides a redistribution routine, and is used in our software, for example, to
perform parallel AED, where the AED computational window is spread over
several processes. Our heuristics show that it is beneficial to use less compu-
tational power by performing the AED computation on a subgrid. The redis-
tribution routine is efficient, but should be used with caution as it increases
the memory load, and de facto decreases the core utilization leading to poor
scalability in the long run.

1.3 Memory hierarchies and operations

The memory hierarchy of a typical CPU core consists of registers, levels of
caches and main memory. However, all computations are performed at the

5

very top of the hierarchy, i.e. in the registers, and an operation on data stored
in the main memory requires data to be transferred and copied all the way
up to the top. Once stored at the top, we should try to utilize this data
as much as possible before copying another set of data to work on, as this
copy procedure is time consuming; each memory level has a latency and a per
item cost associated to a memory transfer. Put into practice, (cache-)blocked
code is used, where the software is written in such a way that it works on
optimized sized chunks of data, performing several operations on one chunk at
a time, before the next chunk is addressed. As there are often several layers
of cache memories, of different sizes, several layers of blocked code are also
common. Instead of performing several elementwise operations, operations can
often be bundled and applied in an accumulated way. A simple example is a
list of numbers added to each element of a vector; instead of adding numbers
individually to the vector, compute the sum once, and then add the sum to the
elements of the vector. Another example is the usage of accumulated Givens
rotations. A Givens rotation is an orthogonal matrix G ∈ Rn×n that applied
to another matrix makes a rotation with angle θ in the plane (i, j) spanned by
two coordinates axes (here j = i+ 1):

Gij(θ) =

Ii−1

c s
−s c

In−j

 ,

where c2 + s2 = 1 (c = cos(θ), s = sin(θ)) and I is the identity matrix of
size (i − 1) × (i − 1) and (n − j) × (n − j), respectively. The main use of
Givens rotations in numerical linear algebra is to zero out, annihilate, elements
in vectors or matrices: given a, b find c and s such that

[
c s
−s c

] [
a
b

]
=

[
r
0

]
,

and r > 0 does not over- or underflow. We use this annihilation technique
to reduce a matrix pair (A,B) to HT -form, where several Givens rotations
are bundled, i.e. accumulated into one matrix and subsequently applied to
blocks in (A,B). This bundling process enables more coarse-grained matrix-
matrix operations which greatly improve the arithmetic performance compared
to applying the rotations one by one.

1.4 Redundant computing

Increasing the amount of arithmetic work and let a few processes repeat and
do the same work can often be beneficial from a total execution time point of
view. Consider the matrix operation

U · V,

6

where U ∈ Rm×m, V ∈ Rm×n. Partition V =

[
V0
V1

]
and let it be distributed

over a 2× 1 process grid (most likely a subgrid), such that process p0 holds V0
and process p1 holds V1. We assume that U is stored on both p0 and p1.

To perform the operation, p0 and p1 need to exchange data. One approach
is to let p0 receive V1 from p1, perform the matrix multiplication, and then
send updated V1 back. p1 will be idle during the computation, waiting for the
updated V1. In a non blocking receive communication environment, p1 could
however perform other tasks, that are independent of V1. Another approach
is to let p0 and p1 exchange data such that both have enough to perform the
complete operation. This requires some extra workspace, but the upside is that
the exchange can be performed, almost perfect, in parallel; both perform non
blocking send of their parts of V , and enter the receive mode to receive the
data, which is already on the way. Both compute U ·V , but only save the part
of the product they own, that is p1 discards updated V0, and vice versa for p0.
This technique requires extra work but has one synchronization point less and
reduce idling processes, and is successfully used in our two-stage reduction of
a matrix pair (A,B) to generalized Schur form, for example, when applying
bundled Givens operations.

7

8

Chapter 2

Summary of papers

In the following, a brief summary of each paper in the thesis is given.

2.1 Paper I

Paper I [5] concerns the parallel reduction of a matrix pair in Hessenberg, tri-
angular form (H,T) to generalized real Schur form (S, T). The paper begins
with an overview of the generalized Schur decomposition and the structure
of the QZ algorithm before moving on to discussing the multishift and AED
techniques, with focus on aspects related to the parallel algorithms and imple-
mentations. The potential presence of infinite eigenvalues in the generalized
eigenvalue problem makes a fundamental difference compared to the standard
one. Infinite eigenvalues need to be dealt with, i.e. identified and deflated, be-
fore other actions are taken in order to preserve them as infinite, or not having
them inflicting damage to other eigenvalues, due to round off errors. A serial
and a novel parallel algorithm are discussed and exemplified where the infinite
eigenvalues are moved to the top-left or bottom-right corner of the matrix pair,
whichever is nearest.

Performance is evaluated using several different problems, on two different
parallel HPC systems. Interesting and applicable real world benchmark exam-
ples from Matrix Market [8], some with a large fraction of infinite eigenvalues,
together with constructed problems of three different types demonstrate exe-
cution times for different grid configurations. The problem size n ranges from
4000 to 32000, and up to 100 cores are utilized to solve the problems in paral-
lel, demonstrating increasing speedup as the problem size and number of cores
increases. These problems are however rather small in a context of what mod-
ern HPC systems are capable of, so in order to utilize more compute power,
a constructed 100000 × 100000 benchmark problem is solved in parallel using
up to 1600 cores, and performance is evaluated and compared with the par-
allel solver for standard eigenvalue problems [19] for a similar problem. Even

9

though the standard eigenvalue problem requires less than half of the number
of operations to complete compared to the generalized eigenvalue problem [17],
execution time ratios show that our solver takes substantially less than twice
the time to complete.

2.2 Paper II

Paper II [3] concerns the parallel reduction of a general matrix pair (A,B) to
Hessenberg-triangular form (H,T). Based on the sequential cache-blocked al-
gorithm [22], this parallel formulation makes use of Givens rotations to reduce
the matrix pair with a novel static wavefront scheduling algorithm. The sequen-
tial algorithm and its blocking strategy are briefly described, before moving on
to a discussion on how different parts of the algorithm have been redesigned
to work in parallel. Since a straightforward parallelization strategy proves to
be poorly scalable, due to a high fraction of idle time among the participating
processors, a scheduler is implemented with the aim to maximize process uti-
lization and execute the shortest possible sequence of parallel steps. At each
step, the scheduler select a parallel task to execute such that

• the degree of parallelism is maximized,

• tasks with more remaining work is chosen over tasks with less work.

Two different HPC systems are used to evaluate the parallel performance;
weak and strong scaling is measured, visualized and discussed. Results, using
up to 961 mpi-processes, indicate that our implementation scales but suffers
from bottlenecks, related to synchronization points, in two of its major sub-
routines.

2.3 Paper III

Paper III [6] is a User Guide for the PDHGEQZ software; library software routines
to solve the generalized eigenvalue problem for dense and real matrix pairs
(A,B) in parallel on multicore HPC systems. The guide mainly describes
software and parameters related to Paper I, but also includes a description of
routines related to Paper II and routines from other earlier work. Installation
and building instructions, for a Linux like system, are presented, followed by a
software hierarchy overview of how routines are related and called.

The calling sequences for the main driver routines with input and output
parameters are described in detail. Moreover, the set of tunable parameters
and a description of their usage and default values are discussed. The default
value for parameters may need tuning to reach the best possible performance
of the PDHGEQZ software executing on a new target architecture, however, the
defaults should give reasonable performance on systems similar to the ones we
have been running on.

10

During the build process, internal tests are performed to make sure the soft-
ware work as intended. Both sequential and parallel tests are performed, with
validation of the computed results. System software requirements are listed
so users can prepare their systems before the build process and installation is
initiated.

11

12

Chapter 3

Future work

Our solution to the generalized eigenvalue problem provides eigenvalues and
deflating subspaces, but presently does not compute eigenvectors. Given a
matrix pair in generalized Schur form, LAPACK [7] offers serial routines for
computing both left and right eigenvectors. Combining those with the acceler-
ating techniques proposed by Gates et al. in [16] and our own experiences will
be a good base for formulating a parallel distributed memory algorithm.

Our parallel algorithms for computing the generalized Schur form scale
with the number of processors, but there is room for improvements. A great
challenge is to develop novel architecture-aware algorithms that expose as
much parallelism as possible in today’s and future extreme-scale HPC sys-
tems. This and many other challenges will be investigated within the Horizon
2020 project Parallel Numerical Linear Algebra for Future Extreme-Scale Sys-
tems with acronym NLAFET, coordinated by Ume̊a University. The NLAFET
overall aim is to enable a radical improvement in the performance and scalabil-
ity of a wide range of real-world applications relying on linear algebra software
for future extreme-scale systems. For more information see the NLAFET web-
site: http://www.nlafet.eu

13

14

Bibliography

[1] B. Adlerborn, K. Dackland, and B. K̊agström. Parallel two-stage reduc-
tion of a regular matrix pair to Hessenberg-Triangular form. In T. Sørevik,
F. Manne, A. H. Gebremedhin, and R. Moe, editors, Applied Parallel
Computing, PARA 2000, LNCS 1947, pages 92–102. Springer Berlin Hei-
delberg, 2000.

[2] B. Adlerborn, K. Dackland, and B. K̊agström. Parallel and blocked algo-
rithms for reduction of a regular matrix pair to Hessenberg-Triangular and
generalized Schur forms. In J. Fagerholm, J. Haataja, J. Järvinen, M. Lyly,
P. R̊aback, and V. Savolainen, editors, Applied Parallel Computing, PARA
2002, LNCS 2367, pages 319–328. Springer-Verlag, 2002.

[3] B. Adlerborn, L. Karlsson, and B. K̊agström. Distributed One-Stage
Hessenberg-Triangular Reduction with Wavefront Scheduling. Report
UMINF 16.10, Dept. of Computing Science, Ume̊a University, Sweden,
2016.

[4] B. Adlerborn, B. K̊agström, and D. Kressner. Parallel variants of the mul-
tishift QZ algorithm with advanced deflation techniques. In B. K̊agström,
E. Elmroth, J. Dongarra, and J. Waśniewski, editors, Applied Parallel
Computing, PARA 2006, LNCS 4699, pages 117–126. Springer Berlin Hei-
delberg, 2006.

[5] B. Adlerborn, B. K̊agström, and D. Kressner. A Parallel QZ Algorithm
for distributed memory HPC-systems. SIAM J. Sci. Comput., 36(5):C480–
C503, 2014.

[6] B. Adlerborn, B. K̊agström, and D. Kressner. PDHGEQZ User Guide.
Report UMINF 15.12, Dept. of Computing Science, Ume̊a University, Swe-
den, 2015.

[7] E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. W. Demmel, J. J.
Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. C. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, PA, third
edition, 1999.

15

[8] Z. Bai, D. Day, J. W. Demmel, and J. J. Dongarra. A test matrix
collection for non-Hermitian eigenvalue problems (release 1.0). Techni-
cal Report CS-97-355, Department of Computer Science, University of
Tennessee, Knoxville, TN, USA, March 1997. Also available online from
http://math.nist.gov/MatrixMarket.

[9] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. W. Demmel,
I. Dhillon, J. J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stan-
ley, D. Walker, and R. C. Whaley. ScaLAPACK Users’ Guide. SIAM,
Philadelphia, PA, 1997.

[10] K. Braman, R. Byers, and R. Mathias. The multishift QR algorithm. I.
Maintaining well-focused shifts and level 3 performance. SIAM J. Matrix
Anal. Appl., 23(4):929–947, 2002.

[11] K. Braman, R. Byers, and R. Mathias. The multishift QR algorithm. II.
Aggressive early deflation. SIAM J. Matrix Anal. Appl., 23(4):948–973,
2002.

[12] K. Dackland and B. K̊agström. Reduction of a Regular Matrix Pair (A,B)
to Block Hessenberg Triangular Form. In J. Dongarra, K. Madsen, and
J. Waśniewski, editors, Applied Parallel Computing, PARA 1995, LNCS
1041, pages 125–133. Springer Berlin Heidelberg, 1995.

[13] K. Dackland and B. K̊agström. A ScaLAPACK-Style Algorithm for Re-
ducing a Regular Matrix Pair to Block Hessenberg-Triangular Form. In
B. K̊agström, J. Dongarra, E. Elmroth, and J. Waśniewski, editors, Ap-
plied Parallel Computing, PARA 1998, LNCS 1541, pages 95–103. Springer
Berlin Heidelberg, 1998.

[14] K. Dackland and B. K̊agström. Blocked algorithms and software for re-
duction of a regular matrix pair to generalized Schur form. ACM Trans.
Math. Software, 25(4):425–454, 1999.

[15] J. G. F. Francis. The QR Transformation. A Unitary Analogue to the LR
Transformation - Part 1. The Computer Journal, 4(3):265–271, 1961.

[16] M. Gates, A. Haidar, and J. Dongarra. Accelerating computation of eigen-
vectors in the dense nonsymmetric eigenvalue problem. In M. Daydé,
O. Marques, and K. Nakajima, editors, High Performance Computing
for Computational Science, VECPAR 2014, LNCS 8969, pages 182–191.
Springer International Publishing, 2015.

[17] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins
University Press, Baltimore, MD, 4th edition, 2012.

[18] R. Granat, B. K̊agström, and D. Kressner. A novel parallel QR algorithm
for hybrid distributed memory HPC systems. SIAM J. Sci. Comput.,
32(4):2345–2378, 2010.

16

[19] R. Granat, B. K̊agström, D. Kressner, and M. Shao. Parallel library soft-
ware for the multishift QR algorithm with aggressive early deflation. ACM
Trans. Math. Software, 41(4), 2015.

[20] G. Henry, D. S. Watkins, and J. J. Dongarra. A parallel implementation
of the nonsymmetric QR algorithm for distributed memory architectures.
SIAM J. Sci. Comput., 24(1):284–311, 2002.

[21] B. K̊agström and D. Kressner. Multishift variants of the QZ algorithm
with aggressive early deflation. SIAM J. Matrix Anal. Appl., 29(1):199–
227, 2006.

[22] B. K̊agström, D. Kressner, E. S. Quintana-Ort́ı, and G. Quintana-Ort́ı.
Blocked algorithms for the reduction to Hessenberg-triangular form revis-
ited. BIT, 48(3):563–584, 2008.

[23] V.N. Kublanovskaya. On some algorithms for the solution of the complete
eigenvalue problem. USSR Computational Mathematics and Mathematical
Physics, 1(3):637 – 657, 1962.

[24] C. B. Moler and G. W. Stewart. An algorithm for generalized matrix
eigenvalue problems. SIAM J. Numer. Anal., 10:241–256, 1973.

17

18

I

Paper I

A parallel QZ algorithm for distributed memory
HPC systems∗

Björn Adlerborn, Bo Kågström, and Daniel Kressner

Dept. Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden
{adler,bokg}@cs.umu.se

SB–MATHICSE–ANCHP, EPF Lausanne, Station 8, CH-1015 Lausanne, Switzerland
daniel.kressner@epfl.ch

Abstract: Appearing frequently in applications, generalized eigenvalue problems
represent one of the core problems in numerical linear algebra. The QZ algorithm of
Moler and Stewart is the most widely used algorithm for addressing such problems.
Despite its importance, little attention has been paid to the parallelization of the QZ
algorithm. The purpose of this work is to fill this gap. We propose a parallelization of
the QZ algorithm that incorporates all modern ingredients of dense eigensolvers, such
as multishift and aggressive early deflation techniques. To deal with (possibly many)
infinite eigenvalues, a new parallel deflation strategy is developed. Numerical exper-
iments for several random and application examples demonstrate the effectiveness of
our algorithm on two different distributed memory HPC systems.

Key words: generalized eigenvalue problem, nonsymmetric QZ algorithm, multi-
shift, bulge chasing, infinite eigenvalues, parallel algorithms, level 3 performance,
aggressive early deflation.

∗ Copyright by SIAM. The paper is reprinted in order to fit the format of the Thesis.

21

22

A parallel QZ algorithm for distributed memory HPC systems

Björn Adlerborn† Bo K̊agström† Daniel Kressner‡

Abstract

Appearing frequently in applications, generalized eigenvalue problems represent one of
the core problems in numerical linear algebra. The QZ algorithm of Moler and Stewart
is the most widely used algorithm for addressing such problems. Despite its importance,
little attention has been paid to the parallelization of the QZ algorithm. The purpose
of this work is to fill this gap. We propose a parallelization of the QZ algorithm that
incorporates all modern ingredients of dense eigensolvers, such as multishift and aggressive
early deflation techniques. To deal with (possibly many) infinite eigenvalues, a new parallel
deflation strategy is developed. Numerical experiments for several random and application
examples demonstrate the effectiveness of our algorithm on two different distributed memory
HPC systems.

Key words. generalized eigenvalue problem, nonsymmetric QZ algorithm, mul-
tishift, bulge chasing, infinite eigenvalues, parallel algorithms, level 3 per-
formance, aggressive early deflation.

AMS subject classifications. 65F15, 15A18.

1 Introduction

This paper is concerned with the numerical solution of generalized eigenvalue problems, which
consist of computing the eigenvalues and associated quantities of a matrix pair (A,B) for general
complex or real n× n matrices A,B.

The QZ algorithm proposed in 1973 by Moler and Stewart [32] is the most widely used
algorithm for addressing generalized eigenvalue problems with dense matrices. Since then, it has
undergone several modifications [14, 34]. In particular, significant speedups on serial machines
have been obtained in [23] by extending multishift and aggressive early deflation techniques [9,
10]. In this work, we propose a parallelization of the QZ algorithm that incorporates these
techniques as well. Our developments build on preliminary work presented in [1, 2] and extend
recent work [19, 20] on parallelizing the QR algorithm for standard eigenvalue problems. In
our parallelization, we also cover aspects that are unique to the QZ algorithm, such as the
occurrence of possibly many infinite eigenvalues.

Apart from the QZ algorithm, other approaches for solving generalized eigenvalue problems
have been considered for parallelization. This includes usage of a synchronous linear proces-
sor array [8], nonsymmetric Jacobi algorithms [11, 13] as well as spectral divide-and-conquer
algorithms [5, 21, 31].

†Department of Computing Science and HPC2N, Ume̊a University, SE-90187 Ume̊a, Swe-
den(adler@cs.umu.se, bokg@cs.umu.se)

‡SB–MATHICSE–ANCHP, EPF Lausanne, Station 8, CH-1015 Lausanne, Switzerland
(daniel.kressner@epfl.ch)

1

23

1.1 Generalized Schur decomposition

Throughout this work, we assume that the pair (A,B) is regular, that is, det(A − λB) is not
zero for all λ. Otherwise, (A,B) needs to be preprocessed to deflate the corresponding singular
part in its Kronecker canonical form, either by exploiting underlying structure or applying the
GUPTRI algorithm [15].

In the following, we restrict our discussion to matrices with real entries: A,B ∈ Rn×n; the
complex case is treated in an analogous way. The goal of the QZ algorithm consists of computing
a generalized Schur decomposition

QTAZ = S, QTBZ = T, (1)

where Q,Z ∈ Rn×n are orthogonal and the pair (S, T) is in (real) generalized Schur form. This
means that T is upper triangular and S is quasi-upper triangular with diagonal blocks of size
1 × 1 or 2 × 2. A 1 × 1 block sjj corresponds to the real eigenvalue λ = sjj/tjj of (A,B). In
fact, the LAPACK [3] implementation DHGEQZ of the QZ algorithm does not even form this
ratio but directly returns the pair (α, β) = (sjj , tjj). This convention has the advantage that it
covers infinite eigenvalues in a seamless manner, by letting β = 0, and it is used in our parallel
implementation as well. A 2 × 2 diagonal block in S corresponds to a complex conjugate pair
of eigenvalues, which can be computed from the eigenvalues of

([
sjj sj,j+1

sj+1,j sj+1,j+1

]
,

[
tjj tj,j+1

0 tj+1,j+1

])
.

This is performed by the LAPACK routine DLAGV2, which also normalizes T such that tj,j+1 = 0
and tjj ≥ tj+1,j+1 > 0, using a procedure described in [33].

1.2 Structure of the QZ algorithm

The QZ algorithm proceeds by first computing a decomposition of the form

QTAZ = H, QTBZ = T, (2)

where Q,Z ∈ Rn×n are orthogonal and T is again upper triangular, but H is only in upper
Hessenberg form, that is, hij = 0 for i ≥ j + 2. Two different types of algorithms have been
proposed to reduce (A,B) to such a Hessenberg-triangular form. After an initial reduction of
B to triangular form, the original algorithm by Moler and Stewart [32] uses Givens rotations to
zero out each entry below the subdiagonal of A. Its memory access pattern causes this algorithm
perform rather poorly on standard computing architectures. To address this, a blocked two-
stage approach has been proposed by Dackland and K̊agström [14]. The first stage reduces
(A,B) to block Hessenberg-triangular form only, which can be achieved by means of blocked
Householder reflectors. The second stage reduces (A,B) further to Hessenberg-triangular form
by applying sweeps of Givens rotations. While the first stage can be parallelized quite well, the
complex data dependencies make the parallelization of the second stage a more difficult task.
Recently, significant progress has been made in this direction on shared-memory architectures,
in the context of reducing a single matrix to Hessenberg form [26]. In the numerical experiments
of this paper, we make use of a preliminary parallel implementation of the two-stage algorithm
described in [1]. However, it has been demonstrated in [24] that a serial blocked implementation
of the rotation-based algorithm by Moler and Stewart outperforms the two-stage approach. We
therefore plan to incorporate a parallel implementation of this algorithm as well.

2

24

Prior to any reduction, an optional preprocessing step called balancing can be used. The
balancing described in [35] and implemented in the LAPACK routine DGGBAL consists of per-
muting (A,B) to detect isolated eigenvalues and applying a diagonal scaling transformation to
remedy bad scaling. The scaling part is by default turned off in most implementations, such as
the LAPACK driver routine DGGEV and the Matlab command eig(A,B). We will therefore not
consider it any further.

The computation of eigenvectors or, more generally, deflating subspaces of (A,B) requires
us to postprocess the matrix pair (S, T) in the generalized Schur decomposition (1). More
specifically, if the (right) deflating subspace associated with a set of eigenvalues is desired, then
these eigenvalues need to be reordered to the top left corners of (S, T). Such a reordering
algorithm has been proposed in [25] and its parallelization is discussed in [18].

In this paper, we focus on parallelizing the iterative part of the QZ algorithm which reduces
a pair (H,T) in Hessenberg-triangular form to generalized Schur form (S, T). This iterative part
consists of three ingredients: bulge chasing, (aggressive early) deflation, and deflation of infinite
eigenvalues. In the following we will refer to three different algorithms, with the abbreviations
below, all of which use the above three ingredients (see also Appendix A):

• PDHGEQZ: This contribution.

• PDHGEQZ1 : Modified version of parallel QZ algorithm described in Adlerborn et al. [2].

• KKQZ: Serial QZ algorithm proposed by K̊agstrom and Kressner [23].

2 Parallel algorithms

In what follows, we assume that the reader is familiar with the basics of the implicit shifted QZ
algorithm, see [30, 37] for introductions.

2.1 Data layout

We follow the convention of ScaLAPACK [7] for the distributed data storage of matrices. Sup-
pose that P = Pr ·Pc parallel processors are arranged in a Pr×Pc rectangular grid. The entries
of a matrix are then distributed over the grid using a 2-dimensional block-cyclic mapping with
block size nb in both row and column dimensions. In principle, ScaLAPACK allows for different
block sizes for the row and column dimensions but for simplicity we assume that identical block
sizes are used.

2.2 Multishift QZ iterations

2.2.1 Chasing one bulge

Consider a Hessenberg-triangular pair (H,T) and two shifts σ1, σ2, such that either σ1, σ2 ∈ R
or σ1 = σ2. For the moment, we will assume that T is invertible. Then the first step of the
classic implicit double shift QZ iteration consists of computing the first column of the shift
polynomial:

v = (HT−1 − σ1I)(HT−1 − σ2I)e1 =

X
X
X
0
...
0

 ,

3

25

where e1 denotes the first unit vector and the symbol X denotes arbitrary, typically nonzero,
entries. Now an orthogonal transformation Q0 is constructed such that QT

0 v is a multiple of e1.
This can be easily achieved by a 3 × 3 Householder reflector. Applying Q0 from the left to H
and T affects the first three rows and creates fill-in below the (sub-)diagonal:

H ← QT
0H =

X̂ X̂ X̂ X̂ X̂ X̂ X̂ · · ·
X̂ X̂ X̂ X̂ X̂ X̂ X̂ · · ·
X̂ X̂ X̂ X̂ X̂ X̂ X̂ · · ·
0 0 X X X X X · · ·
0 0 0 X X X X · · ·
0 0 0 0 X X X · · ·
0 0 0 0 0 X X · · ·
...

...
...

...
...

...
...

, T ← QT

0 T =

X̂ X̂ X̂ X̂ X̂ X̂ X̂ · · ·
X̂ X̂ X̂ X̂ X̂ X̂ X̂ · · ·
X̂ X̂ X̂ X̂ X̂ X̂ X̂ · · ·
0 0 0 X X X X · · ·
0 0 0 0 X X X · · ·
0 0 0 0 0 X X · · ·
0 0 0 0 0 0 X · · ·
...

...
...

...
...

...
...

.

Here, X̂ is used to denote (generically nonzero) entries that are affected by the current trans-
formation. To annihilate the two new entries in the first column of T , we use a trick introduced
by Watkins and Elsner [38] and shown to be numerically backward stable in [23]. Let Z0 be a
Householder reflector that maps T−1e1 to a multiple of the first unit vector: ZT

0 T
−1e1 = γe1

for some γ 6= 0. Then TZ0e1 = γ−1e1, showing that applying Z0 from the right, which affects
the first three columns only, results in the nonzero pattern

H ← HZ0 =

X̂ X̂ X̂ X X X X · · ·
X̂ X̂ X̂ X X X X · · ·
X̂ X̂ X̂ X X X X · · ·
X̂ X̂ X̂ X X X X · · ·
0 0 0 X X X X · · ·
0 0 0 0 X X X · · ·
0 0 0 0 0 X X · · ·
...

...
...

...
...

...
...

, T ← TZ0 =

X̂ X̂ X̂ X X X X · · ·
0̂ X̂ X̂ X X X X · · ·
0̂ X̂ X̂ X X X X · · ·
0 0 0 X X X X · · ·
0 0 0 0 X X X · · ·
0 0 0 0 0 X X · · ·
0 0 0 0 0 0 X · · ·
...

...
...

...
...

...
...

.

Here, and in the following, 0̂ denotes a zero entry newly introduced by the current transfor-
mation. The region

(
H(2 : 4, 1 : 3), T (2 : 4, 1 : 3)

)
is called the bulge pair. This encodes the

information contained in the shifts σ1, σ2, in a way made concrete in [36]. By an analogous
procedure, the trailing two entries in the first column of H are annihilated by a Householder
transformation from the left and, subsequently, the subdiagonal entries in the second column
of T are annihilated by a Householder transformation from the right. In effect, the bulge pair
is moved one step towards the bottom right corner:

H ← QT
1HZ1 =

X X̂ X̂ X̂ X X X · · ·
X̂ X̂ X̂ X̂ X̂ X̂ X̂ · · ·
0̂ X̂ X̂ X̂ X̂ X̂ X̂ · · ·
0̂ X̂ X̂ X̂ X̂ X̂ X̂ · · ·
0 X̂ X̂ X̂ X X X · · ·
0 0 0 0 X X X · · ·
0 0 0 0 0 X X · · ·
...

...
...

...
...

...
...

, T ← QT

1 TZ1 =

X X̂ X̂ X̂ X X X · · ·
0 X̂ X̂ X̂ X̂ X̂ X̂ · · ·
0 0̂ X̂ X̂ X̂ X̂ X̂ · · ·
0 0̂ X̂ X̂ X̂ X̂ X̂ · · ·
0 0 0 0 X X X · · ·
0 0 0 0 X X X · · ·
0 0 0 0 0 X X · · ·
...

...
...

...
...

...
...

. (3)

2.2.2 Chasing several bulges in parallel

In principle, the described process of bulge chasing can be continued until the bulge pair disap-
pears at the bottom right corner, which would complete one double shift QZ iteration. However,
the key to efficient serial and parallel implementations of the QZ algorithm is to chase several
bulges at the same time. For example, after the bulge pair in (3) has been chased two steps fur-
ther, we can immediately introduce another bulge pair belonging to another two shifts, without

4

26

Figure 1: Three bulge chains, where each chain consists of three bulges (black boxes). The
black 3× 3 blocks in the H-part are dense, while the associated blocks in the T -part have zero
elements in the last row and first column, respectively. Only parts of the matrices are displayed.
The solid red lines represent block/process borders.

disturbing the existing bulge pair. We then have a chain of two tightly1 packed bulges, which
can be chased simultaneously. In practice, we will work with chains containing significantly
more than two bulges to attain good node performance.

Another key to create potential for good parallel performance is to delay updates as much as
possible. We chase bulges within a window (i.e., a principal submatrix), similar to the technique
described in [19]. Only after the bulges have been chased to the bottom of the window we update
the remaining parts of the matrix pair (H,T) outside the window, to the right and above, using
level-3 BLAS. After the off-diagonal update, the window is placed on a new position so that the
bulges can be moved further down the diagonal of (H,T). As in [19] we use several windows,
up to min(Pr, Pc), each containing a chain of bulges, and deal with them in parallel.

Figure 1 illustrates the described technique for three active windows, each containing a bulge
chain consisting of three bulges. Each window is owned by a single process, leading to intra-
block chases. Windows that overlap process borders lead to inter-block chases. In the algorithm,
we alternate between intra-block and inter-block chases, see [19] for more details.

Generally, we use the undeflatable eigenvalues returned by aggressive early deflation de-
scribed in § 2.3 as shifts for the QZ iteration. Exceptionally, it may happen that there are not
sufficiently many undeflatable eigenvalues available. In such cases, we apply the QZ algorithm
(PDHGEQZ or PDHGEQZ1) to a sub-problem for obtaining additional shifts.

Each bulge consumes two shifts, and occupies a 3 × 3 principal submatrix. Assuming that
each window is of size nb×nb, we will pack at most nb/6 bulges in a window to be able to move
all bulges across the process border during a single inter-block chase. The number of active
windows is then given by

min(d3nshifts/nbe, Pr, Pc),

1In fact, as recently shown in [28] for the QR algorithm, it is possible and beneficial to pack the bulges even
closer.

5

27

where nshifts is the total number of shifts to be used.

2.3 Aggressive early deflation (AED)

Classically, the convergence of the QZ algorithm is monitored by inspecting the subdiagonal
entries of H. A subdiagonal entry hk+1,k is declared negligible if it satisfies

|hk+1,k| ≤ u× (|hk,k|+ |hk+1,k+1|), (4)

where u denotes the unit roundoff (≈ 10−16 in double precision arithmetic). Negligible subdi-
agonal entries can be safely set to zero, deflating the generalized eigenvalue problem into two
smaller subproblems. Such deflations typically occur at the bottom right corner or, less fre-
quently, at the top left corner. In both cases, one of the subproblems is tiny and can be solved
instantaneously. When a deflation occurs in the middle it would, in principle, be advantageous
in a parallel environment to solve both subproblems simultaneously. In practice, however, this
event seems to be too rare to justify the resulting higher complexity of the implementation. In
our implementation, the two subproblems are solved subsequently.

Aggressive early deflation (AED) is a technique proposed by Braman, Byers and Mathias
[10] for the QR algorithm, that complements (4) and significantly speeds up convergence.

2.3.1 Basic algorithm

In the following, we give a brief overview of AED for the QZ algorithm as proposed in [23].
First, the Hessenberg-triangular pair is partitioned as

(H,T) =

H11 H12 H13

H21 H22 H23

0 H32 H33

 ,

T11 T12 T13
0 T22 T23
0 0 T33

 ,

such that H32 ∈ RnAED×1 and H33, T33 ∈ RnAED×nAED , where nAED � n denotes the size of the so
called AED window (H33, T33).

By applying the QZ algorithm, the AED window is reduced to (real) generalized Schur form:

QT
33H33Z33 = Ĥ33, QT

33T33Z33 = T̂33.

Performing the corresponding orthogonal transformation of (H,T) yields

(H,T)←

H11 H12 Ĥ13

H21 H22 Ĥ23

0 s Ĥ33

 ,

T11 T12 T̂13
0 T22 T̂23
0 0 T̂33

 , (5)

where s = QT
33H32 is the so called spike that contains the newly introduced nonzero entries

below the subdiagonal of H. If the last entry of the spike satisfies

|snAED
| ≤ u× ‖H‖F , (6)

it can be safely set to zero. This deflates a real eigenvalue of the matrix pair (5), provided that
the diagonal block at the bottom right corner of Ĥ33 is 1× 1. If this diagonal block is 2× 2, the
corresponding complex conjugate pair of eigenvalues can only be deflated if the last two entries
of the spike both satisfy (6).

6

28

If deflation was successful, the described process is repeated for the remaining nonzero
entries of the spike. Otherwise, the generalized Schur form (H33, T33) is reordered to move the
undeflatable eigenvalue to the top left corner. In turn, an untested eigenvalue is moved to the
bottom right corner. After all eigenvalues of (H33, T33) have been checked for convergence by
this procedure, the last step of AED consists of turning the remaining undeflated part of the
pair (H,T) back to Hessenberg-triangular form.

2.3.2 Parallel implementation

As already demonstrated in [20], a careful implementation of AED is vital to achieving good
overall parallel performance. From the discussion above, we identify three computational tasks:

1. Reducing an nAED × nAED Hessenberg-triangular matrix pair to generalized Schur form.

2. Reordering the eigenvalues of an nAED × nAED matrix pair in generalized Schur form.

3. Reducing a general matrix pair of size at most nAED × nAED to Hessenberg-Triangular
form.

Only for very small values of nAED, say nAED ≤ 201, does it make sense to perform these
tasks serially and call the corresponding LAPACK routines. For larger values of nAED, parallel
algorithms are used for all three tasks.

To perform Task 1, we call our, now modified, parallel implementation PDHGEQZ1 [2] of the
QZ algorithm with (serially performed) AED for moderately sized problems, say nAED ≤ 6000,
and recursively call the parallel implementation PDHGEQZ described in this paper for larger
problems.

To perform Task 2, we make use of ideas described in [18] for reordering eigenvalues in
parallel. To create potential for parallelism and good node performance, we work with groups
of undeflatable eigenvalues instead of moving them individually. Such a group is reordered
to the top left corner by an algorithm quite similar to the parallel bulge chasing discussed in
§ 2.2.2. We refer to [19, Sec. 2.3] for more details.

To perform Task 3, we call the parallel implementation of Hessenberg-triangular reduction
described in [1].

After all three tasks have been performed, it remains to apply the corresponding orthogonal
transformations to the off-diagonal parts of (H,T), above and to the right of the AED window.
These updates are preformed by calls to the PBLAS routine PDGEMM.

2.3.3 Avoiding communication via data redistribution

Since nAED � n, the computational intensity of AED is comparably small and the parallel
distribution of the matrices on a grid of Pr × Pc of processors may lead to significant commu-
nication overhead. This has been observed for the parallel QR algorithm [20] and holds for the
parallel QZ algorithm as well.

A simple cure to this phenomenon is to redistribute data before performing AED, to limit
the amount of participating processors and to keep the communication overhead under control.
More specifically, the nAED × nAED AED window is first redistributed across a smaller PAED ×
PAED grid, then Tasks 1 to 3 discussed above are performed, and finally the AED window is
distributed back to the Pr × Pc grid. The choice of PAED depends on nAED, see § 3.2.

7

29

To get an impression of the benefits from this technique: Without redistribution, the total
time spent on AED is 2095 seconds when solving a 32 000×32 000 random generalized eigenvalue
problems on a 8×8 grid of Akka (see § 3.1). When using PAED = 4, which means redistributing
the AED window to a 4× 4 grid, the total time for AED reduces to 1283 seconds.

2.4 Deflation of infinite eigenvalues

If B is (nearly) singular, it can be expected that one or several diagonal entries of the trian-
gular matrix T in the Hessenberg-triangular form are (nearly) zero. Following the LAPACK
implementation of the QZ algorithm, we consider a diagonal entry tii negligible if

|tii| ≤ u · ||T ||F (7)

holds. Setting such an entry to zero and reordering it to the bottom right or top left corner
allows us to deflate an infinite eigenvalue. In the absence of roundoff error, this reordering
is automatically effected by QZ iterations [36]. However, to avoid unnecessary iterations and
the loss of infinite eigenvalues due to roundoff error, it is important to take care of infinite
eigenvalues separately.

2.4.1 Basic algorithm

In the following, we briefly sketch the mechanism for deflating infinite eigenvalues proposed
in [32]. Suppose that H is unreduced, i.e. hk+1,k 6= 0 for all subdiagonal elements, and that the
third diagonal entry of T is zero:

H =

X X X X X X · · ·
X X X X X X · · ·
0 X X X X X · · ·
0 0 X X X X · · ·
0 0 0 X X X · · ·
0 0 0 0 X X · · ·
...

...
...

...
...

...

, T =

X X X X X X · · ·
0 X X X X X · · ·
0 0 0 X X X · · ·
0 0 0 X X X · · ·
0 0 0 0 X X · · ·
0 0 0 0 0 X · · ·
...

...
...

...
...

...

.

Applying a Givens rotations to columns 2 and 3 makes the second diagonal entry zero as well,
but introduces an additional nonzero in H:

H ←

X X̂ X̂ X X X · · ·
X X̂ X̂ X X X · · ·
0 X̂ X̂ X X X · · ·
0 X̂ X̂ X X X · · ·
0 0 0 X X X · · ·
0 0 0 0 X X · · ·
...

...
...

...
...

...

, T ←

X X̂ X̂ X X X · · ·
0 0̂ X̂ X X X · · ·
0 0 0 X X X · · ·
0 0 0 X X X · · ·
0 0 0 0 X X · · ·
0 0 0 0 0 X · · ·
...

...
...

...
...

...

.

This nonzero entry can be annihilated by applying a Givens rotations to rows 3 and 4:

H ←

X X X X X X · · ·
X X X X X X · · ·
0 X̂ X̂ X̂ X̂ X̂ · · ·
0 0̂ X̂ X̂ X̂ X̂ · · ·
0 0 0 X X X · · ·
0 0 0 0 X X · · ·
...

...
...

...
...

...

, T ←

X X X X X X · · ·
0 0 X X X X · · ·
0 0 0 X̂ X̂ X̂ · · ·
0 0 0 X̂ X̂ X̂ · · ·
0 0 0 0 X X · · ·
0 0 0 0 0 X · · ·
...

...
...

...
...

...

.

8

30

By an analogous procedure, the zero diagonal entries of T can be moved one position further
upwards. A Givens rotation can then be applied to rows 1 and 2 in order to annihilate the first
subdiagonal entry of H, finally yielding

H =

X X X X X X · · ·
0 X X X X X · · ·
0 X X X X X · · ·
0 0 X X X X · · ·
0 0 0 X X X · · ·
0 0 0 0 X X · · ·
...

...
...

...
...

...

, T =

0 X X X X X · · ·
0 X X X X X · · ·
0 0 X X X X · · ·
0 0 0 X X X · · ·
0 0 0 0 X X · · ·
0 0 0 0 0 X · · ·
...

...
...

...
...

...

.

Thus, an infinite eigenvalue can be deflated at the top left corner. An analogous procedure can
be used to deflate infinite eigenvalues at the bottom right corner. This reduces the required
operations if the zero diagonal entry of T is closer to that corner.

2.4.2 Parallel implementation

A number of applications lead to matrix pencils with a substantial fraction of infinite eigenvalues,
see § 3 for examples. In this case, applying the above procedure to deflate each infinite eigenvalue
individually is clearly not very efficient in a parallel environment.

Instead, we aim at deflating several infinite eigenvalues simultaneously. To do this in a
systematic manner and attain good node performance, we proceed similarly as in the parallel
multishift QZ iterations and parallel eigenvalue reordering algorithm discussed in § 2.2.2 and
§ 2.3.2, respectively. Up to min(Pr, Pc) computational windows are placed on the diagonal of
(H,T), such that each window is owned by a single diagonal process. Within each window, the
negligible diagonal entries of T are identified according to (7), zeroed, and they are all moved
either to the top left corner or to the bottom right corner of T , depending which corner is
nearest. Only then we perform the corresponding updates outside the windows, by accumulating
the rotations into orthogonal matrices and performing matrix-matrix multiplications.

Figure 2: Crossborder layout of three windows during the parallel deflation of infinite eigen-
values. Computational windows and process borders indicated by black and red solid lines,
respectively. Darker-gray areas indicate regions that need to be updated after the windows
have been processed.

9

31

In the next step, all computational windows are shifted upwards or downwards. In effect,
the zero diagonal entries of T are located in the bottom or top parts of the windows. Moreover,
as illustrated in Figure 2, the windows now overlap process borders. To move the zero diagonal
entries in the first computational window across the process border, we proceed as follows:

1. The two processes on the diagonal (P00 and P11) exchange their parts of the window and
receive the missing off-diagonal parts from the other two processes (P01 and P10). In
effect, two identical copies of the computational window are created.

2. Each of the two diagonal processes (P00 and P11) identifies and zeroes negligible diagonal
entries of T within the window, and moves all of them to the top left corner (or the bottom
right corner, whichever is nearest the top left or bottom right corner of T .).

3. The two off-diagonal processes (P01 and P10) receive the updated off-diagonal parts of the
window from one of the on-diagonal processes (P00 or P11). The accumulated orthogonal
transformation matrices generated in Step 2 are broadcasted to the blocks on both sides
of the process borders (to P00, P01 and to P02, P03, P11, P12, P13).

For updating the parts of the matrix outside the window, neighboring processes holding
cross-border regions exchange their data in parallel and compute the updates in parallel.

To achieve good parallel performance, the above procedure needs to be applied to several com-
putational windows simultaneously. However, some care needs to be applied in order to avoid
intersecting scopes of the diagonal processes in Steps 1 and 2. Following an idea proposed
in [19], this can be achieved as follows. We number the windows from bottom to top, starting
with index 0. First all even-numbered windows are treated and only then all odd-numbered
windows are treated in parallel.

When the zero diagonal entries of T have been moved across the process borders, the next
step again consists of shifting all computational windows upwards or downwards such that they
are owned by diagonal processes. This allows repetition of the whole procedure, until all zero
diagonal entries of T arrive at one of the corners and admit deflation. The parallel procedure
of chasing zeros along the diagonal of T and deflating infinite eigenvalues is illustrated and
described in some more detail in Figures 3–7.

10

32

Figure 3: Example where 8 zeros have been identified on the diagonal of T, indicated by filled
red squares. The grid is of size 5× 5 and process borders are indicated by red solid lines.

Figure 4: Intra-block chase where all diagonal blocks are processed in parallel. The four active
diagonal blocks, within which the zero diagonal entries of T are moved up or down, are marked
in green with vertical stripes. The old positions of the zero diagonal entries are marked by white
squares, while the new positions or (so far) not moved zeros are marked by red squares. Three
and two deflations are performed at the top left and bottom right diagonal blocks, respectively,
leading to the zero subdiagonal entries of H marked by red squares on the subdiagonal of H.
The chase is followed by horizontal and vertical broadcasts of accumulated transformations, so
that off-diagonal processors can update their parts of H and T in parallel. The area affected
by the off-diagonal updates is marked in dark gray.

11

33

Figure 5: Inter-block chase, phase one, where all even-numbered diagonal blocks, indexed by
0 . . . nblock−1 from bottom to top, are processed in parallel. In this case there is only one active
diagonal block. See Figure 4 for an explanation of the color marking.

Figure 6: Inter-block chase, phase two, where all odd-numbered diagonal blocks are processed
in parallel. See Figure 4 for an explanation of the color marking.

12

34

Figure 7: Intra-block and inter-block chases are repeated until all zeros on the diagonal of T
have been moved to the top left or bottom right corners. A total of 8 deflations can be made.
The remaining problem size is decreased accordingly, indicated by the black square on H and
T .

3 Computational Experiments

3.1 Computing environment

The algorithms described in § 2 have been implemented in a Fortran 90 routine PDHGEQZ.
Following the ScaLAPACK style, we use BLACS [7] for communication and call ScaLAPACK
/ PBLAS or LAPACK / BLAS routines whenever appropriate.

We have used two HPC2N computer systems, Akka and Abisko (see Table 1), for our
computational experiments. For all our experiments on Akka, we used the Fortran 90 compiler
mpif90 version 4.0.13 from the PathScale EKOPath(tm) Compiler Suite with the optimization
flag -O3. For all our experiments on Abisko, we used the Intel compiler mpiifort version 13.1.2
with the optimization flag -O3.

On Abisko, each floating point unit (FPU) is shared between two cores. To attain near to
optimal performance, we only utilize 50% of the cores within a compute node. For example, a
grid Pr × Pc = 10 × 10 is allocated on 5 compute nodes, using up to 24 cores on each node.
Although each core on Akka has its own FPU, we also do not utilize more than 50% of the
cores on Akka either, for memory capacity reasons. Each compute node on Akka has 8 cores,
so a 10× 10 grid is allocated on 25 compute nodes, using 4 cores on each node.

3.2 Selection of nb and nAED

Our implementation PDHGEQZ of the parallel QZ algorithm is controlled by a number of param-
eters, in particular the AED window size nAED and the number of shifts nshifts. For choosing
these parameters, we follow the strategy proposed in [19, 20] for the parallel QR implementa-
tion. The block size nb, which determines the data distribution block size, is set to nb = 130
when n > 2000. If n ≤ 2000, an nb value of 60 is near optimal. This is the same for both Akka

13

35

Table 1: Akka and Abisko at the High Performance Computing Center North (HPC2N)
Akka 64-bit low power Intel Xeon Linux cluster

672 dual socket quadcore L5420 2.5GHz nodes
256KB dedicated L1 cache, 12MB shared L2 cache,
16GB RAM per node
Cisco Infiniband and Gigabit Ethernet, 10 GB/sec
bandwidth
OpenMPI 1.4.4, GOTO BLAS 1.13
LAPACK 3.4.0, ScaLAPACK/BLACS/PBLAS 2.0.1

Abisko 64-bit AMD Opteron Linux Cluster
322 nodes with a total of 15456 CPU cores
Each node is equipped with 4 AMD Opteron 6238 (Interlagos)
12 core 2.6 GHz processors
10 ’fat’ nodes with 512 GB RAM each, as well as 312
’thin’ nodes with 128 GB RAM each
40 Gb/s Mellanox Infiniband
Intel-MPI 13.1.2, ACML package 5.3.1 (includes LAPACK 3.4.0)
ScaLAPACK/BLACS/PBLAS 2.0.2

and Abisko.
As explained in § 2.3.3, the nAED × nAED AED window is redistributed to a PAED × PAED

grid before performing AED. The redistribution itself requires some computation and commu-
nication, but the cost is small compared to the whole AED process, see [20]. The local size
of the AED window is set to a new value nlocal during the data redistribution. On Akka and
Abisko, we choose nlocal = nbd384/nbe, implying that each process involved in the AED should
own at least a 384× 384 block of the whole AED window. The value 384 is taken from the QR
implementation, see [20]. Then PAED is chosen as the smallest value that satisfies

nAED ≤ (1 + PAED) · nlocal. (8)

Before the redistribution, we also adjust nb to a value better suited for the problem size, i.e. 60
or 130 depending on nAED. When nAED ≤ 6 000, we use PDHGEQZ1 to compute the generalized
Schur decomposition of the adjusted AED window, otherwise PDHGEQZ is called recursively.

3.3 Accuracy

All experiments have been performed in double precision arithmetic (εmach ≈ 2.2× 10−16). For
each run of the parallel QZ algorithm, we have verified its backward stability by measuring

Rr = max

{‖QTAZ − S‖F
‖A‖F

,
‖QTBZ − T‖F

‖B‖F

}
,

where (A,B) is the original matrix pair before reduction to generalized Schur form (S, T). The
numerical orthogonality of the transformations has been tested by measuring

Ro = max

{‖QTQ− In‖F
εmachn

,
‖ZTZ − In‖F

εmachn

}
.

For all experiments reported in this paper, we have observed Rr ∈ [10−14, 10−15] and Ro ∈
[0.5, 2.5].

14

36

To verify that the matrix pair (S, T) returned by PDHGEQZ is indeed in real generalized
Schur form, we have checked that the subdiagonal of S does not have two subsequent nonzero
entries and that eigenvalues of two-by-two blocks correspond to a complex conjugate pair of
eigenvalues. All considered matrix pairs passed this test.

3.4 Performance for random problems

We consider four different models of n × n pseudo-random matrix pairs (H,T) in Hessenberg-
triangular form.

Hessrand1 For j = 1, . . . , n− 2, the subdiagonal entry hj+1,j is the square root of a chi-squared
distributed random variable with n− j degrees of freedom (∼ χ(n− j)). For the diagonal
entries of T , we choose t11 ∼ χ(n) and tjj ∼ χ(j − 1) for j = 2, . . . , n. All other nonzero
entries of H and T are normally distributed with mean zero and variance one (∼ N(0, 1)).
This corresponds to the distribution obtained when reducing a full matrix pair (A,B)
with entries ∼ N(0, 1) to Hessenberg-Triangular form; see [9] for a similar model. Such
a matrix pair (H,T) has reasonably well-conditioned eigenvalues and, in turn, the QZ
algorithm obeys a fairly predictable convergence behavior.

Hessrand2 In this model, the nonzero entries of the Hessenberg matrix H and the triangular
matrix T are all chosen from a uniform distribution in [0, 1]. The eigenvalues of such matrix
pairs are notoriously ill-conditioned and lead to a more erratic convergence behavior of
the QZ algorithm.

Hessrand3 The Hessenberg matrix H is chosen as in the Hessrand2 model, but the upper
triangular matrix T is chosen as in the Hessrand1 model. The eigenvalues tend to be less
ill-conditioned compared to Hessrand2, but the potential ill-conditioning of T causes some
eigenvalues to be identified as infinite eigenvalues by the QZ algorithm.

Infrand This model is identical to Hessrand1, with the notable exception that we set each
diagonal element of T with probability 0.5 to zero. This yields a substantial number of
infinite eigenvalues; around 1/3 of the eigenvalues are infinite.

3.4.1 Serial execution times

To verify that our parallel implementation PDHGEQZ also performs well on a single core, we
have compared it with the serial implementations DHGEQZ (LAPACK version 3.4.0) and KKQZ

(prototype implementation of serial multishift QZ algorithm with AED [23]). Figure 8 shows
the timings obtained on a single core for Hessrand1 matrix pairs. The serial performance of
PDHGEQZ turns out to be quite good. It is even faster than KKQZ, although this is mainly due
to the fact that KKQZ represents a rather preliminary implementation with little performance
tuning. We expect the final version of KKQZ to be at least en par with PDHGEQZ. Similar results
have been obtained for Hessrand2, Hessrand3, and Infrand.

3.4.2 Parallel execution time

Tables 2–4 show the parallel execution times obtained on Akka and Abisko for random matrix
pairs of size n = 4 000–32 000.

15

37

Figure 8: Serial execution times of PDHGEQZ, DHGEQZ, and KKQZ for Hessrand1 matrix pairs on
Akka (left figure) and Abisko (right).

The figures for the Hessrand1 model in Table 2 indicate a parallel performance comparable
to the one obtained for the parallel QR algorithm [20] on the same architecture. Analogous to
the parallel QR algorithm, the execution time T (·, ·) of the parallel QZ algorithm, as a function
of n and p, satisfies

2T (n, p) ≤ T (2n, 4p) < 4T (n, p), (9)

provided that the local load per core is fixed to n/
√
p = 4000. This indicates that PDHGEQZ

scales rather well, see also § 3.4.3.
As expected, the results for the Hessrand2 model in Table 3 are somewhat erratic. Compared

to the Hessrand1 model, significantly smaller execution times are obtained for larger n, due to
the greater effectiveness of AED.

Table 2: Parallel execution time (in seconds) of PDHGEQZ for Hessrand1 model. Numbers within
parentheses are the execution time ratios of PDHGEQZ over PDHSEQR [20] for similar random
problems.

Akka Abisko

Pr × Pc n = 4k n = 8k n = 16k n = 32k n = 4k n = 8k n = 16k n = 32k

1× 1 114(1.0) 73(1.5)

2× 2 76(1.4) 403(1.4) 37(1.8) 226(2.5)

4× 4 35(1.0) 181(1.1) 598(0.8) 23(1.8) 134(2.1) 418(1.5)

6× 6 28(0.7) 127(1.1) 432(1.0) 2188(1.0) 20(1.8) 85(2.2) 316(1.9) 1218(1.4)

8× 8 25(0.7) 91(0.9) 367(1.1) 1754(1.2) 19(1.6) 72(1.9) 251(1.9) 1051(1.5)

10× 10 24(0.7) 88(0.7) 298(0.9) 1486(0.9) 18(2.0) 66(1.7) 208(1.9) 919(1.8)

Finally, Table 4 reveals good parallel performance also for matrix pairs with a substantial
fraction (roughly 1/3) of infinite eigenvalues. Interestingly, for n ≥ 8 000, the execution times
for the Infrand model are often larger compared to the Hessrand1 model, especially for a smaller
number of processes. This effect is due to the success of AED already in the very beginning of
the QZ algorithm: Deflating a converged finite eigenvalue in the bottom right corner with AED
requires significantly less operations than deflating an infinite eigenvalue located far away from
the top left and bottom right corners.

16

38

Table 3: Parallel execution time (in seconds) of PDHGEQZ for Hessrand2 model.
Akka Abisko

Pr × Pc n = 4k n = 8k n = 16k n = 32k n = 4k n = 8k n = 16k n = 32k

1× 1 143 46

2× 2 79 82 48 55

4× 4 45 29 102 33 22 71

6× 6 43 31 90 335 21 21 66 199

8× 8 28 26 87 303 22 21 58 193

10× 10 37 26 83 291 29 22 63 187

Table 4: Parallel execution time (in seconds) of PDHGEQZ for Infrand model.
Akka Abisko

Pr × Pc n = 4k n = 8k n = 16k n = 32k n = 4k n = 8k n = 16k n = 32k

1× 1 117 67

2× 2 64 534 34 259

4× 4 30 194 1153 18 110 691

6× 6 21 126 627 3748 16 73 380 2024

8× 8 19 81 441 3235 15 58 310 1636

10× 10 18 74 342 2322 16 55 238 1272

3.4.3 Parallel execution time: n = 100 000 benchmark

To test the performance for larger matrix pairs, we performed a few runs for n = 100 000 for
the Hessrand1 and Hessrand3 models. The obtained execution times (in seconds) on Akka and
Abisko are shown in the first row of Table 5 and Table 6, respectively. Moreover, the following
runtime statistics for PDHGEQZ are shown:
#AED number of times AED has been performed
#sweeps number of multishift QZ sweeps
#shifts/n average number of shifts needed to deflate a finite eigenvalue
%AED percentage of execution time spent on AED
#redist number of times a redistribution of data has been performed

On Akka and for Hessrand1, see Table 5, we have included a comparison with the parallel QR
algorithm applied to the fullrand model [20]. For the timings the ratios PDHGEQZ/PDHSEQR are
listed, while absolute values are reported for the other statistics. The number for redistributions
is available only for the QZ algorithm. Although the QZ algorithm is expected to perform about
3.5 times more flops than the QR algorithm [17], the execution time ratios vary between 0.8
and 2.1. This is explained by a more effective AED within PDHGEQZ for this problem type.
The execution times on Abisko are substantially lower than on Akka, for both Hessrand1 and
Hessrand3. Even though the per core computing power is roughly the same on both machines,
the network used on Abisko is faster than on Akka, and this in conjunction with using Intel-MPI
instead of OpenMPI give faster execution times on Abisko for these random problems.

It turns out that only a few multishift QZ sweeps are performed for Hessrand1. For Hess-
rand3, the ill-conditioning makes AED even more effective and no multishift QZ sweep needs
to performed.

17

39

Table 5: Execution time and statistics for PDHGEQZ on Akka for n = 100 000. Numbers within
parentheses provide a comparison to PDHSEQR for a similar random problem.

Pr × Pc = 16× 16 Pr × Pc = 24× 24 Pr × Pc = 32× 32 Pr × Pc = 40× 40
Hessrand1 Hessrand3 Hessrand1 Hessrand3 Hessrand1 Hessrand3 Hessrand1 Hessrand3

Time 22093(1.6) 2725 13165(1.6) 1614 9326(1.4) 1450 7028(0.8) 2539
#AED 26(35) 17 27(31) 17 26(27) 17 25(23) 17
#sweeps 2(5) 0 2(6) 0 4(13) 0 9(12) 0
#shifts/n 0.08(0.20) 0 0.07(0.23) 0 0.11(0.35) 0 0.15(0.49) 0
%AED 83%(48%) 100% 81%(43%) 100% 78%(39%) 100% 73%(54%) 100%
#redist 1(-) 1 26(-) 17 25(-) 17 24(-) 17

Table 6: Execution time and statistics for PDHGEQZ on Abisko for n = 100 000.
Pr × Pc = 16× 16 Pr × Pc = 24× 24 Pr × Pc = 32× 32 Pr × Pc = 40× 40

Hessrand1 Hessrand3 Hessrand1 Hessrand3 Hessrand1 Hessrand3 Hessrand1 Hessrand3

Time 10259 1053 8031 1463 6092 1367 5680 2163
#AED 32 17 26 17 24 17 28 17
#sweeps 1 0 2 0 4 0 9 0
#shifts/n 0.04 0 0.07 0 0.11 0 0.16 0
%AED 79% 100% 74% 100% 70% 100% 66% 100%
#redist 2 1 25 17 23 17 25 17

3.5 Impact of infinite eigenvalues on performance and scalability

The purpose of this experiment is to investigate the impact of a varying fraction of infinite
eigenvalues on the performance, additional to the observations already made in Table 4.

We consider n× n matrix pairs (A,B) of the form

A = Q

[
A11 0
0 A22

]
ZT , B = Q

[
B11 0
0 0

]
ZT ,

where A11, B11 ∈ R(n−m)×(n−m) and A22 ∈ Rm×m are full matrices with entries randomly
chosen from a uniform distribution in [0, 1]. The orthogonal transformation matrices Q and Z
are randomly chosen as well. Such a matrix pair will have m infinite eigenvalues of index 1
(corresponding to Jordan blocks of size 1× 1).

Table 7 shows the execution time on Akka of PDHGEQZ applied to (A,B), after reduction to
Hessenberg-triangular form. In all tests, the induced m infinite eigenvalues have been correctly
identified by the parallel QZ algorithm. The fact that the execution times decrease as the
number of infinite eigenvalues increases confirms the good performance of our parallel algorithm
for deflating infinite eigenvalues. Regardless of how many infinite eigenvalues we have, equation
(9) still holds, except when considering 40% infinite eigenvalues and comparing execution times
on a 2× 2 grid for n = 4000 with a grid of size 4× 4 for n = 8000.

Similar observations have been made on Abisko.

3.6 Performance for benchmark examples

In the following, we present performance results for PDHGEQZ run on a number of different
benchmarks, see Tables 9 – 16. The benchmarks are described in Table 8; most of them come
from real world problems, while a few are constructed examples. The benchmarks are stored

18

40

Table 7: Execution time for PDHGEQZ on Akka for a varying fraction of infinite eigenvalues.
Pr × Pc n 10% inf 20% inf 30% inf 40% inf

1× 1 4 000 88 69 56 50

2× 2 4 000 38 33 26 20

4× 4 4 000 31 28 21 16

6× 6 4 000 24 19 16 13

8× 8 4 000 20 17 14 10

2× 2 8 000 235 185 153 149

4× 4 8 000 140 116 100 81

6× 6 8 000 101 85 67 58

8× 8 8 000 82 70 59 46

in files using the Matrix Market format, see [4], and to be able to process these benchmark
files effectively, specialized routines were developed that parse the files so that every process in
the grid store their specific part of the globally distributed matrix pair (A,B). A and B are
treated as dense in all benchmarks, although some of the samples are very sparse, and reduced
to Hessenberg-Triangular form, except for the BBMSN benchmark which is stored in HT-form,
before PDHGEQZ is called.

Table 8: Description of benchmark problems
Name Size n # ∞ Description Ref

BBMSN scalable 0 academic example [23]

BCSST25 15 439 0 Columbia Center skyscraper [4]
MHD4800 4 800 0 Alfven spectra in Magnetohydrodynamics [4]

xingo6u, Bz1 20 738 17769 Brazilian Interconnect Power System [22]
xingo3012, Bz2 20 944 17910 Brazilian Interconnect Power System [22]
bips07 1998, Bz3 15 066 13046 Brazilian Interconnect Power System [16]
bips07 2476, Bz4 16 861 14336 Brazilian Interconnect Power System [16]
bips07 3078, Bz5 21 128 18017 Brazilian Interconnect Power System [16]

railtrack2, RTR[1..5] scalable - Palindromic quadratic eigenvalue problem [6]

convective 11 730 0 2D convective thermal flow problems [29]
gyro 17 361 0 butterfly gyroscope [29]
steel1 5 177 0 heat transfer in steel profile [29]
steel2 20 209 0 heat transfer in steel profile [29]
supersonic 11 730 407 supersonic engine inlet [29]
t2dal 4 257 0 2D micropyros thruster, linear FE [29]
t2dah 11 445 0 2D micropyros thruster, quadratic FE [29]
t3dl 20 360 0 3D micropyros thruster, linear FE [29]

mna2 9 223 1146 modified nodal analysis [12]
mna3 4 863 416 modified nodal analysis [12]
mna5 10 913 123 modified nodal analysis [12]

The first column in Table 8 shows the benchmark names and, in some cases, the corre-
sponding acronyms used in the result tables. Column two holds the problem sizes n for the
benchmarks. For the benchmarks marked scalable, the problem sizes considered are marked
in the result tables. Column three shows the average of the number of infinite eigenvalues
identified. Columns 4 and 5 give a brief description of and reference to each benchmark.

The BBMSN benchmark, see Table 9 for execution times on Akka and Abisko, is constructed

19

41

Table 9: Execution time, in seconds, on Akka and Abisko for BBMSN.

n Pr × Pc Akka Abisko

5000 1× 1 6 7
10000 2× 2 23 18
20000 4× 4 53 32

in such a way that AED should be very successful. It turns out that the scaling is not optimal,
but equation (9) still holds. Compared with the Hessrand1 model in Table 2 we observe dras-
tically reduced run-times, explained by the fact that no QZ sweeps are needed to compute the
generalized Schur-form.

Table 10: Execution time, in seconds, on Akka and Abisko for Matrix market examples.

Akka Abisko
Pr × Pc MHD4800 BCSST25 MHD4800 BCSST25

1× 1 304 121
2× 2 82 35
4× 4 26 1195 19 840
6× 6 23 701 16 550
8× 8 24 602 16 536

10× 10 23 492 16 518

BCSST25 and MDH4800 are two benchmarks with nonsingular B, i.e. only finite eigenval-
ues; see Table 10. For MDH4800 we observe good scaling, using a grid size up to 4 × 4, but
the problem is too small to be solved effectively on larger grid sizes. BCSST25 is a somewhat
larger problem, and PDHGEQZ therefore show better scaling.

Table 11: Execution time, in seconds, on Akka and Abisko for Brazilian interconnect bench-
marks.

Akka Abisko

Pr × Pc Bz1 Bz2 Bz3 Bz4 Bz5 Bz1 Bz2 Bz3 Bz4 Bz5

4× 4 228 333 164 232
6× 6 117 165 306 339 559 96 126 220 226 234
8× 8 123 125 186 192 199 64 99 143 146 160

10× 10 78 102 155 157 152 61 74 113 123 120

The Brazilian interconnect power system benchmarks have a large ratio of infinite eigenval-
ues; see Table 11 for execution times. We observe good overall scaling properties. The initial
Hessenberg-Triangular reduction moves tiny or zero elements in B up to the upper left corner,
making the deflation of infinite eigenvalues particularly cheap. Table 12 reports the number of
identified infinite eigenvalues for two different benchmarks and five different grid sizes. These
problems have quite unbalanced A and B, leading to greater impact from rounding errors, and
hence, the number of identified infinite eigenvalues will vary, even for the same grid and problem
sizes if the same problem is executed more than once.

20

42

Table 12: Number of deflated infinite eigenvalues for Bz3 and Bz4 on Akka.
Pr × Pc #∞ Bz3 #∞ Bz4

4× 4 13004 14305

6× 6 13028 14263

8× 8 13041 14333

10× 10 13046 14336

Results for the scalable railtrack benchmark are reported in Table 13 for five different prob-
lem sizes and six different grid sizes, both for Akka and Abisko. These problems have a high
fraction of infinite eigenvalues, which is reflected in the measured execution times. On aver-
age, PDHGEQZ identified 1409, 2813, 4212, 6963, and 8320 infinite eigenvalues for RT1, RT2, RT3,
RT4, and RT5, respectively.

Table 13: Execution time, in seconds, on Akka and Abisko for the railtrack benchmark. n is
5640, 8640, 11280, 16920, 19740 for RT1, RT2, RT3, RT4, and RT5 respectively.

Akka Abisko

Pr × Pc RT1 RT2 RT3 RT4 RT5 RT1 RT2 RT3 RT4 RT5

1× 1 98 69
2× 2 43 70 22 36
4× 4 19 29 30 60 12 19 24 48
6× 6 15 20 25 45 58 10 15 17 38 58
8× 8 13 18 23 44 67 10 12 16 33 47

10× 10 12 18 20 43 63 9 12 15 30 45

All benchmarks related to the Oberwolfach test suite, except one (supersonic), have a non-
singular B part. Execution times on Akka are displayed in Table 14; corresponding results on
Abisko are found in Table 15. Most of these problems are rather small, and therefore PDHGEQZ

only reveals good scaling properties for smaller grid sizes.

Table 14: Execution time, in seconds, on Akka for Oberwolfach benchmarks.

Pr × Pc t2dal steel1 connective t2dah supersonic gyro steel2 t3dl

1× 1 243 606
2× 2 108 297
4× 4 76 197 883 735 661
6× 6 73 190 616 343 328 1052 2164 2066
8× 8 68 182 523 304 309 854 1847 1921

10× 10 71 175 437 357 300 732 1509 1450

In Table 16, execution times are reported for the modified nodal analysis benchmark group,
both for Akka and Abisko. These problems have a moderate fraction of infinite eigenvalues.
Some of the problems are too small to be solved effectively on the larger grid sizes.

21

43

Table 15: Execution time, in seconds, on Abisko for Oberwolfach benchmarks.

Pr × Pc t2dal steel1 convective t2dah supersonic gyro steel2 t3dl

1× 1 117 249
2× 2 42 135
4× 4 24 70 353 315 305
6× 6 20 56 193 179 163 737 1567 1348
8× 8 18 50 175 152 147 621 1293 1140

10× 10 17 47 176 158 151 345 1161 1013

Table 16: Execution time, in seconds, on Akka and Abisko for modified nodal analysis bench-
marks.

Akka Abisko
Pr × Pc mna3 mna2 mna5 mna3 mna2 mna5

1× 1 113 67
2× 2 61 30
4× 4 25 203 984 16 143 629
6× 6 21 130 614 14 91 360
8× 8 17 109 560 13 78 402

10× 10 16 106 351 13 101 363

4 Conclusions

We have presented a new parallel algorithm and implementation PDHGEQZ of the multishift QZ
algorithm with aggressive early deflation for reducing a matrix pair to generalized Schur form.
To the best of our knowledge, this is the only parallel implementation capable of handling
infinite eigenvalues. Our extensive computational experiments demonstrate robust numerical
results and scalable parallel performance, comparably to what has been achieved for a recent
parallel implementation of the QR algorithm [20].

There is certainly room to improve the tuning of the parameters used in PDHGEQZ and the in-
terplay of the different components, including trade-offs between algorithm variants used in the
implementation that targets distributed memory architectures. However, from the experience
gained in the experiments, we do not expect this to lead to any further dramatic performance
improvements. To boost the performance much more, the coarse-grain parallelism has to be
combined with a fine-grained and strongly scalable parallel QZ algorithm that effectively man-
ages the shared memory hierarchies of multicore nodes. Such initiatives for the parallel QR
algorithm has recently started, see [27]. A critical part not addressed in this paper is the initial
reduction to Hessenberg-triangular form. If this part is not handled properly, it will dominate
the overall execution time. A parallel implementation of the Hessenberg-triangular reduction,
based on ideas from [24], is currently in preparation.

Acknowledgments

The authors are grateful to Robert Granat, Lars Karlsson, and Meiyue Shao for helpful dis-
cussions on parallel QR and QZ algorithms. The work was supported by the Swedish Research

22

44

Council(VR) under grant A0581501, and by eSSENCE, a strategic collaborative e-Science pro-
gramme funded by the Swedish Government via VR. We thank the High Performance Comput-
ing Center North (HPC2N) for providing computational resources and valuable support during
test and performance runs.

A Implementation aspects

Our software is written in Fortran 90. It is a ScaLAPACK-style implementation, using BLACS
for communication and ScaLAPACK/LAPACK/PBLAS/BLAS routines where appropriate.

Figure 9 shows an overview of the main routines related to our parallel QZ software. One-
directed arrows indicate that one routine calls other routines. For example, PDHGEQZ1 is called by
PDHGEQZ and PDHGEQZ3 and calls four routines: PDHGEQZ2, PDHGEQZ4, PDHGEQZ5, and PDHGEQZ7.
Calls to LAPACK, ScaLAPACK, BLACS etc. are not shown in Figure 9. Main entry routine is
PDHGEQZ, see Figure 10 for an interface description, but the call might be directly passed on to
PDHGEQZ1 if the problem is small enough, i.e. n ≤ 6000. PDHGEQZ3 is responsible for performing
parallel AED.

For the QZ sweeps, both PDHGEQZ and PDHGEQZ1 call PDHGEQZ5 and provide shifts, the
number of computational windows to chase, and the number of shifts to use within each window
as parameters. PDHGEQZ5 then sets up and moves the windows until they are chased off the
diagonal of (H,T).

Figure 9: Software hierarchy for PDGEHQZ.

The interface for PDHGEQZ is similar to the existing (serial) LAPACK routine DHGEQZ, see
Figure 10. The main difference between PDHGEQZ and DHGEQZ is the use of descriptors to define
partitioning and globally distributed matrices across the Pr×Pc process grid, instead of leading
dimensions, and that PDHGEQZ requires an integer workspace. RLVL indicates what level of
recursion current execution is running in, and should initially be set to 0. We do not allow for
more than two levels, that is, PDHGEQZ can call itself, but not more than one time. We follow the

23

45

RECURSIVE SUBROUTINE PDHGEQZ(JOB, COMPQ, COMPZ,
$ N, ILO , IHI , A, DESCA, B, DESCB,
$ ALPHAR, ALPHAI, BETA, Q, DESCQ, Z , DESCZ,
$ WORK, LWORK, IWORK, LIWORK, INFO, RLVL)

∗ . .
∗ . . S ca l a r Arguments . .
∗ . .

CHARACTER COMPQ, COMPZ, JOB
INTEGER IHI , ILO , INFO, LWORK, N
INTEGER LIWORK
INTEGER RLVL

∗ . .
∗ . . Array Arguments . .
∗ . .

DOUBLE PRECISION A(∗) , B(∗) , Q(∗) , Z(∗)
DOUBLE PRECISION ALPHAI(∗) , ALPHAR(∗) , BETA(∗)
DOUBLE PRECISION WORK(∗)
INTEGER IWORK(∗)
INTEGER DESCA(9) , DESCB(9)
INTEGER DESCQ(9) , DESCZ(9)

Figure 10: Interface for PDGEHQZ

convention in LAPACK/ScaLAPACK for workspace queries, allowing −1 in LWORK or LIWORK.
Optimal workspace is then returned in WORK(1) and IWORK(1).

References

[1] B. Adlerborn, K. Dackland, and B. K̊agström. Parallel and blocked algorithms for re-
duction of a regular matrix pair to Hessenberg-triangular and generalized Schur forms. In
J. Fagerholm et al., editor, PARA 2002, LNCS 2367, pages 319–328. Springer-Verlag, 2002.

[2] B. Adlerborn, D. Kressner, and B. K̊agström. Parallel variants of the multishift QZ algo-
rithm with advanced deflation techniques. PARA 2006, LNCS 4699, pp. 117–126, 2006.

[3] E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. W. Demmel, J. J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. C. Sorensen. LAPACK Users’ Guide.
SIAM, Philadelphia, PA, third edition, 1999.

[4] Z. Bai, D. Day, J. W. Demmel, and J. J. Dongarra. A test matrix collection for non-
Hermitian eigenvalue problems (release 1.0). Technical Report CS-97-355, Department
of Computer Science, University of Tennessee, Knoxville, TN, USA, March 1997. Also
available online from http://math.nist.gov/MatrixMarket.

[5] Z. Bai, J. W. Demmel, and M. Gu. An inverse free parallel spectral divide and conquer
algorithm for nonsymmetric eigenproblems. Numer. Math., 76(3):279–308, 1997.

24

46

[6] T. Betcke, N. J. Higham, V. Mehrmann, C. Schröder, and F. Tisseur. NLEVP: A collection
of nonlinear eigenvalue problems. ACM Trans. Math. Software, 39(2):7:1–7:28, February
2013.

[7] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. W. Demmel, I. Dhillon, J. J. Don-
garra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley.
ScaLAPACK Users’ Guide. SIAM, Philadelphia, PA, 1997.

[8] D. Boley. Solving the generalized eigenvalue problem on a synchronous linear processor
array. Parallel Comput., 3(2):153–166, 1986.

[9] K. Braman, R. Byers, and R. Mathias. The multishift QR algorithm. I. Maintaining well-
focused shifts and level 3 performance. SIAM J. Matrix Anal. Appl., 23(4):929–947, 2002.

[10] K. Braman, R. Byers, and R. Mathias. The multishift QR algorithm. II. Aggressive early
deflation. SIAM J. Matrix Anal. Appl., 23(4):948–973, 2002.

[11] A. Bunse-Gerstner and H. Faßbender. On the generalized Schur decomposition of a matrix
pencil for parallel computation. SIAM J. Sci. Statist. Comput., 12(4):911–939, 1991.

[12] Y. Chahlaoui and P. Van Dooren. A collection of benchmark examples for model reduction
of linear time invariant dynamical systems. SLICOT working note 2002-2, 2002. Available
online from http://www.slicot.org.

[13] J.-P. Charlier and P. Van Dooren. A Jacobi-like algorithm for computing the generalized
Schur form of a regular pencil. J. Comput. Appl. Math., 27(1-2):17–36, 1989. Reprinted in
Parallel algorithms for numerical linear algebra, 17–36, North-Holland, Amsterdam, 1990.

[14] K. Dackland and B. K̊agström. Blocked algorithms and software for reduction of a regular
matrix pair to generalized Schur form. ACM Trans. Math. Software, 25(4):425–454, 1999.

[15] J. W. Demmel and B. K̊agström. The generalized Schur decomposition of an arbitrary
pencil A − λB: robust software with error bounds and applications. II. Software and
applications. ACM Trans. Math. Software, 19(2):175–201, 1993.

[16] F. D. Freitas, J. Rommes, and N. Martins. Gramian-based reduction method applied
to large sparse power system descriptor models. Power Systems, IEEE Transactions on,
23:1258–1270, Aug 2008.

[17] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press,
Baltimore, MD, third edition, 1996.

[18] R. Granat, B. K̊agström, and D. Kressner. Parallel eigenvalue reordering in real Schur
forms. Concurrency and Computation: Practice and Experience, 21(9):1225–1250, 2009.

[19] R. Granat, B. K̊agström, and D. Kressner. A novel parallel QR algorithm for hybrid
distributed memory HPC systems. SIAM J. Sci. Comput., 32(4):2345–2378, 2010.

[20] R. Granat, B. K̊agström, D. Kressner, and M. Shao. Parallel library software for the
multishift QR algorithm with aggressive early deflation. Technical report, 2013. Revised
June 2014. Available from http://anchp.epfl.ch.

25

47

[21] E. S. Huss-Lederman, S. Quintana-Ort́ı, X. Sun, and Y.-J. Y. Wu. Parallel spectral division
using the matrix sign function for the generalized eigenproblem. International Journal of
High Speed Computing, 11(1):1–14, 2000.

[22] N. Martins J. Rommes and F. Damasceno. Computing rightmost eigenvalues for small-
signal stability assessment of large-scale power systems. Power Systems, IEEE Transactions
on, 25:929 – 938, Dec 2010.

[23] B. K̊agström and D. Kressner. Multishift variants of the QZ algorithm with aggressive early
deflation. SIAM J. Matrix Anal. Appl., 29(1):199–227, 2006. Also appeared as LAPACK
working note 173.

[24] B. K̊agström, D. Kressner, E. S. Quintana-Ort́ı, and G. Quintana-Ort́ı. Blocked algorithms
for the reduction to Hessenberg-triangular form revisited. BIT, 48(3):563–584, 2008.

[25] B. K̊agström and P. Poromaa. Computing eigenspaces with specified eigenvalues of a
regular matrix pair (A,B) and condition estimation: theory, algorithms and software.
Numer. Algorithms, 12(3-4):369–407, 1996.

[26] L. Karlsson and B. K̊agström. Efficient reduction from block Hessenberg form to Hessenberg
form using shared memory. In Proceedings of the 10th International Conference on Applied
Parallel and Scientific Computing - Volume 2, pages 258–268. Springer-Verlag, 2012.

[27] L. Karlsson, B. K̊agström, and E. Wadbro. Fine-grained bulge-chasing kernels for strongly
scalable parallel QR algorithms. Parallel Comput., 2014. To appear.

[28] L. Karlsson, D. Kressner, and B. Lang. Optimally packed chains of bulges in multishift
QR algorithms. ACM Trans. Math. Software, 40(2):12:1–12:15, 2014.

[29] J. G. Korvink and B. R. Evgenii. Oberwolfach benchmark collection. In P. Benner,
V. Mehrmann, and D. C. Sorensen, editors, Dimension Reduction of Large-Scale Systems,
volume 45 of Lecture Notes in Computational Science and Engineering, pages 311–316.
Springer, Heidelberg, 2005.

[30] D. Kressner. Numerical Methods for General and Structured Eigenvalue Problems, vol-
ume 46 of Lecture Notes in Computational Science and Engineering. Springer-Verlag,
Berlin, 2005.

[31] A.N. Malyshev. Parallel algorithm for solving some spectral problems of linear algebra.
Linear Algebra Appl., 188/189:489–520, 1993.

[32] C. B. Moler and G. W. Stewart. An algorithm for generalized matrix eigenvalue problems.
SIAM J. Numer. Anal., 10:241–256, 1973.

[33] C. F. Van Loan. Generalized Singular Values with Algorithms and Applications. PhD
thesis, The University of Michigan, 1973.

[34] R. C. Ward. The combination shift QZ algorithm. SIAM J. Numer. Anal., 12(6):835–853,
1975.

[35] R. C. Ward. Balancing the generalized eigenvalue problem. SIAM J. Sci. Statist. Comput.,
2(2):141–152, 1981.

26

48

[36] D. S. Watkins. Performance of the QZ algorithm in the presence of infinite eigenvalues.
SIAM J. Matrix Anal. Appl., 22(2):364–375, 2000.

[37] D. S. Watkins. The matrix eigenvalue problem. SIAM, Philadelphia, PA, 2007.

[38] D. S. Watkins and L. Elsner. Theory of decomposition and bulge-chasing algorithms for
the generalized eigenvalue problem. SIAM J. Matrix Anal. Appl., 15:943–967, 1994.

27

49

50

II

Paper II

Distributed One-Stage Hessenberg-Triangular
Reduction with Wavefront Scheduling

Björn Adlerborn, Bo Kågström, and Lars Karlsson

Dept. Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden
{adler,bokg,larsk}@cs.umu.se

Abstract: A novel parallel formulation of Hessenberg-triangular reduction of a reg-
ular matrix pair on distributed memory computers is presented. The formulation is
based on a sequential cache-blocked algorithm by Kågström, Kressner, E.S. Quintana-
Ortı́, and G. Quintana-Ortı́ (2008). A static scheduling algorithm is proposed that ad-
dresses the problem of underutilized processes caused by two-sided updates of matrix
pairs based on sequences of rotations. Experiments using up to 961 processes demon-
strate that the new algorithm is an improvement of the state of the art but also identifies
factors that currently limit its scalability.

53

54

Distributed One-Stage Hessenberg-Triangular
Reduction with Wavefront Scheduling∗

Björn Adlerborn, Lars Karlsson, and Bo Kågström

Abstract

A novel parallel formulation of Hessenberg-triangular reduction of a regular matrix pair
on distributed memory computers is presented. The formulation is based on a sequential
cache-blocked algorithm by Kågström, Kressner, E.S. Quintana-Ortí, and G. Quintana-
Ortí (2008). A static scheduling algorithm is proposed that addresses the problem of
underutilized processes caused by two-sided updates of matrix pairs based on sequences
of rotations. Experiments using up to 961 processes demonstrate that the new formulation
is an improvement of the state of the art and also identify factors that limit its scalability.

1 Introduction
For any matrix pair (A, B), where A, B ∈ Rn×n, there exist orthogonal matrices Q, Z ∈ Rn×n,
not necessarily unique, such that QT AZ = H is upper Hessenberg and QT BZ = T is upper
triangular. The resulting pair (H, T) is said to be in Hessenberg-Triangular (HT) form and the
act of reducing (A, B) to (H, T) is referred as HT reduction. One application of HT reduction
is as a preprocessing step used in various numerical methods such as the QZ algorithm for
the non-symmetric generalized eigenvalue problem [4, 3, 9, 14, 10].

Moler and Stewart [13] proposed in 1973 an algorithm for HT reduction that is exclu-
sively based on Givens rotations. Kågström, Kressner, E.S. Quintana-Ortí, and G. Quintana-
Ortí [11] proposed in 2008 a cache-blocked variant of Moler and Stewart’s algorithm. They
express most of the arithmetic operations in terms of matrix–matrix multiplications involving
small orthogonal matrices obtained by explicitly accumulating groups of rotations using a
technique proposed by Lang [12]. Both of these algorithms are sequential, but the cache-
blocked algorithm can to a limited extent scale on systems with shared memory by using a
parallel matrix–matrix multiplication routine.

The algorithms above use a one-stage approach in the sense that they reduce the matrix
pair directly to HT form. There is also a two-stage approach that first reduces the matrix
pair to a block HT form followed by a bulge-chasing procedure that completes the reduction
to proper HT form [2, 1, 8]. Two-stage algorithms are arguably more complicated and have
a higher arithmetic cost. A fundamental difference between the one-stage and the two-stage
approach is the usage of Householder reflections in the two-stage approach. Householder
reflections are used in the first stage to reduce column entries in the matrix A. When these
are applied to the matrix B, they will, repeatedly, destroy the structure by producing fill-
in in the lower triangular part of the matrix B and hence cause extra work. However, the

∗Report UMINF 16.10, Dept. of Computing Science, Umeå University, Sweden

1

55

arithmetic and parallel gain from using long reflections and applying them in a parallel,
blocked manner is greater than the extra work of restoring B to its original triangular form.
At some point, the extra work becomes substantial, so the algorithm shifts to the second
stage, at some heuristically determined breakpoint, to instead use a bulge-chasing procedure
causing less fill-in in B. Householder reflections are also used to reduce a single matrix to
Hessenberg form, used as a preprocessing step in the standard eigenvalue problem, and since
there is no fill-in to be dealt with, Householder reflections are used exclusively, resulting in a
highly efficient reduction where 80% [5, 6] of the operations are performed in level 3 BLAS
matrix-matrix operations.

For the generalized case, recent results show that a sequential cache-blocked one-stage
approach can outperform or at least compete with a two-stage approach [11]. In this paper, we
propose a novel parallel formulation of a cache-blocked one-stage algorithm [11, Algorithm 3.2]
hereafter referred to as KKQQ after its inventors.

The algorithms mentioned above have in common that they first reduce the matrix B to
upper triangular form using a standard QR factorization. Specifically, a QR factorization
B = Q0R is computed, then B is overwritten by R, Q is set to Q0, and A is overwritten by
QT

0 A. Since these steps are common to all HT reduction algorithms and parallel formulations
for them are well understood [7], we assume from now on that the input matrix pair (A, B)
already has B in upper triangular form.

The remainder of the paper is organized as follows. Notation and terminology are de-
scribed in Section 2. The sequential KKQQ algorithm is recalled in Section 3. An overview
of the new parallel formulation of KKQQ is given in Section 4. Various aspects of the paral-
lel formulation are described in Sections 5–8. Computational experiments are reported and
analyzed in Section 9, and Section 10 concludes and mentions future work.

2 Notation and terminology
Section 2.1 introduces notation and terminology related to numerical linear algebra and Sec-
tion 2.2 introduces notation and terminology related to parallel and distributed computing.

2.1 Numerical linear algebra
A rotation in the (k, k + 1)-plane is an n× n real orthogonal matrix of the form

G =

Ik−1
c s
−s c

In−k−1

 ,

where c2 + s2 = 1 and Ik is the k × k identity matrix. In the matrix multiplication GA, the
rotation G is said to act on rows k and k + 1 of A, since only these two rows of the product
differ from the corresponding rows of A. Similarly, in the multiplication AG, the rotation acts
on columns k and k + 1. A rotation as defined here is a restricted form of a Givens rotation
acting on two adjacent rows/columns.

A transformation is an n× n orthogonal matrix of the form

U =

Ik−1
Û

In−k−m+1

 ,

2

56

where Û is an orthogonal matrix of size m × m. A transformation is said to act on rows
k : k + m − 1 in the matrix multiplication UA and on the corresponding set of columns in
AU . Note that a rotation is just a special case of a transformation with

Û =
[

c s
−s c

]
.

A rotation sequence 〈G1, G2, . . . , Gr〉 is an ordered set of rotations acting on rows (columns)
from the bottom up (from right to left). Formally, if Gi acts on rows/columns k and k + 1,
then Gi+1 acts on rows/columns k − 1 and k.

A transformation sequence 〈U1, U2, . . . , Ur〉 is an ordered set of transformations acting on
rows (columns) from the bottom up (from right to left). Formally, if Ui acts on rows/columns
k1 : k2 and Ui+1 acts on rows/columns k′1 : k′2, then k′1 ≤ k1 ≤ k′2 ≤ k2. Note that a rotation
sequence is a special case of a transformation sequence.

A rotation graph R = (V, E) is a partially ordered set of rotations. A vertex v ∈ V
represents a rotation and is uniquely labeled by a pair of integers (i, j). An edge (u, v) ∈ E
represents a precedence constraint on the two rotations and states that u must be applied
before v to preserve correctness of some numerical computation. The set of vertex labels in
R is defined by a positive integer s and two sequences of integers 〈`1, . . . , `s〉 and 〈u1, . . . , us〉
as follows:

{(i, j) | 1 ≤ i ≤ s and `i ≤ j ≤ ui} .

Moreover, the lower and upper bounds `i and ui are constrained such that `i+1 ∈ {`i, `i + 1}
and ui+1 ∈ {ui, ui + 1}. The edge set E is defined by the following rules on the vertex labels:

1. If u is labeled (i, j) and v is labeled (i, j − 1), then (u, v) ∈ E .
2. If u is labeled (i, j) and v is labeled (i + 1, j + 1), then (u, v) ∈ E .

For a given i, the subset of the vertices whose labels are in the set {(i, j) | `i ≤ j ≤ ui} form a
rotation sequence referred to as sequence i of R. A rotation graph captures all possible ways
to reorder the application of a set of rotations without altering the numerical result compared
to the baseline of applying the sequences in the order 1, 2, . . . , s. Figure 1 provides a small
example of a rotation graph with two sequences of rotations.

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 2) (2, 3) (2, 4)

Sequence 1

Sequence 2

Figure 1: Example of a rotation graph with s = 2, `1 = 1, `2 = 2, and u1 = u2 = 4.

A rotation supernode R′ of a rotation graph R is a subgraph of R with no directed path
that both starts and ends in R′ and contains a vertex not in R′. Given a partitioning of the
vertices of a rotation graph R into disjoint rotation supernodes, the graph that is induced by
contracting each supernode is a directed acyclic graph referred to as a rotation supergraph.
A rotation supergraph generalizes the concept of a rotation graph to coarser units of com-
putation. Each rotation supernode can be explicitly accumulated to form a transformation
and then the rotation supergraph can be applied using matrix–matrix multiplications based
on these transformations. Figure 2 illustrates one of many possible ways to form a rotation
supergraph (bottom) from a given rotation graph (top).

3

57

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 2) (2, 3) (2, 4)

{(1, 1), (1, 2)}
{(1, 2), (2, 3)}

{(1, 3), (2, 4)}
{(1, 4)}

Figure 2: Illustration of a partitioning of a rotation graph into rotation supernodes (top) and
the resulting rotation supergraph (bottom).

2.2 Parallel computing
The parallel computer consists of P = PrPc processors/cores, each running a process with its
own private memory. The processes are arranged in a logical two-dimensional mesh of size
Pr × Pc and are labeled with (p, q) where p ∈ {0, 1, . . . , Pr − 1} is the mesh row index and
q ∈ {0, 1, . . . , Pc − 1} is the mesh column index.

The processes communicate by sending explicit messages. Point-to-point messages have
non-blocking send semantics and blocking receive semantics, while all collective operations
are blocking. These are the semantics used in the Basic Linear Algebra Communication
Subprograms (BLACS) library [7], which we used in the implementation. The same semantics
can also be obtained using the Message Passing Interface (MPI).

A matrix A is said to be distributed over the process mesh with a two-dimensional block-
cyclic distribution with block size nb if the matrix element aij is assigned to process (p, q),
where p = b(i− 1)/nbc mod Pr and q = b(j − 1)/nbc mod Pc.

3 The sequential KKQQ HT reduction algorithm
This section recalls the KKQQ HT reduction algorithm [11] since it is the foundation of our
parallel formulation. Refer to the original publication for details.

The idea of Moler and Stewart’s algorithm [13] is to systematically reduce the columns
of A from left to right using a sequence of rotations applied from the bottom up for each
column. After reducing a column, the resulting sequence of rotations is applied to the upper
triangular matrix B, which creates fill in the first sub-diagonal and thus changes the structure
of B from upper triangular to upper Hessenberg. The next step is to remove the fill in B by a
sequence of rotations applied from the right. This step can be viewed as an RQ factorization
of a Hessenberg matrix. The resulting rotations are then applied also to A. After applying
this procedure to the first n− 2 columns of A, the HT reduction is complete. The orthogonal
matrices Q and Z that encode the transformation from (A, B) to (H, T) can be obtained by
accumulating the rotations applied from the left into Q and the rotations applied from the
right into Z. The main idea of the KKQQ algorithm is to delay a large fraction of the work
involved in the application of rotations in Moler and Stewart’s algorithm until the work can
be applied more efficiently (in terms of communication through the memory hierarchy) using
matrix–matrix multiplications.

Algorithm 1 gives an overview of the KKQQ algorithm and can be described as follows.

4

58

A

A1 A2

A3

j0
j0 + w

j0 + 1

j0 + 1
B

B1

B2

j0 + 1

j0 + 1

Figure 3: Block partitioning of the matrices A and B used by Algorithm 1.

The outer loop on line 1 loops over column panels of A of width w from left to right and
j0 denotes the first column index of the current panel. The first row index of the panel is
j0 + 1. The panel is denoted by A1 in Figure 3. The current panel width is determined on
line 2. The matrices A and B are logically partitioned as in Figure 3. Two rotation graphs
Rleft (for rotations applied from the left) and Rright (for rotations applied from the right) are
initialized on line 4. The rotation graphs are empty in the sense that there are no rotations yet
associated with the vertices. The remainder of the outer loop body consists of three phases:
the rotation construction phase, where rotations are constructed with a minimum of work
performed, the rotation accumulation phase, where the rotations are partitioned into rotation
supernodes and explicitly accumulated, and the delayed update phase, where the remaining
work is performed by applying the transformations. The three phases are described in more
detail below.

Rotation construction: The rotation construction phase encompasses the entire inner
loop on line 5. This loop iterates over the columns in the current panel from left to right
and j denotes the current column index. The current column is brought up-to-date with
respect to delayed updates from previous iterations in the inner loop on line 6. The current
column is then reduced on line 7, which generates sequence j − j0 + 1 of Rleft. This newly
constructed sequence is then applied to B1 from the left on line 8, which creates fill in its first
sub-diagonal. The block B1 is then reduced back to upper triangular form on line 9, which
generates sequence j − j0 + 1 of Rright. This newly constructed sequence is then applied to
A1 and A2 from the right on line 10.

Rotation accumulation: The rotation construction phase has generated the two rotation
graphs Rleft and Rright. The purpose of the rotation accumulation phase is to partition these
graphs into rotation supernodes of an appropriate size and then explicitly accumulate each
supernode into a transformation. The supernodes should in general span all ŵ sequences
(effectively resulting in a rotation supergraph that is linear) and their size should be such
that the transformations are of size close to 2ŵ × 2ŵ to minimize the overhead of the accu-
mulation [12]. All of this occurs on line 11.

5

59

Algorithm 1: The KKQQ [11, Algorithm 3.2] HT reduction algorithm
Data: Matrices A, B ∈ Rn×n, where B is upper triangular, orthogonal matrices Q, Z ∈ Rn×n, and a

block size w ∈ {1, 2, . . . , n}.
// Loop over panels of width w from left to right

1 for j0 ← 1 : w : n− 2 do
// Determine the current block size

2 ŵ ← min{w, n− j0 − 1};
// THE ROTATION CONSTRUCTION PHASE

3 Partition A and B as in Figure 3;
4 Let Rleft and Rright be empty rotation graphs (no rotations yet attached to the vertices) with ŵ

sequences, lower bounds `i = j0 + i, and upper bounds ui = n− 1 for i = 1, 2, . . . , ŵ;
// Loop over the columns in the panel from left to right

5 for j ← j0 : 1 : j0 + ŵ − 1 do
6 Apply sequences 1, 2, . . . , j − j0 of Rleft to the j’th column of A;
7 Reduce the j’th column of A and add the rotations as sequence j − j0 + 1 of Rleft;
8 Apply sequence j − j0 + 1 of Rleft to B1 from the left;
9 Reduce B1 from the right and add the rotations as sequence j − j0 + 1 of Rright;

10 Apply sequence j − j0 + 1 of Rright to A1 and A2 from the right;
// THE ROTATION ACCUMULATION PHASE

11 Partition Rleft and Rright into rotation supergraphs and accumulate each rotation supernode into
a transformation;

// THE DELAYED UPDATE PHASE
12 Apply the transformations in Rleft to A2 from the left;
13 Apply the transformations in Rleft to QT from the left;
14 Apply the transformations in Rright to A3 from the right;
15 Apply the transformations in Rright to B2 from the right;
16 Apply the transformations in Rright to Z from the right;

Delayed updates: The transformations are applied using matrix–matrix multiplications
to parts of A, B, Q, and Z in the delayed update phase. The rotations from the left are
applied to A2 and QT on lines 12–13. The rotations from the right are applied to A3, B2,
and Z on lines 14–16.

4 Overview of the parallel formulation
Our parallel formulation of Algorithm 1 consists of several parts that are parallelized in
different ways. This section gives an overview of the algorithm and identifies the parts and
connects them to the underlying sequential algorithm. The details of each part are given
separately in Sections 5–8.

The input matrices A, B, QT, and Z are assumed to be identically distributed across
the process mesh using a two-dimensional block-cyclic distribution with block size nb. The
notation A(p,q) refers to the submatrix of the distributed matrix A that is assigned to process
(p, q). Similarly, the notations A(p,∗) and A(∗,q) refer to the submatrices assigned to mesh row
p and mesh column q, respectively.

The rotation graphs Rleft and Rright are represented by two-dimensional arrays of size
n× ŵ and are replicated on all processes.

The following are the main parts of the parallel formulation. The update and reduction of
the current column of A (lines 6–7) is referred to as UPDATEANDREDUCECOLUMN and is described
in Section 5. The application of a sequence of rotations from the left (line 8) is referred to as

6

60

ROWUPDATE and is described in Section 6. The reduction of B back to triangular form (line 9)
is referred to as RQFACTORIZATION and is described in Section 7. The application of a sequence
of rotations from the right (line 10) is referred to as COLUPDATE and is conceptually similar
to ROWUPDATE. The accumulation of rotations into transformations (line 11) is referred to as
ACCUMULATE and is described in Section 8. The application of a sequence of transformations
from the left (lines 12–13) is referred to as BLOCKROWUPDATE and is conceptually similar to
ROWUPDATE. Finally, the application of a sequence of transformations from the right (lines 14–
16) is referred to as BLOCKCOLUPDATE and is also conceptually similar to ROWUPDATE.

5 Updating and reducing a single column
The input is a rotation graph and a partial column of a distributed matrix. The purpose is
to apply the rotation graph to the column and then reduce it by a new sequence of rotations.
Since applying a rotation sequence to only one column is inherently sequential, parallelism can
be extracted only by pipelining the application of multiple sequences. Specifically, one process
can apply rotations from sequence i while another process applies rotations from sequence
i+1. With s sequences, up to s processes can be used in parallel with this pipelining approach.
In practice, however, such a parallelization scheme is very fine-grained and leads to a lot of
parallel overhead—especially in a distributed memory environment—and therefore requires a
sufficiently long column and sufficiently many sequences to yield any speedup. Therefore, we
dynamically decide on a subset of the processes (ranging from a single process to the entire
mesh) onto which we redistribute the column and apply the sequences in parallel. While this
part of the algorithm accounts for a tiny proportion of the overall work, its limited scalability
makes it a theoretical bottleneck that ultimately limits the overall scalability of our parallel
HT reduction.

6 Wavefront scheduling of a rotation sequence
The dominating computational pattern in Algorithm 1 is the application of a sequence of
rotations or transformations and is manifested in ROWUPDATE, COLUPDATE, BLOCKROWUPDATE,
and BLOCKCOLUPDATE. There are also close connections to the pattern in RQFACTORIZATION.
This section describes a novel scheduling algorithm that is capable of using the processes
efficiently and generates a pattern of computation that resembles wavefronts, hence the name.

We treat in this section only the special case of applying a sequence of rotations from the
left to a dense matrix. The method readily extends to upper triangular matrices, to sequences
applied from the right, and to sequences of transformations. We assume that the sequence of
rotations is replicated on all processes.

A first observation is that applying rotations from the left does not cause any flow of in-
formation across columns of the matrix. Hence, each column can be independently updated.
In our parallel setting, this implies that there will be neither communication nor synchro-
nization between processes on different mesh columns. Therefore, we may assume without
loss of generality that the matrix is distributed on a Pr × 1 mesh, i.e., a mesh with a sin-
gle column. For a matrix distributed on a general mesh, one simply applies the scheduling
algorithm independently on each mesh column.

The rest of this section is organized as follows. Section 6.1 motivates the need for a more
versatile scheduling algorithm by illustrating why a straightforward approach leads to poor

7

61

scalability. Section 6.2 gives a high-level overview of the algorithm. Fundamental building
blocks of the algorithm are detailed in Section 6.3, and the final details of the algorithm as a
whole are given in Section 6.4.

6.1 Why a straightforward approach scales poorly
The straightforward approach of applying each rotation completely one after the other does
not scale because most of the time only one of the P processes are active and occasionally two
processes are active. This is illustrated by the Gantt-chart in Figure 4. Each rotation in the
sequence is classified as local if the two affected rows belong to the same process and as cross-
border if the two rows belong to different processes. Hence, roughly a fraction (nb− 1)/nb of
all rotations are local and only a fraction 1/nb are cross-border.

local
cross-
border

local
cross-
border

local
cross-
border

local cross-

border local
cross-
border

local

i d l i n g

i d l i n g

i d l i n gp0

p1

p2

p3

time

Figure 4: Gantt-chart for the straightforward application of a sequence of rotations from the
left using a 4× 1 mesh. At most two processes are active at the same time.

6.2 Overview of the wavefront scheduling algorithm
To improve on the straightforward application it becomes necessary to split the application of
a rotation into several independent operations and introduce parallelism through pipelining.
Specifically, the columns are partitioned into N̂b blocks of size n̂b. The block size n̂b is
independent of the distribution block size nb, but is closely related to the degree of concurrency
and should be chosen such that N̂b ≥ Pr in order to use all processes. With fewer than Pr
blocks, there is not enough concurrency to keep all processes busy at the same time.

The N̂b distributed column blocks are referred to as fragments and play a key role in the
scheduling algorithm. The operations necessary to update a fragment are decomposed into
an alternating sequence of local and cross-border actions. A local action is the application
of a maximal contiguous subsequence of local rotations, and a cross-border action is the
application of a cross-border rotation. Due to the flow of data upwards in each column, the
actions associated with a particular fragment need to be performed in a strictly sequential
order.

Consider a single fragment at any given moment during the computation. Either the
fragment has already been completely updated or there is a uniquely identified next action to
perform on that fragment. If the next action is a local action, then the fragment is associated
with the process that owns the distribution block affected by the local rotations. If the
action is instead a cross-border action, then the fragment is associated with a pair of adjacent
processes, namely those that own the two distribution blocks affected by the cross-border
rotation. In essence, each fragment is at any point in time associated either with a particular
process or with a particular pair of adjacent processes. This association is used to make the
scheduling algorithm more efficient.

8

62

0 1

2

34

5

Figure 5: The twelve slots (local slots as circles and cross-border slots as squares) for the
case of P = 6 processes. The circular arrow shows how the slots are ordered.

Associated with each process and with each pair of adjacent processes is a slot. A slot
contains all the fragments that are currently associated with its related process(es). There
are Pr local slots, each associated with a single process, and also P cross-border slots, each
associated with a pair of adjacent processes. As an example, consider the twelve slots for the
case Pr = 6 illustrated in Figure 5. The local slots (and also the processes) are identified by
circles. The cross-border slots are identified by squares. The adjacency of slots and processes
is illustrated by lines. A fragment systematically moves from slot to slot in response to the
completion of its actions. The direction in which a fragment moves is indicated by an arrow
in Figure 5.

The wavefront scheduling algorithm revolves around the concept of a parallel step. A
parallel step is a set of actions of the same type (local or cross-border) for which no two
actions belong to fragments residing in the same slot. A parallel step is maximal if it involves
one action from every slot of the chosen type. Since the type of action in a parallel step
is homogeneous, one can refer to the steps as either local or cross-border. The actions in a
parallel step can be performed in a perfectly parallel fashion (see Section 6.3 below) and a
maximal step leads to no idling, which makes parallel steps useful as building blocks for an
efficient schedule. The aim of the wavefront scheduling algorithm is to construct and execute
a shortest possible sequence of parallel steps.

How to obtain a minimal sequence of parallel steps is an open problem. We conjecture
that using a greedy algorithm that adheres to the following rules will yield a close-to-optimal
solution.

1. Choose between a local and cross-border parallel step based on which type of step will
lead to the execution of the most actions.

2. Choose from each slot of the appropriate type (local or cross-border) the fragment that
has the most remaining actions.

The rationale behind Rule 1 is to greedily do as much work as possible. The rationale behind
Rule 2 is to avoid ending up with a few fragments with many remaining actions and is based
on the critical path scheduling heuristic.

9

63

6.3 Executing a parallel step
6.3.1 Executing a local parallel step

A local parallel step is perfectly parallel since it involves only local actions and hence requires
neither communication nor synchronization. Ideally, the parallel step is maximal and then
every process has exactly one task to perform and the tasks have roughly the same execution
time as a consequence of the homogeneous block size n̂b.

6.3.2 Executing a cross-border parallel step

A cross-border parallel step involves pairwise exchanges of data between pairs of adjacent
processes. Ideally, the parallel step is maximal and in this case every process would be
involved in two unrelated cross-border actions.

row k

buffer

Leading process

Trailing process

buffer

row k + 1

Gk

Gk

Figure 6: Illustration of a cross-border rotation Gk applied to rows k and k+1 of a fragment.
The two processes begin by exchanging rows and finish by updating their respective local rows.

Figure 6 illustrates how the work of applying a cross-border rotation to a fragment is
coordinated between the two processes involved in the operation. A cross-border rotation Gk

is applied to rows k and k + 1. The former is held by the so-called leading process and the
latter by the so-called trailing process. Both processes begin by sending their respective local
rows to the other process. Now each process has a copy of both rows and finishes by updating
its local row.

Algorithm 2: Execution of a cross-border parallel step
1 Let p ∈ {0, 1, . . . , P − 1} be the rank of this process;
2 Let L denote the action (if any) in which this process is the leading process;
3 Let T denote the action (if any) in which this process is the trailing process;
4 Let kL and kT denote the indices of the corresponding cross-border rotations;
5 if L is defined then
6 Send row kL of the fragment associated with L to process (p + 1) mod P ;
7 if T is defined then
8 Send row kT + 1 of the fragment associated with T to process (p− 1) mod P ;
9 Receive a row from process (p− 1) mod P into a buffer;

10 Update row kT + 1 of the fragment associated with T using rotation GkT ;
11 if L is defined then
12 Receive a row from process (p + 1) mod P into a buffer;
13 Update row kL of the fragment associated with L using rotation GkL ;

10

64

Since a process can be involved in two unrelated cross-border actions in one parallel
step, one needs to schedule the sends and receives in a way that avoids deadlock. Algorithm 2
describes one solution to this problem for a general (i.e., not necessarily maximal) cross-border
parallel step. A basic observation that is fundamental to the communication algorithm is that
if a process is involved in two actions, then it will be the leading process in one of them and
the trailing process in the other. That Algorithm 2 is deadlock-free is shown in Proposition 1.

Proposition 1. Algorithm 2 is deadlock-free for any number of processes assuming that sends
are non blocking.

Proof. We first show that deadlock cannot occur for a maximal parallel step. Then we argue
that deadlock cannot occur for non-maximal parallel steps either.

Consider a maximal parallel step. Label the two sends by s1 and s2 in the order that they
are executed by Algorithm 2. Similarly, label the two receives r1 and r2 in the order they are
executed. Since the step is maximal, both L and T will be defined and hence all then-clauses
will be executed. Only the ordering of the sends and receives are relevant for the purpose of
analyzing for deadlock. Consider any process pk ∈ {0, 1, . . . , P − 1}. Figure 7 illustrates the
sequencing due to program order of the two sends and two receives (middle column) executed
by process pk. Also shown are the sends and receives of the two adjacent processes (left and
right columns, respectively) and the matching of sends and receives. Figure 7 is merely a
template from which a complete dependence graph can be constructed for any given P . In
the extreme case of P = 2, the left and right columns are actually the same. In the extreme
case of P = 1, there is only one column and each send is matched by a receive on the same
process.

p(k−1) mod P

s1

s2

r2

r1

pk

s1

s2

r2

r1

p(k+1) mod P

s1

s2

r2

r1

Figure 7: Dependencies between sends and receives in Algorithm 2 illustrated for three adja-
cent processes.

There can be at most one ready task per column, due to the (vertical) program order
dependencies. Furthermore, there is one process dedicated to each column and therefore every
ready task will eventually be executed. As a consequence, the only way for deadlock to occur
is if the dependence graph contains a directed cycle. Since every edge in Figure 7 is directed

11

65

downwards, a directed cycle cannot exist regardless of P . This shows that Algorithm 2 is
deadlock-free for maximal parallel steps.

Suppose that the step is not maximal. Then we effectively need to remove some of the
nodes and edges in the dependence graph. The arguments used for the maximal case remain
valid and hence the algorithm is deadlock-free also for this case.

6.4 The wavefront scheduling algorithm
This section describes the details of the wavefront scheduling algorithm (Algorithm 3).

Algorithm 3: Wavefront scheduling
1 SL is the set of local slots;
2 SB is the set of cross-border slots;
3 loop

// Select non-empty slots of the same type
4 S ← {s ∈ SL ∪ SB : Size(s) > 0};
5 nL ← |S ∩ SL|;
6 nB ← |S ∩ SB|;
7 if nL > nB then
8 S ← S ∩ SL;
9 else

10 S ← S ∩ SB;
// Terminate if all actions have been performed

11 if S = ∅ then terminate;
// Extract one fragment from each selected slot

12 F ← {Select(s) : s ∈ S};
// Perform the parallel steps

13 if nL > nB then
14 Perform a local parallel step on the fragments in F (Section 6.3.1);
15 else
16 Perform a cross-border parallel step on the fragments in F (Section 6.3.2);

// Move (or remove) the updated fragments
17 foreach f ∈ F do
18 if ActionCount(f) > 0 then
19 Slot(f)← Next(Slot(f));
20 else
21 Undefine Slot(f);

At the top level of Algorithm 3 is a loop that continues until all actions have been per-
formed. A subset S of the slots is chosen such that all slots in the set have the same type and
contain at least one fragment. The choice is made according to Rule 1 in Section 6.2. The
function Size returns for a given slot the number of fragments (possibly zero and at most
N̂b) that currently resides in that slot. The algorithm terminates when there is no fragment
in any of the slots. The set S of slots is then mapped to a set F of fragments by selecting
from each slot the fragment with the most remaining actions. The choice is made according
to Rule 2 in Section 6.2. The selection is carried out by the function Select. The parallel
step defined by the set of fragments F is performed as described in Section 6.3. Finally, each
fragment is either moved to its next slot or removed altogether. The function Slot returns
the slot in which a given fragment currently resides (or is undefined if the fragment has been
completed). The function Next returns the next slot relative to a given slot. The function

12

66

ActionCount returns the number of actions remaining in a given fragment.

(a) Before

0
L

1
B

2
L

3
B

4
L

5
B

6
L

7
B

number
type

fra
gm

en
ts

(b) During

0
L

1
B

2
L

3
B

4
L

5
B

6
L

7
B

number
type

fra
gm

en
ts

(c) After

0
L

1
B

2
L

3
B

4
L

5
B

6
L

7
B

number
type

fra
gm

en
ts

Figure 8: Example illustrating the movement of fragments after an iteration of Algorithm 3
that resulted in the execution of a local parallel step.

Figure 8 provides an example of the movement of fragments after one iteration of Algo-
rithm 3 for the case of P = 4 processes. Each fragment is illustrated by a circle and the eight
slots are indicated by eight columns labeled 0 through 7 in a clockwise direction relative to
Figure 5. Figure 8(a) shows the state of the slots before the iteration. Since there are nL = 4
non-empty local (L) slots but only nB = 3 non-empty cross-border (B) slots, Algorithm 3
will choose to perform a local parallel step and set S = {0, 2, 4, 6}. One fragment from each
of the chosen slots will then be selected, and these are shown in green in Figure 8(b). After
completing the parallel step, the four selected fragments move to their respective next slots,
i.e., from slot s ∈ {0, 1, . . . , 7} to (s − 1) mod 8. The resulting state of the slots after the
iteration is shown in Figure 8(c).

The bottom of Figure 9 illustrates a simulated schedule produced by Algorithm 3 for a
rotation sequence applied from the right using a 4×4 process mesh. The processes are labeled
in row-major order, so the first group of four traces belong to the first mesh row and so on.
Besides the pipeline startup and shutdown phases, the processes are active all the time. The

13

67

Timestep

P
ro
ce
ss

c

c

c

c

c

c

u

u

u

u

c

c

c

c

c

c

c

u

c

u

u

u

u

u

c

u

C

u

c

c

C

c

c

C

u

c

c

u

C

c

u

u

u

u

c

u

u

C

u

u

C

u

u

c

c

C

C

u

c

c

C

u

C

c

c

u

C

C

c

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

C

C

C

u

C

C

C

u

C

C

C

u

C

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

u

C

c

C

C

u

C

C

C

u

C

C

C

u

c

C

C

u

u

u

u

C

u

u

u

C

u

u

u

C

u

u

C

c

c

C

u

C

C

C

u

c

C

C

u

c

C

u

u

u

u

C

u

u

u

C

u

u

C

u

C

c

c

c

u

c

C

C

u

c

C

u

c

u

u

u

u

c

u

u

C

u

C

c

u

c

c

u

c

C

u

c

u

u

u

u

u

c

u

u

C

u

C

c

u

c

c

u

c

C

u

c

u

u

u

u

u

c

u

u

C

u

C

c

c

c

u

c

C

u

c

u

u

u

u

c

u

u

C

u

C

c

c

c

u

c

C

u

c

u

u

u

u

c

u

u

C

u

C

c

c

c

u

c

C

u

c

u

u

u

c

u

C

c

c

u

c

u

u

c

c

Timestep

P
ro
ce
ss

r

u

u

u

u

c

c

c

c

c

c

c

c

u

u

r

u

u

u

u

u

u

c

c

u

u

c

C

c

c

C

c

u

u

c

C

c

u

u

r

u

u

c

C

c

u

u

c

C

c

c

C

c

u

u

u

c

C

c

u

u

u

u

u

u

c

C

C

c

u

u

c

C

C

c

c

C

C

c

u

u

u

c

C

C

c

r

u

u

u

u

c

C

C

c

u

u

c

C

C

c

c

C

C

c

u

u

u

c

C

c

u

u

u

u

u

u

C

C

c

c

u

u

C

C

c

c

C

C

c

c

u

u

C

c

c

u

u

u

u

C

c

c

u

u

r

C

c

c

C

c

c

u

u

C

c

c

u

u

u

u

u

c

c

C

u

u

C

c

c

C

c

c

C

u

r

u

c

c

C

u

u

u

u

u

u

c

c

C

u

u

u

c

c

C

C

c

c

C

C

u

u

c

c

C

C

u

u

r

u

u

c

C

c

u

u

c

C

c

c

C

c

u

u

u

c

C

c

u

u

u

u

u

u

c

C

C

c

u

u

c

C

C

c

c

C

C

c

u

u

c

C

c

r

u

u

u

u

c

C

c

u

c

C

c

c

C

c

u

u

u

u

u

u

u

u

C

c

c

C

c

c

C

c

c

C

c

c

u

u

r

u

u

u

u

u

u

u

C

c

c

C

c

c

C

c

c

C

c

c

C

u

u

u

u

u

u

r

u

c

c

C

c

c

C

c

c

C

c

c

C

u

u

u

u

u

u

u

u

c

C

c

c

C

c

c

C

c

c

C

c

u

u

r

u

u

c

c

u

u

c

c

c

c

u

c

C

c

u

u

u

c

c

r

u

c

C

c

c

c

u

c

C

c

u

u

u

u

c

c

u

u

C

c

c

C

c

c

u

C

c

c

u

u

c

c

u

c

c

c

c

u

r

c

c

u

u

c

c

u

c

c

c

c

u

c

c

u

r

u

c

c

u

u

c

c

c

c

u

c

C

c

u

u

c

c

u

c

c

c

c

c

c

r

u

u

c

c

u

u

c

c

u

c

c

c

c

r

u

c

c

c

c

u

u

u

u

c

c

c

c

c

c

c

c

r

u

u

u

c

c

c

c

c

c

r

u

u

c

c

c

c

r

u

c

c

Timestep

P
ro
ce
ss

u

u

u

u

c

c

c

c

c

c

c

c

u

u

u

u

u

u

u

u

c

C

c

c

C

c

c

C

c

c

C

c

u

u

u

u

u

u

u

u

u

u

u

u

c

C

C

c

c

C

C

c

c

C

C

c

c

C

C

c

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

c

C

C

c

c

C

C

c

c

C

C

c

c

C

C

c

u

u

u

u

u

u

u

u

u

u

u

u

c

C

c

c

C

c

c

C

c

c

C

c

u

u

u

u

u

u

u

u

c

c

c

c

c

c

c

c

Figure 9: Illustration of simulated schedules produced by variants of the wavefront scheduling
algorithm on a 4× 4 process mesh. The label ‘u’ means a local action, ‘r’ a reduction action,
‘c’ (lower case) a single cross-border action, and ‘C’ (upper case) a pair of cross-border
actions. Top: Rotations applied from the left to an upper triangular matrix (Section 6).
Middle: Rotations created and applied from the right to reduce a Hessenberg matrix to
upper triangular form (Section 7). Bottom: Rotations applied from the right to a dense
matrix (Section 6).

14

68

top of the figure shows a corresponding trace for a rotation sequence applied from the left to
an upper triangular matrix. (Note that the time scales in the three subfigures are different.)
The mesh columns are less in sync and the load imbalance is more severe than in the dense
case. However, the schedule can still activate all processes at the same time.

6.5 Overhead analysis of Algorithm 3
In this section, we analyze the overhead per iteration of the loop in Algorithm 3.

The slot data structures are numbered from 0 to 2P − 1 and accessed in constant time.
Each slot contains a set housing the fragments that currently reside in the slot.

Selecting the type of the parallel step and the non-empty slots can be accomplished in
Θ(P) time by visiting each slot. Extracting from each slot a fragment with the most remaining
actions can be accomplished in O(N̂b) time if an unordered set data structure is used and
in O(log N̂b) time if a priority queue data structure is used. Finally, moving the fragments
can be accomplished in Θ(1) time if an unordered set data structure is used and in O(log N̂b)
time if a priority queue data structure is used.

In summary, the overhead per iteration is bounded by O(P +N̂b) if an unordered set data
structure is used and by O(P + log N̂b) if a priority queue data structure is used. For the
special case N̂b = P , the overhead is Θ(P) regardless of the underlying data structure.

Note that the context in this section is a mesh of size P × 1. In reality, the scheduling
algorithm is applied independently on each mesh row or mesh column. Thus, for a mesh of
size
√

P ×
√

P , replace P with
√

P in all of the above.

7 Wavefront RQ factorization of a Hessenberg matrix
The aim is to reduce an upper Hessenberg matrix to upper triangular form by creating and
applying a rotation sequence from the right. The pattern of computation has many similarities
with the pattern analyzed in Section 6 but with the addition that the rotations are not known
beforehand. This small difference causes profound effects, since it introduces both the need
for collective communication and also causes flow of information perpendicular to the flow
introduced by the sequence itself. In this section, we show how to extend the algorithm
presented in Section 6 to this computational pattern.

The rotation sequence is applied from the right, so the fragments are now row blocks
instead of column blocks. Moreover, the fragments are now aligned with the distribution
blocks, i.e., a fragment is the same as a distribution row block.

To generate new rotations and replicate them, we need to introduce a few more actions
besides the local and cross-border actions. The last local action on a fragment updates a block
on the diagonal. We replace this action with a new reduction action and remove the following
(and final) cross-border action (if any). The purpose of a reduction action is to reduce the
diagonal block and the column immediately to the left. After reducing the diagonal block,
the new rotations need to be replicated using a new reduction-broadcast action.

Since the rotations are not known beforehand, the fragments can no longer make progress
independently. To account for this, we distinguish between active and inactive fragments.
The active fragments are those that can perform their next action and the inactive fragments
are the remaining ones, i.e., those whose next action depends on rotations not yet locally
available. Each slot now contains a mix of active and inactive fragments. The function
ActiveSize returns the number of active fragments in a given slot.

15

69

Algorithm 4: Wavefront scheduling for the RQ factorization of a Hessenberg matrix
1 Si

L is the set of local slots on process mesh row i ∈ {0, 1, . . . , Pr − 1};
2 Si

B is the set of cross-border slots on process mesh row i ∈ {0, 1, . . . , Pr − 1};
3 Let (p, q) be the mesh row and column indices, respectively, of this process;
4 loop

// Select active slots
5 foreach i ∈ {0, 1, . . . , Pr − 1} do
6 Si ← {s ∈ Si

L ∪ Si
B : ActiveSize(s) > 0};

7 ni
L ← |Si ∩ Si

L|;
8 ni

B ← |Si ∩ Si
B|;

9 if ni
L > ni

B then
10 Si ← Si ∩ Si

L;
11 else
12 Si ← Si ∩ Si

B;

// Terminate if all actions have been performed
13 if ∀i ∈ {0, 1, . . . , Pr − 1} : Si = ∅ then terminate;

// Extract one active fragment from each selected slot
14 foreach i ∈ {0, 1, . . . , Pr − 1} do
15 F i ← {ActiveSelect(s) : s ∈ Si};
16 F ← F0 ∪ F1 ∪ · · · ∪ FPr−1;

// Find an active fragment (if any) whose next action is a reduction
17 R← {f ∈ F : Reduction(f)};

// Perform the parallel steps
18 if np

L > np
B then

19 Perform a local parallel step on the fragments in Fp (Section 6.3.1);
20 else
21 Perform a cross-border parallel step on the fragments in Fp (Section 6.3.2);
22 if R 6= ∅ then
23 R = {r};
24 Perform a reduction-broadcast action on the fragment r;

// Move (or remove) the updated fragments
25 foreach f ∈ F do
26 if ActionCount(f) > 0 then
27 Slot(f)← Next(Slot(f));
28 else
29 Undefine Slot(f);

16

70

The details of the extended wavefront scheduling algorithm are presented in Algorithm 4.
The new predicate Reduction, line 17, returns true if the next action on a given fragment
is a reduction action. Unlike the original algorithm, the extended algorithm needs to keep
track of the progress of all processes and not only the processes in its own mesh row. The
need for this extra bookkeeping is to be able to determine when a process should execute
the reduction-broadcast actions, see lines 22–24. The function ActiveSelect, which replaces
Select, returns one of the active fragments from a given slot.

The middle of Figure 9 illustrates a schedule produced by Algorithm 4 using a 4×4 mesh.
The reduction-broadcast action introduces a synchronization point that leads to significant
overhead throughout the execution. The amount of idling would be less if the number of
fragments was larger relative to the number of processes.

7.1 Overhead analysis of Algorithm 4
In this section, we analyze the overhead per iteration of the loop in Algorithm 4.

The following assumes that the mesh size is
√

P ×
√

P . The number of fragments is
denoted by Nb and is independent of P as Nb depends only on the size of the problem size n
and the distribution block size nb.

Selecting active slots can be accomplished in Θ(P) time by scanning through all of the
√

P
slots associated with each of the

√
P mesh rows. Extracting from each selected slot a fragment

with the most remaining actions can be accomplished in O(
√

PNb) time if an unordered set
data structure is used and in O(

√
P log Nb) time if a priority queue data structure is used.

Finally, moving the fragments can be accomplished in Θ(
√

P) time if an unordered set data
structure is used and in O(

√
P log Nb) time if a priority queue data structure is used.

In summary, the overhead per iteration is bounded by O(P +
√

PNb) if an unordered set
data structure is used and by O(P +

√
P log Nb) if a priority queue data structure is used.

8 Accumulation of rotations into transformation matrices
The rotations from both sides are accumulated into transformations. The transformations
should align (whenever possible) such that they act on two full and adjacent distribution block
rows/columns. This implies that the typical size of a transformation matrix is 2nb × 2nb.
Parallelism in the accumulation is exploited by assigning to each process a subset of the
accumulation tasks. After the local accumulation phase, the resulting transformations are
replicated across the relevant subsets of the mesh.

9 Computational experiments and results
To analyze the performance, scalability, and bottlenecks of our proposed parallel HT reduction
algorithm, we performed a number of computational experiments. Details of the implemen-
tation are given in Section 9.1. The setups of the experiments and the parallel computer
systems are described in Section 9.2. The results of the experiments are summarized briefly
in Section 9.3 followed by details of each experiment in the subsequent Sections 9.4–9.6.

17

71

9.1 Implementation details
The algorithm is implemented in Fortran 90/95 and uses the BLAS library for basic matrix
computations, the BLACS library for inter-process communication, and auxiliary routines
from the ScaLAPACK library.

The block sizes n̂b used by the wavefront scheduling algorithm, see Section 6.2, were
set on a per-call basis to the largest (although never smaller than 8) that exposes sufficient
parallelism to activate all processes; the number of blocks N̂b is set to 2×Pc for row operations
and 2×Pr for column operations. For the row update of B, the block size n̂b is set to n/2N̂b
in order to compensate for the load imbalance caused by the upper triangular structure.

The value of w, in Algorithm 1, is typically set to the distribution block size nb. The gain is
two-fold. Firstly, all elements and rotations belong to the same process column when reducing
w columns which makes the rotation accumulation and distribution simpler. Secondly, the
transformations resulting from w inner loops will never span over more than two rows or
columns which makes the blocked update easier to implement.

The input matrices Q and Z are treated as dense without structure.

9.2 Experiment setup
Two different parallel computer systems were used in the experiments: Triolith at the National
Supercomputer Centre (NSC) at Linköping University and Abisko at the High Performance
Computing Center North (HPC2N), at Umeå University. See Table 1 for details.

Table 1: Information about the Abisko and Triolith systems.
Abisko 64-bit AMD Opteron Linux Cluster
Processors Four AMD Opteron 6238 processors (12 cores) per node
Interconnect Mellanox Infiniband
Compiler Intel compiler
Libraries Intel MPI, ACML 5.3.1 (includes LAPACK functionality), ScaLAPACK 2.0.2
Triolith 64-bit HP Cluster Platform 3000 with SL230s Gen8 compute nodes
Processors Two Intel Xeon E5-2660 processors (8 cores) per node
Interconnect Mellanox Infiniband
Compiler Intel compiler
Libraries Intel MPI, Intel MKL 11.3 (includes ScaLAPACK and LAPACK functionality)

Each test case is specified by four integer parameters: the problem size n, the distribution
block size nb, and the process mesh size Pr × Pc. Except n, all parameters are tunable and
can be chosen to maximize performance. Since exhaustive search for optimal parameters is
prohibitively expensive, preliminary experiments were used to determine a reasonable block
size nb. Only square meshes (Pr = Pc) were considered.

The input matrices are randomly generated with elements drawn from the standard normal
distribution. The time required by the initial reduction of B to triangular form is not included
in the measurements.

9.3 Summary of the experiments
Three sets of experiments were performed:

• Experiment 1: Reasonable distribution block sizes
The purpose of this experiment was to determine a reasonable distribution block size

18

72

to use for the subsequent experiments. The results of the experiment indicate that
nb = 100 is reasonable on both machines. See Section 9.4 for details.

• Experiment 2: Scalability
The purpose of this experiment was to evaluate the weak and strong scalability relative
to a state-of-the-art sequential implementation [11]. See Section 9.5 for details.

• Experiment 3: Bottlenecks
The purpose of this experiment was to characterize the cost and scalability of the major
parts of the parallel algorithm and identify bottlenecks that currently limit its scalability.
See Section 9.6 for details.

9.4 Experiment 1: Reasonable distribution block sizes
The distribution block sizes nb ∈ {40, 60, 80, . . . , 160} were tested on a problem of size n =
4000 and mesh of size Pr = Pc = 4 with the aim of finding a reasonable block size to use for
the subsequent experiments. The parallel execution times (in seconds) on both machines are
shown in Table 2. These results indicate that nb = 100 is reasonable on both machines.

Table 2: Impact of nb on Triolith and Abisko (n = 4000, Pr = Pc = 4). Times in seconds.
nb = 40 nb = 60 nb = 80 nb = 100 nb = 120 nb = 160

Triolith 32 28 28 27 27 28
Abisko 66 57 54 53 53 56

More detailed experiments show that a smaller block size, down to 60, will make the serial
code somewhat faster, and the parallel slower. A larger block size, up to 140 will make the
parallel version somewhat faster, but the serial implementation slower. The gain and loss in
performance is however less than 10%, so using nb = 100 is fair and close to optimal for the
experiments discussed in Section 9.5 and 9.6.

9.5 Experiment 2: Scalability
The strong scalability of the parallel algorithm was measured in terms of speedup rela-
tive to a state-of-the-art sequential implementation of KKQQ [11] for problems of size n ∈
{4000, 8000, 12000, 16000} and meshes of size Pr × Pc for Pr = Pc ∈ {1, 2, . . . , 10}.

The results of the strong scalability experiments are shown in Figure 10. The sequential
algorithm is faster on one core than the parallel algorithm. The strong scalability increases
with larger problem sizes. The parallel efficiency is low, which indicates that much larger
problems than those tested are necessary for the algorithm to run efficiently.

Both memory-constrained and time-constrained forms of weak scalability were analyzed.
The memory-constrained weak scalability was measured by scaling up the problem size n with
the number of cores to keep the memory required per core constant. Specifically, for a problem
of size n1 on one core, the problem size on P cores was set to n1

√
P . The time-constrained

weak scalability, on the other hand, was measured by scaling up the problem size with the
number of cores to keep the flops required per core constant. Specifically, for a problem of
size n1 on one core, the problem size on P cores was set to n1 3

√
p.

The results of the weak scalability experiments, with n1 = 1000, are shown in Figure 11.
The memory-constrained problem scales well using up to 256 cores on both machines. Adding

19

73

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

Number of processes

S
pe

ed
up

Triolith

n=16000
n=12000
n=8000
n=4000

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

Number of processes

S
pe

ed
up

Abisko

n=16000
n=12000
n=8000
n=4000

Figure 10: Strong scalability (speedup relative to KKQQ on one core).

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

18

1000

1000

4000

2520

8000

4000

12000

5241

16000

6350

20000

7368

24000

8320

28000

9221

31000

9868

Number of processes

S
pe

ed
up

Triolith

Memory constrained
Time constrained

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

1000

1000

4000

2520

8000

4000

12000

5241

16000

6350

20000

7368

24000

8320

28000

9221

31000

9868

Number of processes

S
pe

ed
up

Abisko

Memory constrained
Time constrained

Figure 11: Weak scalability (speedup relative to KKQQ on one core). The labels show the
scaled problem size n.

20

74

more cores is not beneficial, since the time for communication and synchronization will in-
crease more and more, relative to the time for computation. The time-constrained setup
scales well using up to 64 cores, adding more cores is not fruitful at all. The setup suffers
from a small n1 resulting in smaller and smaller local problem size when the process mesh
size, and therefore the amount of communication, is increased. A larger n1 allows the use
of more cores efficiently. For example, using n1 = 2000 allows for using up to 256 cores on
Abisko, instead of 64, before the peak is reached.

9.6 Experiment 3: Bottlenecks
Profiling data was gathered in an effort to identify bottlenecks that can explain the limited
scalability observed in Section 9.5. For each call to a major subroutine, measurements of
the parallel execution time, the flop count, and the time spent in numerical computation
were made. For the purpose of these measurements, barrier synchronizations were inserted
before each subroutine call. In this way, load imbalances caused by one subroutine call do
not affect the measurements of the next. The names of the subroutines referred to in this
section correspond to the definitions in the end of Section 4.

Figure 12: Cost distribution across subroutines for n = 8000 on various process meshes. The
pattern orderings in the bar plots are the same as in the legend.

21

75

The parallel cost of a parallel algorithm that takes T seconds to execute on P cores is
defined as the product PT . The parallel cost of a subroutine is the parallel cost that is at-
tributable to that subroutine. The relative costs of each subroutine for n = 8000 on various
meshes are shown in Figure 12. The results are qualitatively similar on both machines. Two
bottlenecks can be identified from these results. First, the UPDATEANDREDUCECOLUMN subrou-
tine, whose cost is almost negligible on one core, accounts for more than 30% of the cost on
100 cores. This can be understood since this part of the computation is barely parallelizable,
as explained in Section 5. Second, the RQFACTORIZATION subroutine accounts for almost 40%
of the cost on 100 cores whereas it accounts for around 20% on one core. This can be under-
stood in part by the larger overhead of the extended wavefront scheduling algorithm (relative
to the standard wavefront scheduling algorithm; see Section 7.1) and in part by the additional
synchronization and communication overheads inherent in the computation (see Section 7).

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Number of processes

S
pe

ed
up

Triolith unblocked routines

COLUPDATE(A)
RQFACTORIZATION(B)
ROWUPDATE(B)
UPDATEANDREDUCECOL

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Number of processes

S
pe

ed
up

Triolith blocked routines

BLOCKCOLUPDATE(AB)
BLOCKCOLUPDATE(Z)
ACCUMULATE(COLS)
BLOCKROWUPDATE(Q)
BLOCKROWUPDATE(A)
ACCUMULATE(ROWS)

Figure 13: Speedup for each subroutine on Triolith for n = 8000.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

Number of processes

S
pe

ed
up

Abisko unblocked rountines

COLUPDATE(A)
RQFACTORIZATION(B)
ROWUPDATE(B)
UPDATEANDREDUCECOL

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

Number of processes

S
pe

ed
up

Abisko blocked routines

BLOCKCOLUPDATE(AB)
BLOCKCOLUPDATE(Z)
ACCUMULATE(COLS)
BLOCKROWUPDATE(Q)
BLOCKROWUPDATE(A)
ACCUMULATE(ROWS)

Figure 14: Speedup for each subroutine on Abisko for n = 8000.

An alternative view of the profiling data is depicted in Figures 13 and 14. These figures
show the relative speedups of the subroutines defined as the ratio of the wall clock time at-
tributable to a subroutine when running on one core to the wall clock time when running the

22

76

subroutine on multiple cores. The wall clock times used in these calculations were obtained
by dividing the parallel cost of the subroutine with the number of cores. The coarse-grained
and highly parallel blocked routines scale essentially linearly on both machines1. The un-
blocked subroutines have poorer scalability, which is especially true for RQFACTORIZATION and
UPDATEANDREDUCECOLUMN. The tool Allinea Map2 reveals that our parallel algorithm spends
41% of the total time on communication using 16 cores, and the fraction increases to 58% using
36 cores. Looking at the unblocked routines RQFACTORIZATION and UPDATEANDREDUCECOLUMN,
the communication fraction increases from 44% to 76% and from 91% to 94% when going
from 16 to 36 cores. For the blocked routine BLOCKROWUPDATE(A), the communication fraction
decreases from 38% to 32% when increasing the number of cores from 16 to 36. Thus, the
heavy communication in the unblocked routines overshadows the nice scaling properties of
the blocked routines.

9.7 The parallel two-stage approach
The sequential two-stage approach can in some cases compete with the sequential (one-stage)
KKQQ algorithm [11]. However, the parallel two-stage algorithm proposed in [1] do not include
the cost-reducing innovations discovered later by [11]. In addition, the complexity of the two-
stage approach and the extra arithmetic operations leads to poor performance and scalability.
Specifically, running the parallel two-stage algorithm [1] on the weak scaling experiment as
in Section 9.5 requires a problem of size n = 5000 and a 5× 5 mesh before any speedup over
sequential KKQQ can be observed. The first stage takes less time than the second, despite
the workload ratio being in favor of the second stage. The scheduling ideas presented in this
paper can potentially be adapted to the two-stage approach.

10 Conclusion
We proposed a novel wavefront scheduling algorithm capable of scheduling sequences of ro-
tations or general transformations on matrices distributed with a two-dimensional block-
cyclic distribution. We applied the scheduling algorithm to several parts of a distributed
Hessenberg-triangular reduction algorithm and obtained a new formulation of Hessenberg-
triangular reduction for distributed memory machines. Experiments show that the parallel
implementation of the distributed HT-reduction algorithm is scalable, and proves to be good
alternative to the parallel two-staged approach. Its performance is however limited by the
scalability of two of the major subroutines. To significantly improve the results, both of these
bottlenecks need to be addressed.

The difference of using Householder reflections in the Hessenberg reduction and sequences
of Givens rotations in the Hessenberg-triangular reduction has far-reaching consequences.
Applying a Householder reflection onto an n × n matrix involves Θ(n2) operations and can
use up to p = n2 cores. The communication necessary would be one reduction per row or
column of the matrix. With the maximum number of cores and a tree-based reduction, the
communication cost would be (ts + tw) log2 p, where ts is the latency and tw the inverse
bandwidth. On the other hand, applying a sequence of Givens rotations onto an n × n

1The multicore processor on Abisko is designed such that each FPU is shared by two cores. When running
on 100 cores, there are only 50 FPUs available. This is a potential explanation for why the speedup on Abisko
is less than 50 on 100 cores.

2http://www.allinea.com/products/map

23

77

matrix also involves Θ(n2) operations but can use only up to p = n cores. The amount
of communication overhead depends on the chosen data distribution and rotation sequences
are applied from both sides in the Hessenberg-triangular reduction, which implies that the
distribution needs to strike a balance between the costs of the two cases, i.e. updates from
left and right. The communication overhead per row or column of the matrix is proportional
to the number of distribution block boundaries that need to be traversed. All of this is on
top of the added complexity of the wavefront scheduling algorithm that is necessary to keep
all cores busy. All said and done, these factors explain some of the difficulties in obtaining a
scalable Hessenberg-triangular reduction implementation.

Acknowledgments
We thank the High Performance Computing Center North (HPC2N) at Umeå and National
Supercomputer Centre (NSC) at Linköping for providing computational resources and valu-
able support during test and performance runs. Partial support has been received from the
European Unions Horizon 2020 research and innovation programme under the NLAFET grant
agreement No 671633, the Swedish Research Council (VR) under grant A0581501, and by
eSSENCE, a strategic collaborative e-Science programme funded by the Swedish Government
via VR.

References
[1] B. Adlerborn, K. Dackland, and B. Kågström. Parallel two-stage reduction of a regular

matrix pair to Hessenberg-Triangular form. In T. Sørevik, F. Manne, A. H. Gebremedhin,
and R. Moe, editors, Applied Parallel Computing, PARA 2000, LNCS 1947, pages 92–
102. Springer Berlin Heidelberg, 2000.

[2] B. Adlerborn, K. Dackland, and B. Kågström. Parallel and blocked algorithms for re-
duction of a regular matrix pair to Hessenberg-Triangular and generalized Schur forms.
In J. Fagerholm, J. Haataja, J. Järvinen, M. Lyly, P. Råback, and V. Savolainen, editors,
Applied Parallel Computing, PARA 2002, LNCS 2367, pages 319–328. Springer-Verlag,
2002.

[3] B. Adlerborn, B. Kågström, and D. Kressner. Parallel variants of the multishift QZ
algorithm with advanced deflation techniques. In B. Kågström, E. Elmroth, J. Dongarra,
and J. Waśniewski, editors, Applied Parallel Computing, PARA 2006, LNCS 4699, pages
117–126. Springer Berlin Heidelberg, 2006.

[4] B. Adlerborn, B. Kågström, and D. Kressner. A Parallel QZ Algorithm for distributed
memory HPC-systems. SIAM J. Sci. Comput., 36(5):C480–C503, 2014.

[5] C Bischof. A summary of block schemes for reducing a general matrix to Hessenberg
form. Technical report ANL/MSC-TM-175, Argonne National Laboratory, 1993.

[6] C. H. Bischof and C. F. Van Loan. The WY representation for products of Householder
matrices. SIAM J. Sci. Statist. Comput., 8(1):S2–S13, 1987.

24

78

[7] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. W. Demmel, I. Dhillon, J. J.
Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.
Whaley. ScaLAPACK Users’ Guide. SIAM, Philadelphia, PA, 1997.

[8] K. Dackland and B. Kågström. A ScaLAPACK-Style Algorithm for Reducing a Regu-
lar Matrix Pair to Block Hessenberg-Triangular Form. In B. Kågström, J. Dongarra,
E. Elmroth, and J. Waśniewski, editors, Applied Parallel Computing, PARA 1998, LNCS
1541, pages 95–103. Springer Berlin Heidelberg, 1998.

[9] K. Dackland and B. Kågström. Blocked algorithms and software for reduction of a regular
matrix pair to generalized Schur form. ACM Trans. Math. Software, 25(4):425–454, 1999.

[10] B. Kågström and D. Kressner. Multishift variants of the QZ algorithm with aggressive
early deflation. SIAM J. Matrix Anal. Appl., 29(1):199–227, 2006.

[11] B. Kågström, D. Kressner, E. S. Quintana-Ortí, and G. Quintana-Ortí. Blocked algo-
rithms for the reduction to Hessenberg-triangular form revisited. BIT, 48(3):563–584,
2008.

[12] B. Lang. Using Level 3 BLAS in Rotation-Based Algorithms. SIAM J. Sci. Comput.,
19(2):626–634, 1998.

[13] C. B. Moler and G. W. Stewart. An algorithm for generalized matrix eigenvalue problems.
SIAM J. Numer. Anal., 10:241–256, 1973.

[14] R. C. Ward. The combination shift QZ algorithm. SIAM J. Numer. Anal., 12(6):835–853,
1975.

25

79

80

III

Paper III

PDHGEQZ User Guide

Björn Adlerborn, Bo Kågström, and Daniel Kressner

Dept. Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden
{adler,bokg}@cs.umu.se

SB–MATHICSE–ANCHP, EPF Lausanne, Station 8, CH-1015 Lausanne, Switzerland
daniel.kressner@epfl.ch

Abstract: Given a general matrix pair (A,B) with real entries, we provide software
routines for computing a generalized Schur decomposition (S,T). The real and com-
plex conjugate pairs of eigenvalues appears as 1× 1 and 2× 2 blocks, respectively,
along the diagonals of (S,T) and can be reordered in any order. Typically, this func-
tionality is used to compute orthogonal bases for a pair of deflating subspaces corre-
sponding to a selected set of eigenvalues. The routines are written in Fortran 90 and
targets distributed memory machines.

83

84

PDHGEQZ User Guide∗.

Björn Adlerborn† Bo K̊agström† Daniel Kressner‡

Abstract

Given a general matrix pair (A,B) with real entries, we provide software routines for
computing a generalized Schur decomposition (S, T). The real and complex conjugate pairs
of eigenvalues appear as 1×1 and 2×2 blocks, respectively, along the diagonals of (S, T) and
can be reordered in any order. Typically, this functionality is used to compute orthogonal
bases for a pair of deflating subspaces corresponding to a selected set of eigenvalues. The
routines are written in Fortran 90 and targets distributed memory machines.

1 Introduction

PDHGEQZ is a parallel ScaLAPACK-style [6] package of routines for solving nonsymmetric real
generalized eigenvalue problems. The package is written in Fortran 90 and targets distributed
memory HPC systems. Using the, small and tightly coupled bulge, multishift QZ algorithm
with aggressive early deflation, it computes the generalized Schur decomposition (S, T2) =
(QTHZ,QTT1Z) of an upper Hessenberg matrix H, upper triangular matrix T1, where (H,T1) ∈
Rn×n, such that Q and Z are orthogonal, S is quasi-upper triangular, and T2 is upper triangular.
This document concerns the usage of PDHGEQZ and is a supplement to the article [3]. For the
description of the algorithm and implementation, we refer to [3] and the references therein
(especially, [2, 7, 11, 12, 13]). We have also included a parallel version of the initial Hessenberg-
triangular reduction [1], as well as a routine for parallel reordering of eigenvalues of a matrix
pair in generalized real Schur form [9]. Moreover, a preliminary version of a serial multishift QZ
algorithm with aggressive early deflation is included, see [11], which is used internally within
PDHGEQZ in favour of the LAPACK [4] routine DHGEQZ.

2 Installation

The routines have successfully been tested on both Windows and Linux-like machines. In the
following, a Linux-like installation is assumed. There are no pre-built libraries available, so the
user must download and build the package before using the software.

∗Report UMINF 15.12, Dept. of Computing Science, Ume̊a University, Sweden. This research was conducted
using the resources of the High Performance Computing Center North (HPC2N). Financial support has been
provided by the Swedish Research Council(VR) under grant A0581501, and by eSSENCE, a strategic collaborative
e-Science programme funded by the Swedish Government via VR.
†Department of Computing Science and HPC2N, Ume̊a University, SE-90187 Ume̊a, Swe-

den(adler@cs.umu.se, bokg@cs.umu.se)
‡SB–MATHICSE–ANCHP, EPF Lausanne, Station 8, CH-1015 Lausanne, Switzerland

(daniel.kressner@epfl.ch)

1

85

2.1 Prerequisites

To build the library the following is required:

• Fortran 90/95 compiler, or later.

• MPI library, for example, OpenMPI or Intel-MPI.

• BLAS library, for example, OpenBLAS or ACML.

• The LAPACK library, version 3.4.0 or later.

• The ScaLAPACK library, version 2.0.1 or later where BLACS and PBLAS are included.

2.2 Building the package

2.2.1 Download location

The latest version of PDHGEQZ can be obtained via the package homepage1 in a tar.gz format
with the name pdhgeqz latest.

2.2.2 Structure of the package

After downloading and moved to a proper location, the package is expanded by issuing

tar xvfz pdhgeqz latest.tar.gz

The unpacked package is structured in the following way:

• examples/ This folder contains three different simple drivers:

– EXRAND1.f: Generates a Hessenberg-Triangular problem, Hessrand1 [3], and com-
putes its generalized real Schur form.

– EXRAND2.f: Generates a random matrix pair (A,B) where the entries are uniformly
distributed in the interval [0, 1]. The problem is reduced to Hessenberg-triangular
form using a QR factorisation of B, producing an upper triangular T , followed by
calling PDGGHRD which further reduces the (A, T) pair to the desired Hessenberg-
triangular form. Once there, we apply our parallel QZ algorithm to compute the
generalized real Schur form and eigenvalues.

– EXRAND3.f: This example reads two matrices A and B from two files using the Matrix
Market file format [5]. The matrices A and B are stored in the files mhd4800a.mtx

and mhd4800b.mtx respectively, and can be downloaded, with other benchmarks,
at the Matrix Market homepage2. A and B are treated as dense, although they
are sparse (< 1% nonzero entries), and first reduced to Hessenberg-triangular form
before the parallel QZ algorithm is applied, as described for the example EXRAND2.f.
After the generalized real Schur form is obtained, a reordering of the eigenvalues is
performed such that all eigenvalues within the unit circle are moved to the top of the
matrix pair, using the routine PDTGORD.

1PDHGEQZ homepage: https://archive.cs.umu.se/software/pdhgeqz/
2http://math.nist.gov/MatrixMarket

2

86

• make inc/ This folder contains various templates of make.inc files for different compiler
setups.

• Makefile This is the default Makefile for building the PDHGEQZ package, which generally
does not need to be modified. This Makefile will call the Makefiles stored in subdirec-
tories. After a successful build, the library will be stored in the root folder as the file
libpdhgeqz.a.

• make.inc File included by the Makefile. Should be modified to match the compiler setup.

• readme A shorter version of this Users’ Guide. Intended as a quick installation quide.

• src/ This folder contains all source files, in Fortran format, related to the PDHGEQZ soft-
ware, stored in four different subdirectories:

– ab2ht/ Source files for the parallel Hessenberg-triangular reduction.

– kkqz/ Source files for the sequential QZ solver with multishift and aggressive early
deflation.

– reorder/ Source files for the parallel generalized eigenvalue reordering.

– pdhgehz/ Main source files for the parallel QZ solver with multishifts and aggressive
early deflation.

• testing/ This folder contains test routines.

• tools/ This folder contains various auxiliary routines, used for generation of matrices,
input/output, etc.

• userguide.pdf A copy of this User Guide.

2.2.3 Compiling and building the PDHGEQZ package

By issuing the command

make all - this is the same as issuing make,

the library libpdhgeqz.a should be compiled, linked, and stored in the root folder. The three
examples found in the examples/ folder as well as the test routine stored in the testing/ folder
will also be built by this command. If only the library is desired, instead issue the command

make lib

which will compile, link and store the library in the root folder.
During make all some quick tests will be performed and hopefully the following will be

displayed on the console:

% 5 tests out of 5 passed.

The script file runmpi.sh in the testing/ folder might need some attention, depending
upon what MPI installation the user has. The default MPI execution is mpirun.

3

87

2.3 Running tests

The three examples provided contain small problems, i.e. n < 6000, and should execute rather
quickly. The problem size is governed by the parameter N. Change this, in file EXRAND1.f

or EXRAND2.f, and rebuild, to run a different sized problem. The example problems can be
executed serially, or in parallel with some MPI tool, for example mpirun or mpiexec.

3 Using the PDHGEQZ library

3.1 ScaLAPACK data layout convention

We follow the convention of ScaLAPACK for the distributed data storage of matrices. Suppose
that P = Pr · Pc parallel processors are arranged in a Pr × Pc rectangular grid. The entries
of a matrix are then distributed over the grid using a 2-dimensional block-cyclic mapping with
block size nb in both row and column dimensions. In principle, ScaLAPACK allows for different
block sizes for the row and column dimensions but to avoid too many special cases in the code,
square blocks are assumed, i.e. mb = nb.

3.2 Software hierarchy

Figure 1 shows an overview of the main routines related to our parallel QZ software, which are
based upon routines provided by ScaLAPACK, BLACS, PBLAS, LAPACK, BLAS and MPI.
One-directed arrows indicate that one routine calls other routines. For example, PDHGEQZ1

is called by PDHGEQZ, PDHGEQZ0 and PDHGEQZ3 and calls four routines: PDHGEQZ2, PDHGEQZ4,
PDHGEQZ5, and PDHGEQZ7. PDHGEQZ3 will call PDHGEQZ0 instead of PDHGEQZ1 recursively if the
AED window is large, i.e. nAED > 6000, indicated with the double directed arrow between
PDHGEQZ0 and PDHGEQZ3. To keep the stack from growing uncontrollably, due to static alloca-
tions, the level of recursive calls are limited; this version only supports one level of recursion.
Main entry routine is PDHGEQZ, see Figure 2 for an interface description. Depending upon prob-
lem size n, PDHGEQZ calls PDHGEQZ0 or PDHGEQZ1 to perform the reduction; see section 4 and
parameter nmin1. Table 1 gives a brief description of the routines displayed in Figure 1.

3.3 Calling sequence

The main purpose is to compute the generalised real Schur decomposition of a matrix pair in
(upper)Hessenberg-triangular form using the routine PDHGEQZ. As a pre-processing step the gen-
eral square matrix pair must be transformed to Hessenberg-triangular form using the supplied
routine PDGGHRD. PDGGHRD used in conjunction with PDHGEQZ are exemplified in the routines
found in the folder examples/. As a post-processing step, the supplied routine PDTGORD can
be used to reorder the eigenvalues returned by PDHGEQZ. Below follows call sequences for these
routines. As previously stated, both PDGGHRD and PDTGORD are preliminary.

3.3.1 PDHGEQZ

The interface for PDHGEQZ is similar to the existing (serial) LAPACK routine DHGEQZ, see Fig-
ure 2. The main difference between PDHGEQZ and DHGEQZ is the use of descriptors to define

3See Table 2 for PDHGEQZ parameters.

4

88

PDHGEQZ PDHGEQZ0

PDHGEQZ5 PDHGEQZ7

PDHGEQZ3 PDHGEQZ1

PDGGHRD PDTGORD PDHGEQZ2 PDHGEQZ4

SCALAPACK BLACS PBLAS

BLAS LAPACK MPI

Figure 1: Software hierarchy for PDGEHQZ.

partitioning and the globally distributed matrices across the Pr × Pc process grid, instead of
leading dimensions, and that PDHGEQZ requires an integer workspace.

Below follows a list and description of the arguments:

• JOB (global input) CHARACTER*1.
= ’E’: compute only the eigenvalues represented by ALPHAR, ALPHAI, and BETA. The gen-
eralized Schur form of (H,T) will not be computed.
= ’S’: compute the generalized Schur form of (H,T) as well as the eigenvalues represented
by ALPHAR, ALPHAI, and BETA.

• COMPQ (global input) CHARACTER*1.
= ’N’: Left generalized Schur vectors (i.e., Q) are not computed.
= ’I’: Q is initialized to the unit matrix, and the orthogonal matrix Q is returned.
= ’V’: Q must contain an orthogonal matrix Q1 on entry, and the product Q1 · Q is
returned.

• COMPZ (global input) CHARACTER*1.
= ’N’: Right generalized Schur vectors (i.e., Z) are not computed.
= ’I’: Z is initialized to the unit matrix, and the orthogonal matrix Z is returned.
= ’V’: Z must contain an orthogonal matrix Z1 on entry, and the product Z1 · Z is
returned.

5

89

Table 1: PDHGEQZ routines.
Routine Description

PDHGEQZ Main entry routine. Calls PDHGEQZ0 or PDHGEQZ1 depending upon problem size.
PDHGEQZ0 Multishift Parallel QZ with AED. Tuned for larger problems and might do recursive calls

when doing AED. Calls PDHGEQZ1 when problem size is split into smaller subproblems.
PDHGEQZ1 Multishift Parallel QZ with sequentially performed AED. Tuned for smaller problems.
PDHGEQZ2 Performs sequential AED, while off-diagonal blocks, outside the AED window, are updated

in parallel.
PDHGEQZ3 Performs parallel AED and shift computation.
PDHGEQZ4 Performs sequential multishift QZ with AED, calls KKQZ for this purpose. Called by

PDHGEQZ1 when a subproblem, of order less than nmin3
3, has been identified. Off-diagonal

blocks, outside the subproblem, are updated in parallel.
PDHGEQZ5 Parallel multishift QZ iteration based on chains of tightly coupled bulges.
PDHGEQZ7 Parallel identification and deflation of infinite eigenvalues.
PDTGORD Reorders a cluster of eigenvalues to the top of the matrix pair (S, T) in generalized real

Schur form.
PDGGHRD Parallel Hessenberg-triangular reduction, used by PDHGEQZ3 to restore the matrix pair to

Hessenberg-triangular form.

• N (global input) INTEGER
The order of the N ×N matrices H, T , Q, and Z.

• ILO, IHI

It is assumed that H and T is already in upper triangular form in rows and columns
(1 : ILO−1) and (IHI+1 : N). 1 ≤ ILO ≤ IHI ≤ N, if N> 0; ILO = 1 and IHI = 0, if N = 0.

• H (global input/output) DOUBLE PRECISION array of dimension (DESCH(9),*).
DESCH (global and local input) INTEGER array of dimension 9.
H and DESCH define the distributed matrix H.
On entry, H contains the upper Hessenberg matrix H. On exit, if JOB = ’S’, H is quasi-
upper triangular in rows and columns (ILO : IHI), with 1 × 1 and 2 × 2 blocks on the
diagonal where the 2× 2 blocks correspond to complex conjugated pairs of eigenvalues. If
JOB=’E’, H is unspecified on exit.

• T (global input/output) DOUBLE PRECISION array of dimension (DESCT(9),*).
DESCT (global and local input) INTEGER array of dimension 9.
T and DESCT define the distributed matrix T .
On entry, T contains the upper triangular matrix T . If JOB=’E’, T is unspecified on exit,
otherwise T is on exit overwritten by another upper triangular matrix QT · T · Z.

• ALPHAR (global output) DOUBLE PRECISION array, dimension N

ALPHAI (global output) DOUBLE PRECISION array, dimension N

BETA (global output) DOUBLE PRECISION array, dimension N

On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j = 1, ..., N , will be the generalized
eigenvalues. ALPHAR(j) + ALPHAI(j)*i and BETA(j), j = 1, ..., N are the diagonals of
the complex Schur form (H,T) that would result if the 2-by-2 diagonal blocks of the real
generalized Schur form of (H,T) were further reduced to triangular form using complex
unitary transformations. If ALPHAI(j) is zero, then the j-th eigenvalue is real; if positive,
then the j-th and (j+1)-st eigenvalues are a complex conjugate pair, with ALPHAI(j+1)

negative.

6

90

SUBROUTINE PDHGEQZ(JOB, COMPQ, COMPZ,
$ N, ILO , IHI , H, DESCH, T, DESCT,
$ ALPHAR, ALPHAI, BETA, Q, DESCQ, Z , DESCZ,
$ WORK, LWORK, IWORK, LIWORK, INFO)

∗ . .
∗ . . S ca l a r Arguments . .
∗ . .

CHARACTER COMPQ, COMPZ, JOB
INTEGER IHI , ILO , INFO, N
INTEGER LWORK, LIWORK

∗ . .
∗ . . Array Arguments . .
∗ . .

DOUBLE PRECISION H(∗) , T(∗) , Q(∗) , Z(∗)
DOUBLE PRECISION WORK(∗) , ALPHAI(∗) , ALPHAR(∗) , BETA(∗)
INTEGER IWORK(∗) , DESCH(9) , DESCT(9) , DESCQ(9) , DESCZ(9)

Figure 2: Interface for PDGEHQZ

• Q (global input/output) DOUBLE PRECISION array of dimension (DESCQ(9),*).
DESCQ (global and local input) INTEGER array of dimension 9. Q and DESCQ define the
distributed matrix Q.
If COMPQ = ’N’, Q is not referenced.
If COMPQ = ’I’, Q is initialized to the unit matrix, and on exit it contains the orthogonal
matrix Q, where QT is the product of the transformations which are applied to the left
hand side of H and T.
If COMPQ = ’V’, on entry, Q must contain an orthogonal matrix Q1, and on exit this is
overwritten by Q1 ·Q, where QT is the product of the transformations which are applied
to the left hand side of H and T.

• Z (global input/output) DOUBLE PRECISION array of dimension (DESCZ(9),*).
DESCZ (global and local input) INTEGER array of dimension 9. Z and DESCZ define the
distributed matrix Z.
If COMPZ = ’N’, Z is not referenced.
If COMPZ = ’I’, Z is initialized to the unit matrix, and on exit it contains the orthogonal
matrix Z, where Z is the product of the transformations which are applied to the right
hand side of H and T.
If COMPZ = ’V’, on entry, Z must contain an orthogonal matrix Z1, and on exit this is
overwritten by Z1 · Z, where Z is the product of the transformations which are applied
to the right hand side of H and T.

• WORK (local workspace) DOUBLE PRECISION array of dimension LWORK.
LWORK (global input) INTEGER.
If LWORK = -1, then a workspace query is assumed and required workspace is returned in
WORK(1) and no further computation is performed.

• IWORK (local workspace) INTEGER array of dimension LIWORK.
LIWORK (global input) INTEGER.
If LIWORK = -1, then a workspace query is assumed and required workspace is returned

7

91

in IWORK(1) and no further computation is performed.

• INFO (global output) INTEGER
= 0, successful exit.
< 0, if INFO = -i, the i-th argument had an illegal value.

3.3.2 PDGGHRD

The interface for PDGGHRD is similar to the existing (serial) LAPACK routine DGGHRD, see Fig-
ure 3. The main difference between PDGGHRD and DGGHRD is the use of descriptors to define

SUBROUTINE PDGGHRD(COMPQ, COMPZ,
$ N, ILO , IHI , A, DESCB, B, DESCB,
$ Q, DESCQ, Z , DESCZ,
$ WORK, LWORK, INFO)

∗ . .
∗ . . S ca l a r Arguments . .
∗ . .

CHARACTER COMPQ, COMPZ
INTEGER IHI , ILO , INFO, N, LWORK

∗ . .
∗ . . Array Arguments . .
∗ . .

DOUBLE PRECISION A(∗) , B(∗) , Q(∗) , Z(∗)
DOUBLE PRECISION WORK(∗)
INTEGER DESCA(9) , DESCB(9) , DESCQ(9) , DESCZ(9)

Figure 3: Interface for PDGGHRD

partitioning and the globally distributed matrices across the Pr × Pc process grid, instead of
leading dimensions.

Below follows a list and description of the arguments:

• COMPQ (global input) CHARACTER*1.
= ’N’: Do not compute Q.
= ’I’: Q is initialized to the unit matrix, and the orthogonal matrix Q is returned.
= ’V’: Q must contain an orthogonal matrix Q1 on entry, and the product Q1 · Q is
returned.

• COMPZ (global input) CHARACTER*1.
= ’N’: Do not compute Z.
= ’I’: Z is initialized to the unit matrix, and the orthogonal matrix Z is returned.
= ’V’: Z must contain an orthogonal matrix Z1 on entry, and the product Z1 · Z is
returned.

• N (global input) INTEGER
The order of the N ×N matrices A,B,Q, and Z.

• ILO, IHI (global input) INTEGER
It is assumed that A and B is already in upper triangular form in rows and columns
(1 : ILO−1) and (IHI+1 : N). 1 ≤ ILO ≤ IHI ≤ N, if N> 0; ILO = 1 and IHI = 0, if N = 0.

8

92

• A (global input/output) DOUBLE PRECISION array of dimension (DESCA(9),*).
DESCA (global and local input) INTEGER array of dimension 9.
A and DESCA define the distributed matrix A.
On entry, the square general matrix A to be reduced. On exit, the upper triangle and the
first subdiagonal of A are overwritten with the upper Hessenberg matrix H = Q · A · Z,
and the remaining elements are set to zero.

• B (global input/output) DOUBLE PRECISION array of dimension (DESCB(9),*).
DESCB (global and local input) INTEGER array of dimension 9.
B and DESCB define the distributed matrix B.
On entry, the square upper triangular matrix B. On exit, overwritten by the upper
triangular matrix T = Q ·B · Z. The elements below the diagonal are set to zero.

• Q (global input/output) DOUBLE PRECISION array of dimension (DESCQ(9),*).
DESCQ (global and local input) INTEGER array of dimension 9. Q and DESCQ define the
distributed matrix QT .
If COMPQ = ’N’, Q is not referenced.
If COMPQ = ’I’, Q is initialized to the unit matrix, and on exit it contains the orthogonal
matrix QT , where Q is the product of the transformations which are applied to the left
hand side of A and B.
If COMPQ = ’V’, on entry, Q must contain an orthogonal matrix Q1, and on exit this is
overwritten by Q1 ·QT , where Q is the product of the transformations which are applied
to the left hand side of A and B.

• Z (global input/output) DOUBLE PRECISION array of dimension (DESCZ(9),*).
DESCZ (global and local input) INTEGER array of dimension 9. Z and DESCZ define the
distributed matrix Z.
If COMPZ = ’N’, Z is not referenced.
If COMPZ = ’I’, Z is initialized to the unit matrix, and on exit it contains the orthogonal
matrix Z, where Z is the product of the transformations which are applied to the right
hand side of A and B.
If COMPZ = ’V’, on entry, Z must contain an orthogonal matrix Z1, and on exit this is
overwritten by Z1 · Z, where Z is the product of the transformations which are applied
to the right hand side of A and B.

• WORK (local workspace) DOUBLE PRECISION array of dimension LWORK.
LWORK (global input) INTEGER.
If LWORK = -1, then a workspace query is assumed and required workspace is returned in
WORK(1) and no further computation is performed.

• INFO (global output) INTEGER
= 0, successful exit.
< 0, if INFO = -i, the i-th argument had an illegal value.

3.3.3 PDTGORD

The interface for PDTGORD is displayed in Figure 4.
Below follows a list and description of the arguments:

9

93

SUBROUTINE PDTGORD(WANTQ, WANTZ,
$ SEL , PARA, N,
$ S , DESCS, T, DESCT,
$ Q, DESCQ, Z , DESCZ,
$ ALPHAR, ALPHAI, BETA,
$ M, DWORK, LDWORK,
$ IWORK, LIWORK, INFO)

∗ . .
∗ . . S ca l a r Arguments . .
∗ . .

LOGICAL WANTQ, WANTZ
INTEGER INFO, LIWORK, LDWORK, M, N

∗ . .
∗ . . Array Arguments . .
∗ . .

INTEGER SEL(∗) , IWORK(∗)
INTEGER PARA(6) , DESCS(9) , DESCT(9) , DESCQ(9) , DESCZ(9)
DOUBLE PRECISION S (∗) , T(∗) , Q(∗) , Z(∗)
DOUBLE PRECISION DWORK(∗) , BETA(∗) , ALPHAI(∗) , ALPHAR(∗)

Figure 4: Interface for PDTGORD

• WANTQ (global input) LOGICAL.
= .TRUE., Update QT , with all transformations applied from left hand side to S and T.
= .FALSE., Q is not referenced.

• WANTZ (global input) LOGICAL.
= .TRUE., Update Z, with all transformations applied from right hand side to S and T.
= .FALSE., Z is not referenced.

• SEL (global input/output) INTEGER array, dimension N.
SEL specifies the eigenvalues in the selected cluster. To select a real eigenvalue w(j),
SEL(j) must be set to 1. To select a complex conjugate pair of eigenvalues w(j) and
w(j + 1), corresponding to a 2-by-2 diagonal block, must be set to 1; On output, SEL is
updated to reflect the performed reordering.

• PARA (global input) INTEGER array of dimension 6
PARA(1) = maximum number of concurrent computational windows allowed in the algo-
rithm. 0 < PARA(1) ≤ min(Pr, Pc) must hold.
PARA(2) = number of eigenvalues in each computational window. 0 < PARA(2) ≤ PARA(3)

must hold.
PARA(3) = size of computational window. PARA(2) ≤ PARA(3) ≤ nb must hold.
PARA(4) = minimal percentage of flops required for performing matrix-matrix multiplica-
tions instead of pipelined orthogonal transformations. 0 ≤ PARA(4) ≤ 100 must hold.
PARA(5) = width of block column slabs for row-wise application of pipelined orthogonal
transformations in their factorized form. 0 < PARA(5) ≤ nb must hold.
PARA(6) = the maximum number of eigenvalues moved together over a process border; in
practice, this will be approximately half of the cross border window size. 0 < PARA(6)

≤ PARA(2) must hold.

10

94

• N (global input) INTEGER.
The order of the N ×N matrices S, T,Q, and Z.

• S (global input/output) DOUBLE PRECISION array of dimension (DESCS(9),*).
DESCS (global and local input) INTEGER array of dimension 9.
S and DESCS define the distributed matrix S. On entry, the global distributed upper quasi-
triangular matrix S, in Schur form. On exit, S is overwritten by the reordered matrix S,
again in Schur form, with the selected eigenvalues in the globally leading diagonal blocks
of (S, T).

• T (global input/output) DOUBLE PRECISION array of dimension (DESCT(9),*).
DESCT (global and local input) INTEGER array of dimension 9.
T and DESCT define the distributed matrix T . On entry, the global distributed upper
triangular matrix T . On exit, T is overwritten by the reordered matrix T , again in upper
triangular form, with the selected eigenvalues in the globally leading diagonal blocks of
(S, T).

• Q (global input/output) DOUBLE PRECISION array of dimension (DESCQ(9),*).
DESCQ (global and local input) INTEGER array of dimension 9.
Q and DESCQ define the distributed matrix Q. On entry, if WANTQ = .TRUE., the global
distributed matrix Q of left generalized Schur vectors. On exit, WANTQ = .TRUE., Q has
been postmultiplied by the global orthogonal transformation matrix, applied from the left,
which reorders the matrix pair (S, T); the leading M columns of Q form left orthonormal
bases for the specified deflating subspaces. If WANTQ = .FALSE., Q is not referenced.

• Z (global input/output) DOUBLE PRECISION array of dimension (DESCZ(9),*).
DESCZ (global and local input) INTEGER array of dimension 9.
Z and DESCZ define the distributed matrix Z. On entry, if WANTZ = .TRUE., the global
distributed matrix Z of generalized right Schur vectors. On exit, WANTZ = .TRUE., Z has
been postmultiplied by the global orthogonal transformation matrix, applied from the
right, which reorders (S, T); the leading M columns of Z form right orthonormal bases for
the specified deflating subspaces. If WANTZ = .FALSE., Z is not referenced.

• ALPHAR (global output) DOUBLE PRECISION array, dimension N

ALPHAI (global output) DOUBLE PRECISION array, dimension N

BETA (global output) DOUBLE PRECISION array, dimension N

On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j = 1, ..., N , will be the generalized
eigenvalues. ALPHAR(j) + ALPHAI(j)*i and BETA(j), j = 1, ..., N are the diagonals of
the complex Schur form (S,T) that would result if the 2-by-2 diagonal blocks of the real
generalized Schur form of (S,T) were further reduced to triangular form using complex
unitary transformations. If ALPHAI(j) is zero, then the j-th eigenvalue is real; if positive,
then the j-th and (j+1)-st eigenvalues are a complex conjugate pair, with ALPHAI(j+1)

negative.

• M (global output) INTEGER.
The dimension of the specified pair of left and right eigenspaces (deflating subspaces).
0 ≤ M ≤ N. If M = 0, then no eigenvalues have been reordered.

11

95

• DWORK (local workspace) DOUBLE PRECISION array of dimension LDWORK.

LDWORK (global input) INTEGER.
If LDWORK = -1, then a workspace query is assumed and required workspace is returned
in DWORK(1) and no further computation is performed.

• IWORK (local workspace) INTEGER array of dimension LIWORK.
LIWORK (global input) INTEGER.
If LIWORK = -1, then a workspace query is assumed and required workspace is returned
in IWORK(1) and no further computation is performed.

• INFO (global output) INTEGER.
= 0, successful exit.
< 0, if INFO = -i, the i-th argument had an illegal value. If the i-th argument is an array
and the j-entry had an illegal value, then INFO = -(i*1000+j).

4 Parameters related to PDHGEQZ and subroutines

PDHGEQZ offers tuning of machine dependent parameters for experienced users. However, there
is always a default value provided, and these settings should provide reasonable performance
for machines similar to those we have performed our performance-runs on, see [3].

Many of these parameters are dependent upon the value of nb, which the end user chooses
a value for when setting up descriptors for the distributed matrices. For a suitable value of
nb correlated to the problem size n, see [3] Section 3.2. The parameters are stored in the files
piparmq.f and pilanvx.f, found in the folder src/pdhgeqz/. PILAENVX(ISPEC = 50...56)
and PILAENVX(ISPEC = 80...85) are parameters related to PDHGEQZ, listed and described in
Table 2.

5 Terms of usage

The PDHGEQZ library is freely available for academic (non-commercial) use, and is provided on
an ”as is” basis. Any use of the PDHGEQZ library should be acknowledged by citing paper [3]
and this User Guide.

6 Conclusions and future work

We have presented the high performance software package PDHGEQZ. The latest version of the
package along with updated information and documentation will always be available for down-
load from the PDHGEQZ website. We welcome bug-reports, comments and suggestions from
users.

Acknowledgments

The authors are grateful to Lars Karlsson, and Meiyue Shao for helpful discussions on parallel
QZ algorithms. We thank Åke Sandgren and the rest of the group at the High Performance
Computing Center North (HPC2N) for providing computational resources and valuable support
during test and performance runs.

12

96

Table 2: Tunable parameters for PDHGEQZ
ISPEC Name Description Default value

50 nmin1 Threshold for when to choose PDHGEQZ0 in-
stead of PDHGEQZ1; matrices of order less than
this value are reduced by PDHGEQZ1.

6000

51 nAED Size of the aggressive early deflation window. see [3] Section 3.2
52 NIBBLE Threshold for when to skip repeated AED

and instead do a multishift QZ sweep.
see [10] Section 3.4

53 nshift The number of simultaneous shifts in a multi-
shift QZ iteration (in PDHGEQZ0).

see [3] Section 3.2

54 nmin2 When current problem size is less than this
value, PDHGEQZ0 calls PDHGEQZ1 to perform
the remaining reduction.

201

55 nmin3 When current problem size is less than this
value PDHGEQZ1 stops executing and instead
performs the remaining reduction serially.

201

56 PAED Number of processes to use when performing
parallel AED.

see [3] Section 3.2

80 NUMWIN Maximum number of concurrent computa-
tional windows (for parallel reordering only).

min(pr, pc, n/nb)

81 WINEIG Number of eigenvalues/bulges in each window
(for parallel reordering only).

nb/2

82 WINSIZE Computational window size (for parallel re-
ordering only).

nb

83 MMULT Minimal percentage of flops required for
performing matrix-matrix multiplications in-
stead of pipelined orthogonal transformations
(for parallel reordering only).

0. Throughout our
tests, the matrix-
matrix multiplications
were faster than or
equivalent to pipelined
transformations. This
is probably caused
by the small problem
sizes we are running
on, i.e. the size of the
AED windown. For
larger n and thereby
larger nAED, the value
for MMULT might need
fine tuning. However,
a value of 0 will al-
ways work and will
probably give good
enough performance.

84 NCB Width of block column slabs for row-wise ap-
plication of pipelined orthogonal transforma-
tions in their factorized form (for parallel re-
ordering only).

min(nb, 32)

85 WNEICR The maximum number of eigenvalues moved
together over a process border (for parallel
reordering only).

same as WINEIG

13

97

References

[1] B. Adlerborn, L. Karlsson, and B. K̊agström. Distributed One-Stage Hessenberg-Triangular
Reduction with Wavefront Scheduling. Report UMINF 16.10, Dept. of Computing Science,
Ume̊a University, Sweden, 2016.

[2] B. Adlerborn, B. K̊agström, and D. Kressner. Parallel variants of the multishift QZ al-
gorithm with advanced deflation techniques. In B. K̊agström, E. Elmroth, J. Dongarra,
and J. Waśniewski, editors, Applied Parallel Computing, PARA 2006, LNCS 4699, pages
117–126. Springer Berlin Heidelberg, 2006.

[3] B. Adlerborn, B. K̊agström, and D. Kressner. A Parallel QZ Algorithm for distributed
memory HPC-systems. SIAM J. Sci. Comput., 36(5):C480–C503, 2014.

[4] E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. W. Demmel, J. J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. C. Sorensen. LAPACK Users’ Guide.
SIAM, Philadelphia, PA, third edition, 1999.

[5] Z. Bai, D. Day, J. W. Demmel, and J. J. Dongarra. A test matrix collection for non-
Hermitian eigenvalue problems (release 1.0). Technical Report CS-97-355, Department
of Computer Science, University of Tennessee, Knoxville, TN, USA, March 1997. Also
available online from http://math.nist.gov/MatrixMarket.

[6] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. W. Demmel, I. Dhillon, J. J. Don-
garra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley.
ScaLAPACK Users’ Guide. SIAM, Philadelphia, PA, 1997.

[7] K. Dackland and B. K̊agström. Blocked algorithms and software for reduction of a regular
matrix pair to generalized Schur form. ACM Trans. Math. Software, 25(4):425–454, 1999.

[8] R. Granat and B. K̊agström. Parallel solvers for Sylvester-type matrix equations with
applications in condition estimation, Part II. ACM Trans. Math. Software, 37(3), 2007.

[9] R. Granat, B. K̊agström, and D. Kressner. Parallel eigenvalue reordering in real Schur
forms. Concurrency and Computation: Practice and Experience, 21(9):1225–1250, 2009.

[10] R. Granat, B. K̊agström, D. Kressner, and M. Shao. Parallel library software for the
multishift QR algorithm with aggressive early deflation. ACM Trans. Math. Software,
41(4), 2015.

[11] B. K̊agström and D. Kressner. Multishift variants of the QZ algorithm with aggressive
early deflation. SIAM J. Matrix Anal. Appl., 29(1):199–227, 2006.

[12] C. B. Moler and G. W. Stewart. An algorithm for generalized matrix eigenvalue problems.
SIAM J. Numer. Anal., 10:241–256, 1973.

[13] R. C. Ward. The combination shift QZ algorithm. SIAM J. Numer. Anal., 12(6):835–853,
1975.

14

98

A List and description of supplied drivers and auxiliary rou-
tines.

Beside the routines briefly described in Table 1, we list the other provided routines in Tables 3–7.

Table 3: Routines not listed in Figure 1 but related to, and called by, the main routines of
PDHGEQZ.

Routine Description

PDHGEQZ8 Called by PDHGEQZ7 to perform parallel chase and deflation of infinite eigenvalues at the
top left corner of (H,T).

PDHGEQZ9 Called by PDHGEQZ7 to perform parallel chase and deflation of infinite eigenvalues at the
bottom right corner of (H,T).

PDHGEQZA Called by PDHGEQZ5 to create bulges within a diagonal block of (H,T), followed by updates
in parallel of off-diagonal elements.

PDHGEQZB Called by PDHGEQZ5 to chase bulges within a diagonal block of (H,T), followed by updates
in parallel of off-diagonal elements.

PDHGEQZ6 Called by PDHGEQZ2, PDHGEQZ4, PDHGEQZ8, PDHGEQZ9, PDHGEQZA, and PDHGEQZB to update
off-diagonal entries in parallel.

PDLACP4 Called by PDHGEQZ2, PDHGEQZ4, PDHGEQZ5, PDHGEQZ8 and PDHGEQZ9 to copy a global diagonal
block of (H,T) to a local workspace copy, or vice versa.

PDROT Performs a planar rotation, in parallel.
DHGEQZ5 Serial chase of bulges within a diagonal block of (H,T)
DHGEQZ7 Serial chase of infinite eigenvalues, along the diagonal of T , up or down.

Table 4: Routines related to parallel reordering. These routines are also part of the SCASY

library, see [8] and SCASY homepage http://www8.cs.umu.se/∼granat/scasy.html, although
slightly modified here

.
Routine Description

PDTGSEN Reorders a cluster of eigenvalues to the top of the matrix pair (S, T) in real generalized
Schur form. Also provides functionality to compute condition number estimate for eigen-
values and eigenspaces.

BDLAGPP Computes a transformation matrix Q resulting from performed swaps of diagonal blocks.
BDTGEXC Moves a diagonal block from one position to another.
BDTGEX2 Swaps two adjacent diagonal blocks.

15

99

Table 5: Routines related to the parallel Hessenberg-triangular reduction.
Routine Description

PDGGHRD Parallel reduction of a matrix pair to Hessenberg-triangular form - main routine.
UPDATEANDREDUCECOLUMN Applies previous row updates and reduces a column.
UPDATEANDREDUCECOLUMN ROOT Applies previous row updates and reduces a column. This version uses a

single core to perform the updates and reduction and is called internally by
UPDATEANDREDUCECOLUMN.

KRNLUPDATEANDREDUCECOLUMN Applies previous row updates and reduces a column - kernel version.
SLIVERROWUPDATE Applies row updates.
KRNLROWUPDATE Applies row updates - kernel version.
SLIVERHESSCOLUMNUPDATE Reduces a matrix in Hessenberg form to triangular form.
KRNLCOLUMNANNIHILATE Annihilates sub diagonal entries - kernel version.
SLIVERCOLUMNUPDATE Applies column updates.
KRNLCOLUMNUPDATE Applies column updates - kernel version.
ACCUMULATEROWROTATIONS Accumulates row rotations into transformation matrices.
KRNLACCUMULATEROWROTATIONS Accumulates row rotations into transformation matrices - kernel version.
ACCUMULATECOLUMNROTATIONS Accumulates column rotations into transformation matrices.
KRNLACCUMULATECOLUMNROTATIONS Accumulates column rotations into transformation matrices - kernel version.
BLOCKSLIVERROWUPDATE Applies accumulated transformation on block rows.
BLOCKSLIVERCOLUMNUPDATE Applies accumulated transformations on block columns.
DUOBLOCKSLIVERCOLUMNUPDATE Applies accumulated transformations on block columns. This routine takes two

matrices as input and updates them at the same time.
GRN2LRN Computes a local range from a global range.

Table 6: Routines related to the serial multishift QZ, with aggressive early deflation, KKQZ.
Routine Description

KKQZ Serial multishift QZ with aggressive early deflation - main routine.
KKQZCONF Sets up parameters for the KKQZ routine. This routine needs to be called before any call

to PDHGEQZ.
INVHSE Computes an ”inverted” Householder reflector.
QZDACK Serial and blocked single/double shift QZ, based on [7].
QZDACKIT Performs a blocked single/double QZ iteration, based on [7].
QZEARLY Performs aggressive early deflation.
QZFCOL Forms a multiple of the first column of the shift polynomial for the generalized eigenvalue

problem.
QZINF Identifies and deflates infinite eigenvalues.
QZLAP Serial single/double shift QZ, based on the LAPACK routine DHGEQZ.
QZLAPIT Performs a single/double QZ iteration, based on the LAPACK routine DHGEQZ.

Table 7: Routines supplied in the tools/ folder.
Routine Description

PDMATGEN2 Generates a matrix with entries choosen from a uniform distribtution ∈ [0, 1].
PDLAPRNT Prints a distributed matrix.
PQZHELPS Contains routines for calculating residuals, and misc. short helper routines.
MMIO Contains misc. routines for reading and writing Matrix Market files.
PDRDMMM Reads a Matrix Market matrix file and stores the content in a globally distributed matrix.

16

100

