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Abstract. Probabilistic lexicalized tree-insertion grammars (PLTIGs)
are evaluated on a classification task relevant for automatic speech recog-
nition. The baseline is a family of n-gram models tuned with Witten-Bell
smoothing. The language models are trained on unannotated corpora,
consisting of 10,000 to 50,000 sentences collected from the English section
of Wikipedia. For the evaluation, an additional 150 random sentences
were selected from the same source, and for each of these, approximately
3,200 variations were generated. Each variant sentence was obtained by
replacing an arbitrary word by a similar word, chosen to be at most 2
character edits from the original. The evaluation task consisted in iden-
tifying the original sentence among the automatically constructed (and
typically inferior) alternatives. In the experiments, the n-gram models
outperformed the PLTIG model on the smaller data set, but as the size
of data grew, the PLTIG model gave comparable results. While PLTIGs
are more demanding to train, they have the advantage that they assign
a parse structure to their input sentences. This is valuable for continued
algorithmic processing, e.g., for summarization or sentiment analysis.

1 Introduction

Language models are a central concept in natural language processing. At an ab-
stract level, they are parametrized families of functions that assign probabilities
to natural language sentences. A ‘good’ language model should assign a higher
probability to natural-sounding sentences and sentence fragments, compared to
unlikely or even ungrammatical alternatives. Language models are commonly
used in machine translation (MT) to rank candidate translations, in automatic
speech recognition (ASR) to narrow the search-space by discarding unlikely tran-
scriptions, and in summarization to shorten text while preserving readability.

The reigning approach to practical language modeling is to train structure-
agnostic n-grams on large sets of data. In the n-gram model, the likelihood
of a sequence of words s = w1, w2, . . . , wn is the product of the likelihood of
every subsequence of n consecutive words in s, with respect to some given set of
training data. When greater precision is needed, the size of n can be increased, or
some weighting or smoothing technique can be introduced to better leverage the
training data. These language models have the advantages of being surprisingly



powerful considering their simplicity, easy to train from data, and can be applied
in linear or even log-linear time (Klakow, 1998).

On the downside, the size of n-gram models grows exponentially in n. This
means that for large values of n, only a fraction of all possible n-grams will
appear in the training data, and to keep the model at a reasonable size, only
the most frequent n-grams can be taken into account at any rate. For these
reasons, Goodman (2001) concluded that proceeding beyond 5-grams is unlikely
to be practically motivated. This conjecture has still not been contradicted a
decade later. The flagship of the field, Google’s n-gram viewer, contains 500
billion words compiled from 20 million books. In its construction, the value of n
had to be restricted to 5 to limit the model’s size, and all n-grams encountered
fewer than 40 times were discarded without updating the model (Michel et al.,
2010).

The fact that n has to be kept small causes problems. Take the following pair
of sentences:

She rowed between Yellowknife and Benchoko in a weathered canoe.

She rowed between Yellowknife and Benchoko in a weathered car.

The first sentence is arguably more likely due to the semantic relation between
rowed and canoe. However, no n-gram model could make this connection for a
value of n less than 9, since no n-gram of shorter length contains both rowed and
canoe, or rowed and car. Such simpler models would instead prefer the second
sentence, car being a more common form of transport than canoe.

Another thing that is missing is a syntactical analysis of the input sentence,
that is, n-grams do not support parsing. Parsing is useful in itself, as it tells us
whether a sentence is likely to be perceived as grammatical. Furthermore, parse
trees are suitable for continued algorithmic processing, for example, to obtain
a semantic analysis. If we want to understand who does what to whom in a
sentence, it helps to know how the sentence is put together, in particular, what
the central verbs and their arguments are.

Context-free grammars (CFG) can be used for syntactical analysis, but are
typically worse at predicting word sequences than n-grams, unless they are lexi-
calized. In a lexicalized CFG, each production rule produces at least one lexical
item (Schabes & Waters, 1993a). CFGs can be lexicalized using Greibach nor-
mal form, but this skews the syntactical structure. Another alternative is to use
Tree-adjoining Grammars (TAG). TAGs represent a language of parse trees as
a set of parse-trees fragments, together with rewrite rules that regulate how the
fragments may be pieced together into larger structures. TAGs were developed
by linguists and have several appealing properties; they are expressive, straight-
forward to lexicalize, and offer parsing. However, the parsing complexity is as
high as O

(
n6
)
, which cannot be considered practical.

Aiming for the middle ground, Hwa (2001) suggested the use of proba-
bilistic lexicalized tree insertion grammars (PLTIGs), a family of TAGs with
simplified rewrite rules. PLTIGs are as good as trigrams at predicting word
sequences, but also offer syntax-aware language modeling. Their parsing com-



plexity is O
(
n3
)
, which is equal to that of probabilistic context-free grammars

(PCFGs) and a factor n3 faster than TAGs. PLTIGs also have the advantage
that their expectation-maximization training converges faster than for similarly
sized PCFGs (see Chapter 3 of (Hwa, 2001)).

In this article we evaluate PLTIGs as an alternative for n-grams in Auto-
matic speech recognition, more precisely, the translation of spoken words into
text. Modern ASR systems are typically built around an acoustic model, a lex-
ical model, and a language model. The acoustic model maps utterances into
phonemes, the lexical model concatenates phonemes to match a dictionary of
known words, and the language model combines words into sentences. Today, n-
grams and Hidden Markov Models (Leonard E. Baum, 1966) are commonly used
language models in ASR systems, and we are interested to learn how PLTIGs
stand up to these. To isolate the influence of the language models from the ASR
system at large, we focus on a classification task in which the models pick out a
sentence s from a set of alternatives, generated from s by replacing a word by a
similar but inappropriate word.

1.1 Background and related work

Automatic speech recognition originates from the post-war era. The scope was
initially limited to very small vocabularies, for example, single numeric digits
(Marill, 1961). An early attempt to build a hardware device capable of recog-
nizing speech was made by Smith (1951). His machine passed the input acoustic
signal through a sequence of contiguous band-pass filters, generating 32 signals
that were fed to a switch selector panel, which in turn mapped their energy
distributions to phonemes. Forgie and Forgie (1959) presented a system similar
to Smith’s, with the exception that the recognition was done by a computer
program running on a general-purpose machine. This meant that, unlike its pre-
decessors, it could easily be adapted to new speakers. The success rate was now
up to 93 %, but the program was only capable of differentiating between ten En-
glish vowels. Progress continued to be slow throughout the 1960s, and the entire
field was heavily criticized for not making any substantial results. Real-world
applications were considered distant (Pierce, 1969).

Language models came into focus during the 1970s. Jelinek (1976) intro-
duced the New Raleigh language model, which was essentially a Hidden Markov
Model. A similar system had also been presented by Baker (1975) the year be-
fore. The advantage of these models was that they allowed the ASR system to
work comparably well under high error rates. From then on, probabilistic models
and specifically n-grams were a commodity in the field.

Interest in other types of statistical language models increased during the
late 1980s, with an emphasis on tree-based models. Tree-adjoining grammars
had already been extensively studied in the context of formal languages (Joshi,
Levy, & Takahashi, 1975), but in 1990 Shieber et al. (Abeillé, Schabes, & Joshi,
1990; Shieber & Schabes, 1990) successfully used a variant of them for modeling
natural languages. Their intention was to use TAGs for a wider range of applica-
tions, including semantic interpretation and machine translation. For the latter



application, the idea was to use so called synchronous TAGs where elementary
trees are mapped to a semantic representation unrelated to syntax. Two prac-
tical problems with this approach were the computational cost of parsing, and
the lack of suitably annotated data sets.

Early work on lexicalized tree insertion grammars (lexicalized TIGs, or LTIGs)
was conducted in 1994 by Schabes and Waters (Schabes & Waters, 1994). In their
article they mention that the probabilities with which adjunctions and substi-
tutions occur can be controlled by adding a stochastic parameter, as previously
done for context-free grammars (Schabes & Waters, 1993b). Hwa (Hwa, 1998)
later provided a semi-supervised expectation-maximisation algorithm for proba-
bilistic lexicalized TIGs, and discussed how to infer high-quality grammars with
minimal data annotation. As mentioned previously, parsing with respect to TIGs
is substantially easier than with TAGs, but still expensive compared to n-grams.

In the 2000s, the advent of grid, massively parallel, and later cloud computing
moved the boundaries for what could be considered computationally feasible.
As the number of high-quality syntactically and semantically annotated corpora
continues to grow, new possibilities for machine learning open up. This article
aims to reassess the practical value of TIGs in light of these developments.

1.2 Outline

This article is organized as follows. Section 2 revises the relevant language mod-
els. Section 3 describes the experimental setup, and Section 4 reports and dis-
cusses the results. Section 5 concludes the article by outlining directions for
future work.

2 Theory

We begin by recalling the definitions of n-grams, TAGs (as an intermediary
step), and finally PLTIGs. Since the theoretical results that support this study
are already in place, including the parsing complexity and the correctness of the
EM algorithm, we describe the models at a fairly high level and refer to (Hwa,
1998) for the formal definitions. Those familiar with n-grams and PLTIG’s may
want to proceed directly to Section 3.

2.1 n-grams

The likelihood P (w1,n) of a sequence of words w1,n = w1, . . . , wn can be com-
puted using the chain rule of probability

P (w1,n) = P (w1)P (w2|w1)P (w3|w1,2) · · ·P (wn|w1,n−1) (1)

=

n∏
i=1

P (wi|w1,i−1) . (2)



The idea behind n-grams is to approximate the likelihood of wi in w1,n by

P (wi|w1,i−1) ≈ P (wi|wi−n+1,i−1) . (3)

Substituting Equation 3 into Equation 2, the likelihood of the entire sequence is
approximated by

P (w1,n) ≈
∏n

i=1 P (wi|wi−n+1,i−1) .

When the value of n is 1, 2, 3, or 4, the model is often referred to as unigram,
bigram, trigram, or quadgram, respectively. Similarly, for n = the model may
be referred to as quintgram.

n-grams are straight-forward to learn from training data through a Maximum
Likelihood Estimation (MLE) process. The probability of a word wi is

PMLE(wi|wi−n+1,i−1) =
c(wi−n+1,i)

c(wi−n+1,i−1)
,

where c(u1,k) counts how often the sequence of words u1,k appears in the data.
Simply put, a PMLE(wi) computed with unigrams only considers the relative
frequency of wi in the data, whereas bigrams take a history of one word into
account, and trigrams a history of two words.

For most applications, the training data cannot be expected to contain all
n-grams that will later be encountered in the application data. As can be ex-
pected, this problem of data sparsity diminishes as the size of the training data
increases (Banko & Brill, 2001), but it seldom disappears completely (Allison,
Guthrie, & Guthrie, 2006). For this reason, the MLE learning is usually followed
by a round of smoothing ; a redistribution of the probability mass assigning a
non-zero probability also to here-to unseen n-grams. There are several popu-
lar smoothing methods to choose between, for example, Laplace, Good-Turing,
and Kneser-Ney. In this article, we use Witten-Bell smoothing. At the core of
Witten-Bell is the observation that when we see some words, we can easily guess
what the next word will be, whereas for others, it is more difficult. The word
want for instance is followed by to more often than not, but the word to, in
turn, tells us less about the future. With Witten-Bell, the nth order smoothed
model is a linear interpolation between the nth order unsmoothed model and the
(n − 1)th order smoothed model, and the shape of the interpolation is affected
by the predictiveness of the words (Bell, Cleary, & Witten, 1990).

2.2 Tree Adjoining Grammars

As previously mentioned, tree-insertion grammars are a restricted form of tree
adjoining grammars (Joshi et al., 1975). In contrast to n-grams, probabilistic
TAGs assign likelihoods to parse trees rather than their surface forms, that is,
the generated sentences. A TAG has rules in form of elementary trees of which
there are two types; elementary initial trees and elementary auxiliary trees. Each
elementary initial tree has a number of nonterminal and terminal leaf nodes.
Auxiliary trees also have a special nonterminal leaf node of the same type as the



root node called the foot node, marked with the special symbol *. The sequence
of nodes on the path from the root node to the foot node is called the spine.
Figure 1 shows a few examples of elementary trees.

DT

his

(a)

DT

her

(b)

NP

NN

car

DT

(c)

NN

NN*JJ

red

(d)

NN

NN*JJ

blue

(e)

Fig. 1: Examples of elementary trees in a TAG. Elementary trees (a-c) show
initial trees, while (d-e) are auxiliary trees. The auxiliary trees each have a foot
node marked with a * which is of the same type as the root node.
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Fig. 2: The initial tree in (a) is substituted into a nonterminal node of the initial
tree in (b), with the result of the new tree in (c). This is possible since the root
node of (a) is of the same type as the nonterminal leaf node in (b).

If the root node of an initial tree matches a nonterminal leaf node of some
other tree, then the first tree can be substituted into the nonterminal leaf node of
the other tree, corresponding to a context-free derivation step. Figure 2 shows an
example of this. The determiner her in the initial tree in Figure 2a is substituted
into the leaf node of the initial tree for the noun car in Figure 2b. The result is
the tree in Figure 2c, generating the construct her car.

An auxiliary tree can be inserted into an intermediate node of another tree
through what is called adjunction. Since the root node and the foot node of an
auxiliary tree have to have the same symbol, auxiliary trees can be inserted into
another tree where such a symbol exists. An example of this is shown in Figure 3.
Note that the auxiliary tree in Figure 3a has the same root and foot node as
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Fig. 3: The auxiliary tree in (a) is adjoined into the tree in (b), with the result
of the new tree in (c). The tree from (a) can be inserted into (b) at the node NN

since (a) has both a root and a foot node of that type.

one of the intermediary nodes in the tree in Figure 3b. This allows the adjective
blue to be inserted into the sentence her car, producing the new sentence her
blue car. TAGs are expressive due to the number of configurations they allow,
but have the drawback of high parsing complexity in the order of O(n6).

More formally, a TAG is a tuple (Σ,V, I, A), where Σ is a set of terminal
symbols, V is a set of nonterminal symbols, I is a set of initial trees, and A
is a set of auxiliary trees. If every elementary tree structure in a TAG has at
least one non-empty terminal leaf node with a lexical item, then that is called a
lexicalized TAG (LTAG).

There is also a probabilistic version of TAGs (and hence of LTAGs), in which
three probability distributions are included in the definition. These distributions
are defined on the set of initial trees, and on the setΩ of possible substitution and
adjunction events. A Probabilistic TAG is thus a tuple (Σ,V, I, A, PI , PS , PA)
where (Σ,V, I, A) is a TAG, PI is a mapping I → [0, 1] or the probability that
an initial tree is used as the start of a derivation, PS is a mapping Ω → [0, 1]
for the probability of a substitution, and PA is a mapping Ω → [0, 1] for the
probability of an adjunction (Resnik, 1992).

2.3 Tree Insertion Grammars

Tree insertion grammars (TIGs) are a restricted form of TAG in which the
rewrite steps are more regulated. A TIG is a quintuple (Σ,V, I, A, S) where
(Σ,V, I, A) is a TAG and S is a distinguished nonterminal symbol. The semantics
of TIGs are defined as for TAGs, with the following additions (Schabes & Waters,
1994).

– Every auxiliary tree has to be either a left auxiliary tree or a right auxiliary
tree, meaning that they only have lexical items on the indicated side of the
foot node.



– Left auxiliary trees are not allowed to be adjoined on a node that is on the
path from the root to the foot of a right auxiliary tree, and vice versa.

– No more than one left auxiliary tree and one right auxiliary tree is allowed
to be simultaneously adjoined into the same node.

– Adjunction on nodes that are to the right of the path from the root node to
the foot node of a left auxiliary tree is not allowed, and vice versa.

– Adjunction on root nodes and foot nodes of auxiliary trees is not allowed.
– Adjunction on nodes that can be used for substitution is not allowed.

When combined, these restrictions only allow us to express context-free lan-
guages, but they also bring the parsing complexity down to O(n3).

A TIG is lexicalized (LTIG) if each elementary tree carries a lexical item.
A TIG can also be probabilistic (PTIG or PLTIG) if it is parameterized by
probabilities that describe how likely it is that operations are applied. A PTIG is
defined as a TIG, with the addition of as many as eight probability distributions,
PI , PS , PL, PR, PNL, PNR, PRL, PLR, defined as follows:

1. The probability PI(t) that the derivation starts with the initial tree t, so
that Σt∈IPI(t) = 1.

2. The probability PS(n, t) that an initial tree t is substituted into a leaf node n,
so that Σt∈IPS(n, t) = 1.

3. The probabilities PL(n, t) that a left auxiliary tree t is inserted into the
internal nonterminal node n, and the probability PNL(n) that n takes no
left adjunction, so that PNL(n) +Σt∈AL

PL(n, t) = 1 where AL is the set of
left auxiliary trees. The probability distributions PR and PNR are defined
analogously to cover the same situation for the right-hand side.

4. The probabilities PLR(n) and PRL(n) that a simultaneous adjunction into
the internal nonterminal node n makes a left-adjunction first or a right-
adjunction first respectively, so that PLR(n) + PRL(n) = 1.

The configuration of the elementary trees affects the possible parse trees that
can be derived. Figure 4a shows a parse tree where the elementary trees only
allow right-adjunction, which effectively simulates an n-gram. Figure 4b shows
another parse tree where the elementary trees allow both left-adjunction and
right-adjunction. In this case, the tree-insertion grammar is able to represent
hierarchical language structures that n-grams are unable to capture.

3 Method

The experiments were conducted within the ASR framework CMU Pocket-
Sphinx (Lamere et al., 2003). It was chosen because it is released as open source,
is light-weight for an ASR system, and supports n-grams up to the level of quint-
grams. In the initial experiments, the language models were trained on an unan-
notated corpus, consisting of 10, 000 sentences collected from the English section
of Wikipedia. The corpus contains 190, 600 words, divided over 28, 500 unique
tokens. The 100 most common tokens (e.g., the, of, and and) make up half of



the corpus, whereas two-thirds of the tokens are seen only once (e.g., sideward,
cylindrical, and boreal).

In later experiments, a medium-sized corpus of 20, 000 sentences (i.e. an
additional 10, 000 beyond the original small dataset) and a larger corpus of
50, 000 sentences (i.e. with 30, 000 sentences added to the medium-sized corpus)
were similarly collected. The 20, 000 sentence set used over 44, 000 unique tokens,
the 50, 000 sentence one used over 79, 000.

3.1 Training

The n-gram models for n = 1 – 5 were read off the corpus by counting fre-
quencies, and tuned with Witten-Bell smoothing. Inter-sentence punctuation
was discarded and no distinction was made between uppercase and lowercase
characters, because these cues are not accessible from the input audio in most
speech recognition systems. This means that the words and abbreviations AU,
Au, and au were all represented as au, and the sentence “Guatemala qualified
a full team of 4 athletes, 2 men and 2 women.” as “guatemala qualified a full
team of 4 athletes 2 men and 2 women”.

For the PLTIG, we started from a set of prototypical trees. The set contains
a single initial tree connected to the empty lexical, representing the start of a
sentence. For each lexical entry we also included a left-auxiliary and a right-
auxiliary tree (see Figure 5 for an illustration). Like Hwa et al., we use the
left-one right-two (L1R2) insertion paradigm, permitting (but not enforcing)
one left adjunction and two right adjunctions into each auxiliary tree (see Fig-
ure 6 for an illustration). The PLTIG was then trained through an Expectation-
Maximization (EM) process. The EM training algorithm (Dempster, Laird, &
Rubin, 1977) is a hill-climbing algorithm which is used when inducing PLTIGs.
The algorithm is based on maximum likelihood estimation (MLE) and deter-
mines the adjunction probabilities of a locally optimal grammar. A parser based
on the Cocke-Younger-Kasami (CYK) algorithm was used to parse the induced
grammar. Data sparsity is also a problem for PLTIGs, so the resulting model is
smoothed through linear interpolation (Hwa, 2001).

3.2 Evaluation

For the evaluation, a fresh set of 150 sentences were randomly selected from
the English version of Wikipedia. Then, a separate corpus was created for each
sentence s, containing on average approx. 3, 200 similar sentences (a total of
479, 213 sentences). Each alternative sentence was obtained by replacing a word
in s with a different word, also in the original vocabulary and at most two edits
(i.e., letter insertions, deletions, or replacements) from the original. This would
for example turn the template sentence

guatemala qualified a full team of 4 athletes 2 men and 2 women

into the alternatives



guatemala qualified a mule team of 4 athletes 2 men and 2 women

guatemala qualified 88 full team of 4 athletes 2 men and 2 women

guatemala qualified ham full team of 4 athletes 2 men and 2 women

The corpora were manually checked to make sure that the substituted words
were inappropriate for their context. A few exceptions may have been overlooked,
but in the vast majority of the cases, the alternatives were inferior.

The six language models, i.e. the unigram through quintgram ones and the
PLTIG one, were used to compute the probability of each original sentence
and its alternatives. The probabilities of the alternatives where then compared
against the probability of the original sentence, and the number of sentences
with higher and lower probability, respectively, were recorded.

4 Results

Table 1: The percentage of correctly completed evaluation tasks for differently
sized data sets (measured in no. sentences).

10,000 20,000 50,000

PLTIG 96.6 % 97.2 % 97.8 %

unigram 96.5 % 96.9 % 97.0 %

bigram 97.5 % 97.9 % 98.2 %

trigram 97.4 % 97.8 % 98.3 %

quadgram 97.5 % 97.8 % 98.3 %

quintgram 97.5 % 97.8 % 98.3 %

The first column of Table 1 shows the outcome of the experiments on the
10, 000-sentence dataset. The number reported for each language model (LM)
is the percentage of correctly completed evaluation tasks. As the reader may
recall from Section 3.2, these consist in selecting the most likely sentence out of
a set of similar but inferior alternatives. The PLTIG language model performs
worse than most n-gram models, achieving 96.6 % correct results compared to
unigrams with 96.5 % and quintgrams with 97.5 % correct results.

As the data set was comparatively small, it cannot be expected saturate
the more sophisticated language models. In particular the higher-level n-gram
models and the PLTIG model are sensitive to over training because of their
complexity. The experiments were therefore repeated for two larger datasets, a
medium-sized one of 20, 000 sentences and the larger one of 50, 000 sentences
(described in Section 3). For the medium-sized dataset, the difference between



PLTIGs and n-grams shrunk to less than one percentage point—97.2 % for
PLTIGs versus 97.9 % for the best-performing n-gram model. For the largest
dataset, PLTIGs perform almost as well as the best-performing n-gram model.

The scores of the PLTIG and n-gram language models for different training
data sets as given in Table 1 are depicted visually in the left graph of Figure 7.
The right graph shows the difference between the score of each model and the
best-performing model trained on the same data set. This graph shows that the
bigram model scores best for the small and medium-sized data set, but that
the trigram model comes out on top for the larger data set. The graphs also
suggest that while the PLTIG LM is initially inferior to the higher order n-gram
models, it benefits more from added data, so the gap to the best-scoring n-gram
decreases rather rapidly.

Another way to evaluate the language models is to look at their perplexity
relative to the test sentences. This is simply the cross-entropy between the prob-
ability distributions predicted by the models and those embodied by the test
data. Although perplexity is more loosely correlated with performance in speech
recognition system, the general rule is that lower perplexity implies better pre-
diction. Given the likelihood P (w) of a sentence w with respect to a language
model M , we compute the perplexity PP (w) of M on w as n

√
1/PM (w) where

n = |w|.
The average perplexities of the PLTIG and n-gram models are given in Ta-

ble 8. We see that on average, the ’surprise’ expressed by the PLTIG model is a
factor 25 times higher that expressed by the n-grams models. Despite this, the
PLTIG model is competitive in terms of prediction, at least for the larger data
sets. Among the n-gram models, the correlation between preplexity and predic-
tive power is stronger, though not perfect: For example, for the largest data set,
the quadgram has the lowest perplexity, but the trigram the highest accuracy.

We must also remember that perplexity is strongly affected by smoothing,
which decides how much probability mass to reserve for unseen constructions.
The n-gram models in CMU sphinx are smoothed with Witten-Bell, but this
method is not applicable to PLTIGs, so linear interpolation is used instead (see
Section 3). We leave it as an open question to investigate what impact different
choices of smoothing has on the perplexity.

In the cases where the models assigned a higher probability to a modified
sentence, it is instructive to look at the words that differed between the sentences,
and which caused the variation to receive a higher probability. We consider
in particular words most often erroneously replaced or substituted in, for the
PLTIG model and the trigram model. The top favored words substituted in are
‘in’, ‘of ’, ‘a’, ‘to’, ‘the’, ‘is’, ‘on’, ‘he’, ‘as’, ‘and’ for the PLTIG model, and for
the trigram model they are ‘a’, ‘in’, ‘of ’, ‘on’, ‘to’, ‘at’, ‘is’, ‘as’, ‘the’, ‘he’. The
top favored words for each consist mostly of common two-letter words, and to
a lesser degree single-letter or three-letter ones. This is because with only two
edit operations, there are more ways of turning short lexical entries into other
short lexical entries, than there are of turning long lexical entries into other



valid entries. For instance, every two-letter word can be turned into every other
two-letter word.

The top unfavored words erroneously replaced on the other hand, mostly
consist of short uncommon words. For the PLTIG model, the top unfavored
words erroneously replaced are ‘au’, ‘pan’, ‘fit’, ‘jun’, ‘on’, ‘bit’, ‘mono’, ‘it’,
‘bad’, ‘pit’, for the trigram model they are ‘au’, ‘cpr’, ‘jun’, ‘mono’, ‘bit’, ‘pan’,
‘ani’, ‘pit’, ‘fit’, ‘t’. These are also short, as our generation process puts them at
within edit distance two from the original, but most of them are rare in literary
text. Wikipedia is full of acronyms and abbreviations1, but these are typically
much rarer than common short words such as those at the top of the favored
lists, yet often within edit distance two from such words.

5 Conclusion and future work

In our experiments, the n-gram models out-performed the PLTIG model on the
smaller data set, but as the size of data grew, the PLTIG model gave comparable
results, and its score grew faster with increasing data set size than that of the
n-gram models. A natural question to ask is whether the PLTIG model will
eventually overtake the n-grams. Judging by the rate with which the accuracies
are improving, this will likely happen when the data set contains a couple of
hundred thousand sentences, if it happens at all. As parts of the code base used
for the experiments are old and not very efficient, experiments on this scale will
require a substantial but likely rewarding re-implementation. If it indeed turns
out that PLTIGs surpass n-grams at language modeling, then the fact that they
provide structural information about sentences will make them an attractive
alternative for practical language processing.

The introduction of finite-state machinery has led to improvements in several
NLP tasks, not least part-of-speech tagging and parsing (Maletti, 2015). In the
current attempt, all internal nodes are labelled with the same non-terminal sym-
bol (i.e., state), so the possiblity of distinct internal symbols is not exploited. We
are therefor interested in learning strategies that infer richer auxiliary trees, in
the sense that they make use of different internal labels to propagate information
and improve performance. This could possibly be accomplished through a split
and merge approach (Petrov, 2012), given that the computational complexity
does not run out of hand. Similarly, one could attempt to infer the number of
adjunction sites and the insertion-strategy that offers the best trade-offs between
parsing complexity and precision.

1 For example, ’au’ is the name of, or short form for, 70 different entities, including
gold, absorbance unit, Australia, an audio format by Sun’s Microsystem, Aarhus
University in Denmark, a district in Munich, a Japanese telecom company, a creature
in Vietnamese mythology, a Chinese family name, the Hawaiian name for the Pacific
blue marlin, and the series “The Age of Ultron” by Marvel Comics.
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Fig. 4: Two alternative derivations of a structural tree for the sentence “Banga-
lore Rural District is one of the 30 districts in Karnataka.”
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Fig. 6: The L1R2 insertion paradigm allows at most one left and two right ad-
junctions into each auxiliary tree. In the figure, LAT and RAT are short for
left-auxiliary and right-auxiliary tree, respectively.
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Fig. 7: LM scores picking correct sentence out of test set, and distance of par-
ticular LM’s score to best-scoring LM’s score, for LMs trained on data sets of
10, 000, 20, 000, 50, 000 sentences.

Fig. 8: The average perplexities of the n-gram and PLTIG language models on
the sentences in the test set.

PLTIG unigram bigram trigram quadgram quintgram

10,000 sent. 49,787 2,126 1,710 1,809 1,826 1,828

20,000 sent. 50,499 2,096 1,208 1,295 1,320 1,323

50,000 sent. 51,505 2,146 1,013 1,079 1,105 1,109


