
Stack Transducers for
Natural Language Interfaces

Suna Bensch1, Johanna Björklund1, and Martin Kutrib2

1 Department of Computing Science,
Ume̊a University, 90187 Ume̊a, Sweden

email: {suna,johanna}@cs.umu.se
2 Institut für Informatik, Universität Giessen,

Arndtstr. 2, 35392 Giessen, Germany
email: kutrib@informatik.uni-giessen.de

Abstract. We introduce and investigate stack transducers, which are
one-way stack automata with an output tape. A one-way stack automa-
ton is a classical pushdown automaton with the additional ability to
move the stack head inside the stack without altering the contents. For
stack transducers, we distinguish between a digging and a non-digging
mode. In digging mode, the stack transducer can write on the output tape
when its stack head is inside the stack, whereas in non-digging mode, the
stack transducer is only allowed to emit symbols when its stack head is
at the top of the stack. These stack transducers have a motivation from
natural language interface applications, as they capture long-distance de-
pendencies in syntactic, semantic, and discourse structures. We study the
computational capacity for deterministic digging and non-digging stack
transducers, as well as for their non-erasing and checking versions. We
finally show that even for the strongest variant of stack transducers the
stack languages are regular.

1 Introduction

Natural language interfaces are prevalent. We encounter them as automated
booking services, as question-answering systems, and as intelligent personal as-
sistants (Apple’s Siri and Microsoft’s Cortana belong to this category). As of
recent, Google can support natural-language queries and exploratory dialogues.
If the search engine is asked, in sequence, “Who is the president of the US?”,
“Where was he born?”, “Who is his wife?”, and finally “Where was she born?”,
it will interpret the questions as intended and perform the required anaphora
resolution. For example, it will understand that the subject of the last question
is the same entity as the second-to-last answer [13].

Natural language interfaces (NLI) have several advantages. They are fast
and intuitive to use, and inclusive for social groups such as children, illiterates,
and dyslectics. They allow for different modalities to input and output data, for
example, microphones, speakers, keyboards, and terminals. For this reason, NLIs
are accessible also while performing manual tasks, and open new possibilities for
the disabled. On the downside, more is required on the side of the computer
to process and represent natural language. In particular, efficient and reliable
methods are needed to translate between NL sentences and structured data.

2 S. Bensch, J. Björklund, M. Kutrib

In natural language processing, translations are often done by transducers.
These are abstract devices that map input strings, trees, or graphs to some target
output domain. We find them in, for example, speech processing [12], machine
translation [3], and increasingly in dialog systems [9]. A disadvantage of the
currently used devices is that they cannot capture long-distance dependencies,
as they interpret input words in the context of a very restricted history. However,
the dependency structure is a determinative factor for syntactic, semantic and
discourse analyses. In response, we introduce what we believe is a promising
alternative, namely finite-state transducers with stacks that can be read, but
not written, in their entirety throughout the execution. The aim is a balance
between expressive power on the one hand, in particular the ability to model
long-distance dependencies, and computational efficiency on the other.

This paper initiates the investigation of stack transducers. We begin with
stack transducers in their unweigthed and deterministic form, though as the
reader will see, this also produces results for more general devices in the passing.

Stack automata were introduced in [5] as a mathematical model of compila-
tion, with a computational power in between that of pushdown automata and
Turing machines. The stack automaton in [5] is a generalization of a pushdown
automaton, as its input pointer can move to the right or left while reading input
symbols, and its stack pointer can move inside the stack while reading stack
symbols. The interior part of the stack cannot be altered, the operations push
and pop are only allowed at the top of the stack. In [6] the authors restrict the
stack automaton model to a one-way automaton that moves only to the right
while reading input symbols. One-way nondeterministic stack automata can be
simulated by deterministic linear-bounded automata, so the accepted languages
are deterministic context sensitive [8]. Although compilation is a translation pro-
cess from source code to object code, the authors of [5] focus on the acceptance
of the input language.

We introduce stack transducers that are one-way stack automata with an out-
put tape, to compute relations between input and output words. Like in [5], our
devices are allowed to read information from the entire stack, but the operations
push and pop are only allowed at the top of the stack. The stack pointer can thus
move inside the stack, but the interior stack content cannot be altered. If the
stack pointer is inside the stack, we say that the stack transducer is in internal
mode. If the stack pointers scans the top most stack symbol, the transducer is
said to be in external mode. In external mode the stack transducers can push or
pop symbols from the top of the stack, or leave the stack unchanged, and are also
allowed to write on the output tape with each operation. For stack transducers
in internal mode, we distinguish between a digging and a non-digging3 mode: In
the former, the stack transducer can write on the output tape, whereas in the
latter, the stack transducer is not allowed to output symbols. We believe that
making the interior of the stack available as a read-only memory improves the
expressiveness and space-efficiency of the transduction model, at a relatively low
cost in terms of computational complexity.

Due to space limitations, most of our proofs can be found in the Appendix.

3 The term ‘digging’ refers to the intuition of digging up soil from a deep hole.

Stack Transducers for Natural Language Interfaces 3

2 Definitions and Preliminaries

Let Σ∗ denote the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and we set Σ+ = Σ∗ \{λ}. The reversal of a word w is denoted
by wR. For the length of w we write |w|. We denote the powerset of a set S
by 2S . We use ⊆ for inclusion, and ⊂ for proper inclusion.

A one-way stack automaton is a classical pushdown automaton with the ad-
ditional ability to move the stack head inside the stack without altering the
contents. In this way, it is possible to read but not to change the stored in-
formation. Well-known variants are so-called non-erasing stack automata, that
are not allowed to pop from the stack, and checking stack automata, that are
non-erasing stack automata which cannot push any symbols once the head has
moved into the stack, even if it has then returned to the top. The devices are
called ‘transducers’ if they are equipped with an output tape, to which they can
append symbols during the course of the computation. More formally:

A deterministic one-way stack transducer (abbreviated 1DSaT) is a system
M = 〈Q,Σ, Γ,∆, δext, δint, q0,⊥, F 〉, where Q is the finite set of internal states, Σ
is the finite set of input symbols, Γ is the finite set of stack symbols, ∆ is the finite
set of output symbols, q0 ∈ Q is the initial state, ⊥ ∈ Γ is the initial stack or
bottom-of-stack symbol, F ⊆ Q is the set of accepting states, δext is the external
transition function mapping Q×(Σ∪{λ})×Γ to Q× (Γ ∗ ∪ {−1})×∆∗, (δext is
the next move mapping when the stack head is at the top of the stack. Here, −1
refers to the stack head moving down one symbol), δint is the internal transition
function mapping Q× (Σ ∪ {λ})× Γ to Q× {−1, 0,+1} ×∆∗, (δint is the next
move mapping when the stack head is inside the stack. Here, 0 means that the
stack head does not move, and +1 means the stack pointer moves up one cell).

A configuration of a stack transducer M = 〈Q,Σ, Γ,∆, δext, δint, q0,⊥, F 〉 at
some time t ≥ 0 is a quintuple (q, w, s, p, u) where q ∈ Q is the current state,
w ∈ Σ∗ is the unread part of the input, s ∈ Γ ∗ gives the current stack content
with the topmost symbol left, 1 ≤ p ≤ |s| gives the current position of the stack
pointer from the top of the stack, and u ∈ ∆∗ gives the content of the current
output tape. The initial configuration for input w is set to (q0, w,⊥, 1, λ).

During the course of its computation, M runs through a sequence of con-
figurations. One step from a configuration to its successor configuration is de-
noted by `, and the reflexive and transitive (resp., transitive) closure of ` by `∗
(resp., `+). Let a ∈ Σ ∪ {λ}, x ∈ Σ∗, Z ∈ Γ , z, y ∈ Γ ∗, u, v ∈ ∆∗, and p, q ∈ Q.
We set

1. (q, ax, Zy, u, 1) ` (p, x, zy, uv, 1) if δext(q, a, Z) = (p, z, v), (push/pop, stack
head on top),

2. (q, ax, Zy, u, 1) ` (p, x, Zy, uv, 2) if δext(q, a, Z) = (p,−1, v), (go inside the
stack from ext mode),

3. (q, ax, Zy, u, i) ` (p, x, Zy, uv, i − d) if δint(q, a, Z) = (p, d, v), 2 ≤ i ≤ |Zy|,
d ∈ {−1, 0,+1}, (inside the stack, up, down, stay).

To simplify matters, we require that the bottom-of-stack symbol ⊥ can nei-
ther be pushed onto nor be popped from the stack, and that the stack head
never moves below the bottom of the stack. This normal form is always avail-
able through effective constructions.

4 S. Bensch, J. Björklund, M. Kutrib

In accordance with the language acceptors, a stack transducer is said to
be non-erasing (1DNESaT) if it is not allowed to pop from the stack, that
is, δext maps Q × (Σ ∪ {λ}) × Γ to Q × (Γ+ ∪ {−1}) × ∆∗. A non-erasing
stack transducer is checking (1DCSaT) if it cannot push any further symbol
once the head has moved into the storage. In order to formalize this property, it
is sufficient to partition the state set into Q1 ∪Q2 with q0 ∈ Q1 so that once the
stack head is moved down, a state from Q2 is entered and there is no transition
from a state in Q2 to a state in Q1. That is, δext maps Q1 × (Σ ∪ {λ}) × Γ
to Q1 × Γ+ × ∆∗ or to Q2 × {−1} × ∆∗, and it maps Q2 × (Σ ∪ {λ}) × Γ to
Q2 × {−1, 0} ×∆∗, while δint is defined only for states from Q2.

Finally, we distinguish two modes of writing to the output tape. So far, the
stack transducers are allowed to write in any step, even if the stack head is not
at the top. These transducers are called digging stack transducer (or simply,
digger). In non-digging mode a stack transducer may only write when the stack
head is at the top. Formally, this means that δint maps to Q × {−1, 0,+1}.
Non-digging stack transducers and their non-erasing and checking versions are
abbreviated as ndi-1DSaT, ndi-1DNESaT, and ndi-1DCSaT.

A stack transducer halts if the transition function is not defined for the cur-
rent configuration. It transforms an input word w ∈ Σ∗ into an output word
v ∈ ∆∗. For a successful computation M has to halt in an accepting state after
having read the whole input, otherwise the output is not recorded: M(w) = v,
where (q0, w,⊥, 1, λ) `∗ (p, λ, y, i, v) with p ∈ F , 1 ≤ i ≤ |y|, and M halts in
configuration (p, λ, y, i, v). The transduction realized by M , denoted by τ(M), is
the set of pairs (w, v) ∈ Σ∗ ×∆∗ such that v = M(w). If we build the projec-
tion on the first components of τ(M), denoted by L(M), then the transducer
degenerates to a deterministic language acceptor.

The family of transductions realized by a device of type X is denoted by T (X).
In order to clarify our notion we continue with an example.

Example 1. The length-preserving transduction

τ1 = {(ananam$, an$aman) | m ≥ 0, n ≥ 1 }

is realized by the non-digging stack transducer

M = 〈{q0, q1, q2, q3, q+}, {a, $}, {A,⊥}, {a, $}, δext, δint, q0,⊥, {q+}〉,

where the transition functions are as follows.

(1) δext(q0, a,⊥) = (q0, A⊥, a)
(2) δext(q0, a, A) = (q0, AA, a)
(3) δext(q0, $, A) = (q1, A, $)
(4) δext(q1, a, A) = (q1,−1, λ)

(5) δint(q1, a, A) = (q1,−1, λ)
(6) δint(q1, $,⊥) = (q2,+1, λ)
(7) δint(q2, λ, A) = (q2,+1, λ)

(8) δext(q2, a, A) = (q2, A, a)
(9) δext(q2, $, A) = (q3, A, $)

(10) δext(q3, λ, A) = (q3, λ, a)
(11) δext(q3, λ,⊥) = (q+,⊥, $)

Since δint never emits a symbol, M is non-digging.
Given an input ananam$, the ndi-1DSaT M starts to read the prefix an

with Transitions (1) and (2) whereby An is successively pushed onto the stack

Stack Transducers for Natural Language Interfaces 5

and an is emitted. Then Transition (3) reads and writes the first $ and sends M
into state q1 without changing the stack. State q1 is used to move the stack head
to the bottom of the stack while the next sequence of a’s is read (Transitions (4)
and (5)). Nothing is written during this phase. If the next $ appears in the input
exactly when the stack head reaches the bottom, the input prefix is anan and
M enters state q2 with Transition (6). In state q2 the stack head is moved to
the top again (Transition (7)) whereby nothing is written to the output. At the
top of the stack transition function δext is applied again and M reads and emits
the suffix am$ with Transitions (8) and (9). The stack content is not changed
in this phase. Finally, in state q3 the stack is successively emptied with λ-moves
and an is appended to the output tape (Transition (10)). The last λ-move at the
bottom of the stack drives M into the accepting state q+ while the concluding
$ is written (Transition (11)). �

3 Computational Capacity

We turn to consider the computational capacity of the stack transducers. In
particular, whenever two devices have different language acceptance power, then
the simple identity transduction applied to a language from their symmetric
difference would be a witness for separating also the power of the transducers.
However, in the following we consider transductions of languages that are ac-
cepted by both types of devices in question. In this way, we are separating in fact
the capabilities of computing transductions. First the relation with pushdown
transducers (cf. [1]) is studied. A pushdown transducer (PDT) is a pushdown
automaton equipped with a one-way write-only output tape. In our terms this
is a stack automaton whose internal transition function δint is completely unde-
fined. Our first result shows that pushdown transducers are strictly weaker than
ndi-1DSaT, even if the language transformed is deterministic context free.

Theorem 2. The length-preserving transduction

τ1 = {(ananam$, an$aman) | m ≥ 0, n ≥ 1 }

is a witness for the strictness of the inclusion T (PDT) ⊂ T (ndi-1DSaT).

The situation changes when the non-digging stack transducers are non-eras-
ing. Clearly, the deterministic context-free language { aman | m ≥ n ≥ 1 } is
also accepted by a deterministic one-way checking stack automaton.

Lemma 3. The transduction τ2 = {(aman, am−n) | m ≥ n ≥ 1 } belongs to
the difference T (PDT) \T (ndi-1DNESaT).

Proof. A PDT realizing τ2 is constructed from a real-time deterministic push-
down automaton that accepts the language { aman | m ≥ n ≥ 1 }. First the
leading a’s are read and pushed on the stack. When the first $ appears, for every
further input symbol a, one symbol is popped. Finally, the remaining symbols
are popped and emitted.

In order to show that τ2 is not realized by any ndi-1DNESaT we contrarily as-
sume that it is realized by the ndi-1DNESaTM = 〈Q,Σ, Γ,∆, δext, δint, q0,⊥, F 〉.

We consider the situation when M has processed an input prefix am$, for m
large enough. Up to that time nothing can have been written on the output tape.

6 S. Bensch, J. Björklund, M. Kutrib

Otherwise, assume M has already written some word ai with i ≥ 1. Then the
accepting computation on input amam would produce a pair (amam, aj), for
some j ≥ 1, belonging to the transduction realized, but not to τ2. Furthermore,
by the same argumentation it follows that M cannot emit anything until the
second $ appears in the input, that is, until the input has been read entirely.
Since M is non-erasing and non-digging, it has to write am−n on the tape with
λ-moves and with the stack head on top of the stack. In between several write
operations the stack head may move into the stack and back. The behavior of M
in these phases can entirely be described by a table that lists for every state in
which M moves the stack head into the stack what happens. This can either
be halting or moving the state head back to the top in some state. Altogether
there are only finitely many of such tables. We conclude that there are two
numbers n1 and n2 so that am$an1 and am$an2 drive M into the same state,
with the same topmost stack symbol, having the stack head on top, and the
same table describing the behavior while the head is in the stack. So, if am$an1$

is transformed into am−n1 , then so is am$an2$, a contradiction. ut
Since ndi-1DCSaT accept non-context-free languages the incomparabilities of

the next corollary follow in general.

Corollary 4. The family T (PDT) is incomparable with each of the families
T (ndi-1DNESaT) and T (ndi-1DCSaT).

Moreover, the inclusion shown in Theorem 2 together with the transduc-
tion τ2 belonging to the difference T (PDT) \ T (ndi-1DNESaT) by Lemma 3
reveals the strictness of the following inclusions. The inclusions themselves fol-
lows for structural reasons.

Corollary 5. The family T (ndi-1DSaT) properly contains the two families
T (ndi-1DNESaT) and T (ndi-1DCSaT).

Since the language recognition power of ndi-1DNESaT are stronger than that
of ndi-1DCSaT there is a proper inclusion between the corresponding families
of transductions. However, it is currently an open problem whether there is
a ndi-1DNESaT M so that L(M) is accepted by some ndi-1DCSaT as well,
but τ(M) cannot be realized by any ndi-1DCSaT.

3.1 Digging versus Non-Digging

We turn to show that all types of stack transducers that are able to write to the
output tape while the stack head is inside the stack are strictly stronger than
their corresponding non-digging variant. To this end, the witness transduction
τ3 = { (anbm, bmanan$) | m ≥ 0, n ≥ 1 } is exploited.

Example 6. The transduction τ3 is realized by the checking stack transducer

M = 〈{q0, q1, q2, q3, q+}, {a, b, $}, {A,⊥}, {a, b, $}, δext, δint, q0,⊥, {q+}〉,
where the transition functions are as follows.

(1) δext(q0, a,⊥) = (q0, A⊥, λ)
(2) δext(q0, a, A) = (q0, AA, λ)
(3) δext(q0, $, A) = (q1, A, λ)
(4) δext(q1, b, A) = (q1, A, b)
(5) δext(q1, $, A) = (q2, A, $)
(6) δext(q2, λ, A) = (q2,−1, a)

(7) δint(q2, λ, A) = (q2,−1, a)
(8) δint(q2, λ,⊥) = (q3, 0, $)
(9) δint(q3, λ,⊥) = (q3,+1, a)

(10) δint(q3, λ, A) = (q3,+1, a)

(11) δext(q3, λ, A) = (q+, A, $)

Stack Transducers for Natural Language Interfaces 7

So, transduction τ3 is realized by the weakest type of digging stack trans-
ducers, where the language L(M) is regular. On the other hand, the next result
shows that τ3 is not even realized by the strongest type of non-digging stack
transducers.

Lemma 7. Transduction τ3 does not belong to the family T (ndi-1DSaT).

Example 6 and Lemma 7 show the following proper inclusions.

Theorem 8.
1. T (ndi-1DCSaT) ⊂ T (1DCSaT)
2. T (ndi-1DNESaT) ⊂ T (1DNESaT)
3. T (ndi-1DSaT) ⊂ T (1DSaT)

3.2 Relations Between Diggers

Here we compare the capacities of the three different types of stack transducers
that may emit symbols while the stack head is inside the stack. Our first result
separates the restricted families of non-erasing and checking transducers. Again,
the witness transduction relies on an input language that is accepted by the
weaker devices. We define τ4 = { (ananv$, vR$anan) | n ≥ 1, v ∈ {a, b}∗ }.
Transduction τ4 is realized by some non-erasing stack transducer as shown in
Example 18 in the appendix.

Based on transduction τ4 the next separation is shown.

Theorem 9. The length-preserving transduction τ4 is a witness for the strict-
ness of the inclusion T (1DCSaT) ⊂ T (1DNESaT).

With almost literally the same proof as in the previous theorem the next
corollary can be shown.

Corollary 10. The transductions { (ananv$, vR$an$) | n ≥ 1, v ∈ {a, b}∗ }
and { (amanv$, vR$am−n$) | m ≥ 1, n ≥ 0, v ∈ {a, b}∗ } do not belong to the
family T (1DCSaT). ut

The final comparison separates the most general family T (1DSaT) of trans-
ductions considered here from the ‘next’ weaker family of transductions realized
by non-erasing transducers. As before, the witness transduction relies on an in-
put language that is accepted by the weaker devices. We define the transduction
τ5 = { (amanv$, vR$am−n$) | m ≥ 1, n ≥ 0, v ∈ {a, b}∗ }.
Example 11. The transduction τ5 is realized by the stack transducer

M = 〈{q0, q1, . . . , q4, q+}, {a, b, $}, {A,B, $,⊥}, {a, b, $}, δext, δint, q0,⊥, {q+}〉,
where the transition functions are as follows. Let X ∈ {A,B, $}.

(1) δext(q0, a,⊥) = (q0, A⊥, λ)
(2) δext(q0, a, A) = (q0, AA, λ)
(3) δext(q0, $, A) = (q1, A, λ)

(4) δext(q1, a, A) = (q1, λ, λ)
(5) δext(q1, $,⊥) = (q2, $⊥, λ)
(6) δext(q1, $, A) = (q2, $A, λ)

(7) δext(q2, a,X) = (q2, AX, λ)
(8) δext(q2, b,X) = (q2, BX, λ)

(9) δext(q2, $, $) = (q4, λ, $)
(10) δext(q2, $, A) = (q3, λ, a)
(11) δext(q2, $, B) = (q3, λ, b)

(12) δext(q3, λ, A) = (q3, λ, a)
(13) δext(q3, λ,B) = (q3, λ, b)
(14) δext(q3, λ, $) = (q4, λ, $)

(15) δext(q4, λ, A) = (q4, λ, a)
(16) δext(q4, λ,⊥) = (q+,⊥, $)

8 S. Bensch, J. Björklund, M. Kutrib

Given an input amanv$, the 1DSaT M starts to read the prefix am with
the Transitions (1)–(3) whereby Am is successively pushed onto the stack and
nothing is emitted. Then Transition (4) reads the following a’s as long as n ≤ m,
whereby as many stack symbols are popped as input symbols are read. If n > m,
the computation blocks when the bottom-of-stack symbol appears. Otherwise,
Transitions (5) and (6) read the next $ and push it on the stack. Now the stack
content is $Am−n. Next, state q2 is used to read and push the input factor v by
Transitions (7)–(11). When the last $ appears in the input with a $ at the top
of the stack, then v is empty (Transition (9)). Finally, the stack content, that
is, vR$Am−n is emitted by Transitions (12)–(15). In the last step, the closing $

is emitted by Transition (16) that drives M into the accepting state q+. �

Based on transduction τ5 the next separation is shown.

Theorem 12. The transduction τ5 is a witness for the strictness of the inclusion
T (1DNESaT) ⊂ T (1DSaT).

Finally, we can derive the relationships between the family T (PDT) with all
families of stack automata transductions considered. Since T (PDT) is properly
included in T (ndi-1DSaT) (Theorem 2), it is properly included in T (1DSaT).
With all other families we obtain incomparabilities as follows. By Corollary 4
there is a transduction in T (ndi-1DCSaT) not belonging to T (PDT). On the
other hand, the stack transducer of Example 11 is in fact a pushdown trans-
ducer, since δint is completely undefined. So, transduction τ5 belongs to T (PDT).
But by Theorem 12 it does not belong even to T (1DNESaT). This implies the
following corollary.

Corollary 13. The family T (PDT) is incomparable with each of the families
T (1DNESaT), T (1DCSaT), T (ndi-1DNESaT), and T (ndi-1DCSaT).

The inclusion structure of the families in question are depicted in Figure 1.

T (1DSaT) T (1DNESaT) T (1DCSaT)

T (ndi-1DSaT) T (ndi-1DNESaT) T (ndi-1DCSaT)

T (PDT)

Fig. 1. Inclusion structure of transduction families realized by stack automata with
different properties. The solid arrows indicate strict inclusions. The family T (PDT) is
incomparable with all families to which it is not connected by a path.

Stack Transducers for Natural Language Interfaces 9

4 Regularity of Stack Languages

It is well known that the set of reachable pushdown contents in a pushdown
automaton is a regular language. Here we generalize this result to even the
strongest type of stack transducer in question. Clearly, this implies the same
result for stack automata as language acceptors.

The stack language of a stack transducer M is the set of all stack contents
that occur in some configuration of a successful computation of M .

Before we turn to the proof of the main result in this section, we consider
the notion of stack trees to model how the stack transducer transition function
interacts with the stack. Intuitively, a stack tree t stores the stack contents as
they appear in a computation, organized so that the right-most path from the
root to a leaf of t holds the current stack. Without loss of generality, we restrict
our attention to stack transducers that halt with an empty stack.

Definition 14 (Stack tree). Let M be a stack transducer with stack alpha-
bet Γ , and ρ be a computation of M on some input string w. The stack tree tρ
of ρ is created as follows. At the start of the computation, the tree consists of a
single node labeled ⊥, and we place a pointer p at this node. This is the base case.
Assume now that we have a stack tree t for the prefix ρ′ of ρ, and that p marks
one of its nodes. Depending on the next operation in ρ, the tree t is updated
accordingly (see Figures 2 and 3):

– If M pushes the symbol a ∈ Γ onto the stack, then

• if p points to a leaf v, then a new leaf v′ labeled a is created below it, an
p is set to point to v′, but

• if p points to a non-leaf v at which a tree t′ is rooted, then a new node v′

is created below v, marked with the auxiliary symbol �, t′ is moved down
and placed as the left child of v′, and a new leaf v̂ labeled a is added and
placed as the right child of v′. The pointer p is set to v̂.

– If M pops a symbol, then p is moved towards the root of t, to the closest
ancestor node that is not an auxiliary node.

Since ρ is a valid computation, tρ is well defined, and from the construction
we know that it is binary.

From here on, we denote by SΓ the set of all stack trees over the alpha-
bet Γ ∪ {�}.

The following definition is illustrated in Figure 5.

Definition 15 (Composition operators). Given t, s ∈ SΓ , we denote by

– t⊗s the stack tree obtained by adding the root of s as a child of the right-most
leaf of t, and

– t⊕s the stack tree obtained by creating a new node labeled with � and adding t
and s as its left and right subtree, respectively.

We denote by Γ⊕,⊗ the set of stack trees that can be built from the symbols in Γ ,
seen as trees of height 0, and the operators ⊕ and ⊗.

Lemma 16. For every stack alphabet Γ , we have SΓ = Γ⊕,⊗.

10 S. Bensch, J. Björklund, M. Kutrib

(a)

v ← v

v′ ←

(b)

v ←

v

←

v′

v̂

Fig. 2. Stack trees associated to a push operation of the stack transducer. Figure (a)
shows a stack tree whose tree pointer points at a leaf node v, and after a push operation
on the stack, a new leaf v′ is created and p is set to point at v′. Figure (b) shows a
stack tree whose tree pointer points at a non-leaf v, and after a push operation on the
stack, a new node v′ is created and marked with �. The subtree that was rooted at v
becomes the left child of v′.

v ← v

←

Fig. 3. Stack trees associated to a pop operation of the stack transducer. The figure
shows a stack tree whose tree pointer points at a leaf node v, and after a pop operation
on the stack, the tree pointer moves towards the root and to the closest ancestor node
that is not an auxiliary node �.

Proof. It is easy to see that every tree in Γ⊕,⊗ is the stack tree for some choice
of M , w, and ρ. So Γ⊕,⊗ ⊆ SΓ .

The fact that every tree in SΓ is in Γ⊕,⊗ can be shown by induction on the
height of the tree. The statement is true for all trees of height zero, that is, for Γ .
Assume then that the inclusion holds for all trees of height n or less. The root of
a tree t of height n+ 1 is either � or in Γ . In the first case, t can be constructed
by applying the ⊕ operator to two trees of height at most n. In the second case, t
can be constructed by applying the ⊗ operator to one tree in Γ and one tree of
height at most n. By the induction hypotheses, all trees of height at most n can
be constructed from Γ using ⊕ and ⊗. ut

Now we are prepared to show the main result of this section.

Theorem 17. The stack language of any stack transducer is regular.

Proof (Sketch). Let M = 〈Q,Σ, Γ,∆, δext, δint, q0,⊥, F 〉 be a stack transducer.

We associate every stack tree t with five characteristic functions:
⇒
t ,
⇐
t ,
→
t ,
←
t ,

Stack Transducers for Natural Language Interfaces 11

⇒
t

⇐
t

→
t
←
t

↪→
t

Fig. 4. The dashed and dotted lines indicate how the functions
⇒
t ,
⇐
t ,
→
t ,
←
t , and

↪→
t ,

respectively and in order, propagate information through the stack tree.

↪→
(t⊗ s) = ((

→
s ◦

↪→
t ◦←s) ∪ ↪→

s)∗

−→
(t⊗ s) = (

↪→
t⊗ s) ◦→s ◦

→
t

←−
(t⊗ s) =

←
t ◦←s ◦ (

↪→
t⊗ s)

=⇒
(t⊗ s) = (

↪→
t⊗ s) ◦⇒s ◦

⇒
t

⇐=

(t⊗ s) =
⇐
t ◦⇐s ◦ (

↪→
t⊗ s)

↪→
(t⊕ s) =

↪→
s

−→
(t⊕ s) =

→
s

←−
(t⊕ s) =

←
s

=⇒
(t⊕ s) =

⇒
s ◦
⇐
t ◦
⇒
t

⇐=

(t⊕ s) =
⇐
s

Table 1. The derivation of the characteristic functions for the trees t ⊗ s and t ⊕ s,
respectively, from the characteristic functions for t and s.

and
↪→
t mapping Q to 2Q. Intuitively, the functions

⇒
t and

⇐
t yield the sets of

states that are reachable from any state q by building up or deleting stack tree t,
respectively. That is, they describe how the states may change when the machine
is in external mode, either pushing or popping the stack. The remaining functions
yield the reachable states when reading the stack represented by t in internal
mode. Here, it just runs up and down the stack, so the stack itself remains
unaltered, but the steps it takes cause the states to change.

The characteristic functions are meant as a syntactic finger-print for a stack
tree. The idea is that two stack-trees are interchangeable if their characteristic
functions are the same.

By Lemma 16, every stack tree can be created from Γ through the opera-
tions ⊗ and ⊕, and the characteristic functions for t⊗ s and t⊕ s are uniquely
defined from their counterparts on t and s (see Table 1). Since Q and hence
Q → 2Q are finite, this partitions the set of stack trees into an equivalence re-
lation E of finite cardinality, that is a congruence with respect to ⊗ and ⊕. A

stack tree t corresponds to an accepting computation of M if
⇐
t (
⇒
t (q0))∩F 6= ∅,

in which case we say that t is an accepting stack tree for M . Due to the above
reasoning, a top-down nondeterministic tree automaton A can be built for the
set of accepting stack trees for M , which makes this set a regular tree language.

It is known that the path languages of the regular tree languages and some
larger language classes are regular string languages [4]. ut

12 S. Bensch, J. Björklund, M. Kutrib

The idea of using characteristic functions to express the movements of trans-
ducers on their input is due to [2].

Theorem 17 shows that a stack transducer M with a one-way read-only input
tape cannot be simulated by any stack transducer M ′ that receives its input
directly on the stack. This holds even if M is deterministic, but M ′ is allowed
to be nondeterministic. Moreover, since the intersection of regular languages is
regular, any of the following ways of providing input to a stack transducer in
place of the tape will cause the domain to be regular:

– the input is given on the stack,
– the machine guesses the input string and verifies its guess,
– the machine computes the input string on the stack, in such a way that the

entire string is on the stack at once.

References

1. Aho, A.V., Ullman, J.D.: The theory of parsing, translation, and compiling, vol. I:
Parsing. Prentice-Hall (1972)

2. Bojanczyk, M.: Transducers with origin information. Invited talk at the 3rd Inter-
national Workshop on Trends in Tree Automata and Tree Transducers, The Queen
Mary University of London (2015)

3. Braune, F., Seemann, N., Quernheim, D., Maletti, A.: Shallow local multi-bottom-
up tree transducers in statistical machine translation. In: Association for Computa-
tional Linguistics (ACL 2013). vol. 1, pp. 811–821. The Association for Computer
Linguistics (2013)

4. Drewes, F., van der Merwe, B.: Path languages of random permitting context tree
grammars are regular. Fund. Inform. 82, 47–60 (2008)

5. Ginsburg, S., Greibach, S.A., Harrison, M.A.: Stack automata and compiling. J.
ACM 14, 172–201 (1967)

6. Ginsburg, S., Greibach, S.A., Harrison, M.A.: One-way stack automata. J. ACM
14, 389–418 (1967)

7. Hibbard, T.N.: A generalization of context-free determinism. Inform. Control 11,
196–238 (1967)

8. Hopcroft, J.E., Ullman, J.D.: Sets accepted by one-way stack automata are context
sensitive. Inform. Control 13, 114–133 (1968)

9. Hori, C., Ohtake, K., Misu, T., Kashioka, H., Nakamura, S.: Weighted finite state
transducer based statistical dialog management. In: Automatic Speech Recognition
& Understanding (ASRU 2009). pp. 490–495. IEEE (2009)

10. Kutrib, M., Wendlandt, M.: On simulation costs of unary limited automata. In:
Shallit, J., Okhotin, A. (eds.) Descriptional Complexity of Formal Systems (DCFS
2015). LNCS, vol. 9118, pp. 153–164. Springer (2015)

11. Kutrib, M., Wendlandt, M.: Reversible limited automata. In: Durand-Lose, J.,
Nagy, B. (eds.) Machines, Computations, and Universality (MCU 2015). LNCS,
vol. 9288, pp. 113–128. Springer (2015)

12. Mohri, M., Pereira, F.C.N., Riley, M.: Speech recognition with weighted finite-state
transducers. In: Rabiner, L., Juang, F. (eds.) Handbook on speech processing and
speech communication, Part E: Speech recognition. Springer (2008)

13. Petrov, S.: Towards Universal Syntactic and Semantic Processing of Natural Lan-
guage. Invited talk at SLTC 2016, Uppsala University (2014)

14. Pighizzini, G., Pisoni, A.: Limited automata and regular languages. Int. J. Found.
Comput. Sci. 25, 897–916 (2014)

15. Pighizzini, G., Pisoni, A.: Limited automata and context-free languages. Fund.
Inform. 136, 157–176 (2015)

16. Wagner, K., Wechsung, G.: Computational Complexity. Reidel (1986)

Stack Transducers for Natural Language Interfaces 13

Appendix

(a) t⊗ s

t

s

(b) t⊕ s

t s

Fig. 5. Every stack tree can be composed from the stack alphabet and the auxiliary
symbol � through repeated application of the operators ⊗ and ⊕.

Proof (of Theorem 2). The inclusion claimed follows for structural reasons.
Transduction τ1 belongs to T (ndi-1DSaT) by Example 1. So, it remains to be
shown that τ1 cannot be realized by any PDT.

In contrast to the assertion assume that the transduction τ1 is realized by
the PDTM = 〈Q,Σ, Γ,∆, δext, q0,⊥, F 〉. First, we consider input words an$an$$
for n large enough. Clearly, after having read different prefixes an1$ and an2$ the
PDTM must be in different states or have different stack contents. Therefore, the
stack height grows with large n. This implies that M runs through a cycle whose
length depends only on Q and Γ while processing the prefix an$. Moreover, M
runs through a cycle while processing the next factor an as well. If the stack
height grows also in these cycles, M accesses only a constant number of symbols
on top of its stack while processing (and verifying) the input an$an. So, one
can deduce a deterministic finite automaton accepting the non-regular language
{ an$an | n ≥ 1 }. We conclude that the stack height shrinks when M runs
through cycles on the second input factor an.

Now assume that the stack height is not bounded by some constant after
having processed anan, that is, it depends on n. It follows that for input words
an$an$$ the PDT M in the end either accepts with an arbitrary stack height or
it runs through a cycle with λ-moves that empties the stack, possibly up to a
constant number of symbols. So, an input an+i$an$$, where i is a multiple of all
cycle lengths, is accepted as well. We conclude that the stack height is bounded
by a constant that depends only on Q and Γ after processing words of the
form anan. Then there must be two different numbers n1 and n2 so that M is
in the same state with the same stack content after having processed an1$an1$

and an2$an2$. If the output emitted so far contains at least two $ we obtain
a contradiction by extending the input by different suffixes. So, the outputs
produced so far contain at most one $, say an1$aj1 and an2$aj2 . Continuing
both computations with the same suffix am$ emits the same output suffix u. So,
even if j1 = j2 at most one of an1$aj1u and an2$aj2u is a correct output. The
contradiction concludes the proof. ut

14 S. Bensch, J. Björklund, M. Kutrib

Proof (of Lemma 7). In contrast to the assertion assume that transduction τ3 is
realized by some ndi-1DSaTM . In order to obtain a contradiction, we show that
in this case a non-context-free language is accepted by a deterministic pushdown
automaton M ′.

We consider the situation when M has processed an input prefix an$, for n
large enough. Up to that time nothing can have been written on the output
tape. Otherwise, assume M has already written some word that necessarily is
of the form bv or $v, for some v ∈ ∆∗. Then either the accepting computation
on input an$$ produces a pair (an$$, bvu) or the accepting computation on
input anb, produces a pair (an$$, $vu), for some u ∈ ∆∗, belonging to the
transduction realized, but not to τ3. So, on input an$$ transducer M starts to
write its output not before having read the second $. Since M is non-digging,
it has to write anan$ on the tape with the stack head on top of the stack.
This writing has to be performed by reading the sole input symbol $ left and by
λ-moves.

When processing the input prefix an, the stack head may move into the stack
and back. During such excursions of the stack head the stack content cannot be
changed, but M may read some input symbols a. The number of a’s read may
be a constant or depend on the stack content, but it cannot happen that M runs
into a loop consuming all a’s. Otherwise, the stack content would be the same
for all longer prefixes which gives a contradiction.

As in the previous proof we use finitely many stack tables that list the be-
havior of M when its stack head is moved into the stack. For every state it is
listed in which state the stack head returns to the top provided that nothing,
only a’s, or exactly one $ are read during the excursion. If M does not return
its stack head to the top under these conditions, the corresponding entry in the
table is set to undefined. Additionally, it is listed if M halts successfully with
the stack head in the stack while reading nothing in the excursion.

Now the pushdown automaton M ′ is constructed as follows. On input prefixes
of the form an basically it simulates M . In addition a stack table is maintained
as part of the state. Whenever M moves the stack head into the stack, M ′ uses
the table as follows. If M returns its stack head to the top without reading any
input symbol during the excursion, M ′ reads nothing as well. If M returns its
stack head while reading one or more a’s, M ′ reads precisely one a. In both
cases M ′ enters the state listed in the table. In all other cases M ′ halts. Further,
if M pushes some symbols, M ′ simulates this step by pushing the same symbols
together with its current table and entering the new state of M . The new table
dependent on the old one and the symbols pushed is computed and stored in
the state. Whenever M pops a symbol, M ′ simulates this step by popping as
well, entering the new state of M , and storing the table popped as new table in
the state. Since M does not write while processing the prefix, M ′ simulates M
except for the input read.

Next, we consider the infinitely many numbers N = {n1, n2, . . . } so that M
has its stack head on top of the stack after processing ani , i ≥ 1, and its next step
is not a λ-move. These numbers exist since M has to push symbols from time to
time to distinguish the number of a’s read so far. For each of this numbers, M ′

reads a unique fixed number of a’s, say, f(ni) many a’s, where f is a function. On
input ani$$ the simulation of M ′ continues as follows. If M reads the $ keeping
the stack head at the top, M ′ simulates this step directly. Otherwise it simulates

Stack Transducers for Natural Language Interfaces 15

the step and uses its table in order to know in which state to continue. Recall that
the table provides information for the both cases that M will read nothing or
the sole remaining input symbol $ during an excursion. Subsequently, M starts
to emit symbols with λ-moves, where at some time the last $ may be read. These
steps are simulated by M ′ directly or with the help of the table, whereby push
and pops are simulated as before. However, M ′ does not write anything. Instead
its reads the symbols written by M from the input. Since altogether M writes
aniani$ and halts successfully, M ′ reads aniani$ and halts successfully.

Since any computation of M on ani$$ yields an accepting computation of M ′

on af(ni)aniani$, and any accepting computation of M ′ on af(ni)aniani$

is based on a successful computation of M on ani$$ that emits aniani$, we
conclude that M accepts the language L = { af(ni)aniani$ | ni ∈ N }. A
simple pumping argument shows that L is not context free. ut

Example 18. The transduction τ4 is realized by the non-erasing stack transducer

M = 〈{q0, q1, . . . , q5, q+}, {a, b, $}, {A,B, $,⊥}, {a, b, $}, δext, δint, q0,⊥, {q+}〉,

where the transition functions are as follows.

(1) δext(q0, a,⊥) = (q0, A⊥, λ)
(2) δext(q0, a, A) = (q0, AA, λ)
(3) δext(q0, $, A) = (q1,−1, λ)

(4) δint(q1, a, A) = (q1,−1, λ)
(5) δint(q1, $,⊥) = (q2, 1, λ)
(6) δint(q2, λ, A) = (q1,+1, λ)

(7) δext(q2, λ, A) = (q3, $, λ)
(8) δext(q3, a,X) = (q3, AX, λ)
(9) δext(q3, b,X) = (q3, BX, λ)

(10) δext(q3, $, X) = (q4, X, λ)
(11) δext(q4, λ, A) = (q4,−1, a)

(12) δint(q4, λ, A) = (q4,−1, a)
(13) δint(q4, λ,B) = (q4,−1, b)
(14) δint(q4, λ, $) = (q4,−1, $)
(15) δint(q4, λ,⊥) = (q5,+1, $)
(16) δint(q5, λ, A) = (q5,+1, a)
(17) δint(q5, λ, $) = (q+, 0, $)

�

Proof (of Theorem 9). By Example 18, transduction τ4 belongs to T (1DNESaT).
The inclusion itself follows for structural reasons. It remains to be shown that τ4
does not belong to the family T (1DCSaT). In contrast to the assertion assume
τ4 is realized by the 1DCSaT M = 〈Q,Σ, Γ,∆, δext, δint, q0,⊥, F 〉.

First we note that M cannot write anything to the output tape before having
read the last $ from the input. Otherwise the input can always be extended such
that the last symbol before the $ does not match the first symbol already written.
Therefore, the writing has to be performed entirely by λ-moves at the end of the
input.

Since M is checking, the stack content cannot be changed after the stack
head has moved into the stack. Assume that there is some n0 ≥ 1 such that M
moves its stack head into the stack at some step while processing the input prefix

16 S. Bensch, J. Björklund, M. Kutrib

an0$an0$. In particular, this implies that for all v ∈ {a, b}∗ the successful compu-
tation on input an0$an0$v$ starts to read v with the same stack content s ∈ Γ ∗,
the same stack head position 1 ≤ p ≤ |s|, and the same state, and that the
stack content does not change anymore. Since nothing is written until that time
step, one can construct a finite-state transducer M ′ from M that realizes the
transduction { (v$, vR$) | v ∈ {a, b}∗ }. To this end, the fixed stack content s as
well as the stack head position is maintained as part of the states of M ′. Now,
while reading the input v$, transducer M ′ simulates the behavior of M directly
until the first $ has been written. From now on, the simulation continues but
nothing is written anymore.

Since it is well known that the transduction { (v$, vR$) | v ∈ {a, b}∗ } cannot
be realized by any finite-state transducer, we obtain a contradiction to the as-
sumption that there is some n0 ≥ 1 such that M moves its stack head into the
stack at some step while processing the input prefix an0$an0$.

Next, for all n ≥ 1 we consider the input an$an$$, where we know from
above that M does not move the stack head into the stack before having read
the second $. Notice that M can only push a constant number of symbols in a
consecutive sequence of λ-moves. Otherwise it would run into an infinite loop.
The idea is to simulate M by so-called 1-limited automata. In general, a k-limited
automaton is a linear bounded automaton that may rewrite each tape cell only
in the first k visits, where k is a fixed constant. Afterwards the cells can still
be visited any number of times, but without rewriting their contents [7, 10, 11,
14, 15]. The class of 1-limited automata captures the regular languages [16]. The
idea of the construction of a 1-limited automaton M ′ that accepts the language
{ an$an$$ | n ≥ 1 } is as follows. Automaton M ′ simulates M directly on the
input prefix anan on which M only pushes symbols. The symbols pushed by
M are written on the current tape square by M ′. If nothing is pushed, a special
empty symbol is written. In this way, M ′ rewrites the visited part of its tape by
the stack content pushed by M . After processing the input prefix, M ′ continues
to simulate M directly but ignoring the output. The sole remaining input symbol
is handled by M ′ in its states. When M moves its stack head, M ′ moves as well
to find the stack symbol that M sees. Finally, M ′ accepts if M halts successfully.
So, the 1-limited automaton M ′ accepts a non-regular language, a contradiction.
We conclude that τ4 does not belong to the family T (1DCSaT). ut

Proof (of Theorem 12). By Example 11, transduction τ5 belongs to T (1DSaT).
The inclusion itself follows for structural reasons. It remains to be shown that τ5
does not belong to the family T (1DNESaT). In contrast to the assertion assume
τ5 is realized by the 1DNESaT M = 〈Q,Σ, Γ,∆, δext, δint, q0,⊥, F 〉. As in the
previous proof, we first note that M cannot write anything to the output tape
before having read the last $ from the input. Otherwise the input can always be
extended such that the last symbol before the $ does not match the first symbol
already written. Therefore, the writing has to be performed entirely by λ-moves
at the end of the input.

So, on input prefix amanv the non-erasing transducer M reads input sym-
bols, pushes symbols to the stack, and may move the stack head into the stack.
Next we turn to show that M never reads more than |Q| many consecutive sym-
bols a or more than |Q| many symbols from v without pushing. We distinguish

Stack Transducers for Natural Language Interfaces 17

three similar cases and contrarily assume first that M reads c > |Q| symbols
from the prefix am without pushing. The computation is as follows, where the
configuration with state q1 is reached by a push operation and then there are no
further push operations until the configuration with state q2 is reached:

(q0, a
m,⊥, λ, 1) `+ (q1, a

m−j , u1, λ, 1) `+ (q2, a
m−j−c, u1, λ, p2).

Now we adjust the input to aj+iajv$, where 0 ≤ i < c, obtain the computation

(q0, a
j+iajv$,⊥, λ, 1) `+ (q1, a

iajv$, u1, λ, 1) `+ (q2,i, $a
jv, u1, λ, 1)

and consider the configuration that is reached just before the next push operation
necessarily takes place if the input is long enough:

(q1, a
iajv$, u1, λ, 1) `+ (q2,i, $a

jv, u1, λ, 1) `+ (q3,i, w3,i, u1, λ, 1).

where the next step is a push operation and w3,i is a non-empty suffix of ajv$.
Since 0 ≤ i < c and c > |Q|, there are at least two values for i, say i1 and i2, so
that q3,i1 = q3,i2 = q3 are equal. So, we have the computations

(q0, a
j+i1ajv$, u1, λ, 1) `+ (q3, w3,i1 , u1, λ, 1)

and
(q0, a

j+i2ajv$, u1, λ, 1) `+ (q3, w3,i2 , u1, λ, 1).

If w3,i1 = w3,i2 the contradiction follows since the output for both different in-
puts would be the same. On the other hand, if w3,i1 6= w3,i2 let w3,i1 be the
longer one, that is, w3,i1 = w′w3,i2 , for some non-empty w. Continuing from
configuration (q3, w3,i1 , u1, λ, 1) transducer M will emit vR$ai1$ and continu-
ing from configuration (q3, w3,i2 , u1, λ, 1) will generate the output vR$ai2$. But
now removing the factor w′ from the input implies that on an input beginning
with aj+i1$ the output vR$ai2$ is generated, a contradiction.

For the two remaining cases that M reads c > |Q| symbols from the factor an

or from the suffix v without pushing, contradictions are obtained along the same
line. It may happen that M reads some $ without pushing, but at most c symbols
before and c symbols after the $. Otherwise one of the cases from above applies.
In total, there is a constant c0 such that M never reads more than c0 symbols
successively without pushing, in particular with the stack head inside the stack.

Next, M is simulated by a checking stack transducer M ′. To this end, again
finitely many stack tables are used that list the behavior of M when its stack
head is moved into the stack. For every state it is listed in which state the
stack head returns to the top and which factors of the input is read during the
excursion. At the end of the input, M ′ can simulate M directly by moving the
stack head into the stack if necessary. Note, that at the end of the input M can
only push a constant number of symbols without running into an infinite loop.

Now a contradiction follows by Corollary 10 saying that τ5 does not belong
to T (1DCSaT). ut

