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Abstract

Topology optimization is a framework for finding the optimal layout of material within a
given region of space. In material distribution topology optimization, a material indicator
function determines the material state at each point within the design domain. It is well
known that naive formulations of continuous material distribution topology optimization
problems often lack solutions. To obtain numerical solutions, the continuous problem is
approximated by a finite-dimensional problem. The finite-dimensional approximation
is typically obtained by partitioning the design domain into a finite number of elements
and assigning to each element a design variable that determines the material state of that
element. Although the finite-dimensional problem generally is solvable, a sequence of
solutions corresponding to ever finer partitions of the design domainmay not converge; that
is, the optimized designs may exhibit mesh-dependence. Filtering procedures are amongst
the most popular methods used to handle the existence issue related to the continuous
problem as well as the mesh-dependence related to the finite-dimensional approximation.
Over the years, a variety of filters for topology optimization have been presented.
To harmonize the use and analysis of filters within the field of topology optimization,

we introduce the class of 𝑓𝑊-mean filters that is based on the weighted quasi-arithmetic
mean, also known as the weighted generalized 𝑓-mean, over some neighborhoods. We
also define the class of generalized 𝑓𝑊-mean filters that contains the vast majority of filters
for topology optimization. In particular, the class of generalized 𝑓𝑊-mean filters includes
the 𝑓𝑊-mean filters, as well as the projected 𝑓𝑊-mean filters that are formed by adding a
projection step to the 𝑓𝑊-mean filters.
If the design variables are located in a regular grid, uniform weights are used within

each neighborhood, and equal sized polytope shaped neighborhoods are used, then a
cascade of generalized 𝑓𝑊-mean filters can be applied with a computational complexity
that is linear in the number of design variables. Detailed algorithms for octagonal shaped
neighborhoods in 2D and rhombicuboctahedron shaped neighborhoods in 3D are provided.
The theoretically obtained computational complexity of the algorithm for octagonal shaped
neighborhoods in 2D has been numerically verified. By using the same type of algorithm
as for filtering, the additional computational complexity for computing derivatives needed
in gradient based optimization is also linear in the number of design variables.
To exemplify the use of generalized 𝑓𝑊-mean filters in topology optimization, we

consider minimization of compliance (maximization of global stiffness) of linearly elastic
continuum bodies. We establish the existence of solutions to a version of the continuous
minimal compliance problem when a cascade of projected continuous 𝑓𝑊-mean filters
is included in the formulation. Bourdin’s classical existence result for the linear density
filter is a partial case of this general theorem for projected continuous 𝑓𝑊-mean filters.
Inspired by the works of Svanberg & Svärd and Sigmund, we introduce the harmonic
open–close filter, which is a cascade of four 𝑓𝑊-mean filters. We present large-scale
numerical experiments indicating that, for minimal compliance problems, the harmonic
open–close filter produces almost binary designs, provides independent size control on
both material and void regions, and yields mesh-independent designs.
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Sammanfattning

Strukturoptimering är ett samlingsnamn för ett flertal metoder som syftar till att utforma
elastiska strukturer på ett optimalt sätt med avseende på exempelvis hållfasthet och vikt.
Det på förhand bestämda område som begränsar den elastiska strukturens utbredning
brukar kallas för designdomänen. Bland strukturoptimeringsmetoderna är topologiop-
timering den mest allmänna. I topologioptimering bestäms förutom storlek och form
även topologiska egenskaper. Till materiefördelningens topologiska egenskaper räknas hur
många hål den innehåller samt hur dess olika delar hänger samman med varandra. Det är
just förmågan att optimera de topologiska egenskaperna som skiljer topologioptimering
från mindre allmänna strukturoptimeringsmetoder såsom storleks- eller randformsop-
timering. Materietillståndet i varje punkt i designdomänen beskrivs med hjälp av en
funktion som kallas materieindikeringsfunktion. Målet med topologioptimeringen är
således att bestämma den optimala materieindikeringsfunktionen. I allmänhet saknar
dock det resulterande optimeringsproblemet lösning, såvida inte ytterligare åtgärder vidtas.

I syfte att generera numeriska lösningar kan det oändligtdimensionella problemet approx-
imeras med ett ändligtdimensionellt problem. Den ändligtdimensionella approximationen
erhålls genom att indela designdomänen i ett ändligt antal delområden och därmed blir
målet att optimera varje delområdes materietillstånd. Fördelen med det ändligtdimen-
sionella problemet är att detta i allmänhet är lösbart. Emellertid saknas garanti för att en
följd av lösningar, hörande till allt finare indelningar av designdomänen, konvergerar. Det
som typiskt händer är att när indelningen av designdomänen förfinas uppenbarar sig allt
finare strukturer i den optimerade materiefördelningen. Topologioptimeringsproblem som
beter sig på detta sätt brukar kallas nätberoende. Användningen av filter hör till de mest
populärametoderna för att hantera lösbarhetsproblematiken hos det oändligtdimensionella
problemet, såväl som för att hantera nätberoende hörande till den ändligtdimensionella
approximationen. Något förenklat kan man se det som att små strukturer filtreras bort.
Idén att använda filter för topologioptimering kommer ursprungligen från bildanalysen,
där filter till exempel används för att reducera brus i bilder. Under årens lopp har ett stort
antal filter med olika egenskaper föreslagits för topologioptimering.
Med syftet att harmonisera användningen av filter inom topologioptimering har vi

introducerat klassen av 𝑓𝑊-medelvärdesfilter som bygger på de kvasiaritmetiska medelvär-
dena. Mer precist beräknas för varje delområde i indelningen av designdomänen ett
viktat kvasiaritmetiskt medelvärde över delområdets grannskap. Med ett delområdes
grannskap menas en samling av till detta delområde närliggande delområden. De kvasiar-
itmetiska medelvärdena liknar på många sätt det vanliga aritmetiska medelvärdet men
med det viktiga undantaget att de kvasiaritmetiska i allmänhet är icke-linjära. För att
kunna beskriva de flesta filtren som används för topologioptimering har vi även introduc-
erat klassen av generaliserade 𝑓𝑊-medelvärdesfilter. Speciellt innefattas de redan nämnda
𝑓𝑊-medelvärdesfiltren och även så kallade projicerade 𝑓𝑊-medelvärdesfilter i denna klass.
För att erhålla ytterligare filter med bättre egenskaper kan ett antal filter kombineras i en
kaskad.
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Om designdomänen indelas på ett reguljärt sätt (exempelvis i ett rutnät), om alla delom-
råden inom ett givet grannskap tilldelas samma vikt och om alla grannskap är formade
som en och samma polytop (flerdimensionell motsvarighet till månghörningarna) så växer
antalet aritmetiska operationer (+,−, ⋅, /) som krävs för att applicera en kaskad av gen-
eraliserade 𝑓𝑊-medelvärdesfilter proportionellt med antalet delområden i indelningen.
Antalet aritmetiska operationer är ett mått på algoritmens komplexitet och kan användas
för att uppskatta tiden det tar att applicera filtret. Den relativt sett låga komplexiteten för
den föreslagna algoritmen öppnar upp för större (finare indelningar) problem samt för
filterkaskader som tidigare ansetts för krävande. Vi beskriver i detalj algoritmen för spe-
cialfallen med oktagonformade grannskap i 2D och rombkuboktaederformade grannskap
i 3D. Den teoretiska uppskattningen av komplexiteten för algoritmen i fallet med oktagon-
formande grannskap i 2D har verifierats numeriskt genom att mäta hur beräkningstiden
beror på antalet delområden i indelningen av designdomänen. Om optimeringsproblemet
är sådant att det är möjligt att beräkna derivator, så kan effektiva gradientbaserade op-
timeringsalgoritmer användas för dess lösning. Vi visar att om samma typ av algoritm
används som vid filtreringen så är den extra komplexiteten, relaterad till en kaskad av
generaliserade 𝑓𝑊-medelvärdesfilter, för beräkning av derivator också proportionell mot
antalet delområden i indelningen av designdomänen.

Ett klassiskt topologioptimeringsproblem är att finna den materiefördelning som under
en given last uppvisar störst styvhet (minst eftergivlighet, så kallad komplians). Mate-
rialet antas vara linjärt elastiskt, vilket innebär att de uppkomna deformationerna står i
proportion till den påförda lasten samt att materialet återtar sin ursprungliga form om
lasten avlägsnas. Utan begränsning av materiefördelningens maximala volym maximeras
styvheten då hela designdomänen fylls med material. För att göra problemet intressant
införs därför en begränsning av materiefördelningens maximala volym. Vi bevisar att
en kaskad av projicerade 𝑓𝑊-medelvärdesfilter kan användas för att garantera existens
av lösningar till det oändligtdimensionella problemet. Inspirerade av andras tidigare
arbeten introducerar vi det harmoniska open–close filtret som är en kaskad av fyra 𝑓𝑊-
medelvärdesfilter. Vi presenterar storskaliga numeriska experiment som indikerar att
det ändligtdimensionella problemet är nätoberoende när det harmoniska open–close fil-
tret används. Vidare indikerar de numeriska resultaten att detta filter gör det möjligt att
kontrollera storleken på de minsta strukturerna och de minsta hålen i materiefördelnin-
gen oberoende av varandra. Ur ett tillverkningsperspektiv är detta en mycket önskvärd
egenskap.
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1. Introduction

A central problem in engineering is to determine how to design a device with desirable
performance. As the problem is formulated, it is likely that there exists not just one, but
many designs that would satisfy our demands on the device. It is then natural to wonder
whether one can find a design that is optimal in some sense. Depending on the situation,
optimality could for instance be with respect to performance or manufacturing costs. If we
have a mathematical model that allows us to accurately predict the performance of our
devices, we can optimize without having to manufacture and experimentally evaluate a
large number of prototypes.
The complexity of finding the optimal design is related to the number of designs that

satisfy the demands. In most cases, it is not tractable to enumerate all feasible designs,
evaluate their performance, and choose the best one. As a guide towards an optimal design,
we can use mathematical programming techniques. The strategy of a typical optimization
algorithm is to iteratively update the design in order to improve the performance. We note
the resemblance of the iterative strategy of the algorithm and the methodology of a human
designer.
Design optimization methods are often classified by the generality of the update used

to modify designs, ranging from sizing optimization, via boundary shape optimization
to topology optimization in order of increasing generality. In sizing optimization, we
aim at determining the optimal sizes of the constitutive parts of a given structure, for
instance optimizing the diameters of the bars in a given truss network. Boundary shape
optimization amounts to determining not only the optimal sizes but also the optimal shapes
of the constitutive parts of a given structure by displacing the boundaries. Typically, the
connectedness of the optimized design resulting from boundary shape optimization is the
same as that of the initial design. Topology optimization is by far the most general design
optimization method, in which also the connectedness of the design is optimized. Often
topology optimization is used to find a good conceptual design that is further improved by
using boundary shape or sizing optimization.

Since Bendsøe & Kikuchi [2] introduced thematerial distribution method for the design
of elastic continuum structures in 1988, the field of topology optimization has been subject
to intense research. Today, the material distribution method has been successfully em-
ployed for topology optimization problems originating from a variety of different physical
disciplines. A comprehensive account on topology optimization and its various applica-
tions can be found in the monograph by Bendsøe & Sigmund [3] or in the more recent
reviews by Sigmund &Maute [15] and Deaton & Grandhi [8].
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2. Material distribution topology optimization

Topology optimization addresses the problem of finding the distribution of material within
a given region of space that yields the best performance. The word topology refers to that
the explored designs not only differ with respect to size and shape but also with respect to
connectedness. The following is an abstract topology optimization problem for optimizing
the layout of a material with fixed properties.

Find Ω∗ ∈ 𝒜 such that 𝐽(Ω∗) = inf
Ω∈𝒜

𝐽(Ω), (2.1)

where𝒜 denotes the set of feasible designs consisting of those subsets of the design domain
Ω𝐷 ⊂ ℝ𝑑 that satisfy all required constraints, and 𝐽 ∶ 𝒜 → ℝ is the objective function to be
minimized. Typically, the problem (2.1) includes equations describing the physical state of
the design under a specified set of data. Examples of constraints defining𝒜 are restrictions
on minimal feature and minimal hole sizes, which are imposed to ensure manufacturability
of the optimized designs. Without knowing more about the properties of𝒜 and 𝐽, we
cannot in general guarantee that the abstract problem (2.1) is well-posed. This means
in particular that there can exist non-convergent minimizing sequences. To resolve any
existence issue one can make a suitable reduction or enlargement of𝒜, and this is referred
to as restriction and relaxation, respectively [4].

Different ways of representing the designs in𝒜 give rise to different methods for solving
topology optimization problems. The most common choice is to use amaterial indicator
function 𝜌 ∶ Ω𝐷 → {0, 1} to indicate the absence (𝜌 = 0) or presence (𝜌 = 1) of material
within the design domain [3].

To obtain a numerical solution, the design domain Ω𝐷 is typically partitioned into 𝑛
elements and the aim of the optimization is to determine the design vector 𝝆 ∈ {0, 1}𝑛 that
indicates the presence or absence of material within each element. The discretization of
the problem results in a nonlinear integer optimization problem that is computationally
expensive to solve, especially for large-scale problems.
To enable the use of gradient based optimization algorithms, which are efficient for

handling a large number of design variables, the discretized problem may be relaxed
by allowing for intermediate values 𝝆 ∈ [0, 1]𝑛. For the relaxation to make sense, we
introduce a bijective material interpolation function 𝑚 ∶ [0, 1] → ℳ that interpolates
between the material properties𝑚0 ∈ ℳ of the medium that surrounds the design and
those of our fixed material𝑚1 ∈ ℳ such that𝑚(0) = 𝑚0 and𝑚(1) = 𝑚1. For instance,
in solid mechanics applications the design is typically assumed to be surrounded by void.
Using the material interpolation function, the material properties of element 𝑖 is given by
𝑚(𝜌𝑖) for 𝜌𝑖 ∈ [0, 1].

An artifact of the relaxation is that the optimized designs are not in general binary and
hence not so easy to interpret. However, by using a penalization technique, almost binary
designs are promoted. Unfortunately, an optimized design resulting from the relaxed and
penalized problem is typicallymesh dependent; that is, the solution depends strongly on the
particular partition used to discretize Ω𝐷. The mesh dependence can sometimes be traced
to lack of existence of solutions to the corresponding continuous problem. Borrvall [4]
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presents a systematic review on several techniques that aims at resolving the issue of
mesh-dependency.
One of the most popular strategies to achieve mesh-independent solutions is to use a

filtering procedure to either modify the design variables or the derivatives of the objective
function. The former type of filtering procedure is referred to as density filtering [5, 6]
and the latter sensitivity filtering [13]. (It is common practice in the field of structural
optimization to refer to the material indicator function as the density.) In the case of
a density filter 𝐅 ∶ [0, 1]𝑛 → [0, 1]𝑛, the material properties of element 𝑖 is given by
𝑚(𝐹𝑖(𝝆)) and 𝐅(𝝆) is often termed the physical design. The reason to use the term physical
design is that 𝐅(𝝆) determines the physical behavior of the design. This means that 𝐅(𝝆),
rather than 𝝆, should serve as a blueprint for manufacturing. For the same reason any
constraints on the volume or mass of the design should be imposed on 𝐅(𝝆).
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3. Optimization of linearly elastic continuum
structures

In this section, we introduce the archetypal topology optimization problem of minimizing
the compliance of a linearly elastic continuum structure under static loading. To state the
problem, we first need to examine the equations of linear elastostatics. A more detailed
account on elasticity can, for instance, be found in Gurtin [10].

3.1 Linear elastostatics

Amaterial that deforms under a load and resumes its undeformed shape when the load
is removed is called elastic. If the load-induced deformations are small, many solids are
elastic, and the relationship between the applied load and the resulting deformation is
linear. Hence, many materials behave linearly elastic when the load-induced deformations
are small. Linear elastostatics is the theory describing the equilibrium deformation and
internal stress distribution of a linearly elastic solid under a given static load in the limit of
small deformations. The region occupied by the undeformed body is often referred to as its
reference configuration. We now proceed by a review of the equations of linear elasticity.
Let Ω̃ ⊂ ℝ𝑑 be the static equilibrium configuration of a linearly elastic body under a

load, and denote its unloaded reference configuration by Ω ⊂ ℝ𝑑, where 𝑑 is the number
of spatial dimensions. The equilibrium assumption implies that the forces acting on any
sub body must balance, that is,

0 = ∫

𝜔

𝐛 +∫

𝜕𝜔

𝐭(𝐧), (3.1)

where 𝜔 ⊂ Ω̃ is the region occupied by the sub body, 𝐛 is the volume force density acting
on the body, 𝐭(𝐧) is the surface force density acting on the boundary 𝜕𝜔 of the sub body,
and 𝐧 is the outward unit normal vector to 𝜕𝜔. Since the type of measure is evident from
the domain of integration, whenever there is no risk of confusion, we omit the measure
symbol in the integrals. Cauchy’s theorem [10, p. 101] states that the surface force density
𝐭(𝐧) depends linearly on 𝐧, that is, 𝑡𝑖(𝐧) = 𝜎𝑖𝑗𝑛𝑗, where 𝜎𝑖𝑗 are the components of the
second order stress tensor 𝝈. Throughout this thesis, we use the Einstein summation
convention; that is, unless otherwise stated, in any indexed term, summation is implied for
all indices occurring twice. Using that 𝐭(𝐧) = 𝝈𝐧 together with the divergence theorem,
force balance (3.1), and that 𝜔 is an arbitrary subdomain of Ω, we conclude that

− ∇ ⋅ 𝝈 = 𝐛 in Ω̃. (3.2)

Apart from force balance, the assumption of static equilibrium also requires that the torques
acting on an arbitrary sub body must balance. By a similar argument that led to (3.2), the
balance of torques implies that

𝝈𝑇 = 𝝈 in Ω̃; (3.3)
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that is, the stress tensor must be symmetric. Due to the assumption of small deformations,
equations (3.2), (3.3), and the applied boundary conditions can be assumed to hold on the
reference configuration Ω. The displacement field 𝐮 is defined by

Ω̃ = {𝐱 + 𝐮(𝐱) ∣ 𝐱 ∈ Ω} (3.4)

and provides a link between the deformed and undeformed configurations of the body. In
linear elasticity, deformations are characterized by the second order symmetric (infinitesi-
mal) strain tensor

𝜺(𝐮) =
1

2
(∇𝐮 + ∇𝐮𝑇); (3.5)

that is, the symmetric part of ∇𝐮. The skew-symmetric part of the displacement gradient
(∇𝐮 − ∇𝐮𝑇)/2 is related to rigid rotations and hence not describing deformations of the
body.

The linear relationship between the applied load and the deformation is given by Hooke’s
generalized law

𝝈 = 𝐄𝜺(𝐮), (3.6)

where 𝐄 is the fourth order elasticity tensor having in total 𝑑4 components. However, the
number of independent components can be reduced by invoking the symmetries [10, § 29]

𝐸𝑖𝑗𝑘𝑙 = 𝐸𝑗𝑖𝑘𝑙 = 𝐸𝑖𝑗𝑙𝑘 = 𝐸𝑘𝑙𝑖𝑗 . (3.7)

The elastic energy density 𝑢 associated with the deformation of the body is given by

𝑢 =
1

2
𝝈 ∶ 𝜺 =

1

2
𝜺 ∶ 𝐄𝜺 =

1

2
𝜖𝑖𝑗𝐸𝑖𝑗𝑘𝑙𝜖𝑘𝑙 . (3.8)

Since the energy density must be positive for all nonzero strains, the elasticity tensor must
be positive definite in the following sense. There exists a constant 𝜇 > 0 such that

𝐒 ∶ 𝐄𝐒 ≥ 𝜇𝐒 ∶ 𝐒 for all 𝐒𝑇 = 𝐒. (3.9)

We assume that the body is clamped at a non-empty open part of 𝜕Ω denoted by Γ𝐷 and
subject to a surface load 𝐭 at the rest of the boundary, Γ𝐿 = 𝜕Ω ⧵ Γ𝐷. With these boundary
conditions, we finally arrive at the boundary value problem

−∇ ⋅ (𝐄𝜺(𝐮)) = 𝐛 in Ω, (3.10a)
𝐮 = 𝟎 on Γ𝐷, (3.10b)

(𝐄𝜺(𝐮))𝐧 = 𝐭 on Γ𝐿, (3.10c)

which forms the basis for topology optimization of linearly elastic continuum structures.
The predominant choice for generating numerical solutions to boundary value prob-
lem (3.10) is the finite element method. The finite element method relies on a variational
form of boundary value problem (3.10), which formally is obtained by multiplying equa-
tion (3.10a) by a test function, performing integration by parts over Ω, and invoking
boundary conditions (3.10b) and (3.10c).
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3.1.1 Variational form of linear elastostatics

As in the previous section, let Ω ⊂ ℝ𝑑 denote the unloaded reference configuration
of a linearly elastic continuum body. We assume that Ω is a bounded, connected, and
open domain with Lipschitz boundary 𝜕Ω. Moreover, we assume that 𝐛 ∈ 𝐿2(Ω)𝑑 and
𝐭 ∈ 𝐿2(Γ𝐿)

𝑑, and introduce the space of kinematically admissible displacements

𝒰 = {𝐮 ∈ 𝐻1(Ω)𝑑 ∣ 𝐮|Γ𝐷 ≡ 𝟎} , (3.11)

equipped with the norm
‖ ⋅ ‖𝒰 = ‖ ⋅ ‖𝐻1(Ω)𝑑 . (3.12)

By 𝐿2(𝐴), we denote the space of square-integrable functions on 𝐴, where 𝐴 is an open set
in ℝ𝑑 or a part of the boundary of such a set. The space of square-integrable functions on
Ω with (weak) derivatives that also are square integrable is denoted by 𝐻1(Ω).
The equilibrium displacement of the body is the solution of the following variational

form of boundary value problem (3.10).

Find 𝐮 ∈ 𝒰 such that 𝑎(𝐮, 𝐯) = ℓ(𝐯) for all 𝐯 ∈ 𝒰, (3.13)

where the energy bilinear form 𝑎 ∶ 𝒰2 → ℝ and the load linear form ℓ ∶ 𝒰 → ℝ are given
by

𝑎(𝐮, 𝐯) = ∫

Ω

𝐄𝜺(𝐮) ∶ 𝜺(𝐯) = ∫

Ω

𝐸𝑖𝑗𝑘𝑙𝜀𝑖𝑗(𝐮)𝜀𝑘𝑙(𝐯), (3.14)

ℓ(𝐯) = ∫

Ω

𝐛 ⋅ 𝐯 + ∫

Γ𝐿

𝐭 ⋅ 𝐯. (3.15)

It can be shown that both 𝑎(⋅, ⋅) and ℓ(⋅) are continuous; that is, there exist constants 𝐶1
and 𝐶2 such that

|𝑎(𝐮, 𝐯)| ≤ 𝐶1‖𝐮‖𝒰‖𝐯‖𝒰 for all 𝐮, 𝐯 ∈ 𝒰, (3.16)
|ℓ(𝐯)| ≤ 𝐶2‖𝐯‖𝒰 for all 𝐯 ∈ 𝒰. (3.17)

The positive definiteness (3.9) of 𝐄 in combination with Korn’s inequality [7, Theorem 6.15-
4], yields that 𝑎(⋅, ⋅) is𝒰-coercive; that is, there exists a positive constant 𝐶3 such that

𝑎(𝐯, 𝐯) ≥ 𝐶3‖𝐯‖
2
𝒰 for all 𝐯 ∈ 𝒰. (3.18)

Since 𝒰 is a closed subspace of 𝐻1(Ω)𝑑 all assumptions of the Lax–Milgram lemma [7,
Theorem 6.2-1] are met, and variational problem (3.13) is uniquely solvable. Solutions
to (3.13) are called weak solutions to the original boundary value problem (3.10).

3.2 Compliance minimization

In this section, we present a version of theminimal compliance problem suitable formaterial
distribution topology optimization. We use the same notation and definitions as in the
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previous section. Our aim is to find an elastic structure with fixed supports, occupying a
region within Ω with a volume not exceeding 𝑉, that exhibits the least compliance under
a given, fixed static loading. Compliance of an elastic structure is defined as the work
done by external forces ℓ(𝐮), where 𝐮 ∈ 𝒰 is the unique equilibrium displacement of the
structure subject to the given load. By comparing the bilinear form (3.14) with the elastic
energy density (3.8) and using that ℓ(𝐮) = 𝑎(𝐮, 𝐮) at equilibrium, we see that minimizing
compliance is equivalent to minimizing the elastic energy. A very compliant material yields
much when subject to load; that is, ℓ(𝐮) is large. On the other hand, a stiff material is
characterized by a small ℓ(𝐮). Hence, compliance is an inverse measure of stiffness, thus
minimizing the compliance of an elastic structure corresponds to maximizing its global
stiffness.
We introduce a relaxed material indicator function 𝜌 ∈ 𝒟, where

𝒟 = {𝜌 ∈ 𝐿∞(Ω) ∣ 0 ≤ 𝜌 ≤ 1 almost everywhere in Ω} . (3.19)

The spatially varying elastic properties of any design 𝜌 ∈ 𝒟 are assumed to be given by
𝜌̃(𝜌)𝐄, where 𝜌̃ is termed the physical density. In order to capture the effects of the spatially
varying elasticity tensor, the bilinear form in (3.14) is modified as follows,

𝑎(𝜌; 𝐮, 𝐯) = ∫

Ω

𝜌̃(𝜌)𝐄𝜺(𝐮) ∶ 𝜺(𝐯). (3.20)

The physical density 𝜌̃ ∶ 𝒟 → [𝜌, 1] is defined for 𝑥 ∈ Ω by

𝜌̃(𝜌)(𝑥) = 𝜌 + (1 − 𝜌)𝑃(𝐹(𝜌)(𝑥)), (3.21)

where 𝐹 is a filter operator that maps 𝜌 ∈ 𝒟 to the function 𝐹(𝜌) ∶ Ω → [0, 1], and 𝑃 ∶

[0, 1] → [0, 1] is a smooth and strictly increasing penalty function. For instance, 𝑃(𝑥) =
𝑥𝑝, for some 𝑝 > 1, is the penalty function used in the popular SIMP scheme [3]. The
introduction of a minimal physical density 0 < 𝜌 ≪ 1 implies that void is approximated by
a very compliant material. This approximation greatly facilitates the analysis and solution
of the topology optimization problem at hand. The idea of the penalty function is to make
the contribution of intermediate values to the stiffness of the design unproportionate to
their contribution to the volume constraint

∫

Ω

𝐹(𝜌) ≤ 𝑉; (3.22)

that is, intermediate values will increase the volume of the structure but not much increase
the stiffness.

Since |𝑎(𝜌; 𝐮, 𝐯)| ≤ |𝑎(1; 𝐮, 𝐯)| = |𝑎(𝐮, 𝐯)|, the modified bilinear form is continuous
with the same constant 𝐶1 as in (3.16). Similarly, we find that 𝑎(⋅; ⋅, ⋅) is𝒰-coercive, since

𝑎(𝜌; 𝐯, 𝐯) ≥ 𝜌𝑎(𝐯, 𝐯) ≥ 𝜌𝐶3‖𝐯‖
2
𝒰 for all 𝐯 ∈ 𝒰, (3.23)

where 𝐶3 is the constant from (3.18). As in the previous section, using the Lax–Milgram
lemma, we conclude that for each 𝜌 ∈ 𝒟 there is one and only one 𝐮 ∈ 𝒰 satisfying the
following variational problem.

Find 𝐮 ∈ 𝒰 such that 𝑎(𝜌; 𝐮, 𝐯) = ℓ(𝐯) for all 𝐯 ∈ 𝒰. (3.24)
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We define 𝐺 ∶ 𝒟 → 𝒰 such that 𝐺(𝜌) = 𝐮, where 𝐮 is the unique solution to (3.24).
The set of of feasible designs 𝒜 ⊂ 𝒟 is defined by restricting 𝒟 with the volume

constraint (3.22), that is,

𝒜 = {𝜌 ∈ 𝒟 ∣ ∫
Ω

𝐹(𝜌) ≤ 𝑉} . (3.25)

Furthermore, let 𝒰∗ denote the image of𝒜 under 𝐺; that is, 𝒰∗ = 𝐺(𝒜). We are now
ready to state the optimization problem.

Find 𝜌∗ ∈ 𝒜 and 𝐮∗ = 𝐺(𝝆∗) such that ℓ(𝐮∗) ≤ ℓ(𝐮) for all 𝐮 ∈ 𝒰∗. (3.26)

Below follows an alternative formulation of the minimal compliance problem.

Find 𝐮∗ ∈ 𝒰∗ such that ℓ(𝐮∗) = inf
𝐮∈𝒰∗

ℓ(𝐮). (3.27)

Note that if 𝜌∗ and 𝐮∗ solve problem (3.26), then 𝐮∗ solves problem (3.27). On the other
hand, if 𝐮∗ solves problem (3.27), then there exists 𝜌∗ ∈ 𝒜 such that 𝜌∗ and 𝐮∗ solve
problem (3.26). Thus, existence of solutions to (3.26) implies existence of solutions to (3.27),
and vice versa.
We will now present some facts regarding the existence of solutions to minimization

problems (3.26) and (3.27). If both filter and penalization are removed (that is, they are
replaced by identity maps) the resulting problem possesses a unique solution; in two
dimensions this problem corresponds to the so-called variable thickness sheet problem [3].
The introduction of a penalty function or a discreteness constraint of the form (1−𝜌)(𝜌−

𝜌) = 0 almost everywhere in Ω in the variable thickness sheet problem leads to ill-posed
problems [4]. In 2001, Bourdin [5] proved that there exists solutions to problem (3.27)
when using a linear filter function, realized by taking the convolution of 𝜌 by a positive
normalized kernel with compact support; that is, the penalized and linearly filtered variable
thickness sheet problem possesses at least one solution.

To solve optimization problem (3.26) numerically, with the aid of a computer, we parti-
tion the design domain into 𝑛 elements. The relaxed material indicator function is then
approximated by a piecewise constant function, here represented by the design vector
𝝆 ∈ [0, 1]𝑛. To limit a priori bias on the optimized design, it is customary to partition the
design domain by using a Cartesian grid. The use of a Cartesian grid also greatly facilitates
implementation of the finite element method and the filtering procedure. A Cartesian grid
is characterized by the number of elements in each coordinate direction 𝑛𝑖, 𝑖 ∈ {1, … , 𝑑}

and the linear size of each element ℎ = 𝑑
√𝑣, where 𝑣 is the volume of an element in the grid.

From this point and onwards, unless otherwise stated, we will consider Cartesian grids. By
using a finite element method with 𝑁 +𝑀 nodes, the approximation of the solution to the
variational formulation (3.24) satisfies

𝐊(𝝆)𝓾 = 𝐟, (3.28)

where 𝐊(𝝆) ∈ ℝ𝑁×𝑁 is the symmetric and positive definite stiffness matrix, 𝓾 ∈ ℝ𝑁 and
𝐟 ∈ ℝ𝑁 are the free nodal displacement and load vectors respectively. The remaining𝑀
nodes are located on Γ𝐷 and are hence not free to move. The stiffness matrix can be formed
by summing the contributions from all elements in the grid,

𝐊(𝝆) =

𝑛

∑

𝑖=1

[𝜌 + (1 − 𝜌)𝑃(𝐹𝑖(𝝆))] 𝐊
(𝑖), (3.29)
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where 𝐊(𝑖) is the element stiffness matrix corresponding to an element filled with material,
and 𝐅 ∶ [0, 1]𝑛 → [0, 1]𝑛 is the discrete version of the filter. The symmetry and positive
definiteness of the stiffness matrix follows from the symmetry and𝒰-coerciveness of the
bilinear form (3.20). The discrete version of the volume constraint in (3.25) is given by

𝟏𝑇𝐧𝐅(𝝆) ≤ 𝑉ℎ−𝑑 = 𝑛𝑉∗, (3.30)

where 𝟏𝐧 = (1,… , 1)𝑇 ∈ ℝ𝑛 and 𝑉∗ is the maximum allowable volume fraction. By
using 𝐟𝑇𝓾 as the discrete analogue of compliance, the discrete counterpart of optimization
problem (3.26) reads

min
(𝝆,𝓾)∈[0,1]𝑛×ℝ𝑁

𝐟𝑇𝓾

such that 𝐊(𝝆)𝓾 = 𝐟,

𝟏𝑇𝐧𝐅(𝝆) ≤ 𝑛𝑉∗.

(3.31)

As seen in (3.26), our interest lies in finding 𝝆∗ ∈ [0, 1]𝑛 such that the minimum in (3.31)
is attained at (𝝆∗, 𝓾∗), where𝓾∗ = 𝐊(𝝆∗)−1𝐟.

Since we want to use a gradient based optimization algorithm to solve (3.31), derivatives
need to be evaluated. Note that we thus need to assume that the filter function 𝐅 is
differentiable. In order to derive an expression for the objective function gradient, we
introduce a design perturbation 𝛿𝝆. Since the load 𝐟 is design independent (compare with
ℓ in (3.15)), the resulting first order perturbation of the objective function in (3.31) is given
by

𝛿(𝐟𝑇𝓾) = 𝐟𝑇𝛿𝓾, (3.32)

where 𝛿𝓾 denotes the first order perturbation of the displacement vector. By using equi-
librium equation (3.28) and the symmetry of 𝐊(𝝆), we find that

𝛿(𝐟𝑇𝓾) = 𝓾𝑇𝐊(𝝆)𝛿𝓾. (3.33)

The relation between the first order perturbations of𝓾 and 𝐊(𝝆) is found by perturbing
the equilibrium equation (3.28),

0 = 𝛿(𝐊(𝝆)𝓾 − 𝐟) = 𝛿𝐊(𝝆)𝓾 + 𝐊(𝝆)𝛿𝓾. (3.34)

Equation (3.34) and expression (3.33) yields that

𝛿(𝐟𝑇𝓾) = −𝓾𝑇𝛿𝐊(𝝆)𝓾. (3.35)

From expression (3.29), we find that

𝛿𝐊(𝝆) =
𝜕𝐊(𝝆)

𝜕𝜌𝑗
𝛿𝜌𝑗 = (

𝑛

∑

𝑖=1

𝐊(𝑖)(1 − 𝜌)𝑃′(𝐹𝑖(𝝆))
𝜕𝐹𝑖

𝜕𝜌𝑗
)𝛿𝜌𝑗 . (3.36)

Expressions (3.35) and (3.36) finally results in

𝛿(𝐟𝑇𝓾) = (
𝜕

𝜕𝜌𝑗
𝐟𝑇𝓾)𝛿𝜌𝑗 =

= (

𝑛

∑

𝑖=1

(−𝓾𝑇𝐊(𝑖)(𝝆)𝓾) (1 − 𝜌)𝑃′(𝐹𝑖(𝝆))
𝜕𝐹𝑖

𝜕𝜌𝑗
)𝛿𝜌𝑗 .

(3.37)
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By inspection of expression (3.37), we identify the sum within the large parenthesis as the
𝑗th component of ∇(𝐟𝑇𝓾). The gradient of the volume constraint function in (3.30) is
found by direct computation.
It is natural to require that increasing the value of a design variable must not decrease

any value of the physical design, that is, to require that

𝜕𝐹𝑖

𝜕𝜌𝑗
≥ 0. (3.38)

By combining the monotonicity (3.38) of 𝐅, the assumption that 𝑃′ ≥ 0 (recall that
the penalty function 𝑃 is assumed to be smooth and strictly increasing), the fact that
𝓿𝑇𝐊(𝑖)𝓿 ≥ 0 for all𝓿 ∈ ℝ𝑁, and expression (3.36), we find that

𝓿𝑇
𝜕𝐊(𝝆)

𝜕𝜌𝑗
𝓿 ≥ 0 for all𝓿 ∈ ℝ𝑁. (3.39)

The positive semidefiniteness (3.39) together with expression (3.37) implies that adding
material to the design cannot increase the compliance, that is

𝜕

𝜕𝜌𝑗
𝐟𝑇𝓾 ≤ 0. (3.40)

That all derivatives of the objective function are of the same sign greatly facilitates the solu-
tion of the optimization problem (3.31) by enabling the use of specialized algorithms such
as the optimality criteria (OC) method [3]. However, for more complicated optimization
problems, general optimization algorithms, such as the method of moving asymptotes by
Svanberg [16, 17], must be used.
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4. Density filters in topology optimization

Inspired by the use of noise reducing filters in image analysis, Sigmund [13] introduced the
sensitivity filter in which the gradient of the objective function is filtered. The sensitivity
filter is known be effective in producing mesh-independent designs [3]. However, in this
thesis, our main focus is so-called density filters where the design variables are filtered. The
first density filter considered was that of Bruns and Tortorelli [6], who defined the physical
design in element 𝑖 as a linear weighted arithmetic average over a neighborhood with fixed
(mesh-independent) radius 𝑅. Detailed comparisons of different filters for a variety of
topology optimization problems are found in the papers by Sigmund [14] and Svanberg &
Svärd [18]. In this section, we mainly discuss filters in the discretized setting. We refer to
any function 𝐅 ∶ [0, 1]𝑛 → [0, 1]𝑛 as a general filter, and given a function 𝑓 ∶ [0, 1] → ℝ,
we define the vector 𝐟(𝝆) = (𝑓(𝜌1), … , 𝑓(𝜌𝑛))

𝑇 ∈ ℝ𝑛.
A general linear filter is defined as

𝐅(𝝆) = 𝐖𝝆, (4.1)

where𝐖 = [𝑤𝑖𝑗] ∈ ℝ𝑛×𝑛 is a normalized weight matrix with non negative entries; that is,

𝐖𝟏𝐧 = 𝟏𝐧,

𝑤𝑖𝑗 ≥ 0.
(4.2)

The entries of𝐖 implicitly define neighborhoods𝒩𝑖 ⊂ {1,… , 𝑛}, 𝑖 ∈ {1, … , 𝑛} by the
relation

𝑤𝑖𝑗 > 0 if and only if 𝑗 ∈ 𝒩𝑖 . (4.3)

We say that a collection of neighborhoods is symmetric, if for any pair of elements 𝑖, 𝑗, we
have that 𝑖 ∈ 𝒩𝑗 implies that 𝑗 ∈ 𝒩𝑖. In topology optimization, it is common to use a
neighborhood shape𝒩 ⊂ ℝ𝑑 to define neighborhoods

𝒩𝑖 = {𝑗 ∶ 𝑥𝑗 − 𝑥𝑖 ∈ 𝒩} , (4.4)

where 𝑥𝑖, 𝑖 ∈ {1, … , 𝑛} are the element centroids. The predominant choice of shapes𝒩
has been to use a spherical (in 3D) or circular (in 2D) neighborhood shape with radius 𝑅
in combination with weights decaying linearly with the distance from the neighborhood
center. Intuitively the linear filter achieves mesh-independence by imposing a minimum
length scale of size about 2𝑅. We note that the introduction of a minimum length scale
often is desirable from a manufacturing point of view.

Lazarov and Sigmund [12] introduced a rather different approach to the linear filter (4.1),
where the filtered relaxed material indicator function 𝐹(𝜌) is the solution of the boundary
value problem

−𝑎2Δ𝐹(𝜌) + 𝐹(𝜌) = 𝜌 in Ω,
𝜕

𝜕𝐧
𝐹(𝜌) = 0 on 𝜕Ω,

(4.5)

where 𝑎 > 0 is a parameter similar to 𝑅. The solution of (4.5) can be written as a convolu-
tion of 𝜌 and a positive normalized Green’s function. Instead of discretizing the convolution
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integral, which would lead to an expression of the form (4.1), the effect of the filter in
the discretized setting is found by solving a discrete analogue of (4.5). We refer to filters
defined in this way by a partial differential equation (PDE) as PDE-based filters. Since
the Green’s function is positive, the entries of the resulting weight matrix are all positive.
According to (4.3) this means that each element has all elements in its neighborhood; that
is,𝒩𝑖 = {1,… , 𝑛} for all 𝑖. Moreover, the weights 𝑤𝑖𝑗 decay with the distance from the
neighborhood center 𝑥𝑖 and the decay is increased for smaller 𝑎.
A drawback with the linear density filter (4.1) is that it tends to produce optimized

designs with relatively large areas of intermediate values, hence counteracting the effect of
the penalization. More recently, a whole range of nonlinear filters, aimed at reducing the
amount of intermediate values in the final design while retaining mesh-independence, have
been presented. Different filters can lead to different designs with similar performance. It
has been argued that using a variety of filters gives the designer freedom to decide based
on other preferences than those expressed by the objective function and constraints [18].

The Heaviside filter [9] consists of applying a linear filter followed by the application of
a smooth approximation of the Heaviside step function,

𝐅(𝝆) = 𝟏𝐧 − 𝐞−𝛽𝐖𝝆 + 𝑒−𝛽𝐖𝝆, (4.6)

where 𝛽 ∈ [0,∞) is a parameter controlling the sharpness of the step function approxima-
tion. For 𝛽 = 0 the linear filter (4.1) is retrieved, and when 𝛽 → ∞ the Heaviside filter
approaches the discontinuous filter

𝐹𝑖(𝝆) = {
0 if 𝜌𝑗 = 0 for all 𝑗 ∈ 𝒩𝑖 ,

1 otherwise.
(4.7)

We note that the step in the approximation of the Heaviside step function is located at 0.
By using a different approximation of the Heaviside step function, with the step located at
𝜂 ∈ [0, 1], Wang et al. [19] presented the following variation of the Heaviside filter,

𝐅(𝝆) =
tanh(𝛽𝜂)𝟏𝐧 + 𝐭𝐚𝐧𝐡 (𝛽(𝐖𝝆 − 𝜂𝟏𝐧))

tanh(𝛽𝜂) + tanh (𝛽(1 − 𝜂))
, (4.8)

where as before 𝛽 ∈ (0,∞) is a parameter controlling the sharpness of the step function
approximation. In the limit of vanishing 𝛽, for a fixed 𝜂, the filter in (4.8) approaches
the linear filter (4.1), while for 𝛽 → ∞ and a fixed 𝜂 ∈ (0, 1) the filter approaches the
discontinuous filter

𝐹𝑖(𝝆) = {

0 if (𝐖𝝆)𝑖 < 𝜂,

1/2 if (𝐖𝝆)𝑖 = 𝜂,

1 if (𝐖𝝆)𝑖 > 𝜂.

(4.9)

The filters (4.6) and (4.8) has both been categorized as projection based filters [15], where
the termprojection refers to their capability of “projecting”𝝆 ∈ [0, 1]𝑛 onto𝐅(𝝆) ∈ {0, 1}𝑛

in the limit of large 𝛽. (As seen in (4.9), in the limit of large 𝛽 for a fixed 𝜂 ∈ (0, 1) the
filter (4.8) would actually produce physical designs with values in {0, 1/2, 1}. However,
the exceptional value 1/2 is rather improbable.) For the same reason the application of
the approximate Heaviside step function is sometimes referred to as a projection step.
Technically, even in the limit of large 𝛽, the filters (4.6) and (4.8) are not projections since
they fail to be idempotent; that is, in general 𝐅(𝐅(𝝆)) ≠ 𝐅(𝝆).
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In 2007 Sigmund [14] introduced filters based onmorphology operators [11] from image
analysis. These morphology-based filters are not generated by adding a projection step to
the linear filter (4.1). The dilate filter [14], which is based on the exponential average, is
given by

𝐅(𝝆) =
1

𝛽
ln (𝐖𝐞𝛽𝝆) , (4.10)

where 𝛽 ∈ (0,∞) is a parameter controlling the properties of the filter. In the limit of
vanishing 𝛽, the dilate filter (4.10) approaches the linear filter (4.1), while for 𝛽 → ∞, the
dilate filter approaches the discontinuous moving maximum filter

𝐹𝑖(𝝆) = max
𝑗∈𝒩𝑖

𝜌𝑗 . (4.11)

The term dilate relates to the fact that on a binary design, the moving maximum filter (4.11)
dilates the regions corresponding to material. More precisely, if element 𝑖 is occupied with
material then the moving maximum filter fills all elements 𝑗 that have 𝑖 in their neighbor-
hood with material. We remark that if the collection of neighborhoods is symmetric, then
this amounts to filling the entire neighborhood𝒩𝑖 with material.
A means to arrive at new filters is to use the flip transformation 𝝆 → 𝟏𝐧 − 𝝆, which

interchanges the roles of material and void [18]. Applying the flip transformation to the
dilate filter (4.10) leads to the erode filter [14]

𝐅(𝝆) = 𝟏𝐧 −
1

𝛽
ln (𝐖𝐞𝛽(𝟏𝐧−𝝆)) = −

1

𝛽
ln (𝐖𝐞−𝛽𝝆) , (4.12)

where we have used the normalization of𝐖 to reach the rightmost form. As for the dilate
filter (4.10), the erode filter (4.12) approaches the linear filter (4.1) in the limit of vanishing
𝛽. However, when 𝛽 → ∞ the erode filter approaches the discontinuous moving minimum
filter

𝐹𝑖(𝝆) = min
𝑗∈𝒩𝑖

𝜌𝑗 . (4.13)

Since the moving minimum filter can be obtained by using the flip transformation on the
moving maximum filter (4.11), it acts by dilating the void regions, which is the same as
eroding the material regions. More precisely, if element 𝑖 is empty (occupied with void)
the moving minimum filter empties all elements 𝑗 that have 𝑖 in their neighborhood. We
remark that if the collection of neighborhoods is symmetric, then this amounts to removing
all material within the neighborhood𝒩𝑖.
Svanberg and Svärd [18] introduced erode-like filters based on the remaining two

Pythagorean means1, the harmonic erode filter

𝐅(𝝆) = (𝐖(𝝆 + 𝛼𝟏𝐧)
−1)

−1
− 𝛼𝟏𝐧, (4.14)

and the geometric erode filter

𝐅(𝝆) = 𝐞𝐖𝐥𝐧(𝝆+𝛼𝟏𝐧) − 𝛼𝟏𝐧, (4.15)

respectively, where the parameter 𝛼 ∈ (0,∞) controls the behavior of the filters. For
𝛼 → ∞ both the harmonic (4.14) and the geometric erode filter (4.15) approach the linear

1The Pythagorean means consists of the arithmetic, the harmonic and the geometric mean.
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filter (4.1). These filters are in general not approaching the moving minimum filter when
𝛼 → 0. However, for any 𝝆 ∈ [0, 1]𝑛 such thatmin𝑗∈𝒩𝑖

𝜌𝑗 = 0, we find that 𝐹𝑖(𝝆) approaches
0 = min

𝑗∈𝒩𝑖
𝜌𝑗 as 𝛼 → 0. Dilate-like filters are obtained from the erode-like filters (4.14)

and (4.15) by using the flip transformation [18].
The bilateral density filter [20] takes a form that is rather different from the filters

presented so far, namely

𝐅(𝝆) =
𝐖̂(𝝆)𝝆

𝐖̂(𝝆)𝟏𝐧
, (4.16)

where 𝐖̂(𝝆) = 𝐖 ⋅ [𝑤̃(|𝜌𝑖 − 𝜌𝑗|)] ∈ ℝ𝑛×𝑛, ⋅ denotes the element wise product, and
𝑤̃ ∶ [0, 1] → (0,∞) is a non increasing function. The value of the bilateral density
filter (4.16) at element 𝑖 consists of a nonlinearly weighted average over the neighborhood
𝒩𝑖, where the weights not only depend on the physical location of the elements (𝑤𝑖𝑗) but
also on the deviation of the values from 𝜌𝑖 (𝑤̃(|𝜌𝑖 − 𝜌𝑗|)).

All the filters (4.10) to (4.16) could be termed internal since they respect the actual range
of 𝝆,

min
𝑗∈𝒩𝑖

𝜌𝑗 ≤ 𝐹𝑖(𝝆) ≤ max
𝑗∈𝒩𝑖

𝜌𝑗 . (4.17)

We remark that the projection based filters (4.6) and (4.8) in general violate condition (4.17).
Oneway of constructing filters with newproperties is to apply different filters in sequence;

for instance by combining a dilate (𝐃) and an erode (𝐄) filter we arrive at either the close
(𝐄𝐃) or the open (𝐃𝐄) filter depending on the order of application [14]. In the limit of
maximum and minimum operators, the close filter removes holes (void regions) smaller
than the filter size, while the open filter removes structural elements (material regions)
smaller than the filter size. Hence, the open filter provides minimum length scale control
on structural elements, while the close filter provides minimum length scale control on
void regions. Combining the close and open filters results in the close-open (𝐃𝐄𝐄𝐃) or
open-close (𝐄𝐃𝐃𝐄) filters that in some cases provide minimum length scale control on
both material and void regions [14].

We see that many filters used in topology optimization are based on weighted averages
over some neighborhoods. Computation of the average over𝒩𝑖 requires 𝑂(|𝒩𝑖|) arith-
metic operations; that is, the computational complexity grows linearly with the size of the
neighborhood. If neighborhoods with fixed physical sizes are used we have that |𝒩𝑖| ∝ 𝑛

for all 𝑖, which shows that the computational complexity of computing averages over all
neighborhoods can be estimated as 𝑂(𝑛2). By using a properly tuned multigrid conjugate
gradient method the linear system (3.28) can be solved in 𝑂(𝑛) operations [1]. Hence,
although the leading coefficient (∼ |𝒩𝑖|/𝑛) in the 𝑂(𝑛2) estimate is rather small in prac-
tice, the computational cost for filtering can be substantial for large scale problems. Some
optimization algorithms, such as the OC method mentioned at the end of the previous
section, relies on multiple evaluations of the volume constraint (3.30) for computing each
design update. The computational complexity of such algorithms are in general dependent
on the computational complexity of the filtering procedure. By using the PDE approach,
described in conjunction with boundary value problem (4.5), together with a properly
tuned multigrid method, linearly weighted arithmetic averages over all neighborhoods
can be computed in 𝑂(𝑛) operations. However, in this case, we are not free to choose the
weights since𝐖 is dictated by the PDE.

When using a gradient based optimization method, the computational cost of evaluating
gradients must also be considered. In particular we are interested in determining the extra
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cost related to the filter. To this end; let 𝐽 be a function that depends on 𝝆 via 𝐅(𝝆), then
the components of ∇𝐽 can be found by using the chain rule,

𝜕𝐽

𝜕𝜌𝑗
=

𝜕𝐽

𝜕𝐹𝑖

𝜕𝐹𝑖

𝜕𝜌𝑗
. (4.18)

In the absence of a filter; that is, if 𝐅(𝝆) = 𝝆 for all 𝝆, then 𝜕𝐽/𝜕𝐹𝑗 would be the 𝑗th
component of ∇𝐽. Therefore, expression (4.18) may be interpreted as a modification or
even as a filtering (compare with (4.1)) of the unfiltered gradient of 𝐽. Furthermore, expres-
sion (4.18) shows that the additional cost related to the filter can be found by considering
𝝃𝑇∇𝐅 for some 𝝃 ∈ ℝ𝑛.
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5. Thesis contributions

In this section, we summarize some of the thesis contributions.

5.1 General filters and the class of 𝑓𝑊-mean filters

In paper II, we present some typical requirements on a general filter function 𝐅 ∶ [0, 1]𝑛 →
[0, 1]𝑛. The filter should be increasing in the sense that for any pair 𝑖, 𝑗 and any 𝛿 ≥ 0,

𝐹𝑖(𝝆 + 𝛿𝐞𝐣) ≥ 𝐹𝑖(𝝆), (5.1)

where 𝐞𝐣 denotes the 𝑗th basis vector of ℝ𝑛. Condition (5.1) stems from the idea that
increasing a design variable should not decrease any value in the physical design. We show
that, if binary physical designs are to be attainable, a consequence of the monotonicity
condition (5.1) is that we are forced to require

𝐅(𝟎𝐧) = 𝟎𝐧,

𝐅(𝟏𝐧) = 𝟏𝐧,
(5.2)

where 𝟎𝐧 = (0,… , 0)𝑇 ∈ ℝ𝑛. It is also natural to require that the physical design 𝐅(𝝆)
is sensitive to changes in the design vector 𝝆. A rather weak assumption to guarantee
sensitivity to design changes, is to require that for each 𝝆 ∈ [0, 1)𝑛 there exists an 𝑖 and a
𝑗 such that 𝐹𝑖(𝝆 + 𝛿𝐞𝐣) > 𝐹𝑖(𝝆) for any sufficiently small positive 𝛿; that is, there exists
𝜖 > 0 such that

𝐹𝑖(𝝆 + 𝛿𝐞𝐣) > 𝐹𝑖(𝝆) for all 0 < 𝛿 < 𝜖. (5.3)

In paper I, we introduce the class of 𝑓𝑊-mean filters, based on the quasi-arithmetic
mean, also known as the generalized 𝑓-mean. With the notation of the previous section,
the 𝑓𝑊-mean filters are of the form

𝐅(𝝆) = 𝐟−1(𝐖𝐟(𝝆)), (5.4)

where 𝑓 ∶ [0, 1] → ℝ is a smooth and invertible function with nonzero derivative, and
𝐖 ∈ ℝ𝑛×𝑛 is a weight matrix satisfying (4.2). The entries of the Jacobian of the filter (5.4)
are given by

𝜕𝐹𝑖

𝜕𝜌𝑗
= 𝑤𝑖𝑗

𝑓′(𝜌𝑗)

𝑓′(𝐹𝑖(𝝆))
. (5.5)

Note that, since 𝑖 and 𝑗 are free indices, summation is not implied in expression (5.5). By
using that a continuous function defined on an interval is invertible if and only if it is
strictly monotone, that 𝑓′ ≠ 0 by assumption, and that𝑤𝑖𝑗 ≥ 0, we find that the 𝑓𝑊-mean
filters (5.4) are increasing. That is,

𝜕𝐹𝑖

𝜕𝜌𝑗
≥ 0, (5.6)
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where equality holds if and only if 𝑤𝑖𝑗 = 0. Furthermore, since 𝐖 is normalized, the
𝑓𝑊-mean filters have the property of mapping a vector with equal entries to itself; that is,
for any 𝑐 ∈ [0, 1],

𝐅(𝑐𝟏𝐧) = 𝑐𝟏𝐧. (5.7)

The above identity implies that the 𝑓𝑊-mean filters satisfy (5.2). Since the properties (4.2)
of𝐖 imply that𝐖𝐟(𝝆) ∈ [𝑓min, 𝑓max]

𝑛, we find that the 𝑓𝑊-mean filters are internal;
that is, they satisfy (4.17). The class of 𝑓𝑊-mean filters contains the linear filter (4.1), the
dilate (4.10) and erode (4.12) filters, as well as the Pythagorean filters (4.14) and (4.15). To
also incorporate the projection based filters (4.6) and (4.8), which are not 𝑓𝑊-mean filters,
we introduce the class of generalized 𝑓𝑊-mean filters, of the form

𝐅(𝝆) = 𝐠(𝐖𝐟(𝝆)), (5.8)

where 𝑔 ∶ 𝑓([0, 1]) → [0, 1] is a smooth function with 𝑔(𝑓(0)) = 0 and 𝑔(𝑓(1)) = 1.
We note that definition (5.8) makes sense even if 𝑓 is not a bijection. In paper I, we give a
sufficient condition on the filter function (5.8) to guarantee the invertibility of 𝑓. However,
the requirements on a general filter given above are too weak to force 𝑓 to be invertible.
Nevertheless, if 𝑓 is invertible, then by defining ℎ = 𝑔 ∘ 𝑓, we find that the generalized
𝑓𝑊-mean filter (5.8) is nothing but a projected 𝑓𝑊-mean filter; that is,

𝐅(𝝆) = 𝐡 (𝐟−1(𝐖𝐟(𝝆))) . (5.9)

In paper I, we present an algorithm that applies 𝑓𝑊-mean filters with linear compu-
tational complexity. The prerequisites for the algorithm are that the design variables are
located in a regular grid, that neighboring elements are weighted equally, and that the
neighborhood shape is a polytope. With equal weighting within a neighborhood, we can
compute the average over the neighborhood by first summing and then dividing by the
number of elements,

𝑤𝑖𝑗𝑓(𝜌𝑗) = ∑

𝑗∈𝒩𝑖

1

|𝒩𝑖|
𝑓(𝜌𝑗) =

1

|𝒩𝑖|
∑

𝑗∈𝒩𝑖

𝑓(𝜌𝑗). (5.10)

The key to achieve linear computational complexity is to use a recursive update strategy
for computing the neighborhood sums instead of computing each sum from scratch. More
precisely, given the sum over𝒩𝑖, we can determine the sum over an adjacent neighborhood
𝒩𝑗 by updating, that is,

∑

𝑘∈𝒩𝑗

= ∑

𝑘∈𝒩𝑖

+ ∑

𝑘∈𝒩𝑗⧵𝒩𝑖

− ∑

𝑘∈𝒩𝑖⧵𝒩𝑗

. (5.11)

Furthermore, since the facets of a polytope in ℝ𝑑 are polytopes in ℝ𝑑−1, the update can
be performed in a recursive manner. We show that the computational complexity of
the presented summation algorithm can be bounded independent of the physical size of
the neighborhoods. However, the computational complexity grows with the complexity
of the neighborhood polytope. We present in detail the summation algorithm for two
special cases, octagonal and rhombicuboctahedron shaped neighborhoods in 2D and 3D,
respectively, and determine their computational complexity to leading order. The sizes
of the octagon and rhombicuboctahedron are controlled by a parameter 𝑟, called the
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Figure 1: Run times required to compute the neighborhood sums on square domains of size 𝑛 with
octagonal neighborhoods of size 𝑟 = √𝑛/20 and 𝑟 = √𝑛/40 for algorithms A1 (black squares and
diamonds) and A2 (blue asterisks and circles). The red stars mark the run times for algorithm A0
and the dotted lines illustrate the expected scaling.

filter radius (|𝒩𝑖| ∝ 𝑟𝑑). To asses the computational complexity of the fast summation
algorithm for octagonal shaped neighborhoods in 2D, we compared the runtimes of three
different algorithms,

A0 creating and writing 𝑛 random numbers to memory using Matlab’s rand function,

A1 explicitly summing over each octagonal neighborhood, that is the ordinary 𝑂(𝑛2)
algorithm,

A2 computing the neighborhood sums using the 𝑂(𝑛) algorithm.

The algorithm A0 essentially gives a lower bound on the time for computing the neigh-
borhood sums and serves as a reference. To indicate the effect of the neighborhood size
on the computational complexity, two different neighborhood sizes were used. In the
numerical experiments, we use square domains with 𝑛 elements and set the filter radius to
𝑟 = √𝑛/20 and 𝑟 = √𝑛/40, respectively. Figure 1 shows the average runtime, required
for algorithms A0–A2, as a function of the number of elements in the grid. As is expected
from the operation count, the runtime of algorithm A2 is essentially independent of the
neighborhood size, while the runtime of algorithm A1 grows with the neighborhood size.
In fact, the runtime of A1 is expected to grow linearly with the size of the neighborhood.
To enable the use of gradient based optimization algorithms, the derivatives of the

objective and constraint functions must be evaluated. In paper II, we show that gradient
modification related to the filter (that is, to compute 𝝃𝑇∇𝐅 for some 𝝃 ∈ ℝ𝑛) can be
performedwith linear computational complexity by using the same algorithmas for filtering.
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A cascade of generalized 𝑓𝑊-mean filters,

𝐂(𝐾) = 𝐅(𝐾) ∘ 𝐅(𝐾−1) ∘ … ∘ 𝐅(1),

𝐅(𝑘)(𝝆) = 𝐠𝑘 (𝐖
(𝑘)𝐟𝑘(𝝆)) for all 𝑘 ∈ {1,… , 𝐾},

(5.12)

was analyzed, and we present in detail howmodification of gradients can be performedwith
𝑂(𝐾𝑛) arithmetic operations using the same algorithm as for filtering. The open, close,
open–close, and close–open filters introduced, in the context of topology optimization, by
Sigmund [14] are examples of cascaded 𝑓𝑊-mean filters.

A consequence of the update strategy used to compute the neighborhood sums is that the
number of elements that affect the value of a particular neighborhood sum is increased as
compared to summing over each neighborhood separately. From a numerical point of view,
the update strategy is potentially sensitive to round-off errors due to cancellation effects. In
paper I, we present a numerical example illustrating how the element-wise accuracy might
be affected by using the update strategy to compute the neighborhood sums. To minimize
such numerical problems some care is needed when choosing the functions 𝑓 and 𝑔.

5.2 𝑓𝑊-mean filtered compliance minimization

In paper II, we prove that there exists solutions to optimization problem (3.27) when
using a continuous version of the 𝑓𝑊-mean filter. For a given smooth and invertible
function 𝑓 ∶ [0, 1] → [𝑓min, 𝑓max] ⊂ ℝ and for any 𝜌 ∈ 𝒟, the continuous 𝑓𝑊-mean
filter 𝐹(𝜌) ∶ 𝑥 ∈ Ω → 𝐹(𝜌)(𝑥) ∈ [0, 1] is given by

𝐹(𝜌)(𝑥) = 𝑓−1 (∫
Ω

𝑤(𝑥, 𝑦)(𝑓 ∘ 𝜌)(𝑦) d𝑦) , (5.13)

where 𝑤(𝑥, ⋅) ∈ 𝐿1(Ω) is a non negative normalized weight function; that is, 𝑤(𝑥, ⋅) ≥ 0

almost everywhere in Ω, and

∫

Ω

𝑤(𝑥, 𝑦) d𝑦 = 1 for all 𝑥 ∈ Ω. (5.14)

By analogous arguments, one can show that the existence of solutions to (3.27) also follows
if an extra projection step is included, or a cascade of projected 𝑓𝑊-mean filters is used.
We have performed numerical optimization using the 2D multigrid-CG topology op-

timization code by Amir et al. [1] in combination with our implementation of the fast
summation algorithm for octagonal shaped neighborhoods introduced in paper I. Figure 2
shows the setup used for optimizing a 2D cantilever beam that is clamped along its left end
and subject to a uniformly distributed load acting on the middle 10% of its right end. We
used 𝑉∗ = 0.5 in the volume constraint (3.30), and the design domain had length to height
ratio 1.5. Figure 3 presents the physical design of an cantilever beam optimized using
2160 × 1440 elements. We used a harmonic open–close filter that is defined analogously
as the open–close filter [14] but using harmonic averaging [18] instead of exponential aver-
aging. More precisely, the harmonic open–close filter is a cascade (5.12) of four 𝑓𝑊-mean
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𝐟

Ω

Figure 2: Problem setup for optimization of a 2D cantilever beam.

filters,
𝑓1(𝑥) = 𝑓4(𝑥) = (𝑥 + 𝛼)−1,

𝑓2(𝑥) = 𝑓3(𝑥) = 𝑓1(1 − 𝑥),

𝑔𝑘 = 𝑓−1𝑘 ,

(5.15)

with the fixed parameter 𝛼 = 10−4 (compare with the harmonic erode filter (4.14)). The
optimized cantilever beam in figure 3 was obtained after 91 iterations and has 𝑀𝑛𝑑 =

0.26%, where

𝑀𝑛𝑑 =
𝐅(𝝆)𝑇(𝟏𝐧 − 𝐅(𝝆))

𝑛/4
∈ [0, 1], (5.16)

is the measure of non discreteness introduced by Sigmund [14] to quantify the discreteness
of a physical design. A series of optimizations using different neighborhood sizes indi-
cate that the harmonic open–close filter provides mesh-independence and independent
minimum size control on material and void regions.
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Figure 3: Physical design for an optimized cantilever beam using 2160 × 1440 elements, and a
harmonic open filter over a “large” octagonal neighborhood followed by a harmonic close filter over
a “small” octagonal neighborhood. The neighborhoods are indicated in the upper-right corner.
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