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Abstract

It is well known that material distribution topology optimization problems often
are ill-posed if no restriction or regularization method is used. A drawback with
the standard linear density filter is that the resulting designs have large areas of in-
termediate densities, so-called gray areas, especially when large filter radii are used.
To produce final designs with less gray areas, several different methods have been
proposed; for example, projecting the densities after the filtering or using a nonlinear
filtering procedure. In a recent paper, we presented a framework that encompasses
a vast majority of currently available density filters. In this paper, we show that all
these nonlinear filters ensure existence of solutions to a continuous version of the
minimal compliance problem. In addition, we provide a detailed description on how
to efficiently compute sensitivities for the case when multiple of these nonlinear filters
are applied in sequence. Finally, we present a numerical experiment that illustrates
that these cascaded nonlinear filters can be used to obtain independent size control of
both void and material regions in a large-scale setting.
Keywords: Topology optimization, Regularization, Nonlinear filters, Existence of solu-
tions, Large-scale problems

1 Introduction

Since the seminal paper by Bendsøe & Kikuchi [3] in 1988 regarding topology optimization
of linearly elastic continuum structures, the field of topology optimization has been subject
to intense research. Today, material distribution topology optimization is applied to a
range of different disciplines, such as linear and nonlinear elasticity [9, 16, 18], acous-
tics [23, 8, 17], electromagnetics [11, 12, 15, 24], and fluid–structure interaction [2, 26].
A comprehensive account on topology optimization and its various applications can be
found in the monograph by Bendsøe & Sigmund [4], as well as in the more recent reviews
by Sigmund &Maute [21] and Deaton & Grandhi [10].
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In material distribution topology optimization, a material indicator function 𝜌 ∶ Ω𝐷 ⊂

ℝ𝑑 → {0, 1} indicates the presence (𝜌 = 1) or absence (𝜌 = 0) of material within the de-
sign domain Ω𝐷 [4]. To numerically solve the topology optimization problem, the domain
Ω𝐷 is typically discretized into 𝑛 elements. The aim of the optimization is to determine
element values 𝜌𝑖 ∈ {0, 1}, 𝑖 ∈ {1, … , 𝑛}, that is, to determine if the region corresponding
to a given element contains material or not. The resulting nonlinear integer optimization
problem is typically relaxed by allowing 𝜌𝑖 ∈ [0, 1], 𝑖 ∈ {1, … , 𝑛}. This relaxation enables
the use of gradient based optimization algorithms that are suitable for solving large-scale
problems involving millions of design variables. In order to promote binary designs penal-
ization techniques are used. However the optimized designs, resulting from the relaxed and
penalized problem, are typically mesh-dependent. Several strategies have been proposed
to resolve the issue of mesh-dependence; Borvall [5] presents a systematic investigation of
several common techniques.

Amongst the most popular techniques to achieve mesh-independent designs is to use a
filtering procedure. Filtering procedures are commonly categorized as either sensitivity
filtering [19] or density filtering [6, 7], where the derivatives of the objective function
are filtered or where the design variables are filtered, respectively. When using a density
filtering procedure the design variables are no longer the physical “density”, that is, the
coefficients that enter the governing equation. In a classic paper, Bourdin [6] established
existence of solutions to a continuous version of the linearly filtered minimal compliance
problem. Since the introduction of the linear density filter by Bruns and Tortorelli [7],
a whole range of nonlinear filters has been presented [14, 20, 13, 22]. We have recently
introduced the class of generalized 𝑓𝑊-mean filters that include the vast majority of filters
used in topology optimization [25], and provide a common framework for analyzing and
evaluating various filters.

The remainder of this paper is organized as follows. Section 2 provides a short discussion
aboutwhich properties that are desired for the filtering procedure aswell as a short summary
on the 𝑓𝑊-mean filters. In Section 3, we prove that there exists a solution to a continuous
version of the 𝑓𝑊-mean filtered minimum compliance topology optimization problem.
Section 4 discusses various aspects on the fast evaluation of filtered densities and their
sensitivities. Finally, Section 5 presents numerical experiments that illustrate that by using
a fast algorithm to perform the nonlinear filtering, it is possible to cascade filters to achieve
independent size control of structural and void regions for large-scale problems.

2 Background

2.1 Typical requirements on filters and their implications

The discussion below treats the discretized case, where the design domainΩ𝐷 is partitioned
into 𝑛 elements and the aim of the optimization is to determine the design vector 𝝆 =

(𝜌1, … , 𝜌𝑛)
𝑇 ∈ [0, 1]

𝑛. A general filter is any function 𝐅 ∶ [0, 1]𝑛 → [0, 1]𝑛, and the
filtered design is 𝐅(𝝆). Below, we discuss typical requirements on such filters.
The first requirement is already included in the definition of 𝐅, namely that we require

that the range must be conforming, that is

𝐅(𝝆) ∈ [0, 1]𝑛. (1)
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In addition, we also require that the function 𝐅 is coordinate- and component-wise non-
decreasing; that is, for any 𝑖, 𝑗 and any 𝛿 ≥ 0,

𝐹𝑖(𝝆 + 𝛿𝐞𝐣) ≥ 𝐹𝑖(𝝆), (2)

where 𝐞𝐣 denotes the 𝑗th basis vector of ℝ𝑛. We note that (1) and (2) imply that

𝐹𝑖(𝟎𝐧) ≤ 𝐹𝑖(𝝆) ≤ 𝐹𝑖(𝟏𝐧), (3)

where, 𝟎𝐧 = (0,… , 0)𝑇 ∈ ℝ𝑛 and 𝟏𝐧 = (1,… , 1)𝑇 ∈ ℝ𝑛. Expression (3) shows that if we
want each element in the filtered design to be able to attain the values 0 or 1 then we must
require that

𝐅(𝟎𝐧) = 𝟎𝐧,

𝐅(𝟏𝐧) = 𝟏𝐧.
(4)

It is natural to require that the filtered density in element 𝑖 is strictly increasing with the
density in that element. A weaker assumption would be to require that for each 𝝆 ∈ [0, 1)𝑛

there exists an 𝑖 and a 𝑗 such that 𝐹𝑖(𝝆) is strictly increasing in 𝜌𝑗 in the vicinity of 𝝆. That
is there exists 𝜖 > 0 such that

𝐹𝑖(𝝆 + 𝛿𝐞𝐣) > 𝐹𝑖(𝝆) for all 0 < 𝛿 < 𝜖. (5)

If we want to use gradient based optimization algorithms we would also need to require
that 𝐅 is differentiable. In this case requirement (2) translates to

𝜕𝐹𝑖

𝜕𝜌𝑗
≥ 0. (6)

Requirement (5) is often replaced by the more restrictive condition that for each 𝝆, there
exists an 𝑖 and a 𝑗 such that

𝜕𝐹𝑖

𝜕𝜌𝑗
(𝝆) > 0. (7)

Another property that often is mentioned is volume preservation, which mathematically
can be expressed by

𝟏𝑇𝐧𝐅(𝝆) = 𝟏𝑇𝐧𝝆 for all 𝝆 ∈ [0, 1]𝑛. (8)

The obvious benefit of using a volume preserving filter is that the volume constraint can be
left unaltered.
For a linear filter 𝐅(𝝆) = 𝐀𝝆 where 𝐀 = [𝑎𝑖𝑗] ∈ ℝ𝑛×𝑛 it can be shown that condi-

tions (1), (2) and (4) are equivalent to

𝑎𝑖𝑗 ≥ 0 for all 𝑖, 𝑗 and 𝐀𝟏𝐧 = 𝟏𝐧. (9)

Furthermore we find that volume preservation is equivalent to

𝟏𝑇𝐧𝐀 = 𝟏𝑇𝐧. (10)

Thus, a linear filter is both volume preserving and has a conforming range if and only if 𝐀
is a so-called doubly stochastic matrix.
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2.2 𝑓𝑊-mean filters

Next, we present a short summary on 𝑓𝑊-mean filters [25]. For a given smooth and
invertible function 𝑓 ∶ [0, 1] → ℝ with nonzero derivative the 𝑓𝑊-mean filter of a vector
𝝆 ∈ [0, 1]

𝑛 is defined as
𝐅(𝝆) = 𝐟−1 (𝐖𝐟(𝝆)) , (11)

where 𝐟(𝝆) = (𝑓(𝜌1), 𝑓(𝜌2), … , 𝑓(𝜌𝑛))
𝑇 ∈ ℝ𝑛, and 𝐖 = [𝑤𝑖𝑗] ∈ ℝ𝑛×𝑛 is a weight

matrix with non-negative entries such that𝐖𝟏𝐧 = 𝟏𝐧.
We note that the neighborhood𝒩𝑖 ⊂ {1,… , 𝑛} of element 𝑖 is implicitly defined by the

weight matrix𝐖,
𝑤𝑖𝑗 > 0 if and only if 𝑗 ∈ 𝒩𝑖 . (12)

In topology optimization, it is common to define a neighborhood shape𝒩 ⊂ ℝ𝑑 centered
at the origin and use𝒩 to define the neighborhoods

𝒩𝑖 = {𝑗 ∶ 𝑥𝑗 − 𝑥𝑖 ∈ 𝒩} , 𝑖 ∈ {1, … , 𝑛}, (13)

where 𝑥𝑖 ∈ ℝ𝑑, 𝑖 ∈ {1, … , 𝑛} are the element centroids. When equal weights are used
within neighborhoods,𝐖 = 𝐃−1𝐆, where 𝐃 = diag(|𝒩1|, … , |𝒩𝑛|)

𝑇 and 𝐆 is the neigh-
borhood matrix with entries 𝑔𝑖𝑗 = 1 if and only if 𝑗 ∈ 𝒩𝑖 and 𝑔𝑖𝑗 = 0 otherwise.
The 𝑓𝑊-mean filter maps a vector with equal entries to itself, that is, if 𝑐 ∈ [0, 1] then

𝐅(𝑐𝟏𝐧) = 𝑐𝟏𝐧. However the 𝑓𝑊-mean filter is in general not volume preserving; that is,
there exists a 𝝆 ∈ [0, 1]𝑛 such that

𝟏𝑇𝐧𝐅(𝝆) ≠ 𝟏𝑇𝐧𝝆. (14)

The 𝑖𝑗 entry of the Jacobian ∇𝐅 of the 𝑓𝑊-mean filter is given by

𝜕𝐹𝑖

𝜕𝜌𝑗
= 𝑤𝑖𝑗

𝑓′(𝜌𝑗)

𝑓′ (𝐹𝑖(𝝆))
≥ 0, (15)

where the inequality is strict as long as 𝑤𝑖𝑗 > 0, that is 𝑗 is in the neighborhood of 𝑖. Note
that, since 𝑖 and 𝑗 are free indices, summation is not implied in expression (15).

The 𝑓𝑊-mean filter framework contains many filter types, such as the harmonic erode
filter introduced by Svanberg & Svärd [22], but not all: one example is the Heaviside filter
introduced by Guest et al. [14]. However, the non-𝑓𝑊-mean filters can often be fitted
into the generalized 𝑓𝑊-mean filter framework [25], in which the function 𝑓−1, used in
definition (11), is replaced by a smooth function 𝑔 ∶ 𝑓 ([0, 1]) → [0, 1]. That is, the
generalized 𝑓𝑊-mean filters are of the form

�̃�(𝝆) = 𝐠 (𝐖𝐟(𝝆)) . (16)

3 Existence of solutions for the 𝑓𝑊-mean filtered continu-
ous minimal compliance problem

In this section, we show that there exists a solution to the 𝑓𝑊-mean filtered version of a
penalized continuous minimal compliance problem.
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Let Ω ⊂ ℝ𝑑 be a bounded and connected domain in which we want to place our
structure. Assume that the boundary 𝜕Ω is Lipschitz and that the structure is fixed at
an open boundary portion Γ𝐷 ⊂ 𝜕Ω, with |Γ𝐷| > 0. The kinematically admissible
displacements are

𝒰 = {𝑢 ∈ 𝐻1(Ω)𝑑 ∣ 𝑢|Γ𝐷 ≡ 0} . (17)

The displacement of the structure is the solution to the following variational problem:

Find 𝑢 ∈ 𝒰 such that 𝑎(𝜌; 𝑢, 𝑣) = ℓ(𝑣) ∀𝑣 ∈ 𝒰. (18)

The energy bilinear form 𝑎 and the load linear form ℓ are defined as

𝑎(𝜌; 𝑢, 𝑣) = ∫

Ω

�̃�(𝜌)𝐸𝜖(𝑢) ∶ 𝜖(𝑣), (19)

ℓ(𝑣) = ∫

Ω

𝑏 ⋅ 𝑣 + ∫

Γ𝐿

𝑡 ⋅ 𝑣, (20)

where 𝑏 ∈ 𝐿2(Ω)𝑑 and 𝑡 ∈ 𝐿2(Γ𝐿)
𝑑 represent the internal force in Ω and surface traction

densities on the boundary portion Γ𝐿 = 𝜕Ω ⧵ Γ𝐷, respectively, 𝜖(𝑢) = (∇𝑢 + ∇𝑢𝑇 )/2

is the strain tensor (or the symmetrized gradient) of u, the colon “:” denotes the scalar
product of the two matrices, 𝐸 is a constant forth-order elasticity tensor, and �̃�(𝜌) is the
physical density.
Remark 3.1. Throughout the article we do not explicitly specify the measure symbol (such
as dΩ, for instance) in the integrals, whenever there is no risk for confusion. The type of
measure will be clear from the domain of integration.
We define the physical density as

�̃�(𝜌) = 𝜌 + (1 − 𝜌)𝑃(𝐹(𝜌)), (21)

where 𝜌 > 0, 𝐹(𝜌) is a continuous version of the 𝑓𝑊-mean filter, and 𝑃 ∶ [0, 1] → [0, 1]

is a smooth and invertible penalty function. The above formulation includes the case when
the problem is penalized using SIMP [4], that is, to use 𝑃(𝑥) = 𝑥𝑝 in (21) for some 𝑝 > 1.
The addition of a minimal physical density 𝜌 > 0 ensures that the bilinear form 𝑎(⋅; ⋅, ⋅) is
coercive, that is there exists a constant 𝐶 > 0 such that

𝑎(𝜌; 𝑢, 𝑢) ≥ 𝐶‖𝑢‖2
𝐻1(Ω)𝑑

. (22)

The continuous 𝑓𝑊-mean filtered density is, for 𝑥 ∈ Ω, given by

(𝐹(𝜌))(𝑥) = 𝑓−1 (
1

|𝒩𝑥|
∫

𝒩𝑥

(𝑓 ∘ 𝜌)(𝑦) d𝑦) , (23)

where 𝑓 is a smooth and invertible function 𝑓 ∶ [0, 1] → [𝑓min, 𝑓max] ⊂ ℝ, 𝒩𝑥 is the
neighborhood of 𝑥, and |𝒩𝑥| > 0 is the measure (area or volume) of𝒩𝑥. We define the
set of admissible designs𝒜 ⊂ 𝐿∞(Ω) as

𝒜 = {𝜌 ∣ 0 ≤ 𝜌 ≤ 1 almost everywhere on Ω and ∫

Ω

𝐹(𝜌) ≤ 𝑉} . (24)
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We remark that, to be able to apply the filter 𝐹 on any design in𝒜, we use a continuous
and bijective extension of 𝑓, in this paragraph denoted by ̂𝑓 ∶ ℝ̄ → ℝ̄, when evaluating
expression (23). Furthermore for any Lebesgue measurable function 𝜌 ∶ Ω → ℝ̄ the
composition ̂𝑓 ∘ 𝜌 is Lebesgue measurable. To simplify the notation below, whenever we
write 𝑓 it should be interpreted as a continuous and bijective extension of 𝑓.

Theorem 3.2. If |𝒩𝑥| > 0 for all 𝑥 ∈ Ω, then there exists a solution to the following variation
of the minimal compliance problem

inf
𝑢∈𝒰∗

ℓ(𝑢), (25)

where
𝒰∗= {𝑢 ∈ 𝒰 ∣ ∃𝜌 ∈ 𝒜 such that 𝑎(𝜌; 𝑢, 𝑣) = ℓ(𝑣) ∀𝑣 ∈ 𝒰} . (26)

Proof. Let (𝑢𝑚), 𝑢𝑚 ∈ 𝒰∗ for all𝑚 ∈ ℕ, be a minimizing sequence for ℓ; without loss
of generality, we stipulate that (ℓ(𝑢𝑚)) is non-increasing. By the definition of𝒰∗, there
exists a sequence of designs (𝜌𝑚) such that, for each𝑚 ∈ ℕ, 𝑎(𝜌𝑚; 𝑢𝑚, 𝑣) = ℓ(𝑣) for all
𝑣 ∈ 𝒰. Since the bilinear form (19) is coercive, we have from (22) that

𝐶‖𝑢𝑚‖
2
𝐻1(Ω)𝑑

≤ 𝑎(𝜌𝑚; 𝑢𝑚, 𝑢𝑚) = ℓ(𝑢𝑚) ≤ ℓ(𝑢1). (27)

That is, (𝑢𝑚) is uniformly bounded in 𝐻1(Ω)𝑑 and thus there exists an element 𝑢∗ ∈ 𝒰

such that 𝑢𝑚 converges weakly to 𝑢∗ in 𝐻1(Ω)𝑑 as𝑚 → ∞.
For each𝑚 ∈ ℕ, we define 𝜏𝑚 = 𝑓 ∘ 𝜌𝑚; by construction, we have that 𝑓min ≤ 𝜏𝑚 ≤

𝑓max almost everywhere in Ω. Since (𝜏𝑚) is bounded in 𝐿∞(Ω), we can according to the
sequential Banach–Alaoglu theorem find a subsequence, still denoted (𝜏𝑚) and a limit
element 𝜏∗ ∈ 𝐿∞(Ω), so that 𝜏𝑚 converges weak* to 𝜏∗ in 𝐿∞(Ω) as𝑚 → ∞. As a direct
consequence of the weak star convergence we have that for all 𝑥 ∈ Ω

1

|𝒩𝑥|
∫

𝒩𝑥

𝜏𝑚(𝑦) d𝑦 =
1

|𝒩𝑥|
∫

Ω

𝜏𝑚(𝑦)1𝒩𝑥(𝑦) d𝑦
𝑚→∞
−−−−→

1

|𝒩𝑥|
∫

Ω

𝜏∗(𝑦)1𝒩𝑥(𝑦) d𝑦 =
1

|𝒩𝑥|
∫

𝒩𝑥

𝜏∗(𝑦) d𝑦,

(28)

where 1𝒩𝑥 ∈ 𝐿1(Ω) is the characteristic function of𝒩𝑥.
The sequential Banach–Alaoglu theorem also guarantees that 𝑓min ≤ 𝜏∗ ≤ 𝑓max almost

everywhere in Ω. We can thus define 𝜌∗ = 𝑓−1 ∘ 𝜏∗ and by construction 0 ≤ 𝜌∗ ≤ 1

almost everywhere in Ω. Since, 𝑓−1 is continuous we have that

𝐹(𝜌𝑚)(𝑥) =𝑓
−1 (

1

|𝒩𝑥|
∫

𝒩𝑥

𝜏𝑚(𝑦) d𝑦)
𝑚→∞
−−−−→

𝑓−1 (
1

|𝒩𝑥|
∫

𝒩𝑥

𝜏∗(𝑦) d𝑦) = 𝐹(𝜌∗)(𝑥),

(29)

that is, the filtered design converges pointwise. Moreover for all 𝑥 ∈ Ω, we have that
0 ≤ 𝐹(𝜌∗)(𝑥) ≤ 1 and 0 ≤ 𝐹(𝜌𝑚)(𝑥) ≤ 1 for all 𝑚. Thus, by Lebesgue’s dominated
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convergence theorem,

∫
Ω

𝐹(𝜌∗) = lim
𝑚→∞

∫
Ω

𝐹(𝜌𝑚) ≤ 𝑉, (30)

or in words, the design obtained by filtering 𝜌∗ satisfies the volume constraint, so 𝜌∗ ∈ 𝒜.
We note that the pointwise convergence of the filtered design implies that the physical design
converges pointwise, and that for all 𝑥 ∈ Ω, 𝜌 ≤ �̃�(𝜌∗)(𝑥) ≤ 1 and 𝜌 ≤ �̃�(𝜌𝑚)(𝑥) ≤ 1

for all𝑚.
Let 𝑣 be an arbitrary function in𝒰, then

𝑎(𝜌𝑚; 𝑢𝑚, 𝑣)⏝⎵⎵⎵⏟⎵⎵⎵⏝
ℓ(𝑣)

−𝑎(𝜌∗; 𝑢∗, 𝑣) = ∫

Ω

(�̃�(𝜌𝑚) − �̃�(𝜌∗))𝐸𝜖(𝑢𝑚) ∶ 𝜖(𝑣)

+∫

Ω

�̃�(𝜌∗)𝐸(𝜖(𝑢𝑚) − 𝜖(𝑢∗)) ∶ 𝜖(𝑣).

(31)

We have that �̃�(𝜌∗)𝜖(𝑣) ∈ 𝐿2(Ω)𝑑×𝑑 and since 𝑢𝑚 converges weakly to 𝑢∗ in 𝐻1(Ω)𝑑 as
𝑚 → ∞, we have that 𝜖(𝑢𝑚) converges weakly to 𝜖(𝑢∗) in 𝐿2(Ω)𝑑×𝑑 as𝑚 → ∞. Thus, the
second term on the right hand side of expression (31) tends to 0 as𝑚 → ∞. The absolute
value of the first term on the right hand side of expression (31) is bounded by

∑

𝑖,𝑗,𝑘,𝑙

∫

Ω

|(�̃�(𝜌𝑚) − �̃�(𝜌∗))𝐸𝑖𝑗𝑘𝑙𝜖𝑖𝑗(𝑢𝑚)𝜖𝑘𝑙(𝑣)| . (32)

Let 𝐴𝑖𝑗𝑘𝑙 denote an arbitrary term in expression (32). We note that for a fixed 𝑣 ∈ 𝐻1(Ω)𝑑,
we have that 𝐿2(Ω) ∋ |�̃�(𝜌𝑚)−�̃�(𝜌

∗)||𝜖𝑘𝑙(𝑣)| → 0 almost everywhere onΩwhen𝑚 → ∞

since |𝜖𝑘𝑙(𝑣)| is finite almost everywhere on Ω. Moreover, |�̃�(𝜌𝑚) − �̃�(𝜌∗)||𝜖𝑘𝑙(𝑣)| ≤

|𝜖𝑘𝑙(𝑣)|. Hence, by using Cauchy–Schwartz’s inequality and Lebesgue’s dominated con-
vergence theorem, we find that

𝐴2𝑖𝑗𝑘𝑙 ≤ |𝐸𝑖𝑗𝑘𝑙|
2‖𝜖𝑖𝑗(𝑢𝑚)‖

2
𝐿2(Ω)

∫

Ω

|�̃�(𝜌𝑚) − �̃�(𝜌∗)|2|𝜖𝑘𝑙(𝑣)|
2

𝑚→∞
−−−−→ 0. (33)

Thus, 𝑎(𝜌∗; 𝑢∗, 𝑣) = ℓ(𝑣) ∀𝑣 ∈ 𝒰 so 𝑢∗ = 𝒰∗. Moreover, because 𝑢𝑚 converges weakly
to 𝑢∗ in 𝐻1(Ω) as𝑚 → ∞ and ℓ is a bounded linear functional on 𝐻1(Ω), we have that
ℓ(𝑢𝑚) → ℓ(𝑢∗) as𝑚 → ∞. Since 𝑢𝑚 is a minimizing sequence for ℓ(⋅), we have that

ℓ(𝑢∗) = inf
𝑣∈𝒰∗

ℓ(𝑢), (34)

that is, we have existence of a minimizer to the nonlinearly filtered minimal compliance
problem.

Remark 3.3. We note that all steps in the above proof also holds true if we would replace
the function 𝑓−1 in definition (24) of the continuous version of the 𝑓𝑊-mean filter by
another smooth function 𝑔 ∶ [𝑓min, 𝑓max] → [0, 1]. In particular, this holds if we replace
𝑓−1 by a projected version ℎ ∘ 𝑓−1 provided that ℎ ∶ [0, 1] → [0, 1] is smooth. That is the
proof also holds for the generalized 𝑓𝑊-mean filters.
Remark 3.4. The proof also holds in the case with normalized but non-uniform weights
within the neighborhoods. The only change required is to replace 1𝒩𝑥(𝑦)/|𝒩𝑥| in equa-
tion (28) by an 𝐿1(Ω) function that describes the non-uniform weights.
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Figure 1: Illustration of the first three powers (from left to right) of the weight matrix,𝐖 = 𝐃−1𝐆,
𝐖2,𝐖3, for an octagonal and a rectangular neighborhood (top and bottom row, respectively).

4 Aspects of fast evaluation of filtered densities and sensi-
tivities

4.1 On the computational complexity

In our previous paper [25], we showed that if the computational domain is discretized into𝑛
elements in a regular grid, the neighborhood shape is a polytope, and equal weightingwithin
each neighborhood is used, then the 𝑓𝑊-mean filter can be applied with computational
complexity 𝑂(𝑛). Moreover the computational complexity is essentially independent of
the size of the neighborhoods.
Non-equal weighting within neighborhoods can be achieved by sequentially applying

the same equally weighted 𝑓𝑊-mean filter twice (or more):

𝐅(𝐅(𝝆)) = 𝐟−1 (𝐖2𝐟(𝝆)) ,

𝐖 = 𝐃−1𝐆.
(35)

If the neighborhood shape is a convex polytope 𝒫 ⊂ ℝ𝑑 then it can be shown that a neigh-
borhood shape corresponding to𝐖2 is 2𝒫. Figure 1 illustrates the weights corresponding
to the first three powers of𝐖 = 𝐃−1𝐆, from left to right𝐖,𝐖2, and𝐖3, for an octagonal
(top row) and a rectangular neighborhood (bottom row).

We remark that, in general, the computational cost of the filter application is dominated
by the cost of evaluating the sums 𝐆𝐟. Moreover, the computational effort required to
evaluate these sums grows with the complexity of the neighborhood polytope. Thus, if one
wishes to apply a filter with weights that decay with the distance from the neighborhood,
particularly in three space dimensions, one could save a great portion of the computational
time by selecting a simple neighborhood. For example, the computational complexity for
filtering over a box shaped neighborhood is approximately 10 times lower than the complex-
ity for filtering over the significantly more complex rhombicuboctahedron (a polytope with
26 faces—twelve rectangular, six square, and eight triangular faces) neighborhood [25].
On the other hand, if one wishes to use one of the nonlinear filters that are designed

to mimic min or max operators over the neighborhood, then the neighborhood shape
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is important. In this latter case one cannot use the weighted version with a square or
box shaped neighborhood to approximate a circular or spherical neighborhood, since the
nonlinearity of the filtering process will essentially pick out the maximum/minimum of the
elements within the support of the filter. However, by using neighborhoods of different but
still relatively simple shapes, for example two square shaped neighborhoods (with a relative
rotation of 45 degrees), one can get a filtering procedure where the neighborhood around
each element is an octagon. A similar approach can also be used for the three dimensional
case, where one can use four cubic neighborhoods (the scaled unit cube plus three version
rotated 45 degrees in the 𝑥1𝑥2, 𝑥1𝑥3, and 𝑥2𝑥3 planes, respectively). The use of a sequence
of filter applications using simple neighborhood shapes streamlines the implementation.
Moreover, the resulting memory access pattern can be made very regular, which paves the
way for future highly efficient parallel implementations.

4.2 Sensitivity evaluation

By examining expression (15), we see that in order to evaluate sensitivities, that is to
compute 𝐯𝑇∇𝐅(𝝆) for some vector 𝐯 ∈ ℝ𝑛, we need to carry out matrix multiplication by
𝐖𝑇. In practice, 𝐯 is the gradient of the objective or a constraint functionwith respect to the
filtered (physical) densities. In the special case of equal weighting within neighborhoods,
multiplication by𝐖𝑇 translates to multiplication by𝐆𝑇; or expressed differently to perform
summation over the transposed neighborhoods𝒩𝑇

𝑖 = {𝑗 ∶ 𝑖 ∈ 𝒩𝑗} = {𝑗 ∶ 𝑔𝑗𝑖 = 1}. If the
neighborhoods are symmetric then 𝐆𝑇 = 𝐆 and the same summation algorithm can be
used for both filtering and sensitivity calculation, which facilitates the implementation.
Assume that the neighborhoods are defined by a neighborhood shape𝒩 so that𝒩𝑖 =

{𝑗 ∶ 𝑥𝑗 − 𝑥𝑖 ∈ 𝒩}, where 𝑥𝑖 and 𝑥𝑗 denote the centroid of elements 𝑖 and 𝑗, respectively.
For each element 𝑗 ∈ 𝒩𝑇

𝑖 we have that 𝑖 ∈ 𝒩𝑗 and by definition 𝑥𝑖 −𝑥𝑗 ∈ 𝒩, that is, there
exists 𝑦 ∈ 𝒩 so that 𝑥𝑖 − 𝑥𝑗 = 𝑦 or equivalently 𝑥𝑗 − 𝑥𝑖 = −𝑦. Since all steps above
are bidirectional, we have that𝒩𝑇

𝑖 = {𝑗 ∶ 𝑥𝑗 − 𝑥𝑖 ∈ −𝒩}; hence a neighborhood shape
which defines the transposed neighborhoods is found by inversion of 𝒩 in the origin.
Since 𝒫 and −𝒫 are essentially the same polytope, this means that implementing the fast
summation algorithm over −𝒫 requires the same amount of work as implementing it over
𝒫.
If we work with a Cartesian grid and the design variables are stored using a standard

slice/fiberwise numbering (row- or column-wise in the two dimensional case), then we
can use that 𝐆𝑇 = 𝐏𝐆𝐏, where 𝐏 is the flip or exchange matrix. That is, 𝐏 is the matrix
with ones along the anti-diagonal and zeros elsewhere.

4.3 Cascaded 𝑓𝑊-mean filters

It has already been established that sequential application of filters is a means to arrive
at filters with desirable properties, see for instance the open–close and close–open filters
introduced by Sigmund [20].
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1 oneVec = ones (nelem ,1 ) ;
2 f o r K = 1:N
3 Ni{K} = G{K}(oneVec) ;
4 end

Listing 1: Matlab code that computes the neighborhood sizes.

Assume that we are given {𝐅(𝐾)}, a family of 𝑓𝑊-mean filters,

𝐅(𝐾)(𝝆) = 𝐟−1𝐾 (𝐖(𝐾)𝐟𝐾(𝝆)) . (36)

For 𝑁 ≥ 1, we define the cascaded filter function 𝐂(𝑁) ∶ [0, 1]𝑛 → [0, 1]𝑛 to be the
composition

𝐂(𝑁) = 𝐅(𝑁) ∘ 𝐅(𝑁−1) ∘ … ∘ 𝐅(1). (37)

We let 𝝆(0) = 𝝆 and for each 𝑁 ≥ 1, we define

𝝆(𝑁) = 𝐅(𝑁)(𝝆(𝑁−1)) = … = 𝐂(𝑁)(𝝆). (38)

We proceed to show how the sensitivity analysis for the cascaded filter can be performed
in a way which will be suitable for fast evaluation. The setting is just as before; given a vector
𝐯 ∈ ℝ𝑛, we want to compute 𝐯𝑇∇𝐂(𝑁)(𝝆). We let 𝐯(𝑁) = 𝐯, by evaluating (𝐯(𝑁))𝑇∇𝝆(𝑁),
using definition (38), and the chain rule, we find that

𝑛

∑

𝑖=1

𝑣
(𝑁)
𝑖

𝜕

𝜕𝜌𝑗
𝜌
(𝑁)
𝑖 |

𝝆

=

𝑛

∑

𝑙=1

𝑣
(𝑁−1)
𝑙

𝜕

𝜕𝜌𝑗
𝜌
(𝑁−1)
𝑙 |

𝝆

, (39)

where

𝑣
(𝑁−1)
𝑙 =

𝑛

∑

𝑖=1

𝑣
(𝑁)
𝑖

𝜕𝐹
(𝑁)
𝑖

𝜕𝜌𝑙
|
𝝆(𝑁−1)

. (40)

The recursion given by expressions (39) and (40) also holds if we replace 𝑁 by 𝐾 for
𝐾 = 𝑁,𝑁 − 1,… , 1. Thus by using equation (15) we get

𝑣
(𝐾−1)
𝑙 =

𝑛

∑

𝑖=1

𝑣
(𝐾)
𝑖 𝑤

(𝐾)
𝑖𝑙

𝑓′𝐾(𝜌
(𝐾−1)
𝑙 )

𝑓′𝐾 (𝜌
(𝐾)
𝑖 )

= 𝑓′𝐾(𝜌
𝐾−1
𝑙 )

𝑛

∑

𝑖=1

𝑔
(𝐾)
𝑖𝑙

𝑣
(𝐾)
𝑖

|𝒩
(𝐾)
𝑖 |𝑓′𝐾 (𝜌

(𝐾)
𝑖 )

. (41)

We remark that the rightmost sum above is a summation over transposed neighborhoods,
that is multiplying a vector by (𝐆(𝐾))𝑇, the transpose of the neighborhood matrix. Hence,
if we store the intermediate values 𝝆(𝐊), 𝐾 ∈ {1,… ,𝑁} when applying the filter, then we
can modify the sensitivities by using 𝑂(𝑁𝑛) operations.
Remark 4.1. Existence of solutions to the continuous minimal compliance problem in the
case when a cascade of 𝑓𝑊-mean filters is applied can be proven by following the same
reasoning as in the proof in Section 3.

In the following section, we present numerical experiments performed in Matlab using
a modified version of the 2𝐷 multigrid-CG topology optimization code by Amir et al. [1].
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Field Explanation

N Number of individual filters 𝑁, 𝐾 ∈ {1,… ,𝑁}

f{K} Function handle to compute 𝐟𝐾(𝝆)

g{K} Function handle to compute 𝐠𝐾(𝝆) (= 𝐟−1𝐾 (𝝆))

df{K} Function handle to compute 𝐟′𝐾(𝝆)

dg{K} Function handle to compute 𝐠′
𝐾
(𝝆)

G{K} Function handle to compute 𝐆(𝐾)𝝆

GT{K} Function handle to compute (𝐆(𝐾))𝑇𝝆

Table 1: The fields in the filterParam struct.

1 DinvS{1} = G{1}( f {1}( rho ) ) . /Ni{1};
2 f o r K = 2:N
3 DinvS{K} = G{K}( f {K}(g{K−1}(DinvS{K−1}) ) ) . / . . .
4 Ni{K};
5 end
6 rhoPhys = g{N}(DinvS{N}) ;

Listing 2: Matlab code that filters the design variables by using a cascade of generalized 𝑓𝑊-
mean filters.

Below, we describe the major changes done to the code. First, we introduce a filter struct
filterParam to hold all information needed to perform filtering and sensitivity calculation,
see Table 1. In the following code excerpts we have suppressed the struct name filterParam
to increase the readability, for instance instead of writing filterParam.N we simply write
N. Listings 1–3 includes the new parts of code that needs to be added in order to use a
filtering procedure composed of a cascade of generalized 𝑓𝑊-mean filters. The Matlab
code in Listing 1 computes the neighborhood sizes. The Matlab code in Listing 2 filters
the vector rho by using the filterParam struct and the procedure outlined in Section 4.3.
The observant reader notices that in fact it is not 𝝆(𝐾) that is saved in the filtering but
(𝐃(𝐾))−1𝐆(𝐾)𝐟𝐾(𝝆

(𝐾−1)) (denoted by DinvS{K} in the Matlab code) since this enables
the use of generalized 𝑓𝑊-mean filters where 𝑔𝐾 ≠ 𝑓−1𝐾 . The Matlab code in Listing 3
computes 𝐯𝑇∇𝝆(𝑁), as outlined in Section 4.3. We remark that filtering of densities must
be moved inside the optimality criteria update whenever a non volume preserving filter is
used.

5 Numerical experiment

Figure 2 shows the final physical design (not post processed nor sharpened!) of a cantilever
beam optimized with aim of minimizing its compliance when the load is distributed over
the middle 10 % of the beam’s right side; a standard test problem in topology optimization.
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1 f o r K = N:−1:2
2 v = df{K}(g{K−1}(DinvS{K−1}) ) . * . . .
3 GT{K}( v. *dg{K}(DinvS{K}) . /Ni{K}) ;
4 end
5 v = df {1}( rho ) . * . . .
6 GT{1}(dc ( : ) . *dg{1}(DinvS{1}) . /Ni{1}) ;

Listing 3: Matlab code that modifies the sensitivities with respect to the physical design following
the description in Section 4.3.

Here, we use an open–close (open followed by close) filtering strategy over octagonal shaped
neighborhoods, which is expected to impose bounds on the minimum sizes of structural
members and void regions [20]. However, instead of using exponential averaging to define
the open–close we are using harmonic averaging as introduced in topology optimization
by Svanberg and Svärd [22]. More precisely we have used 𝑓1(𝑥) = 𝑓4(𝑥) = (𝑥 + 𝛼)−1,
𝑓2(𝑥) = 𝑓3(𝑥) = 𝑓1(1 − 𝑥), 𝑔𝐾 = 𝑓−1𝐾 with the fixed parameter 𝛼 = 10−4. The volume
fraction used was 0.5, and the measure of non discreteness of the optimized cantilever
beam (of the physical design) was 0.26%. To the best of our knowledge, previously no
contribution has used an open–close or close–open filtering strategy to solve problems
with more than a few tens of thousands degrees of freedom. Here, we capitalize on the fast
filtering strategy by Wadbro & Hägg [25], to solve a design problem with approximately
3.11million degrees of freedom; the size of the filter neighborhoods are 1, 981 elements
for the open step and 145 elements for the close step. In total, the solution process required
91 iterations and took two hours, the filtering and modification of sensitivities accounted
for around 25 % of this time, on a standard laptop equipped with an Intel i7-3740QM
CPU and 16 GB RAM. It should be noted that the fast summation algorithm was executed
almost 20, 000 times. By examination of figure 2, we conclude that the physical design of
the optimized cantilever beam exhibits minimum size control on both material and void
regions. To illustrate that the bounds on the minimum sizes are dictated by the size of
the neighborhoods used in the harmonic open–close filter, we present in figure 3 a series
of optimized cantilever beams using different neighborhood sizes. In each sub-figure,
the upper neighborhood corresponds to the open step that should impose a minimum
size on the material regions while the lower neighborhood corresponds to the close step
that should impose a minimum size on the void regions. We remark that the upper-left
cantilever beam in figure 3 is a “coarse” version of the cantilever beam in figure 2 included
to illustrate mesh-independence.

6 Concluding summary

In this paper, we have proven the existence of solutions to a 𝑓𝑊-mean filtered, penalized
continuous version of the minimal compliance problem. The existence of solutions is
in accordance with previous experimental experience on mesh-independence gained by
using nonlinear filters [20, 22]. As was pointed out by Svanberg and Svärd [22]; due to the
non-convexity of the problem, a different filter is likely to give rise to a different solution.
To facilitate switching between different filters, we recommend using a data structure
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Figure 2: Filtered densities for an optimized cantilever beam using 2160 × 1440 elements, and a
harmonic open filter over a “large” octagonal neighborhood followed by a harmonic close filter over
a “small” octagonal neighborhood. The neighborhoods are indicated in the upper-right corner.

Figure 3: Optimized cantilever beams using1440×960 elements, and different harmonic open–close
filters. The octagonal neighborhoods are indicated in the upper-right corner of each sub-figure, and
the upper neighborhood corresponds to the open step while the lower corresponds to the close step.
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similar to that found in Table 1. We have presented results from a large-scale topology
optimization of a two dimensional cantilever beam. By using a cascade of four 𝑓𝑊-mean
filters we are able to impose minimum feature sizes on both material and void regions
independently, and the nonlinear nature of the filter results in a physical design that is
almost black and white. One of the keys to enable solutions of large-scale problems is the
fast filtering algorithm presented in [25], which enables us to filter densities and modify
sensitivities with a computational cost proportional to the number of design variables. It
should also be remarked that no continuation over penalty or filter parameters was used.
Filtering over complex neighborhood shapes can be achieved by cascading filters over
simple neighborhood shapes, and doing somight considerably simplify the implementation
of the filtering procedure. We have explained that uniformweightingwithin neighborhoods
is the preferred choice when using filters designed to mimic max or min operators.
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