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Abstract—Cloud data centers commonly use virtualization
technologies to provision compute capacity with a level of indirec-
tion between virtual machines and physical compute resources.
In this paper we explore the use of that level of indirection as
a means for autonomic data center configuration optimization
and propose a sensor-actuator model to capture optimization-
relevant relationships between data center events, monitored
metrics (sensors data), and management actions (actuators). The
model quantifies and characterizes a wide spectrum of actions
to help identify the suitability of different actions in specific
situations, and outlines what (and how often) data needs to
be monitored to capture, classify, and respond to events that
affect the performance of data center operations. To support the
analysis and illustrate the utility of the model, the paper also
details a set of testbed experiments aimed to characterize trade-
offs in the use of different actions in infrastructure optimization.

I. INTRODUCTION

Infrastructure-as-a-Service (IaaS) cloud computing envi-
ronments aggregate compute resources in data centers and
provision compute capacity to end-users via service-based
interfaces. To facilitate a flexible and resource-agnostic view
of compute resources, these environments typically abstract
physical resources using some form of virtualization technol-
ogy, e.g., virtual machines or process containers, and provide
metered services for some form of virtual resources [1].

In addition to providing a flexible and resource-agnostic
model for provisioning of resources [2], this use of virtualiza-
tion technology also provides a level of indirection between
physical and virtual resources that can be used to dynamically
optimize the deployment and configuration of data center
resources [3]–[5]. In this work we take the perspective that
this optimization should be performed in an autonomic manner,
with an optimization controller that continuously monitors and
analyses the state of the data center, and plans and suggests
optimization actions that can be executed automatically by
software components (controllers) or in a semi-automated
manner by system administrators [6]. In autonomic systems,
this is commonly formulated as a Monitor-Analyze-Plan-
Execute-Knowledge (MAPE-K) loop [7], where the optimizer
encompasses the analysis and planning steps.

In order to realize such an optimizer, a model with a
holistic view of the data center, which includes knowledge
of not only the state of the (virtual and physical) resources but
also of data center events, contextual information of resources,
availability schedules, etc. is needed. In this work we address
construction of a sensor-actuator model (encompassing the

monitor and execute parts of the MAPE-K loop) for autonomic
data center optimization, and characterize the data (sensors)
and actions (actuators) that can be used in dynamic optimiza-
tion of data center configurations. We investigate and classify
various planned, predicted, and unpredicted events that can
occur in data center operation, both external (e.g., changes in
the incoming workload) and internal (e.g., hardware failures
or changes in resource availability schedules), and map these
to software-defined management actions that can be taken to
respond to events and steer the data center towards a (at policy
level defined) desired state.

As management actions have widely varied characteristics
in dimensions such as performance (e.g., the time needed to
apply actions or the performance overhead induced by actions),
impact (e.g., how much a certain action can be expected to alter
the performance of a resource or application), and applicability
(e.g., whether an action is suitable in a specific situation), we
attempt to build a taxonomy for sensors and actuators in data
center configuration optimization, and outline the relationships
between these to construct a knowledge base for automated
data center optimization.

The main contributions of this paper are:

• A classification and characterization of planned, pre-
dicted, and unpredicted events that may occur in data
center operations (Section IV).

• An analysis of the spectrum of actuators that are
available to optimizers in current data centers, and a
discussion of the applicability and suitability of differ-
ent actions in handling of specific events (sections V
and VI).

• An analysis of what (and how often) data needs to
be monitored by sensors to facilitate detection and
prediction (based on workload and resource models)
of data center events (Sections VII).

The rest of the paper is organized as follows. Section II out-
lines the interpretation of the MAPE-K loop used in this work,
and Section III samples related work. Section IV presents the
proposed classification of data center events and Section V out-
lines an identified set of data center configuration parameters
that can be adjusted to respond to events. Section VI discusses
actuators that can be used to modify data center configuration
parameters and Section VII describes the data requirements for
mapping actuators to events. Section VIII specifies the archi-
tecture of the proposed sensor-actuator model and Section IX
concludes the paper.
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Fig. 1. The sensor-actuator model and its mapping to the MAPE-K loop.

II. MAPE-K LOOP

The concept of autonomic computing defines systems
that manage themselves following guidelines set by system
administrators [7]. The primary building block of autonomic
systems is the autonomic element, a component that consists
of two parts: a managed element that requires regulation, e.g.,
a physical machine, and an associated autonomic manager that
controls the managed element. Typically, autonomic managers
are designed as a MAPE-K loop (illustrated in Figure 1) to
structure the control process. In this paper we focus on the
Monitor and Execute steps of the MAPE-K loop, and the
Knowledge base that relates them. To illustrate our view of the
MAPE-K loop in the context of data center optimization, and
how the proposed sensor-actuator model is mapped to it (also
depicted in Figure 1), we first here describe our interpretation
of the individual steps of the MAPE-K loop.

Monitor. The purpose of the monitor step of the MAPE-K
loop is to collect information about the state of managed ele-
ments and their environments using sensors. For optimization
we identify two primary goals of monitoring: data collected
by sensors should facilitate: (1) detecting events that require
action, and (2) creating prediction models for workload and
resource consumption.

Analyze. In the analyze step, the autonomic manager decides
whether the configuration of a managed element is appropriate
for the workload the element is currently facing. If the element
configuration is found adequate, the manager returns to the
monitoring step and may schedule the next analysis after
some time (periodic approach) or sets trigger conditions for
specific events (event based approach). If there is room for
improvement, the manager identifies what type of changes are
necessary (reactive vs. proactive), at what level (e.g., physical
machine, cluster, data center) changes are to be made, and what
optimization algorithm should be used taking into account the
scale of necessary changes and the available time for running
an optimization algorithm.

Plan. During the plan step, the autonomic manger runs the op-
timization algorithm that was selected in the analyze step and
creates an optimization plan containing a list of recommended
management actions – changes to the current configuration of
managed element.

Execute. In the execute step, changes suggested in the plan
step are enacted. The autonomic manager executes manage-

ment actions described in the optimization plan using actua-
tors, monitors their execution, and reports the progress.

Knowledge. Data gathered during the previous steps that can
facilitate future decision making processes are stored in a
knowledge base. This includes, e.g., models of workloads
describing changes over the time, predicted and measured
costs of actions (in respect to time, performance overhead,
and consumed power), characteristics of anomalies that have
been observed to lead to workload spikes, and quantifications
of the performance of optimization algorithms (execution time,
quality of solutions, and scales of improvement).

III. RELATED WORK

Cloud computing hypervisors such as Kernel-based Virtual
Machines (KVM) [8], offer a wide variety of management
actions that allow data centers to dynamically adapt infras-
tructure configurations using management actions (e.g., virtual
machine migration, suspending physical and virtual machines,
horizontal elasticity). However, most proposed solutions for
optimizing data center operations focus on single management
actions and fail to fully leverage the potential of selection of
management actions for specific situations.

Nevertheless, several systems that use a substantial subset
of available management actions exist. For example, Mis-
tral [3] is a holistic controller framework that optimizes trade-
offs among power consumption, application performance, and
adaptation costs. The Mistral controller uses the following
adaptation actions to improve data center configurations: in-
crease/decrease virtual machine CPU capacity (vertical elas-
ticity), add/remove virtual machines (horizontal elasticity), mi-
grate virtual machines, and power down/up physical machines.
To handle large-scale infrastructures a multi-level hierarchy of
controllers is introduced, where lower-level controllers manage
smaller numbers of physical machines at fine-grained time
granularity, while higher-level controllers coordinate the work
of lower-level controllers at more coarse-grained time granular-
ity. Mistral uses workload prediction for estimating the stability
of new configurations (i.e. how long a new configuration will
be beneficial), but the controller works in a reactive way and
optimization is only triggered when a current configuration is
already suboptimal.

Another example of a solution that combines several man-
agement actions is Quasar [4], a cluster management system
that increases resource utilization while providing consistently
high application performance. The system uses vertical and
horizontal scaling, as well as virtual machine migration ac-
tions, to control the configuration of a data center. Quasar
employs a performance-centric approach where users can
express performance constraints for workloads and the exact
type of constraint used depends on the type of the workload,
e.g., throughput and latency for latency-sensitive applications,
or execution time for distributed frameworks such as Hadoop.

For classification, some partial hierarchies of management
actions exist. For example, Vaquero et al. [9] focus on scaling
actions at the levels of server, network, and platform and
provide a hierarchy of available management actions related
to application scalability both for Infrastructure-as-a-Service
(IaaS) and Platform-as-a-Service (PaaS) approaches. The ap-
proach tackles such problems as implementation of controllers



(per-tier controllers vs. use of per-application controllers),
defining rules and policies for when and how to scale systems,
and load balancing within data centers.

Approaches to quantify the impact of management actions
also exist. Svärd et al. characterize various algorithms for
live migration of virtual machines [10]. The paper defines
five criteria for live migration: continuous service, resource
usage, robustness, predictability, and transparency. In the pa-
per, the authors compare algorithms by measuring application
downtime, total migration time, and performance degradation.
Additionally, Sotomayor et al. [11] propose a model for
estimation of the duration of suspending and resuming virtual
machines. The authors run experiments to capture the influence
of virtual machine resource allocation (amount of memory,
number of CPUs, and filesystem used) on the duration of
actions on a testbed consisting of physical machines running
under the control of the Xen hypervisor.

Some attempts to incorporate the MAPE-K loop in data
center optimization also exist. Maurer et al. [12] introduce the
A-MAPE-K loop that adds an additional adaptation phase to
the loop to adjust it for applications in PaaS cloud comput-
ing environments. During the adaptation phase, which takes
place before deployment, service level agreements (SLAs) are
established and sensors for monitoring application-level key
performance indicators (KPIs) are introduced. The authors
present a prototype implementation of the A-MAPE-K loop
for controlling the level of SLA violations and propose a two-
level approach for mapping low level metrics (e.g., system up
time) to parameters included in SLA (e.g., system availability).

Finally, a number of ways of constructing modular data
center optimizers also exist. Jennings and Stadler [13] propose
a conceptual framework for resource management in cloud
environments. The framework decomposes the whole man-
agement system into smaller functional elements and classify
them as the responsibilities of service providers (e.g., workload
management, application demand profiling, and application
elasticity) or of infrastructure providers (e.g, scheduling, mon-
itoring, and resource utilization estimation).

IV. DATA CENTER EVENTS

In this section, we classify data center events, e.g., requests
for a new virtual machine admission, workload fluctuations,
or hardware failures, by predictability and discuss their im-
pact on data center performance. As events may introduce
changes in data center environments that negatively impact
the performance of data center resources and applications,
e.g., increased power consumption or violated SLAs, they
need to be understood to be able to assess what adjustments
should be made to data center configurations in response.
While some events are hard or even impossible to predict (e.g.,
hardware failures), others are more likely to happen at specific
time periods (e.g., daily workload patterns). As indicated in
Table I, we here classify event as planned, predicted, and
unpredicted. Unpredictable events have to be handled in a
reactive manner, which means that a data center has to operate
in a suboptimal configuration for some time. However, for
predicted events, management systems can prepare or even
apply adjustments in advance. Table I presents a summary with
examples, appropriate management approaches, required speed

TABLE I
EVENTS CLASSIFICATION

Class Examples of events Approach Speed OH
Planned PM power down for maintenance Proactive Slow High

Predicted Daily/weekly workload patterns Proactive Mid Mid
Unpredicted Flash crowds, hardware failures Reactive Fast Low

Speed – an acceptable time needed to apply changes, OH – an acceptable perfor-
mance overhead due to applying changes.

of introducing changes, and permissible costs of applying
changes in a form of performance overhead.

A. Planned Events

Planned events, e.g., powering down physical machines
for maintenance or coordinated online analysis of data from
experiments with fixed start and finish times, are by nature the
easiest events to handle. As the time of occurrence for planned
events is known in advance, management systems can prepare
for them before they occur. In most cases, the time available
for determining the best combination of management actions
(and applying them) for planned events is long, which allows
the use of actions with longer execution time. Additionally,
management actions for planned events can also be allowed to
have higher performance overhead and they can be scheduled
to be executed during periods of decreased workload.

B. Predicted Events

Predicted events, e.g., workload changes following a
weekly pattern, can similarly to planned events be managed
proactively. Actions planned to respond to predicted events
may have reasonably long execution times and performance
overheads, but are typically limited by how far in advance an
event can be predicted. The influence of high overhead can
be limited by spreading actions across longer periods of time,
e.g., by using minimal transfer rates for data transmissions
with fixed deadlines to avoid network congestion [14]. Other
examples of predicted events are terminations of MapReduce
jobs, that can be estimated based on monitoring the progress
of computation [15].

Moreover, the prediction of the time when changes in
resource requirements will happen and the time needed for
responding to the event are both important, as they combined
allow management actions to be performed just in time when
needed. Such approaches minimize the time when the amount
of assigned resources differs from the amount that is actually
needed, which allows to utilize resources more effectively.

C. Unpredicted Events

Unpredicted events, i.e. events that may or may not be
expected but cannot be detected in advance, e.g., flash crowds,
hardware failures, or arrivals of new services (requests for
virtual machine admissions), have to be handled reactively.
As such, management actions for unpredicted events have to
be fast to apply and cannot impose high performance overhead
as in most cases physical machines are already overloaded due
to the increased workload or reduced availability of resources.

The key to success in reacting to unpredicted events lies
in early detection of extraordinary conditions (e.g., workload
spikes [16] or hardware failures [17]) that endanger fulfilling



TABLE II
DATA CENTER CONFIGURATION

Type Resource Description Power
PHYSICAL MACHINE

Power
Management

PM state: on/off/power-saving modes X
CPU Dynamic Frequency Voltage Scaling X

VIRTUAL MACHINE

State - running/paused/suspended
initializing/resuming/migrating

Allocated
Resources

CPU the number of virtual CPUs
RAM size
Storage size
Network bandwidth

Instances - the number of VM instances
VM-TO-PM MAPPING

VM Placement - affinities and anti-affinities
to other VMs or PMs X

vCPU-to-core
Mapping CPU the number of physical cores

assigned to the virtual CPUs
vCPU Pinning CPU binding vCPU to physical core X

Power – direct influence on the power consumption.

the expected Quality of Service (QoS) or estimating the scale
of changes in resource demands (for spikes) or resource avail-
ability (for failures). To enable detection of unpredicted appli-
cation and resource behavior, models are needed to distinguish
extraordinary conditions from normal periodic fluctuations.

V. DATA CENTER CONFIGURATION

The configuration of a data center greatly impacts its per-
formance and operation costs, and can be used to optimize op-
erations and dynamically adjusted to compensate for changes
induced by events. To optimize data center configurations,
various parameters can be modified, e.g., the placement of vir-
tual machines, the amount of hardware resources allocated to
virtual machines, or the CPU frequency of physical machines.
Here, we analyze a subset of these parameters and group them
into three main categories: configuration of physical machines
(PM), configuration of virtual machines (VM), and VM-to-PM
mappings. Table II summarizes the information about the data
center configuration parameters considered in this work and
presents the types of parameters used, resources that they refer
to (if applicable), descriptions with additional information, and
an indication whether the parameter has a direct influence on
the power consumption of the infrastructure.

The first category of parameters describes the configuration
of physical machines. Physical machines can be running and
hosting virtual machines, or powered down to minimize the
power consumption of the infrastructure in times of decreased
workload. As the process of powering up a physical machine
takes a long time, physical machines can use power saving
modes (known also as sleep modes) to reduce startup times.
Dynamic Frequency Voltage Scaling (DFVS) can also be used
to reduce the power consumption of a physical machine at the
price of decreased computational performance.

The second category of parameters in Table II describes
virtual machines, which can be in various states.

Running: a virtual machine is hosted on a physical machine
and processing a workload.

Paused: a virtual machine is not scheduled for any CPU
resource.

Suspended: a virtual machine releases both CPU and memory
resources assigned to it.

Moreover, there are also special transient states, when
virtual machines consume resources but their processing ca-
pabilities are limited.

Initializing: occurs at the beginning of virtual machine’s life-
time, when its operating system is being loaded.

Suspending: the virtual machine is moving memory content to
storage prior to entering the suspended state.

Resuming: occurs between suspended and running states dur-
ing the time of loading the memory.

Migrating: a virtual machine uses the resources of two physical
machines (source and target) during a migration and may
experience decreased Quality of Service (QoS).

Allocated resources specify how much resource capacity,
e.g., CPU cores, memory, storage, and network bandwidth, is
assigned to the virtual machine. The instance parameter spec-
ifies how many copies of a virtual machines are instantiated
(horizontal scaling). For multi-tier applications the number of
instances should be specified for each application tier, e.g.
business logic layer, or data base layer.

The third category in Table II covers the application
layer parameters that specify the mapping between virtual
machines and physical machines. The placement indicates
on what physical machine the virtual machine runs. In het-
erogeneous data centers, where different physical machines
consume different amounts of energy, the placement influences
the power consumption. The mapping between virtual CPUs
and physical cores describes how many virtual CPUs share
a single physical core. The CPU pinning parameter specifies
whether virtual CPUs are bound to particular physical cores,
and can be used to increase the performance of certain types
of computations. As CPU pinning limits the possibility of
optimizing the assignment of physical cores, e.g., to use core
rotations to reduce the die temperature, it can have a negative
influence on the power consumption of the physical machine.

One can argue that most, if not all, of the listed parameters
have at least some influence on the power consumption. For
example, the allocation of more resources to a virtual machine
can cause the need for powering up another physical machine
(and therefore indirectly result in increased power consump-
tion). However, we here limit our reasoning to parameters with
only direct influence on data center power consumption.

VI. TAXONOMY OF ACTUATORS

Here we describe management actions that can be taken to
adjust the parameters that we have analyzed in Section V in
reaction to the events discussed in Section IV. We structure all
considered actions into a hierarchy of actuators, as presented
in Figure 2. Elements on the first level of the hierarchy relate
to the main categories of data center configuration parameters
presented in Table II. On the second level, there are types of
management actions that correspond to the parameters of data
center configuration. The third level of the hierarchy consists
of the specific management actions.

When describing management actions we emphasis two
important characteristics: the time needed to apply the action,
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and the performance overhead that the action induces on the
involved virtual and physical machines, network, and storage.
These two properties are particularly important when making
decision in what situation each action should be used.

We conduct several experiments to characterize various
management actions. For these experiments we use a testbed
consisting of HP ProLiant DL165G7 physical machines.
Physical machines are equipped with 32 CPU cores (AMD
Opteron(TM) Processor 6272, 2.1 GHz), 56 GB of RAM and
HP SmartArray P410, 4x500 GB SATA disks arranged in
RAID 1+0, and are connected with a Gigabit Ethernet network.
Machines run Ubuntu 14.04 operating system and Kernel-
based Virtual Machine (KVM) hypervisor. For experiments
involving virtual machines we use a virtual machine running

the RUBiS (Rice University Bidding System) [18].

For some of the experiments we monitor the power
consumption of physical machines using AF525A, a Power
Distribution Unit (PDU). The HP Intelligent Modular PDU
provides per-socket power usage measurements over Simple
Network Management Protocol (SNMP). To avoid capturing
the overhead of monitoring in the measurements we run the
script for obtaining the power consumption at a different
physical machine than the one being stressed.

A. Physical Machine Configuration

The configuration of a physical machine can be changed
by: power a physical machine up or down, putting a physical
machine into a power-saving mode (sleep mode), and dynam-
ically changing the frequency of CPU.

1) Physical Machine State: Physical machines are power
down in order to reduce the total power consumption of
data center when the computational resources of the physical
machines are not needed [19] (i.e. when the whole workload
can be handled by other physical machines in a data center).
Another reason for power down physical machines is to
allow maintenance work, e.g., changing a broken hard disk or
upgrading the operating system. If a physical machine is not
empty, i.e. hosts virtual machines, it is necessary to migrate
these virtual machines to other physical machine(s) before
powering down the physical machine. Moreover, power it up
takes time and consumes energy during boot time even though
no workload is processed. Therefore, using this management
action requires reliable predictions about the future resource re-
quirements to avoid costly oscillations. It is worth noticing, that
apart from a boot time of a physical machine also instantiation
or migration of virtual machines have to be performed before
the workload can be processed. Ways of shortening the virtual
machine instantiation time are mentioned when describing the
VM Initial Placement action (Section VI-C1).

To characterize power down and power up actions we
measure the time needed for gracefully shut down the op-
erating system and power off the physical machine, and to
power on the physical machine and load the operating system,
respectively. We also measure the power consumption of the
physical machine during these actions.

Figure 3 shows changes in the power consumption of
a physical machine during the power down and power up
actions. We run an idle physical machine for 20 s, then
trigger power down action, next we keep the physical machine
powered down for 20 s, then trigger the power up action, and
finally we let the physical machine to run idle for another
20 s. The power down action takes approximately 8 s (time
from sending a signal to a drop in the power consumption
of physical machine). The power up action is much longer
operation, it takes approximately 166 s (time from sending a
signal to stabilization of the power consumption at the idle
level). We observe an increase in the power consumption of
the physical machine during both power down (∼10%) and
power up (∼60%) actions comparing to the consumption of an
idle physical machine. Moreover, even when powered down,
the physical machine consumes some energy (∼5% of the
consumption of an idle physical machine). These increases in
power consumption together with long time of power up action
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should be taken into account when the action of changing the
physical machine state is considered. Power down physical
machines for short time can paradoxically increase the power
consumption of the infrastructure.

2) Power Saving Modes: Putting a physical machine into
a power-saving mode is done for similar reasons as power it
down – to reduce the power consumption during decreased
workload [20]. The difference is that the boot time is shorter
for power-saving modes [21], which can be beneficial when
there is uncertainty about the demand for computing resources
in the near future. The lower inertia comes with a price of a
higher power consumption during the power-saving mode in
comparison with powered down state.

3) Dynamic Frequency Voltage Scaling: Scaling the fre-
quency of a physical CPU is used to change the performance
capabilities and power consumption of a physical machine
[22]. Scaling down the frequency, which reduces both the
power consumption and performance of a physical machine,
can be used during times of decreased workload to lower the
operational costs of data center. Since the time necessary to
scale the frequency is very short (between nanoseconds and
tens of microseconds, depending on a technique used [23]),
it can be used in a reactive manner to adjust to unpredicted
workload changes. However, to have that possibility, it is
necessary to run at least part of CPUs at a reduced frequency
in a normal circumstances and use the maximum frequency to
handle workload bursts.

To characterize the DFVS action we quantify the influ-
ence of both CPU utilization and CPU frequency on power
consumption by measuring the power consumed by a physical
machine while stressing the CPU and scaling CPU frequency.
We test five CPU utilization levels: 0% (0 cores), 12.5% (4
cores fully utilize and the rest idle), 25% (8 cores), 50% (16
cores), and 100% (32 cores); at five available CPU frequencies:
1.4 GHz, 1.5 GHz, 1.7 GHz, 1.9 GHz, and 2.1 GHz. For
each of 25 settings (pairs of CPU utilization level and CPU
frequency) we monitor the power consumption of a physical
machine for 5 seconds what gives at least 500 power con-
sumption measurements per each setting. Values presented in
Figure 4 are the average values for these measurements.

Figure 4 shows that the difference in power consumption
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TABLE III
COMPARISON OF PHYSICAL MACHINE CONFIGURATION ACTIONS

Action Time of transition Power saving
Power up/down 166 s (up), 8 s (down) ∼95%
DVFS 10 ms (per core) 5–18%

among available CPU frequencies grows with the increase of
CPU utilization. An idle physical machine running with the
lowest frequency (f=1.4 GHz) consumes approximately 95%
of the energy consumed by a physical machine operating at the
highest frequency (f=2.1 GHz). For a fully utilized physical
machine the difference is bigger, running a physical machine at
the frequency of f=1.4 GHz saves around 18% of energy when
compared to a physical machine operating at the frequency
of f=2.1 GHz. We also observe that the relation between
CPU utilization and power consumption is not linear. Running
physical machines at low CPU utilization level is much less
power efficient than running it at the higher CPU utilization
level. That observation can be used when constructing an
optimization algorithm that can target the most power efficient
CPU utilization level. Moreover, our measurements show that
the whole action of scaling the CPU frequency takes on
average 10 ms for each CPU core, and changes to multiple
cores have to be applied in a sequential manner. The time
needed to apply the change is several orders of magnitude
longer that what reported in literature [23], because apart from
the hardware operation the whole chain of software calls has
to be handled.

Table III compares times of transition and approximated
power savings for powering down and up physical machines,
and DFVS actions.

B. Virtual Machine Configuration

Virtual Machine Configuration actions allow to change
states of virtual machines and scale them. Scaling actions allow
to adjust the computational capabilities of virtual machines to
changes in workloads.

1) Virtual Machine State: Changing the state of a virtual
machine allows to release some computational resources that
were used by that virtual machine. Thanks to that, other
applications with higher priority (e.g., batch jobs with short
deadlines or services experiencing degradation of QoS due to
unpredicted workload increases), can benefit from additional
resources. These actions are especially useful for batch jobs
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TABLE IV
TIME OF VIRTUAL MACHINE STATE TRANSITIONS

PPPPPFrom
To Unbooted Running Paused Suspended Destroyed

Unbooted N/A 1275 ms - - -
Running - N/A 10 ms 3444 ms 413 ms

Paused - 160 ms N/A 4081 ms 409 ms
Suspended - 3199 ms 3111 ms N/A -
Destroyed - - - - N/A

N/A – not applicable, ”-” – transitions not considered.

(e.g., scientific computations or MapReduce type) and services
that run multiple instances of identical virtual machines (i.e.
using horizontal scaling). In the case of horizontal scaling,
when scaling in an application for short time (if the next
workload increase is predicted to happen in the near future),
instead of killing virtual machines, they can be put in a non-
active state.

Various non-active states exist and differ in the resources
they release and the time that is needed to make a transition
between them. We here use the following terminology for
non-active states: in Paused state a virtual machine releases
only CPU resources and stores its state in a memory, while
in Suspended state both CPU and memory are released and
the state is stored to disk. Entering a non-active state enables
a virtual machine to release resources and to be able to
resume processing in the future from the point where it was
interrupted. However, non-active virtual machines still keep
some resources (disk space and possibly memory also), while
not processing any workload.

Figure 5 shows virtual machine states and possible transi-
tions between the states. At the beginning a virtual machine
is Unbooted. When started it goes to a Running state. Then,
a virtual machine can freely change states between Running,
Paused, and Suspended. Running or Paused virtual machine
can be killed and become Destroyed. Table IV compares the
times of these transitions. Measurements were taken for a
virtual machine running RUBiS application, with allocated 32
CPU cores and 8 GB of memory.

When a virtual machine is suspended, its memory is
transferred to the storage. Therefore the duration of Suspend
action is proportional to the amount of memory utilized by a
virtual machine, as presented in Figure 6. Black circles show
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Fig. 6. Duration of suspend and resume actions (scale on the right) depends
on the virtual machine memory utilization (scale on the left). When the virtual
machine allocates more memory over boot up time, the duration of actions
increases.

the changes in the memory utilization over a virtual machine
lifetime. After the start of the virtual machine, memory uti-
lization grows with a varying rate for around 65 seconds, to
finally stabilze till the end of experiment. As expected, the
duration of Suspend action, depicted as red triangles, follows
the changes in the memory utilization closely. Similarly, when
the virtual machine is resumed, its memory is loaded to the
main memory from the disk. Thus, also the duration of Resume
action, marked as blue crosses, depends on the amount of
utilized memory. However, the changes are not as significant
as for Suspend action.

For this experiment we use a virtual machine running
the RUBiS application with 32 CPUs and 8 GB of memory
allocated. We start a virtual machine, and then every 5 s we
measure the memory utilization, suspend the virtual machine,
and resume it. After 60 s we increase the time between
measurements to 10 s, because it reaches steady state regarding
the memory utilization. Experiment finishes after 120 s when
we kill the virtual machine. Memory utilization is measured
using ps -u libvirt-qemu -o rss command, which
reports resident set size (the portion of memory occupied by a
process that is held in main memory) of the libvirt process that
contains the virtual machine. Duration of actions is measured
using the -t option of virsh program, which outputs elapsed
time information for each command.

We observe that the memory utilization of a virtual machine
depends on the amount of memory allocated to it, what can be
colloquially described as ”have more, use more”, as shown in
Figure 7. Therefore, the duration of Suspend action depends
indirectly on the amount of memory allocated to the virtual
machine.

According to our measurements, the duration of Kill action
does not depend on the memory utilization or the amount of
memory allocated to the virtual machine. Kill action on average
takes 413.36 ms with standard deviation equal to 0.92 ms. This
means that whole memory allocated to a virtual machine can be
released in a short time. The cost of Kill action is the complete
loss of results computed so far, but still, that operation can be
useful in case of low priority jobs or stateless services.

2) Vertical Scaling: Vertical scaling actions allow to dy-
namically adjust the amount of resources assigned to already
hosted virtual machines. For optimization those actions can be
especially important in situation when both service providers
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and infrastructure providers do not know how much computa-
tional resources are needed to handle an application workload.
Then, after initial allocation during initial placement, the
utilization of resources and the application performance can
be monitored, and appropriate changes applied to adjust the
allocation to the actual needs. Moreover, scaling down actions
can be used to throttle virtual machines with lower priority,
e.g., batch jobs, in order to give freed resources to other virtual
machines with higher priority, e.g., services suffering from
unpredicted workload spikes or batch jobs with close deadline.

Vertical scaling actions can apply to different computa-
tional resources. For example, memory ballooning [24] allows
to preempt memory that is not used by a virtual machine
and allocate it to virtual machines that need more memory, or
return it to a pool of free resources available for newly admitted
virtual machines. Also the number of virtual CPUs assigned
to a virtual machine can be changed in order to control the
parallelism of the application (e.g., increasing the number of
virtual CPUs can allow to run more threads simultaneously).

3) Horizontal Scaling: Horizontal scaling actions change
the number of instances of an application or a selected tier
of application [25] (e.g., logic tier in three-tier architecture).
Horizontal scaling is particularly useful for applications that
can benefit from distributing their workload among several
workers (i.e. at least parts of them are easily paralizable).

It is important to notice that horizontal scaling actions
trigger actions of other types, e.g., scaling out causes a
VM Initial Placement action. In case of scaling in stateful
applications, before a virtual machine is shut down, its state
(e.g., sessions in progress) has to be sent to another instance.
Alternatively, instead of shutting down the redundant virtual
machine (Kill action), it can be paused or suspended and then
resumed when needed again.

C. Virtual Machine-to-Physical Machine Mapping

The third category, mapping between virtual machines and
physical machines, contains actions that set the allocation of
virtual machines and the relationship between physical and
virtual CPUs.

A service provider may want to add some restrictions
regarding the allocation of his virtual machines, modeled as
constraints in the optimization process [26]. VM-to-VM affini-
ties may require two virtual machines to be placed on the same

physical machine, e.g., because of substantial communication
between them. Restrictions can also specify that two virtual
machines should be placed on different physical machines,
e.g., due to similar workload and resource needs, or because
of redundancy reasons (in case of hardware failure). VM-to-
PM affinities specify that a virtual machine should always be
hosted on a particular physical machine, and thereby prohibit
migrations of that virtual machine.

1) Virtual Machine Initial Placement: The initial place-
ment of a virtual machine consists of two phases: first, the
best (according to used objective function) physical machine
to host a new virtual machine is identified (through running
an optimization algorithm). The outcome of the first phase
can also be a decision to not admit a virtual machine, if a
data center is not able to provide required QoS (admission
control). In such a case the requests potentially can be stored
and reconsidered when enough computational resources are
available, e.g., when a batch job is finished, after a scaling
down action is performed, or when maintenance work is fin-
ished. In the second phase a new virtual machine is instantiated
at that physical machine. Here we focus on the seconds phase
and distinguish two typical cases of instantiation of a virtual
machine: booting and cloning [14], [27].

In the first case, a virtual machine loads an operating
system and application from an image saved in the storage.
Depending on the operating system and the application, it can
take even several minutes before the application achieves its
full performance.

In case of cloning, the new virtual machine has to be a copy
of an already running virtual machine. That case occurs when
a placement is a result of a horizontal scaling. Live cloning
of an already hosted virtual machine is a mean to shorten the
time necessary to achieve full performance of the application
in such a case. There are two main approaches to live cloning:
post-copy and pre-copy (based on the same concepts as for
virtual machine migration). A post-copy cloning [27], takes
less than 1 second to create a replica and start processing on
the new physical machine. However that 1 second does not
include transfering memory, so after that time, still the source
physical machine will experience the overhead of cloning. A
pre-copy cloning [14], takes around 30 seconds to start the
processing on the new physical machine, but after that time
the source physical machine does not encounter any increased
load due to cloning. Because of the differences in the time
needed to start processing in the new location, the post-copy
cloning is more suitable for handling unpredicted events. On
the other hand, pre-copy seems to be more useful for events
that were planned or predicted, because once the new instance
is placed it does not consume any resources of source physical
machine.

2) Virtual Machine Migration: Virtual Machine Migration
is an action of moving an already hosted virtual machine
from one physical machine (source) to another (target). It can
cause an increase in power consumption and a degradation
of QoS (e.g., response time) [3]. Two main types of virtual
machine migration exist: live migration [28], which is suitable
for services that should be available even during the time of
migration, and cold migration [29] for applications that can be
interrupted for the time of migration.



The time needed for applying a virtual machine migration
depends mostly on the virtual machine’s memory size, network
bandwidth, and used migration technique. For live migration,
similarly to VM cloning described in Section VI-C1, we
distinguish post-copy and pre-copy approaches. The post-copy
migration guarantees that the whole memory will be transfered
just once. In case of a pre-copy migration some pages can be
transfer several times if they got dirty after the first transfer and
before the final migration of processing to the destination. Pre-
copy is more applicable for proactive migrations, because it in-
creases resource utilization on source physical machine during
whole migration process. For reactive migrations, happening
during unpredicted workload increases, post-copy seems to
be a better choice, since it moves processing away from an
overutilized physical machine immediately and later require
only sending missing memory pages when they are needed.

3) vCPU-to-core Relationship: vCPU-to-core Relationship
actions allow to change the number of physical cores assigned
to virtual machine’s virtual CPUs, as well as, to bind a virtual
CPU to a particular physical core. Typically several virtual
CPUs share one physical core in order to increase the resource
utilization. To balance the load and counteract overheating of
physical CPU cores, virtual CPUs are moved between different
physical CPU cores inside a physical machine [30].

In case of multithread applications, the number of physical
CPU cores assigned to the virtual machine has a direct influ-
ence on the performance. When the number of physical cores
assigned to a virtual machine is smaller than the number of its
virtual CPUs, the virtual CPUs are time-sharing the physical
cores. If the CPU resource is the application’s bottleneck, that
may lead to a decreased performance. On the other hand,
when the number of physical cores is higher that the number
of virtual CPUs the virtual machine is not able to utilize
all physical cores, and some of them stay idle. The optimal
situation from the application’s performance perspective is
when the number of physical CPU cores is equal to the number
of virtual CPUs and the virtual machine has an exclusive access
to them. That contradicts the concept of sharing resources and
increases the costs of hosting such application in the cloud.
Therefore, the number of physical cores assigned to a virtual
machine needs to be specified individually taking into account
both the performance and costs.

CPU pinning may increase the performance of some appli-
cations by exploiting the temporal locality of references (data
in the CPU cache) [31]. Thanks to running the application
continuously on the same physical CPU core, a number of
time-consuming and therefore performance-degrading events,
e.g. cache misses, are avoided. On the other hand, CPU pinning
may cause issues, e.g., limits schedulers ability to balance load
across processors and interferes with fair sharing polices.

VII. TAXONOMY OF SENSORS

Data center parameters are monitored to facilitate detection
of changes that require immediate reaction, and creation of
prediction models of workload and resource consumption. In
this section, we describe the sensors used to monitor these
parameters. First, we introduce a classification of monitored
data according to the relative occurrence of their changes.
Next, we describe individual parameters to be monitored.

TABLE V
MONITORED DATA CLASSIFICATION

Class Examples Monitoring
Static properties Number of CPUs in PM Triggered manually

Infrequently changing VM-to-PM Mapping Triggered on events
Frequently changing CPU utilization Constant

A. Relative Occurrence of Changes

We classify data that should be monitored into three
classes according to the relative occurrence of changes of
their values. Due to differences in the relative occurrence
of changes, parameters require tailored ways of monitoring.
Table V summarizes the differences between classes.

Static properties. There are some properties that are static
(e.g., the total number of CPUs in a physical machine) and
change only in case of physical interventions of an adminis-
trator, or in case of hardware failures. These properties do not
have to be monitored constantly, but rather only when triggered
by administrator after the initial setup or a manual change, or
when an external system reports a failure. Static properties
are used to update the data center configuration to ensure that
management decisions are based on data that reflect introduced
changes and detected failures.

Infrequently changing metrics. Infrequently changing met-
rics describe data that change as a result of applying manage-
ment actions, e.g., a virtual machine placement or a change of
physical machine state. Because of that, their update may be
triggered when the management action is finished (or started
in case of transient states like virtual machine migration).

Frequently changing metrics. Frequently changing metrics
describe data that vary continuously, e.g., the utilization of
resources at physical and virtual level, and the performance of
applications. Because of frequent changes, metrics from this
class have to be continuously monitored. Frequently changing
metrics can be used for creating models describing the relation-
ship between workload and resource utilization, for predicting
future workloads, and for detecting spikes in workloads.

B. Monitored Data

Table VI shows possible data center sensors (data that can
be monitored). We group data that needs to be monitored in
three categories: physical layer, virtual layer, and application
layer. There are many similarities between the configuration
(actuators) and the monitored data (sensors), since they form
a control feedback loop, described in this paper as a MAPE-
K loop [7]. For every parameter type we specify related
resources (if applicable), provide short description and identify
the relative occurrence of changes.

1) Physical Layer: The current state of physical machines
is monitored to give information on how much computational
resources are currently available (i.e. running and able to host
virtual machines) or can be available in longer time (e.g.,
in boot time for powered down physical machines, or in
wake-up time for physical machines in power saving mode).
Additionally, since physical machines can fail or loose network
connection, such events should be noticed by a failure detec-
tion system and then recorded by monitoring system. Duration
of transitions between states are measured to build a knowledge



base useful for improving policies regarding powering physical
machines down or putting them in a power saving mode.
The frequency of CPUs is monitored and compared with
the application behavior to find if there is still a possibility
to improve the performance (by scaling frequency up) or
decrease the power consumption (by scaling frequency down).
All power management properties of physical machine listed
in Table VI will normally change as a result of management
actions, so the update of their values shall be triggered by
respective PM Configuration actuators.

Physical machine specification parameters, describe the
total amount of resources that a physical machine is equipped
with. Despite the fact that the specification parameters are
static, they still should be monitored because their values
can change due to hardware failures (e.g., disk crash) or
physical interventions of administrators (e.g., adding additional
memory). Allocation of physical resources to virtual machines
is monitored to keep track of available resources (i.e. resources
not reserved for any virtual machine) and acceptable overbook-
ing level. The value of allocation parameters change as an
effect of VM Configuration actions and VM Migrations.

Utilization and performance parameters are constantly
monitored to facilitate determining optimal resource utilization
levels and detecting bottlenecks [32]. Power consumption shall
be monitored to enable analysis of physical machine state
changes and DVFS efficiency, and to capture the influence
of resource utilization on power consumption. Collecting such
data in the knowledge base and mining it can help finding the
optimal configuration of frequency for given workloads and
target resource utilization levels.

2) Virtual Layer: Autonomic manager keeps track of the
changes in virtual machine’s state which are infrequent and
caused by management actions. VM State Changing actions
can bring virtual machines into paused, suspended, or resuming
state. VM Initial Placement actions cause initializing state, and
VM Migration actions enter virtual machines into migrating
state. Duration of virtual machine states shall be measured to
build a knowledge base useful for predicting future changes
and thus improving policies regarding migrating and sus-
pending virtual machines. Since the duration may depend
on the virtual machine’s resource utilization, workload, and
application performance, measurements of these parameters
should be correlated.

Specifications of virtual machines need to be observed
because they can change due to Vertical Scaling actions.
Unsuccessful executions of management actions, e.g., releasing
the available pages in memory ballooning [24] (deflating the
balloon), may lead to differences between expected and actual
configuration. Also hardware failure may cause a situation
when a physical machine will not be able to provide previously
allocated amount of resources.

Utilization at the virtual layer shows how much of re-
sources allocated to a virtual machine are actually used by
applications running inside and the guest operating system.
Performance metrics of I/O operations can be used for bot-
tleneck detection. Utilization and performance parameters at
virtual layer are constantly monitored to model resource con-
sumption and facilitate Vertical and Horizontal Scaling actions.

Placement of virtual machines is to be tracked to explore

the dependencies between performance of virtual machines,
and physical resource allocation and utilization, as well as,
the effect of co-locating virtual machines on a same physical
machine. Moreover, it is necessary to record the placement
of virtual machines to be able to restore them in case of a
physical machine crash. When manager founds that a physical
machine is not reachable it instantiates copies of affected
virtual machines on other physical machines to bring back the
availability of services hosted on the corrupted machine.

3) Application Layer: Continuous monitoring of workload,
e.g., the number of requests arriving to an application, is nec-
essary to create a model of its changes over time. Information
about the number of arriving requests can be combined with
the resource utilization at the virtual machine level to form
models of application behavior. These models can later be used
for predictions of future workloads and resource consumption.

Monitoring throughput (the number of requests served by
an application), response time (the time that is necessary
to process requests), and application-specific KPIs (e.g., a
number of transactions for a database), allows to identify if
a proper QoS is provided. Comparing that information with
virtual machine resource specification and utilization enables
to optimize (minimize) the physical resource allocation while
keeping satisfactory QoS and can be used to identify proper
overbooking levels.

VIII. SENSOR-ACTUATOR ARCHITECTURE

A. Hierarchy of Autonomic Elements

As presented in the Section V, there are many parameters
that can be adjusted to optimize data center operations. Most
of them can be changed independently for each physical or
virtual machine, so the number of possible configurations in a
production-size data center is enormous. Therefore, to facilitate
effective use of available management actions, decision making
processes and optimization can be distributed and organized
in a hierarchical way. Autonomic elements at each level of
hierarchy do not only directly control their own management
actions, but also give guidelines for autonomic elements at
the lower level. That indirect control helps to keep coherent
management strategy and avoid conflicting actions.

In CACTOS [6] we use hierarchy of autonomic elements
and assign to each level management actions, as follows.

Physical node. Management actions: DFVS, vertical scaling.

Cluster. Management actions: power up/down physical ma-
chines, power saving modes, VM initial placement and migra-
tion (on PM granularity), horizontal scaling.

Data center. Management actions: VM initial placement and
migration (on cluster granularity).

B. Sensor-Actuator Interfaces

Since autonomic managers may operate at different levels,
e.g., physical machine, cluster, whole data center, it is nec-
essary to provide an efficient communication among sensors,
actuators, and the rest of the system. Two interfaces shall be
provided: the first, for collecting monitored data from sensors,
and the second, for transferring the optimization plans to
actuators. Figure 1 together with the steps of MAPE-K loop
shows also the sensor-actuator interfaces.



TABLE VI
MONITORED DATA

Type Resource Description RO
PHYSICAL LAYER

Power
Management

PM current state
InfrequentPM transition time between states

CPU current frequency

Specification

CPU total number of CPUs and cores

StaticMemory total capacity
Storage total capacity, read/write times
Network nominal bandwidth, latency

Allocation

CPU number of allocated CPU cores

InfrequentMemory total allocation
Storage total allocation
Network total allocation

Utilization

CPU utilization of each core

FrequentMemory total utilization
Storage total utilization
Network total utilization

Performance Storage measured read/write times FrequentNetwork measured bandwidth and latency
Power - measured power consumption Frequent

VIRTUAL LAYER

State VM current state InfrequentVM transition time between states

Specification

CPU number of allocated physical cores

InfrequentMemory allocated capacity
Storage allocated capacity
Network allocated bandwidth

Utilization

CPU utilization of each vCPU

FrequentMemory utilization of allocated memory
Storage utilization of allocated storage
Network utilization of allocated bandwidth

Performance Storage measured read/write times FrequentNetwork measured bandwidth and latency
VM Placement - current placement of VMs Infrequent

Pinning CPU current binding of vCPUs Infrequent
APPLICATION LAYER

Workload - number of requests arriving

FrequentThroughput - number of requests served
Response time - time of serving one request

KPIs - application specific metrics

RO – relative occurrence of changes in monitored data.

1) Monitored Data: Sensors need to be placed at each
physical machine to constantly monitor selected parameters.
Components responsible for Analyzing, Planning, and man-
agement of Knowledge, refereed here as an optimizer, may
be separated from Sensors and running in a different location.
Therefore, an interface describing monitored data is necessary
to facilitate transferring data from sensors to the optimizer.

Measurements of physical machine’s parameters and char-
acteristics of hosted virtual machines have to be synchronized
and consistent at the level of physical machines. It means
that if a virtual machine runs on a physical machine that
shall be reflected both in the physical machine’s allocation
and utilization, as well as, in VM-to-PM mapping and virtual
machines utilization monitoring. Otherwise, it is impossible
to drive conclusions about the relationships among applica-
tion performance, virtual machine specification and physical
machine resource utilization. However, synchronization and
consistency across physical machines is not mandatory. Work-
load, resource utilization and performance models are based
on the data from one physical machine. The only exception
is for monitoring of actions in which more than one physical
machine is involved, e.g., virtual machine cloning or migration.

2) Optimization Plan: Optimizers may be separated from
actuators and run on dedicated physical machines to reduce

the interference with other virtual machines. Because of that
separation, it is necessary to provide an interface for transfer-
ring the output of optimizer, described in an optimization plan,
to sensors. Optimization plans contain a list of management
actions, e.g., migrate virtual machine x from physical machine
y to physical machine z. Plans can contain a structure that de-
scribes relationships between management actions and indicate
if they can be enacted in parallel or need to be processed in
a serial manner, e.g., migrations to avoid network congestion.
Since the execution of management actions can fail they shall
be seen as a recommendations and not as commands that will
be certainly implemented.

C. Reducing Monitoring Overhead

To achieve the objectives of monitoring (collecting data
suitable for detection of unpredicted events and workload
modeling), frequently changing workload, utilization, and per-
formance parameters need to be monitored at high rate. How-
ever, monitoring of all data center entities (physical machines,
virtual machines, and applications) at the same, high rate,
results in a high performance overhead for network and com-
putational resources, and huge amounts of data to be stored and
analyzed. To reduce that overhead, monitoring systems should
adjust the rate of monitoring automatically by: exploiting the
knowledge about the pace of changes, differentiating between
model creation and normal operation phases, and reacting on
anomalies.

Similarly, the rate of monitoring should be adjusted to
the pace of parameter’s change. Not all data require periodic
monitoring, e.g., static or infrequently changing parameters can
be monitored only when management actions are executed or
failures reported. Failure detection also requires some kind of
probing, however the monitoring system can utilize informa-
tion about detected failures instead of redundantly probing.

When creating a model, monitoring system should record
changes of workload, utilization and performance at higher
rate. However, during normal operation, it is not necessary
to maintain the same monitoring rate. Instead, monitoring
systems collect limited amount of parameters to verify if the
model is precise enough to capture system behavior. When the
model does not reflect reality anymore, the monitoring mode
should be changed to model creation to update models.

When observing symptoms potentially preceding workload
spikes or an unusual system behavior (parameter values out
of standard range) monitoring system shall focus on these
parameters and observe them with a higher rate. More data
may allow to make more accurate decisions about the scale of
workload spike or identify a false alarm.

IX. CONCLUSION

In this paper we address data center automation, and
propose a sensor-actuator model for autonomic optimization of
data center resource configuration based on an interpretation
of the MAPE-K loop for autonomic systems. To construct
a knowledge base for optimizers, the model characterizes
different data center events, relates events to an identified set
of actions that can be used to optimize data center operations
(actuators), and discusses what data are needed for this type
of optimization and at what timescales that data are available



(sensors). The paper proposes taxonomies for selected aspects
of data center configuration, elements of data center actuators,
and classes of monitoring sensors. To support the analysis, the
paper also provides characterizations and discussions of the re-
lationships between data center events, sensors, and actuators;
and presents results from a set of testbed experiments designed
to illustrate selected trade-offs between these.
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