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Abstract

Developing theory, algorithms, and software tools for analyzing matrix pencils whose
matrices have various structures are contemporary research problems. Such matrices
are often coming from discretizations of systems of differential-algebraic equations.
Therefore preserving the structures in the simulations as well as during the analyses of
the mathematical models typically means respecting their physical meanings and may
be crucial for the applications. This leads to a fast development of structure-preserving
methods in numerical linear algebra along with a growing demand for new theories and
tools for the analysis of structured matrix pencils, and in particular, an exploration of
their behaviour under perturbations. In many cases, the dynamics and characteristics
of the underlying physical system are defined by the canonical structure information,
i.e. eigenvalues, their multiplicities and Jordan blocks, as well as left and right minimal
indices of the associated matrix pencil. Computing canonical structure information is,
nevertheless, an ill-posed problem in the sense that small perturbations in the matrices
may drastically change the computed information. One approach to investigate such
problems is to use the stratification theory for structured matrix pencils. The devel-
opment of the theory includes constructing stratification (closure hierarchy) graphs of
orbits (and bundles) that provide qualitative information for a deeper understanding of
how the characteristics of underlying physical systems can change under small pertur-
bations. In turn, for a given system the stratification graphs provide the possibility to
identify more degenerate and more generic nearby systems that may lead to a better
system design.

We develop the stratification theory for Fiedler linearizations of general matrix
polynomials, skew-symmetric matrix pencils and matrix polynomial linearizations,
and system pencils associated with generalized state-space systems. The novel con-
tributions also include theory and software for computing codimensions, various versal
deformations, properties of matrix pencils and matrix polynomials, and general so-
lutions of matrix equations. In particular, the need of solving matrix equations mo-
tivated the investigation of the existence of a solution, advancing into a general re-
sult on consistency of systems of coupled Sylvester-type matrix equations and block-
diagonalizations of the associated matrices.
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Populärvetenskaplig
sammanfattning

Verktyg för strukturerade matrisberäkningar:
Stratifieringar och kopplade Sylvester-ekvationer

Ett differential-algebraiskt ekvationssystem (DAE) representerar ofta en matema-
tisk modell av ett verkligt fysikaliskt system. En modell kan till exempel beskriva
ett mekaniskt system, ett elektriskt nätverk, eller en reaktion i en kemisk process.
Att designa och analysera en DAE-modell är ofta ett komplext problem som kräver
högkvalitativa matematiska teorier och beräkningsverktyg. Parametrarna och datat är
ofta påverkade av olika typer av störningar och dessutom kan det finnas fel i själva
modellbeskrivningen.

Systemegenskaperna hos den DAE-modell vi betraktar ges av olika kanoniska for-
mer som beräknas utifrån en representation i termer av matriser eller matrisknippen
(par av matriser). Populärt sagt kan en matris ses som en stor tabell (flera rader och
kolumner) med tal. Ett (linjärt) matrisknippe består i sin tur av två matriser och relat-
erar till det s.k. generaliserade egenvärdesproblemet. I detta sammanhang beskriver
egenvärdena dynamiken hos en DAE-modell och ger information om vilka systemvari-
abler som svarar mot snabba respektive mer långsamma förlopp.

Datamatriserna (matriser och matrisknippen) har ofta någon typ av struktur. Ex-
empel på strukturer är olika symmetriegenskaper hos matriserna som dessutom kan
ha en s.k. blockindelning. Strukturegenskaperna är direkt kopplade till fysikaliska
egenskaper och för att kunna göra en korrekt analys av matrisrepresentationen av ett
dynamiskt system är det viktigt att även denna struktur beaktas. Detta leder till en
snabb utveckling av strukturbevarande metoder i numerisk linjär algebra samt till ett
växande behov av nya teorier och verktyg för att kunna analysera hur de strukturerade
matrisknippena förändras av små störningar i indata (dvs. störningar i matriserna som
ingår i DAE-modellen) .

Att beräkna systemegenskaper är normalt ett s.k. illa ställt problem, vilket be-
tyder att små störningar i indata kan ge stor påverkan på de beräknade systemegen-
skaperna. Ett sätt att undersöka sådana problem är med hjälp av stratifieringsteori
för strukturerade matrisknippen. I denna avhandling görs detta genom att konstruera
grafer för stratifieringar som i sin tur ger information för en djupare förståelse av
hur egenskaperna hos det underliggande fysikaliska systemet kan förändras under små
störningar. Av särskilt intresse är att kunna identifiera närliggande mer degenererade
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och mer generiska system till ett givet system. Denna kunskap kan, till exempel, leda
till ökad förståelse av hur olika typer av styr- och reglersystem kan göras mer robusta.

I avhandlingen utvecklar vi stratifierinsgteorier för Fiedler-linjäriseringar av
generella polynommatriser, skevsymmetriska matrisknippen och polynommatriser samt
systemknippen associerade med linjära tillståndsmodeller av dynamiska system. Alla
dessa exempel svarar mot olika matrisproblem med olika blockstruktur som tas till vara
och konserveras i de nya resultaten. Bidragen i avhandlingen innefattar utveckling av
teori och verktyg för att beräkna (co-)dimensioner, att påvisa explicita uttryck av ver-
sala deformationer, att bevisa egenskaper hos matrisknippen och polynommatriser, att
kunna lösa matrisekvationer. I synnerhet motiverade behovet av att lösa matrisekva-
tioner oss till att undersöka när en lösning existerar (eller inte) för system av kopplade
matrisekvationer av Sylvester-typ. Det har resulterat i ett generellt konsistensbevis för
system av kopplade matrisekvationer och en block-diagonalisering av de associerade
matriserna. Noterbart är att detta resultat blivit tilldelat det internationellt prestige-
fulla SIAM Student Paper Prize 2015. Syftet med priset, enligt stadgarna, är att lyfta
fram enastående insatser av studenter i tillämpad matematik, beräkningsteknik eller
datavetenskap.
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Chapter 1

Introduction

Description of mechanical systems, electrical networks, and chemical reactions
typically leads to differential-algebraic equations (DAE). To analyse a DAE-
model may be a hard problem, requiring complex mathematical theories and
tools. In particular, to reveal the dynamics of the underlying system, we often
need to compute the canonical information, e.g., eigenvalues and eigenstruc-
tures, of the matrices coming from a discretization of the DAE. In general, these
problems are ill-posed in the sense that small perturbations in the matrices may
drastically change the computed canonical information. The problems become
even more challenging if the involved matrices have additional structures, e.g.,
symmetries and/or blocking. Preserving these structures in the simulations as
well as during the analyses of the mathematical models often means respect-
ing their physical meanings and may be crucial for the applications. Therefore
the development of structure-preserving methods is a rapidly growing area of
research in numerical linear algebra with significant progress during the recent
years.

Canonical information associated with a number of DAEs can be obtained
by the investigation of just a pair of matrices with a certain structure, so called
structured matrix pencils1, which in turn, demands new theory, algorithms,
and software tools for their analysis, and in particular, an exploration of their
behaviour under perturbations. One approach to investigate how small pertur-
bations affect the canonical information of (structured) matrix pencils and thus
characteristics of the underlying physical system, is developing the stratification
theory (constructing closure hierarchies) of these matrix pencils. In turn, the
stratification theory provides the possibility to identify more degenerate and
more generic nearby systems to a given system.

This Thesis addresses problems of how eigenvalues, associated Jordan blocks,
as well as left and right minimal indices of structured matrix pencils change
under structure-preserving perturbations. The considered structures include
symmetries and blocking coming from generalized state-space systems and lin-

1Formally: For two m×n matrices A and B a matrix pencil is defined as A−λB, where λ
is a scalar parameter.
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earzations of matrix polynomials. Nevertheless, the described problems require
both using and contributing to a number of mathematical disciplines, including
matrix computations, classificational problems in linear algebra, matrix poly-
nomials, versal deformations, geometry of matrix spaces, matrix equations, etc.

Note that Papers I–VII are the papers [38], [39], [34], [37], [36], [30], and
[35], respectively, in the bibliography of Chapter 1.

1.1 Sylvester-type matrix equations

Matrix equations appear frequently in various engineering applications. One
important type is Sylvester matrix equations [85] of the following form:

AX +XB = C,
where X is an unknown matrix, and A,B,C are given matrices of conforming
sizes. Similarly, these equations may have two unknown matrices, X and Y :

AX + Y B = C.
More recently, a lot of attention is devoted to so called ⋆-Sylvester2 matrix
equations, where the unknown matrices may also appear (conjugate) transposed:

AX +X⋆B = C.
Considering a few of the equations above that share some of the unknown

matrices lead to the various systems of Sylvester-type matrix equations. In the
most general case, we have systems of coupled matrix equations including an
arbitrary mix of Sylvester and ⋆-Sylvester equations, i.e., systems of n1 + n2
matrix equations with m unknown matrices

AiXk ±XjBi = Ci, i = 1, . . . , n1,

Fi′Xk′ ±X⋆
j′Gi′ =Hi′ , i′ = 1, . . . , n2,

(1.1)

where k, j, k′, j′ ∈ {1, . . . ,m}, each unknown Xl is rl × cl, l = 1, . . . ,m, all other
matrices are of conforming sizes, and Ai,Bi,Ci, Fi′ ,Gi′ ,Hi′ , and Xk are matrices
over the field F of characteristic different from two. This includes matrices over
real or complex numbers which appear frequently in various applications. The
indices k and j depend on i (are integer functions of i) as well as k′ and j′
depend on i′ which reflect that different equations may share the same or have
different unknown matrices. The same unknown matrices may appear in the
matrix equations of the same type, as well as in the matrix equations of different
types. This couples all equations on the intra- and inter-type levels, respectively.
Depending on the choice of n1, n2, and m as well as the positioning (or indexing)

2We use the (⋅)⋆-operator in X⋆ to denote the matrix transpose XT or the matrix conjugate
transpose XH , for any matrix X. Thus ⋆-Sylvester means T-Sylvester or H-Sylvester. Note
that * is often used instead of H as we do in this Thesis.
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of the unknown matrices, there exist many special cases of (1.1) which have
already been studied in the literature, see more in Paper I, Sections 1–2.

Popularity of Sylvester and ⋆-Sylvester matrix equations is due to their broad
importance in many applications; for example robust, optimal, and singular sys-
tem control, signal processing, filtering techniques, feedback, model reduction,
numerical solution of differential equations, e.g., see [7, 9, 16, 18, 38, 90, 91]
and references therein. Let us also point out that Sylvester matrix equations
arise in computing stable eigendecompositions of matrices and matrix pencils
[24], and ⋆-Sylvester matrix equations are closely related with palindromic ma-
trix pencils, e.g., analysis of associated deflating subspaces [10]. Robust and
efficient algorithms, software for solving (⋆-)Sylvester-type equations have been
developed, e.g., see [18, 41, 65], RECSY [61, 62], SCASY [51, 52], and a recent
survey [82].

Before solving such equations it is natural to ask about the existence of the
solution (i.e. consistency) as well as its uniqueness.

1.2 Block diagonalization of matrices

In all types of matrix computations, the simplest objects are diagonal matrices,
i.e. all entries are zeros except the diagonal elements. This stimulates devel-
opment of various reduction techniques that allow to diagonalize matrices and
thus simplify problems that they represent. However, very few matrix problems
actually allow complete diagonalization. A compromise is to reduce the problem
to block-diagonal form

[A 0
0 B

] ,
in which A and B are square matrices, possibly of different sizes, and zeros
denote conforming zero matrices. For many problems we are interested in block
diagonalizing several matrices simultaneously, e.g., reducing n matrices to the
forms

[A1 0
0 B1

] , [A2 0
0 B2

] , . . . , [An 0
0 Bn

]
in which the square matrices A1,A2, . . . ,An, all are of the same size as well as
B1,B2, . . . ,Bn (but Ai and Bi can be of different sizes).

Block diagonalization allows to decouple the problem into two or more in-
dependent problems of smaller sizes. The transformations used for reductions
depend on the problems and typically can be expressed as matrix multiplica-
tions on the left and right-hand sides with certain (nonsingular) matrices; a
number of examples of possible transformations, appearing in applications, are
presented in Section 1.3 and Paper I.

An important case is the block diagonalzation of a matrix (or several matri-
ces) that are already in block triangular form(s), e.g., reducing a single matrix

[A C
0 B

] to [A 0
0 B

] ;
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or reducing a pair of matrices

([A1 C1

0 B1
] , [A2 C2

0 B2
]) to ([A1 0

0 B1
] , [A2 0

0 B2
]) .

Studying separations between two matrices or matrix pairs is an example of
where such problems appear [24].

If the nonzero blocks are instead on the antidiagonals, we call it block an-
tidiagonalization, leading to matrices of the form

[ 0 G1

F1 0
] , [ 0 G2

F2 0
] , . . . , [ 0 Gn

Fn 0
] .

1.3 Coupled Sylvester-type matrix equations and
block diagonalization

In 1952, Roth revealed the connection between the existence of a solution (i.e.,
the consistency) for a Sylvester matrix equation and the similarity relation be-
tween two particular block-matrices constructed from the matrix coefficients of
the considered Sylvester matrix equation [81]:

Theorem 1. The matrix equation AX −XB = C has a solution X if and only

if there exists a nonsingular matrix P such that P −1 [A C
0 B

]P = [A 0
0 B

] .
Since then, similar results have been published for a number of other Sylvester

and more recently ⋆-Sylvester matrix equations as well as for some systems of
matrix equations (e.g., see Table 1.1 or [6, 18, 53, 68, 81, 84, 93, 94]3). These
results are often referred in the literature as Roth’s theorems.

In Paper I, we prove a general Roth’s type theorem for systems
of matrix equations consisting of an arbitrary mix of Sylvester and⋆-Sylvester equations. In full generality, we derive consistency condi-
tions by proving that such a system has a solution if and only if the
associated set of 2 × 2 block matrix representations of the equations
are block diagonalizable by (linked) equivalence transformations. In
particular, all known Roth’s theorems are partial cases of the main theorem in
Paper I, see the last column of Table 1.1. The simplicity in the statement of
this main theorem allows us to present it immediately.

3In some of these papers consistency is just one of the investigated properties for a par-
ticular matrix equation [6, 18, 84]; other papers are completely devoted to the consistency of
matrix equations or systems thereof [53, 68, 81, 93, 94].
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Theorem 2. The system of n1+n2 matrix equations with m unknown matrices

AiXk −XjBi = Ci, i = 1, . . . , n1, (1.2)

Fi′Xk′ +X⋆
j′Gi′ =Hi′ , i′ = 1, . . . , n2, (1.3)

where j, k, j′, k′ ∈ {1, . . . ,m}, has a solution (X1,X2, . . . ,Xm) if and only if there
exist nonsingular matrices P1, P2, . . . , Pm such that

P −1
j [Ai Ci

0 Bi
]Pk = [Ai 0

0 Bi
] , i = 1, . . . , n1, (1.4)

P ⋆
j′ [ 0 Gi′
Fi′ Hi′]Pk′ = [ 0 Gi′

Fi′ 0
] , i′ = 1, . . . , n2. (1.5)

In Theorem 2 each unknown Xl is rl × cl, l = 1, . . . ,m, and the other matrices
are of conforming sizes. We may have n1 = 0 or n2 = 0 which would mean
that matrix equations (1.2) or (1.3) are absent as well as the conditions (1.4)
or (1.5), respectively. Theorem 2 relates the consistency, i.e. the property
of having a solution, of a system of matrix equations (1.2)–(1.3) to the block
diagonalization and the block anti-diagonalization of the corresponding set of
block-triangular matrices (1.4)–(1.5). Notably, Theorem 2 also covers the cases
of existence of (skew-)hermitian or (skew-)symmetric solutions since
we can add the equations Xk ±X⋆

k = 0 for the variables we want to satisfy the
corresponding condition. These cases are an additional motivation to consider
systems with both Sylvester and ⋆-Sylvester equations ([94] shows this result
for one equation).

Generality of our result: In contrast to the known partial cases, where
n1, n2, and m are fixed and often small integers, Theorem 2 does not put any
restrictions on the numbers of equations n1 and n2, or unknowns m. Note that
not only n1, n2, and m define the settings for Theorem 2 but also the positions
of the unknowns in every equation of the system (1.2)–(1.3). Again our result
covers all the orders while the known partial cases have one fixed order each.

To illustrate our result and to easily distinguish the partial cases, we use
a tool from representation theory and associate a graph with each particular
case of Theorem 2. This method of “visualization” is inspired by the repre-
sentation theory of quivers and mixed type graphs [56], i.e. graphs with both
directed and undirected edges, where a set of linear mappings is associated with
directed graphs as well as a set of linear and bilinear (or sesquilinear) mappings
is associated with mixed type graphs. Now, through Theorem 2 we essentially
associate a graph to a system of Sylvester and ⋆-Sylvester matrix equations.
Until now Roth’s type theorems were proven for systems (and the matrix equiv-
alence relations) associated with one graph, for example [45, 81, 93] (see also
Figure 1.1) or one type of graphs, for example [53, 68] (see also the graphs in
Figure 1.2 for any n). We show that Roth’s theorems hold for the systems (and
the matrix equivalence relations) associated with any graph, e.g., the graphs in
Figures 1.1–1.3.
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V [A C
0 B

]

WV

[A1 C1
0 B1

]

[A2 C2
0 B2

]

Figure 1.1: Graphs associated with two Roth’s theorems. Both graphs are particular
cases of Theorem 2 and included in Table 1.1: The left graph corresponds to
AX − XB = C and the similarity of the block matrices [45, 81]; The right graph
corresponds to A1X1 −X2B1 = C1 and A2X1 −X2B2 = C2 and the strict equivalence
of the block matrices [6, 84, 93].

V
. . . . . .

[A2 C2
0 B2

][An−1 Cn−1
0 Bn−1]

[A1 C1
0 B1

][An Cn
0 Bn

]

Figure 1.2: The graph corresponds to systems of n Sylvester equations with one
unknown matrix and simultaneous similarity of the block matrices (Roth’s theorems
from [53, 68]); see also Table 1.1.

V1 V2 . . . Vn−1. . . Vn[A1 C1
0 B1

] [An−1 Cn−1
0 Bn−1]

[An Cn
0 Bn

]

Figure 1.3: The graph corresponds to systems of n Sylvester equations with n
unknown matrices in a cyclic order, associated with the periodic eigenvalue problem;
see also the last row of Table 1.1.

Although the associated graphs are not used for the proofs they are conve-
nient for the problem description and identification, see more in Section 3 of
Paper I.

Theorem 2 can also be used for systems of matrix equations that are reducible
to systems of Sylvester and ⋆-Sylvester equations (e.g., by introducing new
variables). Systems of Stein-type matrix equations

AiXkKi ±LiXjBi = Ci, i = 1, . . . , n1,

Fi′Xk′Mi′ ±Ni′X⋆
j′Gi′ =Hi′ , i′ = 1, . . . , n2,

where j, k, j′, k′ ∈ {1, . . . ,m}, are one important class of such systems and in
Section 6 of Paper I we derive a consistency theorem for them.
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System of matrix Reference Relation on the corresponding The case of
equations matrices Theorem 2

AX −XB = C
1952, [81]⇐⇒
1977, [45]⇐⇒ P−1 [A C

0 B
]P = [A 0

0 B
] n1 = 1, n2 = 0

m = 1

A1X −XB1 = C1,

. . .

AnX −XBn = Cn,
1985, [53]⇐⇒
2012, [68]⇐⇒

P
−1 [Ai Ci

0 Bi
]P = [Ai 0

0 Bi
]

i = 1, . . . ,n

n1 = n,n2 = 0

m = 1

AX1 −X2B = C
1952, [81]⇐⇒
1977, [45]⇐⇒ P−12 [A C

0 B
]P1 = [A 0

0 B
] n1 = 1, n2 = 0

m = 2

A1X1 −X2B1 = C1,

A2X1 −X2B2 = C2,

1994, [93]⇐⇒
1994, [84]⇐⇒
1996, [6]⇐⇒

P
−1
2 [A1 C1

0 B1
]P1 = [A1 0

0 B1
]

P
−1
2 [A2 C2

0 B2
]P1 = [A2 0

0 B2
]

n1 = 2, n2 = 0

m = 2

A1X1 −X2B1 = C1,

. . .

AnX1 −X2Bn = Cn,

1985, [53]⇐⇒
1994, [93]⇐⇒
2012, [68]⇐⇒

P
−1
2 [Ai Ci

0 Bi
]P1 = [Ai 0

0 Bi
]

i = 1, . . . ,n

n1 = n,n2 = 0

m = 2

A1X1 −X2B1 = C1,

A2X3 −X2B2 = C2,
2012, [68]⇐⇒ P

−1
2 [A1 C1

0 B1
]P1 = [A1 0

0 B1
]

P
−1
2 [A2 C2

0 B2
]P3 = [A2 0

0 B2
]

n1 = 2, n2 = 0

m = 3

FX +X⋆G =H
1994, [94]⇐⇒
2011, [18]⇐⇒ P⋆ [0 G

F H
]P = [0 G

F 0
] n1 = 0, n2 = 1

m = 1

F1X +X⋆
G1 =H1,

. . .

FnX +X⋆
Gn =Hn,

2014, [15]⇐⇒ P
⋆ [ 0 Gi
Fi Hi

]P = [ 0 Gi
Fi 0

]
i = 1, . . . ,n

n1 = 0, n2 = n
m = 1

AX −XB = C,
X −X⋆ = 0,

1994, [94]⇐⇒ P
−1 [A C

0 B
]P = [A 0

0 B
]

P
⋆ [0 −I
I 0

]P = [0 −I
I 0

]
n1 = 1, n2 = 1

m = 1

A1X1 −X2B1 = C1,

A2X2 −X1B2 = C2,
⇐⇒ P

−1
2 [A1 C1

0 B1
]P1 = [A1 0

0 B1
]

P
−1
1 [A2 C2

0 B2
]P2 = [A2 0

0 B2
]

n1 = 2, n2 = 0

m = 2

“cyclic order”
A1X1 −X2B1 = C1,

A2X2 −X3B2 = C2,

. . .

An−1Xn−1 −XnBn−1 = Cn−1,
AnXn −X1Bn = Cn,

⇐⇒ P
−1
i+1 [Ai Ci

0 Bi
]Pi = [Ai 0

0 Bi
]

i = 1, . . . ,n, Pn+1 ∶= P1

n1 = n,n2 = 0

m = n
“cyclic order”

Table 1.1: Some known and (as an example two) new Roth’s theorems are presented:
each row corresponds to a theorem and is a particular case of Theorem 2. The last
two rows contain Roth’s theorems for contragredient matrix pencils and the general
periodic eigenvalue problem, which surprisingly, do not seem to be explicitly stated
and published before.
The table is structured as follows: The first column shows systems of matrix equations
considered; each system has a solution if and only if the corresponding relation to the
block-matrices (in the third column) holds for some nonsingular matrices Pi; in the
second column we cite the papers and years of publication for the results. In the last
column, we state the values of n1, n2, and m to obtain these results from Theorem 2.
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The consistency conditions for systems of matrix equations have been stated
not only through the corresponding equivalence relations of the block matrices
but also via, e.g., ranks or generalized inverses [5, 90, 91]. Nevertheless, many
of these conditions can be derived from the corresponding equivalence relations
of the block triangular matrices in Theorem 2.

Roth’s theorems became classical results that are used in pure and applied
mathematics as well as in scientific computing. Paper I opens possibilities for
other new results at a general level.

1.4 Canonical matrices

We recall the Jordan canonical form of matrices, the Kronecker canonical form
of general matrix pencils, and canonical form of skew-symmetric matrix pencils
under congruence. Hereafter, all matrices that we consider are over the field of
complex numbers.

For each k = 1,2, . . ., define the k × k matrices

Jk(µ) ∶=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

µ 1
µ ⋱⋱ 1

µ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Ik ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1 ⋱

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where µ ∈ C, and for each k = 0,1, . . ., define the k × (k + 1) matrices

Fk ∶=
⎡⎢⎢⎢⎢⎢⎣
0 1⋱ ⋱

0 1

⎤⎥⎥⎥⎥⎥⎦
, Gk ∶=

⎡⎢⎢⎢⎢⎢⎣
1 0⋱ ⋱

1 0

⎤⎥⎥⎥⎥⎥⎦
.

All non-specified entries of Jk(µ), Ik, Fk, and Gk are zeros.
An n×n matrix A is called similar to C if and only if there exists a nonsingu-

lar matrix W such that W −1AW = C (notably the same type of transformation
is applied to the block-matrices in Theorem 1, Section 1.3).

Theorem 3. 4([47, Sect. VII, 7], [55, Ch. 3]) Each n × n matrix A is similar
to a direct sum of Jk(µ), µ ∈ C, which is uniquely determined up to permutation
of summands.

The blocks Jk(µ) are called Jordan blocks and the canonical form from The-
orem 3 is the Jordan canonical form (JCF) of a matrix A. Recall that the
complex number µ is an eigenvalue and A may have up to n different eigen-
values µi. Each simple eigenvalue µi has only one Jordan block J1(µi) in the
JCF. Each multiple eigenvalue µi, i.e. µi with algebraic multiplicity ≥ 2, has
one or several associated Jordan blocks Jk(µi). The number of Jk(µi) blocks is
called the geometric multiplicity of µi. We often use the term canonical struc-
ture information to describe the structural information provided by the JCF,

4Jordan canonical form recalled here is used in this introductory part to illustrate some
concepts that are utilized for the more complex canonical forms in Papers II–VII.
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i.e. eigenvalues and their multiplicities as well as the numbers and the sizes of
the associated Jordan blocks.

Similarly, an m×n matrix pencil A−λB is called strictly equivalent to C−λD
if and only if there exist nonsingular matrices Q and R such that Q−1AR = C
and Q−1BR =D.

Theorem 4. [47, Sect. XII, 4] Each m × n matrix pencil A − λB is strictly
equivalent to a direct sum, uniquely determined up to permutation of summands,
of pencils of the form

Ek(µ) ∶= Jk(µ) − λIk, in which µ ∈ C, Ek(∞) ∶= Ik − λJk(0),
Lk ∶= Fk − λGk, and LTk ∶= FTk − λGTk .

The canonical form in Theorem 4 is known as the Kronecker canonical form
(KCF). The blocks Ek(µ) and Ek(∞) correspond to the finite and infinite eigen-
values, respectively, and altogether form the regular part of A−λB. The blocks
Lk and LTk correspond to the right (column) and left (row) minimal indices,
respectively, and form the singular part of the matrix pencil.

An n × n matrix pencils A − λB with A = −AT and B = −BT is called skew-
symmetric. A skew-symmetric matrix pencil A − λB is congruent to C − λD
if and only if there exists a nonsingular matrix S such that STAS = C and
STBS =D. Recall that congruence preserves skew symmetry.

Theorem 5. [87] Each skew-symmetric n×n matrix pencil A−λB is congruent
to a direct sum, determined uniquely up to permutation of summands, of pencils
of the form

Hh(µ) ∶= [ 0 Jh(µ)−Jh(µ)T 0
] − λ [ 0 Ih−Ih 0

] , µ ∈ C,
Kk ∶= [ 0 Ik−Ik 0

] − λ [ 0 Jk(0)−Jk(0)T 0
] ,

Mm ∶= [ 0 Fm−FTm 0
] − λ [ 0 Gm−GTm 0

] .
Notably, the canonical form in Theorem 5 is a “skew-symmetric analogue” of

the Kronecker canonical form. The canonical structure information for (skew-
symmetric) matrix pencils consists of the (distinct) eigenvalues with the sizes
and the numbers of associated Jordan blocks, as well as the right and left min-
imal indices.

Many other canonical forms are known, including those for matrices under
(*)congruence [57], (skew-)symmetric/(skew-)symmetric matrix pencils [80, 87],
nonsingular state-space system pencils [88].

Simplicity and beauty of the canonical forms described above are not com-
ing for free, in particular, reductions to these forms as well as computations
of the canonical structure information are sensitive to small perturbations in
the matrix entries (ill-posed problems), see more in Sections 1.8–1.13 and Pa-
pers IV–VII. In practice, staircase algorithms and unitary transformations, e.g.,
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the GUPTRI algorithm [25, 26], are used to compute the exact canonical struc-
ture information of a nearby matrix pencil. If the distance to the nearby pencil
is small relative to the machine precision, this is the best we can expect in fi-
nite precision arithmetic. However, due to the ill-posedness of the problem, the
computed canonical structure information may be different from the canonical
structure information of the given (input) pencil.

1.5 The solution of matrix equations

Solving matrix equations with the matrix coefficients in canonical forms is a
well-known problem in linear algebra. In the classical book [47, Section VIII]
by F.R. Gantmacher, the homogeneous matrix equation JAY − Y JB = 0, where
JA and JB are in Jordan canonical forms, is solved. For example, this matrix
equation with

JA = JB = J3(µ)⊕ J2(µ) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

µ 1 0 0 0
0 µ 1 0 0
0 0 µ 0 0
0 0 0 µ 1
0 0 0 0 µ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
has the solution

Y =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 y2 y3 y4 y5
0 y1 y2 0 y4
0 0 y1 0 0
0 y6 y7 y8 y9
0 0 y6 0 y8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, where yi, . . . , y9 ∈ C.

Since the coefficient-matrices JA and JB are partitioned into Jordan blocks (of
sizes 3×3 and 2×2), the solution Y is constructed block-wise, i.e. each diagonal
block and each off-diagonal block are treated independently. Moreover if A and
B are arbitrarily square matrices and the nonsingular matrices U and V such
that A = U−1JAU and B = V −1JBV are known, then solving a matrix equation
AX −XB = 0 is equivalent to solving JAY − Y JB = 0 with Y = UXV −1. The
solution X is then recovered by X = U−1Y V . Notably, if A = B then our matrix
equation becomes AX = XA and solving it is equivalent to describing all the
matrices X that commute with A (a problem of Frobenius) [47, Section VIII].

Similarly, using the canonical forms under (*)congruence [57], the solution
of the matrix equations XA +AX⋆ = 0, where A is a square matrix, is derived
in [13, 16, 17, 50]; using the KCF, the solutions of the matrix equations
AX + X⋆B = 0, and also AX + BX⋆ = 0, where the matrices A and B are
rectangular of conforming sizes, are derived in [19] and [14], respectively.

In Paper II, we establish the general solution for the homogeneous
system of matrix equations

XTA +AX = 0,

XTB +BX = 0,
(1.6)
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where A = −AT and B = −BT are skew-symmetric n × n matrices. If
CA − λCB is the canonical form under congruence of A − λB (see Theorem 5)
and a matrix S is such that A−λB = STCAS−λSTCBS then (1.6) is equivalent
to

Y TCA +CAY = 0,

Y TCB +CBY = 0,

with Y = S−1XS. Since the matrix pencil CA − λCB is partitioned into blocks
according to the canonical form in Theorem 5, the diagonal blocks, the off-
diagonal blocks that correspond to the canonical summands of the same type,
and the off-diagonal blocks that correspond to the canonical summands of dif-
ferent types can be treated independently and the solution can be constructed
block-wise. Notably, the blocks of the solution often have Toeplitz or Hankel
structures (similarly to the example on JCF above).

Using the same techniques and the canonical forms of symmetric matrix
pencils under congruence [87], we solve the system (1.6) with both A and B
symmetric, see [40]. The matrix equation XAX = B, where A and B are both
symmetric or skew-symmetric, is studied in [67].

Note the number of independent parameters in the solution of matrix equa-
tions does not depend on whether the matrix coefficients are in canonical forms
or not, and is equal to the dimensions of the solution spaces. Moreover, these
dimensions are closely related with the dimensions and codimensions of the
corresponding matrix manifolds, as well as the homogeneous matrix equations
are related to the tangent spaces of these manifolds, see Sections 1.6–1.7 and
[16, 17, 39, 40]. Such relations are essentially our main motivation for studying
the solutions of matrix equations with the matrix coefficients in canonical forms.

1.6 Orbits and bundles

Define an orbit of a matrix (or a matrix pencil) to be a set of matrices (or matrix
pencils) with the same canonical form, e.g., an orbit of a square matrix A under
similarity is a set of matrices with the same Jordan canonical form. Similarly
we can define orbits for the other canonical forms mentioned in Section 1.4,
but it is more general to define the orbits without using canonical matrices.
In the following, we introduce some definitions in details for skew-symmetric
matrix pencils. The corresponding definitions exist for the other matrix objects
discussed in the Thesis.

The set of skew-symmetric n×n matrix pencils congruent to A−λB forms a
manifold in the complex n2−n dimensional space (both A and B have n(n−1)/2
independent parameters). This manifold is the orbit of A−λB under the action
of congruence

Oc
A−λB = {CT (A − λB)C ∶ C ∈ GLn(C)}. (1.7)

Since every skew-symmetric matrix pencil belongs to exactly one congruence
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orbit, the whole space is an infinite union of the orbits. The vector space

TA−λB ≡ {(XTA +AX) − λ(XTB +BX) ∶X ∈ Cn×n} (1.8)

is the tangent space to the congruence orbit of A−λB at the point A−λB. The
orthogonal complement to TA−λB , with respect to the Frobenius inner product

⟨A − λB,C − λD⟩ = trace(AC∗ +BD∗),
is called the normal space (denoted by NA−λB) to the congruence orbit. Fig-
ure 1.4 illustrates the geometry of the spaces.

Figure 1.4: The tangent space TA−λB and the normal space NA−λB to the congruence
orbit Oc

A−λB at the point A − λB.

The dimension of the orbit of A − λB is the dimension of its tangent space
at the point A−λB. The codimension of the orbit A−λB, denoted cod Oc

A−λB ,
is the dimension of the normal space of its orbit at the point A − λB, which
is equal to n2 − n minus the dimension of the orbit. So the dimension and the
codimension of an orbit sum up to the dimension of the whole space.

All the elements of an orbit have the same fixed eigenvalues, but sometimes
it is preferable to work with the sets where the values of the eigenvalues may
be different while their multiplicities and canonical block structures remain the
same. These sets are called bundles. Formally, two skew-symmetric matrix
pencils are in the same bundle BcA−λB if and only if they have the same singular
structure (the minimal indices) and the same Jordan structure except that the
distinct eigenvalues may be different. Similarly, bundles are defined for matrices
and matrix pencils under similarity and strict equivalence [43], respectively.
Note that a bundle is an infinite union of orbits but the whole space is a finite
union of bundles. For each skew-symmetric matrix pencil A − λB we define

cod BcA−λB = cod Oc
A−λB − #{distinct eigenvalues of A − λB} . (1.9)
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1.7 Codimension computations and
Matrix Canonical Structure Toolbox

As we mentioned in Section 1.5, there is a relation between the orbit codimen-
sions and the dimensions of the solution spaces of the corresponding matrix
equations. In some cases they are just equal to each other [16, 17], but not
always. Particularly, in Paper II we show that the codimension of the
congruence orbit of the skew-symmetric n × n matrix pencil A − λB is
equal to the number of linearly independent solutions of (1.6) minus n.
We also derive an explicit formula for the codimension of the orbit
via the canonical structure information of A − λB. Note that the ma-
trix equations (1.6) are actually coming from the representation of the tangent
space (1.8).

Formulas for computing the codimensions via canonical structure informa-
tion are also derived for a number of other cases, including matrices under
similarity (JCF) [2] [47, Section VIII], matrix pencils under strict equivalence
(KCF) [23], matrices [16] and symmetric matrix pencils [40] under congruence,
and matrices under *congruence [17], generalized matrix products [64], gener-
alized state-space system pencils under feedback-injection equivalence [48] and
Paper VII.

To explain the reason for computing codimensions rather than dimensions,
let us refer to the bundle codimensions of matrices under similarity in the sin-
gularity theory [2, 4]. For bundles of matrices under similarity (i.e., bundles
for JCF) the codimension formula (1.9) remains true. Thus distinct eigenvalues
that correspond to 1 × 1 Jordan blocks do not contribute to the bundle codi-
mension. Therefore the codimensions of bundles are independent of the matrix
dimensions, e.g., the bundle of J3(µ1) (representing a “singularity”) has the
same codimension as the bundles J3(µ1)⊕J1(µ2), J3(µ1)⊕J1(µ2)⊕J1(µ3), etc.
This property remains true, for example, for regular matrix pencils under strict
equivalence and regular skew-symmetric matrix pencils under congruence but
fails for singular matrix pencils.

Matrix Canonical Structure (MCS) Toolbox [59, 83] for Matlab5 was devel-
oped to work with matrices or matrix pencils under different transformations,
e.g., similarity, congruence, equivalence, etc., and the corresponding canonical
structures. Examples of functionalities include Matlab functions for creating
canonical structure objects or (random) matrix example setups with a desired
canonical structure information, Matlab functions that compute the codimen-
sions of the corresponding orbits, as well as a number of auxiliary functions. It
is also possible to transfer data from MCS Toolbox to StratiGraph6 and vice
versa.

5Matlab is a registered trademark of The MathWorks, Inc.
6StratiGraph is a java-based tool developed to construct and visualize the closure hierarchy

(stratification) graphs [59, 63, 83], e.g., see the graph in Figure 1.6. More details are presented
in Sections 1.9–1.13.
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In Paper III, we extend MCS Toolbox with functionality for con-
gruence and *congruence of matrices, as well as congruence of sym-
metric and skew-symmetric matrix pencils. The toolbox previously al-
ready included Matlab functions for matrices up to similarity, matrix pencils
up to strict equivalence, controllability and observability pairs, as well as sys-
tem pencils associated with nonsingular generalized state-space systems up to
(feedback-injection) equivalence. The theoretical backgrounds and motivations
for these problems are presented in [44, 59].

Whenever the canonical structure information of the matrices or the matrix
pencils is known (or specified) we use it for the codimension computations,
see [2, 16, 17, 23, 40, 48, 64] and Paper II. Obviously, this computation is
always exact and fast for problems of any sizes. Otherwise, the codimensions
are determined numerically by computing the rank and nullity of Kronecker
product matrices associated with the problems. The 2n2 × n2 matrix Z (1.10)
is a matrix representation of the tangent space to the congruence orbit of a
skew-symmetric n × n matrix pencil A − λB at the point A − λB:

Z ≡ [AT ⊗ In + (In ⊗A)P
BT ⊗ In + (In ⊗B)P] , (1.10)

where P is the n2 ×n2 permutation matrix that can “transpose” n×n matrices,
i.e., vec(XT ) = P vec(X) for any n×n matrix X. The nullities of (1.10) minus n
is equal to the codimensions of the congruence orbits of skew-symmetric matrix
pencils. Note that the system of linear equations Z vec(X) = 0 is equivalent
to (1.6).

An alternative way to compute the codimensions is to calculate the number
of independent parameters in the corresponding miniversal deformations [2, 28,
31, 32, 42, 49] (see also Section 1.8 for definitions).

1.8 Versal deformations

We recall that reductions to Jordan, Kronecker, or any other canonical forms
mentioned in Section 1.4 are unstable operations: both the corresponding canon-
ical forms and the reduction transformations depend discontinuously on the en-
tries of the original matrix or matrix pencil. Therefore versal deformations [2]
were introduced, i.e., a normal form to which an arbitrary family of matrices Ã
(or matrix pencils Ã− λB̃) close to a given matrix A (or matrix pencil A− λB)
can be reduced by transformations smoothly depending on the elements of Ã
(or Ã − λB̃). Versal deformations capture all the possible changes of the in-
vestigated object and help us to understand which canonical forms matrices
(or matrix pencils) may have in a neighbourhood of a given matrix (or matrix
pencil). If such a form has the minimal number of independent parameters it
is called miniversal deformation. This number is actually equal to the orbit’s
codimension.

The foundations of this theory were laid by V.I. Arnold [2, 3, 4], see also
[86]. Now miniversal deformations are known for Jordan matrices [2], matrices
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with respect to congruence [31] and *congruence [32], matrix pencils [42, 49],
etc., (a more detailed list of references is given in the introduction of [31]). In
particular, miniversal deformations of skew-symmetric and symmetric matrix
pencils are derived in [28] and [29], respectively.

For example, the miniversal deformation of J3(µ)⊕ J2(µ) is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

µ 1 0 0 0
0 µ 1 0 0
ε1 ε2 µ + ε3 ε4 ε5
ε6 0 0 µ 1
ε7 0 0 ε8 µ + ε9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where ε1, . . . , ε9 are independent and arbitrarily small parameters (in contrast
to the fully perturbed matrix that has 25 independent parameters).

Versal deformations are transversal7 to the tangent spaces; this suggests a
possible way to construct them [31, 32, 49]. To be orthogonal to the tangent
space, a versal deformations must lay in the corresponding normal space [42].
Algorithms constructing transformations that reduce the matrices to miniversal
deformations are discussed in [76, 77].

Notably, versal deformations allow us to analyze perturbations of matrix
polynomials via the study of perturbations of linearizations of such matrix poly-
nomials, see Sections 1.11–1.12 and Papers V–VI; as well as perturbations of
state-space system pencils via perturbations of the corresponding matrix pen-
cils, see Section 1.13 and Paper VII.

1.9 Orbit and bundle stratifications

How canonical structure information changes under perturbations, e.g., the con-
fluence and splitting of eigenvalues of a matrix, matrix pencil or polynomial, is
an essential issue for understanding and predicting the behaviour of a physi-
cal system described by such matrix objects. In general, these problems are
known to be ill-posed; small perturbations in the input data may lead to dras-
tical changes in the results. The ill-posedness stems from the fact that both the
canonical forms and the associated reduction transformations are discontinuous
functions of the entries of involved matrices. Therefore it is important to get
knowledge about the canonical forms (or canonical structure information) of the
matrix objects that are close to a given one. The problem becomes even more
interesting (viz. harder) if the involved matrices have structures that need to be
preserved, e.g., various forms of symmetries or block structures. We investigate
this problem by constructing the stratifications, i.e. the closure hierarchy graphs,
of orbits and bundles of the corresponding matrix objects. Each node (vertex)
of such a graph represents a system with a certain canonical structure informa-
tion and there is an edge from one node to another if we can perturb the first

7Two subspaces of a vector space are called transversal if their sum is equal to the whole
space [4, Ch. 29].
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node such that its canonical structure information becomes equal to the one of
the system associated with the second node. As a result, we provide qualitative
information of nearby matrix pencils and the associated canonical forms. The
ways to construct the stratification graphs are already known for several ma-
trix problems: matrices under similarity (i.e., JCF) [27, 43, 75], matrix pencils
(i.e., KCF) [43], controllability and observability pairs [44], as well as the full
(normal) rank matrix polynomials [60]. These results are implemented in the
StratiGraph6 software [59, 83]. For more details on each of the cases mentioned
above we recommend to read the corresponding papers and references therein;
some control applications are discussed in [63]. We develop the structure
preserving stratification theories for skew-symmetric matrix pencils
in Paper IV and polynomials in Paper VI, general matrix polynomials
in Paper V, and generalized state-space system pencils in Paper VII.
These cases are briefly discussed in Sections 1.10–1.13.

The essential difference between orbit and bundle stratifications can be ex-
pressed as follows: In the orbit stratification, the eigenvalues are kept fixed while
for the bundles the eigenvalues may split apart (nevertheless, eigenvalues may
appear or disappear in both the cases). Let us illustrate this with the Jordan
canonical form (JCF) of 3 × 3 matrices. An arbitrarily small neighbourhood of
J3(0) (a 3× 3 Jordan block corresponding to zero eigenvalue) always contains a
matrix with the JCF J1(ε1) ⊕ J1(ε2) ⊕ J1(ε3) with some (small and different)
ε1, ε2, and ε3. This possible change of the canonical structure information ap-
pears in the bundle stratification of 3×3 JCF but not in the orbit stratification.

Since an orbit (bundle) has only orbits (bundles) with lower codimensions
in its closure, see for example [86, Part III, Theorem 1.7], the codimensions
provide a coarse stratification.

1.10 Orbit closure hierarchies of skew-symmetric
matrix pencils

To our knowledge, Paper IV is the first contribution that gives a
complete stratification of pencils with symmetries under structure-
preserving transformations. For any problem dimension we construct
the closure hierarchy graph for congruence orbits or bundles of skew-
symmetric matrix pencils, i.e. A − λB with AT = −A and BT = −B,
under congruence transformations. For example, Figure 1.5 shows the
closure hierarchy graph for congruence orbits of skew-symmetric 4 × 4 matrix
pencils.

Our stratification algorithm is based on the main theorem of Paper IV
stating that a skew-symmetric matrix pencil A − λB can be approxi-
mated by pencils strictly equivalent to a skew-symmetric matrix pen-
cil C − λD if and only if A − λB can be approximated by pencils con-
gruent to C − λD or more formally:
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vµ1 ∶
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 µ1 −λ 1
0 0 0 µ1 −λ−µ1 +λ 0 0 0−1 −µ1 +λ 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
viµ1,µ2 ∶

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 µ1 −λ 0 0−µ1 +λ 0 0 0
0 0 0 µ2 −λ
0 0 −µ2 +λ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

iv ∶
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 −λ 1 0
λ 0 0 0−1 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

OOjj

iiiµ1 ∶
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 µ1 −λ 0 0−µ1 +λ 0 0 0
0 0 0 µ1 −λ
0 0 −µ1 +λ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

OO

iiµ1 ∶
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 µ1 −λ 0 0−µ1 +λ 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

OO

99

i ∶[0]
OO

Figure 1.5: Orbit stratification of skew-symmetric 4 × 4 matrix pencils under con-
gruence, obtained using the result of Paper IV. Six different types of orbits exist and
are presented by their canonical forms from Theorem 5: three of them depend on the
parameter (eigenvalue) µ1 and one on µ1 and µ2. For example, from this graph it fol-
lows that for every µ1 and µ2 such that µ1 ≠ µ2, any arbitrarily small neighbourhood
of a matrix pencil with the skew-symmetric canonical form iv contains matrix pencils
with the canonical form vµ1 and viµ1,µ2 , as well as that there is a neighbourhood of
a matrix pencil with the skew-symmetric canonical form iiiµ1 that does not contain
matrix pencils with the canonical forms iv and viµ1,µ2 .

Theorem 6. 8 Let A − λB and C − λD be two skew-symmetric matrix pencils.
There exists a sequence of nonsingular matrices {Qk,R−1

k } such that

Qk(C − λD)R−1
k → A − λB (1.11)

if and only if there exists a sequence of nonsingular matrices {Sk} such that

STk (C − λD)Sk → A − λB. (1.12)

The fact that two skew-symmetric matrix pencils are equivalent if and only
if they are congruent, e.g., see [47, Theorem 6, p.41] or [78, Theorem 3, p.275],
is already classical and Theorem 6 can be seen as its continuous analogue. Note

8 Using orbit notations we get shorter and possibly more elegant but also abstract formu-
lation of this theorem: OeC−λD ⊃ OeA−λB if and only if OcC−λD ⊃ OcA−λB (Oe denotes orbits
under strict equivalence, i.e., all the pencils with a certain KCF); see more in Paper IV.
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that such problems remain open for symmetric and symmetric/skew-symmetric
matrix pencils. However, some partial results for stratifications of matrix pen-

Figure 1.6: Orbit stratification of skew-symmetric 4× 4 matrix pencils under congru-
ence (right graph) extracted from the orbit stratification of all 4 × 4 matrix pencils
under strict equivalence (left graph); see more details in Paper IV. The numbers listed
in the left and right margins are the codimensions of strict equivalence and congruence
orbits. These codimensions are computed in [23] and Paper II, respectively.

cils with these symmetries have been published recently; for symmetric/skew-
symmetric (palindromic) and hermitian/skew-hermitian (∗-palindromic) matrix
pencil stratifications are derived for 2 × 2 and 3 × 3 problems [33, 46], and the
most generic structures (the top-most nodes in the bundle stratifications) are
obtained for any problem sizes in [16, 17].

By Theorem 6 we deduce the stratification of skew-symmetric matrix pencils
from the stratification of matrix pencils under strict equivalence [43], which is
illustrated by the example in Figure 1.6.

1.11 Stratification of matrix polynomials

Nonlinear eigenvalue problems play an important role in mathematics. In par-
ticular, polynomial eigenvalue problems dragged a lot of attention recently
[8, 20, 21, 22, 60, 63, 66, 71, 79], as they appear in many interesting appli-
cations [54, 58, 70, 79, 89]. A state of the art survey is recently published in
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[74]. Recall that

P (λ) = λdAd + ⋅ ⋅ ⋅ + λA1 +A0, Ai ∈ Cm×n, i = 0, . . . , d, and Ad ≠ 0, (1.13)

is a matrix polynomial of degree d with a nonzero leading coefficient matrix.
Frequently, elementary divisors and minimal indices9, i.e. the canonical struc-
ture information of matrix polynomials provide a complete understanding of the
properties and behaviours of the underlying physical systems and thus are the
actual objects of interest. This information is usually computed by passing to a
(strong) linearization which replaces a polynomial by a matrix pencil with the
same finite (and infinite) elementary divisors; see more in [1, 20, 21, 69]. For
example, one classical linearization of (1.13) is the first companion form

C1P (λ) = λ
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ad
In ⋱

In

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ad−1 Ad−2 . . . A0−In 0 . . . 0⋱ ⋱ ⋮
0 −In 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

which also belongs to a broader class called Fiedler linearizations.
Computing the canonical structure information for matrix polynomials is

sensitive to perturbations of the coefficients matrices of the polynomials and the
paper [60] is the first one to investigate this problem, in particular, the authors
construct the stratifications for the first or second companion linearizations of
full rank matrix polynomials.

In Paper V, we study how small perturbations of (rectangular)
matrix polynomials may change their elementary divisors and mini-
mal indices by constructing the closure hierarchy graphs of orbits and
bundles of matrix polynomial Fiedler linearizations. The results of Pa-
per V use and generalize the results of [60], where the same problem is solved for
full rank matrix polynomials. Other recent results that are crucial for Paper V
include necessary and sufficient conditions for a matrix polynomial with certain
degree and canonical structure information to exist [22]; the strong linearization
templates and how the minimal indices of such linearizations are related to the
minimal indices of the polynomials [20]; the correspondence between pertur-
bations of the linearizations and perturbations of matrix polynomials [60]; as
well as the algorithm for the stratification of general matrix pencils [43]. Recall
that full rank matrix polynomials can only have left or right minimal indices
(not both) and depending on which type of minimal indices that are present,
either the first or second companion form linearizations is investigated in [60].
The results in [20] and the very recent results in [22] allow us to consider ma-
trix polynomials with both left and right indices, as well as to use any Fiedler
linearization.

The stratification graphs do not depend on the choice of Fiedler
linearization which means that all the spaces of different matrix poly-
nomial Fiedler linearizations have the same geometry (topology).

9These are generalizations of the corresponding concepts for matrix pencils; see definitions
in Papers V and VI.
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Therefore, regarding the effects of small perturbations on the canon-
ical structure information, no specific Fiedler linearization is prefer-
able over the others. Let us illustrate by an example from Paper V: Consider
a 1 × 2 matrix polynomial of degree 3, i.e.

A3λ
3 +A2λ

2 +A1λ +A0, A3 ≠ 0, (1.14)

and its four Fiedler linearizations: the first companion form

λ

⎡⎢⎢⎢⎢⎢⎣
A3 0 0
0 I 0
0 0 I

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣
A2 A1 A0−I 0 0
0 −I 0

⎤⎥⎥⎥⎥⎥⎦
; (1.15)

the second companion form

λ

⎡⎢⎢⎢⎢⎢⎣
A3 0 0
0 I 0
0 0 I

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣
A2 −I 0
A1 0 −I
A0 0 0

⎤⎥⎥⎥⎥⎥⎦
; (1.16)

and the linearizations

λ

⎡⎢⎢⎢⎢⎢⎣
A3 0 0
0 I 0
0 0 I

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣
A2 A1 −I−I 0 0
0 A0 0

⎤⎥⎥⎥⎥⎥⎦
and λ

⎡⎢⎢⎢⎢⎢⎣
A3 0 0
0 I 0
0 0 I

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣
A2 −I 0
A1 0 A0−I 0 0

⎤⎥⎥⎥⎥⎥⎦
. (1.17)

Since the matrix coefficient Ai are rectangular, the Fiedler linearizations (1.15)–
(1.17) are of different sizes. Notably, we obtain similar stratification graphs for
all these linearizations, see Figure 1.7. For a particular matrix polynomial some
linerization may be better conditioned and/or structure preserving, e.g., the
skew-symmetry of the matrix coefficients in (1.13) may lead to a skew-symmetric
linearization matrix pencil.

1.12 Stratification of skew-symmetric matrix
polynomials

Sometimes the matrix polynomials have additional structures that may be ex-
plored in computations, e.g., they may be (skew-)symmetric, (skew-)Hermitian,
palindromic, alternating. Therefore, of particular interest, are structure pre-
serving linearizations [1, 70, 72, 73], solutions of structured eigenvalue problems
[66], and structured canonical forms [11, 12, 87]. Matrix polynomials (1.13) with
ATi = −Ai, i = 0, . . . , d are called skew-symmetric. Note that skew-symmetric
matrix pencils are skew-symmetric matrix polynomials of degree one.

In Paper VI, we study how elementary divisors and minimal in-
dices of skew-symmetric matrix polynomials of odd degrees may change
under small structure-preserving perturbations, by constructing the
orbit and bundle stratifications of their skew-symmetric lineariza-
tions. This requires a number of other results, in particular, based on [22, 60]
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Figure 1.7: Orbit stratification of the Fiedler linearizations of 1×2 matrix polynomials
of degree 3 (A3 ≠ 0). Graph (a) is the stratification of the first companion form (1.15),
with nodes representing 5 × 6 matrix pencils. Graph (b) is the stratification of the
linearizations in (1.17), with nodes representing 4×5 matrix pencils. Finally, graph (c)
is the stratification of the second companion form (1.16), with nodes representing 3×4
matrix pencils. The three graphs (a), (b), and (c) have the same set of edges that
connect nodes corresponding to matrix pencil orbits with the same regular structures
(Jk(µi) blocks) but different singular structures (Lk blocks).

we provide the necessary and sufficient conditions for a skew-symmetric matrix
polynomial with certain degree and canonical structure information to exist.
Using versal deformations, we also show that in the linearization of matrix
polynomials we may perturb only the blocks corresponding to the coefficient
matrices in matrix polynomials, similarly to the result in [60]. In addition, we
use the skew-symmetric strong linearization templates [73] and the relation be-
tween the minimal indices of such linearizations and the minimal indices of the
polynomials [20]; as well as the stratifications of skew-symmetric matrix pencils
in Paper IV and computations of their codimensions in Paper II.

In Paper VI, we also propose a scheme for solving the stratification
problems for (structured) linearizations of matrix polynomials. Hope-
fully, the scheme will provide possibilities including the identification of “gaps”
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for solving the stratification problem for other types of matrix polynomials.

1.13 Stratification of pencils associated with non-
singular generalized state-space systems

We consider generalized state-space (or descriptor) systems

Eẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t), (1.18)

where A,E ∈ Cn×n and E is nonsingular, B ∈ Cn×m, C ∈ Cp×n, D ∈ Cp×m, and
x(t), y(t), u(t) are the state, output, and input (control) vectors, respectively.
Computing the system characteristics of (1.18) are often ill-posed problems, i.e.,
small perturbations in the matrices can lead to drastic changes in the system
characteristics. The system (1.18) can be analyzed by studying the canonical
structure information (elementary divisors, column and row minimal indices) of
the block-structured system pencil :

S ∶= [A B
C D

] − λ [E 0
0 0

] , det(E) ≠ 0. (1.19)

Two state-space pencils S ′ and S are called feedback-injection equivalent if
and only if there exist nonsingular matrices

R = [R11 R12

0 R22
] and T = [T11 0

T21 T22
] , (1.20)

such that S ′ = RST .S can also be considered under strict equivalence. Then for any nonsingular
matrices P and Q the pencil S ′ = PSQ does not need to be of the form (1.19).
Nevertheless, if it is of the form (1.19) then there exist R and T of the form (1.20)
such that S ′ = RST . So two state-space pencils are feedback-injection equivalent
if and only if they are strictly equivalent. In particular, it means that any
system pencil (1.19) has the same canonical structure information under strict
and feedback-injection equivalence, respectively. As in the other cases, the
canonical structure information (one may also think about canonical forms here,
see Paper VII for the definitions) depends discontinuously on the entries of the
matrices involved.

Using versal deformations, we prove that there exists an arbitrarily small
dense perturbation W (zeros in the λ-part can be perturbed too), and nonsin-
gular P and Q such that

[P11 P12

P21 P22
] ([A B

C D
] + [W1 W3

W2 W4
] − λ([E 0

0 0
] + [W5 W6

W7 W8
])) [Q11 Q12

Q21 Q22
] = S ′

if and only if there exists an arbitrarily small perturbation V of the form (1.19)
(zeros in the λ-part are fixed and are not allowed to be perturbed) and nonsin-

22



gular R and T of the form (1.20) such that

[R11 R12

0 R22
] ([A B

C D
] + [V1 V3

V2 V4
] − λ([E 0

0 0
] + [V5 0

0 0
])) [T11 0

T21 T22
] = S ′.

Note that the sufficiency is obvious.
These results and the stratification of general matrix pencils under

strict equivalence allow us to explain possible changes of the canonical
structure information (i.e., to solve the stratification problem) of S
under feedback-injection equivalence, presented in Paper VII. We also
explain how the closest neighbours (cover relations) in the closure
hierarchy are obtained.

Altogether, it appears that the stratification graph ∆ of S is an induced
subgraph of the stratification graph Γ of S considered as a general matrix pencil
(i.e., ∆ has a subset of the vertices of a graph Γ together with any edges of Γ
whose both endpoints are in this subset).

We also construct the stratification and derive the cover relations
for the special case of the system (1.18) with no direct feedforward,
i.e. D is the zero matrix.

1.14 Summary of the main contributions

In the following, we summarize the main (in our opinion) contributions of Pa-
pers I–VII included in the Thesis.

Paper I: General Roth’s type theorem for systems of matrix equations includ-
ing an arbitrary mix of Sylvester and ⋆-Sylvester equations. The theorem
relates consistency of the systems and block diagonalization of the associ-
ated matrices.

Paper II: The general solution for the homogeneous system of T-Sylvester
matrix equations associated with the tangent space to the congruence
orbit of skew-symmetric matrix pencils. Using the general solution, we
derive an explicit formula for the codimension computations of the orbits
of skew-symmetric matrix pencils via the canonical structure information.

Paper III: Extending the Matrix Canonical Structure (MCS) Toolbox for Mat-
lab with functionality for matrices under congruence and *congruence, as
well as symmetric and skew-symmetric matrix pencils under congruence.

Paper IV: Stratification of skew-symmetric matrix pencils, including the nec-
essary and sufficient conditions that one congruence orbit of a skew-
symmetric matrix pencil is contained in the closure of another.

Paper V: Stratification of general matrix polynomials and the rules to obtain
neighbouring nodes of a given node in the closure hierarchy graph (cover
relations). We show that all the linearization spaces have the same geom-
etry (topology).
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Paper VI: Stratification of skew-symmetric matrix polynomials. This includes
obtaining the necessary and sufficient conditions for a skew-symmetric ma-
trix polynomial with certain degree and canonical structure information to
exist; deriving versal deformations for the skew-symmetric linearizations.

Paper VII: Stratification of the system pencils associated with generalized
state-space systems under feedback-injection equivalence and the rules to
obtain the closest neighbours of a given node in the closure hierarchy graph
(cover relations).
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