
	  
	  
	  
	  
	  

Canonical structure transitions of 
system pencils 

	  
by	  	  
	  
	  

Andrii	  Dmytryshyn,	  Stefan	  Johansson,	  and	  Bo	  Kågström	  
	  

	  
	  

UMINF	  15.15	  
	  

UMEÅ	  UNIVERSITY	  	  
DEPARTMENT	  OF	  COMPUTING	  SCIENCE	  	  

SE-‐901	  87	  UMEÅ	  
SWEDEN	  	  



Canonical structure transitions

of system pencils ⋆,⋆⋆
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Abstract

We investigate the changes under small perturbations of the canonical structure
information for a system pencil

[A B

C D
] − s [E 0

0 0
] , det(E) ≠ 0,

associated with a (generalized) linear time-invariant state-space system. The equiv-
alence class of the pencil is taken with respect to feedback-injection equivalence
transformation. The results allow to track possible changes under small perturba-
tions of important linear system characteristics.

Key words: linear system; descriptor system; state-space system; system pencil;
matrix pencil; orbit; bundle; perturbation; versal deformation; stratification.

1 Introduction

A common approach to determine the finite and infinite zeros as well as the
singular structure of a linear system, is to compute the generalized eigenval-
ues and minimal indices (canonical structure information) of an associated
system pencil. However, in general this is an ill-posed problem in the sense
that small perturbations in the matrices may drastically change the computed
system characteristics. To analyze how arbitrary small perturbations change
the canonical structure Arnold introduced (mini)versal deformations for matri-
ces [2]. In Section 3, we continue this work by considering versal deformations
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of system pencils associated with the non-singular continuous-time generalized
state-space system (or descriptor system) of the form

Eẋ(t) = Ax(t) +Bu(t), det(E) ≠ 0,

y(t) = Cx(t) +Du(t),
(1)

where A,E ∈ Cn×n, B ∈ Cn×m, C ∈ Cp×n, D ∈ Cp×m, and x(t), y(t), u(t) are
the state, output, and input (control) vectors of conforming sizes. Obviously,
this kind of system can be transformed into a standard state-space system by
multiplying with E−1 from the left. However, since the results in this paper are
not limited to the case E = I and E may be close to singular, we preserve (1)
in the generalized form. Sometimes we also refer to the associated transfer
function H(s), where H(s) is a p×m rational matrix representing the system
in frequency domain. The system (1) is called a realization of H(s) if H(s) =
C(sE − A)−1B + D,det(E) ≠ 0, is satisfied. A realization is minimal if and
only if it is both controllable and observable.

With system (1) we associate the following system pencil (blocked matrix
pencil) of size (n + p) × (n +m)

S ∶= [
A B

C D
] − s [

E 0

0 0
] , det(E) ≠ 0. (2)

In addition, we investigate the special case D ≡ 0, i.e., the system (1) with no
direct feedforward, using the system pencil

S0 ∶= [
A B

C 0
] − s [

E 0

0 0
] , det(E) ≠ 0, (3)

which is a realization of a strictly proper transfer function, i.e., a transfer
function with the degree of the nominator smaller than the degree of the
denominator.

In line of previous work on matrix pencils [16], and especially controllability
pencils [A − sI B], observability pencils [A−sIC ] [17] and related works on sys-
tem pencils [5,7,19], we present in Sections 4 and 5 the stratification theory
of S and S0, which reveals how the canonical forms and associated system
characteristics can change under arbitrarily small perturbations of the origi-
nal system pencil. The stratification shows the closure hierarchy of orbits (and
bundles) of canonical structures, where an orbit is a manifold of system pen-
cils with the same canonical structure. In Section 6, we present effective algo-
rithms to derive the stratification by combinatorial rules acting on the integer
partitions representing the canonical structure information. The StratiGraph
software tool 1 [22,24] was developed to compute and visualize the closure
hierarchy graphs.

1 StratiGraph can be downloaded from



Before we introduce the theory of stratification we recall in Section 2 a canon-
ical form for the system pencils S (2) and S0 (3) under feedback-injection
equivalence [25,27]. A number of system characteristics are invariant under
feedback-injection [6], i.e., they depend directly on and may be derived from
the canonical forms. Examples include: invertibility, i.e., existence of the ra-
tional matrix function which is the right/left inverse to the transfer function
of S; normal rank, i.e., the maximum rank of the transfer function of S attain-
able with some s; and the finite and infinite invariant zero structures. Notably,
characteristics that are not invariant under feedback-injection are controllabil-
ity, observability, and the poles of the system. Finally, in Section 7 we illustrate
the stratification theory and investigate some of the above invariants by an
example.

2 Canonical forms

In this section, we recall the Kronecker canonical form of a general matrix
pencil M − sN as well as the canonical form of a system pencil S under
feedback-injection equivalence.

For each k = 1,2, . . ., define the k × k matrices

Jk(µ) ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

µ 1

µ ⋱

⋱ 1

µ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Ik ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

1

⋱

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4)

Zk ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
. .
.

1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Yk ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
. .
.
. .
.

1 0

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5)

where µ ∈ C, and for each k = 0,1, . . ., define the k × (k + 1) matrices

Gk ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 1

⋱ ⋱

0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, Hk ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0

⋱ ⋱

1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (6)

All non-specified entries of Jk(µ), Ik, Zk, Yk,Gk, and Hk are zeros.

http://www.cs.umu.se/english/research/groups/matrix-computations/stratigraph



2.1 Kronecker canonical form

An m̂× n̂ matrix pencil M −sN is called strictly equivalent to M̃ −sÑ if there
exist non-singular matricesQ andR of conforming sizes such thatQ−1MR = M̃
and Q−1NR = Ñ . The set of matrix pencils strictly equivalent to M −sN forms
a manifold in the complex 2m̂n̂ dimensional space. This manifold is the orbit
of M − sN under the action of equivalence:

O
e
M−sN = {Q−1(M − sN)R ∣det(Q) ⋅ det(R) ≠ 0}. (7)

It follows that all matrix pencils in this orbit have the same Kronecker Canon-
ical Form (KCF) which is stated by the following theorem.

Theorem 1 (Sec. XII.4, [18]) Each m × n matrix pencil M − sN is equiv-
alent to a direct sum of pencils of the forms

Jh(µ) − sIh, where µ ∈ C, Iq − sJq(0), Gε − sHε, and GT
η − sH

T
η ,

where the blocks are defined in (4) and (6). This sum is uniquely determined
up to permutation of the summands.

The h × h Jordan block Jh(µ), associated with the finite eigenvalue µ, corre-
sponds to a finite elementary divisor (s − µ)h of degree h. Similarly, Jq(0) is
a nilpotent Jordan block and the pencil Iq − sJq(0), associated with the infi-
nite eigenvalue, corresponds to an infinite elementary divisor 1/sq of degree q.
The remaining matrix pencils Gε − sHε and GT

η − sH
T
η form the right and left

singular parts, respectively, where ε corresponds to a column (right) minimal
index and η to a row (left) minimal index of the matrix pencil.

2.2 Canonical form under feedback-injection equivalence

Two system pencils S and S̃ of the form (2) with non-singular E and Ẽ are
called feedback-injection equivalent if there exist non-singular matrices

U = [
U11 U12

0 U22
] and V = [

V11 0

V21 V22
] (8)

of sizes (n+p)×(n+p) and (n+m)×(n+m), respectively, such that USV = S̃,
i.e.,

[
U11 U12

0 U22
] [
A B

C D
] [
V11 0

V21 V22
] = [

Ã B̃

C̃ D̃
] ,

[
U11 U12

0 U22
] [
E 0

0 0
] [
V11 0

V21 V22
] = [

Ẽ 0

0 0
] , ( U11EV11 = Ẽ ).

(9)



The set of matrix pencils equivalent to S forms a manifold in the complex
(n +m)(n + p) + n2 dimensional space. This manifold is the orbit of S under
feedback-injection equivalence:

O
f-i
S
= {USV ∣ U and V are non-singular of the form (8)}. (10)

The block direct sum S ⊞ S ′ of the pencils

S = [
A B

C D
] − s [

E 0

0 0
] and S ′ = [

A′ B′

C ′ D′
] − s [

E′ 0

0 0
] ,

is defined as

S ⊞ S ′ ∶= [
A⊕A′ B ⊕B′

C ⊕C ′ D ⊕D′
] − s [

E ⊕E′ 0

0 0
] ,

where ⊕ is the direct sum of matrices. In order to define the blocking of a
pencil S, we write Spm, where p ×m is the size of the D matrix.

The following theorem presents a canonical form of (2) under feedback-injection
equivalence.

Theorem 2 ([27]) A system pencil S, defined in (2), is feedback-injection
equivalent to a block direct sum of system pencils of the forms

(Jh(µ) − sIh)00, (Zq − sYq)11, (Gε − sHε)01, and (GT
η − sH

T
η )10, (11)

where the pencils are defined as in (4)–(6) and their blockings are defined by the
corresponding subscripts (00,11,01, or 10). This sum is uniquely determined
by S, up to permutation of the block direct summands.

By Theorem 2 each system pencil can be expressed as a block direct sum of
the canonical blocks as follows

ð

j

ð

i

(Jhi(µj) − sIhi)00 ⊞
ð

i

(Zqi − sYqi)11

⊞
ð

i

(Gεi − sHεi)01 ⊞
ð

i

(GT
ηi
− sHT

ηi
)10. (12)

It is well-known that a generalized finite or infinite eigenvalue of the system
pencil S (associated with (Jh(µ) − sIh)00 and (Zq − sYq)11, respectively) is a
finite or infinite invariant zero for the corresponding state-space system (1),
e.g., see [1]. If S is a minimal realization (both controllable and observable)
then the finite invariant zeros coincide with the transmission zeros. For the
finite eigenvalues there is a one-to-one correspondence between the degrees hi
of the elementary divisors and the orders of the invariant zeros. For the infinite
eigenvalues the orders differ by one; the orders of the infinite invariant zeros
are qi−1. In other words, the infinite elementary divisors of degree one do not
appear as zeros, they actually act as a constant feed-through and are therefore



sometimes called non-dynamic variables [28]. Notably, for a single-input single-
output system the order of the infinite zero is equal to the relative degree of
the corresponding transfer function. For a full description of the different types
of zeros and their relations we refer to [1,6].

Any existing (G0−sH0)01 or (GT
0 −sH

T
0 )10 corresponds to a redundant system

input or output, respectively. An important invariant under feedback-injection
equivalence associated with the remaining singular blocks is invertibility [6,26]
of the corresponding transfer function H(s) = C(sE −A)−1B +D,det(E) ≠ 0,
of the state-space system (1). The system is said to be left (or right) invertible
if there exists a rational function L(s) (or R(s)) such that L(s)H(s) = Im
(or H(s)R(s) = Ip). The system is invertible if it is both right and left in-
vertible. Invertibility of the system can also be studied from the canonical
form (11). Assuming that B and C have full rank, a system is left (or right)
invertible if it has no column (or row) minimal indices greater than zero, i.e.,
no Gε − sHε (or GT

η − sH
T
η ) summands where {ε, η} > 0. It follows that an

invertible system must have the same number of inputs m as outputs p, but
the opposite does not need to hold.

The KCF of a system pencil S in (2), given in the canonical form (12), can
be obtained by substituting the block direct sum of the pencils in (12) with
the direct sum of the corresponding Kronecker canonical pencils obtained as
follows. Every pencil (Zq − sYq)11 is replaced by a strictly equivalent pencil
Iq−sJq(0). For the other types of summands it is enough just to ignore (drop)
the blocking. In other words, the transformation from (12) to the KCF can be
obtained by a strict equivalence transformation using permutation matrices.

Of course, all system pencils S can be transformed into KCF but not all
(n + m) × (n + p) general matrix pencils can be transformed into a system
pencil in the canonical form (12) with n states, m inputs, and p outputs.
Nevertheless, there is only one restriction: the dimensions of the three zero-
blocks in the s-matrix of (2) must be matched. This leads to the following
theorem.

Theorem 3 There exists a system pencil of the form (2) that has n states, p
inputs, and m outputs, with the set of Kronecker invariants {ηi} (row mini-
mal indices), {εi} (column minimal indices), {qi} (associated with the infinite
elementary divisors), and {hji} (associated with the finite elementary divisors
of the eigenvalue µj) if and only if

∑
i

ηi +∑
i

εi +∑
j

∑
i

hji +∑
i

(qi − 1) = n, (13)

∑
i

#{ηi} +∑
i

#{qi} =m, (14)

∑
i

#{εi} +∑
i

#{qi} = p, (15)



where #{xi} denotes the number of elements in the set {xi}. Some of the sets
of invariants may be empty.

The following lemma states that feedback-injection equivalence and strict
equivalence are interchangeable notions for the system pencils.

Lemma 4 (see also [7,20]) Two system pencils of the form (2) are feedback-
injection equivalent if and only if they are strictly equivalent.

PROOF. The sufficiency is obvious. Let us show the necessity by considering
the s-matrix of the system pencils:

[
R11 R12

R21 R22
] [
E1 0

0 0
] [
S11 S12

S21 S22
] = [

E2 0

0 0
] .

Performing the matrix multiplication we obtain

[
R11E1S11 R11E1S12

R21E1S11 R21E1S12
] = [

E2 0

0 0
] .

Since (by assumption) both n × n matrices E1 and E2 have full rank and
R11E1S11 = E2, we have that R11 and S11 must also have rank n. Therefore,
the remaining equations imply that R21 = 0 and S12 = 0. ◻

3 Versal deformations of matrix pencils

While studying matrices depending on parameters, V.I. Arnold introduced the
concept of a (mini)versal deformation of a matrix with respect to similarity [2]
(see also [4, Ch. 30B]). Later versal deformations have been obtained fro matrix
pencils [15], as well as for matrix pencils with symmetries [10,13]. Recall that
a deformation of an (n+m)×(n+p) matrix pencil P is a holomorphic mapping
P(ε⃗), where ε⃗ ∶= (ε1, . . . , εk), from a neighbourhood Ω ⊂ Ck of 0⃗ = (0, . . . ,0)
to the space of (n + m) × (n + p) matrix pencils such that P(0⃗) = P. A
deformation P(ε1, . . . , εk) of a matrix pencil P is called versal if for every
deformation Q(δ1, . . . , δl) of P we have

Q(δ1, . . . , δl) = I1(δ1, . . . , δl)P(ϕ1(δ⃗), . . . , ϕk(δ⃗))I2(δ1, . . . , δl),

where I1(δ1, . . . , δl) and I2(δ1, . . . , δl) are deformations of the identity matrices,
and all ϕi(δ⃗) are convergent in a neighborhood of 0⃗ power series such that
ϕi(0⃗) = 0. A versal deformation P(ε1, . . . , εk) of P is called miniversal if there
exists no versal deformation having less than k parameters.



In this section, we will consider the system pencil S (2) as a general matrix
pencil under strict equivalence S ↦ USV, where

U = [
U11 U12

U21 U22
] , V = [

V11 V12
V21 V22

] , det(U) ⋅ det(V ) ≠ 0, (16)

and investigate all matrix pencils in a neighbourhood of S, i.e.,

S +W ∶= [
A B

C D
] + [

W1 W3

W2 W4
] − s([

E 0

0 0
] + [

W5 W7

W6 W8
]) . (17)

In particular, we allow perturbations of the zero blocks in the s-matrix of S
and thus the form (2) of S is not required to be preserved, e.g., the rank of
the s-matrix may change. Our goal is to find a matrix pencil S(W) to which
all (n +m) × (n + p) matrix pencils S +W that are close to a given S, can be
reduced by

S +W ↦ U(W)(S +W)V (W) =∶ S(W), (18)

in which U(W) and V (W) are holomorphic at 0 (i.e., its entries are power
series in the entries ofW that are convergent in a neighborhood of 0), U(0) and
V (0) are non-singular matrices. By choosing U(0) and V (0) to be identities
and (18), we have S(0) equal to S. Define a matrix pencil D(W) from

S +D(W) = U(W)(S +W)V (W). (19)

Therefore D(W) is holomorphic at 0 and D(0) = 0. We have that S +D(W)

is a versal deformation of S, see also [10,13].

Following the notation in [13] where the big “+” denotes the entrywise sum of
matrices, define D(C) to be a space of all matrix pencils of the form D(W),
i.e., each nonzero entry (i, j) of D(W) is replaced by a complex number:

D(C) ∶=
⎛

⎝
+

(i,j)∈J1(D)

CF (ij)
⎞

⎠
− s

⎛

⎝
+

(i,j)∈J2(D)

CF (ij)
⎞

⎠
,

where

J1(D),J2(D) ⊆ {1, . . . , n +m} × {1, . . . , n + p} (20)

are the sets of indices of the nonzero entries in the constant term and the
s-term, respectively, of the pencil D(W), and F (ij) is a matrix whose
(i, j)-th entry is 1 and all other entries are 0. For brevity we introduce Cn,m,p ∶=

C (n+m)×(n+p) ×C (n+m)×(n+p).

Lemma 5 Let S be of the form (2) and D(W) ∈ Cn,m,p. The deformation
S +D(W) is versal if and only if the vector space Cn,m,p decomposes into the
sum TS +D(C), where TS is the tangent space to the strict equivalence orbit
of S at the point S.



PROOF. In a small neighbourhood of the point S only linear deformations
matter and the curvature of the orbit becomes unimportant (see [3, Sec. 1.6]
or [2,15]). This allows us to “associate” the orbit of S with the tangent space to
the orbit of S at the point S. Therefore a versal deformation of S is transversal
to TS (two subspaces of a vector space are called transversal if their sum is
equal to the whole space, [4, Ch. 29]). ◻

The following lemma presents a versal deformation of the matrix pencil (2).
It states that we may not perturb the off-diagonal blocks of the s-term, i.e.,
without loss of generality we may assume that W6 = 0 and W7 = 0 in (17).

Lemma 6 Let S be a matrix pencil of the form (2). Its versal deformation
can be taken in the form

S +D(W) ∶= [
A B

C D
] + [

W1 W3

W2 W4
] − s([

E 0

0 0
] + [

W5 0

0 W8
]) (21)

in which Wi, i ∈ {1,2,3,4,5,8} are matrices with arbitrarily small entries (all
entries are independent from each other).

PROOF. The tangent space to the strict equivalence orbit of S can be rep-
resented as follows

TS ∶={([
U11 U12

U21 U22
] [
A B

C D
] + [

A B

C D
] [
V11 V12
V21 V22

]) − s([
U11 U12

U21 U22
] [
E 0

0 0
] + [

E 0

0 0
] [
V11 V12
V21 V22

])}

={[
U11A +AV11 +U12C +BV21 U11B +BV22 +AV12 +U12D

U22C +CV11 +U21A +DV21 U22D +DV22 +CV12 +U21B
] − s [

U11E +EV11 EV12
U21E 0

]},

(22)

where U = [Uij] and V = [Vij] are any block matrices of conforming sizes.
Since E is non-singular the matrices EV12 and U21E can be arbitrary. Thus
the entries of the corresponding blocks in the matrix pencils from D(C) can
be taken as zero elements and (21) holds by Lemma 5. ◻

Note that we do not aim for the miniversal deformation (see [13] for more
details) but we want the deformation to be “good enough” for our stratification
purposes.

Actually, the dimension of the tangent space TS is equal to the dimension
of the orbit of S, while the minimal dimension of a transversal to TS is the
codimension of the orbit of S. Computing codimensions of the orbits is another
question of interest since the codimensions give a coarse stratification: only
orbits with higher codimensions may be in the closure of a given orbit. The
codimensions for system pencils are presented in [19]; below we state our
simplified (but equivalent) formula.



Theorem 7 Let S be a matrix pencil of the form (2). Then

codimOf-i
S
= codimOe

S
− mp.

PROOF. Note that S under strict equivalence is considered as an element of
the 2(n+m)(n+p) dimensional space and S under feedback-injection equiva-
lence transformations (9) is considered as an element of the (n+m)(n+p)+n2

dimensional space.

Since E in (22) is non-singular, any transversal space to (22) differs from the
corresponding transversal space to the tangent space of S considered as a
system pencil only by the (2,2)-block of the s-term. The (2,2)-block of the
s-term has mp elements. ◻

4 Stratification of system pencils

We are now ready to investigate canonical structure transitions of a system
pencil S under small perturbationsW ′, i.e., we study which canonical structure
information the system pencil

S +W ′ = [
A B

C D
] + [

W ′

1 W
′

3

W ′

2 W
′

4

] − s([
E 0

0 0
] + [

W ′

5 0

0 0
]) (23)

(which represents all system pencils that are close to S) may have. Note that
in the following we only perturb the matrices A,B,C,D, and E, coming from
the system (1), but not the zeros in the s-term of S, i.e., we preserve the
structure of the system pencil.

In the proof we use the following well-known lemma.

Lemma 8 (Sec. 0.4.6, [21]) Let X ∈ Cm×n, P ∈ Cm×m, rank(P ) = m, and
Q ∈ Cn×n, rank(Q) = n then rank(X) = rank(PXQ).

Theorem 9 Let S and Q be two pencils of the form (2) (with the same block
sizes). Then there exists a W ′ such that S + W ′ (23) is feedback-injection
equivalent to Q if and only if there exists a W such that S +W (17) is strictly
equivalent to Q.

PROOF. The feedback-injection obviously implies the strict equivalence.
Now we prove the other direction. Both S and Q are system pencils that
have the same block-structure with non-singular E matrices. By the assump-
tion that there is a perturbation of S (as a matrix pencil) and two non-singular



matrices U and V such that

[
U11 U12

U21 U22
]
⎛

⎝
[
A B

C D
] + [

W1 W3

W2 W4
] − s([

E 0

0 0
] + [

W5 W7

W6 W8
])

⎞

⎠
[
V11 V12
V21 V22

] = Q,

there exists a perturbation in the form of a versal deformation strictly equiv-
alent to Q. So by Lemma 6 we may assume that W6 = 0 and W7 = 0. Further-
more, if W8 ≠ 0 then the rank of the second matrix will increase by Lemma 8.
Thus there must exist a perturbation

W ′ ∶= [
W ′

1 W
′

3

W ′

2 W
′

4

] − s [
W ′

5 0

0 0
] ,

such that S +W ′ and Q are strictly equivalent and thus they are feedback-
injection equivalent by Lemma 4. ◻

By Theorem 9 we have that U−1QV −1 − S =W and (U ′)−1Q(V ′)−1 − S =W ′,
where U,V and U ′, V ′ represent strict and feedback-injection equivalences,
respectively. Since the entries of W and W ′ are arbitrarily small we have the
following corollary for sequences of matrices with entry-wise convergence.

Corollary 10 Let S and Q be two pencils of the form (2). There exists a
sequence of non-singular matrices

{U (k) = [
U

(k)
11 U

(k)
12

U
(k)
21 U

(k)
22

] , V (k) = [
V

(k)
11 V

(k)
12

V
(k)
21 V

(k)
22

]} , such that U (k)QV (k) → S

if and only if there exists a sequence of nonsingular matrices

{U
′
(k) = [

U
′
(k)
11 U

′
(k)
12

0 U
′
(k)
22

] , V
′
(k) = [

V
′
(k)

11 0

V
′
(k)

21 V
′
(k)

22

]} , such that U
′
(k)QV

′
(k) → S.

Below we reformulate Theorem 9 in the form convenient for the proofs in
Section 6.1, where the closure of a set X in the Euclidean topology is denoted
by X.

Corollary 11 Let S and Q be two pencils of the form (2). Then

O
f-i
Q
⊃ O

f-i
S

if and only if Oe
Q
⊃ O

e
S
.

From the closure relations between the orbits of system pencils a hierarchi-
cal graph of orbits can be formed; known as a closure hierarchy graph or a
stratification. Each node (vertex) in the graph represents an orbit and each
edge represents a cover/closure relation. In the graph, there is an upward path



from a node representing S to a node representing Q if and only if S can be
transformed by an arbitrarily small perturbation to a system pencil whose
canonical form is the one of Q. As a result, we get qualitative information
about the nearby system pencils and associated canonical forms.

Theorem 9 reveals the connections between the behaviour of general matrix
pencils and system pencils under small perturbations. More precisely, The-
orem 9 shows that the stratification of system pencils (2) can be extracted
from the stratification of (n+m)× (n+ p) matrix pencils under strict equiva-
lence [15,16]: by Theorem 3 the nodes that correspond to system pencils are
extracted and by Theorem 9 an edge between two extracted nodes is placed
if and only if there is a path directed upward (may be passing through other
nodes) between the corresponding nodes in the (n+m)× (n+p) matrix pencil
stratification. This method essentially requires checking all the possible pairs
of nodes. Another more efficient method which allows finding the neighbour-
ing structures explicitly is presented in Section 6. An illustrative example of
a subgraph of a stratification graph is presented in Section 7.

5 Stratification of system pencils without feedforward

We now consider the special case of a strictly proper system (1) with no direct
feedforward term, i.e., D ≡ 0, with the associated system pencil S0 in (3). The
canonical form of S0 under feedback-injection equivalence is similar to the one
presented in Theorem 2 except that the blocks (Z1 − sY1)11 corresponding to
the infinite elementary divisors of degree one, cannot appear, which leads to
the following corollary of Theorem 3.

Corollary 12 There exists a system pencil of the form (3) with the set of
Kronecker invariants {li},{ri},{qi}, and {hji}, where qi ⩾ 2 for all i, if and
only if (13)–(15) hold. Some of the sets of invariants may be empty.

From Lemma 6 we have the following corollary for versal deformations of S0.

Corollary 13 Let S0 be a matrix pencil of the form (3). Then S0 +D(W) is
a versal deformation of S0 in the form (21) with D = 0.

The pencil

S0 +W0 ∶= [
A B

C 0
] + [

W1 W3

W2 0
] − s([

E 0

0 0
] + [

W5 0

0 0
]) (24)

represents all system pencils that are close to S0 (all Wi have arbitrarily small
entries). The stratification of system pencils S0 follows now from the following
theorem which is an analogue of Theorem 9.



Theorem 14 Let S0 and Q0 be two pencils of the form (3). Then there exists
a W0 such that S0 +W0 (24) is feedback-injection equivalent to Q0 if and only
if there exists a W such that S0 +W (17) is strictly equivalent to Q0.

PROOF. Like in Theorem 9 the forward direction is obvious. Using Corol-
lary 13 instead of Lemma 6 we can repeat the proof of Theorem 9 obtaining

[U11 U12

0 U22
]
⎛
⎝
[A B

C 0
] + [W1 W3

W2 W4
] − s([E 0

0 0
] + [W5 0

0 0
])

⎞
⎠
[V11 0

V21 V22
] = Q0

If we perturb any entry of the (2,2)-block in the constant matrix of the system
pencil S0, i.e. we take W4 ≠ 0, then the corresponding block of Q0 will be equal
to U22W4V22 ≠ 0 (since both U22 and V22 are nonsingular). Thus W4 must be
equal to zero, which proves the theorem. ◻

The above presented theory justifies the extraction of the stratification of
system pencils (3) from the stratification of (n +m) × (n + p) matrix pencils
under strict equivalence [15,16] in the same way as it was done for system
pencils (2).

6 Neighbouring structures in the stratification

A sequence of integers N = (n1, n2, n3, . . . ) such that n1 + n2 + n3 + ⋅ ⋅ ⋅ = n
and n1 ⩾ n2 ⩾ . . . ⩾ 0 is called an integer partition of n (for more details and
references see [15]). For any a ∈ Z⩾0 we define N + a as follows (n1 + a,n2 +

a,n3 + a, . . . ). The set of all integer partitions form a poset (even a lattice)
with respect to the following order N ⪰M if and only if n1 + n2 + ⋅ ⋅ ⋅ + ni ⩾
m1 +m2 + ⋅ ⋅ ⋅ +mi, for i ⩾ 1. When N ⪰M and N ≠M then N ≻M. If N ,M
and K are integer partitions of the same integer n and there does not exist
any K such that N ≻ K ≻M where N ≻M , then N covers M.

An integer partition N = (n1, n2, n3, . . . ) can also be represented by n piles
of coins, where the first pile has n1 coins, the second n2 coins and so on. An
integer partition N covers M if M can be obtained from N by moving one
coin one column rightwards or one row downwards, and keep N monotonically
non-increasing. Or equivalently, an integer partition N is covered by K if K
can be obtained from K by moving one coin one column leftwards or one
row upwards, and keep N monotonically non-increasing. These two types of
coin moves are defined in [16] and called minimum rightward and minimum
leftward coin moves, respectively, see Figure 1.



(i)

(ii)

Fig. 1. To the partition on the left we apply two minimal leftward coin moves: (i) is
a move of a dark-grey coin one column leftward and (ii) is a move of a light-grey coin
one row upward. Note that monotonicity must be preserved. The resulting partition
is on the right.

With every system pencil S (with eigenvalues µi ∈ C), following [16], we asso-
ciate the set of structure integer partitions R(S),L(S),Z(S), and {Jµj(S) ∶

j = 1, . . . , d}, where d is the number of distinct eigenvalues of S. These parti-
tions, known as Weyr characteristics are created as follows:

● For each distinct µj, Jµj(S) = (h
µj
1 , h

µj
2 , . . . ) ∶ the kth position is the number

of Jordan blocks of size greater than or equal to k; the position numeration
starting from 1.

● Z(S) = (z1, z2, . . . ) ∶ the kth position is the number of Z − sY blocks of size
greater than or equal to k; the position numeration starting from 1.

● R(S) = (r0, r1, . . . ): the kth position is the number of G − sH blocks of size
greater than or equal to k×(k+1); the position numeration starting from 0.

● L(S) = (l0, l1, . . . ): the kth position is the number of GT −sHT blocks of size
greater than or equal to (k+1)×k; the position numeration starting from 0.

6.1 Neighbouring orbits in the stratification

By expressing the Kronecker indices as structure integer partitions we can
express the cover relations between two orbits by utilizing minimal coin moves
and combinatorial rules on the integer partitions.

We say that the feedback-injection orbit Of-i
S1

covers Of-i
S2

if and only if

O
f-i
S1

⊃ O
f-i
S2

and there exists no orbit Of-i
Q

such that Of-i
S1

⊃ O
f-i
Q

and Of-i
Q
⊃ O

f-i
S2

;

or equivalently, if and only if there is an (upward) edge from Of-i
S2

to Of-i
S1

in
the orbit stratification graph.

The main idea of the proofs of Theorems 15 and 17 (as well as Theorems 18
and 19) is: from the corresponding sets of rules for general matrix pencils we
exclude the rules that do not preserve the block form of the system pencil. By
preserving the system pencil structure we mean that if the rules are applied to
a system pencil that has n states, p inputs, and m outputs then the resulting
system pencils also have n states, p inputs, and m outputs.



Theorem 15 The feedback-injection orbit Of-i
S1

covers Of-i
S2

if and only if
the structure integer partitions of S2 can be obtained by applying one of the
rules (1)–(6) to the structure integer partitions of S1:

(1) Minimum rightward coin move in R (or L).
(2) If the rightmost column in R (or L) is one single coin, move that coin to

a new rightmost column of some Jµi , which may be empty initially.
(3) If the rightmost column in R (or L) is one single coin and Z is non-

empty, move that coin to a new rightmost column of Z.
(4) Minimum leftward coin move in any Jµi.
(5) Minimum leftward coin move in Z but no moves to the first (= leftmost)

column are allowed.
(6) If Z is non-empty: Let k denote the total number of coins in all of the

longest (= lowest) rows from all of the Jµi and Z together. Remove these
k coins, add one more coin to the set, and distribute k +1 coins to rp, p =
0, . . . , t and lq, q = 0, . . . , k − t− 1 such that at least all nonzero columns of
R and L are given coins.

Rules (1)–(3) may not make coin moves that affect r0 (or l0). Rule (6) cannot
be applied if the total number of nonzero columns in R and L is greater than
k+1, i.e., if the rule can be applied, at least one coin must be assigned to each
column of R and L.

PROOF. The rules in this theorem are restricted forms of the rules for matrix
pencils in [16, Theorem 3.2] which preserve the system pencil block form (2).
For a system pencil preservation of the block form means that the equali-
ties (13)–(15) in Theorem 3 holds, where (14) and (15) imply that the number
of blocks associated with the infinite eigenvalue (z0 in Z) contributes to m
and p but the number of blocks associated with the finite eigenval-
ues (h

µj
1 in Jµj) do not. Therefore Z must be treated differently from Jµj

(contrary to the matrix pencils case), i.e., Z must be non-empty in rules (3)
and (6) and no moves to the first column are allowed in rule (5). Summing
up, let us explicitly point out that, comparing to the rules for matrix pencils
in [16, Theorem 3.2], (3) and (5) are new, as well as the condition that Z must
be non-empty in (6), and the other rules are the same.

Now we prove that the set of rules (1)–(6) that preserves the system pencil’s
block form (2) are necessary and sufficient for a feedback-injection orbit to
cover another feedback-injection orbit.

Sufficiency: We have that Of-i
S1

and Of-i
S2

are two orbits of system pencils and S2
can be obtained by applying one of the rules (1)–(6) to the integer partitions
of S1. The rules (1)–(6) are more restrictive than the corresponding rules for
matrix pencils thus if we consider the strict equivalence orbits of S1 and S2



(i.e., Oe
S1

and Oe
S2

) we get that the integer partitions of S2 can be obtained
by applying one of the rules for matrix pencils to the integer partitions of S1.
Therefore, Oe

S1
covers Oe

S2
. Due to the fact that the set of system pencil orbits

under the feedback-injection equivalence is a subset of the set of matrix pencil
orbits under the strict equivalence (see Theorem 2) no new nodes (orbits) can
appear in-between S1 and S2 in the system stratification, thus Of-i

S1
covers Of-i

S2

for the system pencils too.

Necessity: We have that Of-i
S1

and Of-i
S2

are two orbits of system pencils and Of-i
S1

covers Of-i
S2

. Therefore Oe
S1
⊃ O

e
S2

by Corollary 11. If also Oe
S1

covers Oe
S2

then
one of the rules for matrix pencils can be applied and since both S1 and S2
are system pencils then one of the rules (1)–(6) above can be applied too. If
O

e
S1

does not cover Oe
S2

, by Theorem 9 we still have that Oe
S1

contains Oe
S2

.
Therefore we can obtain S1 from S2 by applying a sequence of coin moves.
If the first move in this sequence is one of the moves from the list above
(rules (1)–(6)) we have a contradiction to the fact that Of-i

S1
covers Of-i

S2
. On

the other side, if the first move is any of the moves possible for the matrix
pencils but not allowed for the system pencils then they will increase m or p,
or both and no other moves can decrease them back. Thus the case when Oe

S1

does not covers Oe
S2

is impossible. ◻

An induced subgraph Γ′ of a graph Γ is a subset of the vertices of a graph Γ
together with any edges whose endpoints are both in this subset.

Corollary 16 Let S be a system pencil of the form (2). The stratification
graph of S is an induced subgraph of the stratification graph of S considered
as a general matrix pencil.

PROOF. The proof of Theorem 15 shows that for two system pencils (under
feedback-injection equivalence) the cover relation holds if and only if it holds
for them treated as matrix pencils (under strict equivalence). ◻

6.2 Neighbouring bundles in the stratification

The bundle stratifications were derived for general matrix pencils [16], skew-
symmetric matrix pencils and polynomials [8,12], controllability and observ-
ability pairs [17], and linearizations of polynomial matrices [11,23]. Here we
present stratification of system pencil bundles. For the system pencil case a
bundle Bf-i

S
is a union of system pencil orbits with the same singular and Z

blocks and the same Jordan blocks except that the distinct finite eigenvalues
may be different. This definition of bundle is analogous to the one for matrix
pencils under strict equivalence [16], except that orbits associated with the



infinite eigenvalue (Z blocks) are no longer in the same bundle as the finite
eigenvalues but form an independent bundle (see more about defining bundles
for matrix pencils in [9]). In addition, the codimension of Bf-i

S
is

codim Bf-i
S
= codim Of-i

S
− #{distinct finite eigenvalues of S} .

Notably, in the orbit stratification the eigenvalues may appear and disappear
but they are fixed (can not change). Contrary, in the bundle stratification the
eigenvalues may coalesce or split apart. This definition leads to the following
set of rules for determining the closest neighbours in the bundle stratification
graphs, in particular, the rules (7) and (8) in Theorem 17 correspond to the
eigenvalues coalescing and the rules (7) and (8) in Theorem 19 correspond to
the eigenvalues splitting apart.

We number the rules such that each rule has the same number as in the
corresponding orbit case in Theorem 15.

Theorem 17 Bf-i
S1

covers Bf-i
S2

if and only if S2 can be obtained by applying one
of the rules (1)–(6) to the structure integer partitions of S1:

(1) Minimum rightward coin move in R (or L).
(2) If the rightmost column in R (or L) is one single coin, create with that

coin a new partition Jµi for some new eigenvalue µi.
(3) Not applicable.
(4) Minimum leftward coin move in any Jµi.
(5) Minimum leftward coin move in Z but no moves to the first column are

allowed.
(6) If Z is non-empty and either there are no finite eigenvalues or at least two

Jordan blocks for each finite eigenvalue: Let k denote the total number
of coins in all of the longest (= lowest) rows from all of the Jµi and
Z together. Remove these k coins, add one more coin to the set, and
distribute k + 1 coins to rp, p = 0, . . . , t and lq, q = 0, . . . , k − t − 1 such that
at least all nonzero columns of R and L are given coins.

(7) Join two partitions corresponding to two different finite eigenvalues into
one partition.

(8) If Z is non-empty join it with a partition that corresponds to a finite
eigenvalue and write the result as a partition Z, such that the number of
blocks corresponding to infinite eigenvalue, i.e., z0, remains the same.

Rules (1)–(2) may not make coin moves that affect r0 (or l0).

PROOF. The proof relies on [16, Theorem 3.3] and essentially repeats the
proof of Theorem 15. One issue that appears here is that some bundles of
matrix pencils split into few bundles for system pencils: corresponding to
finite and infinite eigenvalues.



Remark 6.1 In [7] the points of continuity of matrix quadruples were ob-
tained. Those points correspond to the most generic structures in the bundle
stratifications (the topmost nodes in the graphs) presented in this paper.

Remark 6.2 Using Corollaries 12 and 13 we may state the analogous
rules for the system pencils without feedforward. The absence of the blocks
(Z1 − sY1)11 in the canonical form of such pencils causes the corresponding
differences from the rules above.

7 A bundle stratification example

To illustrate the presented stratification rules we consider a system pencil S
on the form (2) associated with a (generalized) state-space system consisting
of n = 5 states, m = 3 inputs, and p = 3 outputs. The bundle closure hierarchy
graph of such a system was computed by StratiGraph [22,24] and a subgraph
of the complete stratification is shown in Figure 2 (the complete graph has
685 nodes and 2176 edges). Each node in the graph represents a bundle of

9

10

11

12

13

14

Fig. 2. A subgraph of the bundle closure hierarchy of a system pencil correspond-
ing to a non-singular generalized state-space system with 5 states, 3 inputs, and
3 outputs. A circle with a plus on a node’s border indicates that possibly not all
closest neighbours are shown. By clicking on such a node-plus the graph is further
expanded.

a system pencil under feedback-injection equivalence with the canonical form
stated in the node, each edge is a cover relation between two bundles, and on
the left the codimensions of the bundles are listed. Notably, in StratiGraph,
the canonical form is presented using an abbreviated form which we also use in
this section. In particular, the canonical blocks under feedback-injection (11)



are defined as:

Lε ∶= (Gε − sHε)01, LTη ∶= (GT
η − sH

T
η )10,

Jhi(µj) ∶= (Jhi(µj) − sIhi)00, and Nq ∶= (Zq − sYq)11.

The hierarchical relation between the bundles should be interpreted as follows.
It is always possible by an arbitrary small perturbation of any pencil in a
bundle to obtain a pencil belonging to any bundle higher up in the graph, i.e.
corresponding to a more generic system pencil, if they are connected by a path
directed strictly upward. To go from a bundle to another below in the graph,
i.e. to a more degenerate (less generic) case, in general requires a relative large
perturbation of the system pencil entries.

What changes of the system characteristics can be investigated from the strat-
ification in Figure 2? Below, we exemplify with some of the characteristics
discussed in Section 2.2.

The changes of the finite invariant zeros µj of orders hi, i, j ∈ {1,2, . . .}, are
reflected by the Jhi(µj) blocks, and the changes of the infinite zeros of orders
qi − 1, i = 1,2, . . ., by the Nqi blocks, qi > 1. The bundles with no N1 blocks
correspond to strictly proper transfer functions (S with D = 0), while the
complete graph encloses both D ≠ 0 and D = 0. Notably, maximum rank of
D is three and therefore at most three N1 block may exist. If S is a minimal
realization then the finite zeros are transmission zeros, otherwise further anal-
ysis is needed to determine the types of the zeros. For example, the input-
and output-decoupling zeros (uncontrollable and unobservable modes) can be
analyzed by studying the controllability and observability system pencils, re-
spectively [17].

To illustrate how the stratification can be used we consider a decoupling exam-
ple with input failure taken from [14]. Our intention of studying this example is
not to solve the problem of decoupling. Instead we show how the stratification
can be used as a qualitative tool providing insight into how the different input
failures change the system characteristics and how the corresponding system
pencils relate in the closure hierarchy. Briefly, the purpose of decoupling is
to separate a complex multi-input/multi-output (MIMO) system into several
smaller subsystems that are easier to analyze and design controllers for. If a
system can be diagonally decoupled it is possible to regard the system as a set
of single-input/single-output (SISO) systems. Only systems with equal num-
ber of inputs and outputs (m = p) or more inputs than outputs (m > p) may
be diagonally decoupled. If diagonal decoupling is not possible, it may still be
possible to reduce the system to a set of independent (decoupled) subsystems,
called block decoupled. For further information on decoupling and definitions
we refer to [29,31] and references therein.

The system matrices (n = 5,m = p = 3) of the strictly proper system examined



in [14] are

E = I5, A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0

0 0 1 0 0

−1 −2 −1 0 0

0 0 0 −1 0

0 0 0 −1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

0 0 0

0 1 1

0 0 1

0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, C =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 0 0

0 1 0 0 1

0 1 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, D = 03×3,

(25)
with the canonical form J1(−2) ⊕N3 ⊕ 2N2. The system is both controllable
and observable so the finite eigenvalue is a transmission zero (it is of minimum
phase). The system is both left and right invertible and can be diagonally
decoupled. Figure 3 shows a subgraph of the stratification of the associated
controllability pencil [A − sI B], which belongs to the most generic bundle
with the canonical form 2L2⊕L1 (top node) when A and B are given by (25).

0
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5

Fig. 3. A subgraph of the bundle closure hierarchy of a controllability pencil
[A − sI B] with 5 states and 3 inputs.

We now investigate how the canonical structure changes by imposing failure to
one of the three inputs, for example, caused by loss of an actuator. The failure
is introduced by setting the corresponding column in B to zero which will
introduce a column minimal index of order zero (an L0 block). By neglecting
this redundant input, we get a non-square system with one more output than
inputs (m < p) that cannot be diagonally decoupled. However, (as we will see)
the perturbed systems are all left invertible so they may (but not for sure)
be block decoupled [14,30]. Notably, all nodes in Figure 2 with one L0 block
correspond to a system with one redundant input. In the following we focus on
the nodes in the grayed areas in Figure 2, where the corresponding bundle of
system (25) is the top node. The remaining bundles outside of the grayed areas
correspond to systems which are not of interest for our example. They can only
be reached if other types of perturbations are allowed. Remember that in the
stratification shown in Figure 2 changes in the D matrix are allowed.

Failure in the first input results in a system with the canonical form L0 ⊕

LT2 ⊕J1(−2)⊕2N2 (codimension 13). Failure in the second input results in the
canonical form L0 ⊕ LT2 ⊕N3 ⊕N2 (codimension 14). Both these systems are
controllable and can be block decoupled; they belong to the bundle L3⊕L2⊕L0



in Figure 3. Failure in the third input results in a system that is still left
invertible with the canonical form L0⊕LT3 ⊕2N2 (codimension 12 in Figure 2),
but it is uncontrollable with the canonical form 2L2⊕L0⊕J1(−1) and thus it
is not possible to decouple the system [14].

An interesting observation is that failure in input one or two results in a less
generic canonical form of the system pencil (2) associated with (25), than
failure in input three that cannot be decoupled, see Figure 2. However, by
looking at the corresponding bundles in the stratification of the controllability
pencils in Figure 3, we see that the resulting system with failure in input
three is less generic. A conclusion is that, along with the stratification of the
system pencil we often need either the stratification of the controllability or
the observability pencil (or both) to get the complete picture.
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Appendix A: Upward coin moves

For a given system pencil orbit or bundle, Theorems 15 and 17, respectively,
in Section 6 provide the rules to find the neighbours below in the stratifica-
tion. Nevertheless, it may be more convenient or even necessary to know the
neighbours above in a given pencil stratification. The following two theorems
provide the rules in forms of upward coin moves to find the neighbours above
for given system pencils in the stratifications.

Theorem 18 Of-i
S1

is covered by O
f-i
S2

if and only if S2 can be obtained by
applying one of the rules (1)–(6) to the structure integer partitions of S1:

(1) Minimum leftward coin move in R (or L).
(2) If R (or L) is non-empty and the rightmost column in Jµi is one single

coin, move that coin to a new rightmost column of R (or L).
(3) If R (or L) is non-empty and the rightmost column in Z is one single

coin, move that coin to a new rightmost column of R (or L). The rule
cannot be applied if Z consists of only one coin, i.e., Z cannot disappear
after applying this rule.

(4) Minimum rightward coin move in any Jµi.



(5) Minimum rightward coin move in Z, but no moves from the first (left-
most) column are allowed.

(6) If both R and L are non-empty: Let k denote the total number of coins
in all of the longest (= lowest) rows from both R and L together. Remove
these k coins, subtract one coin from the set, and distribute k − 1 coins
as follows. If Z is empty then give it one coin, otherwise add one coin
to each nonzero column in Z. Then distribute one coin to each nonzero
column in all existing Jµi. The remaining coins are distributed among
new rightmost columns, with one coin per column, to the existing Z or to
any Jµi which may be empty initially (i.e., new partitions for new finite
eigenvalues can be created).

Rules (1)–(2) are not allowed to do coin moves that affect r0 or l0 (first column
in R and L, respectively). Rule (6) cannot be applied if the total number of
nonzero columns of Z and Jµi are more than k − 1.

PROOF. One can notice that these rules are the “reversed” rules from The-
orem 15 or explicitly perform a proof analogous to the proof of Theorem 15.

Theorem 19 Bf-i
S1

is covered by B
f-i
S2

if and only if S2 can be obtained by
applying one of the rules (1)–(6) to the structure integer partitions of S1:

(1) Minimum leftward coin move in R (or L).
(2) If R (or L) is non-empty and Jµi consists of one single coin, move that

coin to a new rightmost column of R (or L).
(3) Not applicable.
(4) Minimum rightward coin move in any Jµi.
(5) Minimum rightward coin move in Z but no moves from the first column

are allowed.
(6) If both R and L are non-empty: Take one coin from each nonzero column

of R and L, remove one coin from the received amount, and distribute
rest of the coins as follows. If Z is empty then give it one coin otherwise
give one coin to each existing column in Z. Then distribute one coin to
each existing column in every Jµi. The remaining coins distribute among
the new columns for the existing Jµi ,Z.

(7) Split Jµi into two new partitions corresponding to two different finite
eigenvalues.

(8) Split Z into two new partitions one corresponding to a new finite and the
other to the infinite eigenvalue such that the number of blocks correspond-
ing to infinite eigenvalue, i.e., z0, remains the same.

Rules (1)–(2) may not make coin moves that affect r0 (or l0).



PROOF. As for the orbit case, these rules are the “reversed” rules from
Theorem 17.
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