
A Bottom-up Automaton for Tree-Adjoining
Languages

Petter Ericson(A)

(A)Computing Science Department
Ume̊a University

901 87 Ume̊a, Sweden
{pettter}@cs.umu.se

Abstract
Current tree parsing algorithms for nonregular tree languages all have superlinear running times,
possibly limiting their practical applicability. We present a bottom-up tree automaton that cap-
tures exactly the tree-adjoining languages in the non-deterministic case. The determinstic case
captures a strict superset of the regular tree languages, while preserving running times linear in
the size of the tree.

1. Introduction

Though much recent research in tree automata theory has focused on various subsets of the
regular tree languages (RTL), there have also been some interest in strictly more powerful
formalisms. This technical report deals with one of the latter. In particular, it defines a class
of languages recognisable in linear time that lies between RTL and the class of Tree Adjoining
Languages (TAL), analogous to how the deterministic context-free languages is an intermediate
class between REG and CFL.

The class of Tree Adjoining Languages [4] have seen use in various contexts, notably natu-
ral language processing (syntax trees) [3] and bioinformatics (RNA structure prediction) [8].
However, while its theoretical properties have been well-studied in the string case, the tree
structure is less so. Specifically, one of the main aims of the current work is to investigate
alternate formalisms that define the same class of tree languages, including a new automaton
model.

2. Related work

Previous research into defining automata for strict supersets of the regular tree languages have
mostly focused at the context-free tree languages. In particular, the work by Guessarian [2] and
Schimpf and Gallier [7] on various definitions of pushdown tree automata both define this class.

2 Petter Ericson

However, for various reasons these automata are somewhat unsatisfactory. In particular, recog-
nising the complete class of context-free tree languages requires quite a lot of computational
power, meaning the complexity of parsing will be necessarily quite high.

A much more relevant construction is the linear pushdown automata defined by Fujiyoshi and
Kasai [1]. In particular, the class of tree languages accepted by linear pushdown automata have
been proven by Kepser and Rogers [6] to be strongly equivalent to the tree-adjoining grammars.
Our contribution is relatively simple given this background: we use bottom-up instead of top-
down automata. However, this does give us the opportunity to define an intermediate class
between RTL and TAL by requiring the automata to be deterministic.

3. Preliminaries

Notation In general, we will use lowercase Latin letters for terminal symbols, and uppercase
for nonterminals. Lowercase Greek letters represent stack symbols, while q with various sub-
scripts represent states. In depicting trees, soft parentheses (()) are used. Hard parentheses
([]) are used for stack operations. The symbols λ and ε represent the empty tree and string
respectively.

Given a finite alphabet Σ, we write Σ∗ for the set of all finite strings over Σ. For n ∈ N,
we write [n] for the set {1, . . . , n}. When we use the word “tree”, we mean rooted, ordered,
node-labelled trees. Furthermore, trees (and the alphabets used to construct them) are ranked.
That is, there is a function rk : Σ→ N associating every symbol with a rank, and every node
labelled with the symbol a has exactly rk(a) subtrees. Given a ranked alphabet Σ, the set Σk

denotes the set of symbols of Σ with rank k. TΣ is the set of all trees over the (ranked) alphabet
Σ.

Tree formalisms In linguistic applications, Tree-adjoining Grammars (TAGs) are in general
used and analysed as working towards an output string, rather than an output tree. Specifically,
parsing algorithms for TAGs have been focused on the string case; see, e.g., [5]. In exploring
the adjoined trees themselves further, the notion of tree parsing is more relevant. However,
in this report, we treat the slightly simpler tree membership problem, i.e., given a tree t and
a grammar G, determine whether it belongs to L(G). It is known that for every TAG, the
corresponding tree membership problem is solvable in time O(n3), where n is the size of the
input tree; see, e.g., [4].

Whereas such tree verification is relatively simple (and finite) for Regular Tree Languages
(RTL), TAGs require some bookkeeping to identify where trees have been adjoined. In order to
explore this phenomenon further, it is helpful to first have a model of a finite tree automaton
which can be used to recognise trees.

Though some knowledge of tree automata and tree language theory is assumed, we will restate
various definitions and assumptions that are useful to clarify.

A Bottom-up Automaton for Tree-Adjoining Languages 3

Definition 3.1 (Nondeterministic tree automaton) Recall that a nondeterministic tree
automaton (NTA) is a structure A = (Σ, Q,R, F), where Σ is a ranked alphabet, Q and F ⊂ Q
a set of states and final states respectively, and R is a set of rules on the form

a(q1, . . . , qk)→ q

where a ∈ Σk, q1, . . . , qk, q ∈ Q.

The semantics of NTA are assumed to be well-known to the reader, as are regular tree grammars
(RTG), but as the latter are not relevant to the current subject, we instead consider the more
powerful formalism:

Definition 3.2 (Context-free tree grammar) A context-free tree grammar (CFTG) is a
quadruple G = (Σ, N,R, S), where Σ is the (ranked) terminal alphabet, N is a ranked alphabet
of nonterminals, S ∈ N is the starting nonterminal, and R is a set of rules on the form

A(x1, . . . , xk)→ t

where A ∈ Nk, {x1, . . . , xk} = Xk are variables (of rank 0) and t ∈ TΣ
⋃

N
⋃

Xk
is the output

tree.

A context-free tree grammar is called linear (LCFTG) if no variable occurs more than once in
any right-hand side t. A k-CFTG is a context-free tree grammar where, for all l > k, Nl = ∅.

The semantics of CFTG are similar to RTG in that nonterminals are successively replaced by
their right-hand sides until a tree in TΣ is obtained. However, as nonterminals are no longer
only of rank 0, they may be internal nodes, and have subtrees of their own. In this case, a
derivation step involves replacing a nonterminal A with the output side t, and then replacing
all occurences of xi with what was the ith subtree of A.

The yield of a tree is the string of symbols acquired by reading the leaves from left to right. We
extend this notion to (tree) languages in the usual way: yield(L) = {w : t ∈ L,w = yield(t)}
for L a tree language.

4. TAG equivalent formalisms

While the TAG formalism is the one most used in practise (in NLP), it is somewhat unwieldy
when regarded as a tree generating device. We will instead rely on the result by Kepser and
Rogers [6] that monadic linear context-free grammars are strongly equivalent to (non-strict)
TAGs, i.e. with some minor relaxations, TAGs define the same class of tree languages as
1-LCFTG.

The main contribution in this paper is the automaton defined next. We will later prove that
this is computationally equivalent to 1-LCFTG, and thus useful in order to gain a deeper
understanding into the tree adjoining languages.

4 Petter Ericson

Definition 4.1 (1-stack bottom-up pushdown tree automaton) A 1-stack bottom-up push-
down tree automaton (1-PTA) is a structure A = (Σ,Γ, Q,R, F) where Σ is the (ranked) tree
alphabet, Γ = Γ0∪Γ1 is the stack alphabet, Q = Q1 (states have exactly one subtree - the stack)
is the set of states where F ⊂ (Q × Γ0) is a set of final state-stack combinations, and R is a
set of rules on either of these forms:

1. a(q1[π1], . . . , qi[πi], . . . , qk[πk])→ q′[π′]

2. q[π]→ q′[π′]

where q, q′, q1 . . . qk ∈ Q, a ∈ Σk, πj ∈ Γ0 for j 6= i, and either π, πi ∈ Γ0, π′ ∈ Γ∗1Γ0, or
π, πi ∈ Γ1, π′ ∈ Γ∗1.

The semantics of 1-PTA are relatively closely related to those of regular bottom-up tree au-
tomata, with the addition of a stack. However, note that while several states are involved
whenever a symbol of rank greater than 1 is involved, at no point is more than one stack of
height greater than 1 considered. Indeed, in any computation, all but one of the child stacks
need to have a symbol in Γ0 at its head, i.e. there must have been an active transition emptying
the stack down to its last symbol, if one was used in the computations in that subtree. As F is
defined as a subset of (Q×Γ0) this is also true for the complete tree. That is, before accepting
a tree, the automaton must completely discard everything but the last symbol of its final stack.
This is more or less equivalent to having a specific class (Q0) of non-stack carrying states, as
(Q × Γ0) is a finite set. It is also possible to define Γ0 as having a single symbol with no loss
of computational power.

We restate the definition of linear pushdown tree automata used in [1], in order to show its
equivalence to 1-PTA. However, we do it directly, instead of starting with the complete PTA
as defined by Guessarian in [2] and restricting it.

Definition 4.2 (Linear pushdown tree automaton) A linear pushdown tree automaton is
a structure A = (Σ,Γ, Q,R, q0, π0) where Σ is the (ranked) tree alphabet, Γ = Γ0 ∪ Γ1 is the
stack alphabet, Q = Q2 is a ranked alphabet of states (each with two subtrees - the subtree left
to process and the stack) where q0 is the initial state, π0 is the initial stack symbol and R is a
set of rules on either of these forms:

1. q(a(x1, . . . , xk), π)→ a(q1(x1, π1), . . . , qi(xi, πi), . . . , qk(xk, πk))

2. q(x, π)→ q′(x, π′)

3. q(b, πf)→ b

where q, q′, q1 . . . qk ∈ Q, a ∈ Σk, b ∈ Σ0, πf ∈ Γ0, πj ∈ Γ∗1Γ0 for j 6= i, and either π ∈ Γ0,
π′, πi ∈ Γ∗1Γ0 or π ∈ Γ1, π′, πi ∈ Γ∗1

Lemma 4.3 1-PTA are strongly equivalent to extended TAGs

Proof. From the above definitions, it should be fairly clear that simply inverting the rules
takes us a long way towards having the two automata models being equal. Standard automata
theoretic tools will suffice to handle the remaining detail: the strings of stack symbols that

A Bottom-up Automaton for Tree-Adjoining Languages 5

appear in the right-hand sides. Simply add a sequence of rules on form (2) that read each
symbol of the string, and push the appropriate symbol onto the stack as a final action. This
gives us a complete symmetry between 1-PTA and linear pushdown tree automata. The lemma
follows from the proofs in [6] and [1]

2

5. Deterministic tree languages

Deterministic linear pushdown tree automata cannot recognise e.g. the (regular) tree language
{f(a, b), f(b, a)}, which makes their usefulness somewhat limited as tree recognising devices.
Deterministic 1-PTA in contrast capture all regular tree languages, and a subset of TAL which
may be called the “deterministic tree adjoining languages” (DTAL), analogous to the deter-
ministic context-free (string) languages. As deterministic 1-PTA runs in linear time, this is
also a class of efficiently recognizable languages.

The motivation for using mildly context-sensitive, rather than just context-free, grammars
in natural language processing applications is that context-free grammars cannot handle all
features of natural languages. The most commonly cited such features are ones that have the
basic structure of the copy language {ww | w ∈ Σ+} or of the language {anbncn | n ∈ N}.
In this section, we observe that there are 1-LCFTGs whose yield correspond to these string
languages, and such that their tree languages are recognised by deterministic 1-PTA.

We define a 1-LCFTG Gcopy such that the yield language of L(Gcopy) is the copy language over
{a, b}, i.e.

yield (L(Gcopy)) = {ww | w ∈ {a, b}+}.

The grammar Gcopy is the tuple (Σ, N,R, S) where

• Σ0 = {a, b}, Σ1 = {f}, and Σ2 = {g},
• N = (S,A), and

• R is the following set of rules:

S → g(a, f(a)) S → g(b, f(b)) S → g(a,A(f(a))) S → g(b, A(f(b)))

A(x)→ g(a, (g(x, a))) A(x)→ g(b, (g(x, b))) A(x)→ g(a,A(g(x, a))) A(x)→ g(b, A(g(x, b)))

An example derivation of Gcopy is shown in Figure 1. The tree language L(Gcopy) is easily
recognised by a deterministic 1-PTA. All it has to do is to keep a stack that works along the
longest path of the derivation trees, pushes symbols at the unique f -labelled node and at g-
labelled nodes with leafs as right children, and pops symbols at g-labelled nodes with leafs as
left children.

In a similar fashion, we can define a 1-LCFTG whose yield language is

{anbncn | n ∈ N}.

6 Petter Ericson

S ⇒

g

a A

f

a

⇒

g

a g

b A

g

f

a

b

⇒

g

a g

b g

b g

g

f

a

b

b

Figure 1: A derivation of Gcopy. The final tree has yield abbabb.

g

a g

a g

a f

b f

b h

b c

c

c

Figure 2: A derivation tree with yield aaabbbccc.

Figure 2 shows what a derivation tree of such a grammar might look like. Again, it is easy to see
that the corresponding tree language is recognised by a deterministic 1-PTA. In this instance,
the automaton pushes on its stack when reading an h- or g-labelled node with a leftmost b child
and a rightmost c child. It pops when reading g-labelled nodes with a-labelled children to the
left.

6. Future work

Having defined the DTAL class of tree languages, it remains to be explored exactly how useful
this class is. Preliminary studies of linguistic treebanks appear to reveal that nonregular features
in the actual tree structure are rare to nonexistent. Instead, cross-dependencies are represented
by reordering of leaves leading to crossing branches (meaning the structures are no longer
strictly trees) or similar measures. Indeed, it seems difficult in general to find actual real-world
examples of TAG grammars utilizing non-regularity.

Furthermore, it is conjectured that (similarly to the DCFL case) the question “given a TAG
G, is L(G) in DTAL” is undecidable.

A Bottom-up Automaton for Tree-Adjoining Languages 7

7. Acknowledgements

We gratefulle acknowledge valuable comments from the anonymous reviewers of the (unpub-
lished) conference version of this report. Moreover, the advisors of the author deserve many
thanks for valuable insight during the writing process. Lastly, the financial support from the
Swedish Research Council grant 621-2011-6080 is acknowledged with thanks.

References

[1] Akio Fujiyoshi and Takumi Kasai. Spinal-formed context-free tree grammars. Theory of
Computing Systems, 33(1):59–83, 2000.

[2] Inène Guessarian. Pushdown tree automata. Mathematical Systems Theory, 16(1):237–263,
1983.

[3] A. K. Joshi. Tree adjoining grammars: How much context-sensitivity is required to provide
reasonable structural descriptions. In Natural Language Parsing, pages 206–250. Cambridge
University Press, 1985.

[4] Aravind K. Joshi and Yves Schabes. Tree-adjoining grammars. In Grzegorz Rozenberg
and Arto Salomaa, editors, Handbook of Formal Languages, pages 69–123. Springer Berlin
Heidelberg, 1997.

[5] Laura Kallmeyer. Parsing Beyond Context-Free Grammars. Springer, 2010.

[6] Stephan Kepser and James Rogers. The equivalence of tree adjoining grammars and
monadic linear context-free tree grammars. In The Mathematics of Language, pages 129–
144. Springer, 2010.

[7] Karl M Schimpf and Jean H Gallier. Tree pushdown automata. Journal of Computer and
System Sciences, 30(1):25–40, 1985.

[8] Yasuo Uemura, Aki Hasegawa, Satoshi Kobayashi, and Takashi Yokomori. Tree adjoining
grammars for rna structure prediction. Theoretical computer science, 210(2):277–303, 1999.

	1. Introduction
	2. Related work
	3. Preliminaries
	4. TAG equivalent formalisms
	5. Deterministic tree languages
	6. Future work
	7. Acknowledgements

