
Between a Rock and a Hard Place –
Parsing for Hyperedge Replacement DAG

Grammars

Henrik Björklund, Frank Drewes, Petter Ericson

Department of Computing Science, Ume̊a University, Sweden
{henrikb, drewes, pettter}@cs.umu.se

Abstract. We study the uniform membership problem for hyperedge-
replacement grammars that generate directed acyclic graphs. The study
of this type of language is motivated by applications in natural language
processing. Our major result is a low-degree polynomial-time algorithm
that solves the uniform membership problem for a restricted type of such
grammars. We motivate the necessity of the restrictions by two different
NP-completeness results.

1 Introduction

Hyperedge-replacement grammars (HRGs, see [7, 5]) are one of the most success-
ful formal models for the generative specification of graph languages, thanks to
the fact that their language-theoretic and algorithmic properties to a great ex-
tent resemble those of context-free grammars. Unfortunately, polynomial parsing
is an exception from this general rule: graph languages generated by HRGs may
be NP-complete. Thus, not only is the uniform membership problem intractable
(unless P 6= NP), but the non-uniform one is as well [1, 8].

Recently, Chiang et al. [4] advocated the use of hyperedge-replacement for
describing meaning representations in natural language processing (NLP), and in
particular the abstract meaning representations (AMRs) proposed by Banarescu
et al. [2]. Chiang et al. described a general recognition algorithm building upon
earlier work by Lautemann [9], together with a detailed complexity analysis.
Unsurprisingly, the running time of the algorithm is exponential even in the non-
uniform case, one of the exponents being the maximum degree of nodes in the
input graph. Unfortunately, this is one of the parameters one would ideally not
wish to limit, since AMRs may have unbounded node degree. However, AMRs
and similar linguistic models to represent meaning are usually directed acyclic
graphs (DAGs), a fact that is not exploited in [4]. Another recent approach to
HRG parsing is [6], where predictive top-down parsing in the style of SLL(1)
parsers is proposed. This is a uniform approach yielding parsers of quadratic
running time in the size of the input graph, but the generation of the parser
from the grammar is not guaranteed to run in polynomial time. (For a list of
earlier attempts to HRG parsing, see [6].)

In this paper, we study the complexity of the membership problem for DAG-
generating HRGs. Since NLP applications usually involve a machine learning
component in which the rules of a grammar are inferred from a corpus, and
hence the resulting HRG cannot be assumed to be given beforehand, we are
mainly interested in efficient algorithms for the uniform membership problem.
We propose restricted DAG-generating HRGs and show, in Section 4, that their
uniform membership problem is solvable in polynomial time. More precisely, the
upper bound on the running time of the algorithm is O(n2+nm), where m and n
are the sizes of the grammar and the input graph, resp. In linguistic applications,
where grammars are usually much larger than the input structures to be parsed,
this is essentially equivalent to O(nm). To our knowledge, this is the first time a
uniform polynomial-time parsing algorithm for a non-trivial subclass of HRGs is
proposed. Naturally, the restrictions are rather strong, but we shall briefly argue
in Section 5 that they are reasonable in the context of AMRs. We furthermore
motivate the restrictions with two NP-completeness results for DAG-generating
HRGs, in Section 6. One of these proofs is a reduction of SAT to the uniform
membership problem of DAG-generating HRGs whereas the second modifies
the construction of [8] to show that there are NP-complete DAG languages of
height 1 that can be generated by hyperedge replacement.

2 Preliminaries

The set of non-negative integers is denoted by N. For n ∈ N, [n] denotes
{1, . . . , n}. Given a set S, let S~ be the set of non-repeating lists of elements of
S. If sw ∈ S~ with s ∈ S, we shall also denote sw by (s, w). If � is a (partial)
ordering of S, we say that s1 · · · sk ∈ S~ respects � if si � sj implies i ≤ j.

2.1 Hypergraphs and DAGs

A ranked alphabet is a pair (Σ, rank) consisting of a finite set Σ of symbols and
a ranking function rank : Σ → N which assigns a rank rank(a) to every symbol
a ∈ Σ. We usually identify (Σ, rank) with Σ and keep the second component
rank implicit.

Let Σ be a ranked alphabet. A (directed hyperedge-labeled) hypergraph over
Σ is a tuple G = (V,E, src, tar, lab) consisting of

– a finite set V of nodes,
– a source and target mappings src : E → V and tar : E → V ~ assigning to

each hyperedge e its source src(e) and its sequence tar(e) of targets, and
– a labeling lab: E → Σ such that rank(lab(e)) = |tar(e)| for every e ∈ E.

To simplify terminology, we shall in the following call hyperedges edges and
hypergraphs graphs. Note that edges have only one source but several targets,
similarly to the usual notion of term (hyper)graphs. The DAGs we shall consider
below are, however, more general than term graphs in that nodes can have out-
degree larger than one.

Continuing the formal definitions, a path in G is a (possibly empty) sequence
e1, e2, . . . , ek of edges such that for each i ∈ [k− 1] the source of ei+1 is a target
of ei. The length of a path is the number of edges it contains. A nonempty path
is a cycle if the source of the first edge is a target of the last edge. If G does not
contain any cycle then it is acyclic and is called a DAG. The height of a DAG G
is the maximum length of any path in G. A node v is a descendant of a node u
if u = v or there is a nonempty path e1, . . . , ek in G such that u = src(e1) and v
occurs in tar(ek). An edge e′ is a descendant edge of an edge e if there is a path
e1, . . . , ek in G such that e1 = e and ek = e′.

The in-degree of a node u ∈ V is the number of edges e such that u is a target
of e. The out-degree of u is the number of edges e such that u is the source of e.
A node with in-degree 0 is a root and a node with out-degree 0 is a leaf.

For a node u of a DAG G = (V,E, src, tar, lab), the sub-DAG rooted at u is the
DAG G↓u induced by the descendants of u. Thus G↓u = (U,E′, src′, tar′, lab′)
where U is the set of all descendants of u, E′ = {e ∈ E | src(e) ∈ U}, and src′,
tar′, and lab′ are the restrictions of src, tar and lab to E′. A leaf v of G↓u is
reentrant if there exists an edge e ∈ E \ E′ such that v occurs in tar(e).

2.2 DAG Grammars

A marked graph is a tuple G = (V,E, src, tar, lab, X) where (V,E, src, tar, lab)
is a graph and X ∈ V ~ is nonempty. The sequence X is called the marking of
G, and the nodes in X are referred to as external nodes. If X = (v, w) for some
v ∈ V and w ∈ V ~ then we denote them by root(G) and ext(G), resp. The
former is motivated by the form or our rules, which is defined next.

Definition 1 (DAG grammar). A DAG grammar is a system H = (Σ,N, S,
P) where Σ and N are disjoint ranked alphabets of terminals and nonterminals,
respectively, S is the starting nonterminal with rank(S) = 0, and P is a set of
productions. Each production is of the form A → F where A ∈ N and F is
a marked DAG over Σ ∪ N with |ext(F)| = rank(A) such that root(F) is the
unique root of F and ext(F) contains only leaves of F .

Naturally, a terminal (nonterminal) edge is an edge labeled by a terminal
(nonterminal, resp.). We may sometimes just call them terminals and nontermi-
nals if there is no danger of confusion. By convention, we use capital letters to
denote nonterminals, and lowercase letters for terminal symbols.

A derivation step of H is described as follows. Let G be a graph with an edge
e such that lab(e) = A and let A→ F in P be a rule. Applying the rule involves
replacing e with an unmarked copy of F in such a way that src(e) is identified
with root(F) and for each i ∈ [|tar(e)|], the ith node in tar(e) is identified
with the ith node in ext(F). Notice that |tar(e)| = |ext(F)| by definition. If
the resulting graph is G′, we write G ⇒H G′. We write G ⇒∗H G′ if G′ can be
derived from G in zero or more derivation steps. The language L(H) of H are
all graphs G over the terminal alphabet T such that S• ⇒∗H G where S• is the
graph consisting of a single node and a single edge labeled by S.

The graphs produced by DAG grammars are connected, single-rooted, and
as the name implies, acyclic. This can be proved in a straightforward manner by
induction on the length of the derivation.

2.3 Ordering the Leaves of a DAG

Let G = (V,E, src, tar, lab) be a DAG and let u and u′ be leaves of G. We say
that an edge e with tar(e) = w is a common ancestor edge of u and u′ if there
are t and t′ in w such that u is a descendant of t and u′ is a descendant of t′.
If, in addition, there is no edge with its source in w that is a common ancestor
edge of u and u′, we say that e is a closest common ancestor edge of u and u′.
We stress that since a node is a descendant of itself, this definition implies that
if u and u′ belong to w, then e is a closest common ancestor edge of u and u′.
We also note that in a DAG, a pair of nodes can have more than one closest
common ancestor edge.

Definition 2. Let G = (V,E, src, tar, lab) be a DAG. Then �G is the partial
order on the leaves of G defined by u �G u′ if, for every closest common ancestor
edge e of u and u′, tar(e) can be written as wtw′ such that t is an ancestor of u
and all ancestors of u′ in tar(e) are in w′.

3 Restricted DAG Grammars

DAG grammars are a special case of hyperedge-replacement grammars. We now
define further restrictions that will allow polynomial time uniform parsing.

Every rule A → F of a restricted DAG grammar is required to satisfy the
following conditions (in addition to the conditions formulated in Definition 1):

1. If a node v of F has in-degree larger than one, then v is a leaf
2. If F consists of exactly two edges e1 and e2, both labeled by A, such that

src(e1) = src(e2) and tar(e1) = tar(e2) we call A → F a clone rule. Clone
rules are the only rules in which a node can have out-degree larger than 1
and the only rules in which a nonterminal can have the root as its source.

3. For every nonterminal e in F , all nodes in tar(e) are leaves.
4. If a leaf of F has in-degree exactly one, then it is an external node or its

unique incoming edge is terminal.
5. The leaves of F are totally ordered by �F and ext(F) respects �F .

As is the case for DAG grammars in general, every graph that can be derived
by a restricted DAG grammar is connected, single-rooted, and acyclic. We now
demonstrate some additional properties.

Lemma 1. Let H = (Σ,N, S, P) be a restricted DAG grammar, G a DAG such
that S• ⇒∗H G, and U the set of nodes of in-degree larger than 1 in G. Then U
contains only leaves of G and tar(e) ∈ U~ for every nonterminal e of G.

Proof. We prove the lemma by induction. The base case, where G = S• is
immediate. Assume that G fulfils the conditions of the lemma and consider G′

such that G⇒H G′. Let A→ F be the rule used in the derivation step.
By assumption, the edge e, labeled by A, that is rewritten has only leaves as

targets. As nonterminals in F only appear directly above leaves in F and all the
nodes in the marking of F are leaves, nonterminals of G′ only appear directly
above leaves.

Since only leaves have in-degree larger than 1 in G, all targets of A are leaves,
and only leaves have in-degree larger than 1 in F , only leaves have in-degree
larger than 1 in G′.

Since the edge that is being rewritten is nonterminal, it is not connected to
any leaf with in-degree exactly 1. In F , leaves with in-degree exactly 1 are only
connected to terminals. Thus the same holds in G′. ut

3.1 Normal form

To simplify the presentation of parsing algorithm, we introduce a normal form
for restricted DAG grammars.

Definition 3. A restricted DAG grammar H = (Σ,N, S, P) is on normal form
if every rule A→ F in P has one of the following three forms.

(a) The rule is a clone rule.
(b) F has a single edge e, which is terminal.
(c) F has height 2, the unique edge e with src(e) = root(F) is terminal, and all

other edges are nonterminal.

A A a

a

B C

Fig. 1. Examples right-hand sides F of normal form rules of types (a), (b), and (c)
for a nonterminal of rank 3. In illustrations such as these, boxes represent hyperedges
e, where src(e) is indicated by a line and the nodes in tar(e) by arrows. Filled nodes
represent the marking of F . Both tar(e) and ext(F) are drawn from left to right unless
otherwise indicated by numbers.

See Figure 1 for examples of right-hand sides of the three types. In particular,
right-hand sides F of the third type consist of nodes v, v1, . . . , vm, u1, . . . , un, a
terminal edge e and nonterminal edges e1, . . . , ek such that

– v = root(F) = src(e) and v1 · · · vm is a subsequence of tar(e),

– src(ei) ∈ {v1, . . . , vm} for all i ∈ [k],

– ext(F) and tar(ei), for i ∈ [k], are subsequences of u1 · · ·un.

Lemma 2. Every restricted DAG grammar H can be transformed in linear time
into a restricted DAG grammar H ′ on normal form such that L(H) = L(H ′).

Proof. Let H = (Σ,N, S, P) and let r = A→ F be a rule in P . We present a re-
cursive procedure for replacing r with a number of rules who together can derive
F from A. If F has height 1, then due to restriction 2, r already has form (a)
or (b). Thus, nothing needs to be done. Otherwise, we know that F has height at
least 2 and, again by restriction 2, a unique edge e such that src(e) = root(F). By
the height of F , and since only leaves are targets of nonterminals, e is terminal.

Now, assume that F does not have the form (c). Then there exists a node v′

in tar(e) which is not a leaf, such that the unique outgoing edge of v′ is terminal.
Let F ′ = F↓v′ and let s be the sequence of leaves in F , ordered according to �F .
Notice that since no node in F has out-degree larger than 1, the leaves are totally
ordered by �F , and ext(F) is a subsequence of s. Now, let s′ be the subsequence
of s consisting of the leaves in F ′ that are either in ext(F) or in tar(e′) for an
edge e′ in F that does not belong to F ′. We create a fresh nonterminal A′ with
rank(A′) = |s′| and a rule r′ = A′ → (F ′, v′s′), i.e., the marking of the right-
hand side is (v′, s′). In F , we replace F ′ by A′. (More precisely, we remove all
edges in F ′ from F , and likewise all nodes F ′ except for those in v′s′, and we
add a fresh edge f with src(f) = v′, tar(f) = s′, and lab(f) = A′.)

Clearly, the language generated by the grammar is not affected by this de-
composition of r into two rules. Moreover, each of the two new right-hand sides
satisfies the conditions 1–5 and has fewer terminal hyperedges than F . Hence, by
repeating the process we finally obtain an equivalent restricted DAG grammar
in normal form. ut

Lemma 3. Let H be a restricted DAG grammar and G = (V,E, src, tar, lab) a
DAG generated by H. Then there is a total order E on the leaves of G such that
�G ⊆ E and for every v ∈ V and every pair u, u′ of reentrant nodes of G↓v we
have uE u′ ⇔ u �G↓v u

′.

Proof. Note that it suffices to consider nodes v that are not leaves since the
statement is trivially true if v is a leaf. Without loss of generality, we may
furthermore assume that H is in normal form. We show by induction on the
length of derivations that the statement holds for all DAGs G that can be derived
from S•, not just the terminal ones. Moreover, we shall additionally prove that
E can be chosen in such a way that u1 E · · · E uk for all nonterminals e in G
with tar(e) = u1 · · ·uk.

The DAG S• has the claimed property as it does not possess any leaves.
Now, consider a derivation S• ⇒n G0 ⇒ G and assume that the claim holds
for G0 with the total order E0. Let G be obtained from G0 by applying a rule
r = A→ F to an edge e in G0. There are three different cases to consider.

If the rule r is a clone rule, setting E = E0 is sufficient because �G↓v = �G0↓v
for all nodes v. This follows directly from the fact that the two edges e1, e2 that
e is replaced with satisfy tar(e1) = tar(e) = tar(e2).

If r is of the form (b), let E be any total extension of E0 to the set of leaves
of G that is consistent with �F . For all v, the reentrant nodes of G↓v coincide
with those of G0↓v, and by restriction 5, �G↓v coincides with �G0↓v on these
nodes.

Finally, suppose r is of the form (c) and let ext(F) = v1 · · · vk. Leaves of F
that are not in {v1, . . . , vk} and have in-degree 1 are not reentrant in any G↓v
and can thus be handled as in the preceding case, i.e., E0 can be extended to
cover these nodes in any way that is consistent with �F . Let U be the remaining
set of leaves of F , which thus includes {v1, . . . , vk}. Since the nodes of F have
out-degree at most one, U is totally ordered by �F , and by restriction 5 we have
v1 �F · · · �F vk. Moreover, by the induction hypothesis we may assume that
v1 E0 · · ·E0 vk. We can thus extend E0 to a total order E on the leaves of G in
such a way that the order coincides with �F on U . It remains to argue that this
definition of E has the claimed property.

To this end, let v be a non-leaf of G and let u, u′ be reentrant nodes of G↓v.
If v is a node in G0 then u, u′ are leaves of G0 and we have

u �G↓v u
′ ⇒ u �G0↓v u

′ ⇒ uE0 u
′ ⇒ uE u′. (1)

The remaining case is the one in which v is the source of a nonterminal edge f
of F and u, u′ are targets of f . If not both of u, u′ are in ext(F) then f is the
only closest common ancestor edge of u and u′, and thus the claim immediately
follows. If both u and u′ are in ext(F) and u occurs before u′ in tar(f), then
u �F u′ by restriction 5. Consequently, u �G↓v u

′ and also u �G0↓v u
′ because

the only closest common ancestor of u and u′ in G0 that is not a closest common
ancestor of them in G is f . Moreover, both u and u′ are targets of f in G0,
so that the induction hypothesis yields uE0 u

′. Altogether, we obtain the same
chain of implications as in (1) above. ut

3.2 Derivation Transparency

If a DAG G has been derived by a restricted DAG grammar in normal form, it is
uniquely determined which subgraphs ofG have been produced by a nonterminal,
and which leaves were connected to it at that point. In particular, given a non-
leaf node v in G, consider the subgraph G↓v. Consider the earliest point in the
derivation where there was a nonterminal e having v as its source. We say that
e generated G↓v. From the structure of G and G↓v, we know that all reentrant
nodes of G↓v are leaves and, by restriction 4, that e must have had exactly these
reentrant leaves of G↓v as targets. By Lemma 3 and restriction 5, the order of
these leaves in tar(e) coincides with the total order �G↓v .

In other words, during the generation of G by a restricted DAG grammar,
G↓v must be generated from a nonterminal e such that src(e) = v and tar(e) is
uniquely determined by the condition that it consists of exactly the reentrant

nodes of G↓v and respects �G↓v . Therefore, we will from now on view G↓v as a
marked DAG, where the marking is (v, tar(e)).

4 A Polynomial Time Algorithm

We present the parsing algorithm in pseudocode, after which we explain vari-
ous subfunctions used therein. Intuitively, we work bottom-up on the graph in
a manner resembling bottom-up finite-state tree automata, apart from where a
node has out-degree greater than one. We assume that a total order E on the
leaves of the input DAG G, as ensured by Lemma 3, is computed in a prepro-
cessing step before the algorithm is executed. At the same time, the sequence wv

of external nodes of each sub-DAG G↓v is computed. (Recall from the paragraph
above that these are the reentrant leaves of G↓v, ordered according to �G↓v .)
For a DAG G of size n, this can be done in time O(n2) by a bottom-up process.
To explain how, let us denote the set of all leaves of G↓v by Uv for every node
v of G. We proceed as follows. For a leaf v, let Ev = {(v, v)} and wv = v. For
every edge e with tar(e) = u1 . . . uk such that ui has already been processed for
all i ∈ [k], first check if E0 =

⋃
i∈[k] Eui

is a partial order. If so, define Ee to be

the unique extension of E0 given as follows. Consider two nodes u, u′ ∈ Usrc(e)

that are not ordered by E0. If i, j are the smallest indices such that u ∈ Uui

and u′ ∈ Uuj , then u Ee u
′ if i < j. Note that Ee is uniquely determined and

total. Moreover, let we be the unique sequence in U~
src(e) which respects E0 and

contains exactly the nodes in Usrc(e) which are targets of edges of which e is not
an ancestor edge. Similarly, if v is a node and all edges e1, . . . , ek having v as
their source have already been processed, check if

⋃
i∈[k] Eei is a partial order.

If so, define Ee to be any total extension of this order. Moreover, check that
we1 = · · · = wek , and let wv be exactly this sequence.

After this preprocessing, Algorithm 1 can be run. As the sequences wu of
external nodes for each sub-DAG G↓u were computed in the preprocessing step,
we consider this information to be readily available in the pseudocode. This,
together with the assumption that the DAG grammar H is in normal form
allows for much simplification of the algorithm.

Walking through the algorithm step by step, we first extract the root node
(line 2) and determine which kind of (sub-)graph we are dealing with (line 4):
one with multiple outgoing edges from the root must have been produced by
a cloning rule to be valid, meaning we can parse each constituent subgraph
(line 5) recursively (line 6) and take the intersection of the resulting nontermi-
nal edges (line 7). Each nonterminal that could have produced all the parsed
subgraphs and has a cloning rule is entered into returns (line 8). The procedure
subgraphs below is used to partition the sub-DAG G↓v into one sub-DAG per
edge having v as its source, by taking each such edge and all its descendant
edges (and all their source and target nodes) as the subgraph. Note that the
order among these subgraphs is undefined, though they are all guaranteed by
the preprocessing to have the same sequence of external nodes wv.

Algorithm 1 Parsing of restricted graph grammars

1: function parses to(restricted DAG grammar H in normal form, DAG G)
2: v ← root(G)
3: returns← ∅
4: if out degree(v) > 1 then
5: for Gi ← subgraphs below(v) do
6: Ni ← parses to(Gi)

7: N ←
⋂

i Ni

8: returns ← {A ∈ N | has clone rule(A)}
9: else

10: e← edge below(v)
11: children ← ()
12: for v′ ← targets(e) do
13: if leaf(v′) then
14: append(children, external node(v′))
15: else
16: append(children, parses to(G↓v′))
17: returns ← {A | (A→ F) ∈ P and match(F, e, children)}
18: return returns

If, on the other hand, we have a single outgoing edge from the root node
(line 9), we iterate through the subgraphs below the (unique) edge below the
root node (line 12). Nodes are marked either with a set of nonterminals (that
the subgraph below the nodes can parse to) (line 16), or, if the node is a leaf,
with a boolean indicating whether or not the node is reentrant in the currently
processed subgraph G (line 14).

The match function used in line 17 deserves a closer description, as much of
the complexity calculations depend on this function taking no more than time
linear in the size of the right-hand side graph on average. It works as follows:

Let src(e) = v and tar(e) = v1 · · · vk. Each vi has an entry in children. If vi is
a leaf it is a Boolean, otherwise a set of nonterminal labels. From G and children,
we create a DAG G′ as follows. Let T be the union of {v, v1, . . . , vk} and the set
of leaves ` of G such that ` is reentrant to G (as indicated by children) or there is
an i ∈ [k] with ` being external in G↓vi . Let T = {v, v1, . . . , vk, t1, . . . , tp}. Then
G′ has the set of nodes U = {u, u1, . . . , uk, s1, . . . , sp}. Let h be the bijective
mapping with h(v) = u and h(vi) = ui for every i ∈ [k] and h(ti) = (si) for
every i ∈ [p]. We extend h to sequences in the obvious way. The root of G is u
and there is a single edge d connected to it such that lab(d) = lab(e), src(d) = u
and tar(d) = u1 · · ·uk. For every i ∈ [k] such that vi is not a leaf, G′ has an
edge di with src(di) = ui and tar(di) = h(wi), where wi is the subsequence of
leaves of G↓vi that belong to T , ordered by E. The edge is labeled by the set of
nonterminals children[i].

Once match has builtG′ it tests whether there is a way of selecting exactly one
label for each nonterminal edge in G′ such that the resulting graph is isomorphic
to rhs. This can be done in linear time since the leaves of both G′ and rhs are

totally ordered and, furthermore, the ordering on v1 · · · vk and u1 · · ·uk makes
the matching unambiguous.

Let us now discuss the running time of Algorithm 1.
Entering the if branch of parses to, we simply recurse into each subgraph

and continue parsing. The actual computation in the if-clause is minor: an
intersection of the l sets of nonterminals found.

Each time we reach the else clause in parses to, we consume one terminal
edge of the input graph. We recurse once for each terminal edge below this (no
backtracking), so the parsing itself enters the else-clause n times, where n is
the number of terminal edges in the input graph. For each rule r = A→ F , we
build and compare at most |F | nodes or edges in the match function. Thus, it
takes O(nm) operations to execute Algorithm 1 in order to parse a graph with n
terminal hyperedges according to a restricted DAG grammar H in normal form
of size m. If H is not in normal form, Lemma 2 can be used to normalize it in
linear time. Since the process does not affect the size of H by more than a (small)
linear factor, the time bound is not affected. Finally, a very generous estimation
of the running time of the preprocessing stage yields a bound of O(n2), because
n edges (and at most as many nodes) have to be processed, each one taking no
more than n steps. Altogether, we have shown the following theorem, the main
result of this paper.

Theorem 1. The uniform membership problem for restricted DAG grammars
is solvable in time O(n2 +mn), where n is the size of the input graph and m is
the size of the grammar.

Note that in linguistic applications grammars are usually by orders of mag-
nitude larger than the structures to be parsed (sentences, trees or, in our case,
DAGs). Therefore, the bound given in Theorem 1 is essentially O(mn) in the
context of such applications.

5 Representing and Generating AMRs

Let us have a very short glimpse at Abstract Meaning Representations (AMRs)
and compare them with the type of DAGs considered in this paper. An AMR is
an ordinary directed edge-labeled acyclic graph expressing the meaning of a sen-
tence. An example expressing “Anna’s cat is missing her” is shown in Figure 2.
The root corresponds to the concept “missing”, which takes two arguments, the
misser and the missed.

In this representation every node has a special “instance edge” that deter-
mines the concept represented by its source node (miss, cat, anna). The most
important concepts are connected to (specific meanings of) verbs, which have a
number of mandatory arguments arg0, arg1, . . . whose number depends on the
concept in question. While the representation shown is not directly compatible
with the restrictions introduced in Section 3 a simple translation helps. Every
concept with its k mandatory arguments is turned into a hyperedge of rank
k + 1, the target nodes of which represent the instance (a leaf) and the roots

=⇒

arg1
miss’

arg0

anna’

poss

cat’

miss’

anna’

cat’

arg1
inst

arg0

inst

poss
inst

Fig. 2. Example translation of AMR.

of the arguments. The resulting hypergraph is shown in Figure 2 on the right.
Note that all shared nodes on the left (corresponding to cross-references) are
turned into reentrant leaves. This is important because in a DAG generated by
a restricted DAG grammar only leaves can have an in-degree greater than 1.

It might seem that we only need graphs with nodes of out-degree at most 1,
and thus no cloning rules for their generation. However, a concept such as miss
can typically also have optional so-called modifiers, such as in “Anna’s cat is
missing her heavily today”, not illustrated in the figure. Such modifiers can typ-
ically occur in any number. We can add them to the structure by increasing the
rank of miss by 1, thus providing the edge with another target v. The out-degree
of this node v would be the number of modifiers of miss. Using the notation of
Section 4, each sub-DAG G↓e given by one of the outgoing edges e of v would
represent one (perhaps complex) modifier. To generate these sub-DAGs G↓e a
restricted DAG grammar would use a nonterminal edge that has v as its source
and which can be cloned. The latter makes it possible to generate any number
of modifiers all of which can refer to the same shared concepts (represented by
the leaves having the cloned nonterminals as their common targets).

On the generating side of AMRs, we immediately run into problems if the
situation calls for multi-rooted graphs (e.g. two sentences connected via a con-
junction or similar). Furthermore, the standard AMR solution for this situation
(introducing a “dummy” root node, which connects to all the individual roots)
is not necessarily applicable, as there might still be calls for connections among
the different parts of the graph, which is a situation that cannot be covered
by restricted DAG grammars. However, introducing a dummy edge above the
different parts lets us decide on an order, and generate all the shared nodes
beforehand, so to speak.

In Figure 3 we present a restricted DAG grammar that generates AMR-like
graphs for all sentences consisting only of the concepts boy, girl, want, and believe
in various combinations, an example that was introduced in [3]. Note that there

is only one boy and girl involved, which requires us to use a “dummy” root
creating them (in order not to have several copies), along with the various sub-
sentence start symbols.

The first row of rules constructs the basic structure of the graph – one edge
each for boy and girl, and three basic statement edges. Any of these statement
edges may be omitted, though we do not show these permutations in Figure 3.
The second, third and fourth row are fairly self-explanatory. The rules for V2

S →

head

B GS2S1 S1

B → boy

inst

G→ girl

inst

S1 → S1 S1

stmt

V

S2 → S2 S2

stmt

V2

V → believe’

a1

want’

a1

believe’

a2

want’

a2

want’

a2

V

believe’

a2

V

V2 → believe’

a1 a2

want’

a1 a2

believe’

a2 a1

want’

a2 a1

believe’

a1 a2

V

. . .

want’

a2 a1

V

believe’

a1

a2

V2

. . .

want’

a2

a1

V2

Fig. 3. Rules for a restricted DAG grammar generating AMR-like graphs for all sen-
tences involving boy, girl, want and believe

involve quite a bit of (omitted) repetition. In particular, the first ellipsis cover
two right-hand side graphs, the second another two.

Though the graph grammar is somewhat cumbersome, it serves as an example
of a restricted DAG grammar generating a very general language of AMR-like
graphs.

6 NP-hardness Results

In order to motivate the rather harsh restrictions we impose on our grammars,
we present NP-hardness results for two different classes of grammars that are
obtained by easing the restrictions in different ways.

Theorem 2. The uniform membership problem for DAG grammars that con-
form to restrictions 1–4 is NP-complete.

Proof. Clearly, the problem is in NP since the restrictions guarantee that deriva-
tions are of linear length in the size of the input graph. Thus, it remains to prove
NP-hardness.

Let us consider an instance ϕ of the satisfiability problem SAT, i.e., a set
{C1, . . . , Cm} of clauses Ci, each being a set of literals xj or ¬xj , where j ∈ [n] for
some m,n ∈ N. Recall that the question asked is whether there is an assignment
of truth values to the variables xj such that each clause contains a true literal.
We have to show how to construct a DAG grammar H and an input graph G
such that G ∈ L(H) if and only if ϕ is satisfiable.

For simplicity, we shall first give a construction in which H violates condi-
tions 4 and 5. The grammar uses nonterminals S,K,Ki,Kij with i ∈ [m], j ∈ [n].
The terminal labels are c, all j ∈ [m], and an “invisible” label. The labels
K,Ki,Kij , c are of rank 2n, S is of rank 0 and the remaining ones are of rank 1.
Figure 4 depicts the rules of the grammar. In this figure, and in the following, we
draw ordinary edges (i.e., whose labels have rank 1) in the usual form as labeled
arcs rather than boxes.

The grammar works in the following stages.
First row of rules: (1) Generate 2n leaves which, intuitively, represent x1,¬x1,

. . . , xn,¬xn and are targets of a K-labeled nonterminal. (2) Clone K any number
of times (where the intention is to clone it m times, once for each clause). (3) Let
each K “guess” which clause Ci (i ∈ N) it should check.

Second row of rules: (4) Let every Ki “guess” which literal makes Ci true.
If the literal is negative, interchange the corresponding targets, otherwise keep
their order.

Third row of rules: (5) For all pairs (x`,¬x`) that are not used to satisfy Ci,
interchange the corresponding targets or keep their order. Finally, (6) replace
the nonterminal edge by a terminal one.

Now, consider the input DAG G in Figure 5 (left). Suppose that G is indeed
generated by H. Since the jth outgoing tentacles of all c-labeled edges point
to the same node (representing either xj or ¬xj), a consistent assignment is

S → K

. . .

K → K K

. . .

K →

i

Ki

. . .

(1 ≤ i ≤ m)

Ki → Kij

. . .

if xj ∈ Ki Ki → Kij

. . .
2j−1 2j

. . .

if ¬xj ∈ Ki

Kij → Kij

. . .

Kij

. . .
2`−1 2`

. . .

for ` ∈ [n] \ {j} c

. . .

Fig. 4. Reduction of SAT to the uniform membership problem

. . .

1 m

...
...

n times

c c

. . .

. . .

. . .

. . .

S →

�

K K

. . .

Fig. 5. Input graph in the proof of Theorem 2 (left) and modified starting rule (right)

obtained that satisfies ϕ. Conversely, a consistent assignment obviously gives rise
to a corresponding derivation of G, thus showing that the reduction is correct.

Finally, let us note that changing the initial rule to the one shown in the left
part of Figure 5 (using a new terminal � of rank 2) makes H satisfy condition 4
as well. This change being made, the input graph is changed by including two
copies of the original input, both sharing their leaves, and adding a new root
with an outgoing �-hyperedge targeting the roots of the two copies. ut

Let us now turn to our second NP-completeness result. It shows that if we, in
addition, disregard restriction 2 in the definition of restricted DAG grammars,
even the non-uniform membership problem becomes NP-complete. Moreover,
this result holds even if all graphs generated by the grammar have height 1.

Theorem 3. There is a DAG grammar H that conforms to restrictions 1, 3,
and 4, such that all graphs in L(H) have height 1 and L(H) is NP-complete.

Proof. The proof is by reduction from the (non-uniform) membership problem
for context-free grammars with disconnecting (CFGD), using a result from [8].
A CFGD is an ordinary context-free grammar G in Chomsky normal form, with
additional rules A → �, where � is a special symbol that cuts the string apart.
Thus, an element in the generated language is a finite multiset of strings rather
than a single string. More precisely, let w = w1 � · · · � wk ∈ (Σ ∪ {�})∗, with
w1, . . . , wk ∈ Σ∗, be a string generated by G if we view G as an ordinary context-
free grammar over Σ ∪ {�}. Then the multiset {w1, . . . , wk} is in L(G).

It is shown in [8] that CFGDs can generate NP-complete languages. Now, let
us represent a multiset {w1, . . . , wk} of strings wi as a graph consisting of k DAGs
of height 1 sharing their roots, as follows. For a single string wi = a1 · · · am, the
graph dag(wi) representing it consists of a root v, leaves u0, . . . , um, and ai-
hyperedges ei with src(ei) = r and tar(ei) = ui−1ui. Moreover, there are two
terminal edges from v to u0 and un, resp. (We draw the latter as unlabeled
edges, using a special “invisible” label.) For a finite multiset W = {w1, . . . , wk}
of strings wi, dag(W) is obtained from the disjoint union of the individual DAGs
dag(wi) by identifying their roots. As an example, dag({ab, aba, c}) is shown in
Figure 6.

a ba b a c

Fig. 6. The DAG dag({ab, aba, c}); note that the DAG does not define an order among
the sub-DAGs dag(wi) that constitute it

Now, every CFGD G can be turned into a DAG grammar H such that
L(H) = {dag(W) | W ∈ L(G)} using the schemata in Figure 7. Hence, L(H) is
NP-complete if L(G) is.

Though the simplicity of the translation should be sufficient to prove its
correctness, a few remarks may be in order. On the one hand, the ordering of
symbols within the representation of an individual string wi is faithfully reflected
in dag(wi), due to the fact that tar(e) is an ordered sequence for each edge e,
which unambiguously determines the start and end of the representation of wi.
On the other hand, there is no order among the represented strings in dag(W)
as they are connected only via the root.

S → S0 A→ B C A→ a A→

Fig. 7. Rules of a DAG grammar equivalent to a CFGD with initial nonterminal S0,
from left to right: initial rule, A→ BC, A→ a, A→ �.

7 Conclusions

By enforcing rather severe restrictions, we have defined a class of hyperedge
replacement graph grammars for which even the uniform parsing problem is
solvable in low-degree polynomial time. We also argued that this class, despite
its limitations, can still be practically relevant, e.g., in linguistic applications.

A number of interesting questions remain open. We motivate our restrictions
by showing how two ways of easing them lead to NP-hardness, but this does
not necessarily mean that all of our restrictions are necessary, neither does it
mean that they are the only interesting ones. Is it the case that lifting any one
of our five restrictions, while keeping the others, leads to NP-hardness? It seems
that the algorithm we propose leads to a fixed-parameter tractable algorithm,
with the size of right-hand sides in the grammar as the parameter, when we
lift restriction 5 (enforcing that the marking respects �F). Is this actually the
case and are there other interesting parameterizations that give tractability for
some less restricted classes of grammars? Another open question is whether
the algorithm for checking the structure of the input graph and computing the
ordering on the leaves can be optimized to run in linear or O(n log n) time.

From a practical point of view, one should study in detail how well suited
restricted DAG grammars are for describing linguistic structures such as AMRs.
Which phenomena can be modeled in an appropriate manner and which cannot?
Are there important aspects in AMRs that can be modeled by general DAG-
generating HRGs but not by restricted DAG grammars? If so, can the restrictions
be weakened appropriately without sacrificing polynomial parsability?

References

1. I. J. Aalbersberg, A. Ehrenfeucht, and G. Rozenberg. On the membership problem
for regular DNLC grammars. Discrete Applied Mathematics, 13:79–85, 1986.

2. L. Banarescu, C. Bonial, S. Cai, M. Georgescu, K. Griffitt, U. Hermjakob, K. Knight,
P. Koehn, M. Palmer, and N. Schneider. Abstract meaning representation for sem-
banking. In Proc. 7th Linguistic Annotation Workshop, ACL 2013 Workshop, 2013.

3. F. Braune, D. Bauer, , and K. Knight. Mapping between english strings and reen-
trant semantic graphs. In Proc. 9th Intl. Conf. on Language Resources and Evalu-
ation (LREC’14), 2014.

4. D. Chiang, J. Andreas, D. Bauer, K. M. Hermann, B. Jones, and K. Knight. Parsing
graphs with hyperedge replacement grammars. In Proc. 51st Annual Meeting of the
Association for Computational Linguistics (ACL 2013), Volume 1: Long Papers,
pages 924–932. The Association for Computer Linguistics, 2013.

5. F. Drewes, A. Habel, and H.-J. Kreowski. Hyperedge replacement graph grammars.
In G. Rozenberg, editor, Handbook of Graph Grammars and Computing by Graph
Transformation. Vol. 1: Foundations, chapter 2, pages 95–162. World Scientific,
Singapore, 1997.

6. F. Drewes, B. Hoffmann, and M. Minas. Predictive top-down parsing for hyper-
edge replacement grammars. In Proc. 8th Intl. Conf. on Graph Transformation
(ICGT’15), Lecture Notes in Computer Science. Springer, 2015.

7. A. Habel. Hyperedge Replacement: Grammars and Languages, volume 643 of Lecture
Notes in Computer Science. Springer, 1992.

8. K.-J. Lange and E. Welzl. String grammars with disconnecting or a basic root of
the difficulty in graph grammar parsing. Discrete Applied Mathematics, 16:17–30,
1987.

9. C. Lautemann. The complexity of graph languages generated by hyperedge replace-
ment. Acta Informatica, 27:399–421, 1990.

