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Abstract. Cloud storage is increasingly adopted by users due to simplified storage
systems compared to on-premise storage. These systems are mostly presented as
Object Storage Systems (OSSs), hiding issues, such as redundancy, from users. As
new industries are considering adopting clouds for storage, OSSs have to evolve to
support new needs. Among the most challenging is assuring guaranteed performance.

In this paper, we present Controllable Trade-offs (CTO), an OSS-agnostic solution
to add performance guarantees. CTO presents itself as a thin layer that mediates
requests between the user and the OSS. For generic support, performance is controlled
by tuning the rejection probability, and implemented as a user-side queue. Results
show that CTO may reduce penalties 3.23 times on average and up to 68 times when
the load is high.

1 Introduction

Individual users and businesses are increasingly adopting clouds for simplifying their
data storage needs. Cloud storage platforms are mostly designed as Object Storage
System (OSS), allowing users to get and put objects (i.e., whole files), often through
a simple REST interface [11]. They thus save the user from dealing with low-level
details such as location, redundancy, backups and load-balancing. Cloud storage
has attracted considerable attention: One may find both commercial (Amazon S3
and Glacier [30], Google Storage [2]) and open-source implementations (OpenStack
Storage [19]).

As new industries are considering moving their data into the cloud, OSSs need
to evolve to support new needs [15]. One of the greatest concern is the fact that
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existing OSSs are void of any performance guarantees (c.f., [1]). In fact, with existing
cloud storage solutions, users may observe unpredictable Key Performance Indicators
(KPIs), such as response times and throughput, that are highly sensitive to the load
of the platform. Hence, a solution is needed that enforces KPIs. This would allow
providers to complement their Service Level Agreement (SLA), i.e., the contract
signed between the user and the provider, with performance guarantees.

Unfortunately, it is unlikely that these SLAs can always be kept. For cost efficiency
reasons, cloud storage providers must operate close to their peak performance. This
means that in case of failure or unexpectedly high load, one or more SLAs have to be
violated. Hence, a further requirement would be for the OSS to differentiate among
classes of users (e.g., gold, silver, bronze), as stipulated in the SLA, and to minimize
the penalties that are paid, should the system be overloaded.

Enforcing SLAs for storage has long been seen as a great challenge, mostly due to
the black-box nature of the underlying storage platform. For example, issues such as
the elevator algorithm, hybrid (mechanical and solid-state) drives and RAID make
performance highly unpredictable. Therefore, most approaches resort to providing
only differentiated SLAs, in which higher classes get more performance than lower
ones, without dealing with guaranteed SLAs, e.g., a gold user gets exactly 100 MB/s
throughput.

In this paper we propose Controllable Tradeoffs (CTO) a front-end to OSSs that
mediates requests to enforce differentiated and guaranteed SLAs. CTO works by
monitoring the client requests, analysing the number of concurrent readers, writers and
their average think time, and tuning the probability of rejecting a request. Expected
KPI values are estimated based on off-line calibration. The highlight of our approach
is that the solution is back-end agnostic.

Our contributions is three-fold:

1. We translate the goal of ensuring differentiated, guaranteed SLAs to a penalty-
function minimization problem (Section 3).

2. We describe CTO, a back-end agnostic solution (Section 4).

3. We evaluate the approach on three back-ends: a machine with a single Hard
Disk Drive (HDD), a server with HDDs in RAID10 and a distributed storage
cluster (Section 5).

Results show that CTO may reduce penalties 3.23 times on average and up to 68
times during high load.



2 Related Work

Numerous research efforts have been devoted to improve performance and provide
differentiated services for packet switched networks [14, 18,24], web servers [7,21]
and compute clouds [20,28,35]. However, all these works are not suitable for storage
systems due to their unique characteristics [10]: Their peak performance is highly
sensitive to the workload, e.g., sequential vs. random access, read vs. write.

The problem of differentiated service for storage systems can be addressed from two
angles: fine and coarse granularity. Most of the works focus on providing performance
guarantees at a fine granularity for a single storage system, using performance models
of a disk system to estimate seek and rotational delays for each I/O request. Examples
of such works include guaranteeing performance for disk I/O [33], configuring storage
systems to meet performance goals [34], allocating storage bandwidth to application
classes [27], mapping administrator specified goals to appropriate storage device
actions [29], modifying OS block layer to support classes [23] and including classes
in I/O drivers [9]. However, due to their focus on low-level storage system scheduling,
it is impractical to scale them to large-scale deployments as required in cloud storage.
Moreover, using these approaches, it is very difficult to translate high-level objectives,
such as reducing overall penalty, into low-level semantics.

Storage service differentiation based on proportionate I/O bandwidth allocation
have also been developed for storage systems [16,17,26,31] that operate at a coarse
granularity, e.g., average response time per class. However, the focus of these works is
on providing proportional I/O bandwidth allocations based on pre-configured weights
for each class. As a result, observed performance of different classes may degrade
during system overload. In contrast, our goal is to offer performance guarantees for
higher classes and only degrade lower classes in case of overload, as required to
minimizing the penalty.

3 Problem Definition

In this section we give a more precise definition of our problem. We consider an
OSS, that is concurrently accessed by multiple users, each reading (get) or writing
(put) objects. Each user has an SLA associated with her account, that stipulates
target values for KPIs, revenues made by the provider in case of successful delivery
of the service and penalties paid to the user in case the target performance could
not be kept. On the provider’s side, a Utility Function (UF) is configured to map
user performance to expected profits, taking into account factors such as revenues,
penalties, user retention and Total Cost Ownership (TCO) of hardware and software.

We are looking for a back-end agnostic solution to optimize provider profits over
an existing OSS. Indeed, given the plethora of existing OSSs and the complexity



they handle, it does not make sense to write a new one. Thus, we are aiming for a
generic front-end component, that mediates messages between the user and the OSS
to maximize provider profits as conveyed by the UF.

Ideally, the system should behave as follows. If the OSS is not overloaded, then
each user should get at least the performance agreed in the SLA. In other words, the
system may be work-conserving, redistributing spare throughput to improve user
performance, thus encouraging new users to join the service. If the OSS is overloaded,
then the system should try to minimize paid penalties as required to maximize profit.

4 Solution

This section describes Controllable Tradeoffs (CTO) our solution for guaranteed
performance over Object Storage System (OSS). First we give an overview of CTO’s
architecture, then we present each component. In particular, we detail the estimator
function, the core algorithm of CTO.

4.1 Architecture

The architecture of CTO is depicted in Figure 1. It features a thin layer, that mediates
requests between the user and the OSS, and an autonomic feedback loop [4], com-
posed of the classical monitor, analyze, plan and execute phases. Monitor and analyze
is done by the monitoring component, that is responsible both for intercepting the
user requests to the OSS and analysing the workload. It extracts workload informa-
tion (noted W) such as the number of users, the average time between consecutive
requests, called Think-Time (TT), and the average request size. Planning is done by
the utility function, estimator and optimizer that use information about the workload
to devise a plan. Finally, execution is done by the control knob which modulates the
requests to enforce the plan.

To understand our contribution, we first need to detail the choice of control knob.
Then we can highlight how the utility function, estimator and optimizer achieve
system goals.

4.2 Control Knob

The purpose of the control knob is to allow an OSS-agnostic way to control observed
performance of individual users. This is achieved by artificially delaying the process-
ing of requests. Depending on how the delaying is achieved, one may differentiate
between system-delay knobs and user-delay knobs. System-delay knobs enforce user
request delays within the storage system, e.g., in system queues. Delay is achieved by
forcing users to wait for an additional amount of time until their requests complete.
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Figure 1: CTO architecture.

User-delay knobs enforce delays on the user-side, by rejecting a request and asking
the user to retry later. This may be transparently handled inside a client library, so
that the user application itself is unaware of the underlying delay mechanism. For
improved interaction, the system may transmit along with a rejection notification
the time after which the user should retry the request, which we call Re-Think-
Time (RTT). User-delay knobs have the advantage that they require less state on the
system-side, e.g., no queue nor an open connection needs to be maintained. Moreover,
they give more insight about the observed performance: Users may collect statistics
about the number of retries and the accumulated amount of RTT, to decide whether
an upgrade of SLA is required to improve performance.

In case of CTO, we decided to implement a user-delay knob as follows. The user-
side library is configured with a fixed RTT. On the system-side, users are grouped into
classes of similar SLAs. A storage configuration c consists of rejection probabilities
for each class and each request type (get or put). With probability 0, no request of
a user is rejected, hence she observes the maximum possible performance. As the
probability increases, requests are more likely to be rejected and the user is more likely
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Figure 2: Workload with user-delay control knob. CT is the request completion time
given by the performance of the OSS, TT is the user think-time, and RTT is the
re-think-time after a request is rejected.

to retry, hence introducing more RTT and lowering the performance observed by the
user. Thus, the user-perceived performance is determined by the request processing
time of the OSS and the sum of all RTT (Figure 2).

4.3 Utility Function

As required by our problem statement, the optimization goal is expressed to CTO as
a Utility Function (UF) defined over the values of the KPIs:

utility = UF (valueO f(K PI),...,valueO f(KPI,,)) (1)
Ultimately, a UF should reflect profits of the storage provider. These profits may

be decomposed into customer payments, penalties associated with SLA violations,
customer retention rates due to poor performance, hardware and software amortization



costs and other provider-specific aspects. The choice of the UF is up to the provider,
however, we give an example of such a function in the evaluation section.

4.4 Estimator

The estimator is the core of our contribution. Its role is to efficiently estimate the KPI
values that would be obtained given the workload W and the storage configuration c:

EW,c) = (valueOf(KPI),- - ,valueO f(KPI,,)) ()

The workload W is fed from the analysis done by the monitoring component, whereas
the configuration c is left as a free variable to be chosen by the optimizer.

Before explaining how the estimator works, let us define the number of concurrent
readers n, as the number of users who are waiting for a read request to complete, i.e.,
they are in the CT period as illustrated in Figure 2. Note that, n, is smaller or equal to
the number of users reading, as some of them may be thinking. Similarly, we define
the number of concurrent writers n.,,.

To output accurate values, the estimator needs to understand the raw performance
of the OSS. A calibration table is used to map a number of concurrent readers and
writers to measured KPI values. As an example, for n, = 5 and n,, = 5, the OSS
may obtain a total read throughput of 100 MB/s and a total write throughput of
50 MB/s. Calibration may be done either offline or online. In the online case, the
calibration table is constructed on-the-fly based on measured values of n,, n,, and
KPIs, while the system is in production. For simplicity, we opted to use offline
calibration and build calibration tables as follows: CTO is set to calibrate mode to
override rejection probabilities to zero, effectively eliminating RTT. Then, a workload
generator simulates concurrent users requesting random objects from the OSS, with
zero think-time, so as to iterate over a wide range of concurrent readers and writers.
The obtained KPI values are stored in a file and later used by the estimator.

Let us now explain how to estimate KPI values given the calibration table, the
workload analysis W and the storage configuration c. First, for each class k and each
request type ¢ (get / put), the expected re-think-time RT"T}, ; is computed. Note that,
a request may be rejected several times, hence the expected value resembles a power
series. Next, for each class and request type, we aim to compute the probability of
having n concurrent requests, denoted p,, . ¢ is:

<Nk7t> (CT))" + (TThy + RT T )Nt
Pnkt =

3
(CTy + TTyy + RT Ty q) Vet ©)

n

where IV, ; is the total number of users in class k with request type ¢, C'T; is the
expected request completion time of the OSS and 1T}, ; is the average think-time.
Nyt and T'T}, ; are stored inside the workload W, while C'T} are to be determined as
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explained below. Once we have the values of p,, ;. ;, a weighted sum with probabilities
and values from the calibration table can be used to estimate the KPI values observed
by each request type.

However, as highlighted in Equation 3, computing the probabilities p,, ;. ; requires
knowledge about the expected request completion times of the OSS, both for read and
write requests —C7}. and CT,, respectively. Intuitively, this is due to the fact that we
need to know the ratio between the duration a user spends thinking (or re-thinking)
and the duration she waits for a request (see Figure 2). C'T}. and C'T,, in turn, depend
on the probabilities p,, ;. ;. To break this dependency cycle, we adopted an iterative
approach: Some initial values are assumed for C'T;. and CT,,, then p,, 1.+, CT; and
C'T,, are computed until convergence.

on summary, a calibration table of raw OSS performance is used to estimate the
KPI values for each request type.

4.5 Optimizer

The optimizer uses the estimator function to find the storage configuration c,; that
minimizes the UF:
Copt = minUF(E(W, ¢)) “4)
C

This is essentially a global optimization problem over all the possible storage config-
urations. Given the large search space and the possibility of local minima existence,
we chose to implement the optimizer using simulated annealing [13].

5 Evaluation

In this section we evaluate CTO. First, we describe the platform on which experiments
were done and the workload model. Then, we present and analyse the obtained results.

5.1 Platform

To validate CTO and to show that it manages to maintain SLAs in a platform-agnostic
manner, we chose to run experiments over three scenarios, featuring increasingly
complex storage topologies: a desktop, a single server and a storage cluster. First, we
ran experiments on a desktop featuring commodity hardware and a simple storage
topology, i.e., a single HDD at 7200 rpm. The measured throughput of the disk is
approximately 65 MB/s for sequential access and 55 MB/s for random access, as
measured using the I0zone [3] benchmark.

Second, we ran experiments on a single high-end server, featuring four HDDs
at 7200 rpm configured in a RAID10 array. To make sure the performance is disk-
bound, we limited the amount of memory to 1 GB. The measured throughput of



the array is approximately 250 MB/s for sequential access and 57 MB/s for random
access. Note that the random access performance is highly unpredictable, as the RAID
controller schedules requests over the four disks without informing the software about
its decisions.

Finally, we performed experiments over a storage cluster build using the Ceph
distributed filesystem [32]. We used a total of 4 servers with the same memory and
disk configuration as the one in the single-server scenario. One server was hosting
the Ceph client, Ceph meta-data server (MDS) and CTO. The other three servers
were used for the Ceph object-store daemon (OSD). The machines were linked using
a high-end, non-blocking Gigabit Ethernet switch. Note that Gigabit Ethernet can
transfer approximately 100 MB/s (after deducing protocol overheads), which means
that for sequential access the network is the performance bottleneck and not the
disks themselves. In contrast, for random access, the disks are the bottleneck. This
highlights the complexity of this scenario, which is specially designed to test CTO in
an extreme case.

5.2 Workload

We here describe a workload model based on published statistics on storage workloads
and video-on-demand websites in particular. Before running the tests, we initialized
the OSS to store 1000 files. The file sizes are generated using a Pareto distribution
(minimum 2 MB, a = 1) as found in [6].

The storage system is accessed concurrently by a number of users, nr of which
are doing read requests and ny are doing write requests. Each user works in a
closed-loop [8,25] as follows: The user starts by requesting a random file from the
OSS, waits for the request to complete, waits for a random think-time and repeats.
For deciding which file to request next, we sample the Zipf distribution which is a
good model for file popularity on the Internet [5]. With respect to the think-time,
we use the exponential distribution as done in the TPC-W industry standard for web
benchmarking [22].

5.3 CTO Configuration

Each user is randomly assigned to one of the three SLA classes, gold, silver or bronze,
configured with a target throughput of 12 MB/s, 5 MB/s and 2 MB/s, respectively.
Each class is associated with a piecewise constant (or step) penalty function, that
captures revenue losses in case the OSS is unable to deliver the promised performance.
We have chosen this particular penalty form as it is less sensitive to measurement
noise and more intuitive from the user’s perspective compared to linear penalty
function [12]. The UF used by the provider is the sum of the penalties. Hence, CTO’s
task is to minimize the sum of penalties paid.



5.4 Analysis

In this section, we present and analyse results obtained on the Ceph storage cluster.
This is due to the fact that Ceph is a more realistic representation of cloud storage
systems. Hence it shows CTO’s behaviour in its intended environment. Note that,
experiments on other platforms gave better results.

We performed 130 experiments with various workloads. Note that, due to think
times, the average number of concurrent requests directed at the OSS is lower than the
number of concurrent users. Each workload generated a certain average number of
concurrent read and write requests at OSS. We measured workload intensity as a sum
of the number of concurrent read and write requests at OSS. The lowest workload
generated 0.513 concurrent requests, while the highest 148.83. For 124 workloads
SLAs were violated resulting in positive UF (sum of penalties).

Since our UF reflects the sum of penalties, our criterion for CTO success was
penalty improvement — the reduction of UF, measured as the ratio of the UF value
with CTO deactivated and the UF value with active CTO. The average penalty
improvement was 3.23, its maximum value is 68.43 and minimum value is 0.56.
These results show that on average CTO reduces penalties by multiplicative factor
3.23.

160

Number of concurrent requests
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= = Non-optimized concurrent requests

—— Optimized concurrent requests
Figure 3: CTO strategy revealed: CTO keeps the number of concurrent requests be-

low a threshold around 40. The x-axis reflects experiment IDs, ordered by increasing
number of concurrent requests of non-optimized experiments.
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Figure 3 reveals the CTO strategy, which is the result of the optimization proce-
dure in Equation 4. The figure plots the number of concurrent requests at OSS for
non-optimized and optimized experiments. The results show that, as the number of
concurrent requests in non-optimized experiments increases, CTO strives to keep the
number of concurrent requests in optimized experiments below a limit around 40.
Since the OSS throughput is shared among all users, when the number of concurrent
requests grows, the OSS throughput approaches saturation. At this point, throughput
per user drops and, for non-optimized experiments, gold SLAs start to incur high
penalties. CTO avoids this situation by increasing the rejection probabilities for silver
and bronze requests, while keeping the overall number of concurrent requests at OSS
below some threshold.
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Figure 4: Influence of error probability.

Our calibration on the Ceph distributed filesystem was limited to 20 concurrent
readers and 20 concurrent writers. As Figure 3 shows, the number of concurrent
requests in our experiments exceeded this calibration numbers. Thus, some probabili-
ties in Equation 3, specifically those for high values of n, were not estimated. The
sum of these probabilities is the error probability of the estimator. We estimated this
error probability and analysed its influence on CTO’s effectiveness, i.e., penalty im-
provement (Figure 4). From these results we conclude that a positive error probability
reduces penalty improvement. Consequently bigger calibration tables are desired.
However, as demonstrated in Figure 3, CTO strives to keep the number of concurrent
requests low, diminishing the contribution of high loads to error probability. Thus,
CTO demonstrates stability against high-load analysis.
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6 Conclusions

We presented CTO, an OSS-agnostic solution for providing performance guarantees
to cloud storage. We thus contribute a key issue for allowing new users to adopt
cloud storage. We presented the overall design that was centered around the generic
rejection probability control knob and the specifically designed performance estimator.
Evaluation on three different platforms showed that considerable improvements in
terms of paid penalty may be achieved.

We aim to perform rigorous experimental evaluations and extend the work in several
ways such as improving CTO by incorporating on-line calibration and allowing
accurate interpolation for missing calibration points.
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