
Chapter 1

Introduction

The rapid development of Internet Technologies is opening up new pathways for
transforming the way societies and industries work and communicate. Among
other things, it has enabled various industries and enterprises to start offloading
their applications (henceforth referred to as services) onto third-party infrastruc-
tures to achieve cost savings and scalability, get better performance, and deliver
on-demand resource provisioning. The introduction of ubiquitous portable com-
puting devices such as laptops, tablets, and smart phones has enabled people to
interact with each other using these services at any time and from any location.
To satisfy society’s wide-ranging demands, services are becoming increasingly
complex software systems consisting of many individual applications that are
integrated to provide complex end-user functionalities such as search, social
networks, news, and e-commerce. Furthermore, to provide a good quality of
service, these integrated applications may require widely varying combinations
of resources during their life-span. A key challenge that has emerged as a result
is to identify effective means of runtime monitoring and controlling the resource
usage of such services, and provisioning them with sufficient computational
resources to ensure the desired performance [18, 74, 53, 123, 9, 90].

Computing technologies such as distributed systems, parallel computing,
utility computing, grid computing, and virtualization have evolved through a
number of phases over time as people have attempted to solve the problem of
large-scale shared resource provisioning for services [60, 23, 111, 43, 138, 141,
106, 117, 105, 108, 63]. The emergence of large-scale Internet services coupled
with the evolution of these technologies has fueled a trend toward a new resource
provisioning paradigm called cloud computing.

The emergence of cloud computing in recent years has been a consequence of
the progressive enhancement of these technologies with new features that enable
resource provisioning in a flexible, cost effective, and scalable fashion while
offering good ease of use. Multiple definitions and concepts of cloud computing
have been proposed[12, 95, 142, 156, 54, 11, 102]. According to the NIST [95],
cloud computing can be defined as a model that provides large-scale computing



farms based on the utility computing service model 1 to enable convenient
on-demand network access to a shared pool of configurable computing resources
such as CPU cores, networks, storage, and memory, which can be quickly
provisioned and released with minimal management effort. The resources are
usually geographically dispersed around the world in datacenters consisting
of tens of thousands of commodity machines [24, 70, 100]. The number of
machines available in this way will probably continue to grow for the foreseeable
future because the demand for hosted services and remote resources is increasing
steadily [156, 59, 67].

The challenge and complexity of provisioning resources for services on
demand are increasing rapidly due to the growing interest in cloud computing
among both the general public and industrial actors, and the rapid developments
in the size and diversity of cloud computing resources and the services hosted
on them [24, 70, 100, 156, 109, 77, 148]. At the large scales that are becoming
increasingly common, it is necessary to account for the fact that there will always
be a significant number of servers and network components that have failed at
any given time. Further complexity is introduced by the heterogeneity of hosted
services and the unpredictability of their workloads. Due to this heterogeneity
and the sheer scale of cloud computing systems, there is an increasingly strong
expectation that services should be self-configuring and self-managing. However,
as the range of permissible configurations grows it is becoming increasingly
difficult to achieve this goal.

The cloud infrastructure as a whole should not be simply regarded as
heterogeneous collections of co-located commodity hardware that have been
wired up together. Rather, it should be seen as a set of commodity machines
that have been aggregated seamlessly and transparently into a single computing
unit [24, 72, 16, 71, 144, 122, 130, 35]. Such an aggregation of commodity-class
machines into a single computing unit provides an illusion of an operating system
running on top of an infrastructure of tens of thousands of servers. This vision
for large-scale systems can only be realized through advancements in the software
management layer that abstracts the infrastructure [146, 72, 69, 121, 7, 34].

The management layer is responsible for many tasks such as the deployment
of services to hardware resources, resource provisioning, scheduling, enforcement
of quotas, monitoring, load balancing, resource usage collection, and handling
component failures. These tasks must all be managed in a way that imposes
a minimal overhead on the underlying system. The management layer is also
responsible for ensuring that the system satisfies all of the hosted services’
non-functional requirements relating to performance, reliability, scalability,
availability, latency, and fault tolerance.

The task of the management layer for a large-scale distributed system has
become more complex than the elements being managed. Consequently, as

1The utility computing service is a service provisioning model in which a service provider
makes computing resources (e.g. processing power, storage, and high level services) available
to the customer as needed, and charges the customer on a metered basis as is commonly done
for water and electricity.



the demand for intricate distributed services has grown, the development of
management tools for such systems has become a complicated problem in its
own right [112, 116]. Due to the sheer complexity of the managed elements, it
is imperative for the management system to be autonomous. That is to say, the
management system should continually adapt the whole system to changes in
environmental variables such as the workload, hardware availability, and software
failure by automatically adjusting the decision variables [81, 33, 13] without
any human intervention. Specifically, such solutions should have capabilities
such as self-configuration, self-optimization, self-adaptation and self-healing
that allow the system to control its managed elements and facilitate continuous
functioning in the face of unpredictable changes in the infrastructure and hosted
services.

This thesis focuses on the design and implementation of efficient algorithms,
models and techniques for the autonomous monitoring, control, and provisioning
of the diverse resources required to meet the demands of services and account
for their resource usage. The aim is to develop effective tools for (i) enforcing
quotas, (ii) provisioning optimal amounts of physical resources to meet service
performance requirements, and (iii) collecting and aggregating service resource
usage data for accounting and billing purposes in a timely fashion at runtime
without any service interruption.

Quota management mechanisms are essential for controlling distributed
shared resources to ensure that services do not exceed their allocated or paid-
for budgets of credit, CPU hours, CPUs, RAM, storage capacity, and so on.
Quota management tools for services must have mechanisms that both regulate
resource usage and achieve an efficient and fair distribution of quotas among
services. Cloud-wide monitoring and control of quotas is needed to achieve
these aims and avoid the over- or under-provisioning of resources. Papers I2

and II focus on managing quotas for services running across distributed nodes.
Quotas that apply over multiple nodes must be mapped onto physical

resources on the basis of services’ performance requirements. It is important
to be able to continuously adjust the physical resources allocated to services
at runtime in order to achieve guaranteed performance levels at all times
in an environment where frequent and unpredictable changes are the norm
rather than the exception. However, this is very challenging because of multi-
faceted issues such as the dynamic nature of cloud environments; the need
for supporting heterogeneous services with different performance requirements;
the unpredictable nature of services’ workloads; the complexity and differences
among Key Performance Indicators (KPIs) used by each service, and the
non-triviality of mapping performance measurements into resources. Papers
IV–VIII present models and techniques for addressing these issues and managing
temporary resource shortages due to e.g. flash crowds or hardware failure.

Furthermore, run time monitoring data should be collected for each service

2The term quota as used in this thesis has the same meaning as the phrase resource
allocation as used in paper I; quota is used throughout this thesis to avoid the risk of
confusion with resource provisioning.



and aggregated in order to maintain a single global state of the system that
facilitates management activities such as accounting and billing, scheduling, load
balancing, and network analysis. Such aggregation becomes extremely complex
when dealing with systems spread over geographically dispersed locations, which
means that the management task itself may consume significant computing and
network resources unless done with care. Paper III focuses on collecting data
across multiple nodes and establishing mechanisms to ensure consistency and
synchronization in order to facilitate accounting and billing operations.

The thesis is organized as follows. Chapter 2 introduces the problems that
the thesis aims to address. Chapter 3 reviews established methods for solving
the quota and usage management problems. Chapter 4 briefly presents state-
of-the-art techniques for resource provisioning. Chapter 5 summarizes the new
contributions presented in this thesis. Finally, 8 papers produced in the course
of the thesis work are appended.



Chapter 2

Runtime Resource
Management and Control
in Cloud Computing

Resource management and control is perhaps the most important task that must
be performed to deliver a reliable and resource-efficient cloud computing system
[52, 72, 150]. Each service’s resource consumption must be continuously tracked
at runtime to determine whether services are meeting their target Service Level
Objectives (SLOs). Cloud infrastructures consist of many tens of thousands
of units of commodity hardware with thousands of services deployed, all of
which have different requirements and demands. Effectively running such an
infrastructure is extremely complicated and challenging because there are so
many variables that must be considered such as unpredictable service demand
changes, hardware failures, and interference between collocated services. Logi-
cally, different approaches and methods that can reflect the different variables
must be employed in order to allocate and control the available resources in the
best possible way.

For the purpose of our discussion we assume that these resources can be
divided into virtual and physical resources, a division that can be likened to the
distinction between intangible and tangible assets in business and economics
[26, 10]. Virtual resources are abstract resources such as prepaid credits, quotas
(for CPU, storage, etc.), and accounting records while physical resources are
resources that have actual physical existence such as CPU cores, RAM, and
Storage. Accordingly, the control tasks are divided into quota and resource usage
control and resource provisioning. Quota and resource usage control entails
runtime tracking and controlling, collecting and aggregating virtual resources
(i.e. quotas and resource usage) for each service, while the resource provisioning
task is responsible for autonomic runtime prediction and allotment of optimal
physical resources to services to meet their requirements.



Note that from this point onwards, when we talk about resources in the
context of quotas and resource usage, we are referring to virtual resources.
Conversely, in discussions about resource provisioning, resources means physical
resources.

The following sections discuss the issues associated with controlling these
two resource types in detail.

2.1 Quota and Resource Usage Control

Large-scale services often need sophisticated and scalable quota management
and resource usage monitoring support. It is important to collect resource
consumption statistics across nodes, clusters, or datacenters to facilitate network
analysis and to support management decisions relating to accounting and billing,
scheduling, and load balancing among other things. For example, resource usage
data may need to be collected from several locations in order to generate a
single bill for a customer’s service consumption across the entire infrastructure.
Figure 1 presents a model of a cloud computing environment. We will use this

Figure 1: Elements in cloud environments.

model throughout this section when we talk about quota and resource usage
control. The cloud customer deploys and runs services on a cloud infrastructure.
A cloud customer may be a service provider, who leases resources offered by
an infrastructure provider to host services that will be used by end-users or
other service providers. The services are customers’ applications, which are
deployed across multiple clusters where they consume resources and impose
resource demands on the cloud infrastructure. The cloud infrastructure consists
of geographically distributed clusters, each of which is composed of thousands of
commodity servers connected to a low-latency Local-Area Network (LAN) [84].



The infrastructure provider is responsible for managing the clusters’ physical
and virtual resources and controlling the resource usage of each individual
service running across multiple clusters. The focus here is on how to manage
quota and resource usage for services running across clusters.

Quotas and resource usage control mechanisms for services running across
clusters profoundly influence the performance of the entire system, the provider’s
profitability, and the level of customer satisfaction. For example, to maxi-
mize customer satisfaction, the service provider should make sure to avoid
over-committing the infrastructure’s resources [112, 150]. Moreover, resources
consumed by different services should be monitored and this monitoring data
should be collected efficiently in a way that interferes minimally with the ser-
vices’ performance [48, 68, 61, 46, 118, 47]. Ideally, resource usage collection
and quota management mechanisms should not impose significant constraints
on either the customer or the cloud provider.

Quota control or enforcement systems are tools for monitoring, redistributing,
and assigning shared resources (such as prepaid credits and quotas) to individual
instances of a service running across multiple nodes based on each instance’s
demand, subject to the constraint that the sum of shares across instances
must not exceed the aggregated global availability of these resources. Quota
control mechanisms should guarantee that each individual instance’s demands
are met without over-committing resources. In other words, the management
mechanisms should ensure that the aggregate resource consumption does not
exceed the quota limit while simultaneously ensuring that instances running
on particular nodes are not starved when the total consumption is below the
quota limit. To this end, quota allocation mechanisms should know the current
allocation across nodes and be able to use this information to intelligently
apply algorithms to better distribute resources to instances according to their
runtime requirements [115, 149, 154]. The goal is to avoid both under- and
over-utilization of quotas.

On the other hand, resource usage management systems are tools for collect-
ing and aggregating data about resources consumed by services across clusters
in order to establish a single consistent global view for purposes such as ac-
counting and billing [47, 48, 153, 152, 6], creating traces [132, 58, 133], and to
provide input for provisioning [36, 8, 64, 83, 129, 134, 143, 76, 45, 93]. Resource
consumption data should be monitored continuously and must be collected and
synchronized to maintain a single consistent view of the data generated across
different clusters. However, any such synchronization mechanism must make
a trade-off between the consistency of the data and the performance of the
infrastructure: more frequent synchronization increases data consistency but
reduces performance.

The following sections discuss quota and resource usage management in
more detail.



2.1.1 Quota Control

Service owners and/or infrastructure providers may want to cap (put limits
on) cloud resource quotas such as the total credit, storage quota, total number
of CPUs, total CPU hours, or number of VMs, IP addresses, or network
connections. To do this, the provider or owner must have a mechanism for
allocating and enforcing limits across services running on multiple nodes [96, 79].
This is similar to the way that prepaid telecommunication services work [2, 1]:
customers pay in advance and use the service afterwards. The mechanism is
expected to provide the service to customers immediately as long as the paid-for
budget is not exhausted.

Managing quota limits in large distributed systems is difficult because it
requires the maintenance of a consistent picture of total usage while resources
are being consumed concurrently at several locations. Quota management is
essential for ensuring that services do not exceed their allocated (or paid-for)
budget. It can also be used to enforce global allocation limits in order to solve
problems such as spurious services that flood and overburden the system with
dummy tasks, denying access to other services, and malicious services that
launch Distributed Denial of Service (DDoS) attacks.

The resource consumption of services running on tens of thousands of nodes
in many clusters must be properly monitored. Furthermore, quotas should be
distributed across nodes or clusters optimally, with the objective of minimizing
their associated overhead while meeting service demands.

2.1.2 Resource Usage Management

Resource usage management involves monitoring, collecting, and aggregating
information on resource consumption in order to facilitate decision making in
cloud environments [32, 128, 99, 126, 38]. It requires a transparent and efficient
management mechanism that can be used to produce a consistent cloud-wide
view of the data. The degree to which resource usage must be managed, i.e.
the necessary update frequency and the desired granularity of the monitored
statistical information, will vary according to the management task at hand.

Each service may use resources from multiple clusters and can generate a
variety of runtime scenarios that, if not tracked and responded to, can make
usage-based reporting and billing impossible. Resource usage must be monitored,
synchronized, and aggregated to perform billing operations. Thus, for cloud
services to be commercialized using a pay-as-you-go model, the cloud must
allow runtime usage across clusters to be accurately measured, collected and
synchronized.

Therefore, an accounting and billing system capable of monitoring, collecting,
and processing usage data and metrics should be incorporated into the cloud
architecture to support the business model of cloud providers. Once services are
deployed to the cloud, it is critical to monitor their functions and track their
resource usage on an ongoing basis in order to determine how much service



owners are to be charged. Timely and consistent collection and distribution of
accounting data is not only important for the infrastructure provider’s billing
operations: service owners may also need to bill their customers on the basis
of resource consumption. Similar situations occur in the supply chains of
manufacturing industries [97, 140], where a faulty material or a delay in the
supply of a component will affect all of the downstream processes in the chain.
Likewise, a delay or a failure in infrastructure monitoring will affect all members
of the ecosystem.

2.2 Resource Provisioning

A cloud is a complex system with a very large number of shared resources whose
performance and capabilities may be limited by the sometimes unpredictable
behavior of the infrastructure and the services running on top. At the same
time, services hosted in the cloud have become indispensable for many business
and personal purposes, making the performance of these services a key issue
[66, 39, 75, 73, 41, 135, 157]. Resource provisioning techniques help to determine
the optimal amount of physical resources required to satisfy service demands.
Today, cloud infrastructure providers either do not offer any performance
guarantee or prefer coarse-grained and static resource provisioning with fixed
sizes, resulting in inefficient resource utilization and Service Level Agreement
(SLA) violations. Infrastructure providers will need to provide better and
more stringent performance guarantees with fine-grained resource provisioning
techniques to attract businesses to move their core services into the cloud.

Resource provisioning has a direct influence on the performance of services
in the short-term and the survival of the infrastructure provider in the long-
term. It is important to have autonomic techniques that continuously adjust
services’ resources at runtime in order to provide performance guarantees at
all times in an environment where frequent and unpredictable changes are
the norm rather than the exception. Indeed, autonomic resource provisioning
technique is a necessity rather than a luxury due to the scale and complexity
of cloud infrastructures, the huge number of services deployed on them, and
the unpredictability of runtime changes in services’ capacity demands (which
may produce sudden demand spikes known as flash crowds) and operating
environments, i.e. hardware failures [83, 107, 81, 76, 65, 44].

Ideally, the infrastructure provider should have a resource provisioning
mechanism that maximizes resource utilization while using dynamic and fine-
grained resource allocation to guarantee that services’ performance requirements
are met. Thus, the task of resource provisioning is to allocate services enough
resources to meet their performance requirements, but no more. Unfortunately,
this is very difficult to do in practice because of the dynamic nature of cloud
environments, the need for supporting heterogeneous services with different
performance requirements, the unpredictable nature of cloud workloads, the
complexity of and differences between the KPIs used by each service, and the



non-triviality of mapping performance measurements into resources [49, 17, 25,
135, 157].

Given a particular desired service performance, the goal is to determine
the optimal amount of hardware resources required based on the services’
runtime behavior. Specifically, service owners should be able to specify their
service resource requirements in terms of their preferred KPIs (e.g. response
time, throughput, CPU and memory utilization, etc) and have the resource
provisioning techniques translate those into optimal resource allocations that
satisfy the SLO for each service.



Chapter 3

Resource Usage and Quota
Management

Infrastructure providers find themselves in an era where customers expect their
services to be delivered in a way that meets certain requirements with respect
to performance, capacity, cost and geographical distribution. Recently, there
has been considerable interest in using software driven infrastructure manage-
ment [57, 101, 113, 78] to manage cloud infrastructures and seamlessly deliver
resources to customers’ services. The idea behind software driven infrastruc-
ture management is to have a software suite that provides a comprehensive
abstraction of a complete large-scale distributed infrastructure similar to the
way that an operating system abstracts the different components of a computer.
However, traditional management mechanisms, tools and techniques cannot
meet the requirements of software driven infrastructures because of their limited
scaling [68, 155, 113, 78].

Software driven management of infrastructures is rapidly becoming a new
target for IT enablement, but this concept will only be fully realized through
the development of improved management mechanisms.

As discussed in Chapter 2, successful quota and resource usage management
of services at the cloud scale requires a rich set of global information and global
control for each individual service running across the infrastructure’s nodes. As
the number of nodes and the services’ size increase, the overhead of collecting,
analyzing, and acting upon the associated data grows. The basic features
expected from the chosen approach are:

• Accuracy: Resources should be monitored, collected, aggregated or con-
trolled accurately without being over- or under-stated.

• Scalable: The mechanism should remain functional and viable as the
number of services and nodes increases.

• Fault tolerance: Partial failure of the mechanism should not bring the



whole infrastructure to a halt.

• Less overhead: Resources consumed by services should be monitored and
collected in a way that interferes minimally with hosted services.

The management layer can be designed in centralized or decentralized fashion
as described below. Each approach has its own advantages and disadvantages
and is affected by a number of factors such as the size of the managed entities
(measured in terms of, e.g., the number of nodes or services) and the degree of
geographic dispersion.

3.1 Centralized Management

In a centralized management system, a centralized manager keeps track of all
available resources, collects usage from different managed entities and makes
decisions. In general the management functions and decision-making are concen-
trated at a central component. All managed entities send messages requesting
resources and reporting resource usage to the manager. The manager is respon-
sible for allocating resources to services and storing and processing resource
usage data. With such centralized designs, few decisions need be made about
the allocations and usage of resources.

The majority of cloud computing platforms rely on centralized architectures
combined with a hierarchical system of control [19, 52, 67]. The main advantage
of this scheme is simplicity. Moreover, it eases consistency concerns and avoids
conflicting decisions by providing central control over the whole system.

However, centralized management presents the well-known problems of
single point of failure and single point of congestion. Moreover, the centralized
manager is burdened with multiple decisions for all managed entities and a
lot of communication needs to take place from different nodes hindering the
performance of the whole system. Thus, as the system size increases, the
centralized manager gets heavily loaded and becomes a bottleneck. It may also
limit concurrency. In general, it suffers from poor availability, lack of fault
tolerance, and limited capacity for scaling.

3.2 Decentralized Management

In recent years, there has been an increased and wide interest in decentralized
management techniques and cooperative distributed decision making [125, 124,
94]. The central notion of decentralized management is to pursue full local
autonomy while cooperating (by communicating) to achieve a global goal. The
ideal is that individual management units are able to acquire information
about the state of the entire system by communicating their local information
to all others. However, fine-grained information about the entire system is
generally not available due to the vast amount of local information that may be



generated; if all of this information were transmitted in its entirety, it would
cause significant network congestion. In addition, the information received may
not be up-to-date due to delays.

Decentralized management disperses the decision-making process over multi-
ple management components so as to alleviate the problems encountered with a
centralized approach. Managers at specific locations make key decisions relating
to their sphere of responsibility and cooperate with peers as necessary.

In such an architecture, all of the peers involved in a management task
play similar roles, interacting cooperatively without any one having a distinct
role. The aim of this scheme is that each management unit performs its
responsibilities independently without being hampered by the state of others,
and only interacts with others when it is not possible to achieve the global
management goal locally. Decentralized management can also abstract the
differences between managed entities in different locations without limiting their
capabilities. It is thus a viable method for achieving a stable growth pattern in
an era of rapid technological development and investment, which allows each
peer to have different internal management policies and mechanisms.

The main characteristics of a decentralized approach are:

• Increased Availability: Availability refers to the accessibility of a system in
the presence of failure. For a centralized design, if the central management
or the cluster where the management is located fails, the service becomes
unavailable for other clusters as well. In contrast, with decentralized
management the failure of one or more clusters does not prevent the
remaining clusters from providing the service among themselves.

• Fault tolerance: Fault tolerance is the ability to function in the presence
of component failures without performing incorrect actions. With decen-
tralized management, the failure of one or more clusters can be tolerated
as it only affects those services running on the failed clusters.

• Enhanced performance: Since services are running at multiple clusters,
requests for different services do not have to line up at one management
component; instead they can line up at multiple management components
located on different clusters to reduce their waiting time.

• Better Scalability : In general, a decentralized management scales well as
the sizes of services and clusters grow.

• Greater Autonomy : The decentralization approach gives individual clus-
ters autonomy in making their own decisions. A decentralized approach
assumes that each entity is autonomous and self-controlled, making its
management decisions based on its own policies. Local management units
need only coordinate with other clusters when local information is not
sufficient for making decisions.

There is a growing trend towards using decentralized management approaches
to support management demands in different computing domains because the



current centralized model is increasingly failing to achieve its goals. For example,
decentralized techniques have been used in quota management across nodes
inside a LAN [110, 82, 22, 21, 79, 110] as well as for network management
[20, 96, 114, 149, 80, 42, 5]. The goal of this thesis is to apply decentralized
techniques to the quotas and resource usage of services running on multiple
clusters.

Figure 2: A decentralized management approach with distributed management
entities.

Figure 2 shows the architecture of a decentralized management system. Man-
agement components interact with all or part of other management components
in different situations. The arrows in the figure indicate interactions among
management units. Some management units can work alone without interacting
with other peers as long as their decisions can be made entirely locally.

A hybrid management approach can also be used [29, 51, 56] by incorporating
some features of both the centralized and the decentralized approaches. Hybrid
approaches generally rely on a central unit, the coordinator, that coordinates
the actions of other units. The coordinator is responsible for performing global
operations such as processing requests from other management units and making
global decisions. The other management units control local resources and report
status information to the coordinator. Moreover, each management unit can
make local decisions and may contact the coordinator only when unable to do
so. This approach may suffer from similar issues as centralized approaches due
to the reliance on a single coordinator.



Chapter 4

Resource Provisioning

Virtualization technologies are among the key enablers of cloud computing. They
simplify some resource management tasks such as the efficient utilization and
sharing of resources by consolidating diverse enterprise services, each wrapped
inside a Virtual Machine (VM) on a single Physical Machine (PM). These
technologies enable resources such as CPU cycles, memory, secondary storage,
and I/O and communication bandwidth, to be added or removed at runtime
from one service to another on demand.

Nonetheless, current virtualization technologies are inadequate for determin-
ing resource demands and assuring performance guarantees for hosted services.
Moreover, hosted services are likely to manifest emergent behaviors that lead
to unhealthy resource contentions and undesirable performance interference
as a result of co-location [151, 30]. For example, the performance of one
service may be affected by demand changes in other co-located services. More-
over, the infrastructure may be overloaded due to sudden changes in services’
capacity demand – flash crowds – and operating environments – hardware
failures [83, 107, 81, 76, 65, 44].

Consequently, most existing cloud services are targeted at consumers who
have low Quality of Service (QoS) expectations. However, due to its poten-
tial economic benefits, increasing numbers of enterprises wish to exploit the
advantages of the cloud computing model such as pay-per-use pricing and
rapid elasticity. To retain existing customers and attract new ones, existing
virtualization technologies must be augmented with techniques that capture
the runtime behavior of hosted services and determine the optimal resource
allocation pattern for meeting each service’s SLO. Specifically, mathematical
and statistical models and techniques are needed to correlate resources and
runtime performance behaviors in response to external changes such as changes
in workloads or the infrastructure.

For the purpose of discussion, resource provisioning can be categorized into
Capacity-based and Performance-based provisioning. Capacity-based approaches
use resource utilization (e.g., CPU and memory utilization) when making re-



source provisioning decisions while performance-based provisioning uses metrics
extracted from services (e.g. response time, throughput, number of requests).
The sections below provide brief discussions about the two resource provisioning
approaches as well as the management of capacity shortages.

4.1 Capacity-Based Provisioning

Cloud providers use resource utilization to guide their resource management
[91, 145, 131]: resource utilization data are used to predict services’ resource
requirements. Efficient resource provisioning that accounts for resource utiliza-
tion reduces operating costs, for example by allowing providers to consolidate
VMs onto a small group of machines so that other machines can be shut down
to reduce energy consumption [139, 104, 37, 50]. Consolidation is an inherently
effective method for increasing resource utilization, and in turn reduces energy
consumption. It can also free up resources for use by other services. However,
utilization-based decisions may lead to SLA violations as they are oblivious to
service performance.

4.2 Performance-Based Provisioning

A number of studies have suggested that end-users are sensitive to performance
changes. For example, Amazon loses 1% of its sales for every 100ms of latency
[3] while an extra half second’s delay in search page generation reduces Google’s
traffic by 20% [62]. A broker could lose $4 million in revenues per millisecond if
their service was 5 milliseconds behind the competition [4]. In general, several
studies have shown that end-users will abandon an e-commerce service for a
competitor if its response time is above 4 seconds [103], thus incurring long-term
revenue loss. In the same manner, video streaming services can also expect
users to abandon their services if the expected level of throughput drops.

All these studies demonstrate the importance of considering performance
during resource provisioning. Capacity-based approaches are inadequate to
ensure performance because they are oblivious to the observed performance
of services. However, performance-based resource provisioning is challenging
due to the non-trivial relationship between performance and capacity, and the
unpredictable nature of incoming workloads.

4.3 Capacity Shortage Management

A challenging problem in cloud infrastructure management is how to deal
with short- or long-term capacity shortage management, i.e. situations in
which the aggregate demand for resources exceeds the resources available in
the infrastructure. Several techniques such as elasticity, replication, migration,
and load balancing have been suggested to mitigate this issue as long as there



is spare capacity in other hosts [15, 27, 129]. However, it is economically
infeasible to reserve enough spare capacity since unexpected spikes can increase
resource demand five-fold [31]. Moreover, some services may not tolerate any
disruption at all. Because of this, most cloud services have targeted consumers
with low performance expectations as noted above, and enterprises remain
hesitant to move core business services into the cloud. Enterprises will require
guaranteed performance under all conditions, expressed in terms of appropriate
Key Performance Indicator (KPI) metrics (e.g. response time or throughput),
in order to be confident in moving key services into the cloud.

Service differentiation schemes that decide which services to degrade can be
used to address short-term capacity shortage problems [127, 119, 14, 92, 136,
98, 28, 147, 40, 158, 107]. Specifically, during service differentiation decisions,
services with stringent performance needs are given higher priority than services
with relatively lower performance requirements. Each service can be placed into
different SLA classes (e.g., gold, silver, and bronze), signifying their relative
importance. Each class is assigned a penalty weight that stipulates the relative
importance of the corresponding services. This makes it possible to preferentially
maintain the SLOs of higher class services by shifting resources from less
performance-sensitive ones during periods of infrastructure overload.

Fig. 3 shows a logical view of a high-level architecture for an autonomic
service and resource manager that would allocate the optimal resources required
for each service deployed in the cloud. Note that the realization of the manager
can be centralized or distributed. In general, the manager can make decisions
concerning vertical and horizontal scaling of VMs, VM migration, load balancing,
and service priority so as to meet service’s SLO requirements and ensure efficient
resource utilization. The focus in this thesis is on performance-based and
fine-grained resource provisioning by resizing VMs (i.e. vertical scaling) to
ensure that services’ performance requirements are met. In the event that the
available resources are temporarily insufficient to satisfy the demand, service
differentiation is applied in order to guarantee the performance of critical
services.

The following features would be expected of an autonomous resource man-
ager:

1. Autonomic resource provisioning. A self-adaptive resource provisioning
that dynamically adjusts resources to services based on their workload
dynamics and relative importance without requiring human intervention
should be employed.

2. Timely detection of changes. The changes in the workload behavior as
well as in the infrastructure should be detected immediately in order to
react to them accordingly.

3. Fast computation. Fast computation is needed in order to react immedi-
ately to changes in the services’ performance behaviors.



Figure 3: High-level architecture of an autonomic services and resources manager
for cloud environments.

4. Guaranteed performance. The resources allocated should be exactly suffi-
cient to satisfy the demand. That is to say, services should be provided
with enough capacity to meet their performance targets, but no more.
As a result, capacity over-provisioning or under-provisioning should be
avoided under normal conditions.

5. Service prioritization. Capacity shortages may happen at any time in
complex systems such as cloud infrastructures. Thus, when the capacity
demand exceeds the supply, resources should be allocated based on service
priorities using their performance as an indicator. Such priority schemes
should be independent of services’ KPIs and should ensure that the
performances of higher priority services is less affected than their low
priority counterparts.



Chapter 5

Summary of Contributions

This section presents the contributions of the thesis. Fig. 4 provides a conceptual
view of these contributions. At the top are infrastructure-wide quota enforcement
mechanisms which ensure that hosted services run without issue as long as
the global quota is available. At the bottom, a non-intrusive usage accounting
mechanism collects, aggregates and synchronizes the resource usage of services
across the infrastructure to facilitate timely billing operations. The autonomic
resource manager, deployed at each node, implements various techniques to
provision resources according to services’ demands.

Papers I, II and III present highly scalable solutions for managing quota
enforcement and usage accounting efficiently and consistently. The proposed
solutions scale with the size of the infrastructure as well as the services deployed
on top of it. The proposed solutions are also robust since instance failures are
localized and the system continues to operate and deliver useful service in the
event of a local failure.

Papers IV–VIII present models and techniques that map service performance
requirements onto physical resources. The proposed solutions continuously ad-
just the allocation of resources to meet the services’ performance requirements
irrespective of workload variation. Moreover, the proposed mechanism guaran-
tees to meet the performance requirements of critical services during capacity
shortages by shifting resources from less critical services.

5.1 Distributed Quota Enforcement

5.1.1 Paper I

Paper I [85] focuses on how to manage quota for services running in geo-
graphically distributed clusters. The paper presents a fully distributed quota
management scheme for tracking and distributing quota shares across dis-
tributed clusters. The solution monitors resource consumption by services that
are spread over a number of clusters with the goal of triggering global polls



Figure 4: Pictorial representation of the contributions.

only when the allocated balance in a cluster decreases below a threshold and
allocations are reassigned in a way that avoids further immediate global polls.

Unlike a single coordinator or predefined coordinator, the paper proposes a
distributed scheme that selects a per-event coordinator when needed. For each
allocation event, the coordinator is selected and the clusters currently running
that service form a multi-cast group to perform the allocation algorithm.

It achieves scalability by minimizing global message exchanges, increases
performance by distributing requests, and improves availability by avoiding
a single point of failure. A range of simulations were performed and the
communication cost of the fully distributed allocation approach is compared to
that for a reference centralized resource manager algorithm, showing that the
distributed approach is more efficient and effective.

5.1.2 Paper II

Paper II [89] extends the work presented in Paper I by adding support for
multiple parallel decisions by arranging nodes using a spanning tree. Querying
every node during quota redistribution decision causes latency and commu-
nication overheads as the number of nodes and the distances between them
increase. Here, we address the latency and communication overhead problems by
proposing a tree-based protocol for enforcing quotas in clouds. In our protocol,
all nodes running a service maintain a local quota allocation so that permissions
can be given immediately provided that the local allocation is not exhausted.
When local quota allocations are exhausted, nodes request extra quota from
nearby neighbors progressively instead of polling all nodes.



5.2 Distributed Resource Usage Management

5.2.1 Paper III

Paper III [88] presents monitoring, data-collection, and synchronization mecha-
nisms in multi-cluster environments so as to facilitate accounting and billing
operations.

With today’s large-scale, geographically distributed clusters, running cus-
tomers’ services across multiple clusters is a possibility. As a result services
generate huge amounts of accounting records that are dispersed throughout all
clusters. Available accounting systems that are centralized cannot efficiently
manage these huge amounts of usage records generated across multiple clusters.
To cope with this problem, the paper proposes a new approach for monitoring,
collecting and synchronizing accounting records in a decentralized fashion that
provides a desired level of scalability.

A distributed mechanism is employed for collecting and synchronizing ac-
counting records across a number of geographically distributed clusters as well as
serving accounting requests from any of the clusters in a consistent manner. The
mechanism collects and merges accounting records generated from all clusters
and maintains the intrinsic requirements of accounting.

5.3 Performance-based provisioning

Capacity-based resource provisioning systems where resources are allocated
based on utilization thresholds are oblivious to the observed performance of
services and cannot be readily used to meet the performance needs of services
expressed using KPIs such as response time or throughput. Papers IV–VI
address this issue.

5.3.1 Paper IV

Paper IV [86] presents two generic performance models– the previously proposed
queue length model and the novel inverse model– for mean response time that
map performance to capacity in order to provide performance guarantees for
interactive services deployed in the cloud. We carried out an extensive set of
experiments using RUBiS, RUBBoS, and Olio–three widely used interactive
cloud benchmarking applications– with varying workload mixes over time under
both closed- and open-system models [120]. We also varied the target response
time of each application to see how the models behave. The results demonstrate
that the two models are stable for higher response time targets. However, our
inverse model exhibited greater stability than the queue length model for lower
targets.



5.3.2 Paper V

Paper V [86] presents two novel tail response time performance models– the
queue length tail model and the inverse tail model– for predicting the capacity
required to guarantee tail response times for interactive services deployed in the
cloud. The two models were able to allocate just the right amount of capacity
to meet tail response time targets expressed in percentiles (e.g. 95% or 99%)
while avoiding substantial capacity over- or under-provisioning.

Both models were evaluated in an extensive set of experiments using RUBiS,
RUBBoS, and Olio with real workloads and synthetic workload mixes that varied
over time under both closed- and open-system model. We also varied the target
response times of each application to see how this affected the models’ behavior.
Our results demonstrate that both tail response time models are stable under
both more predictable and unpredictable real workloads and synthetic workloads
generated using open- and closed-system models [120]. However, the inverse tail
response time model is more stable than the queue length tail response time
model.

5.3.3 Paper VI

In paper VI [55], we proposed an autonomic resource controller consisting
of three sub-controllers– a fuzzy controller, a CPU controller, and a memory
controller– to allocate the right amount of CPU and memory in order to meet
mean response time targets for interactive services. The fuzzy controller acts as a
coordinator, ensuring that the control actions of the cpu and memory controllers
complement each other in order to fulfill the service’s performance requirements,
which were expressed in terms of mean response times. The CPU controller and
memory controller allocate the right amount of CPU and memory, respectively,
using the inputs provided by the fuzzy controller. In general, the proposed
fuzzy control approach can be used as a coordination technique for distributed
controllers. We evaluated the proposed solution with RUBiS, RUBBoS, and
Olio in a virtualized environment using Xen Hypervisor. Different experiments
were conducted under workload traces generated based on open and closed
system models. The results show that the proposed coordination solution was
able to maintain the target response time with while achieving high resource
utilization.

5.4 Performance-based service differentiation

5.4.1 Paper VII

One of the many advantages of cloud computing is the ability to consolidate
multiple services into a limited number of servers so as to achieve high datacenter
utilization. However, maintaining high utilization while meeting SLOs is difficult,
as a datacenter may become overloaded, reducing the performance of the hosted



services. Service differentiation has been proposed as a way of controlling which
services get degraded. In paper VII [87], we propose performance-based service
differentiation where capacity is distributed among services based on their
observed performance and sensitivity to performance degradation. Specifically,
when enough capacity is available, each service is automatically allocated the
optimal amount of capacity to meet its target performance, expressed in terms
of either response time or throughput. For cases when the available capacity is
not sufficient, we propose two service differentiation schemes that dynamically
decide which services to degrade and to what extent. We carried out an extensive
set of experiments using different services– interactive as well as non-interactive–
in which the services’ workload mixes were varied over time. The results
demonstrate that our solution precisely provides guaranteed performance or
service differentiation depending on available capacity.

5.4.2 Paper VIII

Cloud storage is increasingly being adopted by users as simplified storage
systems become available. These systems are mostly presented as Object
Storage Systems (OSSs), hiding issues such as redundancy from users. As
new industries are considering adopting clouds for storage, OSSs must evolve
to support new needs. Among the most challenging is assuring guaranteed
performance. In paper VIII [137], we present Controllable Trade-offs (CTO),
an OSS-agnostic solution for providing performance guarantees. CTO presents
itself as a thin layer that mediates requests between the user and the OSS. For
generic support, performance is controlled by tuning the rejection probability
based on priorities associated to each customer. Results show that CTO may
reduce penalties by a factor of 3.23 on average and by a factor of up to 68 when
the load is high.





Bibliography

[1] World telecommunication development report 1999, 1999. Avail-
able online: https://www.itu.int/ITU-D/ict/publications/wtdr_

99/material/wtdr99s.pdf, Visited 2015-04-05.

[2] bcgi-anula report, 2001. Available online: http://web.archive.org/

web/20080414071934/http://www.bcgi.net/assets/pdf/annual/

2001.pdf, Visited 2015-04-05.

[3] Amazon found every 100ms of latency cost them
1 Available online: http://blog.gigaspaces.com/

amazon-found-every-100ms-of-latency-cost-them-1-in-sales/,
Visited 2015-04-06.

[4] The value of a millisecond: finding the optimal speed of a trading
infrastructure., 2008. Available online: http://www.tabbgroup.com/

PublicationDetail.aspx?PublicationID=346, Visited 2015-04-07.

[5] G. Aceto, A. Botta, W. De Donato, and A. Pescapè. Survey cloud
monitoring: A survey. Comput. Netw., 57(9):2093–2115, June 2013.

[6] V. Agarwal, N. Karnik, and A. Kumar. Metering and accounting for com-
posite e-services. In E-Commerce, 2003. CEC 2003. IEEE International
Conference on, pages 35–39, June 2003.

[7] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir. The
Resource-as-a-service (RaaS) Cloud. In Proceedings of the 4th conference
on Hot Topics in Cloud Ccomputing, page 12, 2012.

[8] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthi-
tacharoen. Performance debugging for distributed systems of black boxes.
In Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, SOSP ’03, pages 74–89, New York, NY, USA, 2003. ACM.

[9] A. Ali-Eldin, M. Kihl, J. Tordsson, and E. Elmroth. Efficient provisioning
of bursty scientific workloads on the cloud using adaptive elasticity control.
In Proceedings of the 3rd Workshop on Scientific Cloud Computing Date,
ScienceCloud ’12, pages 31–40, New York, NY, USA, 2012. ACM.



[10] V. Allee. Value network analysis and value conversion of tangible and
intangible assets. 9(1):5–24, 2008.

[11] C. Almond. A practical guide to cloud computing security. A white paper
from Accenture and Microsoft, 2009.

[12] Amazon. What is cloud computing?, Accessed: April, 2013.
http://aws.amazon.com/what-is-cloud-computing/.

[13] M. Andreolini, S. Casolari, and M. Colajanni. Autonomic request man-
agement algorithms for geographically distributed internet-based systems.
In SASO, 2008.

[14] M. Andreolini et al. A cluster-based web system providing differentiated
and guaranteed services. Cluster Computing, 7(1):7–19, Jan. 2004.

[15] A.-F. Antonescu et al. Dynamic SLA management with forecasting using
multi-objective optimization. In Integrated Network Management (IM),
pages 457–463. IEEE, 2013.

[16] Apache. Apache mesos, Accessed: April, 2013. http://mesos.apache.org/.

[17] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of
cloud computing. Commun. ACM, 53(4):50–58, 2010.

[18] D. Armstrong, D. Espling, J. Tordsson, K. Djemame, and E. Elmroth.
Runtime virtual machine recontextualization for clouds. In Euro-Par
2012: Parallel Processing Workshops, volume 7640 of Lecture Notes in
Computer Science, pages 567–576. Springer Berlin Heidelberg, 2013.

[19] O. Babaoglu, M. Marzolla, and M. Tamburini. Design and implementation
of a P2P cloud system. In Proceedings of the 27th Annual ACM Symposium
on Applied Computing, SAC ’12, pages 412–417. ACM, 2012.

[20] B. Babcock and C. Olston. Distributed top-k monitoring. In Proceedings
of the 2003 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’03, pages 28–39, New York, NY, USA, 2003. ACM.

[21] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti. Run-time monitoring
of instances and classes of web service compositions. In Web Services,
2006. ICWS ’06. International Conference on, pages 63–71, Sept 2006.

[22] L. Baresi and S. Guinea. Towards dynamic monitoring of ws-bpel processes.
In ICSOC 2005, Third International Conference of Service-Oriented Com-
puting, volume 3826 of Lecture Notes in Computer Science, pages 269–282.
Springer, 2005.



[23] P. Barham, B. Dragovic, K. Fraser, S. H, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the art of virtualization. In Proceedings
of the nineteenth ACM symposium on Operating Systems Principles, pages
164–177, 2003.

[24] L. Barroso, J. Dean, and U. Holzle. Web search for a planet: The Google
cluster architecture. Micro, IEEE, 23(2):22–28, 2003.

[25] L. A. Barroso and U. Hölzle. The case for energy-proportional computing.
Computer, 40(12):33–37, Dec. 2007.

[26] M. E. Barth and G. Clinch. Revalued financial, tangible, and intangi-
ble assets: Associations with share prices and non-market-based value
estimates. Journal of Accounting Research, 36:199–233, 1998.

[27] A. Beloglazov and R. Buyya. Managing overloaded hosts for dynamic
consolidation of virtual machines in cloud data centers under quality of
service constraints. IEEE Trans. Parallel Distrib. Syst., 24(7), July 2013.

[28] N. Bhatti and R. Friedrich. Web server support for tiered services. Network,
IEEE, 13(5):64–71, Sep 1999.

[29] L. Bin, S. Wenxiao, and L. Na. A hierarchical semi-centralized architecture
for load balancing of heterogeneous wireless networks. In Proceedings of
the 2010 Second International Conference on Networks Security, Wireless
Communications and Trusted Computing - Volume 02, NSWCTC ’10,
pages 28–31, 2010.

[30] M. Björkqvist et al. QoS-aware service VM provisioning in clouds: Ex-
periences, models, and cost analysis. In ICSOC, volume 8274 of LNCS,
pages 69–83. Springer, 2013.

[31] P. Bodik et al. Characterizing, modeling, and generating workload spikes
for stateful services. In SoCC, pages 241–252, 2010.

[32] R. Bohn, J. Messina, F. Liu, J. Tong, and J. Mao. NIST cloud comput-
ing reference architecture. In 2011 IEEE World Congress on Services
(SERVICES), pages 594–596, 2011.

[33] R. Buyya, R. N. Calheiros, and X. Li. Autonomic cloud computing:
Open challenges and architectural elements. In in IEEE International
Conference on Emerging Applications of Information Technology, pages
3–10, 2012.

[34] M. Caballer, I. Blanquer, G. Moltó, and C. de Alfonso. Dynamic manage-
ment of virtual infrastructures. Journal of Grid Computing, 13(1):53–70,
2014.



[35] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver,
and J. Zhou. Scope: Easy and efficient parallel processing of massive data
sets. Proc. VLDB Endow., 1(2):1265–1276, Aug. 2008.

[36] F. Chang, J. Ren, and R. Viswanathan. Optimal resource allocation in
clouds. In Cloud Computing (CLOUD), 2010 IEEE 3rd International
Conference on, pages 418–425, 2010.

[37] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P.
Doyle. Managing energy and server resources in hosting centers. SIGOPS
Oper. Syst. Rev., 35(5):103–116, Oct. 2001.

[38] M. Chen, A. Geist, D. Bernholdt, K. Chanchio, and D. Million. The
design and prototype of ruda, a distributed grid accounting system. In
Computational Science and Its Applications – ICCSA 2005, volume 3482
of Lecture Notes in Computer Science, pages 29–38. Springer Berlin
Heidelberg, 2005.

[39] S. Chen, D. Levy, and J. Yao. Accountability for service compliance: A
survey. Int. J. Syst. Serv.-Oriented Eng., 3(1):16–43, 2012.

[40] X. Chen et al. Aces: An efficient admission control scheme for qos-aware
web servers. Comput. Commun., 26(14):1581–1593, Sept. 2003.

[41] Y. Chen et al. SLA decomposition: Translating service level objectives to
system level thresholds. In ICAC. IEEE, 2007.

[42] S. Clayman, A. Galis, and L. Mamatas. Monitoring virtual networks with
lattice. In Network Operations and Management Symposium Workshops
(NOMS Wksps), 2010 IEEE/IFIP, pages 239–246, April 2010.

[43] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair. Distributed
Systems: Concepts and Design (5th Edition). Addison Wesley, 5 edition,
May 2011.

[44] F. A. de Oliveira, T. Ledoux, and R. Sharrock. A framework for the
coordination of multiple autonomic managers in cloud environments. In
SASO, pages 179–188, 2013.

[45] Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh, and D. M. Tilbury. Using
MIMO Feedback Control to Enforce Policies for Interrelated Metrics with
Application to the Apache Web Server. In Network Operations and
Management Symposium, pages 219–234, 2002.

[46] E. Elmroth, P. Gardfjäll, O. Mulmo, and T. Sandholm. An ogsa-based
bank service for grid accounting systems. In Applied Parallel Computing.
State of the Art in Scientific Computing, volume 3732 of Lecture Notes in
Computer Science, pages 1051–1060. Springer Berlin Heidelberg, 2006.



[47] E. Elmroth and D. Henriksson. Distributed usage logging for federated
grids. Future Gener. Comput. Syst., 26(8):1215–1225, Oct. 2010.

[48] E. Elmroth, F. G. Marquez, D. Henriksson, and D. P. Ferrera. Accounting
and billing for federated cloud infrastructures. In Proceedings of the 2009
Eighth International Conference on Grid and Cooperative Computing,
GCC ’09, pages 268–275. IEEE Computer Society, 2009.

[49] E. Elmroth, J. Tordsson, F. Hernández, A. Ali-Eldin, P. Svärd,
M. Sedaghat, and W. Li. Self-management challenges for multi-cloud
architectures. In Proceedings of the 4th European Conference on Towards
a Service-based Internet, ServiceWave’11, pages 38–49. Springer-Verlag,
2011.

[50] E. N. Elnozahy, M. Kistler, and R. Rajamony. Energy-efficient server
clusters. In Proceedings of the 2Nd International Conference on Power-
aware Computer Systems, PACS’02, pages 179–197, Berlin, Heidelberg,
2003. Springer-Verlag.

[51] V. Emeakaroha, T. Ferreto, M. Netto, I. Brandic, and C. De Rose. Casvid:
Application level monitoring for sla violation detection in clouds. In
Computer Software and Applications Conference (COMPSAC), 2012
IEEE 36th Annual, pages 499–508, 2012.

[52] P. T. Endo, A. V. de Almeida Palhares, N. C. V. N. Pereira, G. E.
Gonçalves, D. Sadok, J. Kelner, B. Melander, and J.-E. Mångs. Resource
allocation for distributed cloud: concepts and research challenges. IEEE
Network, 25(4):42–46, 2011.

[53] D. Espling, L. Larsson, W. Li, J. Tordsson, and E. Elmroth. Modeling
and placement of cloud services with internal structure. Cloud Computing,
IEEE Transactions on, PP:1–1, 2014.

[54] F. Etro. The economic impact of cloud computing on business creation,
employment and output in europe. Review of Business and Economics,
54(2):179–208, 2009.

[55] S. Farokhi, E. Lakew, C. Klein, I. Brandic, and E. Elmroth. Coordinating
cpu and memory elasticity controllers to meet service response time
constraints. In The ACM Cloud and Autonomic Computing Conference
(CAC’15), 2015. Accepted.

[56] D. Fesehaye, R. Malik, and K. Nahrstedt. Edfs: a semi-centralized efficient
distributed file system. In Proceedings of the 10th ACM/IFIP/USENIX
International Conference on Middleware, Middleware ’09, pages 28:1–28:2,
2009.



[57] R. Fichera. The software-defined data center is the fu-
ture of infrastructure architecture, Accessed: April, 2013.
http://www.vmware.com/files/include/microsite/sddc/the software-
defined datacenter.pdf.

[58] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica. X-trace: A
pervasive network tracing framework. In Proceedings of the 4th USENIX
Conference on Networked Systems Design and Implementation, pages
20–20, Berkeley, CA, USA, 2007. USENIX Association.

[59] T. Forell, D. Milojicic, and V. Talwar. Cloud management: Challenges
and opportunities. In 2011 IEEE International Symposium on Parallel
and Distributed Processing Workshops and Phd Forum (IPDPSW), pages
881–889, 2011.

[60] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers, 1998.

[61] P. Gardfjäll, E. Elmroth, L. Johnsson, O. Mulmo, and T. Sandholm.
Scalable grid-wide capacity allocation with the swegrid accounting system
(sgas). Concurr. Comput. : Pract. Exper., 20:2089–2122, December 2008.

[62] J. Grossklags and A. Acquisti. When 25 cents is too much: An experi-
ment on willingness-to-sell and willingness-to-protect personal information.
2007.

[63] R. L. Grossman. The case for cloud computing. IT professional, 11(2):23–
27, 2009.

[64] T. Gschwind, K. Eshghi, P. Garg, and K. Wurster. Webmon: A perfor-
mance profiler for web transactions. In Advanced Issues of E-Commerce
and Web-Based Information Systems, 2002. (WECWIS 2002). Proceed-
ings. Fourth IEEE International Workshop on, pages 171–176, 2002.

[65] S. Gueye, N. De Palma, and E. Rutten. Component-based Autonomic
Managers for Coordination Control. In Coordination Models and Lan-
guages, pages 75–89, 2013.

[66] J. Guitart, J. Torres, and E. Ayguadé. A survey on performance man-
agement for internet applications. Concurr. Comput. : Pract. Exper.,
22:68–106, 2010.

[67] A. Gulati, G. Shanmuganathan, A. Holler, and I. Ahmad. Cloud-scale
resource management: challenges and techniques. In Proceedings of the
3rd USENIX conference on Hot topics in cloud computing, HotCloud’11,
pages 3–3. USENIX Association, 2011.



[68] A. Gulati, G. Shanmuganathan, A. Holler, and I. Ahmad. Cloud-scale
resource management: challenges and techniques. In Proceedings of the
3rd USENIX conference on Hot topics in cloud computing, HotCloud’11,
pages 3–3, Berkeley, CA, USA, 2011. USENIX Association.

[69] A. Gupta, E. Ababneh, R. Han, and E. Keller. Towards elastic operating
systems. In Conference on Hot Topics in Operating Systems, page 16,
2013.

[70] J. R. Hamilton. An architecture for modular data centers. In Third
Biennial Conference on Innovative Data Systems Research (CIDR), pages
306–313, 2007.

[71] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,
S. Shenker, and I. Stoica. Mesos: A platform for fine-grained resource
sharing in the data center. In Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation, NSDI’11, pages 295–
308, Berkeley, CA, USA, 2011. USENIX Association.

[72] U. Hoelzle and L. A. Barroso. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Morgan and
Claypool Publishers, 1st edition, 2009.

[73] D. Huang, B. He, and C. Miao. A survey of resource management in
multi-tier web applications. Communications Surveys Tutorials, IEEE,
16(3):1574–1590, Third 2014.

[74] O. Ibidunmoye, F. Hernández-Rodriguez, and E. Elmroth. Performance
anomaly detection and bottleneck identification. ACM Comput. Surv.,
48(1):4:1–4:35, July 2015.

[75] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek. Adaptive resource
provisioning for read intensive multi-tier applications in the cloud. Future
Gener. Comput. Syst., 27(6):871–879, 2011.

[76] P. Jamshidi, A. Ahmad, and C. Pahl. Autonomic Resource Provisioning
for Cloud-based Software. In Proceedings of the 9th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), pages 95–104, 2014.

[77] A. Kamra, V. Misra, and E. M. Nahum. Yaksha: A self-tuning controller
for managing the performance of 3-tiered web sites. In Quality of Service,
IEEE International Workshop on, pages 47–56. IEEE, 2004.

[78] G. Kandiraju, H. Franke, M. Williams, M. Steinder, and S. Black. Soft-
ware defined infrastructures. IBM Journal of Research and Development,
58(2/3):2:1–2:13, March 2014.



[79] K. Karmon, L. Liss, and A. Schuster. GWiQ-P: an efficient decentralized
grid-wide quota enforcement protocol. 14th IEEE International Sympo-
sium on High Performance Distributed Computing (HPDC14), pages 222
– 232, july 2005.

[80] S. Kashyap, S. Deb, K. V. M. Naidu, R. Rastogi, and A. Srinivasan.
Efficient gossip-based aggregate computation. In Proceedings of the
Twenty-fifth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS ’06, pages 308–317, New York, NY, USA,
2006. ACM.

[81] J. O. Kephart and D. M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[82] S. Kikuchi, H. Shimamura, and Y. Kanna. Monitoring method of cross-
sites’ processes executed by multiple ws-bpel processors. In 9th IEEE
International Conference on E-Commerce Technology (CEC 2007) / 4th
IEEE International Conference on Enterprise Computing, E-Commerce
and E-Services (EEE 2007), 23-26 July 2007, National Center of Sciences,
Tokyo, Japan, pages 55–64, 2007.

[83] C. Klein et al. Brownout: Building more robust cloud applications. In
ICSE, 2014.

[84] C. Kurmann, F. Rauch, and T. M. Stricker. Cost/performance tradeoffs
in network interconnects for clusters of commodity pcs. In Proceedings of
the 17th International Symposium on Parallel and Distributed Processing,
IPDPS ’03, pages 196.2–, 2003.

[85] E. Lakew, F. Hernandez-Rodriguez, L. Xu, and E. Elmroth. Management
of distributed resource allocations in multi-cluster environments. In
Performance Computing and Communications Conference (IPCCC), 2012
IEEE 31st International, pages 275–284, 2012.

[86] E. Lakew, C. Klein, F. Hernandez-Rodriguez, and E. Elmroth. Tail re-
sponse time modeling and control for interactive cloud services. Submitted
for journal publication.

[87] E. Lakew, C. Klein, F. Hernandez-Rodriguez, and E. Elmroth.
Performance-based service differentiation in clouds. In Cluster, Cloud
and Grid Computing (CCGrid), 2015 15th IEEE/ACM International
Symposium on, pages 505–514, May 2015.

[88] E. Lakew, L. Xu, F. Hernandez-Rodriguez, E. Elmroth, and C. Pahl.
A synchronization mechanism for cloud accounting systems. In Cloud
and Autonomic Computing (ICCAC), 2014 International Conference on,
pages 111–120, Sept 2014.



[89] E. Lakew, L. Xu, F. Hernandez-Rodriguez, E. Elmroth, and C. Pahl. A
tree-based protocol for enforcing quotas in clouds. In Services (SER-
VICES), 2014 IEEE World Congress on, pages 279–286, 2014.

[90] L. Larsson, D. Henriksson, and E. Elmroth. Scheduling and monitoring
of internally structured services in cloud federations. In Computers and
Communications (ISCC), 2011 IEEE Symposium on, pages 173–178, June
2011.

[91] Y. Lee and A. Zomaya. Energy efficient utilization of resources in cloud
computing systems. The Journal of Supercomputing, 60(2):268–280, 2012.

[92] Y.-D. Lin et al. Multiple-resource request scheduling for differentiated
QoS at website gateway. Comput. Commun., 31(10), June 2008.

[93] X. Liu, L. Sha, Y. Diao, S. Froehlich, J. L. Hellerstein, and S. Parekh.
Online response time optimization of apache web server. In Quality of
Service—IWQoS 2003, pages 461–478. Springer, 2003.

[94] M. Marzolla, O. Babaoglu, and F. Panzieri. Server consolidation in clouds
through gossiping. In World of Wireless, Mobile and Multimedia Networks
(WoWMoM), 2011 IEEE International Symposium on a, pages 1–6, June
2011.

[95] P. Mell and T. Grance. The NIST definition of cloud computing. National
Institute of Standards and Technology, 53(6), 2009.

[96] S. Meng, L. Liu, and T. Wang. State Monitoring in Cloud Datacenters.
IEEE Trans. on Knowl. and Data Eng., 23:1328–1344, September 2011.

[97] J. T. Mentzer, W. DeWitt, J. S. Keebler, S. Min, N. W. Nix, C. D. Smith,
and Z. G. Zacharia. Defining supply chain management. Journal of
Business Logistics, 22(2):1–25, 2001.

[98] M. Mesnier et al. Differentiated storage services. In Symposium on
Operating Systems Principles (SOSP), pages 57–70. ACM, 2011.

[99] A. Mihoob, C. Molina-Jimenez, and S. Shrivastava. A case for consumer
centric resource accounting models. In Cloud Computing (CLOUD), 2010
IEEE 3rd International Conference on, pages 506–512, July 2010.

[100] R. Miller. Who has the most web servers?, Accessed: April,
2013. http://www.datacenterknowledge.com/archives/2009/05/14/whos-
got-the-most-web-servers/.

[101] I. Monga, E. Pouyoul, and C. Guok. Software-defined networking for
big-data science - architectural models from campus to the wan. In
Proceedings of the 2012 SC Companion: High Performance Computing,
Networking Storage and Analysis, SCC ’12, pages 1629–1635, Washington,
DC, USA, 2012. IEEE Computer Society.



[102] F. Muhss, R. Neumann, and A. Schmietendorf. The commoditization of
it services with cloud computing. 2011.

[103] F. F.-H. Nah. A study on tolerable waiting time: how long are web users
willing to wait? Behaviour and Information Technology, 23(3), 2004.

[104] D. Niyato, S. Chaisiri, and L. B. Sung. Optimal power management for
server farm to support green computing. In Cluster Computing and the
Grid, 2009. CCGRID ’09. 9th IEEE/ACM International Symposium on,
pages 84–91, May 2009.

[105] P.-O. Östberg and E. Elmroth. Increasing flexibility and abstracting
complexity in service-based grid and cloud software. In CLOSER, pages
240–249. SciTePress, 2011.

[106] P.-O. Östberg and E. Elmroth. Gjmf - a composable service-oriented grid
job management framework. Future Gener. Comput. Syst., 29(1):144–157,
Jan. 2013.

[107] P. Padala et al. Automated control of multiple virtualized resources. In
European Conference on Computer Systems (EuroSys). ACM, 2009.

[108] D. Petcu. Multi-Cloud: expectations and current approaches. In Proceed-
ings of the 2013 international workshop on Multi-cloud applications and
federated clouds, pages 1–6. ACM, 2013.

[109] D. Petcu. Consuming Resources and Services from Multiple Clouds.
Journal of Grid Computing, pages 1–25, 2014.

[110] K. T. Pollack, D. D. E. Long, R. A. Golding, R. A. Becker-Szendy, and
B. Reed. Quota enforcement for high-performance distributed storage
systems. Proceedings of the 24th IEEE Conference on Mass Storage
Systems and Technologies, pages 72–86, 2007.

[111] G. J. Popek and R. P. Goldberg. Formal Requirements for Virtualizable
Third-Generation Architectures. Communications of the ACM, 17(7):412–
421, 1974.

[112] G. Quecke and W. Ziegler. MeSch - An Approach to Resource Management
in a Distributed Environment. In Grid Computing — GRID 2000, volume
1971 of Lecture Notes in Computer Science, pages 47–54. Springer Berlin
Heidelberg, 2000.

[113] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A. Ghodsi, and
S. Shenker. Software-defined internet architecture: Decoupling architec-
ture from infrastructure. In Proceedings of the 11th ACM Workshop on
Hot Topics in Networks, pages 43–48. ACM, 2012.



[114] B. Raghavan, K. Vishwanath, S. Ramabhadran, K. Yocum, and A. C.
Snoeren. Cloud control with distributed rate limiting. In Proceedings
of the 2007 conference on Applications, technologies, architectures, and
protocols for computer communications, SIGCOMM ’07, pages 337–348.
ACM, 2007.

[115] A. Rai, R. Bhagwan, and S. Guha. Generalized resource allocation for the
cloud. In Proceedings of the Third ACM Symposium on Cloud Computing,
SoCC ’12, pages 15:1–15:12. ACM, 2012.

[116] R. V. Renesse and K. Birman. Scalable management and data mining
using astrolabe. In International workshop on Peer-To-Peer Systems
(IPTPS), 2002.

[117] G. P. Rodrigo Álvarez, P.-O. Östberg, E. Elmroth, and L. Ramakrishnan.
A2l2: An application aware flexible hpc scheduling model for low-latency
allocation. In Proceedings of the 8th International Workshop on Virtual-
ization Technologies in Distributed Computing, VTDC ’15, pages 11–19,
New York, NY, USA, 2015. ACM.

[118] T. Sandholm, P. Gardfjäll, E. Elmroth, L. Johnsson, and O. Mulmo.
An ogsa-based accounting system for allocation enforcement across hpc
centers. In Proceedings of the 2Nd International Conference on Service
Oriented Computing, ICSOC ’04, pages 279–288, New York, NY, USA,
2004. ACM.

[119] N. Saxena et al. A new service classification strategy in hybrid scheduling
to support differentiated QoS in wireless data networks. In ICPP, pages
389–396, 2005.

[120] B. Schroeder, A. Wierman, and M. Harchol-Balter. Open versus closed:
A cautionary tale. In Proceedings of the 3rd Conference on Networked
Systems Design & Implementation - Volume 3, NSDI’06, pages 18–18,
Berkeley, CA, USA, 2006. USENIX Association.

[121] L. Schubert, K. G. Jeffery, and B. Neidecker-Lutz. The Future of Cloud
Computing: Opportunities for European Cloud Computing Beyond 2010.
European Commission, 2010.

[122] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes. Omega:
Flexible, scalable schedulers for large compute clusters. In Proceedings of
the 8th ACM European Conference on Computer Systems, EuroSys ’13,
pages 351–364, New York, NY, USA, 2013. ACM.

[123] M. Sedaghat, F. Hernandez-Rodriguez, and E. Elmroth. A virtual machine
re-packing approach to the horizontal vs. vertical elasticity trade-off for
cloud autoscaling. In Proceedings of the 2013 ACM Cloud and Autonomic
Computing Conference, CAC ’13, pages 6:1–6:10, New York, NY, USA,
2013. ACM.



[124] M. Sedaghat, F. Hernandez-Rodriguez, and E. Elmroth. Autonomic re-
source allocation for cloud data centers: A peer to peer approach. In Cloud
and Autonomic Computing (ICCAC), 2014 International Conference on,
pages 131–140, Sept 2014.

[125] M. Sedaghat, F. Hernandez-Rodriguez, E. Elmroth, and S. Girdzijauskas.
Divide the task, multiply the outcome: Cooperative vm consolidation. In
Cloud Computing Technology and Science (CloudCom), 2014 IEEE 6th
International Conference on, pages 300–305, Dec 2014.

[126] V. Sekar and P. Maniatis. Verifiable resource accounting for cloud com-
puting services. In Proceedings of the 3rd ACM Workshop on Cloud
Computing Security Workshop, CCSW ’11, pages 21–26, New York, NY,
USA, 2011. ACM.

[127] A. W. Services. Amazon ec2 spot instances. Available online:
http://aws.amazon.com/ec2/purchasing-options/spot-instances/.

[128] B. Sharma, R. Thulasiram, P. Thulasiraman, S. Garg, and R. Buyya.
Pricing cloud compute commodities: A novel financial economic model.
In Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM
International Symposium on, pages 451–457, 2012.

[129] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. CloudScale: Elastic Resource
Scaling for Multi-tenant Cloud Systems. In 2nd ACM Symposium on
Cloud Computing, page 5, 2011.

[130] C. Shi, K. Habak, P. Pandurangan, M. Ammar, M. Naik, and E. Zegura.
Cosmos: Computation offloading as a service for mobile devices. In
Proceedings of the 15th ACM International Symposium on Mobile Ad Hoc
Networking and Computing, MobiHoc ’14, pages 287–296, New York, NY,
USA, 2014. ACM.

[131] Y. Shi, X. Jiang, and K. Ye. An energy-efficient scheme for cloud resource
provisioning based on cloudsim. In Cluster Computing (CLUSTER), 2011
IEEE International Conference on, pages 595–599, 2011.

[132] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag. Dapper, a large-scale distributed
systems tracing infrastructure. Technical report, Google, Inc., 2010.
http://research.google.com/archive/papers/dapper-2010-1.pdf.

[133] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag. Dapper, a large-scale distributed
systems tracing infrastructure. Technical report, Google, Inc., 2010.

[134] C. Stewart et al. Exploiting nonstationarity for performance prediction.
In EuroSys. ACM, 2007.



[135] C. Stewart and K. Shen. Performance modeling and system management
for multi-component online services. In NSDI, pages 71–84. USENIX,
2005.

[136] V. Sundaram et al. A practical learning-based approach for dynamic
storage bandwidth allocation. In IWQoS, volume 2707 of LNCS, pages
479–497. Springer, 2003.

[137] R. Talyansky., E. Lakew, C. Klein, F. Hernández-Rodriguez, E. Levy,
and E. Elmroth. On guaranteed performance over object storage systems.
Submitted for publication.

[138] A. Tanenbaum and M. van Steen. Distributed Systems: Principles and
Paradigms (2nd ed.). Prentice Hall, 2007.

[139] S. Tesfatsion, E. Wadbro, and J. Tordsson. A combined frequency scaling
and application elasticity approach for energy-efficient cloud computing.
Sustainable Computing: Informatics and Systems, 4(4):205 – 214, 2014.
Special Issue on Energy Aware Resource Management and Scheduling
(EARMS).

[140] D. J. Thomas and P. M. Griffin. Coordinated supply chain management.
European Journal of Operational Research, 94(1):1 – 15, 1996.

[141] L. Tomas, P.-O. Östberg, B. Caminero, C. Carrion, and E. Elmroth.
Addressing qos in grids through a fairshare meta-scheduling in-advance
architecture. In 3PGCIC, pages 226–233. IEEE, 2012.

[142] R. Van Renesse, K. P. Birman, and W. Vogels. Astrolabe: A robust and
scalable technology for distributed system monitoring, management, and
data mining. ACM Trans. Comput. Syst., 21(2):164–206, May 2003.

[143] N. Vasić, D. Novaković, S. Miučin, D. Kostić, and R. Bianchini. DejaVu:
Accelerating Resource Allocation in Virtualized Environments. volume 40,
pages 423–436. ACM, 2012.

[144] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler. Apache hadoop
yarn: Yet another resource negotiator. In Proceedings of the 4th Annual
Symposium on Cloud Computing, SOCC ’13, pages 5:1–5:16, New York,
NY, USA, 2013. ACM.

[145] G. Velkoski, M. Simjanoska, S. Ristov, and M. Gusev. Cpu utilization in
a multitenant cloud. In EUROCON, pages 242–249. IEEE, 2013.

[146] K. V. Vishwanath and N. Nagappan. Characterizing cloud computing
hardware reliability. In Proceedings of the 1st ACM Symposium on Cloud
Computing, SoCC, pages 193–204. ACM, 2010.



[147] T. Voigt. Kernel mechanisms for service differentiation in overloaded web
servers. In Usenix Annual Technical Conference, pages 189–202, 2001.

[148] H. Wu, A. N. Tantawi, and T. Yu. A Self-Optimizing Workload Manage-
ment Solution for Cloud Applications. In Web Services (ICWS), 2013
IEEE 20th International Conference on, pages 483–490. IEEE, 2013.

[149] F. Wuhib, M. Dam, and R. Stadler. Decentralized detection of global
threshold crossings using aggregation trees. Comput. Netw., 52(9):1745–
1761, June 2008.

[150] H. Xingye, L. Xinming, and L. Yinpeng. Research on resource management
for cloud computing based information system. In Proceedings of the 2010
International Conference on Computational and Information Sciences,
pages 491–494, 2010.

[151] P. Xiong et al. vperfguard: An automated model-driven framework for
application performance diagnosis in consolidated cloud environments.
In The 4th SPEC International Conference on Performance Engineering.
ACM, 2013.

[152] L. Xu and E. Elmroth. A time interval-based credit reservation approach
for prepaid composite services in cloud environments. In Web Services
(ECOWS), 2011 Ninth IEEE European Conference on, pages 158–165,
Sept 2011.

[153] L. Xu, E. Lakew, F. Hernandez-Rodriguez, and E. Elmroth. A scalable
accounting solution for prepaid services in cloud systems. In Services
Computing (SCC), 2012 IEEE Ninth International Conference on, pages
81–89, 2012.

[154] C.-T. Yang, K.-C. Wang, H.-Y. Cheng, C.-T. Kuo, and W.-C. Chu.
Green power management with dynamic resource allocation for cloud
virtual machines. In 2011 IEEE 13th International Conference on High
Performance Computing and Communications (HPCC), pages 726–733,
2011.

[155] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali. On scalability of software-
defined networking. Communications Magazine, IEEE, 51(2):136–141,
2013.

[156] S. Zhang, S. Zhang, X. Chen, and X. Huo. Cloud computing research
and development trend. In Proceedings of the 2010 Second International
Conference on Future Networks, ICFN ’10, pages 93–97. IEEE Computer
Society, 2010.

[157] X. Zhang, Y. Qu, and L. Xiao. Improving distributed workload perfor-
mance by sharing both cpu and memory resources. In 20th International
Conference on Distributed Computing Systems, pages 233–241, 2000.



[158] H. Zhu et al. Demand-driven service differentiation in cluster-based
network servers. In INFOCOM, volume 2, pages 679–688, 2001.




