
Chapter 1

Introduction

The rapid development of Internet Technologies is opening up new pathways for
transforming the way societies and industries work and communicate. Among
other things, it has enabled various industries and enterprises to start offloading
their applications (henceforth referred to as services) onto third-party infrastruc-
tures to achieve cost savings and scalability, get better performance, and deliver
on-demand resource provisioning. The introduction of ubiquitous portable com-
puting devices such as laptops, tablets, and smart phones has enabled people to
interact with each other using these services at any time and from any location.
To satisfy society’s wide-ranging demands, services are becoming increasingly
complex software systems consisting of many individual applications that are
integrated to provide complex end-user functionalities such as search, social
networks, news, and e-commerce. Furthermore, to provide a good quality of
service, these integrated applications may require widely varying combinations
of resources during their life-span. A key challenge that has emerged as a result
is to identify effective means of runtime monitoring and controlling the resource
usage of such services, and provisioning them with sufficient computational
resources to ensure the desired performance [18, 74, 53, 123, 9, 90].

Computing technologies such as distributed systems, parallel computing,
utility computing, grid computing, and virtualization have evolved through a
number of phases over time as people have attempted to solve the problem of
large-scale shared resource provisioning for services [60, 23, 111, 43, 138, 141,
106, 117, 105, 108, 63]. The emergence of large-scale Internet services coupled
with the evolution of these technologies has fueled a trend toward a new resource
provisioning paradigm called cloud computing.

The emergence of cloud computing in recent years has been a consequence of
the progressive enhancement of these technologies with new features that enable
resource provisioning in a flexible, cost effective, and scalable fashion while
offering good ease of use. Multiple definitions and concepts of cloud computing
have been proposed[12, 95, 142, 156, 54, 11, 102]. According to the NIST [95],
cloud computing can be defined as a model that provides large-scale computing



farms based on the utility computing service model 1 to enable convenient
on-demand network access to a shared pool of configurable computing resources
such as CPU cores, networks, storage, and memory, which can be quickly
provisioned and released with minimal management effort. The resources are
usually geographically dispersed around the world in datacenters consisting
of tens of thousands of commodity machines [24, 70, 100]. The number of
machines available in this way will probably continue to grow for the foreseeable
future because the demand for hosted services and remote resources is increasing
steadily [156, 59, 67].

The challenge and complexity of provisioning resources for services on
demand are increasing rapidly due to the growing interest in cloud computing
among both the general public and industrial actors, and the rapid developments
in the size and diversity of cloud computing resources and the services hosted
on them [24, 70, 100, 156, 109, 77, 148]. At the large scales that are becoming
increasingly common, it is necessary to account for the fact that there will always
be a significant number of servers and network components that have failed at
any given time. Further complexity is introduced by the heterogeneity of hosted
services and the unpredictability of their workloads. Due to this heterogeneity
and the sheer scale of cloud computing systems, there is an increasingly strong
expectation that services should be self-configuring and self-managing. However,
as the range of permissible configurations grows it is becoming increasingly
difficult to achieve this goal.

The cloud infrastructure as a whole should not be simply regarded as
heterogeneous collections of co-located commodity hardware that have been
wired up together. Rather, it should be seen as a set of commodity machines
that have been aggregated seamlessly and transparently into a single computing
unit [24, 72, 16, 71, 144, 122, 130, 35]. Such an aggregation of commodity-class
machines into a single computing unit provides an illusion of an operating system
running on top of an infrastructure of tens of thousands of servers. This vision
for large-scale systems can only be realized through advancements in the software
management layer that abstracts the infrastructure [146, 72, 69, 121, 7, 34].

The management layer is responsible for many tasks such as the deployment
of services to hardware resources, resource provisioning, scheduling, enforcement
of quotas, monitoring, load balancing, resource usage collection, and handling
component failures. These tasks must all be managed in a way that imposes
a minimal overhead on the underlying system. The management layer is also
responsible for ensuring that the system satisfies all of the hosted services’
non-functional requirements relating to performance, reliability, scalability,
availability, latency, and fault tolerance.

The task of the management layer for a large-scale distributed system has
become more complex than the elements being managed. Consequently, as

1The utility computing service is a service provisioning model in which a service provider
makes computing resources (e.g. processing power, storage, and high level services) available
to the customer as needed, and charges the customer on a metered basis as is commonly done
for water and electricity.



the demand for intricate distributed services has grown, the development of
management tools for such systems has become a complicated problem in its
own right [112, 116]. Due to the sheer complexity of the managed elements, it
is imperative for the management system to be autonomous. That is to say, the
management system should continually adapt the whole system to changes in
environmental variables such as the workload, hardware availability, and software
failure by automatically adjusting the decision variables [81, 33, 13] without
any human intervention. Specifically, such solutions should have capabilities
such as self-configuration, self-optimization, self-adaptation and self-healing
that allow the system to control its managed elements and facilitate continuous
functioning in the face of unpredictable changes in the infrastructure and hosted
services.

This thesis focuses on the design and implementation of efficient algorithms,
models and techniques for the autonomous monitoring, control, and provisioning
of the diverse resources required to meet the demands of services and account
for their resource usage. The aim is to develop effective tools for (i) enforcing
quotas, (ii) provisioning optimal amounts of physical resources to meet service
performance requirements, and (iii) collecting and aggregating service resource
usage data for accounting and billing purposes in a timely fashion at runtime
without any service interruption.

Quota management mechanisms are essential for controlling distributed
shared resources to ensure that services do not exceed their allocated or paid-
for budgets of credit, CPU hours, CPUs, RAM, storage capacity, and so on.
Quota management tools for services must have mechanisms that both regulate
resource usage and achieve an efficient and fair distribution of quotas among
services. Cloud-wide monitoring and control of quotas is needed to achieve
these aims and avoid the over- or under-provisioning of resources. Papers I2

and II focus on managing quotas for services running across distributed nodes.
Quotas that apply over multiple nodes must be mapped onto physical

resources on the basis of services’ performance requirements. It is important
to be able to continuously adjust the physical resources allocated to services
at runtime in order to achieve guaranteed performance levels at all times
in an environment where frequent and unpredictable changes are the norm
rather than the exception. However, this is very challenging because of multi-
faceted issues such as the dynamic nature of cloud environments; the need
for supporting heterogeneous services with different performance requirements;
the unpredictable nature of services’ workloads; the complexity and differences
among Key Performance Indicators (KPIs) used by each service, and the
non-triviality of mapping performance measurements into resources. Papers
IV–VIII present models and techniques for addressing these issues and managing
temporary resource shortages due to e.g. flash crowds or hardware failure.

Furthermore, run time monitoring data should be collected for each service

2The term quota as used in this thesis has the same meaning as the phrase resource
allocation as used in paper I; quota is used throughout this thesis to avoid the risk of
confusion with resource provisioning.



and aggregated in order to maintain a single global state of the system that
facilitates management activities such as accounting and billing, scheduling, load
balancing, and network analysis. Such aggregation becomes extremely complex
when dealing with systems spread over geographically dispersed locations, which
means that the management task itself may consume significant computing and
network resources unless done with care. Paper III focuses on collecting data
across multiple nodes and establishing mechanisms to ensure consistency and
synchronization in order to facilitate accounting and billing operations.

The thesis is organized as follows. Chapter 2 introduces the problems that
the thesis aims to address. Chapter 3 reviews established methods for solving
the quota and usage management problems. Chapter 4 briefly presents state-
of-the-art techniques for resource provisioning. Chapter 5 summarizes the new
contributions presented in this thesis. Finally, 8 papers produced in the course
of the thesis work are appended.



Chapter 2

Runtime Resource
Management and Control
in Cloud Computing

Resource management and control is perhaps the most important task that must
be performed to deliver a reliable and resource-efficient cloud computing system
[52, 72, 150]. Each service’s resource consumption must be continuously tracked
at runtime to determine whether services are meeting their target Service Level
Objectives (SLOs). Cloud infrastructures consist of many tens of thousands
of units of commodity hardware with thousands of services deployed, all of
which have different requirements and demands. Effectively running such an
infrastructure is extremely complicated and challenging because there are so
many variables that must be considered such as unpredictable service demand
changes, hardware failures, and interference between collocated services. Logi-
cally, different approaches and methods that can reflect the different variables
must be employed in order to allocate and control the available resources in the
best possible way.

For the purpose of our discussion we assume that these resources can be
divided into virtual and physical resources, a division that can be likened to the
distinction between intangible and tangible assets in business and economics
[26, 10]. Virtual resources are abstract resources such as prepaid credits, quotas
(for CPU, storage, etc.), and accounting records while physical resources are
resources that have actual physical existence such as CPU cores, RAM, and
Storage. Accordingly, the control tasks are divided into quota and resource usage
control and resource provisioning. Quota and resource usage control entails
runtime tracking and controlling, collecting and aggregating virtual resources
(i.e. quotas and resource usage) for each service, while the resource provisioning
task is responsible for autonomic runtime prediction and allotment of optimal
physical resources to services to meet their requirements.



Note that from this point onwards, when we talk about resources in the
context of quotas and resource usage, we are referring to virtual resources.
Conversely, in discussions about resource provisioning, resources means physical
resources.

The following sections discuss the issues associated with controlling these
two resource types in detail.

2.1 Quota and Resource Usage Control

Large-scale services often need sophisticated and scalable quota management
and resource usage monitoring support. It is important to collect resource
consumption statistics across nodes, clusters, or datacenters to facilitate network
analysis and to support management decisions relating to accounting and billing,
scheduling, and load balancing among other things. For example, resource usage
data may need to be collected from several locations in order to generate a
single bill for a customer’s service consumption across the entire infrastructure.
Figure 1 presents a model of a cloud computing environment. We will use this

Figure 1: Elements in cloud environments.

model throughout this section when we talk about quota and resource usage
control. The cloud customer deploys and runs services on a cloud infrastructure.
A cloud customer may be a service provider, who leases resources offered by
an infrastructure provider to host services that will be used by end-users or
other service providers. The services are customers’ applications, which are
deployed across multiple clusters where they consume resources and impose
resource demands on the cloud infrastructure. The cloud infrastructure consists
of geographically distributed clusters, each of which is composed of thousands of
commodity servers connected to a low-latency Local-Area Network (LAN) [84].



The infrastructure provider is responsible for managing the clusters’ physical
and virtual resources and controlling the resource usage of each individual
service running across multiple clusters. The focus here is on how to manage
quota and resource usage for services running across clusters.

Quotas and resource usage control mechanisms for services running across
clusters profoundly influence the performance of the entire system, the provider’s
profitability, and the level of customer satisfaction. For example, to maxi-
mize customer satisfaction, the service provider should make sure to avoid
over-committing the infrastructure’s resources [112, 150]. Moreover, resources
consumed by different services should be monitored and this monitoring data
should be collected efficiently in a way that interferes minimally with the ser-
vices’ performance [48, 68, 61, 46, 118, 47]. Ideally, resource usage collection
and quota management mechanisms should not impose significant constraints
on either the customer or the cloud provider.

Quota control or enforcement systems are tools for monitoring, redistributing,
and assigning shared resources (such as prepaid credits and quotas) to individual
instances of a service running across multiple nodes based on each instance’s
demand, subject to the constraint that the sum of shares across instances
must not exceed the aggregated global availability of these resources. Quota
control mechanisms should guarantee that each individual instance’s demands
are met without over-committing resources. In other words, the management
mechanisms should ensure that the aggregate resource consumption does not
exceed the quota limit while simultaneously ensuring that instances running
on particular nodes are not starved when the total consumption is below the
quota limit. To this end, quota allocation mechanisms should know the current
allocation across nodes and be able to use this information to intelligently
apply algorithms to better distribute resources to instances according to their
runtime requirements [115, 149, 154]. The goal is to avoid both under- and
over-utilization of quotas.

On the other hand, resource usage management systems are tools for collect-
ing and aggregating data about resources consumed by services across clusters
in order to establish a single consistent global view for purposes such as ac-
counting and billing [47, 48, 153, 152, 6], creating traces [132, 58, 133], and to
provide input for provisioning [36, 8, 64, 83, 129, 134, 143, 76, 45, 93]. Resource
consumption data should be monitored continuously and must be collected and
synchronized to maintain a single consistent view of the data generated across
different clusters. However, any such synchronization mechanism must make
a trade-off between the consistency of the data and the performance of the
infrastructure: more frequent synchronization increases data consistency but
reduces performance.

The following sections discuss quota and resource usage management in
more detail.



2.1.1 Quota Control

Service owners and/or infrastructure providers may want to cap (put limits
on) cloud resource quotas such as the total credit, storage quota, total number
of CPUs, total CPU hours, or number of VMs, IP addresses, or network
connections. To do this, the provider or owner must have a mechanism for
allocating and enforcing limits across services running on multiple nodes [96, 79].
This is similar to the way that prepaid telecommunication services work [2, 1]:
customers pay in advance and use the service afterwards. The mechanism is
expected to provide the service to customers immediately as long as the paid-for
budget is not exhausted.

Managing quota limits in large distributed systems is difficult because it
requires the maintenance of a consistent picture of total usage while resources
are being consumed concurrently at several locations. Quota management is
essential for ensuring that services do not exceed their allocated (or paid-for)
budget. It can also be used to enforce global allocation limits in order to solve
problems such as spurious services that flood and overburden the system with
dummy tasks, denying access to other services, and malicious services that
launch Distributed Denial of Service (DDoS) attacks.

The resource consumption of services running on tens of thousands of nodes
in many clusters must be properly monitored. Furthermore, quotas should be
distributed across nodes or clusters optimally, with the objective of minimizing
their associated overhead while meeting service demands.

2.1.2 Resource Usage Management

Resource usage management involves monitoring, collecting, and aggregating
information on resource consumption in order to facilitate decision making in
cloud environments [32, 128, 99, 126, 38]. It requires a transparent and efficient
management mechanism that can be used to produce a consistent cloud-wide
view of the data. The degree to which resource usage must be managed, i.e.
the necessary update frequency and the desired granularity of the monitored
statistical information, will vary according to the management task at hand.

Each service may use resources from multiple clusters and can generate a
variety of runtime scenarios that, if not tracked and responded to, can make
usage-based reporting and billing impossible. Resource usage must be monitored,
synchronized, and aggregated to perform billing operations. Thus, for cloud
services to be commercialized using a pay-as-you-go model, the cloud must
allow runtime usage across clusters to be accurately measured, collected and
synchronized.

Therefore, an accounting and billing system capable of monitoring, collecting,
and processing usage data and metrics should be incorporated into the cloud
architecture to support the business model of cloud providers. Once services are
deployed to the cloud, it is critical to monitor their functions and track their
resource usage on an ongoing basis in order to determine how much service



owners are to be charged. Timely and consistent collection and distribution of
accounting data is not only important for the infrastructure provider’s billing
operations: service owners may also need to bill their customers on the basis
of resource consumption. Similar situations occur in the supply chains of
manufacturing industries [97, 140], where a faulty material or a delay in the
supply of a component will affect all of the downstream processes in the chain.
Likewise, a delay or a failure in infrastructure monitoring will affect all members
of the ecosystem.

2.2 Resource Provisioning

A cloud is a complex system with a very large number of shared resources whose
performance and capabilities may be limited by the sometimes unpredictable
behavior of the infrastructure and the services running on top. At the same
time, services hosted in the cloud have become indispensable for many business
and personal purposes, making the performance of these services a key issue
[66, 39, 75, 73, 41, 135, 157]. Resource provisioning techniques help to determine
the optimal amount of physical resources required to satisfy service demands.
Today, cloud infrastructure providers either do not offer any performance
guarantee or prefer coarse-grained and static resource provisioning with fixed
sizes, resulting in inefficient resource utilization and Service Level Agreement
(SLA) violations. Infrastructure providers will need to provide better and
more stringent performance guarantees with fine-grained resource provisioning
techniques to attract businesses to move their core services into the cloud.

Resource provisioning has a direct influence on the performance of services
in the short-term and the survival of the infrastructure provider in the long-
term. It is important to have autonomic techniques that continuously adjust
services’ resources at runtime in order to provide performance guarantees at
all times in an environment where frequent and unpredictable changes are
the norm rather than the exception. Indeed, autonomic resource provisioning
technique is a necessity rather than a luxury due to the scale and complexity
of cloud infrastructures, the huge number of services deployed on them, and
the unpredictability of runtime changes in services’ capacity demands (which
may produce sudden demand spikes known as flash crowds) and operating
environments, i.e. hardware failures [83, 107, 81, 76, 65, 44].

Ideally, the infrastructure provider should have a resource provisioning
mechanism that maximizes resource utilization while using dynamic and fine-
grained resource allocation to guarantee that services’ performance requirements
are met. Thus, the task of resource provisioning is to allocate services enough
resources to meet their performance requirements, but no more. Unfortunately,
this is very difficult to do in practice because of the dynamic nature of cloud
environments, the need for supporting heterogeneous services with different
performance requirements, the unpredictable nature of cloud workloads, the
complexity of and differences between the KPIs used by each service, and the



non-triviality of mapping performance measurements into resources [49, 17, 25,
135, 157].

Given a particular desired service performance, the goal is to determine
the optimal amount of hardware resources required based on the services’
runtime behavior. Specifically, service owners should be able to specify their
service resource requirements in terms of their preferred KPIs (e.g. response
time, throughput, CPU and memory utilization, etc) and have the resource
provisioning techniques translate those into optimal resource allocations that
satisfy the SLO for each service.



Chapter 3

Resource Usage and Quota
Management

Infrastructure providers find themselves in an era where customers expect their
services to be delivered in a way that meets certain requirements with respect
to performance, capacity, cost and geographical distribution. Recently, there
has been considerable interest in using software driven infrastructure manage-
ment [57, 101, 113, 78] to manage cloud infrastructures and seamlessly deliver
resources to customers’ services. The idea behind software driven infrastruc-
ture management is to have a software suite that provides a comprehensive
abstraction of a complete large-scale distributed infrastructure similar to the
way that an operating system abstracts the different components of a computer.
However, traditional management mechanisms, tools and techniques cannot
meet the requirements of software driven infrastructures because of their limited
scaling [68, 155, 113, 78].

Software driven management of infrastructures is rapidly becoming a new
target for IT enablement, but this concept will only be fully realized through
the development of improved management mechanisms.

As discussed in Chapter 2, successful quota and resource usage management
of services at the cloud scale requires a rich set of global information and global
control for each individual service running across the infrastructure’s nodes. As
the number of nodes and the services’ size increase, the overhead of collecting,
analyzing, and acting upon the associated data grows. The basic features
expected from the chosen approach are:

• Accuracy: Resources should be monitored, collected, aggregated or con-
trolled accurately without being over- or under-stated.

• Scalable: The mechanism should remain functional and viable as the
number of services and nodes increases.

• Fault tolerance: Partial failure of the mechanism should not bring the



whole infrastructure to a halt.

• Less overhead: Resources consumed by services should be monitored and
collected in a way that interferes minimally with hosted services.

The management layer can be designed in centralized or decentralized fashion
as described below. Each approach has its own advantages and disadvantages
and is affected by a number of factors such as the size of the managed entities
(measured in terms of, e.g., the number of nodes or services) and the degree of
geographic dispersion.

3.1 Centralized Management

In a centralized management system, a centralized manager keeps track of all
available resources, collects usage from different managed entities and makes
decisions. In general the management functions and decision-making are concen-
trated at a central component. All managed entities send messages requesting
resources and reporting resource usage to the manager. The manager is respon-
sible for allocating resources to services and storing and processing resource
usage data. With such centralized designs, few decisions need be made about
the allocations and usage of resources.

The majority of cloud computing platforms rely on centralized architectures
combined with a hierarchical system of control [19, 52, 67]. The main advantage
of this scheme is simplicity. Moreover, it eases consistency concerns and avoids
conflicting decisions by providing central control over the whole system.

However, centralized management presents the well-known problems of
single point of failure and single point of congestion. Moreover, the centralized
manager is burdened with multiple decisions for all managed entities and a
lot of communication needs to take place from different nodes hindering the
performance of the whole system. Thus, as the system size increases, the
centralized manager gets heavily loaded and becomes a bottleneck. It may also
limit concurrency. In general, it suffers from poor availability, lack of fault
tolerance, and limited capacity for scaling.

3.2 Decentralized Management

In recent years, there has been an increased and wide interest in decentralized
management techniques and cooperative distributed decision making [125, 124,
94]. The central notion of decentralized management is to pursue full local
autonomy while cooperating (by communicating) to achieve a global goal. The
ideal is that individual management units are able to acquire information
about the state of the entire system by communicating their local information
to all others. However, fine-grained information about the entire system is
generally not available due to the vast amount of local information that may be



generated; if all of this information were transmitted in its entirety, it would
cause significant network congestion. In addition, the information received may
not be up-to-date due to delays.

Decentralized management disperses the decision-making process over multi-
ple management components so as to alleviate the problems encountered with a
centralized approach. Managers at specific locations make key decisions relating
to their sphere of responsibility and cooperate with peers as necessary.

In such an architecture, all of the peers involved in a management task
play similar roles, interacting cooperatively without any one having a distinct
role. The aim of this scheme is that each management unit performs its
responsibilities independently without being hampered by the state of others,
and only interacts with others when it is not possible to achieve the global
management goal locally. Decentralized management can also abstract the
differences between managed entities in different locations without limiting their
capabilities. It is thus a viable method for achieving a stable growth pattern in
an era of rapid technological development and investment, which allows each
peer to have different internal management policies and mechanisms.

The main characteristics of a decentralized approach are:

• Increased Availability: Availability refers to the accessibility of a system in
the presence of failure. For a centralized design, if the central management
or the cluster where the management is located fails, the service becomes
unavailable for other clusters as well. In contrast, with decentralized
management the failure of one or more clusters does not prevent the
remaining clusters from providing the service among themselves.

• Fault tolerance: Fault tolerance is the ability to function in the presence
of component failures without performing incorrect actions. With decen-
tralized management, the failure of one or more clusters can be tolerated
as it only affects those services running on the failed clusters.

• Enhanced performance: Since services are running at multiple clusters,
requests for different services do not have to line up at one management
component; instead they can line up at multiple management components
located on different clusters to reduce their waiting time.

• Better Scalability : In general, a decentralized management scales well as
the sizes of services and clusters grow.

• Greater Autonomy : The decentralization approach gives individual clus-
ters autonomy in making their own decisions. A decentralized approach
assumes that each entity is autonomous and self-controlled, making its
management decisions based on its own policies. Local management units
need only coordinate with other clusters when local information is not
sufficient for making decisions.

There is a growing trend towards using decentralized management approaches
to support management demands in different computing domains because the



current centralized model is increasingly failing to achieve its goals. For example,
decentralized techniques have been used in quota management across nodes
inside a LAN [110, 82, 22, 21, 79, 110] as well as for network management
[20, 96, 114, 149, 80, 42, 5]. The goal of this thesis is to apply decentralized
techniques to the quotas and resource usage of services running on multiple
clusters.

Figure 2: A decentralized management approach with distributed management
entities.

Figure 2 shows the architecture of a decentralized management system. Man-
agement components interact with all or part of other management components
in different situations. The arrows in the figure indicate interactions among
management units. Some management units can work alone without interacting
with other peers as long as their decisions can be made entirely locally.

A hybrid management approach can also be used [29, 51, 56] by incorporating
some features of both the centralized and the decentralized approaches. Hybrid
approaches generally rely on a central unit, the coordinator, that coordinates
the actions of other units. The coordinator is responsible for performing global
operations such as processing requests from other management units and making
global decisions. The other management units control local resources and report
status information to the coordinator. Moreover, each management unit can
make local decisions and may contact the coordinator only when unable to do
so. This approach may suffer from similar issues as centralized approaches due
to the reliance on a single coordinator.



Chapter 4

Resource Provisioning

Virtualization technologies are among the key enablers of cloud computing. They
simplify some resource management tasks such as the efficient utilization and
sharing of resources by consolidating diverse enterprise services, each wrapped
inside a Virtual Machine (VM) on a single Physical Machine (PM). These
technologies enable resources such as CPU cycles, memory, secondary storage,
and I/O and communication bandwidth, to be added or removed at runtime
from one service to another on demand.

Nonetheless, current virtualization technologies are inadequate for determin-
ing resource demands and assuring performance guarantees for hosted services.
Moreover, hosted services are likely to manifest emergent behaviors that lead
to unhealthy resource contentions and undesirable performance interference
as a result of co-location [151, 30]. For example, the performance of one
service may be affected by demand changes in other co-located services. More-
over, the infrastructure may be overloaded due to sudden changes in services’
capacity demand – flash crowds – and operating environments – hardware
failures [83, 107, 81, 76, 65, 44].

Consequently, most existing cloud services are targeted at consumers who
have low Quality of Service (QoS) expectations. However, due to its poten-
tial economic benefits, increasing numbers of enterprises wish to exploit the
advantages of the cloud computing model such as pay-per-use pricing and
rapid elasticity. To retain existing customers and attract new ones, existing
virtualization technologies must be augmented with techniques that capture
the runtime behavior of hosted services and determine the optimal resource
allocation pattern for meeting each service’s SLO. Specifically, mathematical
and statistical models and techniques are needed to correlate resources and
runtime performance behaviors in response to external changes such as changes
in workloads or the infrastructure.

For the purpose of discussion, resource provisioning can be categorized into
Capacity-based and Performance-based provisioning. Capacity-based approaches
use resource utilization (e.g., CPU and memory utilization) when making re-



source provisioning decisions while performance-based provisioning uses metrics
extracted from services (e.g. response time, throughput, number of requests).
The sections below provide brief discussions about the two resource provisioning
approaches as well as the management of capacity shortages.

4.1 Capacity-Based Provisioning

Cloud providers use resource utilization to guide their resource management
[91, 145, 131]: resource utilization data are used to predict services’ resource
requirements. Efficient resource provisioning that accounts for resource utiliza-
tion reduces operating costs, for example by allowing providers to consolidate
VMs onto a small group of machines so that other machines can be shut down
to reduce energy consumption [139, 104, 37, 50]. Consolidation is an inherently
effective method for increasing resource utilization, and in turn reduces energy
consumption. It can also free up resources for use by other services. However,
utilization-based decisions may lead to SLA violations as they are oblivious to
service performance.

4.2 Performance-Based Provisioning

A number of studies have suggested that end-users are sensitive to performance
changes. For example, Amazon loses 1% of its sales for every 100ms of latency
[3] while an extra half second’s delay in search page generation reduces Google’s
traffic by 20% [62]. A broker could lose $4 million in revenues per millisecond if
their service was 5 milliseconds behind the competition [4]. In general, several
studies have shown that end-users will abandon an e-commerce service for a
competitor if its response time is above 4 seconds [103], thus incurring long-term
revenue loss. In the same manner, video streaming services can also expect
users to abandon their services if the expected level of throughput drops.

All these studies demonstrate the importance of considering performance
during resource provisioning. Capacity-based approaches are inadequate to
ensure performance because they are oblivious to the observed performance
of services. However, performance-based resource provisioning is challenging
due to the non-trivial relationship between performance and capacity, and the
unpredictable nature of incoming workloads.

4.3 Capacity Shortage Management

A challenging problem in cloud infrastructure management is how to deal
with short- or long-term capacity shortage management, i.e. situations in
which the aggregate demand for resources exceeds the resources available in
the infrastructure. Several techniques such as elasticity, replication, migration,
and load balancing have been suggested to mitigate this issue as long as there



is spare capacity in other hosts [15, 27, 129]. However, it is economically
infeasible to reserve enough spare capacity since unexpected spikes can increase
resource demand five-fold [31]. Moreover, some services may not tolerate any
disruption at all. Because of this, most cloud services have targeted consumers
with low performance expectations as noted above, and enterprises remain
hesitant to move core business services into the cloud. Enterprises will require
guaranteed performance under all conditions, expressed in terms of appropriate
Key Performance Indicator (KPI) metrics (e.g. response time or throughput),
in order to be confident in moving key services into the cloud.

Service differentiation schemes that decide which services to degrade can be
used to address short-term capacity shortage problems [127, 119, 14, 92, 136,
98, 28, 147, 40, 158, 107]. Specifically, during service differentiation decisions,
services with stringent performance needs are given higher priority than services
with relatively lower performance requirements. Each service can be placed into
different SLA classes (e.g., gold, silver, and bronze), signifying their relative
importance. Each class is assigned a penalty weight that stipulates the relative
importance of the corresponding services. This makes it possible to preferentially
maintain the SLOs of higher class services by shifting resources from less
performance-sensitive ones during periods of infrastructure overload.

Fig. 3 shows a logical view of a high-level architecture for an autonomic
service and resource manager that would allocate the optimal resources required
for each service deployed in the cloud. Note that the realization of the manager
can be centralized or distributed. In general, the manager can make decisions
concerning vertical and horizontal scaling of VMs, VM migration, load balancing,
and service priority so as to meet service’s SLO requirements and ensure efficient
resource utilization. The focus in this thesis is on performance-based and
fine-grained resource provisioning by resizing VMs (i.e. vertical scaling) to
ensure that services’ performance requirements are met. In the event that the
available resources are temporarily insufficient to satisfy the demand, service
differentiation is applied in order to guarantee the performance of critical
services.

The following features would be expected of an autonomous resource man-
ager:

1. Autonomic resource provisioning. A self-adaptive resource provisioning
that dynamically adjusts resources to services based on their workload
dynamics and relative importance without requiring human intervention
should be employed.

2. Timely detection of changes. The changes in the workload behavior as
well as in the infrastructure should be detected immediately in order to
react to them accordingly.

3. Fast computation. Fast computation is needed in order to react immedi-
ately to changes in the services’ performance behaviors.



Figure 3: High-level architecture of an autonomic services and resources manager
for cloud environments.

4. Guaranteed performance. The resources allocated should be exactly suffi-
cient to satisfy the demand. That is to say, services should be provided
with enough capacity to meet their performance targets, but no more.
As a result, capacity over-provisioning or under-provisioning should be
avoided under normal conditions.

5. Service prioritization. Capacity shortages may happen at any time in
complex systems such as cloud infrastructures. Thus, when the capacity
demand exceeds the supply, resources should be allocated based on service
priorities using their performance as an indicator. Such priority schemes
should be independent of services’ KPIs and should ensure that the
performances of higher priority services is less affected than their low
priority counterparts.



Chapter 5

Summary of Contributions

This section presents the contributions of the thesis. Fig. 4 provides a conceptual
view of these contributions. At the top are infrastructure-wide quota enforcement
mechanisms which ensure that hosted services run without issue as long as
the global quota is available. At the bottom, a non-intrusive usage accounting
mechanism collects, aggregates and synchronizes the resource usage of services
across the infrastructure to facilitate timely billing operations. The autonomic
resource manager, deployed at each node, implements various techniques to
provision resources according to services’ demands.

Papers I, II and III present highly scalable solutions for managing quota
enforcement and usage accounting efficiently and consistently. The proposed
solutions scale with the size of the infrastructure as well as the services deployed
on top of it. The proposed solutions are also robust since instance failures are
localized and the system continues to operate and deliver useful service in the
event of a local failure.

Papers IV–VIII present models and techniques that map service performance
requirements onto physical resources. The proposed solutions continuously ad-
just the allocation of resources to meet the services’ performance requirements
irrespective of workload variation. Moreover, the proposed mechanism guaran-
tees to meet the performance requirements of critical services during capacity
shortages by shifting resources from less critical services.

5.1 Distributed Quota Enforcement

5.1.1 Paper I

Paper I [85] focuses on how to manage quota for services running in geo-
graphically distributed clusters. The paper presents a fully distributed quota
management scheme for tracking and distributing quota shares across dis-
tributed clusters. The solution monitors resource consumption by services that
are spread over a number of clusters with the goal of triggering global polls



Figure 4: Pictorial representation of the contributions.

only when the allocated balance in a cluster decreases below a threshold and
allocations are reassigned in a way that avoids further immediate global polls.

Unlike a single coordinator or predefined coordinator, the paper proposes a
distributed scheme that selects a per-event coordinator when needed. For each
allocation event, the coordinator is selected and the clusters currently running
that service form a multi-cast group to perform the allocation algorithm.

It achieves scalability by minimizing global message exchanges, increases
performance by distributing requests, and improves availability by avoiding
a single point of failure. A range of simulations were performed and the
communication cost of the fully distributed allocation approach is compared to
that for a reference centralized resource manager algorithm, showing that the
distributed approach is more efficient and effective.

5.1.2 Paper II

Paper II [89] extends the work presented in Paper I by adding support for
multiple parallel decisions by arranging nodes using a spanning tree. Querying
every node during quota redistribution decision causes latency and commu-
nication overheads as the number of nodes and the distances between them
increase. Here, we address the latency and communication overhead problems by
proposing a tree-based protocol for enforcing quotas in clouds. In our protocol,
all nodes running a service maintain a local quota allocation so that permissions
can be given immediately provided that the local allocation is not exhausted.
When local quota allocations are exhausted, nodes request extra quota from
nearby neighbors progressively instead of polling all nodes.



5.2 Distributed Resource Usage Management

5.2.1 Paper III

Paper III [88] presents monitoring, data-collection, and synchronization mecha-
nisms in multi-cluster environments so as to facilitate accounting and billing
operations.

With today’s large-scale, geographically distributed clusters, running cus-
tomers’ services across multiple clusters is a possibility. As a result services
generate huge amounts of accounting records that are dispersed throughout all
clusters. Available accounting systems that are centralized cannot efficiently
manage these huge amounts of usage records generated across multiple clusters.
To cope with this problem, the paper proposes a new approach for monitoring,
collecting and synchronizing accounting records in a decentralized fashion that
provides a desired level of scalability.

A distributed mechanism is employed for collecting and synchronizing ac-
counting records across a number of geographically distributed clusters as well as
serving accounting requests from any of the clusters in a consistent manner. The
mechanism collects and merges accounting records generated from all clusters
and maintains the intrinsic requirements of accounting.

5.3 Performance-based provisioning

Capacity-based resource provisioning systems where resources are allocated
based on utilization thresholds are oblivious to the observed performance of
services and cannot be readily used to meet the performance needs of services
expressed using KPIs such as response time or throughput. Papers IV–VI
address this issue.

5.3.1 Paper IV

Paper IV [86] presents two generic performance models– the previously proposed
queue length model and the novel inverse model– for mean response time that
map performance to capacity in order to provide performance guarantees for
interactive services deployed in the cloud. We carried out an extensive set of
experiments using RUBiS, RUBBoS, and Olio–three widely used interactive
cloud benchmarking applications– with varying workload mixes over time under
both closed- and open-system models [120]. We also varied the target response
time of each application to see how the models behave. The results demonstrate
that the two models are stable for higher response time targets. However, our
inverse model exhibited greater stability than the queue length model for lower
targets.



5.3.2 Paper V

Paper V [86] presents two novel tail response time performance models– the
queue length tail model and the inverse tail model– for predicting the capacity
required to guarantee tail response times for interactive services deployed in the
cloud. The two models were able to allocate just the right amount of capacity
to meet tail response time targets expressed in percentiles (e.g. 95% or 99%)
while avoiding substantial capacity over- or under-provisioning.

Both models were evaluated in an extensive set of experiments using RUBiS,
RUBBoS, and Olio with real workloads and synthetic workload mixes that varied
over time under both closed- and open-system model. We also varied the target
response times of each application to see how this affected the models’ behavior.
Our results demonstrate that both tail response time models are stable under
both more predictable and unpredictable real workloads and synthetic workloads
generated using open- and closed-system models [120]. However, the inverse tail
response time model is more stable than the queue length tail response time
model.

5.3.3 Paper VI

In paper VI [55], we proposed an autonomic resource controller consisting
of three sub-controllers– a fuzzy controller, a CPU controller, and a memory
controller– to allocate the right amount of CPU and memory in order to meet
mean response time targets for interactive services. The fuzzy controller acts as a
coordinator, ensuring that the control actions of the cpu and memory controllers
complement each other in order to fulfill the service’s performance requirements,
which were expressed in terms of mean response times. The CPU controller and
memory controller allocate the right amount of CPU and memory, respectively,
using the inputs provided by the fuzzy controller. In general, the proposed
fuzzy control approach can be used as a coordination technique for distributed
controllers. We evaluated the proposed solution with RUBiS, RUBBoS, and
Olio in a virtualized environment using Xen Hypervisor. Different experiments
were conducted under workload traces generated based on open and closed
system models. The results show that the proposed coordination solution was
able to maintain the target response time with while achieving high resource
utilization.

5.4 Performance-based service differentiation

5.4.1 Paper VII

One of the many advantages of cloud computing is the ability to consolidate
multiple services into a limited number of servers so as to achieve high datacenter
utilization. However, maintaining high utilization while meeting SLOs is difficult,
as a datacenter may become overloaded, reducing the performance of the hosted



services. Service differentiation has been proposed as a way of controlling which
services get degraded. In paper VII [87], we propose performance-based service
differentiation where capacity is distributed among services based on their
observed performance and sensitivity to performance degradation. Specifically,
when enough capacity is available, each service is automatically allocated the
optimal amount of capacity to meet its target performance, expressed in terms
of either response time or throughput. For cases when the available capacity is
not sufficient, we propose two service differentiation schemes that dynamically
decide which services to degrade and to what extent. We carried out an extensive
set of experiments using different services– interactive as well as non-interactive–
in which the services’ workload mixes were varied over time. The results
demonstrate that our solution precisely provides guaranteed performance or
service differentiation depending on available capacity.

5.4.2 Paper VIII

Cloud storage is increasingly being adopted by users as simplified storage
systems become available. These systems are mostly presented as Object
Storage Systems (OSSs), hiding issues such as redundancy from users. As
new industries are considering adopting clouds for storage, OSSs must evolve
to support new needs. Among the most challenging is assuring guaranteed
performance. In paper VIII [137], we present Controllable Trade-offs (CTO),
an OSS-agnostic solution for providing performance guarantees. CTO presents
itself as a thin layer that mediates requests between the user and the OSS. For
generic support, performance is controlled by tuning the rejection probability
based on priorities associated to each customer. Results show that CTO may
reduce penalties by a factor of 3.23 on average and by a factor of up to 68 when
the load is high.





Bibliography

[1] World telecommunication development report 1999, 1999. Avail-
able online: https://www.itu.int/ITU-D/ict/publications/wtdr_

99/material/wtdr99s.pdf, Visited 2015-04-05.

[2] bcgi-anula report, 2001. Available online: http://web.archive.org/

web/20080414071934/http://www.bcgi.net/assets/pdf/annual/

2001.pdf, Visited 2015-04-05.

[3] Amazon found every 100ms of latency cost them
1 Available online: http://blog.gigaspaces.com/

amazon-found-every-100ms-of-latency-cost-them-1-in-sales/,
Visited 2015-04-06.

[4] The value of a millisecond: finding the optimal speed of a trading
infrastructure., 2008. Available online: http://www.tabbgroup.com/

PublicationDetail.aspx?PublicationID=346, Visited 2015-04-07.

[5] G. Aceto, A. Botta, W. De Donato, and A. Pescapè. Survey cloud
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