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Abstract
This thesis introduces a topology optimization approach to design, from scratch, efficient
microwave devices, such as antennas and waveguide transitions. The design of these devices
is formulated as a general optimization problem that aims to build the whole layout of the
device in order to extremize a chosen objective function. The objective function quantifies
some required performance and is evaluated using numerical solutions to the 3D Maxwell’s
equations by the finite-difference time-domain (FDTD) method. The design variables are
the local conductivity at each Yee edge in a given design domain, and a gradient-based
optimization method is used to solve the optimization problem. In all design problems,
objective function gradients are computed based on solutions to adjoint-field problems,
which are also FDTD discretization of Maxwell’s equations but solved with different source
excitations. For any number of design variables, the computation of the objective function
gradient requires one solution to the original field problem and one solution to the associated
adjoint-field problem. The optimization problem is solved iteratively using the globally
convergent Method of Moving Asymptotes (GCMMA).

By the proposed approach, various design problems, including tens of thousands of design
variables, are formulated and solved in a few hundred iterations. Examples of solved design
problems are the design of wideband antennas, dual-band microstrip antennas, wideband
directive antennas, and wideband coaxial-to-waveguide transitions. The fact that the proposed
approach allows a fine-grained control over the whole layout of such devices results in novel
devices with favourable performance. The optimization results are successfully verified with a
commercial software package. Moreover, some devices are fabricated and their performance
is successfully validated by experiments.





Sammanfattning
Denna avhandling introducerar en topologioptimeringsmetod för att, från grunden, utforma
effektiva mikrovågsenheter, som exempelvis antenner och vågledarövergångar. Problemet att
utforma dessa enheter formuleras här som ett optimeringsproblem som syftar till att bestäm-
ma hela layouten för enheten med avsikt att minimera eller maximera en vald målfunktion.
Denna målfunktion kvantifierar önskade prestanda och utvärderas med hjälp av numeriska
finita-differens tidsdomänslösningar (FDTD) till Maxwells ekvationer i 3D. Designvariablerna
är den lokala konduktiviteten för varje kant i beräkningsnätet i ett givet designområde och en
gradientbaserad optimeringsmetod löser optimeringsproblemet. I alla utformningsproblem
beräknas målfunktionens gradient med hjälp av lösningar till ett adjungerat fältproblem, som
också är en FDTD-diskretisering av Maxwells ekvationer men med en annan excitation.
Oavsett antalet designvariabler, kräver beräkningen av målfunktionsgradienten en lösning till
det ursprungliga fältproblemet samt en lösning av det adjungerade fältproblemet. Optime-
ringsproblemet löses iterativt med den globalt konvergenta versionen av optimeringsmetoden
MMA (Method of Moving Asymptotes).

Med användning av den föreslagna metoden formuleras och löses ett flertal olika design-
problem med tiotusentals designvaribler i ett par hundra iterationer. Till exempel utformas
plana bredbandsantenner, dubbelbands mikrostripantenner, riktade bredbandsantenner, samt
bredbandiga övergångar från koaxialkablar till vågledare. Det faktum att den föreslagna me-
toden tillåter en detaljerad kontrol över utformningen av enheterna möjliggör nyskapande
utformningar med utmärkta prestanda. Förutom att korsvalidera prestandan av de optimerade
enheterna med ett kommersiellt mjukvarupaket så har några av de optimerade enheterna
även tillverkats, och deras prestanda har utvärderats experimentellt med resultat som väl
överensstämmer med de beräknade.
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1 Introduction

1.1 Motivation
The complexity of emerging wireless systems raises the demands on antenna designs. Exam-
ples of such demands are multi-frequency band operation, compactness, and reduced energy
consumption. Moreover, there is a growing interest in using microwaves in detection and
imaging systems. Microwave imaging can either complement or replace some of the currently
used imaging systems. The design of proper antennas is a key element for such systems to
function efficiently.

1.2 Antenna concepts
Antennas are the parts of transmitting or receiving systems that can radiate or receive electro-
magnetic waves [1]. Usually, antenna characteristics are described in the frequency domain.
The concept of antenna radiation can be illustrated with the simplified model shown in Fig-
ure 1. A signal source Vs launches voltage and current waves .V inc; I inc/ that propagate along
a lossless transmission line. The transmission line has a real characteristic impedance Zc
that may depend on the frequency f . Examples of transmission lines are coaxial cables,
waveguides, striplines, and microstrip lines [2]. An ideal antenna should accept all the incident
waves .V inc; I inc/, that is, the reflected waves .V ref; I ref/ back to the source should be zero,
and convert all the accepted waves to electromagnetic waves .E ;H / in a surrounding medium
with intrinsic impedance �.

An antenna connected to the end of a transmission line is seen by the transmission line as a
load with a frequency dependent impedance Za. For an antenna to radiate ideally, the antenna
equivalent impedance, Za, should satisfy two conditions. Firstly, the impedance Za should
introduce no ohmic losses. Secondly, the impedance Za should equal the transmission line
impedance Zc in the operational frequency band in order to maximize the radiated power.
The first condition might be satisfied by using materials with very low ohmic losses, such as
good conductors or good dielectrics. The second condition is typically fulfilled by finding
a suitable structure, which generally has physical dimensions related to the frequency of
operation. Finding suitable antenna structures is the goal for most antenna design problems.

Standard antennas have structures that can take on a variety of physical forms. They can
be as simple as a single radiating dipole, or far more complicated structures consisting of
two-dimensional or three-dimensional geometric shapes [3]. Figure 2 shows some standard
antenna configurations. Generally, the characteristics of the radiated electromagnetic waves
depend on the antenna configuration.

Antenna characteristics can be roughly divided into near-field characteristics and far-
field characteristics. Two of the commonly used near-field characteristics are the reflection
coefficient and the radiation efficiency. The antenna reflection coefficient, S11, can be defined
as the ratio of the amplitudes of the reflected and incident voltage waves at the antenna
terminal,

S11 D
V ref

a

V inc
a
: (1)
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.V inc; I inc/

.V ref; I ref/

Zc�Vs Za

Za � Zc

Za � no ohmic loss

.E ;H /

�

Figure 1: A simplified model of an antenna,Za, connected to a lossless transmission
line with characteristic impedance Zc.

A reference value of jS11j D �10 dB, that is, 20 log10 jS11j D �10, is conventionally used
by antenna engineers as an upper bound to express satisfactory antenna performance. The
antenna input impedance Za is related to the reflection coefficient at the antenna terminal
through the expression

Za D Zc
1C S11

1 � S11
: (2)

Note that when S11 is zero, the antenna and the transmission line are matched, that is,
Za D Zc. However, the use of the reflection coefficient (or the input impedance) alone to
evaluate the antenna radiation can be misleading, since lossy antennas can be easily matched
to the transmission line. The antenna radiation efficiency, e, accounts for the amount of power
loss inside the antenna structure. The radiation efficiency, e, is defined as

e D
P rad

P rad C P loss
; (3)

where P rad and P loss are the power radiated by the antenna and the power loss inside the
antenna structure, respectively.

Two of the widely used far-field characteristics of an antenna are the directivity and the field
polarization. The directivity measures the relative spatial distribution of the radiated power
around the antenna. Directive antenna radiates more power in some directions than in others,
which may be a requirement for some systems. The antenna polarization is an indication of
the orientation of the radiated field (conventionally the electric field) in a certain direction.

1.3 Antenna analysis
The goal of antenna analysis is to determine some of the radiation characteristics for a given
antenna structure. Generally, the interaction between electromagnetic waves and any structure
can be predicted by the 3D Maxwell’s equations together with constitutive laws for the
materials involved. Hence, for antenna analysis, solutions to Maxwell’s equations are needed.
For linear, isotropic, and non-dispersive media, the differential form of Maxwell’s equations
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(a) Dipole (b) Monopole (c) Helix

(d) Aperture (e) Microstrip (f) Planar Monopole

(g) Horn (h) Dielectric resonator antenna (DRA)

I

Figure 2: Some standard antenna configurations.

can be written as

@

@t
�H Cr �E D 0; (4a)

@

@t
�E C �E C J � r �H D 0; (4b)

where E ,H , and J are the electric field, the magnetic field, and the electric current source,
respectively. The constitutive parameters �, �, and � denote, respectively, permeability,
permittivity, and conductivity of the medium. The antenna structure can be described directly
through the constitutive parameters or implicitly by imposing suitable boundary conditions.

For simple antenna structures, such as dipoles or standard microstrip antennas, approximate
solutions to Maxwell’s equations can be used to obtain fast models that describe some antenna
characteristics. However, for complex antenna structures, full-wave solutions to Maxwell’s
equations are required to obtain reliable analysis.

Currently, there are many accurate numerical methods that solve the 3D Maxwell’s equa-
tion, such as the finite element methods (FEM), the method of moments (MoM), and the
finite difference time domain (FDTD) method [4]. Each numerical method has advantages
and limitations concerning the computational cost, the level of accuracy, and the material
modelling. But generally, antenna radiation characteristics can be accurately predicted by
using any of these methods.
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Initial antenna strucure
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(Solve Maxwell’s equations)
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no

Figure 3: A general scheme for antenna design.

1.4 Antenna design

The aim of antenna design is to find a suitable antenna structure that satisfies certain design
objectives. Usually, the design objectives are to improve some of the antenna radiation
characteristics. For example, the antenna might be designed to radiate in different frequency
bands, to achieve a certain far-field polarization, or to have a specific directivity. Figure 3
illustrates the basic scheme used for antenna design. A designer suggests an initial structure.
The structure is then parameterized by a set of variables p. The aim is to optimize these
variables to achieve a satisfying performance. The optimization of the antenna is generally
an iterative process. The performance of the suggested structure is evaluated, and if the
performance is not satisfactory, the design variables are updated. The evaluation and update
loop is repeated until either a satisfying performance is obtained or a certain number of
iterations is reached. Generally, the result of the optimization depends critically on the initial
structure, the way the structure is parameterized, and the strategy of updating the design
variables.

There is a growing interest in formulating antenna design problems as mathematical
optimization problems, where numerical solutions to Maxwell’s equations and numerical
optimization algorithms are combined to automate the design process. Thus, the design
process comprises two major parts. On the one hand, numerical methods are used to analyze
the antenna structure and to evaluate the formulated objective function. Moreover, additional
computations are sometimes performed to evaluate derivatives of the objective function with
respect to the design variables. On the other hand, optimization algorithms are used to update
the design variables to improve the objective function.

Typically, a large portion of the computational time is consumed in the evaluation step.
For simple antenna structures, the computational time might be reduced by space mapping
techniques [5,6]. In such techniques, dominating features of the antenna structure are mapped
into a computationally fast, but less accurate, model often called a surrogate model. The
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optimization is carried out mainly using the surrogate model, with the possibility of updating
that model during the optimization to align with the original problem and capture more physics.
However, some antenna structures are too complex to lend their features to a surrogate model.
Evaluation of such antennas, therefore, requires accurate solutions to Maxwell’s equations,
which are usually computationally expensive. Thus, when optimizing complex antennas, it is
essential to use efficient optimization algorithms.

1.5 Optimization algorithms
Staring from an initial guess for the design variables, optimization algorithms seek a solution
of a formulated optimization problem by generating a sequence of updated design variables.
In each step of this procedure, optimization algorithms use the available information about the
optimization problem to update the design variables in order to improve the objective function.
In electromagnetic design problems, two classes of optimization algorithms are typically used:
metaheuristics and gradient-based algorithms.

Metaheuristics are high-level problem-independent heuristic optimization algorithms that
derive heuristic optimization strategies from a metaphor [7]. A metaphor might be a biological
system, individual and collective behavior, or a physical process. Typical examples of
metaheuristics are genetic algorithms, particle swarm optimization, and simulated annealing
[8–11]. Metaheuristics only use information about the value of the objective function, which
make them simple to use as a black-box software. In these algorithms, the design variables
are updated using heuristics that typically include some stochastic parts. The stochastic
parts allow these algorithms to avoid being trapped into a local optimum while searching
for a solution. Because of their simplicity of use, these methods are frequently used in the
electromagnetic community for design problems that are generally characterized by a small
number of design variables [12–14]. Further, most of the commercial software packages used
for electromagnetic analysis are provided with one or more of those optimization algorithms.
However, the small amount of information contained in a usually sparse sampling of objective
function values, together with the stochastic parts employed to update the design variables,
make metaheuristics inefficient for optimization problems with a large number of design
variables [15].

On the other hand, gradient-based optimization algorithms can efficiently handle optimiza-
tion problems that have a large number of design variables. In gradient-based optimization
algorithms, the design variables are updated based on the necessary conditions of optimality
of the mathematical optimization problems. Information about the objective function and
its derivatives with respect to the design variables are used to find the new updates. If the
Hessian of the objective function (the matrix of second derivatives) is available to a low
computational cost, optimization algorithms based on second derivatives, such as Newton
methods, are preferred because of their fast local convergence. However, computing the
Hessian of the objective function is often expensive, which is why optimization problems are
often solved by first-order methods such as steepest descent, quasi-Newton, and sequential
convex approximations methods [16, 17]. First-order methods, besides requiring the objective
function value, require the gradient vector (the derivatives of the objective function with
respect to the design variables). The objective function gradient can be evaluated by methods
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such as finite difference approximations and adjoint-field methods [18–26]. The latter, if
accessible, are vastly more accurate and efficient to use, especially when the number of
variables is large. Basic versions of gradient-based optimization algorithms are usually only
locally convergent; that is, the algorithm will converge to a local optimum if it is initialized
sufficiently close to that optimum. By adding a globalization strategy to a locally convergent
algorithm, the algorithm can be made to converge to a local optimum regardless of the initial
starting point [16].

Gradient-based optimization algorithms have been used to solve electromagnetic problems
such as inverse scattering problems [18–23, 27, 28], filter designs [29–31], and optimization
of magnetic devices [32–35]. However for antenna optimization problems, metaheuristics
have dominated the scene, and only a few works have used gradient-based optimization
algorithms [36–40]. One reason for this lack of progress is the difficulty in formulating
the design problem as an optimization problem for which the gradient information can be
computed in an efficient way. Another reason is the tendency of gradient-based methods to
converge to local optima, and it may well happen that the optimization algorithm is trapped
in a poor local optimum. Nevertheless, once the optimization problem is formulated, a well-
designed gradient-based optimization algorithm will typically find at least a local optimum,
which cannot be guaranteed if metaheuristics are used instead.

1.6 Topology optimization
Design optimization methods can be classified, based on the generality of how the design
domain is parameterized, into three groups: sizing, shape, and topology optimization. In
sizing optimization, a structure is parameterized by a set of design variables that express, for
instance, height, width, or thickness of parts of the structure. In shape optimization, the design
variables are used to parameterize the shape of the boundary of a given structure [13, 41–43].

The term topology optimization is often used to label the most general type of design
optimization methods, in which the shapes as well as the connectivity of individual parts of the
device are subject to design. In topology optimization, design variables are typically used to
describe a function that can spatially describe any structure in one, two, or three dimensional
space. The most common way of carrying out topology optimization, which is used in this
thesis, is through the material distribution approach. This approach was originally developed
to design load-carrying elastic structures [44–47], but the method has been successfully
extended also to other physical disciplines such as acoustics and optics [48–51]. In this
approach, a density function is used to express the distribution of a material in a given domain.
Typically, the density function is sampled into a density vector p D Œp1; p2; � � � ; pM �. Each
component pi of the density vector is assigned to an element i in the design domain to
indicate presence, pi D 1, or absence, pi D 0, of a material. During the optimization of a
particular objective function, the components of the density vector are allowed to take any
value between 0 and 1, but by the end of the process the vector p must hold binary values
only, that is, pi D 0 or 1 for all i . Instead of optimizing directly over a density function, an
alternative topology optimization technique relies on a representation of the geometry through
level sets: the device boundary is defined as the zero-level contour of a higher-dimensional
scalar function [52].
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For topology optimization problems, the number of design variables can easily reach
thousands and even millions for 2D and 3D design problems [53, 54]. The large number of
design variables means that gradient-based optimization techniques are in practice needed
to solve such problems. A main reason for this choice is that the gradient of the objective
function contains a massive amount of information, and gradients can in many cases be very
efficiently computed by using solutions of associated adjoint-field problems, as discussed in
Paper V. To use gradient-based optimization techniques, the design variables are required to
vary continuously between the extreme values (that is, requires pi 2 Œ0; 1� for all i ). However,
the appearance of intermediate values (values that are neither 0 nor 1, also called “gray values”)
in the final design could lead to ambiguous representation of the obtained design. Techniques
such as solid isotropic material with penalization (SIMP) [45] or artificial damping [55]
can be used to suppress these intermediate values in the final design. In contrast, in this
thesis the intermediate values of the design variables are strongly self-penalized through the
optimization problem formulation itself, and techniques are proposed to promote intermediate
values during the optimization process.

Topology optimization techniques have been used to design electromagnetic devices by
optimizing permittivity or permeability distributions. For example, topology optimization
have been used to design magnetic devices by Dyck et al. [32, 33], to design dielectric
substrates for bandwidth improvement of patch antennas by Kiziltas et al. [36], and to design
dielectric resonator antennas to operate with enhanced bandwidth by Nomura et al. [37].
Recently, topology optimization using the material distribution approach has been used to
design metallic devices by Erentok and Sigmund [39], where they reported some difficulties
in the interpolation of the conductivity between a good dielectric and a good conductor. To
mitigate the interpolation issue in material distribution problems solved by the finite-element
method, Aage et al. [27] proposed an implicit impedance boundary condition, which is
also used by Nomura et al. [31]. Topology optimization of metallic devices has also been
recently addressed by Zhou et al. [38] and Yamasaki et al. [56], using level set methods. The
previous contributions to topology optimization of metallic devices, mentioned above, relied
on frequency domain methods, and will therefore be efficient only for the optimization of
devices operating over a narrow frequency band.

1.7 Finite-difference time-domain method (FDTD)
In his 1966 seminal paper [57], Yee introduced a time-domain numerical technique for
the solution of the Maxwell’s equations in first-order form. The algorithm was based on
a central-difference approximation of Maxwell’s equations, with staggered grids for the
electric and magnetic fields, solved alternatively at each time step in a leap-frog manner. All
implementations of the FDTD method at that time suffered from limitations with respect
to the termination of unbounded simulation domains. Mur [58] introduced a stable second-
order accurate absorbing boundary condition for the FDTD method. Then, the perfectly
matched layer (PML) was introduced by Berenger [59], which solved many of the previously
problematic issues with domain termination. Various variants of Berenger’s PML have been
proposed either to ease the numerical implementation or to account for the absorption of
evanescent waves [60, 61].
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Figure 4: The distribution of the electric and magnetic fields in the basic Yee cell.

Currently, the FDTD method has firmly established itself as one of the most popular
methods in computational electromagnetics. Its popularity is mainly due to:

� The ease of implementation.

� The efficiency in terms of low memory footprint due to the explicit time stepping.

� The wide availability of inexpensive and powerful computing resources such as the
graphics processing units (GPUs).

� The increasing interest of modeling inhomogeneous materials.

� The wideband data that are potentially available from one simulation.

The FDTD method divides the computational domain into small cubical cells. For each
cell, the six field components are located to match the curl operator. Figure 4 shows Yee’s
cell for a cube .i; j; k/ with dimension �x, �y, and �z. The electric field components
are located centered and parallel to the cell edges, while the magnetic field components are
located centered and normal to the cell faces. Objects are typically represented explicitly
in the Yee grid by their constitutive parameters. The conductivity and the permittivity have
the same spatial distribution as the discretized electric field, and the permeability has the
spatial distribution of the discretized magnetic field. The staggered electric and magnetic grids
give uncertainty about the actual boundary of objects in the Yee grid, and simulated objects
typically have mesh-dependent effective size [62]. More details about the FDTD method can
be found in standard text books [63–65].

Besides being only a second-order-accurate method, a main drawback with the FDTD
method is the need to use fine grids to accurately model curved objects and small geometrical
features. This is due to the Cartesian grid, which leads to a staircase approximation of any
geometry inside the analysis domain. There are several suggested remedies to circumvent
the effects of the errors introduced by the staircase approximations, but all generally involve
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Figure 5: An illustration of the design problem formulation.

additional arithmetic operations at the boundary cells and sometimes cause instabilities.
Generally, the material distribution approach to topology optimization a priori requires the
design domain to be discretized using fine uniform grids to describe the details of the geometry.
This requirement may leave out the main drawbacks of the FDTD method when it is used
with topology optimization techniques, since the grid size usually need to be small.

2 Thesis summary

This thesis introduces a gradient-based topology optimization approach to design metallic
electromagnetic devices. The focus is to apply the approach to optimize antennas and waveg-
uide transitions; however, the approach can be tailored to design various other electromagnetic
devices as well.

2.1 Basic problem setup

The basic problem setup is schematically shown in Figure 5. A design domain � holds
a conductivity distribution �.x/ that defines the conductive parts of a device of unknown
topology, with x representing a point in the design domain. The device could be an antenna
or a waveguide transition, depending on whether the analysis domain �1 � � is an open
space or a waveguide, respectively. A coaxial transmission line couples signals, through an
aperture in the xy plane, to and from the analysis domain. The boundary �coax is used to
introduce wave energyWin,coax into the coaxial cable, and to measure the wave energyWout,coax
leaving the analysis domain through the coaxial cable. The coaxial cable has an inner core
with diameter d , a metallic shield with diameterD, and is filled with a material with dielectric
constant �c and permeability �c. Wave energies Win,1 and Wout,1, as illustrated in Figure 5,
might enter or leave the analysis domain, respectively, through the boundary �out.
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Inside the analysis domain, assuming no sources inside �1, the 3D Maxwell’s equations
govern the relation between the electric field E and the magnetic fieldH ,

@

@t
�H Cr �E D 0; (5a)

@

@t
�E C �E � r �H D 0: (5b)

Inside the lossless coaxial cable, under the assumption that only the TEM mode is supported,
the following 1D transport equation is satisfied (PaperII),

@

@t
.V ˙ZcI /˙ c

@

@z
.V ˙ZcI / D 0; (6)

where V , I , c D 1=
p
�c�c, and Zc are the potential difference, the current, the phase velocity,

and the characteristic impedance of the coaxial cable, respectively. The two terms V CZcI

and V � ZcI constitute two signals travelling inside the coaxial cable in the positive and
negative z directions, respectively.

Supplied with appropriate initial and boundary conditions, equations (5a), (5b), and (6)
can be solved for the electric field E , the magnetic fieldH , the current I , and the potential
difference V .

2.2 Energy balance and optimization problem
As discussed in Paper II, the initial-boundary-value problem associated with the above setup
can be used to derive the energy balance

Win,coax CWin,1 D W� CWout,coax CWout,1; (7)

in which, as illustrated in Figure 5, the incoming energy Win,coax CWin,1 from the coaxial
cable and exterior waves equals the total outgoing energy, which comprises the ohmic losses
W� in design domain�, the outgoing energyWout,coax through the coaxial cable, and the wave
energy Wout,1 exiting through the boundary �out.

We note that there are two alternatives to supply incoming energy to the analysis domain,
either by Win,coax through the coaxial cable or by Win,1 through the boundary �out. If the
coaxial cable supplies Win,coax, an optimization problem can conceptually be formulated with
the objective to maximize the outgoing energy Wout,1. That is, the device is then optimized
based on its transmitting mode. Note that from energy balance (7), the maximization ofWout,1
implies the minimization of the sum of the two terms Wout,coax and W� (This also implies the
minimization of the reflection coefficient inside the coaxial cable plus the maximization of the
radiation efficiency (cf. Sec. 1.2)). On the other hand, if the boundary �out is used to supply
incoming energy Win,1, we may conceptually formulate an optimization problem with the
objective to maximize the outgoing energy Wout,coax through the coaxial cable. That is, the
device is then optimized based on its receiving mode. Note also that by energy balance (7), the
maximization ofWout,coax implies the minimization of the sum of the two termsWout,1 andW�.
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Both formulations thus tend to minimize the losses in order to maximize the corresponding
objective function.

The second alternative is computationally more efficient when time-domain numerical
methods are used, since the full-time history of the observed signal is needed to efficiently
compute the gradient of the objective function by adjoint-field methods, as described in
Paper V. Observation of the outgoing signal in the coaxial cable requires less memory than
observation of the outgoing waves Wout;1. Therefore, the second choice is adopted to
formulate the conceptual optimization problem

max
�.x/2Œ�min;�max�

Wout,coax .� .x// ;

s.t. the governing equations;
exterior wave sources .Win;1/ ;

Win,coax D 0;

(8)

where �min and �max represent physical conductivities of a low-loss dielectric and a good
conductor, respectively. The outgoing energy in the coaxial cable can be computed, using the
signal V �ZcI in expression (6), as follow

Wout,coax D
1

4Zc

Z T

0

.V �ZcI /
2 dt; (9)

where T denotes the length of the observation time interval.

2.3 Numerical treatment
The FDTD method is used to numerically solve the time-domain Maxwell’s equations with the
open space radiation condition simulated using a uniaxial perfectly matched layer (UPML) [60,
61]. The design variables are the conductivity value at each Yee edge i in the design domain
�.

Let � be a vector that holds the conductivity components at each Yee edge inside the
domain �. We introduce the normalized density vector p, whose components are mapped to
the physical conductivities through

�i D 10
.c1pi�c2/ S/m; (10)

where the scalars c1 and c2 are selected to control the physical conductivity range Œ�min; �max�.
In the numerical experiments in this thesis, we observed a very low sensitivity in the objective
function to variations in conductivities below �min D 10�4 S/m or above �max D 105 S/m.
Therefore, we usually use expression (10) with c1 D 9 and c2 D 4.

Based on the FDTD method, a discrete version of optimization problem (8) can be written
as

max
p

W �
out,coax .p/ ;

s.t. the discretized governing equations;

exterior wave sources
�
W �

in;1

�
;

W �
in,coax D 0;

(11)
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with the discrete objective function defined as

W �
out,coax.p/ D

1

Zm

NX
nD0

.V nC1 � OZcI
nC 1

2
z /2�t; (12)

where V nC1, I
nC 1

2
z , and OZc are the potential difference, the current, and the characteristic

impedance of the discrete coaxial cable model proposed in Paper II; Zm D
p
�c=�c ; N is

the total number of time steps used in the simulation; and �t is the time step used in the
FDTD method. An efficient technique to implement the exterior wave sources W �

in;1 in the
FDTD method is to use the total-field scattered-field formulation [63]. To control the frequency
spectrum of the incoming waves, throughout this thesis, we used a time-domain truncated sinc
signal that is usually modulated to the center of the frequency band of interest [66].

To solve optimization problem (11) by a gradient-based optimization algorithm, the gradient
of the objective function (12) is required. In Paper V, the adjoint-field method and the
FDTD discretization of Maxwell’s equations are used to derive the following expression for
the gradient of objective function (12),

@W �
out,coax

@�i
D ��3

NX
nD1

EN�ni

E
�n� 1

2

i CE
�nC 1

2

i

2
�t; (13)

where i denotes the index of an arbitrary Yee-edge inside the design domain; � is the
spatial discretization step; Ei is the discrete electric field obtained from the FDTD solution
to equations (5) and (6); and E�i is a discrete adjoint electric field obtained by solving an
adjoint-field problem. The adjoint-field problem is similar to the FDTD discretization of
equations (5), except that the adjoint-field problem is excited through the boundary �coax, at
the bottom of the coaxial cable, using the expression

V �n�
1
2 C OZcI

�n�1
z D V N�nC1 � OZcI

N�nC 1
2

z for n D 1; : : : ; N; (14)

where V �n�
1
2 and I �n�1z are the discrete potential difference and the current inside the coaxial

cable of the adjoint problem. Note that the left side of expression (14) constitutes a signal
propagating inside the coaxial cable in the positive z direction, and that the right side is the
time-reversed signal that propagates in the negative z direction for the original-field problem.
In other words, the time-reversed received signal in the original-field problem constitutes the
incoming signal for the adjoint-field problem.

Thus, by using two FDTD solutions, the objective function and the gradient vector can
be computed for any number of design variables inside the design domain �. In this thesis,
the globally convergent method of moving asymptotes (GCMMA) [67] is used to update
the design variables. The GCMMA is a first-order gradient-based optimization method that
belong to the class of sequential convex approximation methods [17, ch4].
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Figure 6: The energy loss versus the value of the design domain conductivity.
Typical values for �min D 10

�2 S/m, �med D 10
2 S/m, and �max D 10

5 S/m.

2.4 Self-Penalization
Problem (11) is strongly self-penalized towards the lossless design cases. More precisely,
solving problem (11) by gradient-based optimization methods leads, after only a few iterations,
to designs consisting mainly of a good conductor (�max) or a good dielectric (�min). The reason
for the strong self-penalization can be explained, using energy balance (7), as follows. For
a given incoming energy Win,1, to maximize the outgoing energy, Wout,coax, the energy
losses, W�, inside the design domain should by minimized. The intermediate conductivities
contribute to higher energy losses than the extreme conductivities, as illustrated in Figure 6.
Thus, any gradient-based optimization method will attempt to minimize the energy losses,W�,
by moving the edge conductivities towards the lossless case (�min or �max). Unfortunately,
the resulting optimized designs often consist of scattered metallic parts and exhibit bad
performance, as demonstrated in Paper III.

To relax the self-penalization, we use a filtering approach, proposed in Paper I. The
goal of the filtering is to promote intermediate conductivities inside the design domain
during the initial phase of the optimization to counteract the self-penalization. To do so, we
replace p by Qp D Kp in expression (10). The filter matrix K approximates an integral
operator with support over a disc with radius R. By using the filter, each component in
the vector p is replaced by a weighted average of the neighboring components, where
the weights vary linearly from a maximum value at the center of the disc to zero at the
perimeter. The filter effectively blurs the design variables p and thus impose intermediate
conductivities inside the design domain�. However, to avoid having losses in the final design,
the optimization problem is solved following a continuation approach. Starting with initial
radius R0, optimization problem (11) is solved for a sequence of subproblems, where after
partial convergence of a subproblem, the filter radius is reduced by setting RnC1 D 
Rn,
where 
 < 1 is a constant filter decrease coefficient. The convergence of a subproblem
is evaluated based on the change of the norm of the first-order optimality conditions. The
algorithm terminates when the radius Rn decreases beyond a small value, typically chosen to
be smaller than the numerical grid size �. Typically, the final design consists essentially of
two conductivity values that correspond to �min and �max.
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Figure 7: A flowchart of the optimization process.

2.5 Summary of the optimization process
The flowchart in Figure 7 illustrates the optimization process. The process starts with a uniform
initial distribution of the design variables, p, which typically corresponds to a conductivity
around the peak in Figure 6. Starting with an initial filter radius R0, the optimization problem
is solved through solutions to a number of subproblems. In each subproblem, the design
variables are filtered and mapped to the physical conductivities � . Then the FDTD method
numerically solves Maxwell’s equations and the associated adjoint-field problem in order
to compute the objective function and the gradient vector. The chain rule is used to obtain
the gradient with respect to the design variables p. Then a convergence criterion based on
the first-order necessary condition is tested. If the convergence criterion is not satisfied, the
optimization process continues to a new cycle in the current subproblem, where the GCMMA
algorithm use the gradient and the objective function values to update the design variables.
The GCMMA might evaluate the objective function a few additional times to find updates
that satisfy a sufficient improvement condition of the objective function. If the convergence
criterion is reached but the filter radius is greater than Q� D �=

p
2, the minimal distance

between two conductivity components in the Yee grid, the radius of the filter is reduced,
RnC1 D 
Rn, and a new subproblem starts. Finally, the optimization process terminates
if the convergence criterion is satisfied and the filter radius is smaller than or equal to Q�.
Typically, the optimized design consists of conductivities that are either �min or �max. In a
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Figure 8: Left: the final conductivity distribution of the monopole designed based on
linearly-polarized plane wave excitation. The optimization problem has 20; 200 de-
sign variables (the coaxial cable connection point is marked by a gray dot). Right:
the reflection coefficient of the antenna.

final step before evaluating the performance of the optimized design, a threshold conductivity
�th D 0:1 S/m is usually used to map conductivities below and above �th to 0 S/m (void) and
5:8 � 107 S/m (copper), respectively.

2.6 Selected results

2.6.1 Ultrawideband (UWB) monopole design

Recently, UWB antennas have received great attention in applications such as wireless
communication and high resolution radar [68, 69]. A key candidate for UWB antennas is
the planar monopole. In Paper I, optimization problem (11) is used for the complete layout
optimization of the radiating element of planar monopole antennas. We use a design domain
that has an area of 75 � 75 mm2, located 0:75 mm above a simulated infinite ground plane,
and connected at the center of its bottom side to a 50 � coaxial cable. The design domain
is discretized into 100 � 100 Yee cell faces, which yields 20; 200 design variables (one
conductivity component for each Yee edge). The objective is to maximize the energy received
by the planar monopole over the frequency band 1–10 GHz.

The analysis domain is excited by a set of external sources that surround the monopole
and radiate linearly-polarized plane waves. Figure 8 shows the final design obtained by the
optimization algorithm in 132 iterations. The final design uses only around 50 � 45 mm2

out of the available design domain area. The reflection coefficient jS11j of the optimized
monopole is below �10 dB over the frequency band 1:2 � 8:5 GHz. Included in the same
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Figure 9: Left: the final conductivity distribution of the monopole designed based
on circularly-polarized plane wave excitation. The optimization problem has
20; 200 design variables (the coaxial cable connection point is marked by a gray
dot). Right: the reflection coefficient and the radiation efficiency of the antenna.

figure as a reference for comparison, is the reflection coefficient of the planar monopole
antenna obtained when the whole design domain area is filled with a perfect conductor.

When the excitation sources are set to radiate essentially circularly-polarized plane waves,
the design shown in Figure 9 is obtained by the optimization algorithm in 126 iterations. In
this case, the monopole reflection coefficient jS11j is below �10 dB over the frequency band
1:23 � 9:75 GHz. Included in the same figure for verification purposes, are the reflection
coefficient and the radiation efficiency of the antenna computed with the CST Microwave
Studio package (https://www.cst.com/).

2.6.2 Microstrip antenna design

Microstrip antennas have been one of the most attractive antennas to use in many wireless
systems because of their many unique and attractive properties: low profile, compact and
conformable structure, and ease of fabrication and integration with microwave devices [3].

We use optimization problem (11) to design the radiating patch of a microstrip antenna
in order to radiate around 1:5 GHz with 0:2 GHz bandwidth. The design domain has the
same area and discretization as the UWB monopole case; however, here this domain is used
as the radiating patch of a microstrip antenna. The radiating patch is located 6 mm above a
simulated infinite ground plane. We use a dielectric substrate with relative permittivity of 2:62
and loss tangent of 0:001 at 2 GHz. The optimization algorithm converged to the final design
in 118 iterations. Figure 10 shows the optimized conductivity and the performance of the
antenna. Note that the inner probe of the 50 � coaxial cable is connected to the radiating
patch at (18:75 mm,37:5 mm) and is marked by a gray dot. The CST package is used to
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Figure 10: Left: the final conductivity distribution over the patch area of the
microstrip antenna optimized to radiate at 1:5 GHz (the probe connection point is
marked by a gray dot). Right: the reflection coefficient and the radiation efficiency.
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Figure 11: Left: the final conductivity distribution over the patch area of the
microstrip antenna that radiates over two frequency bands centered around 1:5 GHz
and 2 GHz (the probe connection point is marked by a gray dot). Right: the
reflection coefficient and the radiation efficiency.
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Figure 12: Left: the optimized conductivity distribution over the ground plane
when the radiating patch and the ground plane are simultaneously designed. Right:
the optimized conductivity over the patch area. The design problem has in total
58,276 design variables (the location of the coaxial probe is marked by a gray dot).

compute the radiation efficiency of the antenna and to cross-verify the reflection coefficient
computed by the FDTD method.

The same design domain is used to design a dual-band microstrip antenna, with the two
frequency bands centered around 1:5 and 2:0 GHz. The design problem (11) is slightly
modified, to account for the energy received from the two bands, as

max
p

2X
iD1

jW
.i/

out,coax.p/j
1
2 : (15)

Figure 11 shows the geometry of the antenna, and the computed reflection coefficient and radi-
ation efficiency. The optimization algorithm converged to the final design after 120 iterations.

In the previous two cases, the ground plane of the microstrip antennas is considered
electrically large and is simulated as an infinite ground plane. In many realistic situations,
microstrip antennas are mounted over a finite ground plane. Generally, the ground plane is
considered as a part of the antenna structure and, therefore, affects the antenna radiation,
especially when the ground plane size is electrically small. In the literature, the design of
the ground plane is usually considered in a separate design phase [70–73], which is typically
pursued after the design of the radiating patch of the antenna. In Paper III, a microstrip
antenna mounted over a finite ground plane is designed to operate at 1.5 GHz with 0.3 GHz
bandwidth. Both the ground plane and the radiating patch are considered in the design. A
dramatic improvement in performance is observed when both the radiating patch and the
ground plane are simultaneously designed. Figure 12 shows the optimized conductivity
distribution over the ground plane (left) and the radiating patch (right). The design problem
has in total 58,276 design variables, and the optimization algorithm required 125 iterations.
Figure 13 shows the reflection coefficient and the radiation efficiency of the obtained design
computed with our FDTD code and cross-verified with the CST package. Figure 14 shows the
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Figure 13: The reflection coefficient and the radiation efficiency of the designs
given in Figure 12.

(a) F = 1.4 GHz (b) F = 1.5 GHz (c) F = 1.6 GHz

x
y

x
y

Figure 14: Surface currents over the radiating patch and the ground plane given in
Figure 12 at 1.4, 1.5, and 1.6 GHz. The first row is the surface currents seen from
the positive z axis, and the second row is the surface currents seen from the negative
z axis.
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Figure 15: Left: the geometry of the optimized antennas with a feed-to-feed distance
df D 116:90 mm. Right: the manufactured prototype when used to detect a nearby
phantom that represents human muscle tissue.

surface current distribution, computed by the FDTD method, at 1.4, 1.5, and 1.6 GHz over the
optimized conductive parts of the antenna. The peaks of the surface current (the red color)
that occur on the ground plane indicate the essential role of the ground plane in the antenna
radiation.

2.6.3 Wideband planar directive antennas

The growing interest of using microwave detection and imaging systems, especially for
medical applications, raises more demands on the design of wideband directive antennas. In
the literature, there are a few antenna types that are characterized as being wideband as well
as directive. The most known directive antenna is the tapered slot antenna, known as the
Vivaldi antenna, or its variant the antipodal Vivaldi antenna [74, 75]. A conventional Vivaldi
antenna is generally described by a few parameters, which limits the possibility to optimize
the antenna structure to achieve a satisfactory performance. Moreover, focusing on enlarging
the impedance bandwidth of Vivaldi antennas might reduce the required directivity, especially
at the lower frequencies where the antenna arms can radiate as monopole.

In Paper IV, planar directive antennas are designed by formulating an optimization problem
with the objective to maximize the coupling between two antennas separated by a specific
distance. The frequency band of interest is 1–10 GHz. Figure 15 shows one of the optimized
planar antennas. Each antenna has an area of 77:94 � 77:94 mm2 and the two antennas are
separated a feed-to-feed distance df D 116:90 mm. The design problem has 39; 480 design
variables and the optimization algorithm required 188 iterations to converge to the final design
shown to the left in Figure 15. Figure 15 shows also the manufactured antennas. Fig. 16 shows
the coupling coefficient, jS21j, and the reflection coefficient, jS11j, of the antennas, evaluated
experimentally and through simulations by the FDTD method and the CST package. In
order to evaluate their performance, the optimized antennas are used to detect a phantom that
represents human muscle tissue. We study the detection sensitivity, measured as the difference
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Figure 16: Left: the coupling coefficient between the two monopoles given in
Figure 15. Right: the reflection coefficient.
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Figure 17: Left: the difference between the coupling coefficients in presence and
absence of 80�80�10 mm3 phantom, for the optimized antennas in Figure 15 and
for an UWB disc monopole antennas with comparable size. Right: the difference in
the reflection coefficients.

in the scattering parameters between the cases presence and absence of the phantom. That
is, we compute (jSPhantom

ij � SAir
ij j) for i; j D 1; 2. Figure 17 shows the detection sensitivities

of the optimized antennas compared to the detection sensitivities of a pair of UWB disc
monopole antennas, when both are used to detect the same phantom. As can be seen from
Figure 17, the optimized antennas give more than 300% improvement in signal strength over
a wide frequency band, compared to the reference UWB disc monopoles.
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Figure 18: Optimizing the conductivity over the design domain � (the gray region
enclosed by the dotted line) to match the 50 Ohm coaxial cable (A or B) to a
standard rectangle waveguide with cross section a � b.

2.6.4 Waveguide transitions

At transition planes, where a transmission line is connected to a device or to a different
transmission line, a mismatch between the two sides reduces the system efficiency. The
mismatch problem is more prominent for systems operating over wide frequency bands, since
microwave components typically have frequency dependent characteristics. Many wideband
coaxial-to-waveguide transitions have been reported in the literature [76–78]. However,
most of the proposed transitions still depend essentially on the concept of cascading various
transmission line sections, with only few parameters to optimize. Besides requiring much
space to install, the complexity of assembling various sections, especially when 3D structures
are involved, can hinder mass production of such transitions.

We use optimization problem (11) to design transitions between standard rectangular
waveguides and a 50 Ohm coaxial cable. We consider the design of two types of transitions,
right-angle transitions and end-launcher transitions, illustrated in Figure 18. Here, the analysis
domain �1 is bounded from five sides by the waveguide walls and extends to infinity in
the sixth direction (positive z). The design domain � is backed by an RT/Duroid 5880 LZ
substrate (�r = 1.96, thickness = 1.27 mm) to support the conducting patches. Figure 19
shows the geometry and the performance for one of the optimized right-angle transitions.
The optimization problem has 28; 410 design variables and is solved by the design algorithm
in 226 iterations. The reflection and the coupling coefficients of the transition are shown in
Figure 19, with the coaxial cable designated as port 1 and the waveguide as port 2. There is
good match between the experimental results and the results computed by the FDTD method
and the CST package. The two vertical dotted lines determine the targeted frequency band, for
which the transition is optimized. The transition has a reflection coefficient lower than �10 dB
over the frequency band 6:75–13:5 GHz (66% bandwidth) and a corresponding coupling
coefficient higher than �0:5 dB. Figure 20 shows the fabricated prototype.
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Figure 19: Left: the optimized conductivity distribution enclosed by three of the
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Figure 20: Left: the fabricated prototype of the optimized design backed by the
RT/Duroid 5880 LZ substrate. Right: the assembled right-angle transition (the
shorting wall at z D 0 is removed for visibility).

23



References
[1] IEEE Standard for Definitions of Terms for Antennas, IEEE Std 145-2013, 2014.

[2] C. A. Balanis, Advanced Engineering Electromagnetics. John Wiley & Sons, 1989.

[3] ——, Antenna Theory: Analysis and Design, 3rd ed. Wiley-Interscience, 2005.

[4] M. N. Sadiku, Numerical Techniques in Electromagnetics, 2nd ed. CRC Press, 2001.

[5] J. Zhu, J. Bandler, N. Nikolova, and S. Koziel, “Antenna optimization through space
mapping,” IEEE Trans. Antennas Propag., vol. 55, no. 3, pp. 651–658, March 2007.

[6] S. Koziel, S. Ogurtsov, J. Bandler, and Q. Cheng, “Reliable space-mapping optimization
integrated with EM-based adjoint sensitivities,” IEEE Trans. Microw. Theory Tech.,
vol. 61, no. 10, pp. 3493–3502, Oct 2013.

[7] K. Sörensen, “Metaheuristics–the metaphor exposed,” Int. Trans. in Op. Res., vol. 22,
no. 1, pp. 3–18, 2015.

[8] R. L. Haupt, “An introduction to genetic algorithms for electromagnetics,” IEEE Anten-
nas Propag. Mag., vol. 37, no. 2, pp. 7–15, 1995.

[9] J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,”
IEEE Trans. Antennas Propag., vol. 52, no. 2, pp. 397–407, Feb 2004.

[10] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,”
Science, vol. 220, no. 4598, pp. 671–680, 1983.

[11] J. Perez and J. Basterrechea, “Comparison of different heuristic optimization methods
for near-field antenna measurements,” IEEE Trans. Antennas Propag., vol. 55, no. 3, pp.
549 –555, Mar. 2007.

[12] M. John and M. Ammann, “Wideband printed monopole design using a genetic algo-
rithm,” IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 447 –449, 2007.

[13] L. Griffiths, C. Furse, and Y. C. Chung, “Broadband and multiband antenna design using
the genetic algorithm to create amorphous shapes using ellipses,” IEEE Trans. Antennas
Propag., vol. 54, no. 10, pp. 2776 –2782, Oct. 2006.

[14] F. Villegas, T. Cwik, Y. Rahmat-Samii, and M. Manteghi, “A parallel electromagnetic
genetic-algorithm optimization (EGO) application for patch antenna design,” IEEE
Trans. Antennas Propag., vol. 52, no. 9, pp. 2424 – 2435, Sep. 2004.

[15] O. Sigmund, “On the usefulness of non-gradient approaches in topology optimization,”
Struct. Multidiscip. Optim., vol. 43, pp. 589–596, 2011.

[16] J. Nocedal and S. Wright, Numerical optimization. Springer-Verlag New York, 1999.

24



[17] P. Christensen and A. Klarbring, An Introduction to Structural Optimization. Springer
Netherlands, 2008.

[18] M. Gustafsson and S. He, “An optimization approach to two-dimensional time domain
electromagnetic inverse problems,” Radio Science, vol. 35, no. 2, pp. 525–536, Mar.
2000.

[19] Y.-S. Chung, C. Cheon, and S.-Y. Hahn, “Reconstruction of dielectric cylinders using
FDTD and topology optimization technique,” IEEE Trans. Magn., vol. 36, no. 4, pp.
956–959, Jul 2000.

[20] Y.-S. Chung, C. Cheon, I.-H. Park, and S.-Y. Hahn, “Optimal design method for mi-
crowave device using time domain method and design sensitivity analysis. II. FDTD
case,” IEEE Trans. Magn., vol. 37, no. 5, pp. 3255 –3259, Sep. 2001.

[21] I. Rekanos, “Inverse scattering in the time domain: an iterative method using an FDTD
sensitivity analysis scheme,” IEEE Trans. Magn., vol. 38, no. 2, pp. 1117–1120, Mar
2002.

[22] E. Abenius and B. Strand, “Solving inverse electromagnetic problems using FDTD and
gradient-based minimization,” Int. J. Num. Meth. Eng., vol. 68, no. 6, pp. 650–673,
2006.

[23] P. Jacobsson and T. Rylander, “Gradient-based shape optimisation of conformal array
antennas,” IET Microw. Antennas Propag., vol. 4, no. 2, pp. 200–209, Feb. 2010.

[24] N. Nikolova, H. Tam, and M. Bakr, “Sensitivity analysis with the FDTD method on
structured grids,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp. 1207 – 1216,
Apr. 2004.

[25] A. Bondeson, Y. Yang, and P. Weinerfelt, “Shape optimization for radar cross sections
by a gradient method,” Int. J. Num. Meth. Eng., vol. 61, no. 5, pp. 687–715, 2004.

[26] M. H. Bakr, O. S. Ahmed, M. H. E. Sherif, and T. Nomura, “Time domain adjoint
sensitivity analysis of electromagnetic problems with nonlinear media,” Opt. Express,
vol. 22, no. 9, pp. 10 831–10 843, May 2014.

[27] N. Aage, N. A. Mortensen, and O. Sigmund, “Topology optimization of metallic devices
for microwave applications,” Int. J. Num. Meth. Eng., vol. 83, no. 2, pp. 228–248, 2010.

[28] A. Diaz and O. Sigmund, “A topology optimization method for design of negative
permeability metamaterials,” Struct. Multidiscip. Optim., vol. 41, pp. 163–177, 2010.

[29] H. Khalil, A. Assadihaghi, S. Bila, D. Baillargeat, M. Aubourg, S. Verdeyme, J. Puech,
and L. Lapierre, “Topology gradient optimization in 2-D and 3-D for the design of
microwave components,” Microw. Opt. Technol. Lett., vol. 50, no. 10, pp. 2739–2743,
2008.

25



[30] S. Koziel, F. Mosler, S. Reitzinger, and P. Thoma, “Robust microwave design
optimization using adjoint sensitivity and trust regions,” Int. J. Rf. Microw. C. E., vol. 22,
no. 1, pp. 10–19, 2012.

[31] T. Nomura, M. Ohkado, P. Schmalenberg, J. Lee, O. Ahmed, and M. Bakr, “Topology
optimization method for microstrips using boundary condition representation and adjoint
analysis,” in EuMC2013, Oct 2013, pp. 632–635.

[32] D. Dyck, D. Lowther, and E. Freeman, “A method of computing the sensitivity of
electromagnetic quantities to changes in materials and sources,” IEEE Trans. Magn.,
vol. 30, no. 5, pp. 3415 –3418, Sep. 1994.

[33] D. Dyck and D. Lowther, “Automated design of magnetic devices by optimizing material
distribution,” IEEE Trans. Magn., vol. 32, no. 3, pp. 1188 –1193, May 1996.

[34] T. Labbé and B. Dehez, “Convexity-oriented method for the topology optimization of
ferromagnetic moving parts in electromagnetic actuators using magnetic energy,” IEEE
Trans. Magn., vol. 46, no. 12, pp. 4016–4022, Dec 2010.

[35] M. Otomori, T. Yamada, K. Izui, S. Nishiwaki, and N. Kogiso, “Level set-based topology
optimization for the design of a ferromagnetic waveguide,” IEEE Trans. Magn., vol. 48,
no. 11, pp. 3072–3075, Nov 2012.

[36] G. Kiziltas, D. Psychoudakis, J. Volakis, and N. Kikuchi, “Topology design optimization
of dielectric substrates for bandwidth improvement of a patch antenna,” IEEE Trans.
Antennas Propag., vol. 51, no. 10, pp. 2732 – 2743, Oct. 2003.

[37] T. Nomura, K. Sato, K. Taguchi, T. Kashiwa, and S. Nishiwaki, “Structural topology
optimization for the design of broadband dielectric resonator antennas using the finite
difference time domain technique,” Int. J. Num. Meth. Eng., vol. 71, pp. 1261–1296,
2007.

[38] S. Zhou, W. Li, and Q. Li, “Level-set based topology optimization for electromagnetic
dipole antenna design,” J. Comput. Phys., vol. 229, no. 19, pp. 6915 – 6930, 2010.

[39] A. Erentok and O. Sigmund, “Topology optimization of sub-wavelength antennas,” IEEE
Trans. Antennas Propag., vol. 59, no. 1, pp. 58 –69, Jan. 2011.

[40] M. Ghassemi, M. Bakr, and N. Sangary, “Antenna design exploiting adjoint sensitivity-
based geometry evolution,” IET Microw. Antennas Propag., vol. 7, no. 4, pp. 268–276,
Mar. 2013.

[41] P. Jacobsson and T. Rylander, “Shape optimization of the total scattering cross section
for cylindrical scatterers,” Radio Science, vol. 44, no. 4, Aug. 2009.

[42] N. Uchida, S. Nishiwaki, K. Izui, M. Yoshimura, T. Nomura, and K. Sato, “Simultaneous
shape and topology optimization for the design of patch antennas,” in EuCAP 2009, Mar.
2009, pp. 103–107.

26



[43] J. Kataja, S. Jarvenpää, J. Toivanen, R. Mäkinen, and P. Ylä-Oijala, “Shape sensitivity
analysis and gradient-based optimization of large structures using MLFMA,” IEEE
Trans. Antennas Propag., vol. 62, no. 11, pp. 5610–5618, Nov. 2014.

[44] M. P. Bendsøe and N. Kikuchi, “Generating optimal topologies in structural design
using a homogenization method,” Comput. Methods in Appl. Mech. Eng., vol. 71, no. 2,
pp. 197–224, 1988.

[45] M. P. Bendsøe and O. Sigmund, Topology Optimization. Theory, Methods, and Applica-
tions. Springer, 2003.

[46] O. Sigmund and K. Maute, “Topology optimization approaches,” Struct. Multidiscip.
Optim., vol. 48, no. 6, pp. 1031–1055, 2013.

[47] J. Deaton and R. Grandhi, “A survey of structural and multidisciplinary continuum
topology optimization: post 2000,” Struct. Multidiscip. Optim., vol. 49, no. 1, pp. 1–38,
2014.

[48] E. Wadbro, “Analysis and design of acoustic transition sections for impedance matching
and mode conversion,” Struct. Multidiscip. Optim., vol. 50, no. 3, pp. 395–408, 2014.

[49] J. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon.
Rev., vol. 5, no. 2, pp. 308–321, 2011.

[50] Y.-S. Chung, B.-J. Lee, and S.-C. Kim, “Optimal shape design of dielectric micro lens
using FDTD and topology optimization,” J. Opt. Soc. Korea, vol. 13, no. 2, pp. 286–293,
Jun. 2009.

[51] J. Andkjær, V. Johansen, K. Friis, and O. Sigmund, “Inverse design of nanostructured
surfaces for color effects,” J. Opt. Soc. Am. B, vol. 31, no. 1, pp. 164–174, 2014.

[52] G. Allaire, F. Jouve, and A.-M. Toader, “A level-set method for shape optimization,” C.
R. Acad. Sci. Paris Sér. I Math., vol. 334, no. 12, pp. 1125–1130, 2002.

[53] E. Wadbro and M. Berggren, “Megapixel topology optimization on a graphics
processing unit,” SIAM Review, vol. 51, no. 4, pp. 707–721, 2009.

[54] N. Aage and B. Lazarov, “Parallel framework for topology optimization using the
method of moving asymptotes,” Struct. Multidiscip. Optim., vol. 47, no. 4, pp. 493–505,
2013.

[55] J. Jensen, O. Sigmund, L. H. Frandsen, P. I. Borel, A. Harpoth, and M. Kristensen,
“Topology design and fabrication of an efficient double 900 photonic crystal waveguide
bend,” IEEE Photon. Technol. Lett., vol. 17, no. 6, pp. 1202–1204, 2005.

[56] S. Yamasaki, T. Nomura, A. Kawamoto, K. Sato, and S. Nishiwaki, “A level set-based
topology optimization method targeting metallic waveguide design problems,” Int. J.
Num. Meth. Eng., vol. 87, no. 9, pp. 844–868, 2011.

27



[57] K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s
equations in isotropic media,” IEEE Trans. Antennas Propag., vol. 14, no. 3, pp. 302
–307, May 1966.

[58] G. Mur, “Absorbing boundary conditions for the finite-difference approximation of
the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat.,
vol. 23, no. 4, pp. 377–382, 1981.

[59] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,”
J. Comput. Phys., vol. 114, no. 2, pp. 185–200, 1994.

[60] S. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation
of FDTD lattices,” IEEE Trans. Antennas Propag., vol. 44, no. 12, pp. 1630 –1639, Dec.
1996.

[61] J. Fang and Z. Wu, “Generalized perfectly matched layer for the absorption of propa-
gating and evanescent waves in lossless and lossy media,” IEEE Trans. Microw. Theory
Tech., vol. 44, no. 12, pp. 2216–2222, Dec. 1996.

[62] N. Farahat and R. Mittra, “Analysis of frequency selective surfaces using the finite
difference time domain (FDTD) method,” in IEEE AP-S Int. Symp., vol. 2, 2002, pp.
568–571.

[63] A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference
Time-Domain Method, 3rd ed. Artech House, 2005.

[64] A. Elsherbeni and V. Demir, The Finite Difference Time Domain Method for
Electromagnetics: With MATLAB Simulations. SciTech Publishing, Inc., 2009.

[65] U. S. Inan and R. A. Marshall, Numerical Electromagnetics: The FDTD Method.
Cambridge University Press, 2011.

[66] B. P. Lathi, Modern Digital and Analog Communication Systems, 3rd ed. Oxford
University Press, 1998.

[67] K. Svanberg, “A class of globally convergent optimization methods based on
conservative convex separable approximations,” SIAM J. Optim., vol. 12, no. 2, pp.
555–573, 2002.

[68] A. Foudazi, H. Hassani, and S. Nezhad, “Small UWB planar monopole antenna with
added GPS/GSM/WLAN bands,” IEEE Trans. Antennas Propag., vol. 60, no. 6, pp.
2987–2992, 2012.

[69] A. Ruengwaree, A. Ghose, and G. Kompa, “A novel UWB rugby-ball antenna for near-
range microwave radar system,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp.
2774–2779, 2006.

28



[70] S. Noghanian and L. Shafai, “Control of microstrip antenna radiation characteristics by
ground plane size and shape,” IEE Proc. on Microw. Antennas Propag., vol. 145, no. 3,
pp. 207–212, 1998.

[71] E. El-Deen, S. Zainud-Deen, H. Sharshar, and M. A. Binyamin, “The effect of the ground
plane shape on the characteristics of rectangular dielectric resonator antennas,” in IEEE
AP-S Int. Symp., 2006, pp. 3013–3016.

[72] S. Best, “The significance of ground-plane size and antenna location in establishing
the performance of ground-plane-dependent antennas,” IEEE Antennas Propag. Mag.,
vol. 51, no. 6, pp. 29–43, 2009.

[73] K. Mandal and P. Sarkar, “High gain wide-band U-shaped patch antennas with modified
ground planes,” IEEE Trans. Antennas Propag., vol. 61, no. 4, pp. 2279–2282, 2013.

[74] P. Gibson, “The Vivaldi aerial,” in 9th European Microwave Conference, Sep. 1979, pp.
101–105.

[75] J. Langley, P. Hall, and P. Newham, “Novel ultrawide-bandwidth Vivaldi antenna with
low crosspolarisation,” Electron. Lett., vol. 29, no. 23, pp. 2004–2005, Nov. 1993.

[76] J.-H. Bang and B.-C. Ahn, “Coaxial-to-circular waveguide transition with broadband
mode-free operation,” Electron. Lett., vol. 50, no. 20, pp. 1453–1454, Sep. 2014.

[77] W. Yi, E. Li, G. Guo, and R. Nie, “An X-band coaxial-to-rectangular waveguide transi-
tion,” in ICMTCE 2011, May 2011, pp. 129–131.

[78] N. Tako, E. Levine, G. Kabilo, and H. Matzner, “Investigation of thick coax-to-waveguide
transitions,” in EuCAP 2014, Apr. 2014, pp. 908–911.

29


	Introduction
	Motivation
	Antenna concepts
	Antenna analysis
	Antenna design
	Optimization algorithms
	Topology optimization
	Finite-difference time-domain method (FDTD)

	Thesis summary
	Basic problem setup
	Energy balance and optimization problem
	Numerical treatment
	Self-Penalization
	Summary of the optimization process
	Selected results
	Ultrawideband (UWB) monopole design
	Microstrip antenna design
	Wideband planar directive antennas
	Waveguide transitions



