Probabilistic Lexicalized Tree-Insertion
Grammars in Automatic Speech Recognition

Johanna Bjorklund and Marcus Karlsson

Department of Computing Science, Umea University, 901 87 Umea, Sweden

Abstract. We evaluate probabilistic lexicalized tree-insertion grammars
(PLTIGS) on a classification task relevant for automatic speech recog-
nition. The baseline is a trigram model, smoothed through absolute
discounting. Both language models are trained on an unannotated cor-
pus, consisting of 10000 sentences collected from the English section of
Wikipedia. For the evaluation, an additional 150 random sentences were
selected from the same source, and for each of these, approx. 3200 vari-
ations were generated. Each variated sentence was obtained by replacing
an arbitrary word by a similar word, chosen to be at most 2 edits from the
original. In our experiments, the N-gram model preferred one of these
alternative sentences in 43.1 percent of the cases, while the PLTIG was
only mistaken in 3 percent of the cases.

1 Introduction

Language models are a central concept in natural language processing. At an ab-
stract level, they are parametrized families of functions that assign probabilities
to natural language sentences. A ‘good’ language model should assign a higher
probability to natural-sounding sentences and sentence fragments, compared to
unlikely or even ungrammatical alternatives. This means for instance that for all
intents and purposes should be preferred to for all intensive purposes, and with
all due respect to with all do respect. Language models are commonly used in
machine translation (MT) to rank candidate translations, in automatic speech
recognition (ASR) to narrow the search-space by discarding unlikely transcrip-
tions, and in summarization to shorten text while preserving readability.

The reigning approach to practical language modelling is to train structurally-
agnostic N-grams on vast sets of data. In the N-gram model, the likelihood of
a sequence of words s = wy,ws, ..., w, is the product of the likelihood of every
subsequence of IV consecutive words in s, with respect to some given set of train-
ing data. When a greater precision is needed, the size of N can be increased,
or some weighting or smoothing technique can be introduced to better leverage
the training data. N-grams have the advantages of being surprisingly powerful
considering their simplicity, easy to train from data, and can typically be applied
to a sentence in linear or log-linear time [12].

On the downside, the size of N-gram models grows exponentially in V. This
means that for large values of NV, only a fraction of all possible N-grams will

appear in the training data, and to keep the model at a reasonable size, only
the most frequent N-grams can be taken into account at any rate. For these
reasons, Goodman [7] meant that that proceeding beyond 5-grams is unlikely
to be practically motivated. This conjecture has not been contradicted a decade
later. The flagship of the field, Google’s N-gram viewer, contains 500-billion
words compiled from 20 million books. In its construction, the value of NV had to
be restricted to 5 to limit the model’s size, and all N-grams encountered fewer
than 40 times were discarded without updating the model [14].

The fact that N has to be kept small causes problems. Take the following
pair of sentences:

She rowed between Yellowknife and Benchoko in a weathered canoe.
She rowed between Yellowknife and Benchoko in a weathered car.

The first sentence is arguably more likely due to the semantic relation between
‘rowed’” and ‘canoe’. However, no IN-gram model could make this connection for
a value of N less than 9, since no N-gram of shorter length contains both ‘rowed’
and ‘canoe’; or ‘rowed’ and ‘car’. Such simpler models would instead prefer the
second sentence, ‘car’ being a more common form of transport than ‘canoe’.

Another thing that is missing is a syntactical analysis of the input sentence,
that is, N-grams do not support parsing. Parsing is useful in itself, as it tells us
whether a sentence is likely to be perceived as grammatical. Furthermore, parse
trees are suitable for continued algorithmic processing, for example, to obtain
a semantic analysis. If we want to understand who does what to whom in a
sentence, it helps to know how the sentence is put together, in particular, what
the central verbs and their arguments are.

Context-free grammars (CFG) can be used for syntactical analysis, but are
typically worse at predicting word sequences than N-grams, unless they are
lexicalized. CFGs can be lexicalized using e.g. Greibach normal form, but this
confuses the syntactical information. Another alternative is to use Tree-adjoining
Grammars (TAG). TAGs represents a language of parse trees as a set of parse-
trees fragments, together with a set of rewrite rules that regulate how they can
be assembled. TAGs were developed by linguistics and have many appealing
properties, in particular they are both easy to lexicalize and offer parsing. The
problem here is rather the reverse; they are too powerful to be practical with a
parsing complexity of O(nG).

To find a practical middle ground, Hwa [9] suggested the use of probabilistic
lexicalized tree insertion grammars (PLTIG). PLTIGs are a type of probabilistic
lexicalized TAG, in which the number of ways in which parse-tree fragments
can be combined is limited. They are as good as trigrams at predicting word
sequences, but also offer syntax-aware language modelling. Their parsing com-
plexity is O(ng), which is equal to that of probabilistic context-free grammars
(PCFGs) and a factor n? faster than TAGs. PLTIGs also have the advantage
that expectation-maximisation (EM) training of PLTIGs on structurally anno-
tated data converges faster than EM training for similarly sized PCFGs (see
Chapter 3 of [9]).

In this paper we evaluate PLTIGs as an alternative for N-grams in Automatic
speech recognition (ASR), i.e. the translation of spoken words into text. Modern
ASR systems are typically build around an acoustic model, a lexical model,
and a language model. The acoustic model maps utterances into phonemes, the
lexical model concatenates phonemes to match a dictionary of known words,
and the language model predicts how words can be combined into sentences.
Today, N-grams and Markow models are common in ASR systems, and we are
interested to learn how PLTIGs stands up to these. To isolate the influence of
the language-models, we focus on a classification task in which the models are
to pick out a sentence s from a set of alternatives, generated from s by replacing
one or a few words by similar but inappropriate words.

1.1 Background and related work

Automatic speech recognition originates from the post-war era. The scope was
initially limited to very small vocabularies, e.g., single numeric digits [13]. An
early attempt to build a hardware device capable of recognizing speech was made
by Smith in 1951 [20]. His machine passed the input acoustic signal through a
sequence of contiguous band-pass filters, generating 32 signals that were fed
to a switch selector panel, which in turn mapped their energy distributions to
phonemes. Other dedicated recognition devices were constructed in the following
years, but computers in the modern sense did not come into play until the 1950s.

In 1959 Forgie and Forgie [6] presented a system similar to Smith’s, with
the exception that the recognition was done by a computer program running
on a general-purpose machine. This meant that, unlike its predecessors, it could
easily be adapted to new speakers. The success rate was now up to 93 %, but
the program was only capable of differentiating between ten English vowels.
Progress continued to be slow throughout the 1960s, and the entire field was
heavily criticized for not making any substantial results. Real-world applications
were considered distant [15].

Language models came into focus during the 1970s. Notably in 1976, Jelinek
[10] introduced the New Raleigh language model, which was essentially a hidden
Markov model. A similar system had also been presented by Baker the year
before [3]. The advantage of these models was that they allowed the ASR system
to work comparably well under high error rates. From then on, probabilistic
models and specifically N-gram models became a commodity in the field.

Interest in other types of statistical language models increased during the
late 1980s, in particular around different types of tree models. Tree-adjoining
grammars in particular had already been studied for many years in the context
of formal languages [11], but in 1990 Shieber et al. [1, 19] successfully used a
variant of it for modelling natural languages. The intention was to use TAGs for
a wider range of applications, including semantic interpretation as well as trans-
lation. The idea was to use so called synchronous TAGs where elementary trees
were mapped to a semantic representation unrelated to syntax. Two practical
problems with this approach were the computational cost of parsing, and the
lack of suitably annotated datasets.

Some of the early work on lexicalized tree insertion grammars were conducted
in 1994 by Schabes and Waters [18]. In their paper they mention that the prob-
abilities with which adjunctions and substitutions occur can be controlled by
adding a stochastic parameter, just as they had previously done for context-free
grammars [17]. Hwa [8] later provided a semi-supervised expectation-maximisation
algorithm for probabilistic lexicalized TIGs, and discussed how to infer high-
quality grammars with as minimal data annotation. As mentioned previously,
parsing with respect to TIGs is substantially easier than with TAGs, but still
expensive compared to N-grams.

In the 2000s, the advent of grid and later cloud computing moved the bound-
aries for what could be considered computationally feasible. As the number of
high-quality syntactically and semantically annotated corpora is growing, new
possibilities for machine learning open up and we are interested to reconsider
TIGs in the light of this.

1.2 Outline

This paper is organised as follows. Section 2 revises the relevant language models.
Section 4 describes the experimental setup, and Section 4 reports and discusses
the results. Section 5 concludes the paper by outlining directions for future work.

2 Theory

Let us start by recalling the definitions of N-grams, TAGs (as an intermediary
step), and finally PLTIGs. Since the theoretical results that are the fundament
of this practical study are already in place, e.g., parsing complexity and the
correctness of the EM algorithm, it suffices to describe the semantics of the two
latter models at a fairly high level, and point the interested reader to e.g. [8] for
the formal definitions.

2.1 N-grams

The likelihood P(w}) of a sequence of words w} can be computed using the
chain rule of probability

P(w}) = P(wi)P(ws|wi) P(ws|w]) - - - P(w,[w}) (1)
= [[Pwilwi™) . (2)
i=1
The idea behind N-grams is to approximate the likelihood of each word w; in
wY by
P(wy|wy™!) ~ Plwglwi"y) - 3)

Substituting Equation 3 into Equation 2, the likelihood of the entire sequence is
approximated by
i—1
P(wy) ~ [Ti=y PlwilwiZy) -

When the value of N is 1, 2, or 3, the model is often referred to as unigram,
bigram, or trigram, respectively.

N-grams are straight-forward to learn from training data through a Maxi-
mum Likelihood Estimation (MLE) process. The probability of a word w; under
and N-gram is

i—1 C(wl';NJrl)
Prrg(wilw"n,) = W ;
i—N+1

where c(u¥) counts how many times the word sequence uf is seen in the

training data.

For most applications, the training data cannot be expected to contain all V-
grams that will later be encountered in the application data. As can be expected,
this problem of data sparsity diminishes as the size of the training data increases
[4], but it seldom disappears completely [2]. For this reason, the MLE learning
is usually followed by a round of smoothing; a redistribution of the probability
mass assigning a non-zero probability also to here-to unseen N-grams. There are
several popular smoothing methods to choose between, e.g. Laplace, Interpola-
tion, Good-Turing, and Kneser-Ney. In this paper, we use absolute discounting,
since it is easy to implement and reasonably effective. Smoothing is thus done
by decreasing the probability of each observed N-gram by a small constant, and
dividing the combined probability mass over the unobserved word combinations.

2.2 Tree Adjoining Grammars

As previously mentioned, probabilistic tree-insertion grammars are a restricted
form of tree adjoining grammars [11]. In contrast to N-grams, (probabilistic)
TAGs assign likelihoods to parse trees rather than their surface forms, that is,
the generated sentences. A TAG has has rules in form of elementary trees of
which there are two types; elementary initial trees and elementary auxiliary
trees. Each elementary initial tree has a number of nonterminal and terminal
leaf nodes. Auxiliary trees also have a special non-terminal leaf node of the same
type as the root node called the foot node, marked with the special symbol *.
The nodes on the path from the root node to the foot node is called the spine.
Figure 1 shows a few examples of elementary trees.

If the root node of an initial tree matches a nonterminal lead node of some
other tree then the first tree can be substituted into the nonterminal leaf node of
the other tree, a way to rewrite the symbol in a context-free derivation. Figure 2
shows an example of this. The determiner her in the initial tree in Figure 2a is
substituted into the leaf node of the initial tree for the noun car in Figure 2b.
The result is the tree in Figure 2c, generating the construct her car.

An auxiliary tree can be inserted into an intermediate node of another tree
through what is called adjunction. Since the root node and the foot node of an
auxiliary tree has to have the same symbol, auxiliary trees can be inserted into
another tree where such symbol exists. An example of this is shown in Figure 3.

NP NN NN
DT DT DT NN JJ NN* JJ NN*
his her car red blue

Fig. 1: Examples of elementary trees in a TAG. Elementary trees (a-c) show
initial trees, while (d-e) are auxiliary trees. The auxiliary trees each have a foot
node marked with a * and is of the same type as the root node.

NP NP
DT DT N DT NN
her car her car

Fig. 2: The initial tree in (a) is substituted into a nonterminal node of the initial
tree in (b), with the result of the new tree in (c). This is possible since the root
node of (a) is of the same type as the nonterminal leaf node in (b).

Note that the auxiliary tree in Figure 3a has the same root node as one of the
intermediary nodes in the tree in Figure 3b. This allows the adjective blue to
be inserted into the sentence her car, producing the new sentence her blue car.
TAGs are expressive due to the number of configurations they allow, but has the
drawback of high parsing complexity in the order of O(n®).

More formally, a TAG is a tuple (X, V,I, A), where X is a set of terminal
symbols, V' is a set of nonterminal symbols, [is the initial trees, A is the auxiliary
trees. If every elementary tree structure in a TAG has at least one non-empty
terminal leaf node with a lexical item, then that is called a lexicalized TAG

(LTAG).

There is also a probabilistic version of TAG (and hence LTAG), in which
three probability distributions are included in the definition. A probability (2 is
defined as the set of possible substitution and adjunction events. Probabilistic
TAG is then defined as the quintuple (X, VI, A, P;, P, P4) where (X, VI, A)
is a TAG, Py is a mapping I — [0, 1] or the probability that an initial tree is used
as the start of a derivation, Pg is a mapping {2 — [0, 1] for the probability of a
substitution and P4 is a mapping {2 — [0, 1] for the probability of an adjunction
[16].

NP

/N

NN NP DT NN
JJ NN* DT NN her JJ NN*
blue her car blue car

Fig. 3: The initial tree in (a) is adjoined into an intermediary node of the tree in
(b), with the result of the new tree in (c). The tree from (a) is inserted into (b)
at the intermediary node NN since (a) has both a root node and a foot node of
that type.

2.3 Tree Insertion Grammars

Tree insertion grammars (TIG) is a restricted form of TAG in which the rewrite
steps are more regulated. A TIG is a quintuple (X, V, I, A, S) where (X,V,I, A)
is a TAG and S is a distinguished nonterminal symbol.

The semantics of TIGs are defined as for TAGs, with the following addi-
tions [18].

— Every auxiliary tree has to be either a left auxiliary tree or a right auxiliary
tree, meaning that they only have lexical items on one side of the foot node.
Auxiliary trees with lexical items on both sides of the foot node and empty
auxiliary trees are not allowed.

— Left auxiliary trees are not allowed to be adjoined on a node that is on the
path from the root node to the foot node of a right auxiliary tree, and vice
versa.

— No more than one left auxiliary tree and one right auxiliary tree is allowed
to be simultaneously adjoined into the same node.

— Adjunction on nodes that are to the right of the path from the root node to
the foot node of a left auxiliary tree is not allowed, and vice versa.

— Adjunction on root nodes and foot nodes of auxiliary trees is not allowed.

— Adjunction on nodes that can be used for substitution is not allowed.

Two parse trees are generated when two auxiliary trees are adjoined at the
same node. One where the left auxiliary tree has been applied first, and one
where the right auxiliary tree has been applied first.

A TIG is lexicalized (LTIG) if each elementary tree carries a lexical item.
A TIG can also be probabilistic (PTIG or PLTIG) if it is parameterized by
probabilities that describe how likely it is that operations are applied. There are
five probability distributions:

1. The probability pr(p) that the derivation starts with the initial tree p, so
that XN pr(p;) = 1 for N initial trees.

2. The probability ps(ns, p) that an initial tree p is substituted into a substi-
tution node ng, so that ¥ pg(ng, p) = 1 for N initial trees.

3. The probability pr(n,p) that a left auxiliary tree p is inserted into the in-
ternal nonterminal node n, and the probability pxr(n) that n takes no left
adjunction, so that pyr(n) + LN pr(n, p) = 1 for N left auxiliary trees.

4. The probability pr(n,p) that a right auxiliary tree p is inserted into the
internal nonterminal node n, and the probability pyr(n) that n takes no
right adjunction, so that pyr(n) + XN, pr(n,p) = 1 for N right auxiliary
trees.

5. The probability prr(n) and the probability prr(n) that a simultaneous ad-
junction into the internal nonterminal node n makes a left-adjunction first
or a right-adjunction first respectively, so that prgr(n) + prr(n) = 1.

All these restrictions means that strings can be parsed with respect to a
PLTIG in time O(n?3) instead of the O(n%) for PLTAGs.

3 Method

In the experiments, both language models are trained on an unannotated corpus,
consisting of 10000 sentences collected from the English section of Wikipedia.
The trigram model could easily be read of the corpus by counting trigram fre-
quencies and then using absolute discounting to account for unseen trigrams.

For the PLTIG, we started from a set of prototypical trees. The set contains
a single initial tree connected to the empty lexical, representing the start of a
sentence. For each lexical entry we also included a left-auxiliary and a right-
auxiliary tree (see Figure 4 for an illustration).

X X
/\ /\
X X* X* X
| |
X X X
| |
0 lex lex
(a) Initial tree (b) Left-auxilliary tree (c) Right-auxilliary tree

Fig.4: The main elementary tree types. An initial tree (a) with a single empty
lexical item, a left-auxiliary tree (b) and a right-auxiliary tree (c).

The PLTIG was then trained through an Expectation-Maximization (EM)
process. The EM training algorithm [5] is a hill-climbing algorithm which is

used when inducing PLTIGs. The algorithm is based on maximum likelihood es-
timation (MLE) and determines the adjunction probabilities of a locally optimal
grammar. A parser based on the Cocke-Younger-Kasami (CYK) algorithm was
used to parse the induced grammar.

The EM algorithm has three steps:

Initialization Create an initial grammar that is able to create any string.

Expectation Compute the probability that each lexical tree is used when pars-
ing the training sentences.

Maximization Update parameters based on the outcome of the E-step so that
the probability of generating the training sentences is maximized.

The expectation and maximization steps are run repeatedly until it converges
on a local maximum.

Data sparsity is also a problem for PLTIGs and can be mitigated using the
same types of algorithms. We take after Hwa and use linear interpolation smooth-
ing for PLTIGs due to its consistent performance with different configuration [9].

For the evaluation, a fresh set of sentences were randomly selected from the
Wikipedia. Then, a separate corpus was created for each sentence s, contain-
ing approx. 3200 similar sentences. Each alternative sentence was obtained by
replacing a word in s by with a different word, at most two edits (i.e., letter inser-
tions, deletions, or replacements) from the original. The corpora were manually
checked to make sure that the substituted words were inappropriate for their
context. A few exceptions may have been overlooked, but in the vast majority
of the cases, the alternatives were indeed inferior.

The two language models were used to compute the probability of each orig-
inal sentence and its alternatives. The probabilities of the alternatives where
then compared against the probability of the original sentence. The number of
alternative sentences that received a higher probability compared to the original
sentence, and the number that received a lower probability were recorded.

4 Results

The outcome of our experiments was that the N-gram model assigned a higher
probability to 43.1 percent of the alternative sentences, while the PLTIG assigned
a higher probability to just 3.4 percent of them. The PLTIG based model must
thus be said to outperform the N-gram model.

In the cases where either model assigned a higher probability to an alter-
native sentence, it is instructive to look at the word that differed between the
two sentences, and which caused the alternative to receive a higher probability.
Table 1 shows a listing of the most frequent of these words.

In the N-gram case, almost all the words in the list follow a common theme.
They are all relatively short words that tend to be common in English. Some of
the words in the top of the list also has a very high count, actually the summed
proportion of the first seven words is more than 50 percent. Our interpretation

Table 1: The table illustrates the cases where and an alternative sentence was
assigned a higher probability. The first column lists the words replaced most
often, the second column shows the number of alternative sentences that re-
ceived a higher likelihood than the original sentence, and the third column gives
corresponding the percentage.

(a) N-gram (b) PLTIG
Word Sentences Percentage Word Sentences Percentage
of 22474 10.9 au 678 4.2
a 20824 10.1 bit 450 2.8
the 18532 9.0 19 379 2.3
is 15995 7.7 15 290 1.8
in 13820 6.7 z 277 1.7
be 7397 3.6 93 277 1.7
as 7123 3.4 ani 268 1.6
an 6422 3.1 87 245 1.5
at 5994 2.9 62 240 1.5
he 5153 2.5 jun 239 1.5
i 4176 2.0 pit 233 1.4
was 4129 2.0 cpr 232 14
it 3862 1.9 25 204 1.3
by 3284 1.6 on 175 1.1
for 3250 1.6 27 157 1.0
or 3174 1.5 boy 154 0.9
my 2534 1.2 my 153 0.9
has 2152 1.0 at 153 0.9
had 1463 0.7 30 149 0.9
are 1259 0.6 9 148 0.9
his 1258 0.6 sons 146 0.9
one 1173 0.6 nor 136 0.8
and 1111 0.5 in 134 0.8
that 1040 0.5 23 131 0.8
do 976 0.5 22 131 0.8
on 957 0.5 t 130 0.8
this 912 0.4 mono 129 0.8
who 850 0.4 fans 129 0.8
9 830 0.4 0 126 0.8
all 824 0.4 is 125 0.8
11 781 0.4 pov 123 0.8

any 768 0.4 4th 123 0.8

is that common words can be seen in many different contexts, and this makes it
difficult for the model to predict what is to follow.

The same list for the PLTIG is appears more diverse, but several of the items
are numbers. This suggests that since the each single number did not occur very
often, the model had not enough data to learn how it was connected with other
words. It may therefor be useful to pre-process the corpus buy grouping uncom-
mon words into categories, i.e., numbers, colours, etc., and replacing instances
of each such category by a token representing the entire category.

5 Conclusion and future work

It is not surprising that PLTIGs outperform N-grams, considering that it is after
all a more expressive model. What to us is surprising is the extent to which it
does so. It is also interesting to see that the two language models appear to
make different kinds of mistakes. Whereas N-grams are thrown by frequently
used words, PLTIGs stumble on rare words.

Encouraged by the outcome of the current study, we have begun work on an
implementation of PLTIGs in the open-source ASR system Kaldi. The aim is to
conduct practical experiments in the wild, to see if PLTIGs are efficient enough
to be useful, and if the results we saw here carry over.

In this work, we have followed Hwa and used three adjunction sites in each
elementary tree. It may be worthwhile to conduct a separate study in which
the number of adjunction sites are varied, to see how their degree affects the
accuracy and efficiency of the model.

References

[1] A. Abeillé et al. “Using Lexicalized Tags for Machine Translation”. In:
Proceedings of the 13th Conference on Computational Linguistics - Volume
8. COLING ’90. Stroudsburg, PA, USA: Association for Computational
Linguistics, 1990, pp. 1-6.

[2] B. Allison et al. “Another look at the data sparsity problem”. In: Text,
Speech and Dialogue. Springer Berlin Heidelberg, Sept. 2006, pp. 327-334.

[3] J. Baker. “The DRAGON system—An overview”. In: IEEE Transactions
on Acoustics, Speech and Signal Processing 23.1 (Feb. 1975), pp. 24-29.

[4] M. Banko et al. “Mitigating the Paucity of Data Problem”. In: Jan. 2001.

[5] A. P. Dempster et al. “Maximum likelihood from incomplete data via
the EM algorithm”. In: Journal of the Royal Statistical Society. Series
B (Methodological) (1977), pp. 1-38.

[6] J. W. Forgie et al. “Results obtained from a vowel recognition computer
program”. In: The Journal of the Acoustical Society of America 31.11
(1959), pp. 1480-1489.

[7] J. T. Goodman. “A bit of progress in language modeling”. In: Computer
Speech & Language 15.4 (2001), pp. 403—434.

[10]

[17]

(18]

R. Hwa. “An Empirical Evaluation of Probabilistic Lexicalized Tree In-
sertion Grammars”. In: Proceedings of the 36th Annual Meeting of the
Association for Computational Linguistics and 17th International Confer-
ence on Computational Linguistics - Volume 1. ACL "98. Stroudsburg, PA,
USA: Association for Computational Linguistics, 1998, pp. 557-563.

R. Hwa. “Learning probabilistic lexicalized grammars for natural language
processing”. PhD thesis. Cambridge, MA: Harvard University, Mar. 2001.
F. Jelinek. “Continuous speech recognition by statistical methods”. In:
Proceedings of the IEEE 64.4 (Apr. 1976), pp. 532-556.

A. K. Joshi et al. “Tree adjunct grammars”. In: Journal of computer and
system sciences 10.1 (1975), pp. 136-163.

D. Klakow et al. “Log-Linear Interpolation of Language Models”. In: Pro-
ceedings of the International Symposium on Chinese Spoken Language Pro-
cessing. 1998, pp. 1695-1698.

T. Marill. “Automatic recognition of speech”. In: IRE Transactions on
Human Factors in Electronics 1 (1961), pp. 34-38.

J.-B. Michel et al. “Quantitative Analysis of Culture Using Millions of
Digitized Books”. In: Science (2010). URL: http://www . sciencemag .
org/content/331/6014/176.full.

J. R. Pierce. “Whither Speech Recognition?” In: The Journal of the Acous-
tical Society of America 46.4B (1969), pp. 1049-1051.

P. Resnik. “Probabilistic Tree-adjoining Grammar As a Framework for Sta-
tistical Natural Language Processing”. In: Proceedings of the 14th Confer-
ence on Computational Linguistics - Volume 2. COLING ’92. Stroudsburg,
PA, USA: Association for Computational Linguistics, Aug. 1992, pp. 418—
424.

Y. Schabes et al. Stochastic lexicalized context-free grammar. Tech. rep. 12.
Cambridge, MA: Mitsubishi Electric Research Laboratories, July 1993.
Y. Schabes et al. Tree insertion grammar: a cubic-time parsable formalism
that lexicalizes context-free grammar without changing the trees produced.
Tech. rep. 13. Cambridge, MA: Mitsubishi Electric Research Laboratories,
June 1994.

S. M. Shieber et al. “Synchronous Tree-adjoining Grammars”. In: Pro-
ceedings of the 13th Conference on Computational Linguistics - Volume
8. COLING ’90. Stroudsburg, PA, USA: Association for Computational
Linguistics, 1990, pp. 253-258.

C. P. Smith. “A Phoneme Detector”. In: The Journal of the Acoustical
Society of America 23.4 (1951), pp. 446-451.

