
PLACEMENT AND MONITORING
OF ORCHESTRATED CLOUD

SERVICES

Lars Larsson

LICENTIATE THESIS, JANUARY 2015
DEPARTMENT OF COMPUTING SCIENCE

UMEÅ UNIVERSITY
SWEDEN

Department of Computing Science
Umeå University
SE-901 87 Umeå, Sweden

larsson@cs.umu.se

This work is protected by the Swedish Copyright Legislation (Act 1960:729).
Copyright c© 2015 by authors
Except Paper I, c© IEEE, 2009

Paper II, c© IEEE, 2011
Paper III, c© IEEE, 2014

ISBN 978-91-7601-205-5
ISSN 0348-0542
UMINF 15.02

Printed by Print & Media, Umeå University, 2015

Abstract

Cloud computing offers pay-per-use on-demand access to computer resources for
hosting program execution environments for software service deployment. Manage-
ment of cloud resources includes determining, based on current monitored resource
availability, which part(s) of a computational infrastructure should host such program
execution environments in a process called placement. Our work defines directives
that lets consumers of cloud resources influence placement to express relationships
between cloud services (orchestration) and deployment constraints to uphold for re-
lated service components, without surrendering the ultimate control over placement
from the infrastructure owner. The infrastructure owner remains free to define their
policies and placement optimization criteria, e.g., to consolidate work that needs to be
done to as few physical host machines as possible for power savings reasons. We show
how the placement process can be adjusted to take such influence into account and val-
idate through simulations that the adjustments produce the correct result without too
large computational impact on the placement process itself. Further, we present a
technique for transferring large data files between cloud data centers that operate in
(separate) cloud federations that avoids repeated transfers in a delegation chain be-
tween members of (different) cloud federations. Finally, we present a non-invasive
method of extracting monitoring data from a service deployed in a cloud federation,
and a framework for making monitoring information available and understandable in
spite of technical differences between monitoring systems used in cloud federations.

iii

iv

Preface

This thesis contains an introduction to the field and the papers listed below (reprinted
with permission from the individual publishers).

Paper I Erik Elmroth, Lars Larsson
Interfaces for Placement, Migration, and Monitoring of Virtual Machines
in Federated Clouds. In the Eighth International Conference on Grid and
Cooperative Computing (GCC), pages 253–260. IEEE, 2009.

Paper II Lars Larsson, Daniel Henriksson, Erik Elmroth
Scheduling and Monitoring of Internally Structured Services in Cloud
Federations. In the IEEE Symposium on Computers and Communications
(ISCC), pages 173–178. IEEE, 2011.

Paper III Daniel Espling, Lars Larsson, Wubin Li, Johan Tordsson, Erik Elmroth
Modeling and Placement of Cloud Services with Internal Structure. In
IEEE Transactions on Cloud Computing (TCC), to appear.

This work has been supported financially by the Swedish Research Council (VR)
under contract 621-2005-3667 and for the Cloud Control project, the Swedish Govern-
ment’s strategic research project eSSENCE, and by the European Community’s Sev-
enth Framework Programme ([FP7/2001-2013]) under grant agreements no. 215605
(RESERVOIR) and no. 257115 (OPTIMIS).

Publications by the author not included in this thesis:

• Benny Rochwerger, Constantino Vázquez, David Breitgand, David Hadas, Mas-
simo Villari, Philippe Massonet, Eliezer Levy, Alex Galis, Ignacio M. Llorente,
Rubén S. Montero, Yaron Wolfsthal, Kenneth Nagin, Lars Larsson, and Fermı́n
Galan. An Architecture for Federated Cloud Computing. In ed. Rajkumar
Buyya, James Broberg, and Andrzej Goscinski Cloud Computing Principles
and Paradigms, pages 393–412, Wiley 2001.

v

vi

Acknowledgements

This thesis has been a long time coming. When I joined the research group in 2008 as
a systems developer, cloud computing was still in its relative infancy. Since starting as
a PhD student in 2009, I have both witnessed and been part of a lot of important de-
velopment that has taken place in the cloud computing field, some of which has made
it into papers and ultimately, this thesis. I am grateful to my supervisor Erik Elmroth
who took me on and has let me walk this path, and to him and Johan Tordsson for the
side path that we took in 2011 when they started Elastisys and I got to dive head-first
into pure(-ish!) software development again in that context. I am in constant awe of
how much you two manage to get done and still bring your full focus and attention to
each individual meeting. Resource contention issues solved at its finest!

At Elastisys, Peter Gardfjäll always teaches me something new. You are by far
the best software developer I know, and I feel like I grow every day I work with you. I
am incredibly happy that I get to share an office with you, and that you are also laying
down some serious roots in Umeå with your family. I hope that I get to be around you
as a friend and colleague for a long time to come!

My dear former office-mate, colleague, friend, and fellow globetrotter Daniel Es-
pling: you are amazing, and my life is richer for having you in it. Thank you for all
the good times we have had, in- and outside of the office. I feel like we went through
all of this together, and I thank you for being there with me for every step of the way,
even when it got rough.

If it wasn’t for P-O Östberg, I probably wouldn’t even be a PhD student to begin
with. I would likely have taken a job at Ericsson in southern Sweden in 2008 and only
looked back when that whole division was laid off only two years later. Thank you for
believing in me, encouraging me, and for your friendship: your love for research and
enthusiasm is infectious (and also saved me from making a huge mistake)!

It is a pleasure to be part of our ever-expanding and always amazing group, that
is full of so many wonderful people. Both the present members (Ahmed, Amardeep,
Cristian, Ewnetu, Francisco, Gonzalo, Jakub, Lennart, Luis, Mina, Olumuyiwa
(Muyi), Selome, and Tomas apart from those already mentioned) and the ones that
are gone but not forgotten (Lei, Petter, and Wubin Li (Viali)) fill my days with
interesting discussions literally about anything and everything between heaven and
earth. Some of it even work-related! Thank you for enriching my life with new
perspectives, insights, and philosophies. You all rock!

On a personal note, I wish to thank my friends and family. You keep me grounded,
sane, and happy. To my mother Ursula and sister Lisa, there are not words that can

vii

Acknowledgements

sufficiently thank you for all the countless ways you have enriched and helped shape
my life. Johannes and Henrik, my brothers from other mothers, you have been with
me for most of my life, offering your support and love no matter the circumstances.
And my more recent dear friends I have got to know since coming to Umeå: Helena,
Sofia, Peter, Mahsa, and Robin — you fill this cold high north with warmth and love.

And finally, my most immediate family, where even more important developments
have taken place during these years with the birth of my three children (TINA in 2009,
and the twins DAVID and SAMUEL in 2013). I love you, and I am forever grateful for
being able to spend time with you. Last, but in no way least, thank you to my beloved
wife Anna, for being my love, support, my everything. I think I dreamed you into life.

Lars Larsson, Umeå, January 2015

viii

Contents

1 Introduction 1

2 Cloud Computing 3
2.1 Deployment Models 5
2.2 Cloud Service Deployment 6
2.3 A Look Ahead: Container Clouds 8

3 Cloud Resource Management 11
3.1 Placement Optimization 13
3.2 Monitoring 14
3.3 Orchestration 15
3.4 Storage 15

4 Service-oriented Architectures in the Cloud 17
4.1 Services Developed for Cloud Environments 18

5 Thesis Contributions 21
5.1 Paper I 22
5.2 Paper II 22
5.3 Paper III 23

6 Future Work 25

Paper I 39

Paper II 51

Paper III 61

ix

x

CHAPTER 1

Introduction

Computers and their associated IT equipment such as networks and storage units are
not only expensive to manufacture, but operating them requires expensive power and
cooling, and when they break, they require maintenance by experts. While consumers
are more than happy to periodically buy and briefly own computers used sparingly
and mostly for leisure, businesses and researchers need to balance an ever-growing
dependence on computational capabilities with keeping within a constrained budget.
Hence, much effort has been devoted to letting some (third) party take over the costs
of owning and operating large (distributed) computer infrastructures, while allowing
the users of the infrastructures to pay in accordance with their usage. Seeing this need
early on, John McCarthy in the 1960’s envisioned delivery of computational power as
a public utility [1, 2].

Several implementations of the idea of providing (remote) access to (distributed)
computational infrastructures for payment based on usage of said infrastructure have
been created over the years, each of which designed for a particular niche task and
with the limitations of that time-period in mind. The first implementation is that of
mainframe computing (and clusters of mainframes followed as soon as networks had
increased sufficiently in performance), where users run processes on a particular ma-
chine, running a particular operating system. The first commercially successful such
system was the IBM-360 in 1964 [3]. Each program typically had to be tailored for
the particular execution environment, thus making mainframe systems rather difficult
to work with. Time-sharing systems such as UNIX came from the 1960–1970’s [4],
and each user could be billed according to the amount of computer time they had
consumed.

Fast network connectivity allowing transfers of large amounts of data made the
grid emerge in the 1990’s and early 2000’s [5, 6, 7]. The main focus of grids is to
allow for batch processing of typically large data sets, where access to results is not
immediate, since submission of a time-limited grid job only specifies what work is
to be done (possibly, however, with a deadline), and it is up to the grid system to
find the best possible time slot to actually execute the job. The grid software (mid-
dleware) provides access to the computer, offering an execution environment for the
grid job to be executed in. What libraries are available in this environment is dictated
by the grid site’s operators, which implies that the job process must be tailored to
the particular environment in which it will run. In contrast, cloud computing offers
virtual machines as the runtime environment, and the cloud services deployed are not

1

time-limited processes. Cloud services are expected to start within minutes of the user
having requested access to the computational infrastructure, and run consistently and
constantly until the service owner at their own discretion terminates the process and
its execution environment. Chapter 4 takes a deeper look at services and how they are
deployed in cloud computing, but for now, the simple definition of a service as a piece
of software that offers its functionality over a network, e.g. streaming music files from
a library of files, will suffice. Clouds and virtual machines are presented in more depth
in Chapter 2, and management of cloud resources in Chapter 3.

Each utility computing implementation is niched toward a particular task or set
of tasks, and designed accordingly. They are all still relevant today as the niches still
remain, but with regard to current research effort, cloud computing is by far the largest
today. Its niche, long-running general services, is also considerably broader than e.g.
pure batch processing, which attracts researchers from many fields.

Autonomous computational infrastructures, whether they are grids or clouds, are
often joined together in an attempt to pool resources and provide even more utility to
their users. Such collaborations are known as federations, and their formation typi-
cally requires significant engineering effort and service contract formulation, as the
infrastructures may not have been designed with collaboration as a goal in addition
to being fully autonomous. There is therefore typically no central management func-
tionality for the federation as a whole. The Atlas project at CERN [8], for instance,
consumes what at the time of writing is vast amounts of computational resources,
including processing power, network bandwidth, and storage, pooled from several
universities. It produces about 1 Petabyte of data per second, and requires processing
equivalent to about 50,000 modern PCs1. Since this amount of data processing greatly
exceeds what one data center can handle, federations of computational infrastructures
are required to deal with this type of Big Data [8]. Federated computational infras-
tructures offer great processing power, but also come with a set of unique challenges
and trade-offs, including ones related to security, performance, trust, accountability,
and a lack of control over remote sites, as each site is autonomic.

The work in this thesis addresses some of the problems faced in cloud federations.
In particular, we: propose to deal with the lack of control by mechanisms for users
to influence decisions that ultimately affect how their computational needs are han-
dled, ensure accountability toward resource consumers that they get what they pay for
through monitoring systems, and enable infrastructure owners to optimize their own
internal processes according to their own criteria. The work is motivated by the dis-
satisfaction felt as a long-time cloud user/customer with how services are deployed in
current clouds, and how little influence one is given in that situation today.

1According to: http://atlas.ch/computing.html

2

CHAPTER 2

Cloud Computing

Following its inception in the early 2000’s, cloud computing has become an umbrella
term coming to mean many different things that are not always even related to each
other. In the broadest sense, cloud computing can mean anything where resources
or software services are running at a remote site. This overly broad definition aids
commercial marketing efforts, but hinders meaningful scientific discourse. We will
only consider definitions that are in line with the utility computing vision, which is
to allow for users to make use of computational resources (possibly owned by a third
party), meter their usage, and (typically) then have them pay in accordance with their
usage in some way that makes sense in the service context (e.g. either abstract credits
from an allotment or actual currency). This is realized by virtual computing infras-
tructures, such as grids and clouds, that exist to provide an execution environment for
computer programs. Execution environments are isolated from each other so that the
resource demands and usage of each does not negatively affect the others [4, 9]. The
type of program deployed dictates how the execution environments are designed and
implemented, and how much the capacity consumer needs to worry about this this
detail depends on the service model, i.e. how the computational resources are made
available to its consumers. For cloud computing, these service models are [10, 11]:

• Software-as-a-Service. Scalable installations of a given software are offered to
the consumer’s users, e.g. Microsoft Outlook or SharePoint, and the consumer’s
users pay per use in some fashion that is natural for the software, typically per-
licence.

• Platform-as-a-Service. A platform of useful surrounding services, e.g. applica-
tion servers, preconfigured databases, message queues, mailing systems, etc., is
offered to software developers, making it easy to focus only on developing the
business logic of scalable applications. Use of surrounding services and of the
business logic itself is metered and billed, according to some plan.

• Infrastructure-as-a-Service. Consumers provision custom execution environ-
ments known as virtual machines (VMs) directly from the cloud resource owner,
and pay per use for the resources they consume. The VMs can be configured
with any software of the consumer’s choosing, and the consumer is responsible
for setting up any required services and software stacks themselves.

3

FIGURE 1: Hosting of several VMs within a number of hosts.

We will henceforth use the terminology Infrastructure Provider (IP) for cloud ca-
pacity producers, Service Providers (SP) for cloud capacity consumers, as this is both
in line with the papers contained in this thesis, and with the well-cited definition by
Vaquero et al. [10].

In this thesis, we focus exclusively on the Infrastructure-as-a-Service (IaaS) ser-
vice model. The central unit in contemporary IaaS is the highly customizable execu-
tion environment implemented as VMs (but this is about to change, see Section 2.3
for a look toward the future with containers). A VM is an abstraction layer that acts
as a partition of a large physical host machine, where each virtual machine can run its
custom operating systems independently and in isolation from each other [12, 13, 14].
Access to hardware, such as network interface cards, is emulated or provided shared
access to in a bridged fashion within the host operating system [14]. The software
that coordinates virtual machines on the physical actual machine is called a hypervi-
sor. Emulating an entire computer in this fashion in software alone is possible, but
prohibitively slow. It was not until hardware-assisted virtualization became available
and efficient [15, 16, 17, 18, 19, 20, 21] that virtualization and cloud computing was
reasonably possible and desirable for paying customers. Figure 1 shows an overview
of the concept of partitioning physical machines in differently sized VMs.

VMs are assumed to start provisioning the service within minutes after having
been requested, and do not (typically) terminate until the paying user dictates it. A
single physical host in a cloud site typically runs a (large) number of VMs, meaning
that they are not isolated from each other temporally. Instead, service-level agreements
(SLAs) [22,23] govern the quality of service experienced by the VMs, by defining a set
of measurable service-level objectives (SLOs). Violations against SLOs are typically
cause for financial compensation to the user, as outlined in the SLA.

Because VMs can be fully customized, they can support a large variety of use
cases. One can deploy software in them to support long-running services (such as
web services) or short-running tasks (as in the grid case). We focus solely on the
long-running service aspect, as it opens up avenues for research and introduces addi-

4

tional complexity in e.g. the process of choosing which host should be used for VM
provisioning. For short-running tasks, data locality is likely the primary driver in such
processes, whereas longer-running services experience usage variations that can have
significant implications on management processes (more about these in Chapter 3).

In closing of this brief introduction to cloud computing, we consider the definition
of the U.S. National Institute of Standards and Technology (NIST) that lists the essen-
tial characteristics of cloud computing as follows [11] (with reworded explanations):

• On-demand self-service. As consumers of cloud resources (including virtual
machines, networks, and storage), SPs should be able to provision resources
with minimal IP effort, as demand dictates. Self-service implies that human
interaction requirements should be minimized.

• Broad network access. Ubiquitous and standard network and transport protocols
should be used to allow cloud resource consumers access from a (large) number
of network locations.

• Resource pooling. SPs are presented with dynamically allocated resources from
large pools of (heterogeneous) resources, but are typically kept unaware of pre-
cisely where these resources come from and with whom they are sharing these
resources. This unawareness is of great importance for the contributions of this
thesis, as we offer optimization possibilities from both the IP and SP aspects,
hinged on the idea of allowing the IP to offer resources without surrendering
neither information on nor control over management of these resources to SPs.

• Rapid elasticity. SPs should be able to rapidly provision more resources, or
shed resources that are no longer needed, from a seemingly unlimited pool of
resources. This is the topic of future work, see Chapter 6.

• Measured service. Use of various resources should be metered and billed ac-
cording to usage. SPs typically pay per computational capacity and sizes of
internal memory for virtual machines, network transfers, and storage size and
use in terms of input/output operations separately, but on a single bill from the
cloud provider.

2.1 Deployment Models
Cloud computing can be deployed according to a variety of models. The fundamen-
tal three models are, from most restrictive prospective users to least: private clouds,
where a single organization owns and operates its own physical hardware and makes
it available to their own users as cloud resources; community clouds, where collabo-
rating organizations pool their resources together in a cloud spanning over the entire
pool, but the resources are only offered to members of these partnering organizations;
and public clouds, where a single or partnering organizations offer access to cloud
resources to the public. Hybrid versions of these deployment models exist as well,

5

where the goal is to allow for cloud bursting, i.e. seamlessly making use of cloud re-
sources from another cloud while still enforcing barriers between cloud entities, as
appropriate. This typically requires compatible software to work [11].

The papers in this thesis all focus on federated clouds [24, 25], i.e. ones where
some kind of collaboration takes place between cloud sites. We define a cloud site as
an organizational entity within which the infrastructure is exposed to SPs as a unit,
typically a data center. A single cloud infrastructure provider can own and maintain a
number of such sites, in effect offering a federation of cloud sites. By this definition,
Amazon Elastic Compute Cloud is a federation, as the various regions are completely
separate, while availability zones within a single region are not to be regarded as units
(hence, a region is not itself a federation). For our research, whether some of these are
private, community, or public clouds does not matter, as long as there are no technical
incompatibilities make a collaboration impossible.

For a toolkit aimed at making various cloud constellations easy to work with, see
the OPTIMIS toolkit [26].

2.2 Cloud Service Deployment
Figure 2 shows the phases of service deployment onto a cloud and the tasks included
in each phase, carried out by the SP and IP, respectively. We divide the provisioning
process in three phases: staging, deployment, and operation. In the staging phase, the
SP prepares a VM image and uploads it (Task 1) and any data required for processing
to the IP for storage (Task 2). Note that clouds typically offer a catalog of pre-defined
VM images. If this is the case, the SP may simply choose one from this catalog, and
possibly pay licencing costs for doing so. A VM image is a file containing the contents
of what is to become the (virtual) hard-drive contents of the VM. The response back
from the IP is some kind of identifier to the stored image and data, which can later be
referred to in the service manifest [25].

In the deployment phase, the SP prepares a service manifest for the service that is
to be deployed (Task 3). This is a document containing orchestration information for
one or more service components, and any additional information and rules concern-
ing the placement of these service components. The cloud infrastructure performs
admission control, i.e. determines if the service described in the service manifest can
be accepted for deployment or not (Task 4). If the service is deemed admissible in
accordance with the cloud’s rules and resource availability, a suitable placement for
the VMs each service component is to be deployed in is found (Task 5).

The operation phase starts as soon as a VM is started, and it contains the concurrent
tasks of controlling (Task 7a) and monitoring (Task 7b), performed by the SP and
IP, respectively. The SP can modify the state of the VM by issuing commands to
pause/resume, stop/start, resize/duplicate, or terminate the VM. The IP continuously
optimizes VM placement and monitors the resource usage by the VM to present the
data to the SP, and for billing purposes.

6

FIGURE 2: Service deployment phases and tasks for SP and IP.

7

2.3 A Look Ahead: Container Clouds
Providing access to fully customizable isolated program execution environments is
one of the cornerstones of cloud computing. Currently, this isolation is provided by
means of virtualization, for which a performance penalty must be paid as emulating an
entire computer and its associated hardware is obviously more wasteful performance-
wise than bare-metal access as offered by grids, even in spite of attempts to close
the gap by e.g. hardware-assisted virtualization support in modern processors [15].
Virtualization is also wasteful in terms of storage space: most SPs base their VMs on
some standard base VM (e.g. some well-supported version of Linux, such as Ubuntu
or CentOS), but each individual VM still gets a full individual copy of the entire file
system, although the difference between what is stored in each VM is typically orders
of magnitude smaller than the overall allocated storage for each VM.

In recent years, containers rather than VMs have started to gain momentum as
the customizable program execution environment of choice (in particular after recent
crucial additions were made to the Linux kernel in version 3.8 [27]). Containers are a
type of virtualization that does not rely on virtualizing an entire machine, as VMs do,
but rather on isolating user space system instances within a single (shared) operating
system kernel. In Linux, support for containers is granted by cgroups. Cgroups pro-
vides resource (CPU, memory, various I/O) and process namespace isolation, isolating
applications from another with regard to process trees, network connections, user ids,
and (notably) mounted file systems. Essentially, this means that containerized pro-
cesses are free to define their own file systems, init systems, and background services
but must share the host operating system’s kernel. This is a limit to some applications
(ones that rely on a custom kernel), but on the other hand, containerized processes
are thereby provided with bare-metal access to the computer’s hardware. This signifi-
cantly reduces both performance and storage overheads [28]. Because containers offer
merely a type of additional operating-system level isolation layers between processes,
they start within seconds, rather than minutes, since they do not require lengthy provi-
sioning and boot-up processes — essentially, running a program in a container is just
like running a local program [29].

Containers are nothing new, as they have existed in various operating systems
before (e.g. Solaris Zones [30], and BSD Jails [31]). Useful support for them in
Linux, however, is. After the 3.8 Linux kernel release, and with the introduction
of Docker [32], Linux containers and clouds based on them have gained significant
momentum. This is in part because Docker makes it easy to package applications
and all their dependencies together in an image that can then run unmodified on any
other system that supports Docker — without paying the performance penalty that is
associated with VMs. Additionally, the way that Docker images are constructed, and
because they are mounted on a union file system, only unique data requires additional
storage: data that can be shared between images is shared.

As a previously mentioned potential drawback, by construction, containerized pro-
cesses must share kernel with the host machine. This may be a limit for certain ser-
vices operating on a low enough level to warrant customized kernels, but the vast
majority of cloud services do not require customized kernels. However, as containers

8

can define their own storage trees up to and including even entire Linux distributions,
it is possible to run e.g. a mix of CentOS and Ubuntu containers on a single host, albeit
with a kernel that may not be tuned for either distribution.

9

10

CHAPTER 3

Cloud Resource
Management

Cloud infrastructures typically comprise several physical hosts, each capable of host-
ing a number of VMs. The SP should not (have to) be aware of how large the pool of
resources actually is, but regard it as seemingly infinite. IPs can collaborate by form-
ing cloud federations to make larger (possibly hybrid) cloud platforms that make use
of capacity at remote sites, should the local resources be exhausted. The rapid, on-
demand self-service that cloud infrastructures are supposed to offer requires capable
management software, with core features including the following:

• Admission control. By examining the service manifest and current (and pre-
dicted) resource availability, the cloud management software must determine
whether a given service can be accepted or not. Service deployment is a long-
term commitment, and since terminating a service once it has been accepted
typically violates the SLA, admission control must be done in a risk-conscious
way [33].

• Placement optimization. Continuously finding the best possible physical host
machine for the set of running VMs is termed placement optimization. Depend-
ing on optimization criteria, this process may lead to VMs being migrated from
one host machine to another, to achieve e.g. consolidation to power off an un-
used host machine to save energy [34], or to minimize load differences among
physical hosts for fault-tolerance reasons.

• Monitoring. The usage and condition of VMs must be monitored to ensure that
no SLOs fail to be met, and to ensure that usage is correctly accounted and
billed for. SLOs may state that no VM should suffer more than X% downtime
over some time period, or that a certain performance characteristic is always
guaranteed. Monitoring should transparently demonstrate any failures to meet
these agreed-upon objectives.

• Orchestration. Services contained in VMs should be deployable in a determin-
istic, well-defined, and repeatable way. This process is known as orchestration,
and while it has been the topic of much research [35,36,37,38,39,40] (including

11

our own), sophisticated multi-VM orchestration functionality has only recently
been adopted and offered by commercial cloud vendors. Standardization efforts
are also underway [41].

• Storage. Storage location and availability are important factors for VM perfor-
mance and hence placement optimization, since VMs should ideally run close to
where their backing storage (i.e. virtualized hard drives) are physically located,
as this helps them perform better and decreases the internal network load [42].
In addition to the storage used directly by VMs, clouds typically need to offer a
catalog of VM images that act as templates or starting points for making custom
VMs, to avoid having to install every operating system from scratch, and some
sort of object storage, that allows SPs to store various static data in a network-
accessible way. Given the importance of the stored data, and the difficulty or
cost associated with moving it to another cloud provider, it is often a cause of
vendor lock-in [43]. Additionally, due to lack of insight and control over what
entities have access to data stored in the cloud, potential cloud users are hesitant
to fully use the cloud unless additional security measures are added [44, 45].

• Networking. VMs need to be network-accessible — not necessarily publicly, but
without a network connection of some sort, they have no way of communicating
outside of their hypervisor. Should the VM migrate, networks typically need to
be reconfigured to avoid VM network connectivity loss (and the negative effects
this may have on the software running inside). Software Defined Networking
acts as a layer of additional abstraction that separates the software that decides
where traffic is sent (control plane) from the underlying system that forwards
the traffic to selected destinations (data plane) [46, 47]. In doing so, network
connectivity and logical topology is made more dynamic in nature, allowing
networks that best suit the services deployed in the cloud to be defined.

• Accounting. Since cloud resource consumption has to be paid for, cloud man-
agement services need to provide accounting features tied to the monitoring ser-
vice. Accounting systems need to charge users in accordance with their usage,
either in a pre- or post-paid fashion [48].

• User management. Cloud users must be authenticated and their actions autho-
rized to ensure that they only perform actions they are allowed to. Some kind
of user or identity management is therefore needed.

Large public cloud providers provide all of these services, in addition to various
provider-specific ones. The research and open source communities have access to
cloud platforms that also provide these services, such as OpenNebula [49], Cloud-
Stack, and OpenStack [50].

Of particular interest to this thesis are the following activities: placement, moni-
toring, orchestration, and, to a certain degree, storage. Paper I deals with placement
and storage concerns as VMs are migrated to other clouds. Paper II presents solu-
tions for problems in placement, orchestration, and monitoring. Finally, Paper III is
focused on placement and orchestration, as an extension of the concepts introduced in

12

Paper II. Therefore, we devote the following sections to a more in-depth look at these
management activities.

3.1 Placement Optimization
Placement is the process of determining which VMs should be provisioned on which
hosts or partner clouds in a cloud federation [51]. We refer to the outcome of the pro-
cess as a mapping between VMs and hosts. The algorithm driving the placement pro-
cess typically optimizes some set of criteria. Typical such criteria include, e.g., using
as few hosts as possible to make others available for other tasks or to power off unused
ones [52, 53, 54] to reduce energy and operational costs, or distributing VMs evenly
to ensure good performance [51, 55]. While VMs are isolated in theory, they suffer
from the noisy neighbors problem, where large consumption of some resource (e.g.
CPU processing power) in one VM negatively affects the amount of resources avail-
able to other VMs deployed on the same host, breaking isolation and possibly failing
to meet SLOs. Industry experience and research has found that VM performance dif-
fers greatly depending on factors beyond the SP’s control [56], something which is
attributed to poor isolation between neighboring resource-intensive VMs (i.e. other
VMs deployed on the same physical host or on the same network subnet). Placement,
and the choice of optimization criteria, is therefore crucial to providing a reasonable
cloud service.

The placement process is executed not just when the set of VMs change due to
allocation or termination of VMs, but as a continuous process. This is necessary
because the total execution time of VMs is not known up front, unlike in the grid job
case. To optimize placement, and perform (re-)consolidation, should host machines
have become unevenly loaded, VMs can be migrated (while running) from one host to
another to improve an already established mapping if it is determined that the current
mapping is suboptimal. This process is known as (live) migration, and its use to
facilitate placement is a hot research topic [57, 58, 59, 60, 61, 62, 63, 64, 65, 66]. Live
migration moves a VM from one host to another, and the capacity requirements for
the VM is kept the same (i.e. it demands the same amount of RAM, CPU, storage, and
network capacity from the new host as it did from the old).

Placement optimization (as opposed to greedily just finding any placement) is at
its core an instance of the Generalized Assignment Problem, and is therefore NP-
HARD to solve [67]. To further complicate matters, and increase potential income,
cloud IPs may apply over-booking of the resources they actually have, while increas-
ing the risk of failing to meet some performance SLOs, should simultaneous resource
requirements actually exceed available capacity [68, 69, 70].

Most approaches so far have considered placement based on explicit resource re-
quirements made by the SP up front in a service manifest, dealing with VMs as com-
putational black boxes. However, looking in to these black boxes, and possibly mod-
ifying them slightly, has been shown to enable even further optimization methods. If
the workload can be determined [71, 72, 73, 74, 75], so can the capacity requirements
of the VMs, allowing for ahead of time adjustments to avoid the service being de-

13

ployed with too low capacity [76, 77, 78]. If a capacity demand profile for a VM can
be determined, modifying the profile can be done in an effort to re-pack VMs to better
provide them with the resources they actually require, so that they require more or less
resources as the workload fluctuates [79]. Coupled with over-booking, this can offer
IPs great possibilities to optimize without the SP suffering from poor performance.

Finally, in some cases, it is impossible to correctly predict or react to a change
in workload. In an approach similar to supporting application checkpointing [80],
wherein the program or service of interest is modified to allow for compensating for
inadequate resources to carry out the task at hand, SPs can make certain computation-
ally intensive sections of the service optional [81]. The reasoning is that it is better
for end-users to get some kind of response, than none at all. Such a modified service
may perhaps appear to be less dynamic due to failing over to only serve cached static
responses than when resources are abundant.

3.2 Monitoring
Since cloud computing is defined as a pay-as-you-go service, monitoring resource
usage is a crucial task. Monitoring occurs at three conceptual levels:

• Infrastructure monitoring. Core cloud management functionality such as the
placement algorithm needs up to date information regarding the state of the
infrastructure, including network utilization and the state of the physical hosts
and the storage units attached to them. This data is typically not made public,
apart from vague service health indicators. Problems that are detected need to
be mitigated, possibly by migrating or restarting VMs away from an errant host
machine.

• Resource consumption monitoring. SLAs stipulate the terms under which SPs
obtain resources from IPs, and should the IP fail to deliver the agreed-upon ca-
pacity, some compensation is typically in order (although the potential loss in
reputation and credibility may be higher and hard to quantify, hence the focus
on avoiding failure to meet SLOs in the Placement section). VMs and their
resource consumption are continually monitored, and the data should be trans-
parently presented to the user. Transparency in this issue is a cornerstone of the
trust between SPs and IPs.

• Service monitoring. A higher-level view on capacity requirements and resource
consumption is to consider how well an service can handle its current workload.
Rather than, as in resource consumption monitoring, which focuses on e.g. CPU
instructions per second, service monitoring focuses on key performance indica-
tors (KPIs), such as the number of currently logged in users or successfully
served web requests. These measurements can typically be fed into the man-
agement functionality of the cloud, and be used as a basis for automatically
adjusting the capacity allocation to better fit the current workload [78].

14

3.3 Orchestration
SPs submit a service manifest that describes the capacity they require from the IP.
The IP then accepts or rejects the service after determining that there is sufficient
capacity to host the service by invoking its placement algorithms. In the most trivial
case, the SP requests each VM individually, in effect creating a service manifest for
each. In non-trivial cases, these service manifests are documents that cover a large
number of service components (VMs) and can include scaling directives, service-level
objectives [26, 82], and explicit relationships between service components [83, 84].

In the research community, in particular the European line of research initiated
by the RESERVOIR project [82] in 2008, rather complex and fully-featured service
manifests are assumed to be available, since they allow both the SP and IP to rea-
son about the service that is to be deployed as a whole, rather than in individual
parts. Industry support for non-trivial service manifests and orchestration declara-
tions have, however, been slow to emerge, but Amazon Web Services offers Cloud
Formation [85] and recent OpenStack versions offer Heat [86], its Cloud Formation-
compatible orchestration features. Orchestration standardization efforts are also un-
derway in the shape of the OASIS Cloud Application Management for Platforms
(CAMP) [87] and OASIS Topology and Orchestration Specification for Cloud Ap-
plications (TOSCA) [41, 88, 89].

3.4 Storage
While VMs can either be close-to-optimally placed from the start, or be reasonably
easily migrated from one physical host to another, the data stores that VMs use for
computation input or output may be orders of magnitude larger than the working mem-
ories of the VMs. While storage units to VMs typically reside on network-accessible
nodes, network limitations and bandwidth considerations limit how VMs can be mi-
grated to hosts typically on the same subnet or network switch as the storage node,
as migration over the wide-area network (WAN) is technically possible but ineffi-
cient and warrants ongoing research [58, 90, 91]. Thus, storage management is key
to ensuring good performance and ensuring data safety is of utmost importance. For
fault-tolerance and performance reasons, storage is typically distributed [92, 93]. For
cloud bursting or intra-federation migration, the data needs to be exported to the tar-
get cloud to ensure reasonable performance (WAN links are too slow to perform disk
input and output). Doing so, without duplicating the transfers needlessly, is discussed
in Paper I.

15

16

CHAPTER 4

Service-oriented
Architectures in the Cloud

Service-oriented architectures (SOAs) are part of a design philosophy that helps shape
and motivate cloud deployment of services, although the concepts have evolved since
the 1990’s and 2000’s when SOAs were first introduced. Papers II and III in this
thesis deal with orchestration of services in cloud environments, motivated by the
particularities of services designed for cloud deployment. This chapter serves as a
brief introduction to what type of software services are deployed in clouds, and how
cloud computing itself is the evolution of software services.

Services are, in the context of cloud computing, a term for a composition of a
number of service components, each of which contributes a well-defined functionality
to the functionality of the service as a whole1. Not all components have to be de-
ployed in the same cloud, or even in any cloud (i.e. a publicly facing web site could
be deployed in a public cloud, but access information through a secured connection
to an on-premise database with sensitive data). In SOA terms, services are network-
accessible software programs that have a well-defined functionality, offer access over
various transports and through various serialization formats, and they are regarded as
always being available [94]. They should be technology neutral for interoperability,
loosely coupled, and location transparent [94]. Their utility is the defining character-
istic, and this utility is made available via some kind of Application Program Interface
(API). Services (and the components thereof) and their APIs were in the SOA vision
supposed to be automatically discoverable via cataloging services/registries, and the
interaction between services facilitated almost to the point of automation by complex
but well-defined document formats fully describing the operation signatures of the en-
tire API of each service. For a number of reasons, most of which hardly technical, this
is not how modern services are presented and used. Instead, Representational State
Transfer (REST) [95, 96], which is focused on the data that a service represents and
offers methods to query and modify the data using the standard HTTP methods (GET,
PUT, POST, and DELETE), has emerged as the most common way of publishing an
API that allows others to make use of a service.

1In a 2007 interview at the High Scalability Blog, the then CTO at Amazon stated that generating a
single page involves about 100–150 backend service components.

17

4.1 Services Developed for Cloud Environments
Cloud computing is well-suited for hosting services, since each VM can be customized
to suit a particular service component in terms of what software is installed and how
much computational power the component needs. A large relational database may re-
quire a large amount of RAM, whereas a web frontend that coordinates several back-
end services and presents a document to a web site visitor, might not. But clouds also
has certain specific traits that shape how services are developed for being deployed in
cloud environments.

Cloud computing offers rapid, on-demand elasticity by allowing SPs to commis-
sion and decommission VMs. This is called horizontal scaling, as it increases the
number of VMs. Modifying the capacity of individual VMs is referred to as verti-
cal scaling. The multi-core evolution [97] and how easy cloud computing makes it
to obtain more VMs has had a profound effect on how software is designed: soft-
ware services need to support running in a distributed manner, which adds significant
complexity in terms of fault-tolerance, communication between components, and data
consistency [98]. It is also desirable that the performance of the service increases (at
least) linearly with each additional added instance.

A component that often becomes a performance bottleneck and has undergone
such a change is the database. With the new scalability opportunities offered by cloud
computing, we have over the last few years seen the emergence of new data storage op-
tions including NoSQL [99,100] and NewSQL [101] data stores, to replace traditional
relational SQL data stores. Their utility is sometimes questioned [102, 103], since
they typically surrender some traits of SQL data stores (e.g. database-wide transaction
consistency) to achieve their higher scalability and availability properties [104].

From experience, the ideal service component that benefits most from horizontal
scalability is one designed to:

• perform a low number of quickly executed concise tasks, preferably just one;

• maintain no state information; and

• allow repeated idempotent calls.

If a service component is highly specialized and performs just a single, or a few
related, tasks, increasing the number of deployed component instances gives a targeted
boost to that particular function. Tasks should be concise, in that they do not solve
several problems at once (this is a tenet of good object-oriented design, anyway). State
information should be avoided, since it limits how well load can be distributed among
instances: if only the instance I can serve requests related to a session it has already
initiated, adding more instances cannot offload I. It is to prefer that new instances can
connect to any instance, new or old, and get the same results. Similarly, if a service
component instance is shut down in the middle of processing a request, it should be
able to issue the same command to a different instance and get the sought response.
This can only be guaranteed if idempotent calls are supported, meaning that several
repetitions of a particular request does affect the system beyond what a single request
would. Obviously, state has to be maintained somewhere (e.g. in a data store designed

18

for horizontal scalability, or a distributed caching system), but keeping components
as free from it as possible is the goal of new frameworks that are emerging based on
these ideas, e.g. the Play! framework [105] for web services.

Managing the deployment of all these instances of horizontally scalable service
components is precisely what we set out to do in this thesis. Service components are
obviously related to one another, whether they carry out the same or simply related
tasks, and how they are deployed affects their performance and fault-tolerance. With-
out a language for the SP to express these relationships and how service components
should be deployed, a suitable deployment cannot be guaranteed by the cloud IP.

19

20

CHAPTER 5

Thesis Contributions

This thesis contains contributions to cloud management and service deployment in
cloud federations in three main areas: service orchestration, placement optimization,
and monitoring. Challenges in these areas for federated cloud environments include
dealing with a lack of control and trust across organizational domains. The work
presented in the papers in this thesis highlight and present possible solutions to such
problems, both from the point of view of the infrastructure provider and the service
provider.

The main lessons learned during the work with this thesis are:

• Influence rather than control
The IP and SP have conflicting goals and optimization criteria: the SP would
optimally have the entire cloud site to itself, no network congestion, and each
VM deployed on an individual dedicated physical host. The IP wants to make
optimal use of the infrastructure, which means deploying as many services by
different SPs on the infrastructure as possible. For this very simple reason, the
SP cannot be granted control over how the infrastructure is used. And in con-
temporary (public) clouds, they are not. However, for some services, complete
lack of any way to express placement restrictions is unacceptable. Offering
influence to SPs, rather than control, is a reasonable trade-off.

• Migration costs differ
The cost of migration, in terms of VM performance drop and network utilization
(increases in congestion), needs to be taken into account when VMs are to be
migrated. All VMs are not created equal in terms of migration cost: determining
which VM is most suitable to move must take a large number of factors into ac-
count if we are to avoid picking the wrong VM. In particular, if we have granted
the SP increased influence over placement, we might end up having to migrate
a set of related VMs, should we choose one of them. Due to the impact on
performance VM migration demonstrably has, heuristically determining which
VM to migrate leads to more optimal use of resources and less performance
degradation in the cloud site as a whole.

• Monitoring systems can improve substantially
Monitoring, both the infrastructure itself on behalf of the IP and the deployed
services on behalf of the SP, currently leaves much to be desired in terms of

21

compatibility, security, and ease of use. More work is required, and the field is
rife with competing approaches, making one of the most obvious corner stones
of any management process an exciting field for future developments.

5.1 Paper I
Paper I [106] deals with problems related to offloading (migrating) virtual machines
from one cloud to another in an effort to provide the best possible placement, and
monitoring of virtual machines, to ensure that they are given the agreed upon resources
in the service-level agreement.

While migration is typically performed between physical hosts within a single
cloud site (data center), it can be performed across wide area networks [58, 107],
and thus within cloud federations, as well. The principle of location unawareness,
as described in works by Hadas et al. [108], and a motivating design feature in the
RESERVOIR project [82], suggests that the actual placement of a VM should be as
transparent to the VM as possible.

Should a cloud A need to migrate away a VM to a partner cloud, that partner may
in turn contact its partners (unbeknownst to A) to check if they can host the VM. If
so, A’s partner can accept responsibility for hosting the VM, but delegates it to one of
its partners. And so forth. While operative commands to modify the VM’s state need
to be forwarded along such a chain, actually transferring the entire storage along the
chain would be inefficient. In Paper I, we propose a more efficient alternative based
on transfer proxies, which allows the originating cloud to transfer large data files to
the final destination cloud directly, although it is unaware of which particular cloud
that may be, due to being obscured by the chain of delegation.

A novel way of extracting monitoring data from VMs with the express goal of hid-
ing complexity, loosening the coupling between the monitored service and the mon-
itoring system, and requiring only minor modification to the service deployed in the
VM is also presented.

5.2 Paper II
Paper II [83] expands on finding optimal placement and on monitoring of virtual ma-
chines, but does so also from a user perspective: as a user of a cloud infrastructure, one
should be granted some level of influence (as opposed to outright control) over how
virtual machines are placed. We propose adding service structure to service manifests,
where SPs can define relationships between VMs and specify rules stipulating which
components may or may not be deployed on the same host, cloud site, or geographical
region as some other related VM. However, the SP is not granted any control over
the placement, and cannot force the IP to use a certain set of hosts for the service
deployment.

Service structure is expressed in terms of affinity and anti-affinity constraints on
the host-, cloud-, and (geographical) region-level to types or instances of a given type.

22

Affinity requires co-placement on the defined level, whereas anti-affinity forbids it.
The type and instance division makes it possible to express, for instance, that a sin-
gle VM containing a database replica has a cloud-level affinity to all other database
replicas (type), but a host-level anti-affinity to other database replicas (instance). We
modeled relationships using directed acyclic graphs, an approach formalized and eval-
uated in Paper III.

A heuristic for determining the migratability of a (set of) VMs in a given place-
ment mapping was also introduced, as part of determining which VMs would be easier
to move, given that service structural constraints can imply that migration of one VM
may require others need to be migrated, as well.

As a way to bridge the gap between incompatible monitoring systems in cloud
federations, we suggested a novel monitoring system based on monitoring values with
attached semantic meta-data.

5.3 Paper III
Paper III [84] expands further on the concept of service structure defined in Paper II.
We provided a formal definition of the directed acyclic graphs that express the service
structure and, as an illustration, how they can be translated into placement constraints
matrices for input to an Integer Linear Programming (ILP) solver; presented a mathe-
matical model for incorporating these constraint matrices in a placement engine based
on ILP; and we also demonstrated through simulations that the proposed level of influ-
ence offers reasonable additional orchestration capabilities to users, while not making
the management of the cloud infrastructure overly complex.

We simulated a cloud site of 80 hosts, and 100 VMs belonging to a single service
to be placed upon these. Since service structure according to our definition does not
apply to components in other services, i.e. components from a Service A cannot have
any relationship to components from Service B (where A 6= B, of course). Therefore,
we simulated the presence of other services simply as a certain level of background
load already deployed on each host. 15300 input permutations were performed, and
the results show that there is a relationship between number of affinity constraints,
background load, and placement algorithm execution time that matches intuition:

• a low amount of both constraints and background load makes placement quick
and easy;

• more work is required if there are more complex affinity constraints at low back-
ground loads since the number of possible solutions increases; and

• placement of services with complex constraints on already loaded systems is
also quick to compute, due to the low number of possible solutions.

Regardless, the computational impact on the placement engine is very low, and we
argue that support for service structure should be added in future cloud orchestration
tools.

23

24

CHAPTER 6

Future Work

The work presented in this thesis leaves a number of interesting topics to pursue,
including (in addition to future work mentioned in the papers):

• Modifying placement based on monitored application behavior
Monitoring of applications can provide hints towards the fitness (i.e. how good a
placement mapping is) of the current placement mapping [109]. Large amounts
of measured network traffic between two VMs can indicate that these should
be placed close together, for instance. Large CPU consumption by a VM in-
dicates that it should not be placed with other VMs that also consume large
amounts of CPU. Coupled with predictive techniques, placement based on ap-
plication insight can be made more intelligent and offer increased cloud infras-
tructure utilization. If the placement engine is already set up for dealing with
service structures, modifications to placement can be done by inferring service
structure, and taking this inferred service structure into account for upcoming
placement optimization iterations.

• Formal definition of migratability heuristic
In Paper II, we informally discuss the migratability heuristic. This should be
formally defined, and continually improved upon by the research community as
new possibilities for VM or container migration emerge.

• Monitoring causally related events
As one of many improvements to contemporary monitoring systems, we would
like to propose taking a lesson from distributed systems research in taking causal
relationships between events into account for service monitoring. Isolating the
cause of errors in services based on timestamped data is brittle due to the non-
existence of perfectly synchronized clocks, and offers poor support for devel-
opers in determining the actual cause of an error condition. If causal relation-
ships between events are part of the monitoring data stream, however, events
in one causing errors in another can easily be identified. The main challenge
is determining and distributing the information required for establishing causal
relationships in an efficient manner.

• Implementing service structure and evaluating exprimentally
With the recent interest in orchestration in the OpenStack community, imple-

25

menting service structure in the OpenStack placement engine (the Nova Sched-
uler) would be a worthwhile endeavor. Doing so would allow one to perform
true experiments, rather than simulations, and get data and further insight on
what utility service structure offers, and at what cost.

• Investigate orchestration of services running in containers
Containers are very well suited for deploying services and constructing service-
oriented architectures. Due to the cheap isolation that practically comes for
free, and how platform-related software such as application servers are to be
delivered as containers, dividing a service into components that each run in
separate containers will be the norm in the containerized cloud. But this also
creates a demand for automatically provisioning, orchestrating, and managing
these containerized services in an automated fashion. The requirements and
future challenges that this gives rise to need to be studied further.

26

Bibliography

[1] I. Foster and C. Kesselman, The Grid: Blueprint for a new computing infras-
tructure. Morgan Kaufmann, 2004.

[2] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid comput-
ing 360-degree compared,” in Grid Computing Environments Workshop, 2008.
GCE’08, pp. 1–10, IEEE, 2008.

[3] IBM, “System/360 announcement.” 4 1964.

[4] D. Ritchie and K. Thompson, “The UNIX time-sharing system,” Communica-
tions of the ACM, vol. 17, no. 7, pp. 365–375, 1974.

[5] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, The Physiology of the Grid,
ch. 8, pp. 217–250. Wiley, 2003.

[6] I. Foster, “What is the grid? A three point checklist,” GRID today, vol. 1, no. 6,
pp. 32–36, 2002.

[7] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid: Enabling
scalable virtual organizations,” International Journal of High Performance
Computing Applications, vol. 15, no. 3, pp. 200–222, 2001.

[8] G. Aad, E. Abat, J. Abdallah, A. Abdelalim, A. Abdesselam, O. Abdinov,
B. Abi, M. Abolins, H. Abramowicz, E. Acerbi, et al., “The ATLAS experi-
ment at the CERN large hadron collider,” Journal of Instrumentation, vol. 3,
no. 08, p. S08003, 2008.

[9] L. A. Belady and C. J. Kuehner, “Dynamic space-sharing in computer systems,”
Commun. ACM, vol. 12, pp. 282–288, May 1969.

[10] L. M. Vaquero, L. Rodero-Merino, J. Cáceres, and M. Lindner, “A break in
the clouds: towards a cloud definition,” SIGCOMM Comput. Commun. Rev.,
vol. 39, no. 1, pp. 50–55, 2009.

[11] P. Mell and T. Grance, “The NIST definition of cloud computing,” NIST special
publication, vol. 800, p. 145, 2011.

[12] R. Adair, R. Bayles, L. Comeau, and R. Creasy, “A Virtual Machine System
for the 360/40 - Cambridge scientific center report 320,” tech. rep., IBM, May
1966.

27

[13] G. Popek and R. Goldberg, “Formal requirements for virtualizable third gener-
ation architectures,” Communications of the ACM, vol. 17, no. 7, pp. 412–421,
1974.

[14] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in SOSP ’03: Pro-
ceedings of the nineteenth ACM symposium on Operating systems principles,
pp. 164–177, ACM, October 2003.

[15] Advanced Micro Devices, AMD Inc., “AMD virtualization codenamed “Paci-
fica” technology, secure virtual machine architecture reference manual.” Refer-
ence manual, 5 2005.

[16] J. S. Bozman and G. P. Chen, “Optimizing hardware for x86 server virtualiza-
tion.” White Paper.

[17] K. Adams and O. Agesen, “A comparison of software and hardware techniques
for x86 virtualization,” in Proceedings of the 12th international conference
on Architectural support for programming languages and operating systems,
pp. 2–13, ACM, 2006.

[18] J. Walters, V. Chaudhary, M. Cha, S. Guercio Jr, and S. Gallo, “A comparison
of virtualization technologies for HPC,” in 22nd International Conference on
Advanced Information Networking and Applications, pp. 861–868, IEEE, 2008.

[19] P. Padala, X. Zhu, Z. Wang, S. Singhal, K. G. Shin, et al., “Performance evalua-
tion of virtualization technologies for server consolidation,” HP Labs Technical
Report, 2007.

[20] S. Crosby and D. Brown, “The virtualization reality,” ACM Queue, pp. 34–41,
December/January 2006-2007.

[21] L. Youseff, R. Wolski, B. Gorda, and C. Krintz, “Paravirtualization for HPC
systems,” in Frontiers of High Performance Computing and Networking ISPA
2006 Workshops (G. Min et al., eds.), pp. 474–486, 2006.

[22] H. Ludwig, A. Keller, A. Dan, R. King, and R. Franck, “A service level agree-
ment language for dynamic electronic services,” Electronic Commerce Re-
search, vol. 3, no. 1-2, pp. 43–59, 2003.

[23] H. Ludwig, A. Keller, A. Dan, R. King, and R. Franck, “Web service level
agreement (WSLA) language specification,” IBM Corporation, 2003.

[24] B. Rochwerger, C. Váquez, D. Breitgand, D. Hadas, M. Villari, P. Massonet,
E. Levy, A. Galis, I. Llorente, R. Montero, Y. Wolfsthal, K. Nagin, L. Larsson,
and F. Galán, “An architecture for federated cloud computing,” Cloud Comput-
ing, 2010.

28

[25] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. Llorente, R. Mon-
tero, Y. Wolfsthal, E. Elmroth, J. Caceres, M. Ben-Yehuda, W. Emmerich, and
F. Galán, “The RESERVOIR model and architecture for open federated cloud
computing,” IBM Journal of Research and Development, vol. 53, no. 4, 2009.
Paper 4.

[26] A. Ferrer, F. Hernández, J. Tordsson, E. Elmroth, A. Ali Eldin, C. Zsigri, R. Sir-
vent, J. Guitart, R. Badia, K. Djemame, W. Ziegler, T. Dimitrakos, S. Nair,
G. Kousiouris, K. Konstanteli, T. Varvarigou, B. Hudzia, A. Kipp, S. Wesner,
M. Corrales, N. Forgó, T. Sharif, and C. Sheridan, “OPTIMIS: a Holistic Ap-
proach to Cloud Service Provisioning,” Future Generation Computer Systems,
vol. 28, pp. 66 – 77, 2011.

[27] G. Kroah-Hartman, “Linux kernel 3.8.1 change log.” Online re-
source: https://www.kernel.org/pub/linux/kernel/v3.
x/ChangeLog-3.8.1, 2 2013.

[28] D. Strauss, “The future cloud is container, not virtual machines,” Linux Journal,
vol. 2013, Apr. 2013.

[29] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson, “Container-
based operating system virtualization: A scalable, high-performance alternative
to hypervisors,” SIGOPS Oper. Syst. Rev., vol. 41, pp. 275–287, Mar. 2007.

[30] D. Price and A. Tucker, “Solaris zones: Operating system support for consoli-
dating commercial workloads.,” in LISA, vol. 4, pp. 241–254, 2004.

[31] P.-H. Kamp and R. N. Watson, “Jails: Confining the omnipotent root,” in Pro-
ceedings of the 2nd International SANE Conference, vol. 43, p. 116, 2000.

[32] Docker Inc., “What is Docker? an open platform for distributed apps.” 11 2014.

[33] L. Tomas and J. Tordsson, “An autonomic approach to risk-aware data center
overbooking,” IEEE Transactions on Cloud Computing, vol. 2, pp. 292–305,
July 2014.

[34] M. H. Ferdaus and M. Murshed, “Energy-aware virtual machine consolidation
in IaaS cloud computing,” in Cloud Computing (Z. Mahmood, ed.), Computer
Communications and Networks, pp. 179–208, Springer International Publish-
ing, 2014.

[35] C. Liu, B. T. Loo, and Y. Mao, “Declarative automated cloud resource orches-
tration,” in Proceedings of the 2Nd ACM Symposium on Cloud Computing,
SOCC ’11, (New York, NY, USA), pp. 26:1–26:8, ACM, 2011.

[36] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A cost-aware elasticity provi-
sioning system for the cloud,” in 31st International Conference on Distributed
Computing Systems (ICDCS), 2011, pp. 559–570, IEEE, 2011.

29

[37] S. Dustdar, Y. Guo, R. Han, B. Satzger, and H.-L. Truong, “Programming direc-
tives for elastic computing,” IEEE Internet Computing, vol. 16, no. 6, pp. 72–
77, 2012.

[38] G. Copil, D. Moldovan, H.-L. Truong, and S. Dustdar, “Multi-level elasticity
control of cloud services,” in Service-Oriented Computing (S. Basu, C. Pau-
tasso, L. Zhang, and X. Fu, eds.), vol. 8274 of Lecture Notes in Computer
Science, pp. 429–436, Springer Berlin Heidelberg, 2013.

[39] G. Copil, D. Moldovan, H.-L. Truong, and S. Dustdar, “SYBL+MELA: Spec-
ifying, monitoring, and controlling elasticity of cloud services,” in Service-
Oriented Computing (S. Basu, C. Pautasso, L. Zhang, and X. Fu, eds.),
vol. 8274 of Lecture Notes in Computer Science, pp. 679–682, Springer Berlin
Heidelberg, 2013.

[40] R. Aiello and L. Sachs, Configuration Management Best Practices: Practical
Methods that Work in the Real World. Addison-Wesley Professional, 1st ed.,
2010.

[41] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, “TOSCA: Portable auto-
mated deployment and management of cloud applications,” in Advanced Web
Services (A. Bouguettaya, Q. Z. Sheng, and F. Daniel, eds.), pp. 527–549,
Springer New York, 2014.

[42] E. Kolodner, S. Tal, D. Kyriazis, D. Naor, M. Allalouf, L. Bonelli, P. Brand,
A. Eckert, E. Elmroth, S. Gogouvitis, D. Harnik, F. Hernandez, M. Jaeger,
E. Lakew, J. Lopez, M. Lorenz, A. Messina, A. Shulman-Peleg, R. Talyan-
sky, A. Voulodimos, and Y. Wolfsthal, “A cloud environment for data-intensive
storage services,” in IEEE Third International Conference on Cloud Computing
Technology and Science (CloudCom) 2011, pp. 357–366, Nov 2011.

[43] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon, “RACS: a case for cloud
storage diversity,” in Proceedings of the 1st ACM symposium on Cloud comput-
ing, pp. 229–240, ACM, 2010.

[44] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka, and
J. Molina, “Controlling data in the cloud: Outsourcing computation without
outsourcing control,” in Proceedings of the 2009 ACM Workshop on Cloud
Computing Security, CCSW ’09, (New York, NY, USA), pp. 85–90, ACM,
2009.

[45] C. Wang, K. Ren, W. Lou, and J. Li, “Toward publicly auditable secure cloud
data storage services,” Network, IEEE, vol. 24, pp. 19–24, July 2010.

[46] S. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability of software-
defined networking,” Communications Magazine, IEEE, vol. 51, pp. 136–141,
February 2013.

30

[47] H. Kim and N. Feamster, “Improving network management with software de-
fined networking,” Communications Magazine, IEEE, vol. 51, pp. 114–119,
February 2013.

[48] E. Elmroth, F. Galán, D. Henriksson, and D. Perales, “Accounting and billing
for federated cloud infrastructures,” in GCC ’09: Proceedings of the 2009
Eighth International Conference on Grid and Cooperative Computing, (Wash-
ington, DC, USA), pp. 268–275, IEEE Computer Society, 2009.

[49] D. Milojicic, I. M. Llorente, and R. S. Montero, “Opennebula: A cloud man-
agement tool,” IEEE Internet Computing, vol. 15, no. 2, pp. 11–14, 2011.

[50] S. A. Baset, “Open source cloud technologies,” in Proceedings of the Third
ACM Symposium on Cloud Computing, SoCC ’12, (New York, NY, USA),
pp. 28:1–28:2, ACM, 2012.

[51] D. Breitgand, A. Marashini, and J. Tordsson, “Policy-driven service placement
optimization in federated clouds,” Tech. Rep. H-0299, IBM Research Report,
2011.

[52] S. Tesfatsion, E. Wadbro, and J. Tordsson, “A combined frequency scaling and
application elasticity approach for energy-efficient cloud computing,” Sustain-
able Computing: Informatics and Systems, 2014. To appear, preprint available
online: http://dx.doi.org/10.1016/j.suscom.2014.08.007.

[53] A. Verma, P. Ahuja, and A. Neogi, “pMapper: Power and migration cost aware
application placement in virtualized systems,” in Middleware 2008 (V. Issarny
and R. Schantz, eds.), vol. 5346 of Lecture Notes in Computer Science, pp. 243–
264, Springer Berlin / Heidelberg, 2008.

[54] A. Verma, P. De, V. Mann, T. Nayak, A. Purohit, G. Dasgupta, and R. Kothari,
“Brownmap: Enforcing power budget in shared data centers,” in Middleware
2010 (I. Gupta and C. Mascolo, eds.), vol. 6452 of Lecture Notes in Computer
Science, pp. 42–63, Springer Berlin Heidelberg, 2010.

[55] W. Li, J. Tordsson, and E. Elmroth, “Virtual machine placement for predictable
and time-constrained peak loads,” in Economics of Grids, Clouds, Systems, and
Services, pp. 120–134, Springer Berlin Heidelberg, 2012.

[56] J. Tordsson, R. S. Montero, R. Moreno-Vozmediano, and I. M. Llorente, “Cloud
brokering mechanisms for optimized placement of virtual machines across mul-
tiple providers,” Future Generation Computer Systems, vol. 28, no. 2, pp. 358–
367, 2012.

[57] P. Svärd, B. Hudzia, J. Tordsson, and E. Elmroth, “Evaluation of delta com-
pression techniques for efficient live migration of large virtual machines,” in
Proceedings of the 7th ACM SIGPLAN/SIGOPS international conference on
Virtual execution environments, pp. 111–120, ACM, 2011.

31

[58] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost of virtual ma-
chine live migration in clouds: A performance evaluation,” in Cloud Comput-
ing (M. Jaatun, G. Zhao, and C. Rong, eds.), vol. 5931 of Lecture Notes in
Computer Science, pp. 254–265, Springer Berlin Heidelberg, 2009.

[59] H. Liu, H. Jin, C.-Z. Xu, and X. Liao, “Performance and energy modeling for
live migration of virtual machines,” Cluster computing, vol. 16, no. 2, pp. 249–
264, 2013.

[60] Q. Huang, F. Gao, R. Wang, and Z. Qi, “Power consumption of virtual machine
live migration in clouds,” in Communications and Mobile Computing (CMC),
2011 Third International Conference on, pp. 122–125, IEEE, 2011.

[61] Y. Zu, T. Huang, and Y. Zhu, “An efficient power-aware resource scheduling
strategy in virtualized datacenters,” in International Conference on Parallel and
Distributed Systems (ICPADS), 2013), pp. 110–117, Dec 2013.

[62] S.-J. Yang, L.-C. Chen, H.-H. Tseng, H.-K. Chung, and H.-Y. Lin, “Designing
automatic power saving on virtualization environment,” in 12th IEEE Interna-
tional Conference on Communication Technology (ICCT), 2010), pp. 966–970,
Nov 2010.

[63] A. Beloglazov and R. Buyya, “Energy efficient resource management in vir-
tualized cloud data centers,” in 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing (CCGrid), 2010, pp. 826–831, May 2010.

[64] A. Beloglazov and R. Buyya, “Managing overloaded hosts for dynamic con-
solidation of virtual machines in cloud data centers under quality of service
constraints,” IEEE Transactions on Parallel and Distributed Systems, vol. 24,
pp. 1366–1379, July 2013.

[65] T. Hirofuchi, H. Nakada, S. Itoh, and S. Sekiguchi, “Reactive consolidation of
virtual machines enabled by postcopy live migration,” in Proceedings of the
5th international workshop on Virtualization technologies in distributed com-
puting, pp. 11–18, ACM, 2011.

[66] T. Hirofuchi, H. Nakada, S. Itoh, and S. Sekiguchi, “Enabling instantaneous
relocation of virtual machines with a lightweight VMM extension,” in 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Computing
(CCGrid), 2010, pp. 73–83, IEEE, 2010.

[67] H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval re-
search logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[68] D. Breitgand, Z. Dubitzky, A. Epstein, A. Glikson, and I. Shapira, “SLA-aware
resource over-commit in an IaaS cloud,” in Proceedings of the 8th Interna-
tional Conference on Network and Service Management, CNSM ’12, (Lax-
enburg, Austria, Austria), pp. 73–81, International Federation for Information
Processing, 2013.

32

[69] L. Tomás and J. Tordsson, “Improving cloud infrastructure utilization through
overbooking,” in Proceedings of the ACM Cloud and Autonomic Computing
Conference, ACM, 2013. To appear.

[70] D. Breitgand and A. Epstein, “SLA-aware placement of multi-virtual machine
elastic services in compute clouds,” in IFIP/IEEE International Symposium on
Integrated Network Management (IM), 2011, pp. 161–168, May 2011.

[71] R. Ghosh and V. Naik, “Biting off safely more than you can chew: Predictive
analytics for resource over-commit in iaas cloud,” in IEEE 5th International
Conference on Cloud Computing (CLOUD), 2012, pp. 25–32, June 2012.

[72] A. Bahga, V. K. Madisetti, et al., “Synthetic workload generation for cloud
computing applications,” Journal of Software Engineering and Applications,
vol. 4, no. 07, p. 396, 2011.

[73] A. Khan, X. Yan, S. Tao, and N. Anerousis, “Workload characterization and
prediction in the cloud: A multiple time series approach,” in IEEE Network
Operations and Management Symposium (NOMS), 2012, pp. 1287–1294, April
2012.

[74] A. Ali-Eldin, M. Kihl, J. Tordsson, and E. Elmroth, “Efficient provisioning of
bursty scientific workloads on the cloud using adaptive elasticity control,” in
Proceedings of the 3rd workshop on Scientific Cloud Computing, pp. 31–40,
ACM, 2012.

[75] A. Eldin, A. Rezaie, A. Mehta, S. Razroev, S. Sjöstedt-de Luna, O. Seleznjev,
J. Tordsson, and E. Elmroth, “How will your workload look like in 6 years?
Analyzing wikimedia’s workload,” in IEEE International Conference on Cloud
Engineering (IC2E), 2014, pp. 349–354, March 2014.

[76] T. Lorido-Botrán, J. Miguel-Alonso, and J. A. Lozano, “Auto-scaling tech-
niques for elastic applications in cloud environments,” Research EHU-KAT-IK,
Department of Computer Architecture and Technology, UPV/EHU, 2012.

[77] E. Caron, F. Desprez, and A. Muresan, “Forecasting for grid and cloud comput-
ing on-demand resources based on pattern matching,” in IEEE Second Interna-
tional Conference on Cloud Computing Technology and Science (CloudCom),
2010, pp. 456–463, Nov 2010.

[78] A. Ali-Eldin, J. Tordsson, and E. Elmroth, “An adaptive hybrid elasticity con-
troller for cloud infrastructures,” in Network Operations and Management Sym-
posium (NOMS), 2012 IEEE, pp. 204–212, April 2012.

[79] M. Sedaghat, F. Hernandez-Rodriguez, and E. Elmroth, “A virtual machine re-
packing approach to the horizontal vs. vertical elasticity trade-off for cloud au-
toscaling,” in Proceedings of the 2013 ACM Cloud and Autonomic Computing
Conference, CAC ’13, (New York, NY, USA), pp. 6:1–6:10, ACM, 2013.

33

[80] S. Garg, Y. Huang, C. Kintala, and K. S. Trivedi, “Minimizing completion time
of a program by checkpointing and rejuvenation,” SIGMETRICS Perform. Eval.
Rev., vol. 24, pp. 252–261, May 1996.

[81] C. Klein, M. Maggio, K.-E. Årzén, and F. Hernández-Rodriguez, “Brownout:
Building more robust cloud applications,” in Proceedings of the 36th Inter-
national Conference on Software Engineering, ICSE 2014, (New York, NY,
USA), pp. 700–711, ACM, 2014.

[82] M. B. Yehuda, O. Biran, D. Breitgand, K. Meth, B. Rochwerger, E. Salant,
E. Silvera, S. Tal, Y. Wolfsthal, J. Cáceres, J. Hierro, W. Emmerich, A. Galis,
L. Edblom, E. Elmroth, D. Henriksson, F. Hernández, J. Tordsson, A. Hohl,
E. Levy, A. Sampaio, B. Scheuermann, M. Wusthoff, J. Latanicki, G. Lopez,
J. Marin-Frisonroche, A. Dörr, F. Ferstl, S. Beco, F. Pacini, I. Llorente, R. Mon-
tero, E. Huedo, P. Massonet, S. Naqvi, G. Dallons, M. Pezzé, A. Puliato, C. Ra-
gusa, M. Scarpa, and S. Muscella, “RESERVOIR — an ICT infrastructure for
reliable and effective delivery of services as utilities,” tech. rep., IBM Haifa
Research Laboratory, 2008.

[83] L. Larsson, D. Henriksson, and E. Elmroth, “Scheduling and monitoring of in-
ternally structured services in cloud federations,” in Proceedings of IEEE Sym-
posium on Computers and Communications 2011, pp. 173–178, IEEE Com-
puter Society, June 2011.

[84] D. Espling, L. Larsson, W. Li, J. Tordsson, and E. Elmroth, “Modeling and
placement of structured cloud services,” IEEE Transactions on Cloud Comput-
ing (TCC), vol. PP, October 2014. To appear.

[85] Amazon Web Services, Inc., “AWS CloudFormation – configuration manage-
ment & cloud orchestration.” 2014.

[86] OpenStack Foundation, “Heat — OpenStack.” 2014.

[87] OASIS, “OASIS cloud application management for platforms (CAMP) TC.”
2014.

[88] OASIS, “OASIS topology and orchestration specification for cloud applications
(TOSCA) TC.” 2014.

[89] T. Binz, G. Breiter, F. Leyman, and T. Spatzier, “Portable cloud services using
TOSCA,” Internet Computing, IEEE, vol. 16, pp. 80–85, May 2012.

[90] T. Wood, K. K. Ramakrishnan, P. Shenoy, and J. van der Merwe, “CloudNet:
Dynamic pooling of cloud resources by live WAN migration of virtual ma-
chines,” SIGPLAN Not., vol. 46, pp. 121–132, Mar. 2011.

[91] T. Hirofuchi, H. Ogawa, H. Nakada, S. Itoh, and S. Sekiguchi, “A live stor-
age migration mechanism over wan for relocatable virtual machine services on
clouds,” in Proceedings of the 2009 9th IEEE/ACM International Symposium

34

on Cluster Computing and the Grid, CCGRID ’09, (Washington, DC, USA),
pp. 460–465, IEEE Computer Society, 2009.

[92] K. D. Bowers, A. Juels, and A. Oprea, “HAIL: A high-availability and integrity
layer for cloud storage,” in Proceedings of the 16th ACM Conference on Com-
puter and Communications Security, CCS ’09, (New York, NY, USA), pp. 187–
198, ACM, 2009.

[93] E. B. Lakew, F. Hernandez-Rodriguez, L. Xu, and E. Elmroth, “Management
of distributed resource allocations in multi-cluster environments,” in IEEE
31st International Performance Computing and Communications Conference
(IPCCC), 2012, pp. 275–284, IEEE, 2012.

[94] M. Papazoglou, Web services: principles and technology. Pearson Education
Limited, 2008.

[95] R. T. Fielding, Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, Irvine, California,
2000.

[96] R. T. Fielding and R. N. Taylor, “Principled design of the modern web archi-
tecture,” ACM Trans. Internet Technol., vol. 2, pp. 115–150, May 2002.

[97] T. Peierls, B. Goetz, J. Bloch, J. Bowbeer, D. Lea, and D. Holmes, Java Con-
currency in Practice. Pearson Education, 2006.

[98] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems: Concepts
and Design (4th Edition) (International Computer Science). Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2005.

[99] K. Chodorow, MongoDB: The Definitive Guide. O’Reilly Media, 2013.

[100] K. Banker, MongoDB in Action. Greenwich, CT, USA: Manning Publications
Co., 2011.

[101] M. Stonebraker and A. Weisberg, “The VoltDB main memory DBMS,” IEEE
Data Eng. Bull., vol. 36, no. 2, pp. 21–27, 2013.

[102] N. Leavitt, “Will NoSQL databases live up to their promise?,” Computer,
vol. 43, pp. 12–14, Feb 2010.

[103] M. Stonebraker, “SQL databases v. NoSQL databases,” Commun. ACM, vol. 53,
pp. 10–11, Apr. 2010.

[104] R. Cattell, “Scalable SQL and NoSQL data stores,” SIGMOD Rec., vol. 39,
pp. 12–27, May 2011.

[105] J. Richard-Foy, Play Framework Essentials. Packt Publishing, 2014.

35

[106] E. Elmroth and L. Larsson, “Interfaces for placement, migration, and moni-
toring of virtual machines in federated clouds,” in Eighth International Con-
ference on Grid and Cooperative Computing (GCC 2009), pp. 253–260, IEEE
Computer Society, August 2009.

[107] F. Travostino, “Seamless live migration of virtual machines over the
MAN/WAN,” in SC ’06: Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, p. 290, ACM, November 2006.

[108] D. Hadas, S. Guenender, and B. Rochwerger, “Virtual network services for
federated cloud computing,” Tech. Rep. H-0269, IBM Technical Reports, Nov.
2009.

[109] J. Mars and L. Tang, “Understanding application contentiousness and sensitiv-
ity on modern multicores,” in Advances in Computers, vol. 91, pp. 59–85, New
York, NY, USA: ACM, 2013.

36

I

Paper I

Interfaces for Placement, Migration, and Monitoring of
Virtual Machines in Federated Clouds∗

Erik Elmroth and Lars Larsson

Dept. Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden
{elmroth, larsson}@cs.umu.se
http://www.cloudresearch.org/

Abstract: Current cloud computing infrastructure offerings are lacking in interoper-
ability, which is a hindrance to the advancement and adoption of the cloud computing
paradigm. As clouds are made interoperable, federations of clouds may be formed.
Such federations are from the point of view of the user not burdened by vendor lock-
in, and opens for business possibilities where a market place of cloud computing in-
frastructure can be formed. Federated clouds require unified management interfaces
regarding the virtual machines (VMs) that comprise the services running in the cloud
federation. Standardization efforts for the required management interfaces have so far
focused on definition of description formats regarding VMs, and the control of already
deployed VMs. We propose technology neutral interfaces and architectural additions
for handling placement, migration, and monitoring of VMs in federated cloud envi-
ronments, the latter as an extension of current monitoring architectures used in grid
computing. The interfaces presented adhere to the general requirements of scalability,
efficiency, and security in addition to specific requirements related to the particular
issues of interoperability and business relationships between competing cloud com-
puting infrastructure providers. In addition, they may be used equally well locally
and remotely, creating a layer of abstraction that simplifies management of virtualized
service components.

Key words: cloud computing, federated cloud, migration, monitoring

∗ By permission of IEEE

39

40

Interfaces for Placement, Migration, and Monitoring
of Virtual Machines in Federated Clouds

Erik Elmroth and Lars Larsson
Department of Computing Science

Umeå University
Umeå, Sweden

Email: {elmroth, larsson}@cs.umu.se

Abstract—Current cloud computing infrastructure offerings
are lacking in interoperability, which is a hindrance to the
advancement and adoption of the cloud computing paradigm.
As clouds are made interoperable, federations of clouds may be
formed. Such federations are from the point of view of the user
not burdened by vendor lock-in, and opens for business possi-
bilities where a market place of cloud computing infrastructure
can be formed. Federated clouds require unified management
interfaces regarding the virtual machines (VMs) that comprise
the services running in the cloud federation. Standardization
efforts for the required management interfaces have so far
focused on definition of description formats regarding VMs, and
the control of already deployed VMs. We propose technology-
neutral interfaces and architectural additions for handling place-
ment, migration, and monitoring of VMs in federated cloud
environments, the latter as an extension of current monitoring
architectures used in Grid computing. The interfaces presented
adhere to the general requirements of scalability, efficiency,
and security in addition to specific requirements related to the
particular issues of interoperability and business relationships
between competing cloud computing infrastructure providers. In
addition, they may be used equally well locally and remotely,
creating a layer of abstraction that simplifies management of
virtualized service components.

I. INTRODUCTION

Cloud computing is growing increasingly popular in the
IT business, and industry leaders such as Bill Joy of Sun Mi-
crosystems fame estimated that utility and pervasive computing
such as cloud computing may be a trillion dollar business (as
quoted in [1]). Implementations and architectures vary widely,
and the cloud computing offerings of one vendor are often not
guaranteed to be compatible with those of some other vendor,
thus creating vendor lock-in.

The US National Institute of Standards and Technology is
currently working on a definition of cloud computing [2], where
cloud computing is stated as having five key characteristics:
(a) on-demand self-service; (b) ubiquitous network access;
(c) location independent resource pooling; (d) rapid elasticity;
and (e) pay per use. There are also three delivery models:
(i) Software as a Service; (ii) Platform as a Service; and
(iii) Infrastructure as a Service. These delivery models differ
substantially in scope. Our focus is cloud infrastructure, which
we use to denote the infrastructure required for hosting
virtualized services, and thus Infrastructure as a Service (IaaS).
In particular, the infrastructure provided should be flexible and

adapt to the dynamics in demand for a deployed service in
a cost-efficient way. This includes optimizing resource usage
at the infrastructure provider’s site locally (e.g. reducing the
number of powered machines and consolidation of load), as
well using bidirectional contracts with other infrastructure
provider sites. A federated cloud is one where (competing)
infrastructure providers can reach cross-site agreements of
cooperation regarding the deployment of service components
in a way similar to how electrical power providers provision
capacity from each other to cope with variations in demand.
Such collaboration increases location independence. To achieve
this vision, the cloud sites in the federation must conform to
common interfaces regarding virtualized service components
and employ compatible virtualization platforms.

Cloud computing leverages technologies such as Grid
computing and virtualization to provide the basic infrastructure
and platform for the cloud computing stack. Services (or
components thereof) are generally deployed in virtual machines
(VMs) that can be defined in terms of the required virtual
hardware resources and network connectivity. As demand
dynamically fluctuates, the resources can be scaled up or
down to allow the customer to pay only for the capacity
needed and to reduce the costs for the cloud provider. Rules
for this type of dynamic elasticity in resource demands are
formulated as Service Level Agreements (SLAs), either in
terms of virtual hardware resources and the utilization thereof,
or as Key Performance Indicators (KPIs). KPIs include e.g.
application-specific terms such as the number of jobs in a work
queue.

The contribution of this article is two-fold. First, we
analyze the current state of the art of (proposed) standards
for VM management interfaces to find where enhancements
are needed, and based on usage scenarios, determine what the
requirements of such enhancements are. Second, we propose
interfaces for supporting the additional required functionality,
adding placement, migration, and monitoring interfaces to the
interfaces already defined in (proposed) standards. We argue
that placement is a special case of migration, and thus can be
supported by the same homogeneous interface operations. We
define these interface operations, and introduce a component
called Transfer proxy that is used to carry out the file transfers.
An algorithm that utilizes Transfer proxies for such transfer
is presented. With regard to monitoring interfaces, we present

41

additions to the descriptors of VMs that configure a general
monitoring system. In addition to discussing how monitoring
data should be transferred in a general cloud computing
platform and presenting our solution, we introduce a novel
approach for supporting application-level measurements in
virtualized cloud service components while requiring a minimal
change to the application itself.

The remainder of the article is structured as follows. In
Section II, we discuss the rationale and requirements regarding
migration and monitoring interfaces. Section III presents a
scalable and decentralized solution to handling migration of
VMs that fulfills these requirements. In Section IV, we present
additions to current standardized descriptors of VMs that
relate to monitoring of both the infrastructure itself and of
the applications that run in the VMs. These suggestions are
later discussed in Section V. Related work in some currently
active projects is presented in Section VI. Section VII contains
a summary and conclusions.

II. CROSS-SITE MANAGEMENT IN FEDERATED CLOUD
ENVIRONMENTS

The previous section referred to the working definition of
cloud computing by NIST, which states a number of key charac-
teristics for cloud computing. As the cloud computing paradigm
has become increasingly popular, various cloud infrastructure
architectures have been developed. For the purpose of this work,
we assume that a general cloud computing architecture requires
functionality that may well be implemented by components
divided into a number of layers with clear separation of
concern and responsibilities. Although the number of layers
vary among cloud computing implementations, we assume
that a general architecture is divided in at least the following
two conceptual layers: (a) the Management layer, responsible
for overall management, such as admission control, decisions
regarding where to deploy VEEs in the cloud (referred to as
placement of VMs), control of resources, accounting for usage,
etc; and (b) the Implementation layer, responsible for hosting
the VMs, maintaining virtual networks across sites, etc.

To note the difference in responsibilities of the sites in
the federation, we let primary site denote the site that has
been contractually bound by the service provider (customer)
to manage the VMs that comprise a service and other sites be
denoted as remote sites.

The layered architecture clearly marks a separation of
concern between the Management and Implementation layers.
There is also a separation of concern between cloud sites, as
sites may avoid disclosing exact information regarding the
placement of VMs on physical host machines. We call this
the principle of location unawareness. The principle is one
of the pillars of the RESERVOIR project [3], motivated by
use cases where cloud infrastructure providers do not wish
to disclose information regarding the size or utilization of
the infrastructure, due to the sensitivity of such information.
Also, it is more convenient for a site to make use of the
infrastructure offered as a service by the remote site, relying
on SLA compliance rather than minute resource management

of VMs running remotely. This also enables infrastructure-less
resource brokers to act in the federated cloud.

We use the term primary placement for denoting the selection
of, and transfer to, a site for future deployment of a VM that
has not been run yet, or one that has been shut down after
having run previously. A VM is regarded as deployed when
all its files have been transferred to the host that will run it, it
has been activated (or “booted up”), and is currently running.
Transferring a VM from one VM host to another, possibly with
either one or both hosts running at remote sites, is called VM
Migration. Note that both local (across local hosts) and remote
(cross-site) migration is included in this definition. The process
of migration may be initiated reactively due to the submission
of new VMs to deploy, or proactively to continuously optimize
placement to avoid SLA violations, evenly distribute system
load, consolidate VMs to few hosts for power savings, etc.

We claim that placement of a VM that has not yet been run,
or one that has been shut down, may be regarded as a special
case of cold migration, as the only conceptual difference is that
there is no serialized runtime state to transfer. We therefore,
for the purposes of this article, consider primary placement of
a VM to be no different from migration. This lets us employ
the same protocol in both contexts, and as a result, simplifies
management operations.

We consider three general usage scenarios related to migra-
tion of VMs. In the first (Usage scenario 1), the primary site
initiates the VM migration due to lack of local resources,
whereas in the second (Usage scenario 2), a remote site
currently running a VM on behalf of the primary site is unable
to continue doing so and requires that the primary site finds
new placement for the VM immediately. The third (Usage
scenario 3) is the case when a VM running locally at a certain
host must be migrated to another host, running at the same
site. Such migration may be used for e.g. energy conservation
(consolidation of VMs to a low number of hosts) or for load-
balancing (maximizing distribution of VMs among local hosts).

Requests to deploy a VM on behalf of some other site
are to be considered as offers of contracts. These contracts
may contain SLAs that stipulate the requirements on both
parties, and from the Infrastructure Provider’s point of view,
they could be costly to violate. Thus, in a migration scenario,
the involved sites must be able to verify the identities of
each other in a secure manner. If a site is unable to deploy a
VM due to lack of resources, it should be able to delegate the
responsibility to some partner site. Some of the aforementioned
SLAs are expressed in terms of VM resource allocation (e.g.
“5 Mb/second bandwidth 95% of the time over some time
period”), whereas others are expressed in application-specific
terms (e.g. “no more than 1000 concurrent database users at any
time”). In order to avoid violating the SLAs, the Management
layer is responsible for scaling the size and amount of the
VMs allocated to the service up and down, as required. For
reasons such as VM host maintenance, a site responsible for
running a VM may require that a VM is migrated away from it.
Such requests cannot be ignored by the site that has delegated
responsibility to the site.

42

A. State of the Art Technologies and Standards

The state of the art technologies and standards include
support for some of the features mentioned in the usage
scenarios presented in Section II. In the following sections, we
briefly consider the topics of two of these sets of standards:
VM descriptors and VM control interfaces.

1) VM Descriptors : In order to be deployable in the
federated cloud, each VM must be described in terms of
required resources, its network membership and configuration,
have a unique identifier, etc. One standard dealing with
this issue is the Open Virtualization Format (OVF) [4] by
the Distributed Management Task Force (DMTF). OVF is
supported by leading technologies such as the open source
Xen [5] and the proprietary VMware [6].

We use the term VM Descriptor to refer to the description
of a single VM. Note that the OVF does not include a section
related to monitoring of VMs, but rather the configuration
of the virtual hardware and some basic configuration of this
hardware, e.g. network addresses, etc.

2) VM Control Operations: Once deployed, VMs must be
controlled by the management layer. A general Control interface
for VMs is used to carry out two types of operations: (a)
modifying the Descriptor of a VM, making it possible to alter
the amount of resources allocated, or any other configurable
parameter related to the VM; and (b) updating the runtime state
of the VM, e.g. by shutting down a running VM or activating
a hibernated one. The DMTF has proposed standards for these
operations in [7] and [8], respectively. The states of VMs are
described in [9].

B. Requirements

The usage scenarios in Section II require additional function-
ality not offered in the state of the art technologies described
in Section II-A. We summarize these requirements below:

1) A cryptographically secure identification scheme must be
used to authenticate the parties involved in all cross-site
communication.

2) Monitoring of VM resource allocation must be provided.
3) Monitoring of application-specific values must be pro-

vided.
4) Migration of VMs must be supported.
5) Migration must be possible to delegate.
6) A remote site must be able to make a request to the

site from which the delegation of responsibility came
to initiate immediate migration of a VM away from the
remote site. Such requests must not be ignored.

The following sections contain an approach for extending
upon the state of the art and meeting these requirements.

III. MIGRATION

Migration of a VM requires that the source and destination
host machines coordinate the transfer of the VM’s definition
and state files. We wish to set up such a transfer without losing
the separation of concern between the Management layer and

the Implementation layer or, similarly, the cross-site location-
unawareness, while still adhering to the overall requirements
of efficiency, security, and scalability.

To this end, we propose that each site maintains at least one
Transfer proxy component in the Management layer. A Transfer
proxy is a component that provides a layer of abstraction
and information hiding, while at the same time associates
an upcoming transfer with a transfer negotiation process.
For scalability reasons, a site may wish to deploy several
Transfer proxies. On behalf of the site, the Transfer proxies
maintain a mapping between a VM identifier and where (at
the Implementation level) its files are to be placed or read
from. This mapping is called the Transfer token. The Transfer
token is a unique identifier whose meaning is only known
within the originating Transfer proxy. In this way, only the
address of the Transfer proxy at a site is disclosed, not the
address (or any other internal information) of the VM host at
the Implementation level.

Using an approach similar to the File Transfer Protocol
(FTP [10, Section 2.3]), the system uses separate control
and transfer channels (out-of-band). The control channel is
entirely contained within the Migration management protocol,
maintaining the separation between the Management and
Implementation layers.

A. Roles

Migration of a VM can be initiated for several reasons, and
by several parties. In all cases, we can identify the following
roles:

• Controller. The site responsible for setting up the transfer
of the VM is denoted the Controller. It needs not awareness
of the actual current placement of the VM, and is unaware
of whether it communicates directly with the Source
or Destination sites or indirectly via any number of
Intermediary sites.

• Source. The Source is where the VM currently resides.
• Destination. The Destination is where the VM is to be

deployed.
• Intermediary. Between the Controller and the

Source/Destination sites, there may be any number of
Intermediaries. On an intuitive level, the Intermediary acts
as Controller on behalf of another Controller. This offers
a layer of abstraction regarding the actual placement of
the VM.

A site may, depending on context, take on several of the
roles, e.g. act as both Controller and Source in the case of
migration of a VM from the primary site that was also initiated
by the primary site. Also, it should be noted that any site
already involved in the management of a VM due to a prior
delegation of responsibility can take on the role of Controller
if needed.

Figure 1 shows an overview of the migration process.
Because management of a VM can be delegated, the Controller
is unaware of the actual placement of the VM on which site or
host a VM is placed. Thus, the Controller only keeps track of
what Intermediary site to contact in order to control the VM.

43

Figure 1: Migration process overview: solid lines denote
control messages that are sent indirectly from the Controller
to the Source site (where the VM is currently running) to the
Destination site (where the VM should be migrated to), whereas
dashed lines are used for direct network communication
between sites. The transfer of the VM is carried out directly
between the Source and Destination for efficiency reasons.

B. Operations

The operations of the protocol are as follows:
• Migration request (from the Controller and Intermediaries

to possible Destinations). Migration requests are sent to
possible future Destinations, to verify if the prospect site
can accept a VM migration. The VM Descriptor and
VM identifier are sent as input to the operation. Note
that, depending on context and infrastructural/architectural
policies, the remote site may in turn forward the request
to another site and thus delegating the responsibility of
managing the VM. The receiver of a Migration request
may either accept or reject, depending on local site
heuristics that take business rules and infrastructure
capabilities into account. The return value contains a list
of the information necessary to later issue the “Initiate
transfer” operation presented below. This information
includes the Transfer proxy’s URI and the Transfer token.

• Forced migration (from either the Controller to a Source,
or from the Source to the site that delegated the VM
to the Source). A Forced migration request may be sent
to indicate that a VM must immediately be prepared
for migration away from its current placement. This call
may be initiated by either a remote or the primary site,
as a result of e.g. the Source site shutting down a host
machine for maintenance (operation initiated remotely) or
the primary site wishing to avoid SLA violations that are
to be expected at the remote site (operation initiated by
the primary site). Note that in addition to the Controller
and Source sites, any Intermediary site involved with the
VM may initiate a Forced migration as they are also
stakeholders and may wish to optimize the placement of
the VM in accordance with some site criteria.

• Initiate transfer (from the Controller to the Destination,
via Intermediaries). The Initiate transfer operation is used
to trigger the previously negotiated migration of the VM.
The operation parameters contain the URIs and tokens of
both the Source’s and Destination’s Transfer proxies.

• Transfer verification (from the Controller to the Source, via
Intermediaries). This operation is issued by the Controller

to the Source to verify that a given transfer was completed
successfully.

C. Migration algorithm

In this section, we present the algorithms for the Controller,
Destination, and Source sites. Intermediaries should only
forward the requests along the path to the intended destination,
and thus do not warrant an algorithm description.

1) At the Controller: The Controller migration algorithm
is initiated either by the Controller being in the process
of accepting a new service or VM, performing periodic
placement optimization, or by a remote site requesting that
a given VM should be migrated away invoking the Forced
migration operation on the previous Intermediary in the chain
of Intermediaries. Such an invocation may be regarded as an
optional Step 0 for the Controller in the following algorithm.
Note that any site along the path of responsibility may act as
a Controller.

Name: Main migration algorithm.
Runs at: Controller.
Input: An event causing replacement has occurred.
Result: VM migrated to new location.

1) Let D be an empty list.
2) Let P denote the set of possible Destination sites,

including the local site. For each p ∈ P (performed in
parallel):
a) Call Migration request on p. The return value is a list.

Add each returned tuple of 〈puri, ptok〉 containing the
returned Transfer proxy URI and Transfer token to the
list D.

3) Sort D according to greatest benefit for the site and choose
d ∈ D to be the Destination.

4) Let s denote the Source and Invoke Forced migration on
s. Store returned Transfer proxy URI as suri and Transfer
token as stok.

5) Invoke Initiate migration on d, passing the tuple
〈suri, stok, duri, dtok〉 as parameter. Store result as dstat.

6) Invoke Transfer verification on s passing 〈suri, stok〉 as
parameter. Store result as sstat.

7) Unless dstat = sstat, go back to Step 5.

2) At the Destination: The Destination can be called by the
Controller for two reasons, to handle migration requests and
to react to the transfer initiation operation call.
Name: Migration request handler.
Runs at: Destination.
Input: VM identifier, VM descriptor.
Result: List of possible placement options.

1) Let D be an empty list.
2) If placement is possible locally, then for each possible

local host h:
a) Let T denote the set of Transfer proxies. Choose t ∈ T .
b) From t, obtain Transfer token ttok by supplying h and

the VM identifier.

44

c) Add the tuple 〈turi, ttok〉 containing the URI of the
Transfer proxy and the Transfer token to D.

3) If delegation is allowed according to site policy:
a) Act as the Controller does in Step 2. Add returned

possible destinations to D.
4) Limit D to include only Destinations that should be

exposed as possible Destinations, according to site policies
(e.g. “only local” or “only preferred partner sites”).

5) Return D.
Name: Initiate transfer handler.
Runs at: Destination.
Input: 〈suri, stok, duri, dtok〉.
Result: “success” or “failure” of the transfer.

1) Forward the tuple of 〈suri, stok, duri, dtok〉 to the Transfer
proxy at duri.

2) At the Transfer proxy:
a) Connect to suri, and supply stok.
b) Begin copying VM-related files over a secure channel

(e.g. scp).
c) Return either “success” or “failure”, depending on the

status of the transfer.
3) Forward the return value from the Transfer proxy.
3) At the Source: The Source will be called upon to prepare

the VM for migration using the Forced migration call, and to
verify the transfer afterward. These operations are carried out
as follows.
Name: Forced migration handler.
Runs at: Source.
Input: VM identifier.
Result: 〈turi, ttok〉.

1) Let T denote the set of Transfer proxies. Choose t ∈ T .
2) From t, obtain Transfer token ttok by supplying h and

the VM identifier.
3) Return the tuple 〈turi, ttok〉 containing the URI of the

Transfer proxy and the Transfer token.
Name: Transfer verification handler.
Runs at: Source.
Input: 〈suri, stok〉.
Result: “success” or “failure” of the transfer.

1) Connect to the Transfer proxy at suri, supplying stok as
parameter and ask for file transfer status.

2) Forward the return value from the Transfer proxy.

D. Remarks
The algorithm does not dictate how the Controller or

Destination should obtain a list of possible destinations. In
some contexts, it may be most appropriate to have a central
Directory Service of all sites known in the cloud and for the
site looking for a partner site to opportunistically connect to
them all. In others, sites may have preferred partner sites,
due to existing contracts or similar. We do not specify which
alternative should or must be used, since they are equally
applicable.

Note that the direct transfer from Source Transfer proxy to
Destination Transfer proxy (Step 2b in the Main migration

algorithm) could also be relayed through the Transfer proxies
of the Intermediaries to provide complete location unawareness.
However, this is more costly in terms of network traffic, so
the suggested approach is to allow such out-of-band transfers
to occur. This trade-off is however not dictated by design, but
rather by infrastructural policies that govern the use of the
system.

All requests sent are signed with the private key of the
sender. This makes it possible for the receivers to verify the
origin of the requests. This applies not only to the endpoints
(Controller and Source/Destination), but to all Intermediaries
as well.

Note that the local site is included in the set of possible
Destinations in Step 2 of the Main migration algorithm.
Therefore, the algorithm needs no modification to be used
between hosts within the local site, as eligible hosts will be
found in Step 2 of the Migration request handler algorithm.

IV. MONITORING

In a cloud environment, monitoring is performed for two
main reasons: (a) to ensure that VMs get the capacity stipulated
in the SLAs; and (b) to collect data for system-wide accounting
of the resources that have been in use on behalf of the
service providers, which is required for billing. There are
two complimentary types of monitoring that must be carried
out by the system: (a) infrastructure measurements, including
low-level measurements of the resources used by the VM, such
as the amount of RAM or the network bandwidth; and (b)
KPIs specific to the application, e.g. the amount of currently
logged in users at a server. Both types of values may be of a
sensitive nature, and they must be appropriately secured.

Grid computing forms the basis for the infrastructure of cloud
computing, and thus, we shall briefly consider monitoring in
Grid environments. The Global Grid Forum has defined a Grid
Monitoring Architecture (GMA) [11]. In the architecture, a
central Directory Service allows a Producer of monitoring
events to register itself, so that Consumers can look it up and
start subscribing to such events. Consumers can also register,
so that Producers may perform a lookup regarding Consumers.
All components can be replicated as needed, and the system is
inherently scalable. Many implementations of Grid monitoring
are based on GMA, notably including R-GMA [12], which is
being used in large projects such as the European DataGrid
project [13] and gLite [14].

There are two sides to monitoring that require consideration:
what to monitor, and how to monitor it. Using the terminology
of the GMA, what to monitor and at what frequency data is
generated is determined by the configuration of the Producers,
whereas how to monitor the data and the frequency of
such measurements is determined by the configuration of
the Consumers. In the general two-layer cloud architecture
discussed previously, the Implementation layer is the Producer,
and the Management layer is the Consumer. If more than one
site is involved in the management of a VM, the Management
layers of many sites may be regarded as Consumers.

45

Monitoring of resources is conceptually performed either
continuously or at discrete times. Continuous measuring is a
special case of discrete measuring, where the interval between
measurements is very small and the data is delivered like a
stream. The measured data can be delivered according to any
of the following schemes: (a) as soon as possible; (b) at regular
intervals; or (c) when a predicate evaluates to true (such as
when the measured quantity falls below some threshold value).
Similar to continuous vs. discrete measurements, scheme (a)
may be regarded as a special case of scheme (b).

The data can be returned in raw or processed form. In raw
form, all data measured during the interval is returned. In
processed form, some mathematical function has been applied
to the data set, e.g. maximum, minimum, mean, or median.
Processing the information at the Implementation level at the
Source lowers the amount of required network bandwidth, as
less data needs to be sent back to the Management layer at
the primary site.

All VMs require monitoring — at the very least for account-
ing purposes. Also, both the Implementation and Management
layers require full information to configure the monitoring
Producers and Consumers correctly. Thus, it is appropriate
to specify the monitoring frequency, delivery scheme, and
required format in the VM Descriptor. Should changes be
required during the lifetime of the VM, they can be made
through the Control interface, where other VM Descriptor
changes are made possible.

We therefore suggest that the VM Descriptor is augmented
with the following additional configuration parameters regard-
ing monitoring:

• A set of monitoring specifiers, one or more for each
type of data point that can be monitored, including the
following information:
– The monitoring interval length in milliseconds. A value

of zero indicates that monitoring should be performed
as frequently as possible.

– The delivery interval length in milliseconds. A value
of zero indicates that monitoring data should be sent
as soon as it is available.

– The delivery format, i.e. raw or processed. If the data
is to be processed, it should also be specified what
mathematical function to process the data with (min,
max, mean, or median).

• The public key of the primary site, used to enable optional
encryption of monitoring data (see Section IV-B).

A. Obtaining measurements

Measurements on the infrastructure or implementation level
are straight-forward to perform, as most (if not all) virtualiza-
tion technologies offer monitoring support. Thus, we simply
note that obtaining such values is possible using existing
hypervisor-specific APIs and rather focus on obtaining KPI
measurements.

Ideally, application software should not have to be altered
for cloud deployment. However, without such alterations, it is
impossible to allow the running service applications to report

KPI values to the cloud monitoring system. Our approach is
to require only that the application performs standard file I/O
operations on a particular file system partition that is added to
the VM. Using File System in User Space (FUSE) [15], the
application is unaware that the data being written to a file is
actually passed to a program, running in user space. We let
this program be a wrapper for a database, where the data is
actually stored. The VM host can then register triggers within
the database to fire when new data arrives (alternatively, if
database triggers are not supported, poll the database at the
required interval), and the data is guaranteed by the database
to adhere to the ACID (Atomicity, Consistency, Isolation,
Durability) requirements [16]. Thus, the only modifications to
the system running in the VM required for this approach is: (a)
that FUSE or similar is enabled; and (b) that the application
writes KPI monitoring data to a regular file on the FUSE
file system partition. Using this approach, the VM host at the
Implementation layer is able to extract both types of monitoring
measurements, and may publish the data to the consumers at
the configured intervals.

A more detailed description of the FUSE-based database-
backed file system is as follows. The file system partition
is created with two directories, encrypted and unencrypted.
Files stored in the encrypted directory are assumed to be
encrypted in their entirety, and therefore cannot be parsed by
the Implementation layer. On the other hand, files stored in the
unencrypted directory may be parsed by the Implementation
layer, which makes it possible to process the data. Whenever
a file is stored in the file system, regardless of whether it is
encrypted or not, an entry is made in the database back end
where the table name equals the file name. In addition to the
data written to the file, a timestamp is added that marks the time
at which the data was saved in the file system. Unencrypted files
should be stored as comma-separated value (CSV) files, and be
either one or two lines long. For a two-line file, the first line
is assumed to contain the column names that shall be used in
the database. These names can also be referenced in the SLAs
(e.g. current_users). Columns without labels are given a
standard name (such as “columnX”, where X ∈ {1, 2, . . .}).
A single-line file is regarded as a two-line file where the first
line is empty, and thus the columns are all named according
to the naming scheme.

If the service application is not modifiable (closed source
application), but has some other type of monitoring facility,
e.g. a protocol for querying a server via the network, a custom
program can be written that obtains such values and writes
them to the file system can be deployed alongside the main
application.

B. Security

Monitoring data is sensitive, as it can be used to disclose
information about the running application. We therefore suggest
that there should be support for securing the data before it is
transmitted over a network, although using such measures
should be optional. Infrastructure monitoring data can be
secured by encrypting it with the primary site’s public key (as

46

the ultimate destination for the monitoring data is the primary
site). Application-specific KPI values may on the other hand
be too sensitive to disclose even at the Implementation level,
since the VM may run at a cloud infrastructure provider that
the customer has no trust relationship with. In that case, we
suggest that it is encrypted using the primary site’s public key
before it is written by the application itself.

V. DISCUSSION

The proposed protocols and interfaces conform to the
requirements gathered from the Usage Scenarios defined in
Section II. Usage Scenarios 1 and 3 are supported directly
by the migration algorithm as it is presented, whereas Usage
Scenario 2 additionally requires the optional Step 0 as described
in Section III-C. The operations are carried out in a crypto-
graphically secure manner, and the VMs can be monitored
using the monitoring proposal of Section IV.

The work presented in this article has been developed in
accordance with the principle of location-unawareness, as
defined in Section II. The principle adds some complexity,
as it requires control messages to be sent through a chain of
Intermediaries rather than directly between the two endpoint
sites. We argue that this is acceptable overhead, as the gains
made by adhering to the principle are greater: (a) the system is
distributed to a higher degree, which benefits scalability as the
reliance upon a single point of failure decreases; (b) there is
a more clear separation of concern as the Intermediaries may
act as Controllers for a VM should their site policies dictate
that placement should be altered; (c) there is less information
exchange between sites, and thus less information to keep
current using concurrency control schemes; and (d) adherence
to the principle guarantees a more general system that can
adapt to new environments and use cases, rather than requiring
that all placement decisions are made at a central site. The
less general case, where a VM must be placed at a site of
the primary site’s choosing, is merely a restriction on the
approaches and architecture presented in this article — the
algorithms need only be modified to disallow delegation of
responsibility to Intermediaries. Such restrictions are best to
make at deploy time, rather than at design time, since the
generality of a design increases its applicability.

Transfer proxies, as presented in this article, make a logical
chain of Intermediaries between the primary site and the Source
where a given VM is being deployed. Should a site become
unavailable due to e.g. a network error, such chains may be
broken. Let us first note that policies of a site may prohibit
it from ever acting as an Intermediary, thus, for the site,
circumventing the problem of broken trust chains altogether.
It is also reasonable to assume that a site may be configured
to only consider acting as an Intermediary for another site
that is within the same administrative domain. Since every
Intermediary adheres to the terms in the SLA regarding the
VM, and thus are at risk of paying for possible SLA violations,
reasonable sites will not delegate responsibility to sites that
cannot be trusted. Thus, these chains of Intermediaries will be
only as short as the trust relationship between sites permits.

The risk of a broken chain of trust must be weighed against the
benefits offered by the possibility to delegate responsibility over
VMs within the federated cloud. We argue that a distributed
system design should be open-ended and enabling, rather than
restricting. This allows the design to remain relevant as it
can accommodate for more use cases and be adapted to more
situations.

Monitoring data must reach all Intermediaries involved with
a given VM, to ensure the sites that the VM is still running
correctly — if it is not, placement has to be re-evaluated to
avoid SLA violation penalties. The data may either be passed
repeatedly through each Intermediary site from the Source to
the primary site, or it may be placed in a common Enterprise
Service Bus (ESB). Neither of these break the principle of
location unawareness.

The overall design goals of any system are scalability,
efficiency, and security. Let us now evaluate the suggested
design from these perspectives. From a combined scalability
and efficiency point of view, the suggested migration and
monitoring interfaces are inherently scalable. If monitoring
data is passed along path of Intermediaries, each site acts as
both a Consumer and as a Producer of monitoring data. R-
GMA has been developed with this type of data forwarding in
mind [12], as it increases the scalability and efficiency of the
system. ESB-style solutions are also inherently scalable and
suitable for this type of application. The migration architecture,
including the interface, is also very efficient and scalable,
as it gives a high degree of autonomy to each site while at
the same time requires very little network traffic overhead to
perform migration. A high level of autonomy is important for
scalability, as sites are more self-contained and thus the amount
of information that has to be exchanged is reduced. Security
is built in to both the migration and the monitoring interfaces
and architectures, and the use of asymmetric encryption offers
the confidentiality and integrity required.

Future work includes evaluation of the proposed solutions.
Since the amount of control messages exchanged by the sites in
the Transfer Proxy-supported migration is low, and the sizes of
such messages is much lower than the transfer of the image files
(which will be measured in gigabytes, rather than kilobytes for
the messages), the added overhead in terms of network traffic
must be assumed to be very low. To evaluate the monitoring
proposal, a prototype is being developed as a proof of concept
and its performance and usability will be tested.

VI. RELATED WORK

Several standardization projects are in the early stages
of developing interoperable cloud interfaces, such as the
OCCI [17] working group at the Open Grid Forum. However,
the topics KPI-aware monitoring and federation of clouds are
deemed out of scope for the project. The authors of this work
will be involved with developing extensions as contributions
to OCCI to address these matters.

OpenNebula [18] is a open-source virtualization management
software. It leverages various existing virtualization technolo-
gies and enables system administrators to administer a cluster

47

of hosts. It allows resources to be added dynamically, and
advanced management functions such as workload distribution
control and cluster partitioning. Migration within a single site
is already supported, as is deploying VMs to Amazon EC2.
Currently, the OpenNebula project is developed to support
cross-site management functionality and cross-site migration
of VMs.

Related Grid computing interfaces include WS-GRAM [19]
and OGSA-BES [20]. The former is related to submission of
jobs to a Grid, whereas the latter defines a state model, an
informational model, and Web Service port types for man-
agement of Grid jobs. It also includes a proposed distributed
monitoring of the resources where the jobs are running. The
OGSA-BES allows for migration of Grid jobs, but does not
specify how such migration should be implemented.

Resource scheduling and Grid brokering may be viewed
as a theoretical basis for how to perform VM placement
in a cloud computing environment. Relevant work in this
field includes [21], [22]. The aforementioned research can
be leveraged in Destination selection process in the Transfer
Proxy-supported migration.

VM migration has been studied extensively in works such
as [23], [24]. However, these works focus on the technical
aspect of performing migration, rather than defining the
interfaces for initiating and managing the migration process
itself.

VII. SUMMARY AND CONCLUSIONS

We have presented two novel interface and architectural
contributions, facilitating for cloud computing software to
make use of inter- and intra-site VM migration and improved
inter- and intra-site monitoring of VM resources, both on an
infrastructural and on an application-specific level. Existing
monitoring architectures may be leveraged, as the proposed
monitoring solution is compatible with the Grid Monitoring
Architecture [11], although it is proposed that a more highly
distributed solution is used instead. The additions presented in
the article adhere to a principle of location-unawareness, which
increases scalability, decreases the degree of coupling between
sites in the federated cloud environment, and makes a clear
separation of concern between sites. The proposed additions
expose a high level of generality, and are thus adaptable
and usable in many scenarios, without being impractical to
implement or standardize.

ACKNOWLEDGMENT

The authors are grateful to Daniel Henriksson and Johan
Tordsson for their contributions to the foundation upon which
the work was based. This work has been partly funded by the
EU-IST-FP7-215605 (RESERVOIR) project.

REFERENCES

[1] R. Buyya, C. Yeo, S. Venugopal, M. Ltd, and A. Melbourne, “Market-
oriented cloud computing: Vision, hype, and reality for delivering it
services as computing utilities,” in Proceedings of the 10th IEEE Interna-
tional Conference on High Performance Computing and Communications
(HPCC-08, IEEE CS Press, Los Alamitos, CA, USA), 2008.

[2] National Institute of Standards and Technology, Systems and
Network Security Group, “Draft NIST Working Definition of Cloud
Computing,” 2009. [Online]. Available: http://csrc.ncsl.nist.gov/groups/
SNS/cloud-computing/cloud-def-v12.doc

[3] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, L. Llorente,
R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres, M. Ben-Yehuda,
W. Emmerich, and F. Galan, “The RESERVOIR Model and Architecture
for Open Federated Cloud Computing,” IBM Systems Journal, 2009, to
appear.

[4] Distributed Management Task Force, Inc., “Open Virtualization Format
Specification,” DMTF 0243 (Standard), Feb. 2009. [Online]. Available:
http://www.dmtf.org/standards/published documents/DSP0243 1.0.0.pdf

[5] Xen community, “Xen Hypervisor Web page,” 2003. [Online]. Available:
http://www.xen.org/

[6] VMware Inc., “VMware Virtualization Technology Web page,” Visisted
March 30, 2009, 1999. [Online]. Available: http://www.vmware.com/

[7] Distributed Management Task Force, Inc., “System Virtualization Profile,”
DMTF 1042 (Preliminary Standard), Aug. 2007. [Online]. Available:
http://www.dmtf.org/standards/published documents/DSP1042.pdf

[8] ——, “System Virtualization Profile,” DMTF 1057 (Preliminary
Standard), May 2007. [Online]. Available: http://www.dmtf.org/
standards/published documents/DSP1057.pdf

[9] ——, “CIM System Virtualization White Paper,” DMTF 2013
(Informational), Nov. 2007. [Online]. Available: http://www.dmtf.org/
standards/published documents/DSP2013 1.0.0.pdf

[10] J. Postel and J. Reynolds, “File Transfer Protocol,” RFC 959 (Standard),
Oct. 1985, updated by RFCs 2228, 2640, 2773, 3659. [Online].
Available: http://www.ietf.org/rfc/rfc959.txt

[11] B. Tierney, R. Aydt, D. Gunter, W. Smith, V. Taylor, R. Wolski, and
M. Swany, “A Grid Monitoring Architecture,” GWD-I (Informational),
Aug. 2002. [Online]. Available: http://www-didc.lbl.gov/GGF-PERF/
GMA-WG/papers/GWD-GP-16-3.pdf

[12] A. C. et al., “The Relational Grid Monitoring Architecture: Mediating
Information about the Grid,” Journal of Grid Computing, vol. 2, pp.
323–339, 2004.

[13] B. Segal, L. Robertson, F. Gagliardi, and F. Carminati, “Grid computing:
The European data grid project,” Lyon, pp. 15–20, 2000.

[14] E. Laure, S. Fisher, A. Frohner, C. Grandi, P. Kunszt, A. Krenek,
O. Mulmo, F. Pacini, F. Prelz, J. White et al., “Programming the Grid
with gLite,” pp. 33–45, 2006.

[15] M. Szeredi, “Filesystem in userspace,” 2004. [Online]. Available:
http://fuse.sourceforge.net/

[16] T. Haerder and A. Reuter, “Principles of transaction-oriented database
recovery,” ACM Computing Surveys, vol. 15, no. 4, pp. 287–317, 1983.

[17] Open Grid Forum OCCI-WG, “Open Cloud Computing Interface,” 2009.
[Online]. Available: http://forge.ogf.org/sf/go/projects.occi-wg

[18] B. Sotomayor, R. Montero, I. Llorente, and I. Foster, “Capacity
Leasing in Cloud Systems using the OpenNebula Engine,” Cloud
Computing and Applications, vol. 2008, 2008. [Online]. Available:
http://www.cca08.org/papers/Paper20-Sotomayor.pdf

[19] Globus Project by the University of Chicago, “GRAM4,” 2008. [Online].
Available: http://www.globus.org/toolkit/docs/4.2/4.2.1/execution/gram4/

[20] Open Grid Forum, “OGSA Basic Execution Services WG,” 2005.
[Online]. Available: https://forge.gridforum.org/sf/projects/ogsa-bes-wg

[21] E. Elmroth and J. Tordsson, “Grid resource brokering algorithms enabling
advance reservations and resource selection based on performance
predictions,” Future Generation Computer Systems. The International
Journal of Grid Computing: Theory, Methods and Applications, vol. 24,
no. 6, pp. 585–593, 2008.

[22] ——, “An interoperable, standards-based Grid resource broker and job
submission service,” in First International Conference on e-Science and
Grid Computing, H. Stockinger et al., Eds. IEEE CS Press, 2005, pp.
212–220.

[23] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield,
P. Barham, and R. Neugebauer, “Xen and the Art of Virtualization,” in
Proceedings of the ACM Symposium on Operating Systems Principles,
2003, pp. 164–177.

[24] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proceedings
of the 2nd conference on Symposium on Networked Systems Design
& Implementation-Volume 2 table of contents. USENIX Association
Berkeley, CA, USA, 2005, pp. 273–286.

48

II

Paper II

Scheduling and Monitoring of Internally Structured
Services in Cloud Federations∗

Lars Larsson, Daniel Henriksson, and Erik Elmroth

Dept. Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden {larsson,
danielh, elmroth}@cs.umu.se
http://www.cloudresearch.org/

Abstract: Cloud infrastructure providers may form Cloud federations to cope with
peaks in resource demand and to make large-scale service management simpler for
service providers. To realize Cloud federations, a number of technical and managerial
difficulties need to be solved. We present ongoing work addressing three related key
management topics, namely, specification, scheduling, and monitoring of services.
Service providers need to be able to influence how their resources are placed in Cloud
federations, as federations may cross national borders or include companies in direct
competition with the service provider. Based on related work in the RESERVOIR
project, we propose a way to define service structure and placement restrictions us-
ing hierarchical directed acyclic graphs. We define a model for scheduling in Cloud
federations that abides by the specified placement constraints and minimizes the risk
of violating Service-Level Agreements. We present a heuristic that helps the model
determine which virtual machines (VMs) are suitable candidates for migration. To
aid the scheduler, and to provide unified data to service providers, we also propose
a monitoring data distribution architecture that introduces cross-site compatibility by
means of semantic metadata annotations.

Key words: cloud computing, directed graphs, formal specification, scheduling, vir-
tual machines

∗ By permission of IEEE

51

52

Scheduling and Monitoring of Internally Structured
Services in Cloud Federations

Lars Larsson, Daniel Henriksson, Erik Elmroth
Department of Computing Science and HPC2N

Umeå University, Umeå, Sweden
Email: {larsson, danielh, elmroth}@cs.umu.se

Abstract—Cloud infrastructure providers may form Cloud
federations to cope with peaks in resource demand and to make
large-scale service management simpler for service providers. To
realize Cloud federations, a number of technical and managerial
difficulties need to be solved. We present ongoing work address-
ing three related key management topics, namely, specification,
scheduling, and monitoring of services. Service providers need
to be able to influence how their resources are placed in Cloud
federations, as federations may cross national borders or include
companies in direct competition with the service provider. Based
on related work in the RESERVOIR project, we propose a
way to define service structure and placement restrictions using
hierarchical directed acyclic graphs. We define a model for
scheduling in Cloud federations that abides by the specified
placement constraints and minimizes the risk of violating Service-
Level Agreements. We present a heuristic that helps the model
determine which virtual machines (VMs) are suitable candidates
for migration. To aid the scheduler, and to provide unified data to
service providers, we also propose a monitoring data distribution
architecture that introduces cross-site compatibility by means of
semantic metadata annotations.

I. INTRODUCTION

Cloud computing has the potential to offer cost-efficient
and seemingly unlimited computational capacity to resource
consumers, and more importantly, to deal seamlessly with
unexpected spikes in resource consumption that would be
unmanageable for in-house hosting alternatives. The problem of
maintaining sufficient resources is transferred from the resource
consumers to Cloud Infrastructure Providers (IPs). We refer
to the consumers of Cloud infrastructure as Service Providers
(SPs), which typically are companies who in turn offer services
to end users. Service-Level Agreements (SLAs) specify the
terms under which the SP provisions resources from the IP
and at what cost, and define economical penalties if the IP
fails to deliver accordingly.

IPs can collaborate on workload sharing and resource sub-
contracting to easier cope with spikes in resource consumption
or other unexpected events that affects hosting of services.
Such collaboration may exploit pricing differences at Cloud
IPs which can yield savings, even for a low amount of
requested resources [1]. We use the same definition for Cloud
federations and framework agreements as in [2], namely that
Cloud federations allow IPs to subcontract resources at remote
Cloud sites when local resources are running low, as governed
by bilateral framework agreements. The SP needs not be aware
of such subcontracting and only interacts with the original IP.

Cloud bursting can be seen as a special case of federation where
resources are only provisioned by one party from the other,
usually by a private Cloud from a public provider. Alternatively,
an SP may directly host a service across several IPs. As in [3],
we refer to this as a multi-provider hosting and consider it to
be separate from Cloud federations. In multi-provider hosting,
management and service orchestration across several sites is
managed by the SP. In Cloud federations, the IP manages
provisioning and monitoring of remote resources on behalf of
the SP. IP-level management of e.g. elasticity and SLAs in
Cloud federations [4] or federation/multi-hosting hybrids [3]
is currently under research.

In this paper, we present ongoing work related to solving core
management issues that arise specifically in Cloud federations.
Specifying service structure and placement constraints affords
the SP a sufficient amount of control over service deployment
in Cloud federations. Schedulers must take this information
into account when determining placement for each service
component, and may use migration as a tool to optimize
placement according to some management objective. Once
a component has been placed and is executing, its state must
be monitored to make placement optimization possible. Our
contributions are the following:

• we define a hierarchical graph structure for service
representation and intra-service rule specification which
impacts scheduling within the Cloud federation,

• we present a scheduling model and heuristic that optimizes
VM placement via local and remote migration, and

• we present a semantic monitoring data distribution archi-
tecture, which provides interoperability between different
Cloud infrastructure monitoring systems.

The remainder of the paper is organized as follows. Section II
briefly describes the design principles and the features that
motivate our work. Section III presents how a graph may be
used to represent structured services with rules concerning
component placement and includes an example thereof. In
Section IV, we present a model and heuristic for a scheduler that
takes placement constraints into account for local and remote
placement of VMs in the Cloud federation. Section V introduces
an architecture of a system aimed to provide compatibility
for disparate monitoring systems via employing semantic
metadata to bridge the differences. The paper is concluded in
Section VII.

978-1-4577-0681-3/11/$26.00 ©2011 IEEE978-1-4577-0681-3/11/$26.00 ©2011 IEEE 173

53

II. DESIGN PRINCIPLES AND MOTIVATING FEATURES

In this section, we briefly describe the design principles and
features that motivate our work. We formulate the principle
of location unawareness based on [5] and [6] such that it
states that neither the management system nor the VMs should
be needlessly aware of current VM placement. From the
management point of view, this means that e.g. the scheduler is
perfectly aware of whether a given VM is placed at a local host
or at a remote site R, but it does not know which particular
host at R hosts the VM (and it cannot request to change this
placement). The VM may even have been delegated to another
partner site by R without notifying the original IP.

From the VM point of view, location unawareness implies
that the VM is not aware of its current hosting within the
Cloud federation, including its location in the network. Thus,
virtualized overlay networks must span across sites and allow
VMs to keep all private and public IP addresses, even during
migration from one site to another. Offering such networking
functionality is the topic of ongoing research [6] and currently
not offered by any commercial vendors.

Data and computation provisioning in federated Clouds raises
concerns regarding locality, both from a performance and a
legislative point of view [7], [8]. To ensure that resources are
provisioned satisfactorily while retaining location unawareness,
affinity and anti-affinity rules may be specified. We use the same
definition of affinity as [9] i.e. to denote a set of placement
constraining relationships between sets of related VMs. We use
the term AA-constraints where both affinity and anti-affinity
are applicable, and each term alone if something applies only
to either affinity or anti-affinity.

Without loss of generality, we consider three levels of AA-
constraints, namely host, (Cloud) site, and geographical region.
For an affinity level L, if VM types A and B are in the
relation, a scheduler must place all instances of these types
so that placement restrictions are adhered to, e.g. instances
must be placed on the same host machine or at the same site
if this is the specified affinity relation. Conversely, anti-affinity
requires that instances of VM types may not be placed on the
same level, e.g. on the same host or at the same site. Using
several AA-constraints, it is possible to restrict placement such
that, e.g., all VMs must be placed on different hosts, avoid
a certain competitor site, and may never be migrated to or
placed in a region where certain legislation applies.

III. SERVICE REPRESENTATION

Some model is required to allow the SP to specify both
the structure of the service and AA-constraints. We propose
that hierarchical directed acyclic graphs (DAGs) are suitable
service representations. The reasons are twofold: (a) there is
an implied or explicitly stated structure between resources, e.g.
between attached storage units and computational resources
(parent-child relationship); and (b) AA-constraints may apply
only to certain related service subsets (sibling relationship). In
our formulation, trees are insufficient since a node may require
more than one parent, for example if a VM is part of two
otherwise disjoint internal networks.

Table I
NODE TYPES USED TO DEFINE THE STRUCTURE OF A SERVICE.

Node type Abbr. Description

Service Root Common ancestor for all service com-
ponents.

Compute Resource C
Compute resource, which can be con-
nected to networks and storage units.

AA-constraint A

Metadata for use within a scheduler
to determine placement according to
affinity and anti-affinity rules. Scope
may either be type or instance and
must be specified.

Block Storage Sb
A mountable data storage for a Com-
pute resource. Cf. Amazon EBS.

File Storage Sf

Data storage which may be accessed
by multiple Compute resources simul-
taneously. Cf. Amazon S3.

Internal Network Ni
Internal network for all underlying
Compute resources and File storages.

External Network Ne

External network connection (IP ad-
dress) for the parent Compute or File
storage resource.

Special meaning is reserved for the words type and instance
when used to describe resources: types act as templates for
instances, and one-to-many instances can be instantiated of each
type. Table I lists node types with description and abbreviation.
Nodes of type AA-constraints (A) only affect Compute (C) and
File storage (Sf) nodes. The other resources, networks and
block storage, implicitly or explicitly belong to instances of
either C or Sf , and thus are covered by the same AA-constraints
as the node to which they belong.

Figure 1 shows examples of structures which can be
composed into valid hierarchical DAGs. The relationship
marked with edges create parent-child relationships. Instances
of child nodes are attached to each instance of their parent.
Both A and internal network (Ni) nodes may be nested to
arbitrary depth. Nodes of type A stipulate constraints for all
descendants as described above. For nested Ni nodes, C and
Sf nodes require a virtual network interface for each ancestor
of type Ni and each descendant of external network (Ne) nodes
to connect them to each of these network instances.

An AA-constraint affects all descending C and Sf nodes but
may have different scope, either type or instance, as specified
as an attribute of the constraint. An AA-constraint with type
scope affects how instances of a type can be placed in relation
to instances of other types, but not instances of the same type.
An AA-constraint with instance scope affects all descending
instances regardless of type, and therefore also affects instances
of the same type. For example, consider an AA-constraint A1

specifying ”not same host” with two underlying compute node
types C1 and C2:

1) If the scope of A1 is type scope, no instance of type C1

may be placed at the same host as an instance of type
C2. (However, two instances of C1 may be placed at the
same host.)

2) If the scope of A1 is instance scope, no pair of instances
of either type (C1 or C2) may be placed at the same
host.

978-1-4577-0681-3/11/$26.00 ©2011 IEEE978-1-4577-0681-3/11/$26.00 ©2011 IEEE 174

54

Figure 1. Rules defining valid inter-node relationships for service definition DAGs. C denotes Compute resources, A denotes AA-constraints, Sf and Sb

denote file and block storage, respectively, and Ni and Ne denote internal and external networks. Valid terminal nodes are marked with a border. Further node
description can be found in Table I.

Figure 2. Example of a three-tier Web application service represented using a
DAG which includes AA-constraints and network setup. Node types are shown
in Figure 1, and labels have been added for clarity.

A. Service Definition Example

We exemplify this structure by describing a typical three-tier
Web application in Figure 2 as a DAG. Immediately below the
service root node, an AA-constraint states that all descendants
of all resource types must be located in Europe. Thus, a
scheduler may choose freely among Cloud federation partner
sites located in Europe, but not elsewhere. An internal network
resource node specifies that all its descendants are connected
to a single local network instance. In addition, instances of the
front end compute resource type are accessible via per-instance
individual external IP addresses. A type scope anti-affinity
constraint forbids placement of instances of the primary and
secondary database servers at the same physical host. For
the secondary database servers, an instance scope anti-affinity
constraint explicitly forbids placement of instances at the same
host, for fault-tolerance reasons. An individual block storage
is attached to each compute node instance.

IV. MODEL FOR SCHEDULING IN FEDERATED CLOUDS

Scheduling is the process by which a VM management
system decides on which physical host machine or partner
site within a Cloud federation a VM should be placed. The
general problem is to create a placement mapping between
VMs and physical hosts such that placement fulfills certain
management objectives [3], e.g. to maximize profit, avoiding
loss of reputation, maximizing resource usage, etc. Mappings

are evaluated using a number of factors, e.g. power consumption
of physical host machines, economical penalties stipulated in
pertinent SLAs, etc.

We present fundamental ongoing work for scheduling based
on a model that takes AA-constraints, e.g. the ones shown in
Figure 2, into account. The model assumes that migration can
be used to optimize placement, but avoids unnecessary or risky
(in terms of SLA violation risk) migrations.

The model regards remote sites as logical local hosts with
different service-level characteristics, e.g. network capacity.
Thus, management is simplified while still representing the
performance and SLA-related differences between the local
and the remote site(s).

Our model is formally described as follows. Let V be the set
of VMs that need placement and H be the set of hosts to our
disposal (including remote sites as logical members of H). M
denotes a set of mappings mv,h ∈M of VM v to host h stating
that VM v is placed on h. Time is discretized and each interval
has one active mapping. We wish to determine a new mapping
Mn based on an old mapping Mn−1 such that net profit is
maximized. Net profit is expressed as the difference between
a benefit function B(V), a cost function C(M) (models e.g.
power usage due to the current host utilization), and estimated
SLA-related costs due the inherent risk of performance loss
associated with migration S(Mn−1,Mn) in modifying the old
mapping into the new one. We express this in Equation 1.

maximize

(
B(V)−

H∑

h=1

V∑

v=1

C(Mn)− S(Mn−1,Mn)

)

(1)
Note that if a mapping M makes use of remote resources in

the Cloud federation, this will likely incur a larger cost C(M)
but (hopefully) also reduce the expenses if an SLA is violated,
since the remote site also must provide compensations in that
case. For sufficiently large problem instances, investigation of
all possible new mappings to determine which gives sufficiently
small values for S(Mn−1,Mn) is too computationally intensive
to be feasible. To that end, we define a heuristic to avoid wasting
time investigating migrations that have a high risk of resulting
in SLA violations.

A. Migratability heuristic

We define a migratability function Mig(v,M) of a VM v
given a current mapping M , where low migratability value
implies that migration of v from its mapping in M is less

978-1-4577-0681-3/11/$26.00 ©2011 IEEE978-1-4577-0681-3/11/$26.00 ©2011 IEEE 175

55

desirable. The scheduler uses this heuristic in an attempt of
minimizing S(Mn−1,Mn) from Equation 1, while still being
open to performing migrations to optimize placement.

Due to affinity relationships, it is not sufficient to consider
the migratability of a single VM in isolation. Rather, for a
given proposed migration of a VM v from one host or site
to another location, let O denote the set of other VMs that
must also be migrated due to affinity constraints. We then
define Mig(O,M) as the migratability function for all o ∈ O,
relative to the mapping M . Obviously, if the selected new
location for a VM is a remote site, the scheduler uses site and
geographical level affinity to determine eligibility since actual
host deployment is not known at remote sites due to location
unawareness. The remote site must abide by affinity rules or
reject the request to run the VMs if unable to do so. Also, due
to anti-affinity constraints, the set O may be limited in which
host machines may be used for placement of the VMs. The
value of Mig(O,M) depends on the migratability value of
each individual VM o ∈ O.

For a single VM v, the factors that determine Mig(v,M)
relate to the cost and risk of violating pertinent SLAs. The
risk calculation is based on:
• Long-term high-level monitoring data collected on the

usage patterns of the VM and the service it belongs to.
For instance, this helps determine if the service usually
peaks in usage at some regular intervals, e.g. the end of
the month.

• Short-term low-level monitoring data from the hypervisor
internals regarding the memory usage of the VM. As the
number of dirtied memory pages per time unit increases,
estimated migration time for the VM increases [10].

• Sizes of storage and volatile memory that have to be
transferred to the new destination and current network
utilization, as well as other currently active migrations.
If shared storage is used, typically only volatile memory
must be transferred. If, however, the VM is to be migrated
to another Cloud, it may be required to transfer the regular
storage as well.

The migratability heuristic prunes the search space and helps
the scheduler concentrate only on potentially fruitful mappings.
The heuristic identifies and confirms the intuition that the
easiest VMs to migrate are the ones that have few affinity (and
to lesser extent, anti-affinity) relations to other VMs, are not
currently (or in the near foreseeable future) highly active, and
such that decreased performance due to migration will not be
costly in terms of SLA violations.

As summarized in [11], even in research VM management
projects, schedulers are quite rudimentary: by default, only
various subsets of greedy, round-robin, and explicit (manual)
scheduling are supported. Most schedulers will also avoid
performing migration of a VM once it has found its initial
placement, which leads to sub-optimal performance and pos-
sibly higher energy costs than necessary. Although research
has been made on this topic [2], there is to our knowledge
currently no scheduler software that takes AA-constraints into
account that is open to the research community.

V. MONITORING DATA DISTRIBUTION IN CLOUD
FEDERATIONS

All Cloud sites offer monitoring of virtual resources, however,
there are many different and incompatible monitoring systems
in current use and this causes integration problems. We present
our ongoing MEDICI project, a monitoring data distribution
architecture that collects data from various existing monitoring
systems, marks it up with semantic metadata, and publishes it to
subscribers, one of which is a semantic database. The database
allows complex queries on the semantic self-describing data,
and the result can be transformed into a desired output format.

The MEDICI architecture is designed to leverage existing
software for its core operation in a scalable way. The compo-
nents of the architecture shown in Figure 3 are as follows:
• Monitored infrastructure. A virtual Cloud infrastructure

that is monitored continuously, e.g. computational re-
sources, storage entities, and interconnecting networks.

• Data annotator/publisher. Data annotators and publishers
are the core of the MEDICI system, providing:

– Canonicalization and semantic annotation of monitor-
ing values by plugins. The annotations conform to
OWL (Web Ontology Language) ontologies, facilitat-
ing parsing and conversion at the consumer level.

– Preparation of annotated monitoring data which is
then published to the distribution hub.

• Distribution hub. Distribution hubs distribute semantically
annotated monitoring data to a set of subscribers.

• Subscribers. Any consumer implementing the hub’s proto-
col may be a subscriber, enabling e.g. external components,
the SPs, and other Clouds in the federation to gain access
to the data using a single hub. As shown in Figure 3, the
hub may distribute both public and private streams of data.
This distinction makes it possible to prevent inappropriate
disclosure of data to different parties.

• SPARQL endpoints. SPARQL [12] endpoints are databases
that act as subscribers and are deployed either locally or
remotely. They make it possible to aggregate data from
the federation and make SPARQL queries on the data.

The architectural components in MEDICI are designed
to expose remotely invokable interfaces and the number of
instances of each component may due to loose coupling be
independently increased to handle scalability gracefully.

The raw monitoring values and basic metadata (interval
length, information source, and monitoring system identifier for
future parsing by plugins) are transferred from the monitored
infrastructure to the data annotator/publisher using light-weight
REST methodology by system-specific plugins. The data may
be extracted using e.g. libvirt [13], which is compatible with
several underlying hypervisor technologies. Plugins may also
be developed for other monitoring systems, e.g. collectd and
Nagios. Higher-level service-specific data, e.g. “number of
currently logged in users”, can also be distributed by the system.

The data annotator/publisher maintains a separate set of
plugins for handling various input of raw monitoring values.
Upon data arrival, the appropriate plugin creates a semantically

978-1-4577-0681-3/11/$26.00 ©2011 IEEE978-1-4577-0681-3/11/$26.00 ©2011 IEEE 176

56

Figure 3. Overview of the MEDICI monitoring data distribution architecture.

annotated transformation from the raw data format in MEDICI
canonical form. The data is then transferred to a distribution
hub, which handles delivery to the subscribers.

The MEDICI canonical form for infrastructure data is based
on the data set provided by libvirt. This choice was made
for two reasons: (a) libvirt is compatible with most popular
hypervisors; and (b) libvirt provides a reasonable subset of
infrastructure-related measurements. However, note that since
MEDICI uses extensible OWL ontologies, specific plugins can
be developed for any input format. This allows service-specific
data to be distributed.

The SPARQL endpoint acts as a subscriber to the hub and
exposes its data via a rich semantic query language. This may
be used for complicated queries, including queries for inclusion
or inspection of remote monitoring data and accounting in a
federated Cloud setting. It is i.e. possible to make queries
that transform the remotely published data into data using the
same measurement intervals as done locally, making it easier
to apply the same mathematical functions for accounting and
SLA violation detection purposes.

The distribution hub conforms to the PubSubHubbub [14]
protocol, which uses the Atom format for data transport. We
consider Atom suitable for this purpose for several reasons: (a)
it is simple, incurs relatively low overhead, and is well-defined;
(b) it is easily viewable in a Web browser or feed aggregator,
requiring very little special software for a large variety of use
cases; and (c) as an XML format it is easy to translate into other
formats, and can transport other (semantic) XML data well, in
addition to being platform independent. PubSubHubbub enables
close to real-time updates of information in a scalable way,
and by design of the PubSubHubbub protocol, the functionality
of the hub is transparently hidden from consumers.

The strengths of this approach are that (a) plugins can be
developed for specific monitoring already in use at Cloud sites;
(b) plugins should not have a large negative performance impact
on monitoring systems; and (c) publishing data to a database
upon which semantic queries can be invoked, the data from a
remote site can be queried and transformed into a format that
is compatible with the monitoring system on the local site.

The architecture enables location unawareness from the
management point of view, since it aids in bridging the gap
between the management systems used at different Cloud sites,
making monitoring data from one Cloud site easily integratable
with the other.

VI. RELATED WORK

Service structure does currently not have wide-spread support.
APIs such as Amazon EC2 or Open Cloud Computing Interface

(OCCI) allow the SP to specify parent-child relationships (e.g.
storage unit s is the child of VM v), but do not support
sibling relationships such as the anti-affinity in Figure 2. As
for AA-constraints, large public clouds such as Amazon EC2
and Microsoft Azure allow the SP to choose a coarse-grained
geographical location, but not on finer levels such as site or
host. To our knowledge, this functionality is currently only
also available in [9], [3].

Verma et al. [15] present a power- and migration-cost
aware scheduler (pMapper) upon which we have based our
contribution. There are a number of differences between their
work and ours: (a) our scheduling model may also be applied
in a federated rather than an isolated Cloud; (b) the scheduling
model presented here has the notion of AA-constraints between
VMs; and (c) since our model is also usable for federations, it
takes other costs than power and migration into account.

Breitgand et al. [2] present a scheduler with support for both
affinity and cross-federation capabilities. They have developed
Integer Linear Program formulations for placement strategies,
and use the COIN-OR solver to obtain solutions. Our approach
is different in that it provides a heuristic to determine which
VMs should be easiest to migrate, making it suitable for local
search algorithms.

Li et al. [16] extend upon the work in [1] by adding support
for dynamic rescheduling and using migration to optimize
placement of VMs across a multi-provider hosting scenario.
Their broker acts on the behalf of a single SP, rather than at
the IP level. The impact of using different instance templates
(e.g. different VM sizes in Amazon EC2) as Cloud offerings
may differ is studied. Since the broker acts on behalf of the SP,
it does not have to avoid violating SLAs but instead attempts
to minimize service downtime due to cold migrations. Since
their model includes the possibility to assign per-VM penalties
for migration, the migratability heuristic can be adapted for
use within this system.

Existing approaches for monitoring in Clouds are presented
in, e.g., [17], [18]. Both present relevant ways of extracting
and managing data, but do not employ semantic metadata
to achieve cross-Cloud compatibility. Said et al. [19] present
a system and algorithm for automatically adding extensible
semantic metadata by inferring structure from Globus Grid
monitoring data. In addition to architectural differences, the
key conceptual difference between that and our approach is
that we believe that monitoring system-specific plugins produce
richer semantic metadata than a generic algorithm could. Their
algorithm infers a structure and annotates the data accordingly,
but does not handle input from non-Globus systems and does

978-1-4577-0681-3/11/$26.00 ©2011 IEEE978-1-4577-0681-3/11/$26.00 ©2011 IEEE 177

57

not aim at making monitoring systems cross-compatible.
Passant et al. [20] use PubSubHubbub to provide close to

real-time updates of data sets matching SPARQL queries. The
result is turned into Atom feeds, which in turn are published
using PubSubHubbub. This approach gives real-time updated
streams of specific data, which could be used in conjunction
with the MEDICI system to provide access to only relevant
subsets of the information.

VII. CONCLUSIONS

This work describes ongoing work on fundamental service
management tasks key to federated Cloud environments. We
present a hierarchical graph structure representing a service and
any placement restrictions placed upon the service components,
such as site-level affinity, usable in Cloud federations. This
way of structuring a service and defining AA-constraints offers
a certain amount of control to the SP, which is then enforced
by the IP. This facilitates management considerably for an SP
compared to multi-provider hosting scenarios.

We define a model for scheduling in Cloud federations
that abides by SP-specified AA-constraints. We present a
heuristic that helps the model determine which VMs are suitable
candidates for migration. The model is designed for optimizing
placement both within a single site and in a Cloud federation.
The heuristic is based on the intuition that the VMs that are
most potentially costly in terms of SLA violations are those
which are highly active, have AA-constraints that require further
migrations, and where most data needs to be transferred.

All management of services in Cloud federations, including
scheduling, requires cross-site compatible monitoring systems.
Current monitoring systems are incompatible in both data
format and semantics of what the data represents. To help
overcome these issues, we present MEDICI, a monitoring
data distribution architecture that annotates data with semantic
metadata. Interaction with the data is made simple and flexible
e.g. by publishing it to a semantic database upon which
SPARQL queries can be made.

ACKNOWLEDGMENTS

The research that led to these results is partially supported
by the European Community’s Seventh Framework Programme
(FP7/2001-2013) under grant agreements no. 215605 (RESER-
VOIR) and no. 257115 (OPTIMIS) and the Swedish Gov-
ernment’s strategic research project eSSENCE. We thank the
anonymous referees for their valuable feedback.

REFERENCES

[1] J. Tordsson, R. Montero, R. Vozmediano, and I. Llorente, “Optimized
placement of virtual machines across multiple clouds,” 2010, submitted
for journal publication.

[2] D. Breitgand, A. Marashini, and J. Tordsson, “Policy-driven service
placement optimization in federated clouds,” IBM Research Report, Tech.
Rep. H-0299, 2011.

[3] A. J. Ferrer, F. Hernández, J. Tordsson, E. Elmroth, C. Zsigri, R. Sirvent,
J. Guitart, R. M. Badia, K. Djemame, W. Ziegler, T. Dimitrakos,
S. K. Nair, G. Kousiouris, K. Konstanteli, T. Varvarigou, B. Hudzia,
A. Kipp, S. Wesner, M. Corrales, N. Forgó, T. Sharif, and C. Sheridan,
“OPTIMIS: a holistic approach to cloud service provisioning,” in First
IEEE International Conference on Utility and Cloud Computing (UCC
2010), December 2010, accepted.

[4] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M. Llorente,
R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres, M. Ben-Yehuda,
W. Emmerich, and F. Galan, “The reservoir model and architecture
for open federated cloud computing,” IBM Journal of Research and
Development, vol. 53, no. 4, pp. 4:1 –4:11, July 2009. [Online].
Available: http://dx.doi.org/10.1147/JRD.2009.5429058

[5] E. Elmroth and L. Larsson, “Interfaces for Placement, Migration,
and Monitoring of Virtual Machines in Federated Clouds,” in Eighth
International Conference on Grid and Cooperative Computing (GCC
2009). Los Alamitos, CA, USA: IEEE Computer Society, August 2009,
pp. 253–260. [Online]. Available: http://dx.doi.org/10.1109/GCC.2009.36

[6] D. Hadas, S. Guenender, and B. Rochwerger, “Virtual Network Services
For Federated Cloud Computing,” IBM Technical Reports, Tech. Rep.
H-0269, Nov. 2009. [Online]. Available: http://domino.watson.ibm.com/
library/cyberdig.nsf/papers/3ADF4AD46CBB0E6B852576770056B848

[7] K. Jeffery and B. Neidecker-Lutz, Eds., The Future Of Cloud Computing,
Opportunities for European Cloud Computing Beyond 2010. European
Commission, Information Society and Media, January 2010. [Online].
Available: http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-final.pdf

[8] I. Brandic, S. Pllana, and S. Benkner, “High-level composition of QoS-
aware Grid workflows: an approach that considers location affinity,” in
Workshop on Workflows in Support of Large-Scale Science. In conjunction
with the 15th IEEE International Symposium on High Performance
Distributed Computing, Paris, France, 2006.

[9] F. Galán, A. Sampaio, L. Rodero-Merino, I. Loy, V. Gil, and L. M.
Vaquero, “Service Specification in Cloud Environments Based on
Extensions to Open Standards,” in Proceedings of the Fourth International
ICST Conference on COMmunication System softWAre and middlewaRE,
ser. COMSWARE ’09. New York, NY, USA: ACM, 2009, pp. 19:1–
19:12. [Online]. Available: http://doi.acm.org/10.1145/1621890.1621915

[10] P. Svärd, B. Hudzia, J. Tordsson, and E. Elmroth, “Evaluation of Delta
Compression Techniques for Efficient Live Migration of Large Virtual
Machines,” in VEE ’11: Proceedings of the 7th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE 2011).
ACM, March 2011, accepted for publication.

[11] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Virtual
infrastructure management in private and hybrid clouds,” IEEE Internet
Computing, vol. 13, pp. 14–22, 2009.

[12] E. Prud’hommeaux and A. Seaborne, “SPARQL query language
for RDF,” W3C, Tech. Rep., January 2008. [Online]. Available:
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

[13] libvirt development team, “libvirt: The virtualization api,” December
2005. [Online]. Available: http://libvirt.org/

[14] B. Fitzpatrick, B. Slatkin, and M. Atkins, “PubSubHubbub Core 0.3,”
February 2010. [Online]. Available: http://pubsubhubbub.googlecode.
com/svn/trunk/pubsubhubbub-core-0.3.html

[15] A. Verma, P. Ahuja, and A. Neogi, “pMapper: Power and Migration Cost
Aware Application Placement in Virtualized Systems,” in Middleware
2008, ser. Lecture Notes in Computer Science, V. Issarny and R. Schantz,
Eds. Springer Berlin / Heidelberg, 2008, vol. 5346, pp. 243–264.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-89856-6 13

[16] W. Li, J. Tordsson, and E. Elmroth, “Modelling for dynamic cloud
scheduling via migration of virtual machines,” 2011, to appear.

[17] S. Clayman, A. Galis, C. Chapman, G. Toffetti, L. Rodero-Merino,
L. Vaquero, K. Nagin, and B. Rochwerger, “Monitoring Service Clouds
in the Future Internet,” in Towards the Future Internet - Emerging
Trends from European Research. Amsterdam, The Netherlands, The
Netherlands: IOS Press, 2010, pp. 115–126.

[18] G. Katsaros, G. Kousiouris, S. Gogouvitis, D. Kyriazis, and T. Varvarigou,
“A service oriented monitoring framework for soft real-time applications,”
in Service-Oriented Computing and Applications (SOCA), 2010 IEEE
International Conference on. IEEE, pp. 1–4.

[19] M. Said and I. Kojima, “S-MDS: Semantic Monitoring and Discovery
System for the Grid,” Journal of Grid Computing, vol. 7, pp.
205–224, 2009, 10.1007/s10723-008-9111-2. [Online]. Available:
http://dx.doi.org/10.1007/s10723-008-9111-2

[20] A. Passant and P. Mendes, “sparqlPuSH: Proactive notification of
data updates in RDF stores using PubSubHubbub,” in Scripting
for the Semantic Web Workshop (SFSW2010) at ESWC2010, 2010.
[Online]. Available: http://www.semanticscripting.org/SFSW2010/papers/
sfsw2010 submission 6.pdf

978-1-4577-0681-3/11/$26.00 ©2011 IEEE978-1-4577-0681-3/11/$26.00 ©2011 IEEE 178

58

III

Paper III

Modeling and Placement of Cloud Services with
Internal Structure∗

Daniel Espling, Lars Larsson, Wubin Li
Johan Tordsson, and Erik Elmroth

Dept. Computing Science and HPC2N, Umeå University, SE-901 87 Umeå, Sweden {espling,
larsson, viali, tordsson, elmroth}@cs.umu.se

http://www.cloudresearch.org/

Abstract: Virtual machine placement is the process of mapping virtual machines to
available physical hosts within a datacenter or on a remote datacenter in a cloud feder-
ation. Normally, service owners cannot influence the placement of service components
beyond choosing datacenter provider and deployment zone at that provider. For some
services, however, this lack of influence is a hindrance to cloud adoption. For exam-
ple, services that require specific geographical deployment (due e.g. to legislation),
or require redundancy by avoiding co-location placement of critical components. We
present an approach for service owners to influence placement of their service compo-
nents by explicitly specifying service structure, component relationships, and place-
ment constraints between components. We show how the structure and constraints can
be expressed and subsequently formulated as constraints that can be used in placement
of virtual machines in the cloud. We use an integer linear programming scheduling
approach to illustrate the approach, show the corresponding mathematical formulation
of the model, and evaluate it using a large set of simulated input. Our experimental
evaluation confirms the feasibility of the model and shows how varying amounts of
placement constraints and data center background load affects the possibility for a
solver to find a solution satisfying all constraints within a certain time-frame. Our
experiments indicate that the number of constraints affects the ability of finding a so-
lution to a higher degree than background load, and that for a high number of hosts
with low capacity, component affinity is the dominating factor affecting the possibility
to find a solution.

Key words: service management, service structure, placement, affinity, collocation

∗ By permission of IEEE

61

62

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2362120, IEEE Transactions on Cloud Computing

1

Modeling and Placement of
Cloud Services with Internal Structure

Daniel Espling, Lars Larsson, Wubin Li, Johan Tordsson, and Erik Elmroth
Department of Computing Science, Umeå University, SE-901 87 Umeå, Sweden

Abstract—Virtual machine placement is the process of map-
ping virtual machines to available physical hosts within a
datacenter or on a remote datacenter in a cloud federation.
Normally, service owners cannot influence the placement of
service components beyond choosing datacenter provider and
deployment zone at that provider. For some services, however,
this lack of influence is a hindrance to cloud adoption. For
example, services that require specific geographical deployment
(due e.g. to legislation), or require redundancy by avoiding
co-location placement of critical components. We present an
approach for service owners to influence placement of their
service components by explicitly specifying service structure,
component relationships, and placement constraints between
components. We show how the structure and constraints can be
expressed and subsequently formulated as constraints that can
be used in placement of virtual machines in the cloud. We use
an integer linear programming scheduling approach to illustrate
the approach, show the corresponding mathematical formulation
of the model, and evaluate it using a large set of simulated input.
Our experimental evaluation confirms the feasibility of the model
and shows how varying amounts of placement constraints and
data center background load affects the possibility for a solver
to find a solution satisfying all constraints within a certain time-
frame. Our experiments indicate that the number of constraints
affects the ability of finding a solution to a higher degree than
background load, and that for a high number of hosts with low
capacity, component affinity is the dominating factor affecting
the possibility to find a solution.

Index Terms—service management, service structure, place-
ment, affinity, collocation

I. INTRODUCTION

IN cloud computing, infrastructure providers offer rapidly
provisioned hosting of services (applications). Software

providers provide and own the services and are the consumers
of the infrastructure providers’ resources. A service may be
comprised of several components, each of a specific type. This
can be, for example, a database server, a front-end, and a logic
tier in a typical three-tier Web application.

This paper addresses the issue of application owners not
being able to impact where service components are being placed
for execution. Although it is often beneficial not having to deal
with such resource allocation issues, there are situations where
it would be beneficial to guide the infrastructure provider’s
decision making in this respect. This may be that the application
owners want some data to reside within a certain country for
legislative reasons, that a secondary database server deployed
for redundancy purposes should run on a different host or even a

Manuscript submitted January 27, 2014.
Corresponding author: D. Espling (espling@cs.umu.se).

different datacenter than the primary database, or that software
components with excessive inter-communication should be
placed on the same datacenter or even on the same physical
host.

Before continuing our exposition, we clarify some nomen-
clature used throughout the paper. A type corresponds loosely
to launch configurations used in Amazon EC2 and server
templates used by RightScale. Each instance of a type shares
a type-specific base virtual machine (VM) image containing
the startup state (operating system and installed applications)
and configuration. The total amount of capacity of a service
can be adjusted by changing the number of running instances
of each type. In this paper, we use the term VM to denote VM
instance, and explicitly state when we refer to a VM type.

An infrastructure provider may collaborate with other remote
providers on workload sharing and resource subcontracting
to easier cope with spikes in resource consumption or other
unexpected events that affects hosting of services. Currently,
such collaborations are most natural among datacenters all
belonging to the same large-scale global company. In the
future, we also expect this to be an important characteristic of
a global cloud resource market, e.g., with small providers with
strong local presence partnering with large global providers
for meeting pure capacity demands, e.g., processing data
subject to legal constraints locally and bulk computations,
requiring more compute power than is available locally, on
large-scale international providers. Cloud collaborations may
also become central to providing resources closer to end
users or to take advantage of cheap capacity under dynamic
pricing arrangements, e.g., through load sharing during nights
in different time zones to take advantage of lower electricity
prices. There are several different collaboration models [1], [2]
and different levels of collaboration between different sites [3].
Each collaboration scenario has its own set of challenges,
but in all cases the general problem of performing placement
(mapping resources to VMs) locally is extended to also include
resources offered by collaborating sites.

In a collaborative cloud setting, the service owner cannot
normally affect on which site in the collaboration the different
instances comprising a service will be hosted. Instead, the
responsibility for placing the service components is delegated to
the infrastructure provider, and in some cases the infrastructure
provider may outsource components to a partner provider [1],
[2]. Many services can function well despite this lack or
influence, but the lack of control may have a negative effect
on services that need to be hosted in a specific fashion. For
example, some services are not allowed to be hosted in or

63

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2362120, IEEE Transactions on Cloud Computing

2

outside specific regions either for legislative reasons [4] or to
ensure that they are located close to end users. Furthermore,
fault-tolerance can be greatly improved by enforcing that
replicas of the same service component are not deployed on
the same physical hardware. Conversely, host-level co-location
of certain components may be essential to achieve low-latency.
These scenarios are the main motivations behind our work.

In our previous contribution [5], we presented early work
on representing the structure of services explicitly, making it
possible for placement algorithms and procedures to take the
structure and internal placement constraints (such as explicit co-
hosting) into consideration when performing service placement.
In this paper we extend on our previous work by (I) showing
how the hierarchical graph structure can be converted into
formalized placement constraints; (II) presenting a mathemat-
ical model for placement optimization with constraints that
can be used to extend existing placement procedures with
support for detailed and service owner-controlled placement
directives; and (III) demonstrating the feasibility of this model
and its performance through a set of experiments. Notably,
development of new core placement algorithms or deployment
systems are outside the scope of this paper. Instead, our
ambition is to provide the support to extend current such
algorithms and systems with the ability to take service structure
constraints into account as a natural part of their normal
operation. Consequently, practical experiments are performed to
illustrate the practical usage of such constraints and to highlight
some performance aspects rather than to fully re-evaluate the
performance and capabilities of previously published solvers.

The remainder of the paper is organized as follows. Section II
presents background information and related work. Section III
elaborates on placement constraints and describes formalized
syntactical and semantic representations used in our model. In
Section IV, we present a model for placement of VMs that
takes placement constraints into account for local and remote
placement of VMs. The results of experiments using structured
services are shown in Section V before the paper is concluded
with comments and a proposal for future work in Section VI.

II. BACKGROUND AND RELATED WORK

This section has been divided into two subsections: back-
ground and related work material concerning service placement,
and the same concerning inter-component affinities. This divi-
sion is due to the large body of research that has been performed
in service placement, but without concern for inter-component
affinities, and the relatively small body of research that focuses
mostly on the latter. Our work is positioned in the middle of
these two fields, as it leverages service placement research and
extends it to include not merely affinity but a more holistic
view on service structuring.

Notably, our aim in this paper is not to design another
placement algorithm to tackle scalability issues in service
placement, but rather to define a mechanism that makes it
possible to model dependencies between components of a
service, including hierarchies, affinities, and anti-affinities. Our
work should be seen as a complement to existing work on
cloud placement algorithms, as presented by e.g., Lampe et

al. [6] and Genez et al. [7]. We also remark that in our work,
we use the Integer Linear Programming (ILP) approach to
illustrate how our service structure mechanisms can be used as
a set of constraints in cloud VM placement (as presented in the
following sections). However, our mechanism is not limited to
ILP formulations of the placement problem. Moreover, service
reallocation scenarios are not in the scope. A multi-cloud
scenario close to this topic is studied in our previous work [8],
which presents a linear integer programming model for dynamic
cloud VM placement with expressibility of service reallocation
overhead.

A. Service Placement

The problem of optimizing placement of virtual machines
in cloud environments has lately attracted research both from
academia and industry [9], [10], [11], [12], [13]. However, a
potential problem from the perspective of service providers
that so far has received little attention is the loss of control
over how their services are deployed.

The need for the SP to impact how the service is de-
ployed is actualized by federations and other multi-site cloud
deployments as demonstrated by the RESERVOIR [1] and
OPTIMIS [2] projects. Data and computation provisioning
in multi-site clouds raises concerns regarding locality, both
from a performance, fault-tolerance, and a legislative point
of view [14], [15]. Currently, public clouds at best offer
coarse-grained mechanisms of specifying where application
components should be placed (e.g., choosing in which continent
components should be deployed [16]), but this functionality
does not extend to a finer level of detail and control, and is
furthermore not enforceable if clouds are part of a collaboration,
e.g., includes multiple datacenters but no means to specify
which of them to use for the deployment.

Split Service Deployment: Emerging technology in cloud
service placement supports automatically splitting a service
into several smaller sub-services, in order to spread the service
across different infrastructures. Although not yet reflected
in the literature, OPTIMIS [2] is one of the projects with
early results on splitting of services. Our ongoing work in
this context includes permutation-pack based optimization for
service deployment in multi-cloud environments [17].

We foresee that split service deployment could benefit greatly
from the service structure presented and discussed within
this paper, as the inherit graph structure can be used as a
good starting point for educated decomposition of a service
manifest (description) into smaller parts, while still retaining
critical relations between the different components making up
the service.

Mathematically, the service placement problem in cloud
environments can be formulated as a variant of the class
constrained multiple-knapsack problem that is known to be
NP hard. Approximation algorithms are proposed to tackle
the scalability issue and, e.g., Breitgand et al. [18] pro-
pose an integer linear program formulation for policy-driven
service placement optimization in federated clouds, and a
2-approximation algorithm based on a rounding of a linear
relaxation of the problem. Li et al. [17] have also suggested

64

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2362120, IEEE Transactions on Cloud Computing

3

a general approach to automatic service deployment in cloud
environments. An in-depth analysis of scalability of ILP solvers
is out of scope for this paper, but has been studied extensively
in the operations research community, e.g., by Atamtürk et.
al. [19], and Koch et. al. [20].

B. Inter-component Affinities

Brandic et al. proposed the concept of affinity (forced co-
placement of components) in [14]. Their work focused on
expressing inter-component affinity relations between grid
jobs in grid workflows, and the work presented in this paper
uses similar inter-component relationships for cloud service
components. In the management software provided by the
RESERVOIR project, host-level anti-affinity is supported [1].
Breitgand et al. [18] present a model and placement algorithm
framework with support for both anti-affinity and cross-
federation capabilities. They model the scheduling problem
using integer linear program formulations for placement strate-
gies, and focus on presenting a complete objective function to
be optimized.

In our previous work [5] we presented a model that allows
service providers to specify the structure and deployment
directives for a service using a directed acyclic graph structure
with nodes representing either service components or placement
constraints. This structure allows modeling of the cloud services
inherent structure, making it possible to preserve conditions
and relations throughout the lifecycle of the service.

Since the publication of our previous paper on this topic [5],
Jayasinghe et al. have published an alternative approach [21]
to solve a similar problem. Their work aims to solve three
related problems: (I) communication-aware VM clustering,
(II) mapping of VM groups to server racks, and (III) VM
to physical host machine mapping. Our work focuses on
Problem III, since we do not expressly take into account
the communication delays, but rather assume that a service
with tight communication delay bounds will use placement
constraints to ensure suitable hosting (VM group to server rack
mapping is in the cited work used to ensure this co-location).
The work published in this paper presents an approach to
extract and represent placement constraints in a mathematical
model solvable using integer-linear programming.

In theory, either the work earlier published by us [5] or
by Jayasinghe [21] can be modeled as an ILP. However,
in the latter, the solution to the problem is found using an
explicit divide-and-conquer methodology while we investigate
an integer-linear programming approach that hopefully presents
a stronger starting point for future work including costs for re-
placement. Our previous work [5] touched upon this subject, but
did not investigate it in detail. More recent work by Hermenier
et al. [22] formulates the rescheduling problem (finding a new
VM to physical host mapping that takes a prior mapping into
account) and present a constraints programming-based solution
and implementation based on the Entropy [23] autonomous
VM manager.

Alicherry and Lakshman [24], [25] have studied optimizing
the placement of VMs to minimize data access latencies
between pairs of processing VMs and data nodes, and between

sets of VMs, respectively. In the former case [24], they present
algorithms based on linear assignment algorithms for deploying
processing VMs close to data nodes with the objective to
minimize the total access time. In the later case [25], a new
algorithm based on 2-approximation is used with the goal to
minimize the traffic between VMs in a set (and hence also
between datacentres). Compared to our work, Alicherry and
Lakshman provide interesting solutions to find the optimal
solutions for these problems (subject to heuristics), whereas
our work strives for a more generally applicable approach
considering many kinds of constraints and scenarios, but where
the fully optimal solution might be harder to find.

In this work we extend upon previous work by supporting
several levels of constraints (both for affinity and anti-affinity),
by showing how they may be specified prior to deployment
using service structure graphs, and by showing how they
can be extracted and modeled as constraints in a placement
optimization algorithm. The constraints model developed in this
work and the comprehensive utility function from Breitgand
et. al. [18] are complementary. We also provide an evaluation
of the constraints model using simulations.

C. Structured Services

As this paper extends on the work on our previous contribu-
tion [5], this section only briefly presents concepts from that
work that forms the foundation for the work presented in the
upcoming sections of this paper. We also revisit the example
given in that work and use it in the upcoming sections as input
to our placement optimization model that takes placement
constraints into account.

Where both affinity and anti-affinity are applicable we use
the term AA-constraints, and each term alone if something
applies only to either affinity or anti-affinity. AA-constraints, as
illustrated in Figure 1, are used to express either the affinity or
anti-affinity between two types, or between a type and a specific
placement, and allows the SP to instruct the IP how (but not
exactly where) each part of the service should be placed. We
consider three levels of AA-constraints, namely host, (cloud)
site, and geographical region due to clear real-world semantics
and implied relationships between these levels and due to prior
work in this area ([1], [14]). Hosts belong to a site and sites
reside in a region, thus, there is a clear hierarchical relation
between these levels. These levels are specifications of a more
general grouping mechanism for virtual machines: by extending
this work, arbitrary groupings can be supported.

As outlined in the previous work, for an affinity level l, if
VM types A and B are in the relation, all instances of these
types must be placed so that placement restrictions are adhered
to. Affinity is used to express that several service components
must be co-placed at a given level. Conversely, anti-affinity
requires that VM instances may not be placed on the same
level. Using several AA-constraints, it is possible to restrict
placement such that, e.g., all VMs must be placed on different
hosts, avoid a certain site, and may not be placed in a certain
region.

Service Example: An example of a service represented
using this model is presented in Figure 1. In this three-tier

65

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2362120, IEEE Transactions on Cloud Computing

4

Web application, immediately below the service root node an
affinity constraint states that all descendants of all resource
types must be located within the EU. An internal network
resource node specifies that all its descendants are connected
to a single local network instance. In addition, instances
of the front end compute resource type are accessible via
per-instance individual external IP addresses. An anti-affinity
constraint forbids placement of instances of the primary and
secondary database servers at the same physical host. For the
secondary database servers, an anti-affinity constraint explicitly
forbids placement of instances at the same host, for fault-
tolerance reasons. An individual block storage is attached to
each compute node instance.

Figure 1. A three-tier Web application service [5]. The uppermost affinity
constraint is expressed in a more compact set notation to improve readability
(cf. Section III).

III. PLACEMENT CONSTRAINTS

Extending the previous work, we present a more formal
definition of AA-constraints. They are specified using rules of
the following form:

Affinity(L,A,B) (1)
Affinity(L,A) (2)

Affinity(L,A, l) (3)
AntiAffinity(L,A,B) (4)

AntiAffinity(L,A) (5)
AntiAffinity(L,A, l) (6)

Where L ∈ {Region,Site,Host}, A and B are types of
VMs, and l is a specific region, site, or host (as appropriate,
considering the value of L). The semantics are as follows.
Equation (1) states that for the level L, an instance of type A
must be placed at the same location as at least one instance of
type B. Note that there is no such relation from B to A unless
explicitly stated, i.e., specifying that instances of type B need
(or need not) be placed at the same location as an instance of

type A. Equation (2) states that all instances of type A must
be co-placed at the given level L. Note that there is a semantic
difference between applying Equation (1) to the same type (i.e.,
Affinity(L,A,A)), compared to using Equation (2). The former
would enforce a pair-wise deployment of VM instances of type
A, while the latter would cluster all available VM instances of
type A. Equation (3) states that all instances of type A must
be placed at the named location l. Similar interpretations hold
for anti-affinity (expressed in Equation (4) – (6)), with the
difference that they prevent placement rather than require it.

We conclude this section with an example. The following
four rules specify that VMs of type A cannot be placed in
Sweden, an instance of type A must be placed at the same site
as some instance of type B, that all instances of B must be
placed at the same site, and that instances of type A must be
placed at distinct hosts.

1) AntiAffinity(Region, A,Sweden)
2) Affinity(Site, A,B)
3) Affinity(Site, B)
4) AntiAffinity(Host, A)

Thus, a placement optimization engine has to further infer
that: all instances of type A must be placed at the same site
as all instances of type B (Rule 2 and 3) and; the (single)
site on which all instances of type A and B are placed may
not be located in Sweden (Rule 1). Rule 4 does not allow the
placement engine to infer any new information, but does specify
rules that must be taken into consideration when placement is
performed.

In the upcoming section, we show how these AA-constraints
can be expressed prior to deployment using a simple to
understand graph structure.

IV. STRUCTURE-AWARE SERVICE PLACEMENT

Using the structure of a service it is possible to formulate
and subsequently enforce constraints and conditions to be con-
sidered when placing service components across collaborating
infrastructures. This is effectively a two step process where the
first step is to extract information from the service structure
and convert this into a suitable format, and the second step is to
utilize the structured data when performing service placement.

A. Structure Representation

Service structure conceptually constitutes a directed acyclic
graph of nodes, representing both types and constraints. Current
popular choices for representing cloud service definitions are
based on either XML or JSON formats, both of which are
hierarchical (tree-based, rather than graph-based) in nature.
This slight mismatch can easily be overcome, however, using
element identifiers and identifier references. An extension to,
e.g., the XML-based Open Virtualization Format [26] can be
constructed in the following way:
• Introduce a Structure element, which is the parent that

holds all structure-related information.
• As a child of Structure, introduce a Types element, which

in turn lists a set of Type elements that contain unique
element identifiers and human-readable names (such as
“Primary Database”).

66

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2362120, IEEE Transactions on Cloud Computing

5

Table I
HOST-LEVEL VM TYPE CONSTRAINTS EXTRACTED FROM FIGURE 1.

FE LO PDB SDB
FE 0 0 0 0
LO 0 0 0 0

PDB 0 0 0 0
SDB 0 0 -1 -1

Table II
EXTRACTED REGION-LEVEL AFFINITY RELATIONS FROM FIGURE 1.

US-E US-W EU Asia-S Asia-T
FE 0 0 1 0 0
LO 0 0 1 0 0

PDB 0 0 1 0 0
SDB 0 0 1 0 0

• As a child of Structure, introduce a Constraints element,
which in turn lists a set of elements that are of subtypes of
a Constraint element, representing the various constraint
types that are listed in Section III, e.g. AntiAffinity-
Constraint. Such Constraint elements all have mandatory
attributes stating their direction (from/to) between types
using references to their corresponding element identifiers.

It is evident that such a representation can easily be both
generated and parsed and that the resulting data structure can
easily be converted into something equivalent. We do not
present a full representation XML Schema here for space
reasons, rather just note that the step between Figure 1 and
the matrices that follow is not as long as it may seem upon a
first glance.

B. Placement Constraint Extraction

Placement constraints between different VM types and
those between VM types and specific named locations can
be extracted from the service structure graph. Table I shows a
representation of host-level AA-constraints for the types of VMs
in the example of Figure 1. The table illustrates the relations
between four different VM types: Front End (FE), Logic (LO),
Primary DB (PDB), and Secondary DB (SDB). The relations
shown are extracted from the service structure and the values in
the matrix show in Table I are either 1 for affinity, −1 for anti-
affinity or 0 to denote that no specific constraints are present.
This notation lends itself well to ILP-based solutions (illustrated
later), and is a more compact alternative to having two separate
binary matrices (one for affinity and one for anti-affinity). This
approach can also be extended in the future to support soft
constraints with higher or lower values to indicate preference
or to be more easily integrated with other approaches not based
on ILP.

The second set of relations are those between VM types
and named elements of the three levels of AA-constraints, e.g.
to a specific region. These constraints are represented using
the same values and semantics as before. Table II shows the
region-level affinity relations extracted from the example in
Figure 1. It shows that the service has an affinity to the EU,
and therefore may not be placed in any of the other regions.

Another example service is shown in Figure 2. This illustrates
how a cloud based ”Split & Merge” video encoding service

Video Encoding Service

Distributed
File System

Worker Node Anti-affinity
(Host, Master Node)

Master Node

External
Network

RDBMS

Internal Network

Figure 2. Represesentation of a video encoding service by Pereira et al. [27].

Table III
EXTRACTED HOST-LEVEL AFFINITY RELATIONS FROM FIGURE 2.

Worker Node Master Node
Worker Node 0 0
Master Node 0 -1

presented by Pereira et al. [27] would be modelled using our
approach. The service comprises one or more Master nodes
that receive encoding requests from the external network and
performs the encoding on a set of worker nodes communicated
with over an internal network. To avoid a single point of failure
of Master nodes, Pereira et al. employs a failover approach with
the critical state stored in a relational database. This has been
expressed in our model with the precense of the Relational
Database component, and with an Anti-affinity constraint to
ensure that multiple instances of the Master node are not
placed on the same physical host. The resulting affinity matrix
is illustrated in Table III.

C. Constraint Model

Placement constraints extracted from the service structure
can be enforced by a placement engine with ability to handle
various constraints [28], [12], making it structure-aware. In
this section, we present as an example a typical binary integer
programming formulation of the placement problem that takes
placement constraints into consideration. Without loss of
generality, we have chosen to provide a simple model and
straight-forward objective function to more clearly focus on
the important aspects of the formulation. Most notably, we
represent capacity by a single one-dimensional value, rather
than a multidimensional one (e.g. separate storage, network,
CPU, memory requirements).

The model does not permit omission of any VM in the set of
VMs that are to be placed. In effect, it is not allowed to avoid
placing any parts of the service. Such decisions are on a higher
administrative level, and we focus on finding a placement plan
that places all VMs.

67

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2362120, IEEE Transactions on Cloud Computing

6

Given: V = set of VMs
T = set of VM types
H = set of hosts
Ih = index of h ∈ H

vt = type of v, v ∈ V, vt ∈ T

ch = cost per capacity unit at h ∈ H

caph = capacity of host h ∈ H

reqv = requirements of v ∈ V

typev,t = 1 if vt = t, 0 otherwise

vconst,u = host-level constraints between
t and u where t, u ∈ V

hconst,h = host-level constraints between
t and h where t ∈ T, h ∈ H

Variable: mv,h = mapping of v to h, v ∈ V, h ∈ H

1 if v is mapped to h, 0 otherwise

Minimize:
∑

v∈V,h∈H
(mv,h ∗ reqv ∗ ch) (7)

Subject to:

∀v ∈ V :
∑

h∈H
mv,h = 1 (8)

∀h ∈ H :
∑

v∈V
mv,h ∗ reqv ≤ caph (9)

∀v, w ∈ V,∀t, u ∈ T, ∀h ∈ H :

vconst,u = −1 ∧ vt = t ∧ wt = u =⇒
mv,h +mw,h ≤ 1 (10)

∀v ∈ V,∀t, u ∈ T, t 6= u :

vconst,u = 1 ∧ vt = t =⇒
∃w ∈ V,wt = u,w 6= v :

∀h ∈ H : mv,h = mw,h (11)

∀v, w ∈ V,∀t ∈ T, ∀h ∈ H :

vconst,t = 1 ∧ vt = t ∧ wt = t =⇒
mv,h = mw,h (12)

∀v ∈ V,∀t ∈ T, ∀h ∈ H :

hconst,h = −1 ∧ vt = t =⇒ mv,h = 0 (13)

∀v ∈ V,∀t ∈ T, ∀h ∈ H :

hconst,h = 1 ∧ vt = t =⇒ mv,h = 1 (14)

Equation (7) is the objective function, minimizing the total
cost of hosting a set of VMs by placing them across a set of
hosts with different associated costs. In multi-site clouds, the
inherent differences in hosting cost may have a great impact
on the final placement solution. In single clouds, the cost
function may instead focus on consolidation to lower power
consumption. In this work we focus on a simple objective
function representing the multi-site case, as this is the scenario
where placement constraints have the largest impact. Future
work involves developing and modeling a more complex
objective function, also incorporating local VM consolidation.

Constraints derived from the service structure are modeled
in equations (8 - 14) and can be interpreted as follows:
(8) each VM has to be placed at exactly one host;
(9) the total required capacity for all VMs placed at a host

may not exceed the total capacity of the host;
(10) if there is a host-level anti-affinity constraint from one

VM type to another, there may not exist a mapping such
that a VM instance of the first type and a VM instance
of the second type are placed on the same host;

(11) if a VM instance is of a certain type, and there is a host-
level affinity constraint from that type to another, there
must exist a mapping such that the VM is placed on a
host along side a VM instance of the other type;

(12) if there is a host-level affinity relation within a VM type
(c.f. Equation (2)) and two VM instances both are of that
type, then both instances must be placed at the same host;

(13) if there is a host-level anti-affinity constraint from a VM
type to a host, instances of that VM type may not be
placed at that host; and

(14) if there is a host-level affinity constraint from a VM type
to a host, instances of that VM type must be placed at
that host.

For clarity we have presented only the constraints and
equations for host-level constraints. The constraints for the other
levels are very similar: expressions similar to (Equations (10)
– (14)) have to be added to account for sites and regions to
support these levels of AA-constraints. We have chosen to omit
these here because the extracted data and mathematical model
for host-level are sufficiently similar to the other levels so
presenting only host-level constraints makes the model easier
to read. Furthermore, we again note that the type of relationship
here (host-level placement constraints) is merely a specification
of a more general arbitrary grouping of VMs for placement
constraints.

Also note that anti-affinity is expressed using one rule (Equa-
tion (10)) while affinity is expressed using two (Equations (11)
and (12)). This is because an anti-affinity rule that prevents
co-placement with at least one other instance implies a rule
preventing co-placement with all other instances. Concerning
affinity, these cases are not equivalent and hence two separate
rules are required.

As previously discussed, one of the specific challenges
related to cloud collaborations is that a local site has no control
over (and rarely has access to information about) host-level
specifics of remote sites: how many hosts are available, what
their performance capabilities are, etc. Because the ultimate
goal of a placement engine is to map VMs to specific hosts,

68

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2362120, IEEE Transactions on Cloud Computing

7

creating a placement mapping that works without access to
this information can be done in two ways:

1) Model the remote site as single (local) host with sufficient
capacity to host all v ∈ V . AA-constraints between VM
types hosted at this host are assumed to be enforced by
the remote site and can therefore be disregarded.

2) Model the remote site as a set of (local) hosts with
sufficient capacity and create a valid mapping assuming
these hosts exist at the remote site.

The difference between these two alternatives is twofold:
where the placement mapping is constructed (either at both
sites or just the first), and that the second option does not
make placement at remote sites a special case where the
placement host-level AA-constraints are to be deferred to the
remote site. For clarity we have chosen to model according to
the second option as it avoids special cases. Investigating which
option is best suited for implementation in production systems
remains as future work. Notably, these abstractions are used
for modelling reasons, but the actual agreement for resource
exchange between two sites would normally be stipulated using
Service Level Agreements (SLAs).

D. Scalability of ILP-based Scheduling

In general, scheduling of VMs onto resources is an NP-
hard problem [25], [29] and heuristics are frequently used to
mitigate the effects of scale on the solvability and solution
time. In this work we illustrate how to include the affinity and
anti-affinity constraints in pure ILP solvers that provide the
optimal solution without use of heuristics. For practical use on
larger systems, scalability enhancements should be employed,
just as it successfully have been done with very good results
for scheduling problems without such constraints [30].

Our experiments are performed with scheduling on a per-
service level, which is one common strategy to be able
to manage larger systems. For each scheduling iteration,
the background load on hosts is comprised of the capacity
requirements of previously deployed services.

V. EXPERIMENTAL EVALUATION

To assess the applicability of the proposed approach, we
have conducted an extensive evaluation. The overall goal of
the experiments is to investigate the impact of affinity and anti-
affinity on service placement algorithms in terms of feasibility,
time-outs, and execution time. As there are no traces from real-
world systems available with dependencies among components,
we use synthetic data. The main focus is not to evaluate the
performance of the proposed approach, but rather to investigate
the impact of various factors involved, and thus we believe
that synthetic data can fit this goal.

The experimental setup is a scenario consistent with the
example presented in Figure 1, where a service comprised
of four different types of VMs is analyzed. The number of
VM instances of each type and their capacity requirements
are shown in Table IVa. As shown in Table V, hardware
discretization metrics are adopted to categorize VMs with
different computation capacities in a similar approach as used
by Amazon EC2. In the evaluation, we strive to place the entire

Table V
HARDWARE METRICS FOR INSTANCE TYPES.

Instance Size Small Medium Large XLarge XXLarge
CPU (# cores) 1 1 2 4 8
CPU (GHz/core) 1 2 2 2 2
Memory (GB) 1.7 3.5 7.5 15 30
Capacity 2 4 8 16 32

service across a set of hosts with discrete hardware capabilities
corresponding to the capacity requirements of the VM types. To
add another dimension, we have also assigned different costs to
local and remote hosts and the objective function is to reduce
the total cost of hosting the service. The host configuration
parameters are shown in Table IVb. The host set is assumed
to only contain a subset of hosts from the infrastructure (see
Section IV-D), and only include local and remote hosts which
are eligible for placement in this scenario, i.e., located within
the EU.

The evaluation is carried out by generating a large set of cases
with varying amounts of AA-constraints and background load
on the hosts. The AA-constraints are generated by assigning
constraint values to random coordinates in a 4× 4 host-level
constraint matrix corresponding to the one illustrated in Table I.
The dataset is generated with the following properties:

1) Background load in the range of [0%, 10%, ..., 90%] of
the total host capacity (load is randomly distributed across
the set of hosts).

2) Affinity-constraints ranging between 0 and 16 elements
in the constraints matrix (randomly placed).

3) Anti-affinity-constraints ranging between 0 and 16 ele-
ments in the constraints matrix (randomly placed).

4) Cases where the number of elements needed for affin-
ity and anti-affinity combined exceeds the size of the
constraint-matrix (in effect, requiring 17 or more elements)
are ignored to improve simulation time.

5) Conflicting distributions (i.e., cases with conflicting
AA-constraints) are avoided by regenerating the input until
a valid distribution can be found.

6) N iterations of the above distributions, where N = 10
for these tests.

The dataset is thus comprised of 15300 input permutations,
each one encoded using the AMPL [31] modeling language
and solved with the Gurobi [32] solver. All experiments
are performed on a workstation with 2.70 GHz quad-core
CPU and 8 GB of memory. The problem set size (100 VM
instances to be placed across 80 hosts) is, to the best of
our knowledge, considerably larger than the amount of VMs
required to host a typical three-tier Web application. We forsee
that AA-constraints as a concept is more interesting for owners
of large and complex services than for those running services
with fewer components. Large services with AA-constraints are
also more difficult to place compared to smaller services, and
therefore provide a more interesting case for testing. To avoid
introducing unreasonably long delays in the placement process,
we specify a 30 seconds execution time limit for each problem
case. Cases that can not be solved within 30 seconds count as
timeouts.

69

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2362120, IEEE Transactions on Cloud Computing

8

Table IV
EXPERIMENTAL CONFIGURATION

(a) VM configuration.

Instance Type FE LO PDB SDB
Number of instances 40 20 20 20
Capacity req. / instance 2 4 8 8

(b) Host configuration.

Host Type Local Remote
Number of hosts 60 20
Capacity / host 32 32
Cost / capacity unit 10 15

Table VI
OVERALL TENDENCY AS IMPACT FACTORS INCREASE.

Observation
Factor Load Affinity Anti-Affinity

Feasibility ↘ ↘ ↘
Time-outs ↘ ↘ ↗
Execution Time ↘ ↗ ↗

A. Results and Discussion

The results of the evaluation as such are highly dependent
on a number of factors, e.g. quality of the solver, number of
VM instances, requirements of VM types, random distribution
of background load, and randomly allocated AA-constraints.
Therefore, the discussion instead focus on how certain factors
such as affinity and anti-affinity affect the overall scheduling
process with respect to solvability, execution time, etc.

As previously mentioned we have elected to focus on three
main parameters; background load, affinity, and anti-affinity
while keeping the other factors constant. We have analyzed
these parameters in terms of how they affect the feasibility,
the amount of time-outs, and the execution time of the solver.
A summary of the results is presented in Table VI, and further
analysis of the factors follows.

1) Impact of Background Load: As the background load
of the hosts increases, less residual capacity can be used to
schedule the current service, which also means that there
are fewer plausible placement options for the solver. In this
evaluation, the total capacity requirements for the service is
40× 2+20× 4+20× 8+20× 8 = 480 units. At 32 capacity
units per host, the total available capacity is 2560 units. This
means that the service requires at least 480/2560 = 18.75%
of the total host capacity, and thus the service can only be
placed at all if the hosts are running at 81.25% capacity or
less. Figures 3 and 5 confirm that feasible solutions are only
found when the background load is 80% or less.

2) Impact of Affinity Constraints: In our experimental
setting, affinity turns out to be the most dominating factor with
regards to feasibility. Figure 3 shows a varying background
load at different amounts of affinity (anti-affinity is set to zero).
As illustrated in the figure, the background load is dominated
by affinity, and only has a noticeable impact on the results
when it reaches very high numbers (80-90%).

Recall that affinity can be interpreted in two different ways;
affinity between two different types means that each instance
has to be co-hosted with at least one instance of the other type,
while affinity within the same type means that all instances of
that type needs to be co-hosted. Due to the large scale of the
service used in this evaluation, no single host has the capacity

to do such co-hosting as the maximum capacity per host (32
units) is not sufficient to host all instances of any type (with a
combined required capacity of 80 or 160 units). In effect, this
means that if a random affinity distribution contains a constraint
on the diagonal (within the same type), then that particular
distribution cannot be solved using the range of available hosts.
This behavior is further discussed in the evaluation summary.

0
10

20
30

40
50

60
70

80
90

100

0

10

20

30

40

50

60

0

20

40

60

80

100

Average background load of hosts (percentage)

Affinity constraints(percentage)

Fe
as

ib
ilit

y
(p

er
ce

nt
ag

e)

Figure 3. Feasibility depending on affinity constraints and background load.

Figure 4 shows affinity when combined with anti-affinity
(at a constant background load of zero). As is evident when
comparing Figure 3 and 4, the results are very similar and
affinity is the dominating factor also in this case. The major
difference is when anti-affinity reaches over 30%, at which
point the anti-affinity has a considerably stronger impact than
affinity.

3) Impact of Anti-Affinity Constraints: Another analysis was
performed to compare the impact between anti-affinity and
background load (illustrated in Figure 5). Based on this, we can
conclude that the large number of available hosts (80) compared
to the number of VM instances in the service (100) is able to
sustain a higher percent of anti-affinity constraints (compared
to affinity constraints) before the ability to successfully place
the service is affected.

4) Timeouts and Execution Time: Figure 6 summarizes the
impact of affinity on timeouts and execution time. In this figure,
the execution time line is the average of all cases that could be
solved within 30 seconds, either by finding an optimal solution
or concluding that no solution is possible. The line marked
timeout shows the percent of experiments that could not be
solved within 30 seconds.

We can examine the data in three different segments:

70

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2362120, IEEE Transactions on Cloud Computing

9

0

10

20

30

40

50

60

0
10

20
30

40
50

60

0

20

40

60

80

100

Anti−A
ffin

ity
constra

ints(p
erce

ntage)

Affinity constraints(percentage)

Fe
as

ib
ilit

y
(p

er
ce

nt
ag

e)

Figure 4. Feasibility depending on affinity- and anti-affinity constraints.

0

10

20

30

40

50

60

70

80

90

100

0
10

20
30

40
50

60
70

80
90

100

0

20

40

60

80

100

Avg
. b

ac
kg

ro
un

d l
oa

d o
f h

os
ts

(p
er

ce
nta

ge
)

Anti−Affinity constraints(percentage)

Fe
as

ib
ilit

y
(p

er
ce

nt
ag

e)

Figure 5. Feasibility depending on anti-affinity constraints and average
background load.

• At zero affinity, the execution time and number of timeouts
are both very low. In this case, finding the optimal solution
is trivial for the solver as it can simply maximize the use
of the cheapest available resources.

• When affinity increases, the number of candidate optimal
solutions increases rapidly and the solver needs to evaluate
many more alternatives before concluding which place-
ment is optimal. As affinity increases to the 30% range,
the amount of feasible solutions (as shown in Figure 3)
decreases rapidly, which results in fewer timeouts.

• Above 30% affinity the execution time increases linearly
with regards to the amount of affinity (and hence the
number of constraints in the model). At the same time,
the solver can more accurately determine that no solution
will be found and the number of timeouts decreases.

5) Evaluation Summary: This evaluation has served to
illustrate how AA-constraints under varying background load
affect the placement of VM instances across as set of hosts.
As illustrated in Table VI, the feasibility of placing a service
decreases as the background load and number of AA-constraints

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f c
as

es

0 10 20 30 40 50 60 70 80 90 100
0

10

20

Av
g.

 e
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Affinity constraints (percentage)

no feasible solution
timeouts
execution time

Figure 6. Timeouts and execution time vs. affinity constraints

increase. This is expected, as any service is easier to place
without any restrictions and with a lower background load
resulting in more available resources. The amount of time
outs increases with a higher number of anti-affinity constraints,
while it decreases as the number of affinity constraints and the
percentage of background load increase. Increased background
load and increased amounts of affinity constraints reduce the
amount of possible solutions and thereby also the amount of
time outs, while a higher number of anti-affinity constraints
will generate a large set of cases that the solver can optimize.
This is consistent with the results discussed in Section V-A4.
Finally, the execution time increases with a higher number
of AA-constraints (although not linearly, as shown in Sec-
tion V-A4), while it decreases with a higher percentage of
background load as the search space of candidate hosts is
smaller. This suggests that in case of using, e.g., heuristic-based
solvers providing non-optimal solutions, it would make sense
to investigate methods that first strive to fulfill AA-constraints
before solving the complete problem.

We have elected to count any case that cannot be solved
within 30 seconds as a time out failure. In realistic scenarios, it
is likely that the best solution found within the time-frame will
be used, even if it is suboptimal. The only way to determine
how far from optimality such suboptimal solutions are is to let
the solver run (possibly indefinitely) until an optimal solution
has been found, and compare the two according to the objective
function. Further experiments of this kind using our model
would be interesting as part of future work.

The relative impact of background load and AA-constraints
in these tests indicate that affinity is the most restrictive factor
followed by anti-affinity, and that placement feasibility is only
marginally affected by background load. It is very likely that
anti-affinity would instead be the dominating factor in a test
environment with fewer hosts but with a higher capacity per
host, as that would allow more instances to be co-placed at the
same host while making it harder to achieve anti-affinity with
fewer physical hosts. This observation can be turned into a
model used to quantify the ability of an existing infrastructure
to cope with AA-constraints by analyzing the number and
capacity of available hosts. Creating and evaluating such a

71

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2362120, IEEE Transactions on Cloud Computing

10

model is also a part of future work.

VI. CONCLUSIONS AND FUTURE WORK

This work is motivated by the current lack of influence
offered to service providers regarding placement of their service
components in clouds. This limitation makes cloud hosting
inappropriate for several service categories depending on, e.g.,
certain legislation, geographical proximity, and fault-tolerance.

Based on previous work on structured services, we have
in this paper (I) showed how hierarchical graph structures
can be converted into placement constraints, modeled as
matrices; (II) presented a mathematical model for service owner-
controlled placement directives, and; (III) demonstrated the
feasibility of this model using a large set of simulated cases
with varying amounts of background load and AA-constraints.
Together, the contributions of this paper enables infrastructure
providers to extend their placement engines and algorithms to
offer service providers influence over how services are placed
without giving up control over their own infrastructure. This en-
ables cloud adoption also for services with the aforementioned
requirements.

We have identified several interesting subjects for future
work, including support for arbitrary groupings and level divi-
sions for AA-constraints; to consider also inter-service relations;
studying how to best overcome the uncertainty of not having
access to complete information from collaborating remote sites;
and support for soft constraints (e.g. preferences) as exemplified
for network distances by Alicherry and Lakshman [24], [25].
We would also like to compare using suboptimal results (the
best found within a certain amount of time) to using the optimal
results obtained by allowing the solver to run uninterrupted.

There are also interesting tasks regarding the adoption of
AA-constraints into cloud infrastructure offerings. The added
complexity of supporting service owner-controlled placement
directives needs to be economically compensated for, and
devising such compensation models is a necessary step toward
adoption.

ACKNOWLEDGMENTS

We thank Eddie Wadbro for sharing his knowledge on
linear programming solvers. The research that led to these
results has been partially supported by the European Commis-
sion’s Seventh Framework Programme under grant agreements
no. 215605 (RESERVOIR), no. 257115 (OPTIMIS), and is
further support the Swedish Government’s strategic research
project eSSENCE and the Swedish Research Council under
contract no. C0590801 (Cloud Control).

REFERENCES

[1] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. Llorente,
R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres, M. Ben-Yehuda,
W. Emmerich, and F. Galán, “The RESERVOIR model and architecture
for open federated cloud computing,” IBM Journal of Research and
Development, vol. 53, no. 4, 2009, paper 4.

[2] A. J. Ferrer, F. Hernández, J. Tordsson, E. Elmroth, A. Ali-Eldin,
C. Zsigri, R. Sirvent, J. Guitart, R. M. Badia, K. Djemame, W. Ziegler,
T. Dimitrakos, S. K. Nair, G. Kousiouris, K. Konstanteli, T. Varvarigou,
B. Hudzia, A. Kipp, S. Wesner, M. Corrales, N. Forgó, T. Sharif,
and C. Sheridan, “OPTIMIS: A holistic approach to cloud service
provisioning,” Future Generation Computer Systems, vol. 28, no. 1,
pp. 66–77, 2012.

[3] R. Buyya, J. Broberg, and A. Gościński, Eds., Cloud Computing:
Principles and Paradigms, ser. Wiley Series on Parallel and Distributed
Computing. John Wiley & Sons, 2011.

[4] P. Massonet, S. Naqvi, C. Ponsard, J. Latanicki, B. Rochwerger, and
M. Villari, “A monitoring and audit logging architecture for data location
compliance in federated cloud infrastructures,” in Proceedings of the
IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum (IPDPSW). IEEE, 2011, pp. 1510–1517.

[5] L. Larsson, D. Henriksson, and E. Elmroth, “Scheduling and Monitoring
of Internally Structured Services in Cloud Federations,” in Proceedings
of IEEE Symposium on Computers and Communications, 2011, pp. 173–
178.

[6] U. Lampe, M. Siebenhaar, R. Hans, D. Schuller, and R. Steinmetz, “Let
the clouds compute: cost-efficient workload distribution in infrastructure
clouds,” in Proceedings of the 9th international conference on Economics
of Grids, Clouds, Systems, and Services, ser. GECON’12. Springer-
Verlag, 2012, pp. 91–101.

[7] T. A. Genez, L. F. Bittencourt, and E. R. Madeira, “Workflow scheduling
for SaaS/PaaS cloud providers considering two SLA levels,” in Network
Operations and Management Symposium (NOMS), 2012 IEEE. IEEE,
2012, pp. 906–912.

[8] W. Li, J. Tordsson, and E. Elmroth, “Modeling for Dynamic Cloud
Scheduling via Migration of Virtual Machines,” in Proceedings of the
3rd IEEE International Conference on Cloud Computing Technology and
Science (CloudCom 2011), 2011, pp. 163–171.

[9] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic Placement of Virtual
Machines for Managing SLA Violations,” in Proceedings of the 10th
IFIP/IEEE International Symposium on Integrated Network Management.
IEEE, 2007, pp. 119–128.

[10] S. Chaisiri, B. Lee, and D. Niyato, “Optimal virtual machine placement
across multiple cloud providers,” in Proceedings of the IEEE Asia-Pacific
Services Computing Conference (APSCC). IEEE, 2009, pp. 103–110.

[11] F. Machida, M. Kawato, and Y. Maeno, “Redundant virtual machine
placement for fault-tolerant consolidated server clusters,” in Proceedings
of the IEEE Symposium on Network Operations and Management
(NOMS). IEEE, 2010, pp. 32–39.

[12] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine placement,” in
Proceedings of the IEEE INFOCOM. IEEE, 2010, pp. 1–9.

[13] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, “A scalable application
placement controller for enterprise data centers,” in Proceedings of the
16th international conference on World Wide Web. ACM, 2007, pp.
331–340.

[14] I. Brandic, S. Pllana, and S. Benkner, “High-level composition of QoS-
aware Grid workflows: an approach that considers location affinity,” in
Proceedings of the workshop on Workflows in Support of Large-Scale
Science, in conjunction with the 15th IEEE International Symposium on
High Performance Distributed Computing, 2006, pp. 1–10.

[15] K. Jeffery and B. Neidecker-Lutz, Eds., The Future Of Cloud Computing,
Opportunities for European Cloud Computing Beyond 2010. European
Commission, Information Society and Media, January 2010.

[16] A. Li, X. Yang, S. Kandula, and M. Zhang, “CloudCmp: Comparing
Public Cloud Providers,” in Proceedings of the 10th ACM SIGCOMM
conference on Internet Measurement, ser. IMC ’10. New York, NY,
USA: ACM, 2010, pp. 1–14.

[17] W. Li, P. Svärd, J. Tordsson, and E. Elmroth, “A general approach to
service deployment in cloud environments,” in Proceedings of the 2nd
IEEE International Conference on Cloud and Green Computing. IEEE,
2012, pp. 17–24.

[18] D. Breitgand, A. Marashini, and J. Tordsson, “Policy-Driven Service
Placement Optimization in Federated Clouds,” IBM Research, Tech. Rep.
H-0299, 2011.

[19] A. Atamtürk and M. Savelsbergh, “Integer-Programming Software
Systems,” Annals of Operations Research, vol. 140, no. 1, pp. 67–124,
2005.

[20] T. Koch, A. Martin, and M. Pfetsch, “Progress in Academic Computa-
tional Integer Programming,” in Facets of Combinatorial Optimization.
Springer Berlin Heidelberg, 2013, pp. 483–506.

[21] D. Jayasinghe, C. Pu, T. Eilam, M. Steinder, I. Whally, and E. Snible,
“Improving performance and availability of services hosted on iaas
clouds with structural constraint-aware virtual machine placement,” in
Proceedings of the IEEE International Conference on Services Computing
(SCC). IEEE, 2011, pp. 72–79.

[22] F. Hermenier, S. Demassey, and X. Lorca, “Bin repacking schedul-
ing in virtualized datacenters,” Principles and Practice of Constraint
Programming–CP, pp. 27–41, 2011.

72

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2362120, IEEE Transactions on Cloud Computing

11

[23] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. Lawall, L.,
“Entropy: a consolidation manager for clusters,” in VEE ’09: Proceedings
of the 2009 ACM SIGPLAN/SIGOPS international conference on Virtual
execution environments. ACM, 2009, pp. 41–50.

[24] M. Alicherry and T. Lakshman, “Network aware resource allocation in
distributed clouds,” in INFOCOM, 2012 Proceedings IEEE. IEEE, 2012,
pp. 963–971.

[25] ——, “Optimizing data access latencies in cloud systems by intelligent
virtual machine placement,” in INFOCOM, 2013 Proceedings IEEE.
IEEE, 2013, pp. 647–655.

[26] Distributed Management Task Force, Inc., “Open Virtualization Format
Specification version 2.0.0c,” work in progress, http://www.dmtf.
org/sites/default/files/standards/documents/DSP0243 2.0.0c.pdf. [Online].
Available: http://www.dmtf.org/sites/default/files/standards/documents/
DSP0243 2.0.0c.pdf

[27] R. Pereira, M. Azambuja, K. Breitman, and M. Endler, “An architecture
for distributed high performance video processing in the cloud,” in
Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference
on. IEEE, 2010, pp. 482–489.

[28] W. Li, J. Tordsson, and E. Elmroth, “Modeling for dynamic cloud
scheduling via migration of virtual machines,” in Proceedings of the
Third IEEE International Conference on Cloud Computing Technology
and Science (Cloudcom). IEEE Computer Society, 2011, pp. 357–366.

[29] A. Roytman, A. Kansal, S. Govindan, J. Liu, and S. Nath, “PACMan:
Performance Aware Virtual Machine Consolidation,” in Proceedings of
the 10th International Conference on Autonomic Computing. USENIX,
2013, pp. 83–94.

[30] S. Chaudhuri, R. A. Walker, and J. E. Mitchell, “Analyzing and
exploiting the structure of the constraints in the ilp approach to the
scheduling problem,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 2, no. 4, pp. 456–471, 1994.

[31] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling
Language for Mathematical Programming. Duxbury Press, Nov. 2002.

[32] Gurobi, gurobi Optimization, http://www.gurobi.com, visited January
2013.

Daniel Espling holds a Ph.D. from the Department
of Computing Science, Umeå University, Sweden.
He received his master’s degree in Computing
Science in 2007, and his Ph.D. degree in 2013.
He conducts research on management topics in
multi-grid and multi-cloud computing environments.
He has contributed to the European Commission’s
RESERVOIR and OPTIMIS projects and his research
topics include monitoring of hardware and software
based measurements, accounting and billing, and
scheduling/placement of grid job and cloud services.

Lars Larsson received his MSc. in computing
science at Umeå University in 2008 with a 4.9 of
5 grade average. Mixing software development with
post-graduate studies that started in 2009, his research
interest is cloud computing infrastructure manage-
ment. He has worked on the European Commis-
sion’s RESERVOIR project, has taught the advanced
course at Distributed Systems at the Department
of Computing Science at Umeå University, and is
currently working with research and development of
a commercial auto-scaling software.

Wubin Li holds a Ph.D. from the Department of
Computing Science, Umeå University, Sweden. He
received his Ph.L. (licentiate) degree in 2012 and his
Ph.D. degree in 2014. Before that, he received his
master’s degree in 2005 from Institute of Computing
Technology, Chinese Academy of Sciences. He also
worked as a research assistant and software engineer
in Tencent, Inc during 2008 and 2009. He has
contributed to the European Commission’s OPTIMIS
project and his research topics focus on resource
placement and scheduling in cloud environments.

Johan Tordsson is Assistant Professor at the De-
partment of Computing Science, Umeå University,
from he also received his Ph.D. in 2009. After a
period as visiting postdoc researcher at Universidad
Complutense de Madrid, he worked for several years
in the RESERVOIR, VISION Cloud, and OPTIMIS
European projects, in the latter as Lead Architect
and Scientific Coordinator. Tordsson’s research inter-
estests include autonomic management problems for
cloud and grid computing infrastructures as well as
enabling technologies such as virtualization.

Erik Elmroth is Professor at the Department of
Computing Science, Umeå University, Sweden. His
background in eScience includes virtual computing in-
frastructures (Clouds and Grids), parallel computing,
algorithms for managing memory hierarchies, linear
algebra library software, and ill-posed eigenvalue
problems. He received the Nordea Scientific Award
2011 and he was co-recipient of the SIAM Linear
Algebra Prize 2000, for the most outstanding linear
algebra publication world-wide during the preceding
three-year period. He currently leads the Distributed

Systems computing research at Umeå University, focusing on infrastructure and
application tools for Cloud computing. International experiences include a year
at NERSC, Lawrence Berkeley National Laboratory, University of California,
Berkeley, and one semester at the Massachusetts Institute of Technology (MIT),
Cambridge, MA. Erik is Chairman of the Swedish National Infrastructure
for Computing (SNIC), has been member of the Swedish Research Council’s
Committee for Research Infrastructures (KFI), and Chairman of its expert group
on eScience. He has been appointed the Scientific Secretary for producing
two e-science strategies for the Nordic Council of Ministers.

73

74

