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Abstract

Building general purpose autonomous robots that suit a wide range of user-specified
applications, requires a leap from today’s task-specific machines to more flexible
and general ones. To achieve this goal, one should move from traditional prepro-
grammed robots to learning robots that easily can acquire new skills. Learning
from Demonstration (LfD) and Imitation Learning (IL), in which the robot learns
by observing a human or robot tutor, are among the most popular learning tech-
niques. Showing the robot how to perform a task is often more natural and intuitive
than figuring out how to modify a complex control program. However, teaching
robots new skills such that they can reproduce the acquired skills under any circum-
stances, on the right time and in an appropriate way, require good understanding
of all challenges in the field.

Studies of imitation learning in humans and animals show that several cognitive
abilities are engaged to learn new skills correctly. The most remarkable ones are the
ability to direct attention to important aspects of demonstrations, and adapting
observed actions to the agents own body. Moreover, a clear understanding of
the demonstrator’s intentions and an ability to generalize to new situations are
essential. Once learning is accomplished, various stimuli may trigger the cognitive
system to execute new skills that have become part of the robot’s repertoire.

The goal of this thesis is to develop methods for learning from demonstration
that mainly focus on understanding the tutor’s intentions, and recognizing which
elements of a demonstration need the robot’s attention. An architecture containing
required cognitive functions for learning and reproduction of high-level aspects of
demonstrations is proposed. Several learning methods for directing the robot’s
attention and identifying relevant information are introduced. The architecture
integrates motor actions with concepts, objects and environmental states to ensure
correct reproduction of skills.

Another major contribution of this thesis is methods to resolve ambiguities in
demonstrations where the tutor’s intentions are not clearly expressed and several
demonstrations are required to infer intentions correctly. The provided solution is
inspired by human memory models and priming mechanisms that give the robot
clues that increase the probability of inferring intentions correctly. In addition to
robot learning, the developed techniques are applied to a shared control system
based on visual servoing guided behaviors and priming mechanisms.

The architecture and learning methods are applied and evaluated in several real
world scenarios that require clear understanding of intentions in the demonstra-
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tions. Finally, the developed learning methods are compared, and conditions where
each of them has better applicability are discussed.

iv



Sammanfattning

Att bygga autonoma robotar som passar ett stort antal olika anvindardefinierade
applikationer kréver ett sprang fran dagens specialiserade maskiner till mer flexibla
16sningar. For att na detta mal, bor man 6verga fran traditionella féorprogrammer-
ade robotar till robotar som sjalva kan lara sig nya fardigheter. Learning from
Demonstration (LfD) och Imitation Learning (IL), dir roboten lar sig genom att
observera en méanniska eller en annan robot, dr bland de mest populéra inldrning-
steknikerna. Att visa roboten hur den ska utféra en uppgift &r ofta mer naturligt
och intuitivt &4n att modifiera ett komplicerat styrprogram. Men att ldra robotar
nya fardigheter sa att de kan reproducera dem under nya yttre forhallanden, pa
ratt tid och pa ett lampligt séatt, kraver god forstaelse for alla utmaningar inom
omradet.

Studier av LfD och IL hos mé&nniskor och djur visar att flera kognitiva férma-
gor ar inblandade for att lara sig nya fardigheter pa ratt sdtt. De mest anmérkn-
ingsvirda ar formagan att rikta uppmaérksamheten pa de relevanta aspekterna i en
demonstration, och formagan att anpassa observerade rorelser till robotens egen
kropp. Dessutom é&r det viktigt att ha en klar forstaelse av lararens avsikter, och att
ha féormagan att kunna generalisera dem till nya situationer. Nér en inldrningsfas
ar slutford kan stimuli trigga det kognitiva systemet att utféra de nya fardigheter
som blivit en del av robotens repertoar.

Malet med denna avhandling &r att utveckla metoder for LfD som huvudsakli-
gen fokuserar pa att forsta lararens intentioner, och vilka delar av en demonstration
som ska ha robotens uppmérksamhet. Den foreslagna arkitekturen innehaller de
kognitiva funktioner som behovs for larande och atergivning av hégnivaaspekter av
demonstrationer. Flera inldrningsmetoder for att rikta robotens uppmérksamhet
och identifiera relevant information foreslas. Arkitekturen integrerar motorkom-
mandon med begrepp, foremal och omgivningens tillstand for att sédkerstéalla kor-
rekt atergivning av beteenden.

Ett annat huvudresultat i denna avhandling rér metoder for att 16sa tvety-
digheter i demonstrationer, dir ldrarens intentioner inte &r klart uttryckta och
flera demonstrationer &r nédvandiga for att kunna forutsédga intentioner pa ett ko-
rrekt sdtt. De utvecklade losningarna &r inspirerade av modeller av ménniskors
minne, och en primingmekanism anviands fér att ge roboten ledtradar som kan
Oka sannolikheten for att intentioner forutsigs pa ett korrekt sitt. De utvecklade
teknikerna har, i tilligg till robotinldrning, anvénts i ett halvautomatiskt system
(shared control) baserat pa visuellt guidade beteenden och primingmekanismer.



Arkitekturen och inldrningsteknikerna tillimpas och utvirderas i flera verkliga
scenarion som kraver en tydlig forstdelse av ménskliga intentioner i demonstra-
tionerna. Slutligen jamfors de utvecklade inldrningsmetoderna, och deras applicer-
barhet under olika forhallanden diskuteras.
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Preface

This thesis presents techniques and cognitive architectures for Learning from Demon-
stration (LfD) and Imitation Learning (IL) challenges. High-level learning and
reproduction of behaviors is discussed, and our contributions to the field are elab-
orated. The thesis is based on the following papers:

Paper I: Benjamin Fonooni, Thomas Hellstrom and Lars-Erik Janlert. Learning
high-level behaviors from demonstration through Semantic Networks, In pro-
ceedings of 4th International Conference on Agents and Artificial Intelligence
(ICAART), Vilamoura, Portugal, pp. 419-426, 2012.

Paper II: Benjamin Fonooni, Thomas Hellstrom and Lars-Erik Janlert. Towards
Goal Based Architecture Design for Learning High-Level Representation of
Behaviors from Demonstration, IFEFE International Multi-Disciplinary Con-
ference on Cognitive Methods in Situation Awareness and Decision Support
(CogSIMA), San Diego, CA, USA, pp. 67-74, 2013.

Paper ITI: Benjamin Fonooni, Aleksandar Jevti¢, Thomas Hellstrom and Lars-
Erik Janlert. Applying Ant Colony Optimization algorithms for High-Level
Behavior Learning and Reproduction from Demonstrations, Robotics and Au-
tonomous Systems, 2014 (accepted).

Paper IV: Alex Kozlov, Jeremi Gancet, Pierre Letier, Guido Schillaci, Verena
V. Hafner, Benjamin Fonooni, Yashodhan Nevatia and Thomas Hellstrom.
Development of a Search and Rescue field Robotic Assistant, IEEE Inter-
national Symposium on Safety, Security, and Rescue Robotics, Linképing,
Sweden, pp. 1-5, 2013.

Paper V: Benjamin Fonooni, Thomas Hellstrom and Lars-Erik Janlert. Priming
as a Means to Reduce Ambiguity in Learning from Demonstration, Interna-
tional Journal of Social Robotics, 2014 (submitted).

Paper VI: Benjamin Fonooni and Thomas Hellstrom. On the Similarities Be-
tween Control Based and Behavior Based Visual Servoing, The 30th ACM /
SIGAPP Symposium on Applied Computing (SAC), Salamanca, Spain, 2014
(accepted).

Paper VII: Benjamin Fonooni and Thomas Hellstrom. Applying a Priming Mech-
anism for Intention Recognition in Shared Control, IEEE International Multi-
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Disciplinary Conference on Cognitive Methods in Situation Awareness and
Decision Support (CogSIMA), Orlando, FL, USA, 2014 (accepted).

In addition to above papers, the following paper has been produced during the
PhD studies:

e Benjamin Fonooni. Sequential Learning From Demonstration Based On Se-
mantic Networks, Umed’s 15th Student Conference in Computing Science

(USCCS), Umed, Sweden, 2012.

This work was partly financed by the EU funded Initial Training Network (ITN)
in the Marie-Curie People Programme (FP7): INTRO (INTeractive RObotics re-
search network), grant agreement no.: 238486.
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Chapter 1

Introduction

Robots are becoming ubiquitous and utilized in diverse application domains. Per-
sonal robots that can help with home or office chores are getting popular, and
a trend to move away from preprogrammed robots operating in well-defined con-
trolled environment has started. Programming robots for different tasks most often
requires considerable cost and energy, and has to be done by experts. Therefore,
finding proper solutions based on human’s natural ways of learning for efficiently
teaching robots new skills can reduce the complexity for end-users as well as saving
resources. Humans usually acquire their skills through direct tutelage, observa-
tional conditioning, goal emulation, imitation and other social interactions (Scas-
sellatil [1999b). This has opened a new area in human-robot interaction such that
even non-roboticist users may teach robots to perform a task by simply showing
how to accomplish it with a demonstration. The task can vary from a very simple
action of “picking up a cup” to a complex one like “assisting a human agent to un-
cover victim from rubble in debris”. The general technique is called Learning from
Demonstration (LfD) or Imitation Learning (IL), and has been studied widely over
the past decade. Both LfD and IL are used extensively in the robotics literature,
but L{D is the adoption of insights from social sciences and neuroscience regarding
the process of imitation in humans and animals. Therefore, both terms are often
used interchangeably (also in the current thesis) due to their common prerequisites
that root in the social sciences.

LfD provides a powerful way to speed up learning new skills, as well as blending
robotics with psychology and neuroscience to answer cognitive and biological ques-
tions, brought to attention by for instance Schaal (1999) and, Demiris and Hayes
(2002)). Despite all its benefits, a number of challenges have to be tackled from
different abstraction levels. These challenges and an overview of related work are
discussed in chapter 2.

The tutor is a big part of LfD where the robot attempts to observe and learn
not only the performed actions, but also tutor’s intents. Correct intention recogni-
tion together with adequate action learning result in complete and flawless behavior
reproduction, which allows the robot to affect the world in the same way as demon-
strated.



Introduction

In theory and practice, there are different levels of complexity in imitating be-
haviors and they have been investigated in many studies (Meltzoff, [1988; [Mikl6sil
1999; |Call & Carpenter} [2002). A few social learning mechanisms from biological
systems have been introduced to extrapolate each kind of complexity. Sometimes
these mechanisms are erroneously considered imitation while they more correctly
should be categorized as pseudo-imitation. Such mechanisms are response facilita-
tion, stimulus enhancement, goal emulation and mimicking (Fukano et al., [2006).

Response facilitation is a process by which an observer starts to exhibit a behav-
ior from his existing repertoire by observing others performing the same behavior.
Stimulus enhancement is a mechanism by which an observer starts to exhibit a be-
havior from his existing repertoire, due to exposure to an object with affordances
that draw the observer’s attention. Goal emulation is a process of witnessing others
interacting with an object to achieve certain results without understanding how it
is achieved, and then trying to produce the same results with the same object by
its own action repertoire. Mimicking is a mechanism by which an observer starts
to copy all actions performed by others without understanding their intentions.

True imitation is gained by reproducing observed actions of others using the
same strategy to achieve the same goals. Thus, depending on what type of imitation
is concerned, different requirements are needed.

In the current thesis, we propose methods of learning that mainly focus on
understanding a tutor’s intent, and identify what information is worth the robot’s
attention. We investigate human memory effects to discover mechanisms to influ-
ence and speed up the learning process in robots. The suggested methods are used
to learn object affordances along with conditions to replicate the motor-actions
that have the same effects to the world. Novel approaches are introduced to re-
solve ambiguities in demonstrations where insufficient information can mislead the
robot to incorrectly infer the tutor’s intent. The results of this work can also be
used for shared control where the robot predicts actions according to the observed
behavior. Depending on how successful the predictions are, the robot may then
take over control and give the user more freedom to engage with other tasks. The
tutor may also use a shared control system to teach the robot new behaviors when
several demonstrations of a behavior are required.

1.1 Levels of Abstraction

LfD in robotics consists of different levels of abstraction, that each one refers to
one aspect of learning. Mapping of sensory-motor information that produces an
action to be performed by actuators is referred to low-level. In other words, a low-
level representation of a learned skill is a set of sensory-motor mappings (Billard
et al. [2008)). These mapping can produce the same trajectories as observed during
demonstrations or might be adapted to the robot’s morphology but still result in
the same actions. Many studies have addressed the problem of low-level learning
and reproduction of behaviors. Among them, (Dillmann, 2004; Ekvall & Kragicl
2005}, |Calinon et al.| 2007} [Pastor et al.; |2009; Billing & Hellstroml |2010; [Skoglund
et al., |2010; Ijspeert et al., [2013) are especially worth mentioning.



1.2 Objectives

Another aspect of imitation is related to the demonstrator’s intentions, goals
and objects of attention, which here are considered high-level representations of
skills, and sometimes referred to conceptualization or symbolic learning (Billard
et all |2008). Various techniques for learning the purpose of a demonstration,
understanding tutor’s intentions, and identifying what objects or elements in a
demonstration are more important have also been developed, as described for in-
stance in (Mahmoodian et al.| [2013; [Hajimirsadeghi et al., 2012} (Cakmak et al.|
2009; [Erlhagen et al., [2006; [Chao et al., 2011}; |Jansen & Belpaeme, 2006)).

1.2 Objectives

This thesis heads for developing novel techniques for interactive learning partic-
ularly in LfD, in order to improve concept formation, intention recognition and
ways to deal with ambiguities in demonstrations. The developed methods are part
of an architecture that is particularly tailored for learning high-level aspects of
demonstrations. The architecture employs techniques to sequentially learn and re-
produce motor-skills in order to make the robot capable of affecting the world in
the same way as demonstrated. The architecture uses four learning methods cou-
pled with an attentional mechanism to identify the most important elements of the
demonstration. These methods are also used to learn object affordances, thereby
helping the robot to select appropriate sensory-motor actions in accordance with
high-level perceptions. The architecture is then used for behavior arbitration and
robot shared control.

1.3 Thesis Outline

The remaining chapters are organized as follows: Chapter 2 presents an overview
of LfD; challenges and related work. Chapter 3 focuses on cognitive architectures
and frameworks proposed in different studies, and to what extent they have influ-
enced the current work. Chapter 4 is about learning methods and how an attention
mechanism was developed. Chapter 5 introduces ambiguity and priming mecha-
nisms. Chapter 6 describes fundamentals of shared control and its applications in
LfD. Finally, some notes about future work along with summary of contributions
are given in Chapter 7 and 8.
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Chapter 2

Challenges in Learning from
Demonstration

A successful robot learning from demonstration requires overcoming certain chal-
lenges, known as the “Big Five” (Dautenhahn & Nehanivl 2002). Commonly not
all the challenges are addressed in one single study and normally there are a few
assumptions to mitigate the learning complexity. These challenges are introduced
and related work is presented in the following sections.

2.1 Big Five

In order to overcome the challenges in LfD, “Big Five” central questions have to be
answered: Who to imitate? When to imitate? How to imitate? What to imitate?
How to evaluate a successful imitation? A thorough investigation of these research
questions may enable construction of robots that are able to benefit from the ut-
most potential of LfD (Dautenhahn & Nehaniv, [2002). Among these questions
“Who” and “When” are mostly left unexplored and the majority of approaches
are proposed to tackle “What” and “How ”, which basically refer to learning and
encoding skills respectively. In the current thesis we are addressing “What” and
“When ” while employing existing techniques from the “How ” question.

2.1.1 Who to Imitate

Finding a proper solution for this question requires exhaustive studies in social
sciences, since it is strongly connected to the social interactions between an imitator
and a demonstrator. Choosing a demonstrator whose behavior can benefit the
imitator is essential. Identifying which demonstrator’s task is relevant and serves
the imitator in some way requires evaluating the performance of the behaviors
shown by the selected demonstrator (Alissandrakis et al. 2002]).
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Challenges in Learning from Demonstration

2.1.2 When to Imitate

This aspect of imitation learning is also tied to social sciences, and is about iden-
tifying an appropriate time period to imitate. The imitator has to identify the
beginning and end of a shown behavior, as well as deciding if the observed behav-
ior fits in the current context (Alissandrakis et al., [2002).

2.1.3 What to Imitate

Depending on what aspects of a behavior are of interest, different approaches should
be applied. In case of actions, the demonstrator’s movements are relevant, so
copying the exact trajectories is important. In other situations, the result and
the effects of actions are considered important. This means that, the imitator
may reproduce the observed behavior with a different set of actions, but the same
goal is achieved (Zentall, |2001)). According to Byrne and Russon (1998) there are
two different modes of imitation that are distinct from each other: action level
imitation is about matching minor details and style of sequential acts (i.e. pushing
a lever) and program level imitation is about copying the structural organization of
a complex process (i.e. picking, folding and chewing herbaceous plants shown by
apes). The latter requires that the imitator is able to build hierarchical structures
in order to learn coordinated sequence of actions to fulfill a goal.

When the robot attempts to imitate, it is crucial to understand which percep-
tual aspects of the behavior is relevant. Having the ability to detect saliency and
focus on the relevant elements of a demonstrated behavior requires a sophisticated
attentional mechanism (Breazeal & Scassellati, 2002b)). Different attentional mod-
els have been proposed and evaluated. Some models use fixed criteria to selectively
direct all computational resources to the elements of the behavior that have the
most relevant information (Mataric, 2002)), such as a specific color, motion speed
or various depth cues (Breazeal & Scassellatil |1999).

In another model, which has been used in imitation learning, mechanisms for
simultaneous attention to the same object or state in the environment use the
concept of shared attention (Hoffman et al., 2006} |Scassellati, |1999al).

2.1.4 How to Imitate

Once perception is completed and the robot has decided what to imitate, it has to
engage an action within its repertoire to exactly replicate the same trajectories or
achieve the same results. In case it does not know how to perform the observed
action, the robot has to learn it by mapping perceptions into a sequence of mo-
tor actions related to its own body. Therefore, embodiment of the robot and its
body constraints determine how an observed action can be imitated (Alissandrakis
et al.l [2002). Mismatch between the robot’s and the demonstrator’s morphology
during the mapping process leads to the so called correspondence problem (Ne-
haniv & Dautenhahn) [2002)). From a neuroscience perspective, the correspondence
problem is explained by mirror neurons (Brass & Heyes, [2005; [lacoboni, [2009)),
which create shared context and understanding of affordances between imitator
and demonstrator.



2.2 Other Challenges

Most robotics research is a priori that allows focusing on finding solutions for
“How to imitate” by constraining design space and thereby fixating what, when
and who to imitate (Dautenhahn & Nehaniv, [2002).

2.1.5 How to Evaluate Successful Imitation

Evaluation of reproduction of a demonstrated behavior determines if the robot was
able to correctly answer the five questions described above. Sometimes, imitation is
considered successful if the correct motor actions have been employed by the robot
(Scassellati), [1999b). Most often, evaluation is based on the specific experimental
setup and thus it is difficult to make comparisons of different results (Dautenhahn
& Nehanivl 2002). The evaluation may be done by the demonstrator or by an
observer with vocal feedback, facial expressions or other kinds of social interaction.
In case of goal oriented imitation, successful imitation is interpreted as achieving
the same results by executing appropriate actions from the observer’s repertoire.

2.2  Other Challenges

Within the “Big Five ” questions described above lie additional challenges for which
a successful learning and reproduction system has to provide solutions. These
challenges are for instance generalization, learning object affordances and sequence
learning. These challenges may be considered as parts of big five and may or may
not be addressed separately. In any case, resolving them enables development of
more social and believable robots.

2.2.1 Generalization

An essential feature of any learning system is its ability to generalize. Generaliza-
tion is a process of observing a set of training examples, identifying the significantly
important features common to these examples and forming a concept definition
based on these common features (Mitchell et al., [1986]). Once a robot has learned
to execute a task in a particular situation, it should be able to generalize and re-
produce the task in different and unseen situations (Calinon & Billard, 2007). In
the real world with a dynamic environment, it is crucial to be able to adapt and
perform appropriate actions depending on the perceived situation. In contrast to
early works in imitation learning that attempted to simply reproduce behaviors as
copies of what had been observed, recent works often attempt to generalize across
a set of demonstrations.

Generalization may be considered at the sensory-motor level (sometimes re-
ferred to as trajectory level), but also at the level of sequences of predefined mo-
tion primitives that accomplishes a task (Billard et al. |2008). In generalization at
trajectory level, robot actuator movements are generalized such that the system
creates generic representation of the motion for encoding different related move-
ments. Generalization at the level of sequences of predefined motion primitives
is about recognizing a task structure in terms of what actions are involved, and
creating generic task structures to execute other related tasks.

7



Challenges in Learning from Demonstration

For a robot working close to humans in a dynamic environment with several ob-
jects and concepts, the capability to generalize one concept to another is essential.
This high-level type of generalization is considered in this thesis. For instance, the
robot may learn to clean the table when an empty cup is placed on it. The gener-
alization ability helps the robot to perform the cleaning task also when an empty
mug is observed on the table. In this way, object affordances are generalized such
that even by perceiving objects of different type, the robot correctly performs the
right task. The example shows that the problem not necessarily has well-defined
solution, and the suitable level of generalization depends on the situation.

2.2.2 Sequence Learning

Most complex tasks performed by humans comprise sequences of actions executed
in the proper order. Therefore, sequence learning plays an important role in hu-
man skill acquisition and high-level reasoning (Sun & Giles, 2001). When humans
learn sequences, the learned information consists of both sequences of stimuli and
corresponding sequences of responses (Clegg et al.,|1998]). Thus, humans react to a
stimulus based on the associated learned response. The same principles are consid-
ered while developing sequence learning in robots. In robotics, low-level sequence
learning of sensory-motor states is done by utilizing, for instance, Hidden Markov
Models (HMM) (Vakanski et al.| 2012)), Artificial Neural Networks (ANN) (Billard
& Hayes, |1999)) or Fuzzy Logic (Billing et al.,|2012). High-level aspects, such as task
goals, are learned by, for instance, conceptual spaces, which are knowledge repre-
sentation models for intentions behind demonstrations (Cubek & Ertel, 2012). The
Chain Model, a biologically inspired spiking neuron model that aims at reproducing
the functionalities of the human mirror neuron system, was proposed by Chersi to
encode the final goal of action sequences (Chersi, [2012). In another study, based on
reinforcement learning and implicit imitation, sequences of demonstrator’s states
(e.g. demonstrator’s location and limb positions) was used to learn how to combine
set of action hierarchies to achieve sub-goals and eventually reach the desired goal
(Friesen & Rao, 2010). Lee and Demiris (2011) used stochastic context-free gram-
mars (SCFGs) to represent high-level actions and model human behaviors. First
they trained the system with a set of multipurpose low-level actions with HMMs,
and then they defined high-level task-independent actions (goals) that comprised
previously learned low-level actions as vocabulary. A human-behavior model, with
low-level actions associated to symbols, was then created by utilizing SCFG.

In the current thesis, we propose an architecture for goal-based sequence learn-
ing and reproduction of high-level representations of behaviors. In our novel ap-
proach, semantic relations between observed concepts/objects and executed actions
are learned and generalized in order to achieve demonstrated goals (Fonooni et al.
2013). In Chapter 3, the proposed architecture and related work are presented.

2.2.3 Learning Object Affordances

The quality of an object defines its potential for motor actions to be performed
on it and obtained upon execution of an action towards the object (Gibsonl |1979)).
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2.2 Other Challenges

Affordances are defined as relations between actions, objects and effects that are
used to predict the outcome of an action, plan to reach a goal or to recognize an
object and an action. A noteworthy feature of affordances is their dependence on
the world and on the robot’s sensory-motor capabilities. Moreover, affordances
require a set of primary actions as prior information. In robot imitation learning,
affordances have been used for action recognition while interacting with the demon-
strator (Montesano et all [2008]). Lopes et al. (2007) proposed a framework for
robot imitation based on an affordances model using Bayesian networks to iden-
tify the relation between actions, object features and the effects of those actions.
Dogar et al. (2007) developed a goal-directed affordance based framework to allow
the robot to observe effects of its primitive behavior on the environment, and cre-
ate associations between effects, primitive behaviors and environmental situations.
The learned associations helped the robot to perform more complex behaviors in
the reproduction phase. In work by Thomaz and Cakmak (2009)), Socially Guided
Machine Learning (SGML) was used to investigate the role of the teacher in physi-
cal interaction with the robot and the environment in order to learn about objects
and what actions or effects they afford. Lee et al. (2009) showed the efficiency of
using object affordances in measuring the relevance of objects for a task, and thus
helping the robot to engage appropriate low-level action.

In the current thesis we introduce techniques to learn object affordances and
employ them to arbitrate a behavior. These techniques are discussed in Chapter
4.



Challenges in Learning from Demonstration
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Chapter 3

Cognitive Architecture for
Learning from
Demonstration

In many robotics applications, especially those involving imitation learning, struc-
tures are defined and guidelines for information flow are specified in an architecture.
Depending on objectives, hardware design, behavioral repertoire and perceptual
inputs, different architectures have been proposed (Breazeal & Scassellati, [2002a;
Chella et al., |2006; |Gienger et al.,|2010; | Bandera et al.,|2012; |Demiris & Khadhouri,
2006)). Apart from basic principles of all cognitive architectures, there are common
key components in most architectures for robot imitation learning. According to
Langley et al. (2009)), principles are aspects of an agent, which are essential for
all mechanisms to work in different application domains: i) short and long-term
memories ii) representation of elements residing in these memories iii) functional
processes operating on these structures. In addition, according to Vernon et al.
(2007)), a cognitive system that entails an architecture for imitation learning, con-
stitutes loosely coupled components that cooperate to achieve a cognitive goal. Tt
must be able to adapt, self-alter and anticipate actions and events that appear over
a period of time.

Architectures for robot imitation learning contain common key components for
cognitive and motor capabilities of the robots. These components are perception,
knowledge management, learning and motor command generation. In the following
section the above mentioned architectures are discussed briefly.

3.1 Related Work

In the study by Breazeal and Scassellati (2002a)), several research problems re-
garding robot imitation learning are outlined. Their generic control architecture
was developed for the Cog and Kismet robots. The architecture discriminates be-
tween low- and high-level perceptions based on how much processing is required
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Cognitive Architecture for Learning from Demonstration

for the information delivered by each sensor. Learning functionality is not explic-
itly handled in one specific component but exist in each one of the components.
The Attention System is responsible for regulating attention preferences according
to motivational states while learning new motor skills. The Behavior System is
designed to infer goals and select appropriate behaviors based on perceptions and
motivational states. The result of the behavior selection is transferred to the Motor
System for execution on the robot. Figure 3.1 depicts the architecture and involved
components.

Low-Level Perceptual / High-Level Perception \
System System
= Visual feature extraction = Face and eye detection
* High color saturation filters ' I = Recognition of model’s attentional state
« Skin-color filters Attention System = Figure-ground segmentation
« Motion processing = Distinguishing social from non-social €
* Edge detection |« Habituation mechanisms objects
* Disparity computation = Integration of low-level perceptual features = Recognition of self and other
= Auditory feature extraction G High-level motivation influences = Gesture recognition
* Pitch and.energy = Sound-stream segregation
* Cepstral filters ¢ = Recognizing affect through prosody
= Phoneme extraction

= Vestibular sensing
= Tactile and kinesthetic sensing / Motivation System \

= Matching own behavior to observations

= Basic drives (fatigue, pain, etc.)
The = Homeostasis
= Basic emotional responses (anger, etc.)
World = Positive and negative reinforcement
= Affective assessment of stimuli
\ J

Motor System $
K Behavior System

= Visual-motor skills (sacades, smooth-
pursuit, vergence, VOR/OKN)

= Manipulation skills (reaching and
grasping)

= Body posture

= Expressive skills (facial expressions and
vocalizations)

» Lip-synching

= High-level, goal directed behavior
selection
= Arbitration of competing behaviors
= Seeking, avoiding, orienting behaviors
= Generating vocalizations
= Turn-taking in imitative games

k Shared attention and directing attention /

1 F

Figure 3.1: Architecture proposed by Breazeal and Scassellati (2002a)) intended to be used on
Cog and Kismet (figure adapted by author).

Chella et al. (2006) proposed an architecture that coupled visual perception
with knowledge representation for the purpose of imitation learning. Conceptual
space theory (Géardenfors, |2000) is used in their architecture to learn movement
primitives from demonstrations and then represent them in generated complex
tasks. The architecture functionality has been evaluated on a robotic arm equipped
with a camera. Figure 3.2 illustrates the architecture and its components. The
architecture consists of three main components. The Subconceptual Area is respon-
sible for perception of data from vision sensors, and processing to extract features
and controlling robotic system. The Conceptual Area is responsible for organizing
information provided by the Subconceptual Area into categories by using conceptual
spaces. Finally, high-level symbolic language has been used to represent sensor data
in the Linguistic Area. The architecture was designed to work in both observation
and imitation modes.
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Figure 3.2: Architecture proposed by Chella et al. (2006) (figure adapted by author).

Gienger et al. proposed a three-layered architecture based on prior works
in the field of imitation learning focusing on movement control and optimization.
The aim was to provide solutions for the generalization problem and accomplishing
a task in different situations. Figure 3.3 depicts modules that are included within
the architecture. The Reactive layer is responsible for handling perceptions in the
system. The Persistent Object Memory (POM) was used as an interface between
the system and the real world, and includes a model of the world as well as of
the robot. While the teacher demonstrates a behavior, the Movement Primitives
layer normalizes observed movements using a Gaussian Mizture Model (GMM) and
represents them by mean value and variance. Finally, in the Sequence layer, which
acts as a procedural memory, sequences of movement primitives are maintained. In
the described experiments, predefined primitives for different tasks such as grasping
were used, and all learned movements were embedded within predefined locations
in the sequence.
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Figure 3.3: Architecture proposed by Gienger et al. (2010) (figure reused by permission).

In another study by Demiris and Khadhouri (2006), a hierarchical architecture
named HAMMER based on attentive multiple models for action recognition and
execution was introduced. As illustrated in Figure 3.4, HAMMER utilizes several
inverse and forward models that operate in parallel. Once the robot observes
execution of an action, all action states are delivered to the system’s available
inverse models. Thus, corresponding motor commands representing the hypotheses
of which action was demonstrated will be generated and delivered to the related
forward model so it can predict the teacher’s next movement.
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El
Prediction
B Ml E Verification
1 1 (att+1)
EZ
System Prediction
State MZ F Verification
(att) BZ 2 (att+1)
En
M Prediction
B n F Verification
n n (att+1)

Figure 3.4: The basic architecture proposed by Demiris and Khadhouri (2006) (figure adapted
by author).

Since there might be several possible hypotheses, the attention system is de-
signed to direct the robot’s attention to the elements of the action to confirm one
of the hypotheses. Figure 3.5 depicts the complete design of the architecture in-
cluding forward and inverse models together with the attention system for saliency
detection. The architecture was tested and evaluated on an ActiveMedia Peoplebot
with camera as the only sensor.
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Figure 3.5: The complete architecture proposed by Demiris and Khadhouri (2006) (figure

adapted by author).
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Cognitive Architecture for Learning from Demonstration

In addition to aforementioned studies, other works regarding general cognitive
architectures such as ACT-R (Anderson et al. 2004) and SOAR (Laird, |2008]),
model for reading intentions (Jansen & Belpaeme, [2006) and goal-directed imitation
learning frameworks (Tan, 2012)) have been reviewed. Furthermore, works by Kopp
and Greaser (2006) and, Buchsbaum and Blumberg (2005) also inspired the design
of our architecture.

3.2 Proposed Architecture

The rationale behind developing a new architecture while several well-proven ones
already exist is a set of new requirements and a new approach to emulating goals
in the framework of imitation learning. In the design of our architecture, we have
considered the hardware setup, robots capabilities and the domain in which the
robots are intended to be used.

Our approach to goal emulation and learning high-level representation of behav-
iors is to employ a semantic network. In this thesis, prior knowledge of the domain
is provided as an ontology represented by a core semantic network that acts as the
robot’s long-term memory and contains all necessary concepts and objects that the
robot is able to work with. In our case, high-level concepts such as objects (e.g.
B1, Sphl), object categories (e.g. Basket, Spherical), features (e.g. Shape, Size,
Color), and feature values are represented by nodes, while their associations are
represented by directed links. Furthermore, the strength of associations is repre-
sented by numerical weight values for each link, and each node has three numerical
attributes including activation, energy and priming values. The semantic network
is used to build semantic relations between robot perceptions and learned behav-
iors, we denote this coupling context, and also refer to it as sub-behavior. A context
includes presence of objects, concepts and environmental states. During high-level
learning, contexts are formed by observing a tutor’s demonstration. A complex
behavior, also denoted goal, consists of several sub-behaviors that are executed in
sequence. Not only context formation is taken into consideration during learning
but also sequencing. Sequencing is semi-automatic, and comprises one part related
to how the tutor conducts the demonstration, and one part related to the system
that associates the subsequent context to the preceding one. At the current stage
of our architecture development, by finalizing learning of one context and starting
learning of another, the system connects both contexts together according to their
order in the demonstration.

Once high-level learning is completed, low-level actions will be associated to
each one of the learned contexts. Depending on which low-level controller mecha-
nism has been used, the contexts and low-level actions are associated differently.
This task is elaborated in section 3.2.3.2. Low-level actions can be learned simul-
taneously to the contexts, or they can be hard-coded primitives existing in the
robot’s repertoire. When the complex behavior is reproduced, the actions of each
context are executed in the right sequence, initiated by a context selection process.

We have proposed several variations of our architecture, first with low-level
learning and control for behavior arbitration (Fonooni et al., |2012)) and also with
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3.2 Proposed Architecture

action-primitives and a goal management system to understand the tutor’s inten-

tions, as well as behavior arbitration (Fonooni et al) [2013). Figure 3.6 illustrates

the complete architecture and is followed by a description of the individual com-

ponents.
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Figure 3.6: The developed architecture for low- and high-level behavior learning and

reproduction.

3.2.1 Hardware Setup

In our experiments, we used the Robosoft Kompai robot, which is based on the

RobuLABI10 platform and robuBOX software (Sallé et al.

2007

A200 Mobile Platform operated by ROS (Quigley et al.l

2009

, as well as Husky
and Lynxmotion

AL5D robotic arm. Additional information about our robotic platforms and ex-

haustive scenario descriptions are well presented in (Jevtié et al.| [2012)) and (Kozlov|

2013)). In order to facilitate the process of object recognition, RFID sensing
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Cognitive Architecture for Learning from Demonstration

on the Kompai, and ARToolKit marker recognition tools on the Invenscience arm
mounted on the Husky A200 platform were utilized. A database of known objects
was linked to the RFID and marker sensors to retrieve properties of the perceived
objects. Finally, for mapping and navigation, a laser scanner was used.

3.2.2 Perception Unit

All used sensors are included in the perception unit. Sensors are categorized into
high- and low-level according to the type of information they provide and which
controller is the main consumer. Laser data is considered low-level while RFID
and marker recognition, included in visual input, are considered high-level. Useful
information is extracted from all available input channels by high- or low-level
controller’s request and delivered to the caller in the required format.

3.2.3 Cognition Unit

As mentioned earlier, the most common components of all cognitive architectures
for imitation learning are knowledge management, learning and control which are
also considered in our architecture. The cognition unit is designed such that it can
act as the robot’s memory for storing both learned and preprogrammed informa-
tion. It also provides learning facilities with attention mechanisms for recognizing
the most relevant cues from perceptions. Making decisions on what actions to per-
form such that the behavior complies with a specific goal, and providing required
structure for behavior arbitration are other responsibilities of the cognition unit.

3.2.3.1 High-Level Controller

This module has strong impact on both learning and reproduction of behaviors.
Learning a new context, which is an association between the behavior to be learned
and perceptions the system regard as relevant, requires an attentional mechanism
to identify the most important cues in the demonstrated behavior. A semantic
network functions as a long-term memory of the robot. The mechanisms for storing
and retrieving information from semantic networks are discussed in Chapter 4.
Fach context is part of the semantic network and is represented by a node and
semantic relations to all related perceptions represented by links. The learning
module is connected to the perception unit and also to the semantic network.

Reproduction of a behavior starts by a behavior arbitration mechanism, which
is one of the key parts of the proposed architecture. By definition, behavior arbi-
tration is a process of taking control from one component of an architecture and
delegate it to another (Scheutz, 2002). The robot should reproduce learned behav-
iors when relevant cues such as environmental states, perceived objects or concepts
are present. These cues affect the activation of learned contexts, which control the
arbitration process. This is done by recognizing all possible contexts that conform
to the assigned goal, and selecting the most relevant one to be handed over to low-
level controller for action execution. Context learning and the selection processes
are thoroughly explained in Chapter 4.
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3.2 Proposed Architecture

3.2.3.2 Low-Level Controller

This module is responsible for learning and selecting motor actions that are as-
sociated to the contexts. In case of learning a new action in parallel to learning
context, Predictive Sequence Learning (PSL) is used. This technique is designed to
build a model of a demonstrated sub-behavior from sequences of sensor and motor
data during teleoperation, and results in building a hypotheses library. The learned
sequences are used to predict which action to expect in the next time step, based
on the sequence of passed sensor and motor events during the reproduction phase
(Billing et al., 2010). Learning is finalized by associating the learned context with
a set of hypothesis in the hypotheses library.

In another alternative approach, a set of preprogrammed Action-Primitives are
used. A primitive is the simplest movement of an actuator in the robot’s reper-
toire that requires a set of parameters for execution. As an example, grasping is a
primitive with a set of parameters identifying where and how strong to do gripping
actions with the robot’s wrist actuator. Depending on the robot’s capabilities,
different primitives are defined and developed. In this work primitives are imple-
mented using behavior-based visual servoing as described in (Fonooni & Hellstrom)
c) and inverse kinematic models in (Kozlov et al. |2013]). The image-based visual
servoing (IBVS) is a type of closed-loop control mechanism that uses visual feed-
back to control the robot. The 2D image is used to track and position a manipulator
by reducing the image distance error between a set of current and desired image
features in the image plane (Kragic et al. 2002). Behavior-based visual servoing
is similar to IBVS in many respects but uses principles of behavior-based robotics
where a number of independent behaviors running in parallel are defined (Mataric,
1997)). Each behavior uses specific features of an image to control the manipulator,
and form together with the other behaviors a desired primitive. In another imple-
mentation of primitives, motor babbling is used to collect sensory-motor data from
the robot manipulators. Motor babbling is inspired by body babbling of infants
(Meltzoff & Moore| 1997) and defined as a process of performing a repetitive ran-
dom motor command to move joints in order to obtain a mapping between joint
movements and their end states (Demiris & Dearden, [2005). The collected data
from the Invenscience arm'’s joint angles and positions are used to train an artificial
neural network to learn the mapping from the target object position to the arm
commands. With this method, the inverse kinematic model of the arm is learned
through self-explorations.

The Action module is an interface between contexts and primitives that re-
trieves information about the object of attention from the context and passes it as
parameters to the primitive in a required format. The rationale behind defining
actions is the different abstraction levels of contexts and primitives. There are no
intersections between the two but they need to be integrated in order to successfully
perform a behavior. The main responsibility of the low-level controller during the
learning period and while using action-primitives, is to identify which primitive has
been executed while teleoperating. Thereby, the system is able to automatically
associate a learned context and an executed primitive through its action. Every
primitive that is associated to an action, is preprogrammed. Therefore, context is
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only associated to an action.

In the reproduction phase, once an identified context is delivered from the
high-level controller, its corresponding action or hypothesis (depending on whether
Action-Primitives or PSL are engaged) is identified and passed to the output unit
for execution in the robot’s actuators.

3.2.3.3 Goal Management

This component serves two purposes: i) handling sequences in learning and re-
production of behaviors ii) motivating the robot to reproduce previously learned
behaviors by understanding the tutor’s intention. As mentioned earlier, through-
out the learning process, a complex behavior is decomposed into sub-behaviors,
which are demonstrated individually and stored as separate contexts in the seman-
tic network. The learned contexts are organized in a sequence when learning of a
sub-behavior ends.

In the reproduction phase, a user may explicitly specify a goal for the robot
through a user interface. The robot explores the environment in search of stimuli
that activate contexts and then executes their corresponding actions. The contexts
must be activated in the same order as they were learned. Therefore, the robot
constantly explores the environment until the required stimulus for activating the
right context is perceived. Another form of behavior reproduction is to use the
motivation system to implicitly specify a goal for the robot. The motivation system
contains priming, which is a mechanism that biases the robot to exhibit a certain
behavior when stimulating the robot with a cue. In Neely (1991)), priming is defined
as an implicit memory effect that speeds up the response to stimuli because of
exposure to a certain event or experience. Anelli et al. (2012) showed that within
the scope of object affordances, priming increases the probability of exhibiting a
behavior by observing a related object or concept. Once the robot is primed,
contexts related to the priming stimuli are activated and, through a bottom-up
search from the contexts, the most plausible goal will be identified and selected.
Thereby, the actions of the relevant contexts in the selected goal will be performed
in sequence. Further explanation of the priming mechanism is given in Chapter 5.

3.2.4 Output Unit

All actions performed by the robot are executed through the output unit, which
retrieves a selected primitive and its set of parameters to generate appropriate
motor commands. In the proposed architecture, two ways of teaching the robot
new motor-actions are developed: i) direct teleoperation via joystick, which requires
the tutor to completely engage with the demonstration of an action and ii) shared
control, which demands less intervention and can mitigate the workload of the
tutor. The latter technique is described in Chapter 6.
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Chapter 4

Learning High-Level
Representation of Behaviors

This chapter presents our developed learning methods along with attentional mech-
anisms to learn high-level representations of behaviors. The high-level representa-
tion of a behavior refers to the aspects of the behavior that consist of goals, tutor’s
intentions and objects of attention. Hence, learning high-level representations of
behaviors relates to understanding the tutor’s intentions and what elements of the
behavior that require attention.

As mentioned earlier, most works on high-level learning deal with conceptu-
alization and symbolization. Our approach to conceptualize observed behaviors
is to employ semantic networks. Nodes and their semantic relations represent the
robot’s perception and understanding of high-level aspects of behaviors. The learn-
ing process aims at forming semantic relations of noteworthy concepts, manipulated
objects and environmental states throughout the demonstration. The result is de-
noted context. The role of a context is twofold: i) it retains important elements
of the learned behavior and thus answers the question of “what to imitate” ii) it
contains necessary conditions to exhibit a behavior and thus answers the question
of “when to imitate”. The latter is utilized when the robot perceives the same,
or similar, objects or concepts as during learning. This leads to context activation
and execution of corresponding actions in the robot.

4.1 Why Semantic Networks

Depending on the field of study, semantics is defined in various ways. In linguistics,
it refers to the meaning of words and sentences. In cognitive science, it often refers
to knowledge of any kind, including linguistic, non-linguistic, objects, events and
general facts (Tulving) (1972). Many cognitive abilities like object recognition and
categorization, inference and reasoning along with language comprehension are
powered by semantic abilities working in semantic memory. Therefore, questions
like “How to understand the purpose of an action?” or “How to understand which

21



Learning High-Level Representation of Behaviors

items or events must treated the same?” cannot be answered adequately without
investigating the semantics abilities (Rogers, [2008)).

Semantic networks is a powerful tool to visualize and infer semantic knowledge
that is expressed by concepts, their properties, and hierarchies of sub and superclass
relationships. Semantic networks have been widely used in many intelligent and
robotics systems. In early days, hierarchical models of semantic memory were
developed, based on the fact that semantic memory contains a variety of simple
propositions. An inference engine based on syllogisms was used to deduce new
propositional knowledge. Empirical assessment of the proposed model showed that
verifying a proposition that is much more common takes more time depending on
the number of nodes traversed in the hierarchy (Collins & Quillian) [1969)). The
typicality was not modeled efficiently in early implementations. For instance, a
system could not infer that a chicken is an animal, as fast as it infers that a
chicken is a bird. This is due to the hierarchies in the defining semantic relations.
However, according to Rips et al. (1973)), humans are inferring “chicken is an
animal” faster due to the typicality that influences the judgment. By revising
the early implementations, Collins and Loftus (1975)) introduced a new spreading
activation framework that allows direct links from any node to any concept, but
with different strengths. This was particularly efficient since it speeded up retrieval
of typical information due to their stronger connection, compared to less typical
concepts.

Spreading activation is a process based on a theory of human memory opera-
tions that allows propagation of activation from a source node to all its connections
according to their strength (Crestani, [1997)). In the spreading phase, the amount
of activation to be propagated is calculated, and all connecting nodes receive acti-
vation according to their strength, which is represented by weights.

4.2 Learning Methods

Learning a high-level representation of a behavior requires prerequisites including
prior knowledge about the domain where the robot is intended to operate. In our
case, this knowledge is maintained in a core semantic network and encompasses
many aspects of the domain, such as available objects to manipulate, their respec-
tive properties, concepts, environmental states and learned sub-behaviors (con-
texts). The contexts also become part of the core semantic network after learning
is completed. Since a semantic network is used as a model of the world, all items
are represented as nodes that have certain properties such as activation values and
energy levels that are used for the spreading activation process. Links define seman-
tic relations and contain weight values that are also used in the spreading process.
Some nodes represent perceivable objects in the environment and are connected to
RFID or marker sensors. After each readout, these nodes receive activation and
propagate it according to the applied settings. Through the spreading activation
mechanism, this results in activation of several nodes, including object features and
categories.

The learning process begins with decomposition of the behavior by the tutor
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into sub-behaviors. Teleoperation and shared control are used to demonstrate a
sub-behavior to the robot that observes the environment with the sensors. Dur-
ing observation, a learning network is created that contains a new context node
connected to all perceived objects and features. Due to the spreading activation
process, even non-perceived objects may receive activation and are connected to
the context node. All sensors are read within a certain frequency and at each time
step, the learning network is updated and activation values of all affected nodes
are stored in arrays. In case of demonstrating the same sub-behavior multiple
times, the learning network and activation arrays for each demonstration are saved
separately for further processing. Once all the demonstrations are finished, the
system decides which elements of the demonstrations are most relevant. Since the
robot is able to perceive many things that may not be relevant for the goals of the
sub-behavior or the tutor’s intention, there is a need for an attentional mechanism
to extract important information from the demonstrations. Thereby, we introduce
several methods for identifying and removing irrelevant nodes from the final learn-
ing network. Based on which method is selected, weight values for the remaining
nodes are calculated. Finally, the core semantic network is updated according to
the remaining connections and their associated weight values from the learning
network. Figure 4.1 depicts all steps in the learning process regardless of which
method is used.
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Figure 4.1: Steps of the learning process.

In this thesis, four different context learning methods including mechanisms
for directing the robot’s attention to the relevant elements of demonstrations are
introduced.

4.2.1 Hebbian Learning

This method is inspired by the well-known Hebbian learning algorithm for artificial
neural networks. Its basic tenet is that neurons that fire together, wire together
(Hebbl [2002). Hebb suggested that the weight value for the connection between
two neurons is proportional to how often they are activated at the same time. In
our case, neurons are replaced by nodes in the semantic network, and all robot
perceptions are mapped to their corresponding nodes and connected to the context
node. This method does not contain any attentional mechanism to identify relevant
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information but rather keeps all the nodes and strengthen connection between those
that are activated together more often.

4.2.2 Novelty Detection

This method is inspired by techniques for detecting novel events in the signal
classification domain. While there are many novelty detection models available,
in practice there is no single best model since it depends heavily on the type of
data and statistical features that are handled (Markou & Singhl [2003). Statistical
approaches to novelty detection use statistical features to conclude whether data
comes from the same distribution or not.

Our approach begins with environment exploration guided by teleoperation to
create a history network. In this phase, no demonstrations of desired behaviors
are conducted by the tutor, and the history network only contains environmental
states. In the next phase, the tutor performs the demonstration and the system
builds a learning network accordingly. After collecting required data, a t-test is
run to check which nodes have activation values with similar distribution in both
history and learning networks. Nodes with different distribution are considered
relevant, and thus remain connected to the context node. The weight value of each
connection is calculated based on the node’s average activation value, and how
often the node received activation during both history and learning phases.

With this approach, the attentional mechanism looks for significant changes
between the history and learning phases. Nodes that were less, or not at all,
activated during the history phase are considered important and most relevant.

In our first paper (Fonooni et all |2012), we elaborate this technique in detail
and evaluate it using a Kompai platform. The test scenario is to teach the robot
to push a moveable object to a designated area labeled as storage room.

4.2.3 Multiple Demonstrations

An alternative technique, to some extent the opposite of Novelty Detection is Mul-
tiple Demonstrations. The main differences are the number of demonstrations and
the way attentional mechanism works. The history phase is removed, and the tutor
repeats the demonstration at least two times. During each demonstration, a learn-
ing network and activation arrays of nodes are formed and stored. Afterwards, a
one-way ANOVA test (Howell, |2011)) is run on the datasets of activation values to
determine for which nodes the distributions do not vary between demonstrations.
The attentional mechanism in this method searches for insignificant changes in all
demonstrations. Therefore, nodes with least variation in their activations between
all demonstrations are considered relevant. Weight values are calculated according
to the nodes’ average activation values and their presence in all demonstrations.

Paper II (Fonooni et al.,|2013)) describes the Multiple Demonstrations technique
in an Urban Search And Rescue (USAR) scenario with a Husky A200 platform.
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4.2.4 Multiple Demonstrations With Ant Algorithms

In a variation of the Multiple Demonstrations technique, Ant Systems (Dorigo
et al., 2006) and Ant Colony Systems (Dorigo & Gambardella, [1997) are used as
a substitution for the one-way ANOVA test. This technique is shown to be more
intuitive and efficient in situations where ANOVA cannot be used to successfully
determine the relevant nodes due to statistical constraints. The learning method is
built on computational swarm intelligence, which results in emergent patterns and
pheromone maps. The purpose of applying ant algorithms is to find and strengthen
paths that can propagate higher activation values to the context node. Having fewer
intermediate connections between the source node that receives activation and the
context node, increases the amount of propagated activation. Therefore, the nodes
closest to the context node are considered more relevant, and thus weight values of
remaining connections are calculated based on the amount of laid pheromones.

Paper IIT (Fonooni et all |a) describes a combination of the Multiple Demon-
strations method and ant algorithms, and presents results from experiments on
learning object shape classification using a Kompai robot. Paper V (Fonooni et al.,
b) presents an attempt to identify a tutor’s intents by blending an Ant System
algorithm with a priming mechanism.

4.2.5 Comparison of Methods

Due to the differences between the introduced learning methods, there is no single
best method for learning all kinds of behaviors. Therefore, methods have been
evaluated according to the type of data they are able to process and scenarios in
which they can be more efficient. Table 4.1 lists our learning methods with their
respective features and in what conditions they can serve best.

As Table 4.1 shows, the Hebbian learning approach is used when all perceptions
are relevant to the learned sub-behavior. Thus, every perception is considered
important and must remain connected.

Novelty Detection is mostly successful in situations where the robot is equipped
with several sensors and may perceive a large amount of information that is not
directly relevant to the behavior. As an example, an ambient light or environment
temperature can be sensed if the robot has proper sensors, but this information
may not be relevant to the goals of the demonstration or tutor’s intention. The
Novelty Detection technique determines what is unchanged during the history and
learning phases, and regards these features as unimportant.

Multiple Demonstrations is the best solution if the demonstrations are con-
ducted almost in the same way, and the environment is free from noise. However,
if the demonstrations differ significantly, the risk of not recognizing relevant nodes
increases dramatically.

Multiple Demonstrations with ant algorithms is more noise tolerant, but still
requires that the demonstrations are very similar.

An important limitation with all introduced methods is that none of them are
able to learn a behavior that requires understanding of absence of objects. In
addition, quantitative values cannot be handled in a simple way. For instance,
learning to clean a table when no human is seated, or to approach a group of
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people with exactly three persons, needs special considerations with the presented
learning methods.

Method Number of Core al- Attentional Condition
Demonstra- gorithm mechanism
tions
Hebbian One Hebbian None - Nodes When every
Learning Learning that fire observation is
together, relevant to
wire together the behavior
Novelty One T-Test Looks for When the
Detection significant robot
changes in perceives
the history numerous en-
and learning vironmental
phases states that
are not
relevant to
the behavior
Multiple At least two One-way Looks for Not noisy
Demonstra- ANOVA insignificant environment
tions Test changes in all with only
demonstra- slight
tions differences
between
demonstra-
tions
Multiple At least two Ant Looks for the Noisy
Demonstra- System nodes that environment
tions with (AS) and can where the
ACO Ant propagate robot can be
algorithms Colony higher easily
System activation to distracted
(ACS) the context

node

Table 4.1: Comparison of the developed learning methods

4.3 Generalization

One of the main challenges in imitation learning is the ability to generalize from
observed examples and extend it to novel and unseen situations. Generalization
in this work refers to extending associations of objects and concepts that already
connected to the context node to less-specific ones. Figure 4.2 shows an example
of generalization in terms of extending concepts for learning to find a human.
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4.3 Generalization

Figure 4.2: An example of concept generalization.

The robot should learn to look for a human and is shown a demonstration where
the robot moves toward John. This will associate the John node to the Find Human
context node. The system correctly associates perceptions to the context, but what
the robot learned cannot be used in any other situation. Therefore, generalization
of the John concept is needed if the intention is to teach the robot to repeat the
behavior when any human is observed. This is achieved by spreading activation
from the John node to the less-specific Human node. As a result, the Human node,
along with other specific humans, is also considered part of the context and as a
result, observing any humans will trigger the Find Human context. The degree
of generalization is controlled by each node’s energy value and the decay factor
that is distance constraint to control how much energy or activation is depleted
when spreading to neighboring nodes. The generalization of concepts is further

demonstrated in Paper III (Fonooni et all [a).
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Chapter 5

Ambiguity in
Demonstrations

Assuming that the tutor’s demonstrations are always complete and flawless, con-
tradicts reality in particular when a naive tutor teaches the robot new behaviors.
There are major factors that prevent the robot from perfect learning. One of the
main reasons why a demonstration sometimes is not sufficient to infer the tutor’s
intention, is ambiguity in the demonstration. In real-world learning scenarios with
numerous objects and features to perceive, identifying the most relevant ones is
essential for understanding the tutor’s intents. Normally, there is no priority be-
tween perceptions, which introduces ambiguity in the following sense. In a learning
session where objects with different shapes and colors are shown to the robot and
only one is collected by the tutor without providing additional information, there
is a high possibility of incorrectly identifying the tutor’s intent, which may be to
collect objects with a specific color and/or shape. Even with repetition of the
same behavior, this ambiguity may remain. In our recent work (Fonooni et al.; |b)
we attempt to provide a novel solution to learn from such ambiguous demonstra-
tions where repeating or better sensing cannot make the tutor’s intent clear. Our
approach is inspired by human memory model and takes advantage of a priming
mechanism to bias the robot prior to learning and thereby reducing ambiguity.

5.1 Ambiguity

In various studies, ambiguity has been addressed differently in the context of LfD
(Breazeal et al.| [2006} |Chernova & Velosol [2008; Bensch & Hellstroml, [2010; (Carlos
Fernando Morales & Fernando De la Rosa, 2013; |Cederborg & Oudeyer, 2014).
Ambiguity often relates to insufficient sensing or perception, such as in the example
above where one demonstration maps to several possible behaviors. Differences in
robot and teacher perspectives during demonstrations may lead to another kind
of ambiguity due to visual occlusion (Breazeal et all 2006; [Breazeal, [2009). A
suggested method is to allow the robot to view the task from the tutor’s perspective
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and simulate his/her beliefs in order to identify intentions. Psychological studies of
humans while attempting to assimilate beliefs of others show that putting oneself in
other people’s point of view results in better understanding of their beliefs (Flavell
et al., [1992; Tversky et all [1999). The same technique has been used to design a
reasoning skill for reducing ambiguity proposed by Warnier et al. (2012).

In the work by Taylor et al. (2011)), the authors conducted a set of experiments
with unsuccessful and ambiguous demonstrations, which caused the learned policy
to perform poorly during the reproduction phase. Their approach was to combine
LfD with reinforcement learning and to use collected data from demonstrations to
learn generalized rules and apply them to bias the reinforcement learning. Argall et
al. (2009) defined ambiguity as inconsistencies between multiple demonstrations.
A possible solution is to provide more demonstrations to reduce the ambiguous
elements. In the study by Cakmak and Thomaz (2012)), a natural language dialog
between the robot and the tutor allows asking questions to unify interpretations of
demonstrations from both robot and tutor perspectives. Cederborg and Oudeyer
(2013) investigate several forms of ambiguity and tackle them by integrating tech-
niques from computational models of language acquisition and models of motor
skill learning from demonstration.

Our notion of ambiguity is inspired by (Bensch & Hellstrom, [2010|) where mul-
tiple interpretations of a single demonstration are possible. The latter notion takes
into account the high-level aspects of demonstrations and investigates solutions to
eliminate irrelevant interpretation of tutor’s intent by utilizing a priming mecha-
nism.

5.2 Priming

Previous exposure to a stimulus often has significant impact on behavior selection
and performance when subjects engage in tasks related to the observed stimulus
(Neelyl [1991)). This effect is known as priming and is an implicit memory effect
that unconsciously changes and speeds up the response to stimuli through exposure
to a certain event or experience (Ochsner et al., [1994). Many works have studied
the effect of exposure to visual or auditory signals prior to learning and recogni-
tion tasks with the purpose of understanding human memory effects (Neelyl, |1977;
Tulving & Schacter] [1990; Maxfield, 1997; McNamaral 2004; [Huber, |2008]). Once
a subject is primed, associations related to the shown stimuli are activated in the
subject’s memory by a spreading activation mechanism. Thus, objects and con-
cepts that are associated together due to repetitive observations at the same time,
are fetched faster from the memory. This is also known as positive priming which
indirectly speeds up memory processes. In contrary, negative priming is used to
slow down the processes and train the memory to ignore specific stimuli (Tipper,
1985). In another categorization, priming is divided into conceptual priming that
relies on the semantic meanings of stimuli (Vaidya et al.l [1999) and perceptual
priming that affects perception and identification of related or the identical stimuli
(Wiggs & Martin, [1998). The priming effect normally remains for a short period
of time unless it is reinforced by repetition (Brown), (1996).
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Further studies of priming in neuroscience show that some neural effects are
caused by repeated experience (Henson & Rugg), |2003; Maccotta & Buckner) 2004;
Wig), |2012)) and particular neural mechanisms such as repetition suppression under-
lie priming. Repetition suppression explains how repeatedly presenting an object
strengthens connections between neurons that form essential features of the object
(Wiggs & Martin, [1998)).

Priming is done in two stages and starts with a study stage in which a subject
is exposed to a stimulus. The stimulus can be objects, words, pictures or features
of an object. The second stage is the testing, which happens after a pause by
presenting the same or reduced cues of the previously shown stimulus (Tulving &
Schacter} [1990).

5.3 Priming to Resolve Ambiguity

Ambiguity caused by several possible interpretations of a demonstration is a serious
problem in LD since the tutor rarely wants the robot to repeat all perceived aspects
of a demonstration. Although the problem often can be resolved by providing more
demonstrations, this approach leads to slow learning. Thus, resolving ambiguity
and speeding up learning by a single approach is very appealing. In the current
thesis, priming is the pre-activation of nodes stored in the core SN, and is used
to bias and speed up the learning process (Fonooni et al., b). The robot may be
primed with objects, features, or concepts that directly or indirectly relate to the
tutor’s intents. In this way, the attention is directed towards elements that are
relevant for the learning. This makes it possible to recognize the tutor’s intentions
in a less ambiguous way. Priming may also affect the reproduction phase by biasing
the robot to arbitrate between behaviors as suggested in (Fonooni et all 2013).
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Chapter 6

Shared Control

In many robotic application domains, the need for teleoperated robots that can help
to accomplish complex and tedious tasks has rapidly increased. Depending on the
intricacy of the task, different levels of automation may be applicable. The degree
of automation can be categorized into direct teleoperation, shared control and fully
autonomous (Sheridan, [1995). The direct teleoperation does not require the robot
to recognize user’s intentions while it can easily become exhausting and unsuitable
for complex tasks. Contrary to direct teleoperation, fully autonomous operation
requires no interference from the user and the robot is capable of carrying out the
task without user cooperation. However, fully autonomous operation is currently
restricted to highly structured domains and static environments (Bekey) [2005)).
Moreover, sophisticated high-level robot intelligence capable of managing complex
tasks is required. The objective of shared control teleoperation is to exploit synergy
from both human and robot such that a user can complete a control task with less
effort by accrediting the robot to carry out parts of the task, and intervening
only when the robot is not performing according to the user’s intention. The
degree of shared control is typically specified based on the required amount of user
intervention, and for how long the robot can be neglected (Goodrich et al., [2003).

Numerous control architectures have been introduced to provide different levels
of autonomy for robot-operator cooperation (Hasemann| (1995 Fong et al., 2001;
Dalgalarrondo et al.,|2004; |/Armbrust et al.,[2010). Most of the notable architectures
have common prerequisites to be implemented. These requirements are comprised
of mechanisms to assist users with remote perception, decision making and com-
mand generation (Fong & Thorpe, [2001). A controller with support for shared
control also needs to correctly identify the user’s intention and choose adequate
control policy. Several studies have addressed intention recognition and policy se-
lection in shared control applications. Works by Aigner and McCarragher (1997),
Crandall and Goodrinch (2002)), Kofman et al. (2005), Armbrust et al. (2010),
Kim et al. (2012) and You and Hauser (2012) mainly focus on task arbitration
while assuming that the robot knows the user’s intention.

In the study by Kofman et al. (2005), a method to track a human’s arm position
and motion is proposed. It uses stereo cameras such that a 3D image is constructed

33



Shared Control

by obtaining 2D image coordinates of the hand-arm positions. The constructed 3D
image is processed and control commands are generated in real time to manipulate
a 6 DoF robot and end-effector, thereby replicating the human’s hand motions.
Their method focus on motion replication and no behavior or intention recognition
is developed.

In the work by Armbrust et al. (2010), a behavior-based approach to integrate
direct teleoperation and semi-autonomous robot control modes is proposed in or-
der to provide different autonomy levels in the off-road robot RAVON. The idea
was to have one control system that is able to select control modes automatically
using behavior fusion to reduce user interventions by accepting user commands and
sending them to the safety system for collision detection. In case of no collision
hazard, the system gradually takes over control and drives the robot.

Debus et al. (2001) conducted several experiments regarding undersea connec-
tor mating performed in the offshore oil industry. A shared control mechanism was
developed to orient the connector automatically based on the socket orientation
estimation, and send feedback to the operator to finalize the insertion.

Many other works strive for user’s intent recognition for better shared control by
fixating the number of predefined behaviors the robot is able to perform. Therefore,
a behavior matching mechanism is applied to pick the one that best matches user
intent from the robot’s repertoire. Works by Li and Okamura (2003), Fagg et al.
(2004), Aarno et al. (2005), Yu et al. (2005, Nielsen et al. (2006)) and Bussy et al.
(2012) are worth mentioning. In the study by Li and Okamura (2003)), a system
for human-machine cooperation that addresses how and when to assist a human
using continuous HMM training is proposed. The system is able to recognize human
intents in real time by computing probabilities of the executed motion sequence and
create network for real time continuous HMM recognition and select the sequence
with the highest likelihood.

Fagg et al. (2004) proposed a method to predict user intents by observing
teleoperated robot movements over an object. They used a vision system to extract
various features of the observed object like shape, size and color and translate them
into control parameters that are associated to reach-to-grasp motions. Then, the
likelihood of the predicted actions with the received commands is measured to form
hypotheses. The level of likelihood for all possible actions are shown in a 3D display
where the user can see which hypothesis has the highest likelihood and which robot
motion is selected by the system. The display allows the user to view the selected
hypothesis and confirm the movement by a hand gesture before handing over the
control to the robot.

In the work by Bussy et al. (2012), a complete control scheme to perform com-
plex transportation tasks in collaboration with humans is introduced. In order to
accomplish the transportation task, the robot must be able to predict the human’s
intended trajectory and switch the role from follower to leader. Their approach is
to decompose the motions lead by the human into predefined motion primitives and
use a finite state machine to describe possible sequences of primitives. Therefore, a
trajectory planner reactively generates appropriate sequences of motions according
to the current movements for both follower and leader modes.

In contrast to many real-world scenarios, some of the mentioned studies assume
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that environment and the objects of attention do not change significantly. Drag-
nan and Srinivasa (2013) proposed a formalism for shared control based on machine
learning, control theory and concepts of human-robot interaction to address both
mentioned challenges in a changing environment. Their prediction method is based
on inverse reinforcement learning that assists the robot with accurate predictions
from motion while a GUI and speech interface is used to specify the user’s inten-
tions.

Several techniques have been used to communicate user intention to the robot.
In the study by Hoppenot and Colle (2001)), a control station comprised of a control
device (e.g. joystick) and a screen to display robot position together with images
perceived by the robot enhanced with augmented reality techniques was used. The
control station was mainly designed for a handicapped individual to control and
manipulate a robotic arm mounted on a mobile platform. A work by Graf et al.
(2004) uses speech commands and a GUI displayed on an integrated touch screen
to provide user intentions. Once the commands provided, a symbolic planner uses
SQL statements to generate a list of possible behaviors. The most suitable behavior
is picked from the list and executed while the user has the option to interrupt or
cancel the whole task. In another study by Bley et al. (2004), mimic recognition
and facial expressions are applied to notify the robot about the user’s intention.
Speech recognition can be used to specify the intent to the robot as described
by Volosyak et al. (2005). Dune et al. (2007) proposed a one-click approach to
communicate user’s intention with a MANUS arm mounted on a wheelchair. An
“eye-in-hand” camera is mounted on the gripper and an “eye-to-hand” camera is
mounted on top of the wheelchair. The eye-to-hand camera provides large view
of the scene and once the user clicks on its view, a grasping action of the object
of attention is performed. The object of attention is determined based on the
images acquired by both cameras and processed by epipolar geometry and Bayesian
enforcement.

Some of the approaches mentioned above demand users to explicitly communi-
cate their intents to the robot each time, and prior to accomplishing a task, while
in our work (Fonooni & Hellstrom, |d)) a novel technique for behavior recognition
combined with priming is used to implicitly communicate the user’s intention, and
thereby allowing the robot to select the corresponding behavior.

6.1 Shared Control for Learning from Demonstra-
tion

Despite many applications of shared control in assisting users with complex and ex-
hausting tasks in unstructured environments, there are additional situations where
it can play a key role. One of the domains where shared control is used to improve
performance is in LfD (Li et al., |2006; Bodenstedt et al., 2012; |Goil et al., 2013;
Rafii-Tari et all 2014). In the current thesis, our aim is to employ shared control
to help users demonstrating behaviors in a more convenient manner. Instead of re-
peating a demonstration using direct teleoperation, a behavior recognition system
combined with a shared control can be used to reduce the user’s workload when
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several demonstrations of the same behavior are needed. Since a mature shared
control system has the ability to identify the user’s intent, it can contribute to
both low- and high-level learning of behaviors by providing necessary information
regarding objects of attention and the purpose of demonstrations. Therefore, prim-
ing mechanisms can be used not only in the high-level learning methods, but also
during teleoperation and before context formation. However, additional research
is required to compare the outcome of our learning methods using shared control
as stated above with direct teleoperation.
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Chapter 7

Outlook

Current work can be extended in many directions based on the achievements in
designing and implementing an architecture for robot’s imitation learning including
methods for high-level learning and control. There are known limitations to our
learning methods that make them inefficient under certain circumstances. Exten-
sion of current learning methods to employ all abilities of Semantic Networks is of
particular importance. This includes implementing a new type of inhibitory links
to represent negations.

In many situations where ignoring elements of demonstrations is simpler or
more time efficient, negative priming (Tipper} [1985)) can help to disperse robot’s
attention to lose focus on irrelevant elements. Such a situation can be when the
robot is equipped with various sensors and perceive many objects and features of
the environment.

Currently, our system heavily depends on the information given in the core SN
that significantly affects the learning outcomes if insufficient or incorrect informa-
tion is provided. Heading toward self-organizing systems where the robot learns
new skills based on its interaction with the world and other agents and without
a priori knowledge, is a huge leap forward. In such systems, the robot needs to
have self-exploration capabilities, ability to alter itself based on its experiences,
and anticipation skills to interact better with the world (Pfeifer et al., |2007)).

Another research direction is to develop a response facilitation process and
employ it to identify, imitate and predict the action of others (Kopp & Graeser,
2006). The robot observes the tutor actions and continuously compares them with
its own repertoire to predict the next movements. If the action is identified, it will
be immediately performed by the robot and in case of no matching, it switches to
the learning mode to add the newly observed action to its repertoire.

Finally, developing a learning method based on implicit imitation has several
advantages compared to direct imitation learning (Price & Boutilier, 2003)). The
robot with the ability to learn through implicit imitation does not require any agent
to act as a tutor and it learns a new skill by observing other agents performing the
skill. This approach is very useful when the tutor is not able or willing to provide
feedback to the robot, and it might need to observe several agents to acquire the
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skill correctly.
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Chapter 8

Contributions

The main contribution of this thesis is the introduction of novel methods for inter-
active learning and reproduction of high-level representation of behaviors within
an architecture tailored for robot’s imitation learning. The architecture involves
learning methods with attention mechanisms based on Semantic Networks and
spreading activation theory for identifying important elements of demonstrations
as well as recognizing the tutor’s intentions. Learning methods are capable of re-
solving certain types of ambiguity by utilizing priming mechanism as a bias prior
to learning. Furthermore, integration of low- and high-level learning, techniques
for sequence learning and reproduction of skills considering the tutor’s intentions
are described. The infrastructure has been employed for the purpose of behavior
arbitration and reproduction. Finally, a shared control system combined with the
visual servoing guided primitives, and a priming mechanism for better intention
recognition is introduced.

8.1 Paperl

In this paper (Fonooni et al., |2012), a rudimentary architecture for learning high-
level representation of behaviors is introduced. The aim is to integrate Predictive
Sequence Learning (PSL) as low-level learning and control mechanism with a high-
level controller that focuses on replicating demonstrated tasks with no knowledge
about goals or intentions. The Novelty Detection technique with attentional mech-
anism based on semantic networks, spreading activation and statistical t-test is
introduced.

The system is tested and evaluated with a scenario, in which the goal is to push
a movable object towards a designated area. While the task is demonstrated with a
certain object, with its particular features, the system is able to generalize, and re-
produce the task by observing different, but similar, types of objects. Thereby, the
proposed architecture and Novelty Detection are shown to be suitable for learning
and generalizing object affordances. Reproduction of learned behaviors is engaged
by exploring the environment and observing any related object. Therefore, stim-
ulus enhancement is applied as a mechanism to trigger behaviors in the robot’s
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repertoire.

8.2 Paper II

In the second paper (Fonooni et al., [2013), general challenges of LfD at both low-
and high levels are investigated. Several improvements are made to the architec-
ture, with the aim of facilitating intention recognition and goal emulation. In the
developed architecture, PSL is replaced by hard-coded action-primitive pairs that
do not require learning. The Multiple Demonstrations technique that uses one-way
ANOVA test and spreading activation theory is presented. The attention mecha-
nism with the same impact on learning behaviors as presented in the first paper,
is applied with the slight changes in the way relevant information is detected in
demonstrations. The goal management module with goal creation and inference
capabilities is added. Motivating the robot to exhibit a previously learned behavior
with the priming mechanism is elaborated. The whole architecture showed to be
efficient for sequence learning and reproduction, by decomposing sequences into
sub-behaviors that are associated to action-primitive pairs.

Finally, an Urban Search and Rescue (USAR) scenario is defined to evaluate the
applicability of the proposed architecture and the learning method. The goal is to
assist a human agent to uncover a victim from a pile of rubble in an environment
damaged by an earthquake. Results show the system’s ability in learning and
reproduction of such complex tasks.

8.3 Paper III

The third paper (Fonooni et al.l [a]), attempts to answer the questions “What to
imitate?” and “When to imitate?”, by extending the Multiple Demonstrations
technique introduced in the second paper. This technique has practical limitations
that prevent the robot to correctly determine what elements of demonstration are
most important. The one-way ANOVA test is replaced by ant colony optimization
algorithms and thus Ant System (AS) and Ant Colony System (ACS) have been
utilized. The main contribution of the paper is to investigate the applicability of AS
and ACS for identification of relevant nodes, and thereby improving the context
formation process. Moreover, generalization of concepts by means of spreading
activation and ant colony optimization algorithms is investigated.

Although low-level learning and control is not directly addressed, the proposed
method can be applied with both PSL and action-primitive pairs.

The whole learning and reproduction mechanisms is tested in a scenario in
which the robot learns to identify cylindrical, square and triangular shapes and
put them in their respective baskets. Results show that both the AS and ACS
algorithms prove to be powerful alternatives to the previously developed Multiple
Demonstrations techniques combined with one-way ANOVA test.
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8.4 Paper IV

In the fourth paper (Kozlov et al.,[2013), a field robotic assistant for USAR appli-
cation is developed to put our architecture to test. The work integrates high-level
behavior learning and reproduction with low-level robotic arm manipulation and
autonomous robot navigation. The robot sequentially learned necessary high-level
behaviors with the Multiple Demonstrations method described in paper II (Fonooni
et al., [2013). The tutor created sub-behaviors and goals as explained in the afore-
mentioned paper by demonstrating each sub-behavior and its corresponding action.
The low-level controller used action-primitive pairs where all the primitives were
learned using motor babbling. Motor babbling provided inverse kinematic model
of the robotic arm that is used to perform grasping and depositing actions. The
results of using the robot in a quarry for assisting in a rubble clearing task implies
the capabilities of the architecture in motivating the robot using the high-level
controller and perform the delegated task using the low-level controller.

8.5 Paper V

The fifth paper (Fonooni et al.l |b) investigates the nature of ambiguity involved
in inferring the tutor’s intents when the demonstrations map to several intentions.
The aim is to suggest a learning method that resolves this type of ambiguity with
a reasonable speed and adequate result. Therefore, a priming mechanism and a
model of human memory are used to bias the robot prior to learning. The Multiple
Demonstrations method combined with Ant System algorithm is used to form
contexts. The method is then evaluated in a scenario in which the tutor’s intention
was not clearly described and typically, several demonstrations would have been
needed to form contexts correctly.

Based on the conducted experiments, priming together with an attentional
mechanism built on the Ant System algorithm showed significant improvements
in both learning speed and intention recognition compared to no priming as de-
scribed in Paper III (Fonooni et all [a). The Priming mechanism improved rea-
soning about what aspects of a demonstration demand the robot’s attention by
eliminating irrelevant elements and providing one-shot learning.

8.6 Paper VI

In the sixth paper (Fonooni & Hellstrom, |c|), two vision-based approaches for robot
control using visual servoing are compared both analytically and numerically. The
first approach is Image Based visual Servoing (IBVS), which has its roots in tra-
ditional control theory. The second approach is Behavior Based Visual Servoing
(BBVS) that applies principles of behavior-based robotics. The two approaches are
evaluated with a picking task performed by a 3 DoF robotic arm. The results indi-
cate several similarities between both approaches while BBVS showed significantly
better performance.
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The main application of the visual servoing in the current thesis is to have
another alternative for implementation of primitives. This approach has appealing
compatibility with the rest of the architecture and is further used in our shared
control system described in Paper VII (Fonooni & Hellstrom), d)).

8.7 Paper VII

In the seventh paper (Fonooni & Hellstrom, |df), we strive for developing a shared
control system with enhanced intention recognition capabilities to support teleop-
eration tasks. The main contribution of this work is to integrate shared control
with the priming mechanism for improved user intent identification and thereby
better behavior recognition. The proposed system is intended to be used instead
of direct teleoperation during behavior demonstrations in LfD while it also has
potential to be useful as a standalone shared control interface.

The developed solution is tested with an object collection task in which the
robot and user are cooperating. The experiments showed that the priming mecha-
nism successfully biased the robot to identify user’s intention correctly, and reduced
the direct teleoperation time.
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