
An Efficient Best-Trees Algorithm for Weighted
Tree Automata over the Tropical Semiring

Johanna Björklund, Frank Drewes, and Niklas Zechner

Department of Computing Science, Ume̊a University, 901 87 Ume̊a, Sweden
{johanna,drewes,zechner}@cs.umu.se

Abstract. We generalise a search algorithm by Mohri and Riley from
strings to trees. The original algorithm takes as input a weighted au-
tomaton A over the tropical semiring, together with an integer N , and
outputs N strings of minimal weight with respect to A. In our setting, the
input automaton defines a weighted tree language, again over the trop-
ical semiring, and the output is a set of N trees with minimal weight.
We prove that the algorithm is correct, and that its time complexity is
a low polynomial in N , m, n, and r, where m and n are the number
of transitions and the number of states of A, respectively, and r is the
maximum rank of symbols in the input alphabet.

Copyright c© 2014
UMINF 14.22 ISSN 0348-0542

1 Introduction

Tree automata [6, 7, 3] are useful in natural language processing (NLP), not
least to describe the derivation trees of context-free grammars and, in fact, any
other type of context-free device in the sense of Mezei and Wright [14]. Since
data-driven approaches were made feasible through the availability of large-scale
corpora, weighted grammars have increased in popularity, and with them, so
have weighted tree automata [12]. The weights assigned to transitions in these
devices allow analyses to be computed together with, for example, an associated
confidence level or a probability. This is helpful when we want to assess the
quality of an analysis, or when there are several competing analyses to choose
between.

At a higher level of abstraction, selecting the right analysis consists in eval-
uating some objective function f over the set A of all possible analyses, and
choosing the analysis that maximises the value of f . Huang and Chiang [10]
observe that it may not be tractable to compute f(a) for every single a ∈ A,
but that we may obtain a satisfactory approximation by ranking the elements
of A, computing an N -best list a1, . . . , aN according to this ranking, and opti-
mising f over {a1, . . . , aN}. Examples include the reranking of the hypotheses
produced by parsers or translation systems, based on auxiliary language models
or evaluation scores orthogonal to the first round of analysis [2, 17, 9, 13].

There are other situations in which an N -best analysis can be used for ap-
proximation. Suppose for instance that the analysis is computed by a cascade
of computational modules, a common architecture for NLP systems [10]. Each
module typically comes with its own objective function, and the goal is to op-
timise these jointly. Although it might not be possible to compute the full set
of outputs from each module, we may again settle for the N best outputs from
each, and propagate them downstream. In their paper Huang and Chiang pro-
vide several examples of this technique, including joint parsing and semantic role
labeling [8], and combined information extraction and coreference resolution [18].

In the majority of the above-mentioned applications, the weights represent
probabilities and are as such taken from the interval of real values between zero
and one. However, for the sake of numerical precision, negative log likelihoods
are used in the actual computations, and the min operation is used to find the
most likely analysis. This makes the min-plus semiring (R ∪ {∞},min,+, 0,∞)
an appropriate structure for transition weights [15]. The min-plus semiring is also
known as the tropical semiring, and in an alternative formulation, the domain
is R ∪ {−∞}, and max replaces min as the additive operation.

In this paper, we focus on the case where trees are associated with weights
by means of a weighted tree automaton (wta) over the tropical semiring. Thus,
the weight of a computation, called a run, is the sum of the weights of the rules
applied, and the weight of a tree is the minimum of the set of all runs on that
tree. Note that the latter is only relevant if the automaton is nondeterministic.
Huang and Chiang [10] give an O(m+D ·N logN) algorithm for (essentially)
finding a set S of N best runs in an acyclic wta, where D is the size of the largest
run in S. However, as pointed out by Mohri and Riley [16], one would usually
rather determine the N best trees, because the trees correspond to the analyses
and it is not very useful to obtain the same analysis twice in an N -best list just
because it corresponds to several distinct runs of the nondeterministic automaton
that implements the weight assignment. Unfortunately, determining the N best
trees is a harder problem. Part of the difficulty lies in the fact that weighted
automata are not closed under determinisation. In fact, both in the string and
in the tree case the weighted languages recognisable by deterministic weighted
automata is a proper subset of those recognisable by nondeterministic weighted
automata (see also Example 1). When the standard determinisation algorithm
is applied to an automaton of this kind, the algorithm will not terminate but
continue forever to build up an ever-increasing state space.

Example 1. Consider the weighted string language W over the alphabet Σ =
{a, b, c}, defined by W(w) = minα∈Σ |w|α, where |w|α denotes the number of
occurrences of the symbol α in the string w. The languageW is computable by a
weighted string automaton (wsa) M over the tropical semiring: The automaton
makes an initial nondeterminstic choice whether to count as or bs, and then
proceeds accordingly, transitioning with weight 1 on the chosen symbol, and
with weight 0 on all other symbols. However, there is no deterministic wsa over
the same semiring that recognises the language W.

Since every weighted string language may be viewed as a weighted tree lan-
guage (of monadic trees), this gap in descriptive power does not close in the tree
domain. To mention a non-monadic example, it is easy to find the length the
shortest root-to-leaf path through a tree t with a nondeterministic weighted tree
automaton (wta) over the tropical semiring. Each run computes the length of
a nondeterministically chosen path by simple counting, so that the minimum of
the weights of all runs is the length of the shortest path. Finding a deterministic
wta to compute the same weighted language is however impossible.

Let us now return to the problem of finding the N best trees. Mohri and
Riley [16] solve this problem for the string case, where the input is a wsa over
the tropical semiring (and the number N). To avoid computing redundant paths,
they apply Dijkstra’s N -shortest paths algorithm [4] to a determinised version
of the input automaton. Their algorithm applies the determinisation algorithm
under a lazy evaluation scheme to guarantee termination and keep the running
time polynomial (recall that the state-space of the determinised automaton may
be infinite). The property of the tropical semiring that makes this possible is
that paths of minimal weight are relatively short, something which is not true
for other commonly used rings and semirings, e.g. the integers under normal
addition and multiplication.

We generalise the search algorithm by Mohri and Riley [16] to weighted tree
languages, while simplifying the technique by working directly with the input
automaton rather than an on-the-fly determinisation. The frontier is no longer
a set of paths, but rather a set of trees that are combined and recombined into
new trees to drive the search. This increased dimensionality of the tree case
means that a straightforward adaptation of [16] no longer guarantees a poly-
nomial run-time. We therefore propose to use a pruning technique to obtain an
efficient algorithm. Finally, we prove correctness and include a formal complexity
analysis, two elements that are missing in [16].

2 Preliminaries

We write N for the set of nonnegative integers and N∞ for N∪{∞}. For n ∈ N∞,
[n] = {i ∈ N | 1 ≤ i ≤ n}. Thus, in particular, [0] = ∅ and [∞] = N. The
cardinality of a set S is written |S|, and the powerset of S is denoted by pow (S).
We abbreviate the Cartesian product S× · · ·×S with n identical factors by Sn,
and the inclusion di ∈ Di for all i ∈ [k] by d1 · · · dk ∈ D1 · · ·Dk. The empty
string is denoted by λ.

The estimation of the running time of our algorithm contains the factor log r,
where r is the maximum rank of symbols in the ranked alphabet considered (see
below for the definitions). This gives rise to the technical problem that the
expression O(· · · log r · · ·) evaluates to an incorrect O(0) in the case r = 1 (i.e.,
when the input automaton is actually a weighted finite-state string automaton).
Moreover, the expression yields an undefined result for r = 0. To avoid having
to handle the case r ≤ 1 explicitly as a special case, we thus use the convention
that, throughout this paper, log r is used as an abbreviation of max(1, log r).

For a set A, an A-labelled tree is a partial function t : N∗ → A such that the
domain dom (t) of t is a finite prefix-closed set, and for every v ∈ dom (t) there
exists a k ∈ N such that {i ∈ N | vi ∈ dom (t)} = [k]. An element v of dom (t) is
called a node of t, and k is the rank of v. The subtree of t ∈ TΣ rooted at v is
the tree t/v defined by dom (t/v) = {u ∈ N∗ | vu ∈ dom (t)} and t/v(u) = t(vu)
for every u ∈ N∗. If t(λ) = f and t/i = ti for all i ∈ [k], where k is the rank of λ
in t, then we denote t by f [t1, . . . , tk]. If k = 0, then f [] is usually abbreviated
as f . In other words, a tree t with domain {λ} is identified with t(λ).

A ranked alphabet is a finite set of symbols Σ =
⋃
k∈NΣ(k) which is parti-

tioned into pairwise disjoint subsets Σ(k). For every k ∈ N and f ∈ Σ(k), the
rank of f is rank (f) = k. The set TΣ of all trees over Σ consists of all Σ-labelled
trees t such that the rank of every node v ∈ dom (t) coincides with the rank of
t(v). For a set T of trees we denote by Σ(T) the set of trees

{f [t1, . . . , tk] | k ∈ N, f ∈ Σk, and t1, . . . , tk ∈ T} .

In particular, T can be given by a set Q where every q ∈ Q, as mentioned above,
is identified with the tree t such that dom (t) = {λ} and t(λ) = q. Thus, in this
case, Σ(Q) consists of all trees of height 1 which have a symbol from Σ in their
root and children in Q.

Let Σ be a ranked alphabet and let � 6∈ Σ be a special symbol of rank 0.
The set of contexts over Σ is the set

CΣ = {c ∈ TΣ∪{�} | there is exactly one v ∈ dom (c) with c(v) = �} ,

Consider a context c ∈ CΣ and let v ∈ dom (c) be the unique node such
that c(v) = �. The substitution of a tree t into c is defined by dom (c[[t]]) =
dom (c) ∪ {vu | u ∈ dom (t)} and

c[[t]](w) =

{
c(w) if w ∈ dom (c) \ {v}, and
t(u) if w = vu for some u ∈ dom (t) .

A weighted tree language over the tropical semiring is a mapping L : TΣ →
N∞, where Σ is a ranked alphabet. Such languages can be specified by the use
of so-called weighted tree automata (wta), of which there exist a few slightly
different variants. In particular, one may either use final weights or final states.
As shown by Borchardt [1] these two variants are equivalent. Moreover, going
from final weights to final states only requires a single additional state (which
becomes the unique final state) and, in the worst case, twice as many transitions.
This means that all results shown in this paper, including the running time
estimations, hold for both types of wta. For technical convenience, we therefore
work with wta having final states.

Formally, a weighted tree automaton is a system M = (Q,Σ, δ,Qf) where

– Q is a finite set of states;
– Σ is a ranked alphabet of input symbols disjoint with Q;
– δ : Σ(Q)×Q→ N∞ is the transition function; and

– Qf ⊆ Q is the set of final states.

Note that the transition function δ can be specified as a set of all transition
rules f [q1, . . . , qk]

w→ q such that δ(f [q1, . . . , qk], q) = w 6= ∞. In particular,
transition rules whose weight is∞ are not mentioned explicitly. In the following,
we let |δ| denote the number of transition rules describing δ.

For technical convenience, we define the behaviour of M on trees in TΣ∪Q as
opposed to just TΣ , where states are considered to be symbols of rank 0: The
set of runs of M on t ∈ TΣ∪Q is the set of all Q-labelled trees π : dom (t) → Q
such that π(v) = t(v) for all v ∈ dom (t) with t(v) ∈ Q. A run π is accepting if
π(λ) ∈ Qf .

The weight of a run π on a tree t = f [t1, . . . , tk] is defined inductively as

w(π) =

{
δ(f [π(1), . . . , π(k)], π(λ)) +

∑k
i=1 w(π/i) if f ∈ Σ, and

0 if f ∈ Q .

Put differently,

w(π) =
∑

v∈dom (t), t(v)∈Σ(k)

δ(t(v)[π(v1) · · ·π(vk)], π(v)) .

Now, let M(t) = min {w(π) | π is an accepting run of M on t} for every tree
t ∈ TΣ∪Q. This defines the weighted tree language WM : TΣ → N∞ recognised
by M , namely WM (t) = M(t) for all t ∈ TΣ .

In summary, in a wta M every run on a tree t has as its weight the sum of the
weights of its transitions. The weight M(t) of t is the minimum of the weights
of the accepting runs on t. The problem we are concerned with in this paper
is to compute N trees of minimal weight according to M . Thus, an acceptable
solution is a set T = {t1, . . . , tN} ∈ TΣ such that there does not exist any tree
t /∈ T such that M(t) < M(ti) for some i ∈ [N].

3 The Algorithm

We now develop our algorithm for computing N minimal trees with respect to
a given wta. This will be done in two steps: First a basic version is developed,
and second it is turned into a more efficient one by means of a pruning strategy.
Correctness and efficiency will be studied in Section 5. Throughout the rest
of this paper, let M = (Q,Σ, δ,Qf) be the wta given as input to the search
algorithm. Finding a single tree with minimum weight, that is, the case N = 1,
boils down to finding a best run and returning the tree corresponding to this
run. For this, we can use the generalisation of Dijkstra’s algorithm proposed by
Knuth [11]. Formulated in terms of wta, this result can be stated as follows.

Lemma 1 (Knuth [11]). A tree t such that M(t) ≤M(t′) for all trees t′ ∈ TΣ
can be computed in time O(m · (log n+ r)), where m = |δ|, n = |Q|, and r is the
maximum rank of symbols in Σ.

Below, we will continue to use the letters m, n, and r to denote the number
of transition rules, the number of states, and the maximum rank of symbols of
the wta in question.

3.1 The Basic Algorithm

Our algorithm explores its search space recursively. The frontier of the explored
part is organised as a priority queue. The algorithm iteratively selects a tree t
with a minimal value ∆(t) from the queue, considers t for output, puts it into
a set T of explored trees, and finally expands the frontier by all trees in Σ(T)
which have at least one occurrence of t as a direct subtree. The function that
computes this expansion based on T and t is defined as follows.

Definition 1 (Expansion). Given a set of trees T and a single tree t ∈ T ,

expand(T, t) = {f [t1, . . . , tk] ∈ Σ(T) | ti = t for at least one i ∈ [k]} .

To define our algorithm, it is convenient to consider two wta Mq and Mq, for
every q ∈ Q. The wta Mq is simply given by Mq = (Q,Σ, δ, {q}), i.e. q becomes

the unique final state. The wta Mq is given by Mq = (Q,Σ ∪ {�}, δ ∪ {� 0→
q}, Qf). Note that Mq(c) = M(c[[q]]) for every state q ∈ Q.

The priority of a tree t in our queue is primarily determined by the minimal
value of M(c[[t]]), where c ranges over all possible contexts. To determine this, we
compute for every q ∈ Q the minimal value of Mq(c) +Mq(t). Since Mq denotes
the wta obtained from M by taking q as the unique final state, Mq(t) is the
minimal weight of all runs on t whose root state is q. Since Mq(c) is independent
of t, the c that minimises it can be calculated in advance, and Mq(t) can be
obtained through a dynamic programming technique, as we shall see.

Definition 2 (Smallest completion). A smallest completion of a state q ∈ Q
is a context cq such that Mq(cq) = min {Mq(c) | c ∈ CΣ}.

Before continuing, let us note that smallest completions can be computed
efficiently.

Lemma 2. For each state q ∈ Q, a smallest completion cq can be computed in
time O(mr · (log n+ r)).

Proof. We modify the wta M in order to compute cq by Lemma 1. The idea is
to add a leaf symbol that represents q, and make sure that trees not containing
this symbol exactly once will be assigned the weight ∞.

More precisely, let M ′ be obtained from M as follows. For every state p, add
a new state p′. Moreover, add a new symbol q of rank 0 to Σ and a transition

rule q
0→ q′. For every original transition rule f [q1, . . . , qk]

w→ p and every i ∈ [k],
add the transition rule

f [q1, . . . , qi−1, q
′
i, qi+1, . . . , qk]

w→ p′ .

Finally, make {p′ | p ∈ Qf} the set of final states of M ′. Clearly, M ′(t) 6= ∞
only if t contains exactly one occurrence of q. The states of the form p′ are used
to remember that the subtree that has been processed contained exactly one
occurrence of q. Furthermore, for every context c ∈ CΣ , we have M ′(c[[q]]) =
Mq(c). Hence, Lemma 1 yields the result because there are only twice as many
states in M ′ as in M , and only r times as many transition rules. ut

Algorithm 1 Enumerate N trees of minimal weight in ascending order for a
wta M such that WM is monotone

1: procedure BestTreesBasic(M,N)
2: T ← ∅; K ← ∅
3: enqueue(K,Σ0)
4: i← 0
5: while i < N ∧ K nonempty do
6: t← dequeue(K)
7: T ← T ∪ {t}
8: if M(t) = ∆(t) then
9: output(t)

10: i← i+ 1
11: end if
12: enqueue(K, expand(T, t))
13: end while
14: end procedure

The following lemma shows that Mq(f [t1, . . . , tk]) can be computed from
Mp(ti) for p ∈ Q and i ∈ [k]. We omit the straightforward proof.

Lemma 3. For every t = f [t1, . . . , tk] ∈ TΣ and q ∈ Q,

Mq(t) = min
q1···qk∈Qk

{
δ(f [q1, . . . , qk], q) +

∑
Mqi(ti)

}
.

For a tree t in the frontier of our search space we are, intuitively, interested
in the tree c[[t]] that has the least possible weight. Clearly, c can be assumed to
be one of the contexts cq. Thus, our aim has to be to determine the state q that
minimises the weight of cq[[t]].

Definition 3 (Optimal state). Choose an arbitrary but fixed ordering of Q.
The mappings optset : TΣ → pow (Q) and opt : TΣ → Q are defined by

optset(t) = {q ∈ Q |Mq(cq) +Mq(t) = min
c∈CΣ

M(c[[t]])} ,

and opt(t) is the minimal element in optset(t), for every t ∈ TΣ.

We can now give our basic algorithm. Rather than formulating the algorithm
for arbitrary wta, we formulate it only for wta computing monotone weighted
tree languages. Here, a weighted tree language L is called monotone if, for all
trees t ∈ TΣ and all c ∈ CΣ \ {�}, L(t) 6= ∞ implies L(c[[t]]) ≥ L(t). In
Section 3.3 it will be shown that the algorithm can easily be extended to avoid
this restriction.

Our basic algorithm is presented in Algorithm 1. The algorithm maintains
three data structures, namely T , K, and C:

– T is a set of trees that represents the explored search space;

Algorithm 2 Prune the priority queue

1: procedure Prune(T,K)
2: for s ∈ K do
3: if |{t ∈ T ∪K | q ∈ optset(t) and t <K s}| ≥ N for all q ∈ optset(s) then
4: discard(K, s)
5: end if
6: end for
7: end procedure

– K is a priority queue of trees in Σ(T) that represents the frontier of the
search space. When convenient, we identify K with the set of all trees that
it contains; and

– C is a table containing the value Mq(t), for all q ∈ Q and t ∈ T ∪K.

The queue K initially contains the trees in Σ(0). Let the ordering ≤K of K
be such that for all trees t and t′ in K

t <K t′ ⇒ ∆(t) < ∆(t′) or ∆(t) = ∆(t′) and t <lex t
′

where ∆(s) = M(copt(s)[[s]]) for all s ∈ TΣ .

Here, <lex is any lexical order that orders trees first by size and then by alphabet
symbols. It would, in fact, be sufficient to define ≤K as the partial order given by
the condition above, not resolving ties with <lex. However, assuming the order
to be total simplifies some arguments, as does the following property, which will
turn out to be useful in the proofs of Section 5.

Observation 1 For all s, t ∈ TΣ and c ∈ CΣ, if s <lex t, then c[[s]] <lex c[[t]].

3.2 An Efficient Algorithm Based on Pruning

As mentioned above, Algorithm 1 builds a large number of trees and is thus
not very efficient. Therefore, we now give a more efficient version that works by
repeatedly pruning the priority queue.

The idea of the pruning step is that a tree t can be discarded from the queue
if there are, for every state q ∈ Q, at least N other trees si, i ∈ [N], with higher
priority that are taken by M to q charging less weight than t. As it turns out,
it suffices to focus on the states in optset(t), which makes the pruning more
efficient. However, to make the proofs easier, we shall require that q is also in
optset(si) for every i ∈ [N], even though this is worse for the pruning.

Intuitively, the pruning condition is fulfilled if there are sufficiently many
known good alternatives to t in the formation of a set of minimal trees. A poly-
nomial runtime is thus obtained from the new procedure Prune (see Algorithm 2)
at Lines 3 and 12 of Algorithm 1. This leads to Algorithm 3.

Algorithm 3 Compute N trees of minimal weight for a wta M s.t. WM is
monotone
1: procedure BestTrees(M,N)
2: T ← ∅;
3: Prune(T, enqueue(K,Σ0))
4: i← 0
5: while i < N ∧ K nonempty do
6: t← dequeue(K)
7: T ← T ∪ {t}
8: if M(t) = ∆(t) then
9: output(t)

10: i← i+ 1
11: end if
12: Prune(T, enqueue(K, expand(T, t)))
13: end while
14: end procedure

3.3 Removing the Monotonicity Assumption

To finish this section, let us see how Algorithm 3 can be used to compute N
minimal trees even in the case where WM is not monotone. For this, we modify
the input wta in order to make it monotone. We introduce a new symbol out of
rank 1 and turn M into M ′ such that M ′(t) =∞ and M ′(out [t]) = M(t) for all
t ∈ TΣ . This can easily be achieved by adding a new state qf , which becomes the

unique final state, and transitions out [q]
0→ qf for q ∈ Qf . Then M ′ is monotone

and if out [t1], . . . , out [tN] are N trees of minimal weight with respect to M ′,
then t1, . . . , tN are minimal with respect to M .

4 Example

Before studying the correctness and efficiency of the algorithms in Section 5, let
us have a look at an example. We consider the input automaton M illustrated
in Figure 1, where Σ = Σ(0) ∪Σ(1) with Σ(0) = {a, b} and Σ(2) = {◦}. Assume
in the following that the lexical ordering places a before b before ◦. Let ‖t‖σ
(σ ∈ Σ(0)) denote the number of occurrences of σ in a tree t ∈ TΣ , and let ‖t‖
denote the total number of leaves of t. Then we have

M(t) =

{
‖t‖+ min(‖t‖a, ‖t‖b) if ‖t‖ is even
∞ otherwise .

The algorithm indicated in the proof of Lemma 2 may yield cpa = ◦[�, b],
cpb = ◦[�, a], and cqa = cqb = �. We note that

– Mpσ (cpσ) = 1 and Mqσ (cqσ) = 0 for σ ∈ Σ(0), and

– letting a = b and b = a we have, for all t ∈ TΣ ,

optset(t) =

{
{pσ | σ ∈ Σ(0) and ‖t‖σ ≤ ‖t‖σ} if ‖t‖ is odd
{qσ | σ ∈ Σ(0) and ‖t‖σ ≤ ‖t‖σ} if ‖t‖ is even .

b

a

◦◦◦◦ ◦ ◦ ◦ ◦

pa pb

qa qb

2 1

1 2

Fig. 1. The input wta considered as an example. The input alphabet is Σ(0) ∪ Σ(2),
where Σ(0) = {a, b} and Σ(2) = {◦}. Round nodes (with double circles if final) represent
states, and squares represent transitions. The consumed input symbols are shown inside
the squares. Solid arcs point to the right-hand side of the transition in question and are
labelled with the weight of the transition unless it is zero. In the case of input symbol ◦
the two states in the left-hand side of a transition are indicated by incoming solid and
dashed arcs. Since the wta is symmetric, the latter distinction is, in fact, irrelevant.

To increase readability, let us denote trees in TΣ without the binary symbol
◦. For example, ◦[◦[a, b], b] will be denoted by [[a, b], b]. To find N = 3 minimal
trees with respect to M , Algorithm 3 proceeds as follows:

After initialisation, T = ∅ and K contains a and b, where a <K b because
∆(a) = 2 = ∆(b) and a <lex b. The iterations of the ‘while’ loop proceed as
follows:

Step 1: dequeue a

Output: Expand with:

none (as ∆(a) = 2 6= M(a)) [a, a]

T : K:

a b , [a, a]

Step 2: dequeue b

Output: Expand with:

none (as ∆(b) = 2 6= M(b)) [b, b] , [b, a] , [a, b]

T : K:

a , b [a, a] , [b, b] , [a, b] , [b, a]

Step 3: dequeue [a, a]

Output: Expand with:

[a, a] (as ∆([a, a]) = 2 = M([a, a])) [[a, a], [a, a]] , [[a, a], a] , [[a, a], b] ,

[a, [a, a]] , [b, [a, a]]

T : K:

a , b , [a, a] [b, b] , [a, b] , [b, a] , [a, [a, a]] , [[a, a], a] ,

[[a, a], [a, a]] , [b, [a, a]] , [[a, a], b]]

Here, the greyed out boxes indicate trees that are pruned away. In this case,
for each of them the only optimal state is pb, which is also an optimal state of the
trees a, [a, [a, a]], and [[a, a], a] having a higher priority. (Pruned trees of Step 3
are not added to the next table.)

Step 4: dequeue [b, b]

Output: Expand with:

[b, b] (as ∆([b, b]) = 2 = M([b, b])) [[b, b], [b, b]] , [[b, b], a] , [[b, b], b] ,

[[b, b], [a, a]] , [a, [b, b]] , [b, [b, b]] ,

[[a, a], [b, b]]

T : K:

a , b , [a, a] , [b, b] [a, b] , [b, a] , [a, [a, a]] , [[a, a], a] ,

[b, [b, b]] , [[b, b], b] , [[b, b], [b, b]] ,

[a, [b, b]] , [[b, b], a] , [[a, a], [b, b]] ,

[[b, b], [a, a]]

In the next step, [a, b] is dequeued and written to the output, and the algo-
rithm terminates.

5 Correctness and Efficiency

Let us now establish the correctness of Algorithms 1 and 3, and then study
the efficiency of the latter. For this, we assume that Σ 6= Σ(0), so that TΣ is
infinite and hence N trees of minimal weight can always be found. It is clear
that Algorithm 1 is correct if Σ = Σ(0) and terminates within O(m) steps in this
case. Throughout this section we will write BestTreesBasic(M,N) = t1, t2, . . . , tl
or BestTreesBasic(M,N) = t1, t2, . . . (and similarly for BestTrees) if running
Algorithm 1 with the inputs M and N results in the (finite or infinite) sequence
t1, t2, . . . , tl or t1, t2, . . . of output trees.

5.1 Correctness of Algorithm 1

We begin our correctness considerations by an easy lemma.

Lemma 4. Algorithm 1 never dequeues the same tree twice.

Proof. We prove that Algorithm 1 never enqueues the same tree twice, which
implies the desired result. The proof is by induction on the number of executions
of the loop body.

Base case: Prior to the first execution of the loop body, Algorithm 1 enqueues
elements in Line 3. Since the queue is initially empty, the trees in Σ0 have not
been enqueued before.

Inductive case: Consider the ith execution of the loop body, in which the
trees in expand(T, t) are enqueued. We have to show that this set is disjoint
with all sets expand(T ′, t′) of trees enqueued in earlier executions of the loop
body, and with the set of trees enqueued in Line 3. As for the latter it suffices to
notice that expand(T, t) only contains trees of height at least 2. Thus, it remains
to consider expand(T, t) ∩ expand(T ′, t′).

Consider a tree s′ = f [t1, . . . , tk] ∈ expand(T ′, t′). By the induction hypoth-
esis, no tree has hitherto been enqueued twice. Hence, when t is dequeued in
Line 6, this is the first time this happens for this particular tree. As T ′ consists
only of trees that have previously been dequeued, this implies that t /∈ T ′ ∪{t′}.
It follows that t /∈ {t1, . . . , tk}. In contrast, t is a direct subtree of every tree in
expand(T, t) so s′ 6∈ expand(T, t), which completes the proof. ut

Lemma 5. If Algorithm 1 dequeues a tree in t ∈ TΣ, then it has previously
dequeued all trees in s ∈ TΣ such that s <K t. In particular, if a tree in t ∈ TΣ
is dequeued, then all trees s ∈ TΣ with ∆(s) < ∆(t) have been dequeued earlier.

Proof. It suffices to show that Algorithm 1 enqueues all trees s ∈ TΣ with s ≤K t
before it dequeues t. To prove this, let s = f [s1, . . . , sk] and assume that s is
not enqueued before t is dequeued. Assume furthermore that s is a minimal tree
with this property. Then si ≤K s ≤K t for all i ∈ [k]. Hence, since s is a minimal
counterexample, s1, . . . , sk are enqueued before t is dequeued. It follows that
s1, . . . , sk are dequeued before t is. As all trees that are dequeued are inserted
into T , it follows that s is enqueued in Line 12 when the last one of s1, . . . , sk
has been dequeued, contradicting the assumption that s is not enqueued before
t is dequeued. ut

We can now prove the correctness of Algorithm 1.

Theorem 2 (Correctness of Alg. 1). For all N ∈ N, BestTreesBasic(M,N)
terminates and returns N trees of minimal weight according to the wta M . More-
over, BestTreesBasic(M,∞) = t1, t2, . . . consists of pairwise distinct trees such
that, for each i ∈ N and every tree t ∈ TΣ \ {t1, . . . , ti}, M(t) ≥M(ti).

Proof. Clearly, the first statement of the theorem is a consequence of the second.
By Lemma 4, the output trees of BestTreesBasic(M,∞) are pairwise distinct. To

prove that BestTreesBasic(M,∞) outputs an infinite sequence of trees we show
that, after any number of iterations of the loop in Algorithm 1, only a finite
number of additional iterations can be made until a tree is written to the output
(i.e., until Line 9 is reached). Suppose that a tree t is dequeued. Then the tree
t′ = copt(t)[[t]] satisfies M(t′) = ∆(t′) = ∆(t). By Lemma 5 and the definition of
≤K , no tree s with |s| > |t′| will be dequeued before t′. By Lemma 4 this means
that t′ will eventually be dequeued (unless the algorithm terminates before this
happens). Since M(t′) = ∆(t′), the condition in Line 8 is satisfied and t′ is
written to the output in Line 9. Thus the algorithm is guaranteed to terminate.

To complete the proof, assume that BestTreesBasic(M,∞) = t1, t2, . . . and
consider some i ∈ N and a tree t ∈ TΣ \ {t1, . . . , ti}. We have to show that
M(t) ≥ M(ti). For this, assume that M(t) < ∞, because otherwise the asser-
tion is trivially true. Now, recall the assumption that WM is monotone. Since
M(t) <∞, it implies that M(c[[t]]) ≥M(t) for all contexts c, which means that
M(t) = ∆(t) (because M(�[[t]]) = M(t)). We also have M(ti) = ∆(ti), because
Algorithm 1 outputs ti only if the condition in Line 8 is satisfied. However, by
Lemma 5 we have ∆(t) ≥ ∆(ti) since t would otherwise have been dequeued
before ti, and thus written to the output at that stage (because M(t) = ∆(t)).
Hence, M(t) = ∆(t) ≥ ∆(ti) = M(ti), thus finishing the proof. ut

5.2 Correctness of Algorithm 3

Based on the correctness of Algorithm 1 we can now go on to prove the cor-
rectness of Algorithm 3 and study its efficiency. In the following, let us say that
a tree s ∈ TΣ is discarded in a run of BestTrees(M,N) if it, at some stage, is
considered in Line 2 of Algorithm 2, fulfills the pruning condition in Line 3, and
is consequently removed from the queue in Line 4. Further, call a tree t ∈ TΣ
inactive (with respect to the considered run of BestTrees(M,N)) if it contains
a discarded subtree. Naturally, a tree that is not inactive is called active.

Lemma 6. Algorithm 3 never dequeues an inactive tree.

Proof. The argument in the proof of Lemma 4, showing that no tree is ever en-
queued twice, is valid for Algorithm 3 as well. Thus, when a tree is discarded from
K it will not be enqueued again and, therefore, not be dequeued. In particular,
T never contains a discarded tree. Now, consider an inactive tree t ∈ TΣ \Σ(0)

which is not itself a discarded tree. On the one hand, this means that t contains
a discarded tree as a proper subtree. On the other hand, if t is enqueued in K,
it follows by a straightforward induction that all its proper subtrees are in T .
Thus, no subtree of t is discarded, which means that t must be active. ut

Lemma 7. Let BestTreesBasic(M,∞) = t1, t2, . . . and consider the execution
of BestTrees(M,N) for some N > 0. Let l ∈ N∞ be the number of active trees
among t1, t2, . . . , and let ij be such that tij is the jth active tree in t1, t2, . . . , for
all j ∈ [l]. Then BestTrees(M,N) = ti1 , ti2 , . . . , timin(l,N)

.

Proof. For i ∈ N, denote the contents of T and K directly before the ith loop
execution in Algorithm 1 and Algorithm 3 by Ti, Ki, T

′
i , and K ′i, respectively.

We prove the following claim:

Claim. Let s1, s2, . . . be the sequence of trees dequeued in Line 6 of Algorithm 1
during a run of BestTreesBasic(M,∞). Consider a run of BestTrees(M,N) and
let A = {si1 , si2 , . . . } be the set of active trees with respect to this run, where
i1 < i2 < · · · . Then, for all l > 0, the first l trees dequeued by Algorithm 3
are si1 , si2 , . . . , sil (provided that the main loop is executed at least l times).
Furthermore Kil ∩A ⊆ K ′l ⊆ Kil .

Clearly, the statement of the lemma follows from the correctness of this claim,
because the condition for outputting a tree is the same in both algorithms.

To prove the claim, we proceed by induction on l. We have i1 = 1 because
the call of Algorithm 2 in Line 3 of Algorithm 3 does not discard the least
element of Σ(0) (with respect to ≤K). Hence, for l = 1, si1 = s1 is the first
tree dequeued by Algorithm 3. Further, K1 ∩ A = Σ(0) ∩ A = K ′1 ⊆ K1 since
K ′1 = {a ∈ Σ(0) | a is not discarded}. Now, assume that the claim holds for some
l > 0. The trees sil+1, . . . , sil+1−1 dequeued during the next il+1−il−1 iterations
in Algorithm 1 are all inactive, and thus also the trees enqueued are inactive as
each contains one of the dequeued inactive trees as a subtree. It follows that
Kil+1−1 ∩A = Kil ∩A ⊆ K ′l ⊆ Kil ⊆ Kil+1−1.

Since sil+1
is the highest priority tree in Kil+1−1 and is active, this means

that it is also the highest priority tree in K ′l , and is therefore the next one
dequeued by Algorithm 3. Hence the first statement of the claim holds for l+ 1.
In particular, T ′l+1 = {si1 , . . . , sil+1

} = Til+1
∩ A. Further, since K ′l ⊆ Kil+1−1,

the call in Line 12 of Algorithm 3 enqueues only trees that are also enqueued in
Line 12 of Algorithm 1, which shows that K ′l+1 ⊆ Kil+1

.
It remains to be shown that Kil+1

∩A ⊆ K ′l+1. A tree s ∈ Kil+1
∩A is either

in Kil+1−1 ∩A ⊆ K ′l and hence in K ′l+1 because it is not discarded, or we have

s ∈ expand(Til+1
, sil+1

) ∩A
= expand(Til+1

∩A, sil+1
) ∩A

= expand(T ′l+1, sil+1
) ∩A

⊆ K ′l+1

where the second line is correct because trees with inactive subtrees are inactive.
ut

Theorem 3 (Correctness of Alg. 3). For all N ∈ N, BestTrees(M,N) ter-
minates and returns N trees of minimal weight according to the input wta M .
Moreover, BestTrees(M,∞) = t1, t2, . . . consists of pairwise distinct trees such
that, for each i ∈ N and every tree t ∈ TΣ \ {t1, . . . , ti}, M(t) ≥M(ti).

Proof. The second statement is correct by Theorem 2, because the behaviors of
both algorithms are obviously identical for N =∞.

To prove the first statement, assume that BestTreesBasic(M,∞) = t1, t2, . . .
and, using Lemma 7, that BestTrees(M,N) = ti1 , . . . , til for some l ≤ N . We

show that {ti1 , . . . , til} = {t1, . . . , tN}. Let Θ = {t1, . . . , tN} \ {ti1 , . . . , til}. By
Lemma 7 each tree in Θ is inactive. Let us assume that Θ 6= ∅, and let k be the
least index such that tk ∈ Θ. In other words, tk is the first tree among t1, . . . , tN
containing a discarded subtree. Since tk is one of the output trees of Algorithm 1
we have ∆(tk) = M(tk). Let tk = c[[s]], where s is one of the discarded subtrees
of tk. Thus, s is inactive but all its proper subtrees are active (by Lemma 6 and
the fact that all proper subtrees of trees in K have once been dequeued).

To finish the proof, let v ∈ dom (c) be the node of c such that c/v = �, and
consider a minimal run π on tk, where q = π(v). We know that M(c′[[s]]) ≥M(tk)
for all c′ ∈ CΣ because otherwise c′[[s]] ∈ {t1, . . . , tk−1}, which would contradict
the choice of k since c′[[s]] contains the discarded subtree s. In other words,

q ∈ optset(s), Mq(c) = min{Mq(c
′) | c′ ∈ CΣ} and M(tk) = M(cq[[s]]) . (1)

Since s was discarded during the execution of Algorithm 3, we know further
that T ∪K, from that point onward, always contained N pairwise distinct trees
u1, . . . , uN such that ui <K s and q ∈ optset(ui).

We distinguish two cases, deriving a contradiction in each case and thus
proving that tk cannot exist:

1. If M(cq[[ui]]) < M(c[[ui]]) for some i ∈ [N], then it follows from the equa-
tions M(cq[[ui]]) = Mq(cq) + Mq(ui) and M(c[[ui]]) ≤ Mq(c) + Mq(ui) that
Mq(cq) < Mq(c) and thus M(cq[[s]]) < M(tk), contradicting (1).

2. If M(c[[ui]]) = M(cq[[ui]]) = ∆(ui) for all i ∈ N , we distinguish two sub-cases.
(a) If s <lex ui despite the fact that ui <K s, then ∆(ui) < ∆(s), so

M(c[[ui]]) = M(cq[[ui]]) < M(tk), which gives us c[[ui]] <K tk for all
i ∈ [N]. By Lemma 5, all of these N pairwise distinct trees occur among
t1, . . . , tk−1, which is impossible because k ≤ N .

(b) If, on the contrary, ui <lex s, then Observation 1 together with the
equation

∆(c[[ui]]) ≤M(c[[ui]]) = ∆(ui) ≤ ∆(s) = M(tk) = ∆(tk)

gives us again c[[ui]] <K tk for all i ∈ [N] and thus the same contradiction
as before. ut

5.3 Efficiency of Algorithm 3

Let us now have a look at the worst-case efficiency of BestTrees. We first show
why it is unnecessary to prune the set T along with K in order to make Algo-
rithm 3 efficient. Intuitively, it is because once a tree t has been dequeued and
added to T , the algorithm will never discover a better way to reach the states
in optset(t) than t itself.

In the following, s <D t denotes that trees s and t are both eventually
dequeued in a run of BestTrees(M,∞), and s is dequeued before t.

Lemma 8. If s <D t, then Mq(s) ≤Mq(t) for every q ∈ optset(s).

Proof. By the claim in the proof of Lemma 7, the sequence of trees dequeued
by Algorithm 3 forms a subsequence of the sequence of trees dequeued by Al-
gorithm 1. Hence, by Lemma 5, s <D t implies s <K t, and thus ∆(s) ≤ ∆(t).
Suppose, in contradiction to the statement of Lemma 8, that Mq(t) < Mq(s) for
some q ∈ optset(s). This leads to a contradiction through the following sequence
of (in-)equalities:

∆(t) ≤M(cq[[t]]) = Mq(cq) +Mq(t) < Mq(cq) +Mq(s) = M(cq[[s]]) = ∆(s) ut

A consequence of Lemma 8 is that T can only grow to contain N · n trees,
since at this point, the pruning will discard everything that is left in the queue.

Lemma 9. The body of the ‘while’ loop in BestTrees is executed at most N · n
times.

Proof. We show that T never grows beyond N ·n elements. Since each execution
of the ‘while’ loop increases the size of T , this limits the number of iterations.

Consider the sequence W = t1, . . . , tk of trees dequeued during the execu-
tion of BestTrees(M,N). In the light of Lemma 8, for every state q ∈ Q the
subsequence Wq = ti1 , . . . , til given by {i1, . . . , il} = {j ∈ [k] | q ∈ optset(tij)}
satisfies Mq(ti1) ≤ · · · ≤ Mq(til). Hence each Wq is of length at most N , be-
cause every further tree would have fulfilled the pruning condition and would
thus have been discarded from the queue instead of eventually being dequeued.
As each tree in W occurs in at least one of the subsequences Wq, this proves the
statement of the lemma. ut

Lemma 10. Prune(K,Expand(T, t)) is computable in time

O
(
max(m · (Nr + r log r +N logN), Nn2)

)
.

Proof. In order to implement pruning efficiently, we have to avoid the explicit
computation of Expand(T, t). Let us denote the subset of transition rules in δ
that lead to the state q by δq. We first compute, for every q ∈ Q, an ordered list of
(at most) N trees s1, . . . , sN in Expand(T, t) such that Mq(s1) ≤ · · · ≤Mq(sN)
and Mq(s) ≥Mq(sN) for all s ∈ Expand(T, t)\{s1, . . . , sN}. To do this, consider

every rule ρ = (f [q1, . . . , qk]
w→ q) ∈ δq in turn and build a weighted edge-labelled

digraph Gρ having nodes u0, . . . , uk and v0, . . . , vk and the following edges for
every i ∈ [k]:1

For every s′ ∈ T \ {t} there are edges with label s′ and weight Mpi(s′)
from ui−1 to ui and from vi−1 to vi. In addition, there are edges with
label t and weight Mpi(t) from both ui−1 and vi−1 to vi.

See Figure 2 for an illustration.
A path from u1 to vk+1 in Gρ which is labelled t1 · · · tk corresponds to the

tree f [t1, . . . , tk] ∈ Expand(T, t). Note that t occurs among t1, . . . , tk since only

1 The nodes v0 and uk are superfluous but simplify the description of Gρ.

u0 u1 u2 uk−1 uk

v0 v1 v2 vk−1 vk

(p1, T \ {t}) (p2, T \ {t}) (pk, T \ {t})

(p1, {t}) (p2, {t}) (pk, {t})

(p1, T) (p2, T) (pk, T)

Fig. 2. The graph constructed in the proof of Lemma 10, to discover the N best ways
of instantiating a rule ρ = (f [q1, . . . , qk]

w→ q) ∈ δq with trees in T , in such a way that
the tree t is used at least once. Here, (p, S) with p ∈ Q and S ⊆ TΣ denotes the set of
tuples {(s,Mp(s)) | s ∈ S}.

t-labelled edges lead from ui to vi+1. The weight of the path is the weight of
a minimal run π on f [t1, . . . , tk] with π(λ) = q and π(i) = qi for all i ∈ [k].
Since Gρ has O(r) nodes and O(Nnr) edges, N paths of minimal weight can
be computed by Eppstein’s algorithm [5] in time O(Nnr + r log r + N logN).
We can improve this to O(Nr + r log r +N logN) by including in Gρ, for every
pair of nodes, only N edges of minimal weight between those nodes. Clearly,
only these edges can be on the N paths of minimal weight. For every rule ρ,
this gives rise to an ordered list Lρ of (at most) N trees. The time required for
this is O(m · (Nr + r log r +N logN)) in total. Together with each tree in the
computed lists Lρ, we keep track of the corresponding weight in order to be able
to implement the following steps.

In the next step, the lists obtained for rules with the same right-hand side
q are merged into one list Lq of length N of trees s ∈ Expand(T, t), ordered
according to Mq(s). Trees not among the first N are discarded. Since the lists
obtained in the previous step are sorted, this step takes time O(mqN) for each
q ∈ Q, where mq is the number of rules having q as their right-hand side, and
hence O(mN) in total, which is dominated by the time required for the previous
step. Each tree t in Lq is now associated with the weight Mq(t).

Finally, a similar procedure merges the n lists obtained in the previous step
with the trees in K in order to construct Prune(K,Expand(T, t)). Since the
queue contains at most Nn elements, the time required for this is O

(
Nn2

)
if we

implement K as a linked list. ut
Combining Lemma 2, 9 and 10, we obtain Theorem 4.

Theorem 4. BestTrees(M,N) runs in time

O
(
max(Nmn · (Nr + r log r +N logN), N2n3,mr2)

)
.

It may be worthwhile to notice that the set T is subtree closed, meaning
that t1, . . . , tk ∈ T for every tree f [t1, . . . , tk] ∈ T . Since all output trees of
Algorithm 3 are in T , this yields the following observation.

Observation 5 Algorithm 3 computes a set of N minimal trees that can be
represented as a directed acyclic graph (or hypergraph) of size N · n · r.

6 Conclusion and future work

We have lifted the algorithm by Mohri and Riley [16] to the domain of trees. Since
the frontier of the search space grows exponentially if no additional measures are
taken, pruning becomes an essential technique. Our suggested pruning strategy
may be overly cautious, so it would be interesting to learn whether it can be
improved through the addition of a preprocessing step, in which the topology of
the input wta is explored.

Future work includes the implementation and integration of the algorithm
into an open-source library for formal tree languages. On the theoretical side,
we are interested in seeing further generalisations of the search algorithm, for
example from trees to directed acyclic graphs, or from the tropical semiring to
some encompassing family of extremal semirings.

Bibliography

[1] Borchardt, B.: A pumping lemma and decidability problems for recognizable
tree series. Acta Cybernetica 16, 509–544 (2004)

[2] Collins, M.: Discriminative reranking for natural language parsing. In: Com-
putational Linguistics. pp. 175–182. Morgan Kaufmann (2000)

[3] Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S.,
Tommasi, M.: Tree Automata Techniques and Applications (2002), internet
publication available at http://www.grappa.univ-lille3.fr/tata

[4] Dijkstra, E.W.: A note on two problems in connexion with graphs. Nu-
merische Mathematik 1, 269–271 (1959)

[5] Eppstein, D.: Finding the k shortest paths. SIAM J. Computing 28(2),
652–673 (1998)

[6] Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó (1984)
[7] Gécseg, F., Steinby, M.: Tree languages. In: Handbook of Formal Languages,

vol. 3, chap. 1, pp. 1–68. Springer Verlag (1997)
[8] Gildea, D., Jurafsky, D.: Automatic labeling of semantic roles. Computa-

tional Linguistics 28(3), 245–288 (sep 2002)
[9] Goodman, J.: Parsing inside-out. Tech. Rep. cmp-lg-9805007, Computing

Research Repository (1998)
[10] Huang, L., Chiang, D.: Better k-best parsing. In: Proceedings of the Confer-

ence on Parsing Technology 2005. pp. 53–64. Association for Computational
Linguistics (2005)

[11] Knuth, D.E.: A generalization of Dijkstra’s algorithm. Information Process-
ing Letters 6, 1–5 (1977)

[12] Kuich, W., Droste, M., Vogler, H. (eds.): Handbook of Weighted Automata.
Springer (2009)

[13] Kumar, S., Byrne, W., Processing, S.: Minimum Bayes-risk decoding for
statistical machine translation. In: Proceedings of HLT-NAACL 2004 (2004)

[14] Mezei, J., Wright, J.B.: Algebraic automata and context-free sets. Informa-
tion and Control 11, 3–29 (1967)

[15] Mohri, M., Riley, M.: A weight pushing algorithm for large vocabulary
speech recognition. In: European conference on speech communication and
technology. pp. 1603–1606 (2001)

[16] Mohri, M., Riley, M.: An efficient algorithm for the n-best-strings problem.
In: Proceedings of the Conference on Spoken Language Processing (2002)

[17] Shen, L.: Discriminative reranking for machine translation. In: Proceedings
of HLT-NAACL 2004. pp. 177–184 (2004)

[18] Wellner, B., McCallum, A., Peng, F., Hay, M.: An integrated, conditional
model of information extraction and coreference with application to citation
matching. In: Proceedings of the Conference on Uncertainty in Artificial
Intelligence 2004. pp. 593–601. AUAI Press (July 2004)

